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Abstract

The limited predictability experienced by extended integrations of the nonlinear equations governing a
large class of systems is illustrated by a number of examples . Lacking a general theory permitting an es-
timate of the limits of the predictability for a given system the strategy is to compare two numerical in-
tegrations starting either from slightly different initial states or from identical initial states, but wit h
small changes in the forcing .

The difference between the practical and the theoretical limits of predicitability is discussed . The the-
oretical limit may be determined by starting from two initial states with only infinitesimal differences o r
from similar differences in the forcing, while the practical limit is determined by the uncertainty of th e
initial state due to the accuracy and distributions of observations and by the uncertainty in describing the
forcing of a given system.
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1 . Introductio n

The equations of classical physics are deterministic providing one and only one so-
lution for a given initial state and a given forcing . The independent variables ar e
normally three space coordinates and one time coordinate . The dependent variables
are in general the three components of the velocity, the pressure, the density and th e
temperature, but in many cases a reduced set of independent and dependent vari-
ables have been used . The solution of the classical two-body astronomical proble m
requires only the basic Newtonian law that mass times acceleration is equal to th e
sum of forces acting on the mass . Geophysical modeling has also developed over
several decades, going from the simple to the more complicated . In some cases it i s
necessary to supplement the basic six dependent variables by additional variable s
because the system under consideration may require special treatment of one of it s
components . As an example it may be mentioned that a realistic treatment of the at -
mosphere of the Earth requires a special equation for the content of water vapour .
Otherwise it is not possible to treat the cloud and precipitation processes .

From the times of Newton to about 1890 it was generally believed that if one
knows the initial state with great accuracy, and if all the forces acting on a give n
system can be formulated with equal accuracy, it would be possiple, in principle, t o
make predictions of the state of the universe for an infinitely long time .

The limited predictability of physical systems has been known for about a cen-
tury. The first discussion of the concept, known by the author, was given b y
Poincaré (1893 and 1912) . He discussed in particular the limited predictability in
the three body astronomical problem indicating that small changes in the initia l
state could result in large changes in the trajectories of the three bodies during th e
numerical integration of the three relevant equations . A single example of such an
integration is presented in the appendix to this paper .

The best known example of both theoretical and operational limited predictabil-
ity is the weather prediction problem simply because objective numerical weathe r
predictions using various models based on the atmospheric dynamics have been i n
operation for almost half a century. Thompson (1957) was the first to analyse th e
limited predictability due to the uncertainties in the initial field . Since these predic-
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tions have been verified for a long time it has been possible to follow the gradual
increase of the operational predictability from a single to several days . Within th e
field of weather predictions we have also some estimates of the theoretical limit o f
predictability . The weather prediction problem will be discussed in Section 2 of thi s
paper .

In other geophysical areas we have much less information about predictability .
The reason is of course that no other area has experienced the same systematic de-
velopment and use of observational systems for predictions as has been the case i n
the atmospheric sciences . On the other hand, atmospheric prediction models hav e
been developed to a state where information about the upper layers of the oceans ,
the distribution of land and sea ice, the topography and the vegetation of the conti-
nents are necessary for a proper determination of the initial state for an atmospher-
ic prediction and for the interactive processes during the numerical integration o f
the model equations . Chaos is equivalent to limited predictability simply becaus e
chaos is defined as sensitivity to small changes in the initial state .

The predictions mentioned so far are attempts to forecast a future state in a s
much detail as possible . The numerical integrations may be based on a grid-poin t
model, a spectral model or a combination of the two in the sense that a spectra l
model is used for the time integrations, while a grid-point model is used to deter -
mine the influence of local processes on the forcing of the model . The reason for
such an arrangement is that the spectral equations may be integrated with great ac -
curacy, but to incorporate processes on a small scale at a given locality it is neces-
sary to know local changes with great accuracy. In the latter case it is necessary t o
have effective and accurate programs to go back and forth between the two kinds o f
representation. Such programs, depending on fast Fourier transforms, have bee n
developed .

A second kind of desirable prediction is to predict a future averaged state of a
system. The goals could for example be to make monthly predictions, seasonal pre -
dictions or simulations of various climatic states . A direct approach to this proble m
is to integrate a suitable model for a sufficiently long time whereafter the appropri-
ate time average is computed as the end product . In view of the limited predictabil-
ity one may ask if this procedure will lead to a suitable and useful prediction . It i s
of course realized that the transient, relatively short waves after such a long inte -
gration will not be found in the correct place and with a suitable amplitude .
However, the time average will to a large extent eliminate the transient waves an d
the final product should thus in addition to the zonal state contain mainly the very
long waves which are forced by the topography and the heat sources . If this argu-
ment is correct, it may be asked if one could not just as well use a spectral model
containing only components describing the smaller wave numbers, i .e . the larg e
planetary scales . This possibility requires that the shorter transient waves do not
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feed energy into the longer waves, but diagnostic studies of the energy transfers i n
the spectral domain conducted by Lin and Derome (1995) indicates that the largest
scale waves do indeed receive energy from the shorter transient waves indicating
that a lower order model, treating only the large planetary scales, is not a viable
possibility. A second possibility is to avoid the major nonlinear terms by averagin g
the equations over the whole globe . The major nonlinear terms average to zero i n
this case, and the remaining equations are much easier to handle . The disadvantage
of this procedure is that one will also have to deal with the physical processes in a n
average way. It is thus not possible to pay attention to size and position of the con-
tinents and the oceans . However, this approach may be used as a supplement to th e
very long integrations of the original equations for the model . Thus, the problems
of predictions of the second kind has not so far been solved in a satisfactory way.

The determination of the practical limit for atmospheric predictability requires a
large number of cases of global integrations . Reliable results can be obtained only
from institutions engaged in the production of such forecasts . To illustrate limited
predictability it is possible to select various low order models and use the integra-
tions of the model equations to demonstrate the main nature of the phenomenon .
Since these model contain only a few components, they will not be able to pay at-
tention to the nonlinear cascades of energy in the spectrum . Some low-order mod -
els will be defined and used in Section 3 of this paper.

2 . Atmospheric prediction s

Atmospheric predictions were for a long time based on the experience of the fore-
caster and on empirical and statistical rules . Such forecasts were normally limite d
to 1 or 2 days . With the availability of the first computers appearing in the late
1940's it became possible for the first time to attempt atmospheric forecasts base d
on simple models of the dynamics of the atmosphere . The very first model, formu-
lated in 1949, used the vorticity equation applied to the vertically averaged atmos-
phere . This simple barotropic model assuming quasi-geostrophic or quasi-non-
divergent flow was later replaced by models using several levels to describe th e
vertical structure of the atmosphere . The first models had neither energy source s
nor dissipation. They could generally be used for a couple of days and were ofte n
integrated on grids covering less than a hemisphere .

