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Abstract
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Preface

This book arose as a result of a five day symposium held from the 11th to the
15th of August 1998 at the Royal Danish Academy of Sciences and Letter s

in order to celebrate the bicentenary of the publication of Caspar Wessel' s
essay Om Directionens analytiske Betegning, et Forsøg anvendt fornemmelig
til plane og sph(Eriske Polygoners Opløsning . In this essay Wessel presented
his famous geometric representation of the complex numbers and made a
generalisation of this analytic formalism to three-dimensional space . Wessel
presented his essay to the Royal Danish Academy on March 10th 1797 an d
it was published two years later in the Academy's journal .

At the symposium two key talks were given about Wessel and complex
numbers : Bodil Branner and Nils Voje Johansen spoke about Caspar Wes-
sel (1745-1818) . Surveyor and Mathematician, and Kirsti Andersen spoke
about Wessel's Work on Complex Numbers and its Place in History . These

talks were based on more extensive papers that have since been publishe d
in volume 46:1 of these Matematisk-fysiske Meddelelser together with Flem-
ming Damhus's new complete English translation of Wessel's essay1 . The

present proceedings contain the majority of the remaining papers given at
the Wessel Symposium . It can therefore be considered as a supplement to the
above mentioned book, which in turn embodies the central themes around
which these proceedings turn .

The Wessel Symposium and this book deal with subjects from many differ-
ent historical fields : literary history, military history, history of technology,

history of astronomy and geodesy as well as history of mathematics . Such

a variety of subjects may be appropriate in a publication by one of the few
remaining academies of both sciences and letters . What binds the different

papers together is their relation to the man Caspar Wessel, to his wor k

as a surveyor, and to the subject of his mathematical essay : complex and
hypercomplex numbers . The style of the papers varies as much as thei r
content. A few papers are conversational in style whereas the majority ar e
more scholarly.

Kaspar Wessel : On the Analytical Representation of Direction . An attempt Applied
Chiefly to Solving Plane and Spherical Polygons . 1797. Translated by Flemming Damhus .
Introductory chapters by Bodil Branner, Nils Voje Johansen, and Kirsti Andersen . Edited
by Bodil Branner and Jesper Liitzen . Matematisk-fysiske Meddelelser 46 :1 . Det Kongelige
Danske Videnskabernes Selskab, Copenhagen 1999 .
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The Naval Hero
Peter Tordenskiold

the Wessel Family

Hans Christian Bjerg *

1 The Wessel Family

The Wessel Family has contributed in several ways to the historical develop -
ment of the Double-monarchy of Denmark-Norway which ended in the yea r
1814 when the two kingdoms separated . This volume is primarily dedicated
to an example in the area of science, and it also contains a contributio n

about Johann Herman Wessel, one of our famous poets . And in the Danish
and Norwegian military history you will also find the name Wessel . One

of our most famous naval heroes, Peter Tordenskiold, was christened Pete r
Wessel and was a true member of the mentioned family . This paper wil l

deal with this man and his merits in the beginning of the 18th Century .

Everyone in Denmark and Norway knows the name Tordenskiold . Several
anecdotes are told about him, but his fame is probably mainly due to th e
fact that during this century his portrait has been reproduced on the mos t
sold matchbox in Denmark .

But first a little about the Wessel Family. In the middle of the 18th Century
the family was of the opinion that they had immigrated from the Nether -

lands, and indeed there is a Dutch locality called Wessel . But it is a fac t
that in the 16th Century one finds the family name Wessel in a couple of the

* Chief Archivist, The Military Archives, The Danish National Archives, Rigsdagsgår-
den, DK-1218 Copenhagen K, Denmark .
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Hanseatic cities in the Northern part of Germany, where the trade agents
had good connections with Norway, especially with Bergen, where Germa n
merchants occupied a part of the city. It is also possible that the Wesse l
family could have immigrated this way. We find for the first time a Wesse l
from the Netherlands in Bergen in Norwegian files from 1593 .

In any case, around 1620 a man with the name Jan Wessel lived in Bergen,
and the grandfather of the naval hero Peter Tordenskiold named Henri k
Jansson Wessel is traced in the archives from the middle of the 17th Centur y
as a merchant and citizen of Bergen . Henrik Wessel's oldest son, Jan Wessel ,

was born in 1646 and went as a grown-up to Trondheim, a town in Norwa y
north of Bergen . He married a very young girl, born 1656, Maren Scholler ,
who was out of one of the rich families in Trondheim. As a 16-year-old gir l
she already gave birth to her first child . Within the next 26 year she became
a mother of 18 children	 12 sons and 6 daughters . An anecdote tells that
at an advanged age Jan Wessel was on a trip sailing with a merchant shi p
to Spain. The ship was boarded by French privateers . Investigating the
passengers they were told that Jan Wessel was a father of 18 children . The
privateers were so impressed with a man of such a "capacité" that they left
the ship without doing any harm .

Jan Wessel owned some buildings in Trondheim and some ships and wa s
as a whole a respectable citizen . He became what we can call an alderman
and a member of the Council of the City in 1693 . His Bible is still kept in
Norway and on the front page of the book we can follow the growth of the
Wessel family. Every new child was carefully listed .

Son number 10 was Jan Wessel named after his father . He went to sea and
became a chief pilot in Norway. This man became the grandfather of Caspar
and Johann Herman Wessel . Peter Tordenskiold was in this way granduncle
to Caspar Wessel .

Of the 6 daughters 2 died very young, 3 married merchants in Trondheim ,
and one married a vicar . Of the 12 sons 4 were educated as clergymen, 1
died young, and the rest went to sea . Of these, 2 died in the Dutch navy,
1 became captain in the Russian Navy and 2 became viceadmirals in the
Royal Danish Navy, "but only one of these was Tordenskiold" - as an ol d
song goes .

Child number 14 was Peter Jansen Wessel . He became a naval officer jus t
when the Great Northern War 1709-1720 broke out . In this war Sweden's
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Figure 1 : The genealogical tree of the Wessel family

neighbours tried to reduce the Swedish dominance in the Baltic area . The

Danish king was primarily interested in getting the former Danish area s

in the western part of Sweden back to Denmark . Because of his merit s
Peter Wessel was ennobled in 1716 with the name TORDENSKIOLD . It means
thunder-shield or freely translated Thunderbolt. On that occasion he got a
coat of arms which illustrates his profession and background . He was a

thunder for the enemy and a shield for his king and country as an old
interpretation of the name goes .

Caspar Wessel (1693-1768) was Peter's younger brother . He was promote d
to viceadmiral, which allowed him to marry a rich widow and get rid of hi s
great debt . However, he was not as strong a character as Peter and wa s

promoted as a result of his older brother .

I have mentioned a couple of names from the Wessel family and maybe yo u
have observed that the family re-use their Christian names . This tradition
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Figure 2 : Tordenskiold's Coat of Arms . 1 .) Shows the symbol of lightning an d

thunder on a blue background referring to the name Tordenskiold . 2.) Shows a

white eagle on a red background referring to Tordenskiold's capture of the Swedis h

warship VITA ORN in 1715. 3 .) Shows two cannons and three cannon balls on a

red background symbolizing the three gunshots which were the special mark fo r

Danish warships in former time . 4 .) The Norwegian Lion Statant in gold on a re d

background refers to the Danish-Norwegian nationality of Tordenskiold . It is the

Norwegian coat of arms in the colours used in the Danish coat of arms .
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has continued up to these days .

2 Peter Wessel

We have a lot of anecdotes and stories about Peter Wessel as a child . He wa s

apparently a wild boy according to the first biography about the Danish-
Norwegian naval hero published 20 years after his death . By nature he was

an adventurer and he stayed often by the harbour and on board his father' s
ships . We know that as a 14-year-old boy he arrived in Copenhagen. Indeed
at that time he visited one of his father's friends in the Danish capital ,
Dr . Peder Jespersen, who was then a spiritual adviser to the Danish Kin g
Frederik IV, a man of importance . Peter Wessel stayed in the house of Dr .
Jespersen, who wrote to the parents in Trondheim that their son was now in
Copenhagen. According to information in the archives Peter ran away fro m
home without giving any messages to his parents . We do not know how h e
made his way to distant Copenhagen . The Danish king made a voyage t o
Norway in 1704 and passed Trondheim on that occasion . We suppose that
Peter Wessel joined the king's retinue one way or another and followed th e
company back to Denmark .

Peter Wessel' s passion was the sea . Through Dr . Jespersen Peter Wessel had

had the opportunity to meet the King, and in 1706 he applied to the Kin g
to become a midshipman in the Royal Navy . The Royal Naval Academy had

been established in 1701 in Copenhagen as one of the first of that kind i n

Europe . However, there was no place vacant at that time and Peter Wesse l
was urged to get practical experience as a sailor . He therefore signed article s
on board a ship going to Africa and the West Indies as a Slave transport .
He was on board this ship until 1708 . In 1709 he became a midshipman ,

but at that time he was on his way with a new ship to East India so he did
not get the message about his new position until he returned to Bergen i n
1710 .

The war with Sweden broke out in 1709, and the need for naval officers wa s
very acute . Peter Wessel therefore got only a very brief and quick training at
the Naval Academy. In spite of that he was already an experienced navigator ,

and in 1711 he was promoted to lieutenant and worked as the second i n
command on one of the small frigates . He then was detailed for duty in
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the coastal navy in Norway. In 1712, when he was 21 years old he became

captain of a small frigate called LØWENDAHLS GALEY of 20 guns .

At that time his superiors began to observe Peter Wessel's special talent fo r

naval warfare and tactics . To understand this fact it is necessary to explai n

a little about the naval tactics practised in the very beginning of the 18t h

Century.

The armoured square-rigged ship became common from the beginning o f

the 17th Century as the normal platform in naval warfare . The technology

of this type of ship indicated that the guns were placed along the sides of th e

ships and that the stern and the bow were practically without any guns .