These models were later replaced by more complete hemispheric and globa l
models using the primitive equations . A description of the general development ha s
been given by the author (Wiin-Nielsen, 1997) . Present models for short- an d
medium-range prediction are typically global with a large number of levels to de -
scribe the vertical variations of the atmosphere . The best models has a horizontal
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resolution permitting wavelengths as small as 200 km. The models contain heat
sources and sinks as well as friction in the boundary layer and the free atmosphere .
The radiation budgets for the incoming short wave radiation and the outgoing lon g
wave radiation are a part of the model . The orography is included with a resolutio n
corresponding to the horizontal resolution of the model . Special quantities are nec-
essary at the surface such as ground and sea roughness, ground and sea surfac e
temperatures, ground humidity, snow-cover and sea ice . Gravity wave drag, evapo-
ration, transfer of sensible and latent heat flux are included . The clouds are divided
in high, medium, low and convective clouds . One deals with both stratiform and
convective precipitation as well as an almost complete water budget at the surfac e
and sub-surface levels .

The status of numerical weather prediction about 15 years ago is given b y
Bengtsson (1985) . Figure la compares short-range predictions made by various in-
stitutions . The measure of accuracy is here the RMS-difference between the fore -
cast and the observed state . The differences are to a large extent explained by th e
computer capacity available to the national meteorological centers . A small capaci-
ty means larger gridsizes and perhaps less than hemipheric forecast regions with ar -

Fig . la : The RMS-errors for predic-
tions from various organizations for
the years 1979 to 1983 .
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Fig . lb: The number of days of pre-
dictability, defined as those for whic h
the 500 hPa height anomaly correla-
tion coefficient exceeds 0 .6 . The
anomaly is defined as the deviatio n
from the mean for the period .
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tificial boundary conditions . Figure lb shows the development of atmospheric pre-
dictability from late 1979 to 1983 . The predictability is determined by the time a t
which the anomaly correlation goes below the value 0 .6 . The value of 0 .6 is select -
ed because practical experience shows that this value represents an accuracy wher e
the forecast is still useful for meteorological operations . A value of 0 .8 is occasion -
ally used. The operational predictability times becomes shorter in this case . The 1 2
months running mean (dashed curve) shows an increase in practical predictabilit y
from about 4 days to 6 days . The solid curve, based on monthly mean values, indi-
cate that the limit of predictability varies during the year with the largest pre-
dictability in winter and the smallest in summer . This is most likely due to the fact
that the important weather processes are on a smaller scale during the summer tha n
during the winter. The model on which the curves are based had a rather coarse res -
olution which did not permit the proper representation of the smaller scale dynam-
ical processes during the summer. Later models with higher spatial resolution ha s
decreased or eliminated this annual variation in accuracy .

The dependence of operational predictability on scale for the same early mode l
is demonstrated in Figure 2, where the predictability is determined for short (wav e
numbers 10 to 20), medium (wave numbers 4 to 9) and long (wave numbers 1 to 3 )
waves . The results apply to a single winter month (January, 1983) . The increase of
practical predictability for the years 1972-1992 is shown in Figure 3 . Measure d
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Height anomaly correlation (20°N - 82 .5°N) Fig . 2: The 500 hPa anomaly correla-
tion for the region 20 to 82 .5 deg .
north for very long waves (wave
numbers I-3), medium waves (wave
numbers 4-9) and short waves (wave
numbers 10-20) for January 1983 .
The predictability varies from less
than three days for the short waves t o
about 9 days for the longest waves .
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Fig . 3 : The anomaly correlation for the Miyakoda forecasts 1972, the ECMWF forecasts for 1979/8 0
and for 1992/93, showing a predictability of 7 days .
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Tendency correlation coefficient from 1968 to 1992 for forecasts of msl p
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Fig . 4a : A comparison of the accuracy of forecasts for 1 day (upper curve) to 4 days (lower curve) for th e
interval from 1968 to 1992. Note for example that the 4 day forecast in 1992 is as good as the 1 day fore -
cast in 1979 .

again by the lower limit of 0 .6 for the anomaly coefficient we find an increase fro m
about 3 .5 days to about 7 days . Figure 4a shows the changes in accuracy for one ,
two, three and four day forecasts . The uppermost curve applies to 24 hour forecast s
and lowest curve to 96 hour forecasts . It may for example be noted that by 1992 th e
four day forecast was as good as the one day forecast in 1979 . Figure 4b is similar
to Figure 3, but is based on later information bringing the error curve to the winte r
1997/98 . Further progress is noted by comparing Figure 3 and Figure 4b . The prac-
tical limit for acceptable forecasts is now almost 8 days . Since a part of the contri-
bution to forecast errors come from the uncertainty in the initial state, it may be an
advantage to make a number of forecasts from slightly different initial states . Each
of these forecasts will be different for a given verification time . The average of al l
the forecasts may be a better forecast than any of the single forecasts . Figure 4c i s
similar to Figure 4b, but the ensemble mean forecast has been tested against th e
analyses for the later part of the 10 day forecasts . It is seen that using the ensemble
procedure the limit for acceptable forecasts is extended to almost 9 days. It i s
stressed that all the figures refer to averages . They are therefore not valid for indi-
vidual forecasts which may be better or worse .

After this discussion of the practical limits of predictability it should be men-
tioned that the theoretical limit of predictability for the atmosphere may be esti-
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Northern Hemisphere (DJF) anomaly correlation 500 hPa
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Fig . 4b : The increase of the predictability from 1972 (3 .5 days) to 1997/98 of almost 8 days .
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Fig. 4c : As Figure 4b, but the ensemble forecast for the winter 1997/98 has been adde d
showing a predictability of almost 9 days .

to the figure
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mated by making two long integrations starting from initial states which are almos t
identical . The initial states differ only by infinitesimal amounts . The problem i s
thus to determine when the difference between the two integrations become too
large . The first attempts were made as early as 1966 as part of the preparation fo r
the Global Weather Experiment (Charney, 1966) . Such experiments are not easy t o
carry out . The initial difference was introduced in the temperature fields as a single
wave component in the baroclinically unstable region . Three different models were
used . If the difference between the two initial states is very small, the dissipation in
the model will have a tendency to eliminate the difference . One of the models gave
indeed the result that the difference between the two forecasts increased in th e
early part of the integration, but decreased then to small values . Nevertheless, a cer -
tain estimate was made based on one of the models, and the result was a theoretica l
limit of predictability of 15 to 19 days . Since then models have become better bot h
with respect to the parameterization of the physical processes and the vertical an d
horizontal resolution. It may be worthwhile to attempt a new determination of th e
theoretical limit of predictability using the best global models .

Some information about the theoretical limit of predictability may also be ob-
tained from Figure 4d . The various curves give the root-mean-square errors
(RMSE) for various experiments . The top dashed curve shows the RMSE values

1 0

Fig . 4d : The top curve is the RMS-error as a function of time for forecasts prepared in 1981 (dotte d
curve), while the solid curve is the Rms-errors for 1998 . The dashed curve indicates the Rms-error s
which would be obtained if the model errors could be removed, while the lowest curve estimates th e
RMS-errors if the errors in the initial state could be greatly reduced .
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for the winter 1980/81 as a function of time measured in days . The solid curve i s
the RMSE values for the winter 1997/98 indicating the improvements of the fore-
casts over 17 years of operational predictions . The third (dashed) curve from th e
top is obtained by removing the model errors beyond Day 1 . It shows in other
words the potential skill, if the model was perfect, while the forecasts still are in-
fluenced by the uncertainty in the initial state . The lowest (dashed-dotted) curve in-
dicates the potential skill if the erorrs at day 1 was further reduced by as much as
the reduction experienced from 1980/81 to 1997/98 . If such an improvement coul d
be obtained a further extention of the operational predictability would be possible .
In this imagined situation even the 10 day forecasts would be useful .

The curves in Figure 4d are limited to 10 days because the daily operational fore -
casts are not carried beyond this time. A theoretical limit of predictability could be
obtained if the forecasts on an experimental basis were carried so far into the futur e
that the three lowest curves converged . Such experiments may be carried out in the
future .

The reason for the present operational limit of predictability is that the observa-
tions do not permit an initial analysis without errors . In addition, the description o f
the many physical processes in the atmosphere necessary to determine the net heat -
ing is done by parameterizing small scale processes in terms of the gridpoint vari-
ables used in the model . Such a process cannot be without errors since it depend s
on empirical and statistical procedures . It is most likely that the latest gain in oper-
ational predictability is due to better atmospheric observations, particularly the in -
formation from satellites, because the improvements are seen also for the forecast s
for the shorter periods .

3 . Limited predictability in simple geophysical model s

Since no general theory is known for limited predictability it will be necessary to il -
lustrate the behavior by selecting various examples . They will be based on low-or-
der models where the integrations can be carried out with ease . Low-order model s
have limitations . They contain the nonlinear interactions among the spectral com-
ponents in a rudimentary form only. Therefore, they do not have cascade processe s
linking the spectral region of the large-scale forcing with the dissipation range .
Nevertheless, they are convenient tools that can illustrate the occasionally unex-
pected behavior due to the nonlinear nature of the models .

Example A : Lorenz attractor
We select the well known strange Lorenz attractor as the first example . It has been
described in many references such as Lorenz (1963, 1989) . The equations for the
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model are given in (3 .1) using the standard notations . We recall that the model de-
cribes convection between two horizontal plates .

dx =
6(y-x )

dt

dy
= xz+rxy

dz = xy-bz
dt

The standard case will be used. It has b=813 and 6=10. r is the Rayleigh number,
and it is proportional to the temperature difference between the lower and the uppe r
horizontal plates . The theory for the convection says that if r<1 we get molecular
transfer of heat from the lower to the upper plate . For r>1, but not too large, con-
vection cells develop between the plates . When 1<r<rc (re = 24 .74) the equation s
have one unstable state (0,0,0) and two steady states, while r>re results in three un -
stable steady states . In the latter case the system will never come to rest . On the oth -
er hand, it can be shown that the system cannot go to infinity because being suffi-
ciently far away from (0,0,0) it will move back towards this point .

We select first r=28 . It is in the region containing three unstable steady state . An
integration from a given initial state is carried out . A second integration with r, =
28 .001 from the same initial state is included in the program. Let the variables in
the second integration be denoted (u,v,w) . As a measure of the difference betwee n
the two integration we may use the rms-value given in (3 .2) .

d= [(x-u)2-1-(y-v)2+(z-w)z] i'z

	

(3 .2 )

With a starting position for both integrations in (0,0 .01,0) integrations were carrie d
out for 40 time units . The difference as measured by (3 .2) is shown in Figure 5 .
Between 20 and 25 time units we notice that the two solutions are definitely differ -
ent . The difference between them changes in time, but the two solutions do no t
come close to each other again .

When we select a value of r<r~ we know that two steady states will be present . A
detailed discussion of this case has been given by Wiin-Nielsen, (1998) . Naturally,
if we select the initial state very close to one of the steady states an integration wil l
end in the steady state . On the other hand, for an initial state far from the two stead y
states we cannot in advance say, if the integration will lead to any of the stead y
states, and, if it does, which steady state will be approached . Figure 6a shows th e

(3 .1)
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r=28 .0,r1 =28.001,xo=u0=0,y=v=0 .01, z=w= 0
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Fig. 5 : The RMS-difference between two integrations of the Lorenz-model if the forcing is changed b y
0 .001 . The predictability is lost between 20 and 25 time units .
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Fig . 6a : The stable part of the Lorenz attractor . Two integrations from the same initial states, but th e
forcing is changed by 10' . The two integrations arrive in different steady states .
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r=23 . 0 ,r1 =23.0000001,xo =uo=0,yo=vo=0.1,zo=w0=23 . 0

Fig . 6b : A plot of the (x,y) and the (u,v) trajectories for the integrations described in Figure 6a .

difference between two integrations, both starting in (0,0 .1,23), but where one o f
the integrations have r=23, while the other has r, = 23+10' . Since the difference af-
ter more than 400 time units assumes a constant value, and since that value corre-
sponds to the difference between the coordinates of the steady states, we can con-
clude that one of the two integrations finish in one of the stable steady states, whil e
the other integration arrives in the other. Figure 6b containing the trajectories (x,y )
and (u,v) shows clearly that the above statements are true . We notice also that each
of the steady states is surrounded by a barrier . The two trajectories cross the barri-
ers in this case .