The warships of that time fought in the so-called line ahead in order t o

maximise the shooting angles of the guns and to minimise the dead angle s

at the stem and at the bow . At the end of the 17th Century there were

developed two different tactical ways to use the warship . The Mêlée tactics

and the formal tactics . In the beginning of the 18th Century the formal

tactics were accepted by all great naval powers as the correct way to make

warfare at sea . The drawback of the formal tactics was that the battles a t

sea stagnated . The formations of the ships became too defensive and it was

difficult to destroy the enemy. Yet, in all the naval academies at that tim e

formal tactics were taught as the only one and it was the only one whic h

was allowed according to the fighting instructions and the rules .

As I mentioned, Peter Wessel's stay at the naval academy was too shor t

to indoctrinate him with the lessons and rules of the time . He saw tha t

the best way to attack the ships of the enemy was to attack them in thei r

dead angles, which was not the normal way to do it . His tactics were very

surprising for the opponent, and as a consequence were very successful . In

short, Peter Wessel followed his own tactical instinct instead of rules give n

at the academy.

In 1712 he was called on duty in the Main Fleet of the Danish Navy which

operated in the Baltic Sea against the Swedish Navy. His efforts were re-

markable and he became famous for his risky but effective way to do scou t

raids for the Admiral in order to gather intelligence about the enemy . As

an award he was promoted to lieutenant commander jumping over 51 othe r

lieutenants placed before him on the Officers' Roll . In 1713 he worked in

the Norwegian Sea and was hunting Swedish merchant ships and privateers .

His results were remarkable .
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Figure 4 : A portrait of Peter Tordenskiold as a Vice-Admiral, painted in the yea r
171 9

In July 1714 Peter Wessel observed a ship under British colours . He himsel f

sailed under Dutch colours! The other ship struck the colours and flew th e
Swedish flag . Peter Wessel then showed the Danish colours . The other frigate

was bigger than Wessel's, and according to the Danish fighting instruction
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it was not allowed to fight with ships superior to one's own . Nevertheless ,

Peter Wessel continued the fight . During the fight the other ship was heavil y

damaged, and Peter Wessel decided to fly the white flag, the flag of truce ,

communicating that he wanted to talk with the captain on board the other

ship . Wessel sent out a small vessel with a negotiator, who brought greeting s

from Wessel . The negotiator told the enemy captain on behalf of Wessel that

the Danish ship had only very few cannonballs left, and therefore he woul d

ask the enemy captain if he could lend him cannonballs so that the fight

could go on . To this surprising question the enemy captain answered that h e

only had what was necessary for himself, but that he would like to present a

toast to the Danish captain . After Wessel's negotiator had returned to th e

Danish ship the two enemies sailed very close to each other, toasted over the

bulwarks of the ships and asked each other to give friends in Copenhage n

and Gothenburg respectively their regards . Through this manoeuvre Wesse l

succeeded in gathering information about the enemy. The Swedish ship wa s

bought in England and was on its way to Gothenburg under the comman d

of a British captain .

When he returned to his base in Copenhagen, Peter Wessel wrote a complete

report about the fight and told about the message to the enemy captain an d

the toast afterwards . Some of the members of the Danish board of Admiralty

became very angry reading this report . From their point of view Peter Wessel

had uncovered his own weakness in front of the enemy, a weakness which th e

enemy captain could have used to take Peter Wessel's ship . The young naval

officer had offended against the Naval Articles and he was court-martialled .

The point here is that we are not dealing with an anecdote, but with facts .

All the papers in this case can be found in the archives . In the files we

can follow the court-martial . Wessel explained that the enemy ship was so

damaged that there was no risk for him to go closer to the other ship . On the

other hand the ship was too superior to board . He had sent the negotiator

over in order to get information about the ship because it was not know n

in the theatre before . Peter Wessel was cleared off. Just after the acquitta l

he went to see the king, who promoted him to Commander in the Navy. He

was 23 years old .

It is not surprising that he was already envied at that time . In a letter he

wrote that he was not looking for a higher charge but for more responsibility .

It was the challenge and its realization which fascinated Peter Wessel .

1715 became a crucial year for the young naval officer . He served in the
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main fleet in the Baltic Sea as a scout for the Admiral and a cruiser captain .
Based on intelligence about the Swedes fleet provided by Peter Wessel it wa s
decided to let the Danish fleet attack in April . The result was the Battle o f
Fernern, where the Swedish suffered a defeat . With his small frigate Pete r
Wessel was very active during the battle . He and his crew boarded a heavy
and new Swedish frigate called VITA ORN, The white Eagle, and prevente d
the Swedish captain from destroying his own ship . Afterwards Peter Wessel
observed that a group of enemy ships, which at first had escaped from
the battle, had been grounded by its own crews . One of the ships was the
Swedish flagship with the enemy admiral on board . Wessel sailed straight
to the flagship, took the admiral prisoner and ordered him to stop the self-
destruction of his ships .

As a reward for an excellent effort Peter Wessel got the command of th e
conquered Swedish frigate, which was incorporated in the Danish-Norwegian
Navy under the name HVIDE ORN . In October of the same year he opene d
battle with a ship-of-the-line and a heavy frigate, which escorted a convoy i n
the Baltic Sea. In spite of the Swedish superiority Peter Wessel succeeded ,
thanks to his excellent tactical talents, in damaging the two ships seriously
and he took a great part of the convoy as prizes .