Other initial conditions may lead to a different behavior . Figure 7a shows the dif-
ference between two integrations both starting in (1,0 .1,23) with r=23 and r, = 23
+10' . Since the difference goes to zero and remains there after more than 400 tim e
units, it is clear that in this case the two integrations have arrived in the same stead y
state . This statement is verified by Figure 7b showing that both integrations have
reached the steady state located in the third quadrant . It should also be mentioned
that none of the stable steady states may be reached for certain initial conditions .
Figure 8a contains two trajectories with the common initial condition (0,0 .1,23 .7 )
and the same values of r and r, as in the previous examples . The regions around the
stable steady states are empty, since it is impossible for any of the trajectories to
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r=23 .0,r1=23 .0000001 ,xo=uo=1 .0,yo= vo=0.1,zo=wo=23 . 0
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Fig . 7a : Corresponds to Figure 6a, but for a different initial state . The curve indicates that the two inte -
grations arrive in the same steady state .
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Fig . 7b: A plot of the (x,y) and (u,v) trajectories for the integrations described in Figure 7a .
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r=23.7, r1=23.700001, Int .cond . :x=u=0.0,y=v=0.1,z=w=23 . 0
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Fig. 8a: Corresponds to Figures 6a and 7a, but with the selected common initial state for the two inte -
grations it is seen that none of them arrive in a steady state .

r=23 .7, r1=23 .700001, Int .cond . :x=u=0 .0,y=v=0 .1,z=w=23 . 0
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Fig . 8b : The trajectories of (x,y) and (u,v) for the integrations described in Figure 8a .
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penetrate the barriers . Figure 8b shows the differences between solutions for the
present case. It varies after the growth at about 20 time units .

Example B : Equation of motion with Newtonian forcing
As the second example we shall use a simplified form of the first equation of mo-
tion as given in (3 .3) .

Su Su
+u

	

7("E
-u)St

	

Sx

The equation is one dimensional in space . The right hand side contains a
Newtonian forcing . It may be consider as a geopotential gradient field, constant i n
time, i .e . 7 uE , and a linear dissipation term. (3 .3) is converted into the spectral do -
main by adopting the series given in (3 .4) .

Müll

u(t,x) =

	

u(n, t) sin (nkx)
n= 1

/ir ta,

	

(3 .4)

uE(x) =

	

uE (n) sin (nkx)
,I= 1

We have for simplicity selected the boundary conditions that u and uE vanish at
both boundaries . One could also have selected cosine-functions or a combination o f
both trigonometric functions . The series in (3 .4) are inserted in (3 .3) where the only
nonlinear term is the advection term. The result is the equation given in (3 .5) .

du(n)

	

Iz- 1(n)
= 1 /2 E nku (q) u(n+q) -' l2 qku(q) u(n-q)

	

3 . 5

The derivations necessary to come from (3 .4) to (3 .5) requiring the extensive use of
Fourier expansions have been given by Wiin-Nielsen (1999) . It is furthermore an
advantage to non-dimensionalize (3 .5) . k is the basic wave number (k=2m/L) coile -
sponding to the total length, L, of the interval . Introducing a scaling on time T=ÿ- '
and on velocity U=(211/k) we may write the basic equation in the form given i n
(3 .6) .

(3 .3 )

dt
R=1

	

9=1
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dx(n)
= ""ix-n

	

n-I

dz

	

~ nx (q) x(n+q) - ~ qx(q) x(n-q) + xE(n) - x(n)

	

3 . 6
9= 1

(3 .6) is general and can be used for specified values of nmax and xE(n) . In a gener-
al case x E (n) should simulate the forcing at low wave numbers . Later in this section
we shall use large values of nmax, but we shall first consider the most simple cas e
with nmax=3 . Renaming the variables x(1), x(2) and x(3) as x, y and z we find fro m
(3.6) the three equations given in (3 .7) .

dx
cl2
- = xy+yz-x+xE

dz = 2xz-x2-y+yE

dz

da-
= -3xy-z+zF

The most simple case to analyse is xE=0 and z E=0 . It is then easily found that th e
only steady state is (O,ye,O), and that this steady state is unstable if ye>2 . However,
values of yE satisfying this inequality will not necessarily result in limited pre-
dictability. Values of YE slightly larger than 2 lead to periodic solutions . Numerica l
experiments reveal that y E>7 .66 will lead to rather large differences between tw o
solutions starting from the same initial conditions, but with differences in the forc-
ing by 10' . For values of yE<7.66 one obtains periodic solutions, but yE>7.66 re -
sults in limited predictability. This can be seen from Figures 9a and 9b where th e
integrations have been can-ied out for 100 time units .

One may also use the system (3 .6) with more components . In such a case it may
be interesting to estimate the theoretical predictability . For this purpose the forcing
was defined as seen in Figure 10a . The forcing, constant with respect to time, has a
maximum of 20 units at wave number three and vanishes for n>10 . The maximum
wave number is 25 . The forcing in the parallel experiment has the same form, bu t
the maximum forcing is set to (20±1x10-8 ) . Figure 10b shows the rms-difference
between the two solutions . The difference vanishes for values less than 1 .6 . It ma y
be reasonable to say that the predictability is lost when the rms-value exceed 1-2 m
per s . We may therefore say that the limit of predictability is about 1 .8 time units .
To convert this non-dimensional value we recall that time is scaled by y- 1 =106 s .
This value is of the correct order of magnitude, corresponding to a dissipation tim e

(3 .7)
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ye=7 .66
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Fig . 9a : The RMS difference between two integrations of the three-component model based on the equa-
tion of motion for a value of the forcing of 7 .66 . Note the small values of the diference (less than 0 .005) .
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Fig . 9b : Corresponds to Fig . 9a, but the forcing is increased to 7 .67 . The RMS-difference is now muc h
larger (up to 0.3) .
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Fig . 10a : The forcing as a function of wave number for the experimental estimate of the theoretical lim -
it of predictability.
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Fig . 10b : The RMS-difference between two integrations where the forcing is as in Fig . 10a for the firs t
integration. In the second integration the forcing is changed by 10-8 . The limit of theoretical pre-
dictability may be estimated to be 1 .8 time units corresponding to 21 days .
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of about 10 days, but one could also justify slightly smaller or larger values .
Adopting the above value we find that the theoretical limit of predictability is abou t
21 days or 3 weeks . It corresponds to an extremely small change in the forcing, bu t
assumes an accurate initial condition .

Example C : Wave-wave interaction
A model of wave-wave interaction on the sphere has been designed by Christense n
and Wiin-Nielsen (1996) using interaction among the three longest planetar y
waves. This model was used to simulate blocking and the low-frequency oscilla-
tions described by Plaut and Vautard (1994) . The monthly and intermonthly oscil-
lations with periods of the order of magnitude of 70, 45 and 35 days was further in -
vestigated by Wiin-Nielsen (1996 and 1997) using a variety of models . The mos t
advanced low-order model for these investigations is described in appendix 1 by
Wiin-Nielsen (1997) . For the purpose of the present investigation still another
spherical model has been designed . The model is based on the barotropic vorticit y
equation with two components to describe the zonal flow and six spherical wave
components . Since the latter components contain both sine and cosine component s
the total number of equations become 14 . The model is with respect to the interac -

g11 =0 .0015,g21 =0 .018,g31 =0.001,g12=0 .0015,g22=0 .018,g32=0.00 1
0 .06

0 .05

0.04

É 0 .03
a

0 .02

0 .01

0
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Fig . l 1 a : The amplitudes of the frequencies over a time interval of 630 days forced exclusively by wav e
forcing . The maxima at n=9 and n=18 correspond to periods of 70 and 35 days of atmospheric waves a s
determined from observational studies for selected time periods .
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tions a special case of the general spectral barotropic model formulated b y
Platzman (1960) . However, a forcing, constant in time, is added to each equation a s
well as a frictional term .

The model can simulate the monthly and intermonthly oscillations . To show this
the model was integrated for a long time from an initial state of rest with forcin g
components on the waves of ql1=0 .0015, q21=0.018, q31=0.0001, q12=0 .0015 ,
q22=0.018 and q32=0 .001 . No forcing was applied to the two zonal components .
These values of the forcing are the same in all integrations discussed in this case . A
frequency analysis was performed for the last 630 days of the integration . Figure
11a shows the result . Maxima occur for n=9, corresponding to a period of 70 days ,
and for n=18, corresponding to a period of 35 days .

The experiment was repeated with an initial value on the two zonal component s
of only 0 .001, while the initial values on all wave components remained at zero .
Figure llb shows the comparison between the two integrations . Maxima are still
found at the same wave numbers, but the magnitude of the maxima are greatly re-
duced . The sensitivity to small changes in the initial state is still larger, when th e
initial values on the zonal components are changed to -0 .001 . Figure llc show s
that in this case we have large changes as compared to Figure 1 l a. These results in -
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Fig . l lb : The amplitudes from Figure 1la (solid) and the amplitudes (dashed) when initial values of th e
zonal components of 0 .001 is used .



24 MfM 47
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Fig . 11c: The frequencies, when the initial zonal components are - 0 .001 .

dicate that the occasional periodic motion observed in the atmosphere is due to a
dominating abnormal eddy heating generating the quasi-periodic oscillations .

Example D: Barotropic model
The low-order model is formulated on the beta-plane . It has 2 components, z i and
z 3 , describing the zonal flow, and 4 components, x i , y,, x3 and y 3 , describing the ed-
dies . The model, its equations, the stability properties and some integrations hav e
been described by Wiin-Nielsen (1961) . The dependent variables are scaled in suc h
a way that all of them have the dimension : m per s . The model can simulate the
nonlinear aspects of barotropic instability, and it contains a eddy momentum trans -
port that interacts with the zonal current . We shall in the present section show the
sensitivity of the model to small changes in the initial state . For this purpose we
have selected a length of the channel of 5000 km and a width of 6000 km . The ini -
tial state has z, = 30 to per s, z 3 = -15 m per s and x i = 7 .5 m per s . The other com -
ponents are zero initially. In the second integrations the zonal components are
changed by 2% to the values : 30.6 and -15 .3 m per s . The eddy component x, i s
shown in Figure 12a for the two integrations in the time interval from 10 to 20 day s
as seen on the abscissa . It is seen that the separation between the two integrations i s
starting. Figure 12b shows the same two curves, but for the time interval from 90 t o
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z1=30 .0+0.6, z2=-15 .0+0.3, x1=7 . 5
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Fig . 12a : The difference for the time interval from 10 to 20 days between two integrations in which th e
initial zonal values are changed by 2% .
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Fig. 12b : As Fig . 12 a, but for the time interval from 90 to 100 days .
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100 days . The integrations show a similar separation of all the other dependen t
variables, including the momentum transport . We have thus used the barotropic
model as an example of limited predictability . The two long integrations indicate
that transient waves will gradually show very different phases of the waves in th e
two integrations .

Example E: Baroclinic model with heat transport onl y
Simple low order, two level, nonlinear baroclinic models have been designed by
the author (Wiin-Nielsen, 1991, 1992) . They contain a zonal current, but only one
wave component, satisfying the boundary conditions at the southern and norther n
walls on the beta-plane . With two components describing the zonal flow and sin e
and cosine components to describe the eddies at the upper and lower levels we ob -
tain a model with six components . Since only one meridional wave is present, thes e
models will not have momentum transports by the waves, but a transport of sensi-
ble heat will take place . Another implication of this choice is that the vertical mea n
zonal current will be influenced only by dissipation and thus go to zero during a
long integration . We will therefore have to focus on the thermal processes . The
model contains a specified zonal and eddy heating and dissipative mechanisms in
the usual parameterizations .

The case to be considered in this example will contain a zonal heating with a
maximum of 4 .0x10-3 W per kg, but no eddy heating . It corresponds thus to th e
type of experiment carried out by Phillips (1956) . The initial state is a state of rest
except for very small values of 0 .001 on the eddy components . The heating will
gradually create a meridional temperature difference with low temperatures to th e
north and high temperatures to the south, and when the temperature gradient ha s
become sufficiently large baroclinic instability will create a growing wave . When
the amplitude of the wave becomes large the nonlinear aspects of the model wil l
start to act . This will happen with the present parameters after about 50 days . We
shall select the eddy transport of heat to show the effect of the limited predictabili-
ty. The two integrations to be compared differ only in zonal heating which in th e
second integration was changed to 4 .04x10 -3 W per kg corresponding to a chang e
of 2% .

Figure 13 shows the maximum transport of sensible heat during the time interva l
from 90 to 100 days . It is seen that a significant difference between the two inte-
gration has taken place . This statement applies also to all the other dependent vari-
ables .