After this event reports were sent from the fleet to the Admiralty in whic h
Peter Wessel was praised for his tactical skill . In February the following year
1716 came his ennoblement .

3 Tordenskiold

When you study the history of Tordenskiold you will discover that the reality
is often more fantastic and incredible than the myths and the anecdotes .

One evening when Tordenskiold was dining at court, the king expressed th e
wish to know the opinion on the on-going war among the former Danish
subjects in Sweden . After the royal table Tordenskiold went out to Holmen ,
the naval base, appointed a crew to a gunboat, and sailed to the Swedish
coast during the night . Very early in the morning he reached the enemy
coast . The two nearest buildings turned out to belong to a vicar and the
local coast Watch officer . Tordenskiold woke up the vicar and forced him
to follow him back to the boat . A servant, a young boy, woke up and was
forced to go to the boat too . The officer suffered the same fate as the vicar .
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All three then sailed during the sunrise to Copenhagen, and were presente d
to the king during his breakfast . The king was very amused with Tordenski-
old's crazy idea . He talked with the Swedish prisoners and gave them gifts .
Afterwards Tordenskiold brought them to the Naval Base where the vica r
and the officer were cross-examined. The vicar was an elderly man and could

remember when the western coast of Sweden belonged to the Danish king .

He did not mind telling all that he knew about the Swedish king, the arm y

and the contemporary political conditions in Sweden. All the questions an d
answers were noted in a file . The officer refused to tell about the conditions

in Sweden. The following night the three Swedes were brought back to thei r

home by Tordenskiold's crew .

During the following days the Swedish authorities interrogated the vicar an d
the officer about their involuntary trip to Copenhagen and about the publi c

conditions in the Danish capital . The vicar and the officer both told tha t
the Danish Naval authorities had tried to interrogate them about Swede n
but that they had told nothing . Actually the vicar said that his lips had

been sealed during the interrogation .

This story is not a myth either . In the Swedish National Archives they keep

the files about the Swedish inquiries, and in the Danish National Archives
we have the protocols belonging to these interrogations in Copenhagen .

On a later occasion Tordenskiold amused the king in a similar way . Again
he went to the Swedish coast . In the nearest house a wedding was being

celebrated and Tordenskiold and his crew so to speak kidnapped the newl y
married couple and took them to Copenhagen and presented them to th e
king, who gave them gifts . They were also brought back to their home . The
files do not tell us whether or not the wedding continued after the return o f
the kidnapped bride and groom .

Tordenskiold repaid the coat of arms in June 1716 . A part of the master pla n
of the Swedish King Charles XII was to take Norway from the Danish king .

In the middle of 1716 he began a campaign against Norway. To support his
advancing army Charles XII ordered a big transport fleet with supplies along

the Swedish western coast to meet the army near the border to Norway. The
success of the campaign depended on this fleet .

At the end of May 1716 Tordenskiold investigated the Swedish coast sout h

of Gothenburg when he got intelligence about the mentioned transport fleet .

He followed the fleet and found out that it had anchored in a small and very
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narrow creek called Dynekilen. The entrance was only 100 metres wide . The
Swedish officers were so sure that this place was safe that in the evening
they went for a party on shore .

Tordenskiold had no orders to attack, and the correct behaviour woul d

have been to get such orders from his superior . But he evaluated that the

surprising moment would disappear if he waited for orders . The wind was
favourable and he went into the creek and took a part of the enemy transport
ships as prizes and destroyed the rest . This operation had a major influence
on Charles XII's war campaign against Norway. The Swedish Army go t

no supplies and the army was forced to withdraw to Sweden . Dynekilen i s
considered the greatest and most important of Tordenskiold's merits .

During the year 1717 Tordenskiold again operated in the Baltic Sea but wa s
not very successful . He also attacked the fortresses of Gothenburg withou t
luck. The following year he commanded a scout squadron based on Chris-

tiansø with the task of observing the movements of the Swedish Fleet base d
in Karlskrona. In the last months of 1718 he was called to the Norwegian

theatre of War again because of a message about a new campaign against
Norway. In December he heard as one of the first commanders about th e
death of Charles XII at Frederiksstad. One of Tordenskiold's advantages
was his talent for a permanent gathering of intelligence . He was very much

aware of the importance of the death of the Swedish king for the whole war .

He therefore immediately sailed on a fast-going vessel to the king in Copen-

hagen . Tordenskiold was the first to bring the message to the king, and a s
a reward he was promoted to rear-admiral on the spur of the moment .

In July 1719 Tordenskiold began to lay siege to the important fortress Karl-
sten at Marstrand on the Swedish west coast . After a month the fortres s

was captured without any fighting and due to a trick - very typical o f
Tordenskiold . An anecdote tells us that Tordenskiold in the disguise of a
fisherman went into the enemy city, sold fish and interrogated the citizen s
about the troops in the fortress . The troops were German mercenaries .