Example F : Baroclinic model with heat- and momentum transpor t
As the final example of a meteorological nature we select still another low order
model containing 12 components, 6 at each of the two levels in the model, which
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q2=4 .0x10""-3 W per kg
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Fig . 13 : The transport of sensible heat for the time interval of 90 to 100 days for a change of the zona l
forcing by 2% . Note that the difference for the minima is almost 2 days .

has the same components at each level as the barotropic model had at a single lev -
el . Two variables with wave numbers 2 and 4 describe the zonal flow at each level .
Four variables at each level with meridional wave numbers 1 and 3 describe th e
waves at each level . The waves have the same wavelength equal to the length of th e
channel . The model is forced by a heating function that has the same wave structure
as the variables, i .e . zonal and wave heating . The dissipation is included as bound-
ary layer friction and internal friction proportional to the vertical shear flow. The
two meridional scales are the minimum for a non-zero momentum transport . The
model has been described and used in many ways by Marcussen and Wiin-Nielse n
(1999) . We shall add a single example illustrating limited predictability .

The forcing is restricted to heating in the south-north direction . The initial condi-
tions is a state of rest except for very small values (1 inm per s) of the eddy compo-
nents . The model will create a temperature difference between the south and the
north resulting eventually in barotropic-baroclinic instability . The waves will in-
crease in amplitude and eddy transports of sensible heat and momentum will grad-
ually increase .

Two integrations are performed with heating on the meridional wave with wave
number 2 of 2x10 -3 W per kg in one integration and 2 .02x10-3 W per kg in the oth -

0 . 1

-0 .1
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Fig . 14 : A plot of the streamfunction at the lower level for two integrations of the low order baroclini c
model with transports of both heat and momentum.

er. The width of the channel is 6000 km and the selected wavelength in the west -
east direction is 4000 km. Figure 14 shows the streamfunctions at the lower level
(750 hPa) for the two integrations, when the waves have reached the largest ampli -
tudes. The difference between the two states is quite large indicating the limite d
predictability.

Example G. The magnetic field of the Eart h
A simple and schematically correct model of the magnetic field of the Earth may b e
developed by simulating the magnetic field by a dynamo . The magnetic field of th e
Earth has reversed its direction repeatedly . Such reversals take place in an irregular
manner, and they seem to happen on average every 340000 years . Between rever-
sals the magnetic field fluctuates irregularly . The reversals take place rapidly com-
pared to the average time between reversals . A single reversal takes only a fe w
thousand years .

A behavior of the type described above may be simulated by considering an ex-
periment as shown schematically in Figure 15. We have two vertical axes . A disc
rotates around each vertical axis . A conducting coil is connected to each axel and t o
the periphery of each disc . Each coil has a circuit taking it from the axel around the
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Fig . 15 : The current goes in each case from the disc around one of the vertical axes and back to th e
other .

other axel and back to the periphery of the disc . The rotation of the discs start with
a certain velocity by applying a constant torque to the axel in order to turn the discs .
The arrangement of the circuits will introduce magnetic fields which will interac t
with the magnetic field created by the rotation .

The important parameters of the experiment are the speed of rotation of eac h
disc, the moments of inertia of the discs, the resistances in the circuits, the self-in-
ductances and the voltages . A detailed discussion of the derivation of the proper
equations is given by Beltrami (1987) and will not be repeated here . The equations
are made nondimensional with the nondimensional time ti and the three dependen t
variables x, y and z of which x and y are the nondimensional currents, correspond -
ing to I 1 and 12 on Figure 15, while z is the nondimensional angular velocity of one
of the discs . The angular velocity of the other disc is z-y . t is a nondimensional
constant . The equations are finally as given in (3 .8) .
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dx
=

dz
- Yz-/rx

dz
= x(z-Y)-µY

dz

dz = 1-xy

The equations have two steady states, which may be written as given in (3 .9) .

z = 'My + (y 2 +4µ2) 112

=+ O UZ

	

(3 .9 )

Ÿ
= + (zY ) 1I2

P

In (3 .9) we have only one value of the third variable because the angular velocity i s
defined as a positive quantity. The stability of the two steady states may be deter -
mined by solving the cubic frequency equation for the linearized version of th e
three equations given in (3 .8) . The result is that they are always unstable . We have
therefore a situation which is very similar to the Lorenz-equations in the unstabl e
case considered earlier in this paper .

Figure 16a shows the trajectory of (x,y) for an integration over 500 time units .
The integration is carried out when both y and µ are equal to 1 . The two dots indi-
cate the position of the unstable steady states . It is seen that the trajectory for som e
time goes around one of the steady states whereafter it changes to go around th e
other steady state .

Also in this case we have investigated the limited predictability . The two inte -
grations were carried out for identical initial states, while the values of y and µ were
changes by 10-8 . Figure 16b contains the RMS-difference between two solutions .
The difference starts to grow at about 120 time units whereafter it varies in an ir -
regular way.

(3 .8)
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Fig . 16a: The two dots indicate the position of the steady state in the xy-plane . The trajectory of (x,y )
goes several times around one of the steady states whereafter it changes to a similar behavior with re-
spect to the other steady state .
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4. Limited predictability and the uncertainty of parameters

The examples given above contain in most cases several physical parameters a s
well as the numbers defining the initial state . To find the sensitivity to changes i n
these numbers we deal with a multidimensional space . It may therefore be an ad -
vantage to use particularly simple models to investigate how the predictability de -
pends on the uncertainty of for example a single parameter . As the first case w e
shall select the so-called Feigenbaum (1978) problem because it is especially sim-
ple, and because it has played an important rôle in the first investigations of chaos .

The Feigenbaum problem is governed by the equation in (4 .1) in which K is the
so-called carrying capacity . We note that N(n)=K is a steady state .

N(n+l) = aN(n) [1-N(n) / K]

	

(4 .1 )

We may scale N(n) by K, i .e . N(n)=K x(n), and the equation takes then the for m
given in (4 .2) .

x(n+l) = ax(n) [1 -x(n)]

	

(4 .2 )

The interpretation of the equation may be given in terms of the growth or decay o f
a single population living in isolation from all other populations . The number o f
members in the new generation, x(n+l), depends on the birth and death rates of the
present generation where the first process is calculated by the first term ax(n) ,
while second process is simulated by ax(n) 2 . The equation in the form (4 .1) has
been nondimensionalized in such a way that the number of individuals in the n'th
generation will be between 0 and 1 .