In Denmark we have a special phrase : "Tordenskiolds soldater" (The soldiers

of Tordenskiold), meaning that it is the same people you se all over : in the

media and in the boards of societies and companies etc . This phrase comes
from Tordenskiold's siege of Karlsten-Marstrand . It tells that Tordenskiol d

invited the commander of the fortress to inspect his troops which were line d
up in the city streets below the fortress . The commander went through al l

the streets in the town and everywhere he saw troops lined up . He realised
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that he did not have a chance to resist Tordenskiold and so he decided t o

surrender under the condition that all of his troops were allowed to leav e

the fortress unharmed . In reality Tordenskiold's limited troops after the

inspection by the Swedish commander ran around the corner and were lined

up in another street where the commander then inspected the same troop s

for the second or the third time .

We know in fact that the commander was not really tricked by Tordenskiol d

on that occasion but was afraid of the reinforcements which he knew wer e

coming up from Denmark .

After the capture Tordenskiold was promoted to viceadmiral and member

of the Admiralty. As a supplement he received a portrait of the king frame d

in brilliants . This portrait was only given four times in the reign of Frederi k

IV .

When the peace came in 1720 Tordenskiold was restless . He was a typica l

man of war, so he planned a journey to Germany, France, England, an d

maybe also to Russia to look for new challenges and offer his naval exper-

tise . In Hanover in Germany Tordenskiold was involved in a quarrel with a

Swedish-Lithuanian colonel. It ended in a duel in which Tordenskiold wa s

killed on the 12th of November 1720 . There have been a lot of discussions

about how the duel was settled but we shall not go into the details here .

4 Remembering Tordenskiold

The body of Tordenskiold was brought home, but there were difficulties

with the funeral because according to Danish law duels were forbidden, an d

victims of duels were therefore not allowed to be buried in consecrated earth .

In spite of his great and many merits for the country many important and

envious persons blocked a funeral ceremony of the great naval hero . He wa s

placed in a coffin in the cellar of Holmen's Church in Copenhagen where h e

rested until 1819 when the Danish king Frederik VI erected a sarcophagu s

for his body .

In 1864 a statue of Tordenskiold by the sculptor H .W.Bissen was erected

in front of the Cathedral in Trondheim in Norway. Later, in 1879, a similar

statue was erected near Holmen's Church .

Already during his lifetime Tordenskiold was the subject of several publica-

tions. Since his death nearly 1,000 books and articles have been published
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about the naval hero . And the bibliography still gets new titles about Tor-
denskiold . A book with all his letters - around 1,200 	 written in the
service has been published .

The administration of his estate has its own history, because it became
the longest and the biggest in Danish history . It took 24 years to carry it
out. The State owed Tordenskiold a lot of money for the many prizes h e
took during the war, but he didn't leave any heirs, so the State was no t
interested in giving the many brothers and sisters the money. Therefore the
state authorities tried to avoid its obligations . As for the family, they had
a lot of quarrels over the money and other values left by Tordenskiold .

On Tordenskiold's sarcophagus in Holmen's Church is engraved the names
of his victories : "Dynekilen - Marstrand - Elfsborg" together with the fol-
lowing inscription :

HIS KING MENTIONED HIM WITH HONOUR HIS ENE-
MIES WITH FEAR
THE ANNALS OF DENMARK KEEP HIS MERIT S
IN REMEMBRANC E

FREDERICH VI ERECTED THIS SARCOPHAGUS TO HIM .

5 The Chronology of Peter Tordenskiol d

1690, 20 October, Born in Trondheim, Christened as Peter Janse Wesse l

1704-06 In Copenhagen

1706, 28 March, First application to the King in order to become a mid-
shipman

1706-08 On board a slave ship bound for Africa and the West Indie s

1708-10 On board a merchant ship bound for Tranquebar, Indi a

1709, 11 January, Received into the Naval Academ y

1709-20 The Great Northern War

1711, 17 July, Sub-lieutenant

1712, 14 October, Lieutenant-Commande r

1714, 28 December, Commander

1716, 24 February, Ennobled as Tordenskiold
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1716, 8 July, The Destruction of the Swedish Fleet in Dynekilen

1716, 18 July, Captain in the Danish Royal Navy

1718, 30 December, Rear-Admira l

1719, 25 July, The Capture of Marstrand Fortress

1719, 17 August, Vice-Admiral and member of the Admiralt y

1720, 7 September, Leaving Denmark for a trip to Germany, France an d

England

1720, 12 November, Death of Tordenskiold in a duel in Germany

1819, 17 July, Unveiling of the sarcophagus in Holmen's Church

1879 Unveiling of the Statue of Tordenskiold at Holmen's Church
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Johan Herman Wesse l

Bjorn Linnestad *

I would like to start with the back scene, so to speak, for the performance

of the Wessel brothers in Copenhagen .

The four hundred years' history of the Danish-Norwegian twin monarch y

has been, and still is, a mental complex to many Norwegians . The united

kingdoms were the result, not of conquest and war, but of legal heritage . I

think this background is important for the understanding of the Norwegians '

position in eighteenth-century Denmark .

It was not a disadvantage at that time to be Norwegian born . The Jutlanders

and the Norwegians were both to some degree alien to the Copenhagener s

with their different language and manners . However, there was a difference

in how the two provinces were represented in the capital : Jutland broadly

and unselected, the whole scale of persons from the manual worker an d

the maid to the tops of society. Norway on the other hand was selectively

represented, mainly by two groups, the university men and the guardsmen

- both pick of the crop, either intellectually or physically .