It is well known that the solution becomes chaotic when the value of a exceeds
the Feigenbaum number. In the following integrations we have selected the basic a
to be 3 .7 . We compare integrations starting from a common initial state (0 .5) and
with values of a increasing by addition of 10-2, 10-3 , . .10- 5 .
For each pair of integrations we will after a while notice a divergence of the two so -
lutions . The step at which the difference between the two solutions become differ -
ent from zero and thereafter increases significanly has been noted . Table 1 contain s
the step at which the difference between the two solutions starts to increase signifi -
cantly.

Table 1

a 10-2 10-3 10' 10-5 10-5 l0-' 10- 5 10-9

step 1 5 11 20 36 38 39 40
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For the basic value of a=3.7 we find that the predictability increases from the firs t
step to about step 40 .

As the next example we select the model using the first equation of motion i n
one space dimension and driven by a Newtonian forcing, see eq . (3 .3) and the fol-
lowing equations . We use as in the previous case a maximum value of UE of 20 . 0
and the same distribution of the forcing as a function of the wave number . The ex-
periment is then to compare integrations where the maximal value of uE is in-
creased by the same powers of 10 as given in Table 1 . Using the nondimensional
form of the equation we have to convert the results to a predictability time in f . ex .
the unit of days . Table 2 contains the results .

Table 2

uEm 10' 10- 3 10' 10 5 10 -5 10-7 10-8 10- 9

Pr. T
days 9 .3 11 .6 12 .7 13 .9 15 .0 17 .4 18 .5 20

We know from the previous investigation of the same basic equation that our esti-
mate of the theoretical predictability is close to 21 days. Table 2 shows that in ou r
example we need to know the forcing with extreme accuracy in order to attain the
theoretical limit of predictability. To the extent that our example using a simpl e
equation in one space dimension and with a forcing independent of time is valid a t
least with respect to the order of magnitude it indicates how difficult it is to com e
close to the theoretical limit .

As the next example we select the case of competition among three species .
Several special cases have been treated by May (1976) and Beltrami (1987) . We se -
lect here the general case with full interactions . The following equations have been
nondimensionalized as found in the above references . They take the form given i n
(4 .3) .

dx =
dt -

x(1-x-ay-bz) -cyz

~t = y(1y-az-bx) -cxz

dz
=dt - z(l-z-ax-by) -cxy

(4 .3 )
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These equations have a steady state where the three coordinates are equal to eac h
other as given in (4 .4) .

_

	

1
x-y_

_Z__

1+a+b+ c

No other steady states have been found . A stability analysis can be carried out in the
usual wave by linearization around the steady state . The results of the stability
analysis gives three values of the frequencies . They are given in (4 .5) .

v,~l
v 23=-(1-2c-1 lz(a+b)± ilai3vz (a-b) )

It is thus seen that the steady state will be stable if c satisfies the inequality given i n
(4 .6) .

c<'l2(1-'l2(a +b))

	

(4 .6 )

The result in (4 .6) has been tested and verified by numerical integrations where th e
initial values of x, y and z are equal . However, if an arbitrary initial state is used, it
turns out that smaller values of c are needed, if the integration shall arrive in the sta -
ble steady state .

A single example will be shown . Two parallel integrations were performed wit h
a common initial state (0 .9,0 .7,0 .3) . In one of the integrations a, b and c have th e
values 0.6, 0 .7 and 0.102, while the values 0 .61, 0 .69 and 0.092 were used in the
other . Since the steady states are stable, the two integrations should reached thes e
steady state asymptotically. Figure 17, showing the RMS-difference between the
two integrations, shows that both of them arrive in the proper steady state .
However, due to the difference in the values of the parameters the RMS values in -
crease initially and reach rather large values after an integration time of about 3 0
units . In this case of stable steady states we have only limited predictability in th e
short time range .

The pendulum is a classical example of a nonlinear system . We consider a pen-
dulum consisting of a slim, rigid and massless rod of length 1 connected to a pivo t
and ending in a bob of mass m. The pivot is made in such a way that the pendulu m
can move in a plane only . The forces working on the pendulum are gravity and the
friction from the air. Two steady states can be found . The first is the position where
the bob is in the lowest position . This steady state is stable as we all know. The sec -
ond stationary position is the case where the bob is in its highest position . A small

(4.4)

(4 .5)
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a=0 . 6 , b=0 .7,c=0 .102,a1=0.61,b1=0.69,c1 =0 .092
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Figure 17 : The RMS-difference between two solutions for a common initial state, but slightly differen t
values of the parameters a, b and c .

deviation from this position will give the pendulum a violent oscillation, but due to
the friction it will eventually end in the stable state, where the bob is in the lowest
position .

The equation for the movement of the bob is derived in elementary textbooks o f
physics . The angle 0 is zero when the pendulum is at rest and measures in general
the deviation from the resting position . The general equation for the movement o f
the pendulum is derived from Newton's law saying that mass times acceleration i s
equal to the sum of the forced acting on the system . We get then the following
equation :

z
dt2 = -r

	

- g T sin (0)

	

(16)

where r is the coefficient for the frictional force and g is gravity. Eq . (16) is nonlin-
ear due to the trigonometric term . It cannot be solved by analytical means. If one
restrict the motion to small angles from the resting position, one may replace sin(O )
by 0 in which case the equation becomes an ordinary differential equation of th e
second order, and the solution can be obtained by elementary means . Another sim-
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ple case is the one where it has been assumed that the frictional term may be ne-
glected. In the general case the equation have to be treated by numerical integra-
tion. It is an advantage to replace the single equation by two equations. We define
x=9 and y=dO/dt. x may be named the position of the bob, while y is the angular ve -
locity. We get then the following equations :

dx
dt = y

dt = -ry -g sin (x)

We may be sure that the gravity g is known with excellent accuracy . The sam e
should be the case for length 1 of the rod . However, the coefficient representing the
friction included in the model is known with far less accuracy . The initial state i s
given by the value xo , measuring the initial angle from the vertical position, wher e
the bob is in the lowest position, and the initial angular velocity y o , which in th e

Common init .st . :pi/4,0 ;r=0 .01,r1=0 .011

(17)

Figure 18 : The RMS-difference of the position as a function of time for the pendulum problem . The tw o
curves compare the differences for the general case and the linearized equation for the same initial con-
dition, but with values of the frictional parameter being 0 .01 and 0 .011 .
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x=pi/4,y=0 .0 ;x1 =pi/4+0 .01,y1 =0 .01 ;r= r1 =0.0 1
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Figure 19 : Similar to Figure 18, but with identical physical parameters, but small changes in the initia l
state as given above the figure.

present case is chosen to be zero . One may assume that these values can be given
with good accuracy . The only large uncertainty in the problem is therefore the val-
ue of the frictional coefficient .