It has also been claimed that the Norwegian in general had a wider horizon ,

geographically, than the Dane. Denmark's income was based on inland farm-

ing, while Norway for a large part made a living of trade and shipping . The

Norwegian, if not the average, knew London and had a cousin in Bordeaux .

The Jutlander represented to the Copenhageners simplicity, the Norwegia n

complexity. However, as Johan Herman Wessel so tolerantly put it : "we are

all Jutlanders to our Lord . "

At the time of the Wessel brothers, Copenhagen had 50,000 inhabitants, and

the university men were clearly visible in the town. Around 1770 the liter-

arily interested Danes made their circle around the poet Johannes Ewald ,

* Medisinsk Afdeling, Sykehuset Østfold Askim, N-1800 Askim, Norway
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and the Norwegians gathered around Johan Herman Wessel . The former

group cultivated pre-romanticism, the latter the rational tradition from th e

Greeks and the Romans . Both circles willingly leaked their wit and irony

to the outer public, and the group around Wessel had not the minor admi-

ration. The literarily conscious Copenhageners used Norwegian words and

expressions to signal that he was up to date .

The Norwegian literary circle became formally Norske Selskab	 the Nor-

wegian Society	 in 1772, and through the following years it was constantly

watched over by the authorities . This group of young idealists could rep-

resent the seed of Norwegian independence . The members of the Society ,

however, were in general loyal to the King, but they worked for more exten-

sive home rule and a Norwegian university .

The Norwegians were, like today, very patriotic . They sang "For Norge ,

kjempers fØdeland" - "To Norway, birthplace of giants" - written b y

Johan Nordahl Brun, a later bishop of Bergen . Johan Vibe, Claus Fasting,

Niels Bredal were the other well known names. Whether they were student s

of law, of theology or something else, they were all writers, poets and quit e

a few also playwrights . In sum they offered a substantial impact on Danis h

society.

From the beginning of the 1760's the four Wessel brothers from Vestby

in Norway were gathered in Copenhagen, and inside the circle that late r

became Norske Selskab . Jonas, the eldest, had low ambitions :

Ett jeg vet for viss t

jeg vil blive copiist

In my translation :

All I want, in this I'm stark

I shall be a common clerk

Those two lines are, to my knowledge, his complete works - and he suc-

ceeded, he became a clerk in the Ministry of Finance . The three younger

brothers, Johan Herman, Ole Christopher and Caspar all did excellently a t

the University. Strangely enough, Johan Herman broke off after two lowe r

grade exams . His knowledge of Hebrew had not been convincing, but apar t

from that he got top marks in physics, arithmetic, geography, metaphysics ,

history, logic and Latin . He was obviously broadly gifted .

Why Johan Herman stopped in his academic career has never been satis-

factorily explained . It could be due to a shift in mood and a longing for
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isolation . His life during the following ten years is very obscure . The only

thing known to posterity is that he taught himself the living languages ,
English and French, later in life also Italian and Spanish .

Ole Christopher became an outstanding capacity within the law . Caspar

also became a lawyer, but first and foremost an excellent topographer an d
mathematician. Johan Herman Wessel, however, is my main topic .

There are some mysterious or at least strange features in this man's lif e
and in our apprehension of him . I am going to focus on three questions and
thereby I hope to throw some light on the fascinating Johan Herman .

1) Why is so little known about him?

2) Why has he, as a writer, survived his contemporaries ?

3) Why did this brilliant poet produce so little ?

It is a striking fact that very little is known about Johan Herman Wessel i n
the biographical sense . He himself wrote nothing in that respect apart fro m
a few ironical lines. Here I have to put in an apology : We have, if any fe w
translations of Wessel's work . His expression is cunning with many shades ,
and translation is difficult . If I were to try to put him into English words, I

would certainly not convince you of his linguistic dexterity. I have therefore
chosen to quote him in his own language	 and I ask English-speakin g
readers to excuse this .

Han syntes født til bagatelle r

og noget stort han ble ei heller

He thought himself born to trifle away his life - and subjectively so he did .

Why then did his contemporaries not write about him? After all he wa s
surrounded by academics with pens . And he was the most prominent o f
his circle, the "Blossom and Crown" in the Danish poet Oehlenschläger' s
words . This reserve could be due to Wessel's overt alcoholism and represent a
considerate discretion . In addition, with the 1770's came a shift in attitudes
in the Danish-Norwegian society. The previous decades had been liberal
in Copenhagen as in the rest of Western Europe : Rousseau's philosophy

and writings, Henry Fielding's novels, and John Cleland's `"Fanny Hill" .
Copenhagen had a lag, but in 1746 the puritan king Christian VI die d
and was succeeded by his son Frederik V . The grave and stiff life at court
changed into orgies, and under the next king, the mentally insane Christian
VII, it grew worse still . Dr . Struensee became in reality head of State . He
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liberalized society, but also made the Queen pregnant. It had to end in a

tragedy and Struensee was executed in 1772 . It took 200 years before the

state of Norway the next time appointed a medical doctor prime minister .

The reaction to the dramatic events came, not only politically but also

morally. To enjoy Wessel grew, at least officially, out of fashion .

Another fact difficult to explain is Wessel's popularity through more tha n

two centuries . He presented no deep thoughts, he shunned topics more or les s

compulsory to poets : the praise of God, the praise of Nature, the praise o f

Women and Love . Unlike his fellow poets he avoided patriotism and heroism .

Why then is he quoted more often than any other poet of his time? I thin k

the answer simply is his mastery of sentences . He often used the alexandrine

verse with the same number of syllables in each line and a rhyme at the end .

In "Kierlighed uden Stomper" - "Love without Stockings"	 it sounds like

the title of an erotic movie today - we are told that Johan the tailor has

been away to mend the trousers of a major, but one can suspect additional

activities . On his return he addresses his girlfriend Grethe with the smooth ,

elegant and flattering alexandrine lines :

Hvor ser jeg glad igen

de mange yndigheder

som den må være blind

der kan ej se hos Eder

In my translation :

Now glad again I see

the many charms of you .

The blinded only doubts

that this is fully true

As I said, Wessel avoided the traditional topics of a poet, God, Natur e

etcetera, with very rare exceptions . Wessel's God is a tolerant power :

Det sanne vel og ve er frukt av dyd og last

og denne sannhet står til Himlens ære fas t

True happiness is based on a combination of virtue and vice and Wessel' s

God has accepted this .

Born in a rural community in Norway, Wessel became ultra-urban . He rarely

and unwillingly left the streets of Copenhagen . Once in spring, however ,

his friends had persuaded him outside the town walls to make homage t o

flourishing nature. The result was two of Wessel's most wonderful lines :
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Og så, den grønne mark, den var
ja, Herregud

man ved hvordan en mark
når den er grøn

ser ud

In my translation :

Look	 The meadows, the fields .

Oh, good old Lord .

The nature yield s

what the eyes afford

Even if nature was delightful, it deserved no more than a couple of line s
from him.

So to the field of love and eroticism . He avoided those themes, the historian s
of literature tell us . Israel Levin, the great connoisseur of Wessel, said that
in all his writing we do not find a vulgar word, not an obscene thought, hi s
Muse was entirely pure. Levin worked and wrote in the Victorian era, an d
I think he has voluntarily overlooked a little poem: Let others enjoy gold ,
Wessel himself found Heaven in the crotch of his girl .

La andre tenke, sige

Gull giør oss lykkelig e

jeg fant mitt Himmerig e

min pige

i ditt skjød

It was to me unthinkable that a young man surrounded by other young me n
should not cultivate at least the conception of eroticism . So I started my own
hunt, simply to try to rehabilitate Wessel as a normal, healthy man . In the
archives of the University Library of Oslo I found handwritten notes afte r
Gregers Lundh, the first professor of economic history in Norway . He wrot e
a never published "Contribution to a Collection of J . H. Wessel's Obscen e
Poems." I shall not give you the most vigorous verses, only a few lines tha t
describe the little `"thing" a girl possesses :

En pige er en ting

som nok en ting beskytte r
og uten denne tin g

hun mannfolk ikke nyter
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og vil man i den ting

en annen ting innføre ,

fremkommer der en ting

som nye ting kan gjøre

It is an old speculation why this brilliant and gifted poet did not produc e

more than he did . His complete works constitute little more than one volu-

me . Wessel described himself as lazy :

Han åt og drakk

var sjelden glad

sine støvlehele gikk han skjeve

Han ingen ting bestille gad

tillist han gad ei heller leve

At last he did not even bother to live .

He also compared himself to his diligent brother Caspar :

Han tegner landkort og leser loven

er lig'så flittig som jeg er doven

For several reasons I do not believe in the "laziness theory" . There must

have been another explanation for his scarce production .

When Johan Herman Wessel died 43 years of age, he left an impressive debt ,

a widow and a son he doubted was his own. Then his friends publishe d

his complete works to support the widow with the income. In the preface

Christen Pram regrets that his gifted friend did not write more than h e

did . Neither he nor the other contemporaries can explain this . Pram think s

Wessel was hampered by ill health, and tells that the poet was bedridden fo r

more than a year due to a painful fistula in the jaw . This fistula must have

been caused by a tooth infection . Wessel suffered from toothache which he

described as the Devil's stand-in on earth :

Du er på Jorden vise-Fanden

og halve værre enn den annen

However, once a fistula opens, the pain goes . Christian Pram's explanatio n

was wrong. What else makes a 34-year-old man go to bed and stay there

for a year? It could be a palsy, an orthopaedic problem or heart or lun g

disease. However, all these conditions give symptoms easy to observe

and no such observations were made . What to look for then? My diagnosis
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is a grave and deep depression, most likely the genuine melancholy seen i n

persons suffering from manic-depressive disease . Do we have other facts t o
support this? Yes, certainly. Shortly before his long stay in bed Wessel ha d

written his only two serious poems "Ode til Søvnen" "Ode to sleep" and
"Nøisomhet" - "Contentment" . In many verses he overtly describes hi s
way into darkness :

Som jeg den halve klode var

innsvøpt i mørkhets tause tåge

og på de lukte øyenlåge din grumme broders bilde bar

On the back of his eyelids he saw the picture of death 	 the grim brother
of sleep. In another verse he indirectly tells us that he has experienced the
same before . He knows that light will come back :