In the following we shall compare numerical solutions of the general case an d
the case where the sine functions has been replaced by the angle measured in radi -
ans . Figure 18 shows the RMS-differences of the position (x) between two solu-
tions of the general case with r=0 .01 and r,=0 .011, while the other curve is the sam e
RMS-difference for the special, linear case . It is observed that the general nonlinea r
case has much larger RMS-differences than the linear case . We may also give th e
sensitivity to small changes in the initial state . Figure 19 contains a comparison be -
tween two cases with the same physical parameters, but the initial state has bee n
changed by adding 0 .01 to both the angular position and to the initial angular ve-
locity . Again we notice that the linear case has much smaller RMS-values than th e
nonlinear case. This case does not fall in the class of chaotic flows since it has a
well defined asymptotic state of rest . The examples show only that two differen t
values of the friction parameter implies two different paths to the steady state .
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5 . Summary and concluding remarks

The purpose of the present paper is to discuss the limited predictability of nonlinear
systems. The weather predictions using atmospheric models have been selected i n
Section 2 to illustrate limited predictability in a well documented geophysical fiel d
with experience covering half a century . Section 3 contains a number of low order
atmospheric models used to illustrate the main aspects of sensitivity to smal l
changes in the initial state or the forcing of the system . Section 3 contains also an
attempt to estimate the theoretical limit of predictability .

During the last century we have gradually learned and tested that almost all non -
linear systems show limited predictability . The nonlinear equations that can be
solved in a closed mathematical form are very few and very simple . The original
optimistic view that valid predictions could be made for unlimited times if the ini-
tial state and the forcing were known with excellent accuracy has been replace d
with a much more realistic view, because we in most cases by numerical experi-
ments can determine the operational limits of predictability, or, in other words, w e
have a better understanding of what we can and cannot do . At the same time it has
to be realized that this view have not so far been accepted by all groups engaged i n
predictions of climate change and social and economical affairs .

Regarding the application of predictions it should be pointed out that prediction s
for a week or so do not permit any possibilities to influence the validity of the pre -
dictions . The weather forecasts are valid for such a short time that anthropogeni c
influences are negligible on this time scale . On the other hand, predictions of th e
second kind for extended periods such as predictions of climate change or predic-
tions of an economic or social nature can indeed be counteracted by measures o r
activities that will influence the validity of the forecast . As a matter of fact, the pro-
duction of economic forecasts is used by governments and institution to produc e
counter-measures that should decrease the impact of unwanted predicted develop-
ments . Another example is the attempted simulations of the future climate change s
created by anthropogenic influences on the climate . We shall as a matter of fac t
never have the possibility to verify the validity of these simulations when measure s
are taken by governments and large institutions to decrease the anthropogenic in-
fluences .

Other fields that have been investigated in some detail are competition amon g
three or more species (May and Leonard, 1975, May, 1976, Beltrami, 1987, Wiin-
Nielsen, 1998) and population dynamics (Feigenbaum, 1978), but many other areas
still need to perfo,ui all the numerical experimentation necessary to determine th e
behavior of the prediction procedures in their field .
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Appendix 1

The purpose of this appendix is to give an example of limited prediction in the clas-
sical three body problem which gave the first example on limited predictability.
The equations for the problem are well known and can be found in any book on the -
oretical astronomy. We denote the masses of the three bodies by m, m, and ma, th e
position vectors by r, r, and r2 , the velocities by v, v, and v 2, and the distances be-
tween the three bodies by ro ,, roe and r, 2 . The universal gravitational coefficient i s
denoted by µ . The vector equations of motion are then given in (Al) .

dv

	

ri-r

	

r2-r

dt

	

- turn 2
rå r

rl-r

	

r2-r,
	 +pm 2rôl

	

~ 2

dv2

	

r2-r

	

r2-r 1
=pm	 +pm 2

The remaining three equations are simply the definition of the vector velocities as
seen from (A2) .

dr

dt- = v

dr,
- =
dt -

v i

dr2

d t

dt

	

r o2

	

(Al )(Al )

(A2)

dt = v2
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Initial values, z2=0 .05 and z2 =0.06
0 . 6

0 . 5

0 . 4

0 .1

0

-0 .1
-0 .1

	

0

	

0 .1

	

0 .2

	

0.3

	

0 .4

	

0 . 5
x1, non .dim .

Fig. Al : The trajectories of (x I,yl) in the three-body problem when the initial values of z2 is change d
from 0 .05 to 0 .06 .

We have thus 6 first order vector equations . Since each of the vectors have three
components we obtain 18 first order scalar equations . These equations are obtaine d
in a non-dimensional form by selecting a standard mass M and writing the masses
as m = cM, m, = c, M and m 2 = e2 M. Thereafter we introduce a length scale a and
a time scale T and select these in such a way that µ M T 2 / a3 = 1 . The effect of th e
scaling is that µm becomes c, µm, becomes c, and µm 2 becomes c2 in equations
(Al), while (A2) can be wrtten in the same form .

The resulting 18 scalar equations have been integrated numerically using th e
Heun scheme . The following case will be illustrated : c=10, c,=10-3 , c2 = 10-x , and
the following initial values x,=0 .4, y,=0 .5, z,=0.6, x 2 =0.25, y 2 =0.3, z2=0.05 ,
u,=u 2 =1, w,=0 .2, w 2 =0.3, while the remaining initial values of position and veloci-
ty were selected to be zero . Two integrations were carried out . The first integration
had the initial values stated above, while the second integration had z2 = 0.06 .
Figure Al shows as an example that the predictions for x, and y, were changed onl y
slightly. The same result is obtained when figures are made of the trajectories of
(x,,z,) or (y,,z,) . Figure A2 shows z2 as a function of time for the interval 1<t<3 . It
is seen that the two curves have differences in the amplitudes and also a steadily in -
creasing phase difference . A small change in the initial value results thus in larg e
differences at a later time . We have thus an example of limited predictability.
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Initial values, z2=0 .05 and z2=0 .06
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Fig . A2 : The component z2 for the two integrations described in Fig . Al as a function of the nondimen-
sional time for 3 time units . It is seen that the two integrations gradually come out of phase .
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