Men ilden ulmer, livet gror

Du snart igjen skal krefter vinne

Min ånd du snart igjen skal finne
en morgen skjønn, din Skaper stor

I shall not tire you with all the pieces of the puzzle that in my mind do-

cument his deep depression . But what about the maniac phases if he wer e

manic-depressive? His "ups" must most likely have been less pronounce d
than his "downs" and therefore less obvious . I find it however borderin g

on the pathological to write a masterpiece like "Love without stockings" in
six weeks . Maniac phases can also manifest themselves as quarrels difficul t
to understand. Now we have to remember that Johan Herman was a shy
person, very polite and very considerate in all his being . A couple of years

after "Stockings", perhaps he was still "upgoing", Wessel published "Her-
remanden" : a squire dies and ends up in Hell because he has exploited his
peasants :

En herremann sov engang hen

og så skal alle herremenn

hvor gjerne de enn leve ville

Og det er ill e

å dø når man ennu ei ville

In hell the squire is very astonished to meet his personal servant Jochum . It

turns out that Jochum had made the squire's wife pregnant and therefore

ended up underground .
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In Copenhagen the rumours started: the poem was to be read as an obituary
of the late general Nergaard . The general had a daughter and two sons, on e

of whom was accused of adultery	 if the poem really had a concret e
address . After some hesitation the son attacked Wessel crossly in the paper ,

and the provoked poet answered with a proposed epigram for the squire' s
tombstone :

Her hviler Krigsraad Nergaard

deri store, store, store

Kun Himlen vet hva godt han

gjorde, gjorde, gjord e

At tale om hans kjære fru e

så var hun vennlig som en due

At tale om hans tvende sønne r

det ei urnaken lønner

Men når jeg tenker på hans datte r

kan jeg ei bare meg for latte r

Here rests general Nergaard . If he ever did a good thing, only Heaven knows .

Not only Nergaard but also his wife, sons and daughter are exposed t o
disgrace. The mentally sound Wessel would never do such a thing .

On another occasion, we are now in the 1780's, Wessel also acted very
inconsiderately and very unlike himself. At that time he rented a small
flat in Fiolstræde where he lived with his wife and son . The landlady had

the habit of steadily creating rows with everybody around her 	 Wessel
included. Then the landlady died, and a collective sigh of relief must have
been heard. Wessel owed her money, but he was broke . The family of the
deceased then suggested that instead of payment he should write an epigra m

for her grave. From a famous poet that gave prestige woth more than money .
Wessel had no money and therefore no choice 	 and he presented the lines :

Hun er død, hun er begravet

Jeg har fred, og nabolavet

In my translation :

Now she rests in the coffin's woo d

I'm at peace like the neighbourhood
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It certainly was tactless, no matter who the lady was .

The Johan Herman known by his friends had a mild, intelligent irony with -

out any aggression . Once a pompous officer said to Wessel : "If I had a stupi d

son, he should become a poet ." The answer came immediately : "Your father

obviously had another opinion . "

One could suspect that Wessel's premature death was linked to his psychi-

atric condition, but that was not the case . During his last months he was

in a good mood, and it was an accidental infection that killed him . Nerve

fever was the diagnosis in those days, today it is typhoid fever .

From Johan Herman's deathbed we have the last glimpses of his irony . A

friend visiting him noticed a big jug of water : "Is it really you drinking

water?" "Yes," the poet replied, "if this is going to be the end, I mus t

reconcile myself to my foe . "

It is likely that Johan Herman left this world with a smile, even if tha t

was gallows humour . His life was in ruins : a bottomless debt, great marital

difficulties and progressive alcoholism . But worst of all : his literary vein had

dried up .

He was full of days, but still his friends missed him very much . The Danish

poet Baggesen wrote the last and the lasting epigram for his friend :

Gråt smelted hen i smil, når Wessels lune bød

Og glædens smil forsvant i tårer ved hans død

It is close to an offence, but I have tried a translation :

Wessel's wit melted weeping into laughte r

He left and smile became tears thereafter
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Thomas Bugge's Journal of a Voyage throug h
Germany, Holland and England, 1777 .

Kurt Moller Pedersen *

1 Travels to England in the 18th Centur y

England had a high reputation among scientists in the 18th Century . This
was not least due to Sir Isaac Newton's scientific achievements that wer e
known and admired everywhere on the Continent . This, however, is not
to say that they were accepted . In France, Cartesian doctrines of scienc e
still flourished though more and more of the younger scientists were take n
by the Newtonian system, e .g . Maupertuis and Clairaut . The results from

their scientific expedition to Lapland were taken as a proof of the Newtonia n
world view and scientific notions . It was not only scientists who held a hig h
esteem for England . Voltaire's being exiled to England from 1726 to 172 9
made him an ardent admirer of all English science and the way scientifi c
enterprise was organized . This became clear from his writings, Lettres sur
les Anglais (1734), and Eléments de la philosophie de Newton (1738) .

Scientific expeditions and travels by scientists were interrupted by the Seve n
Years War (1756-1763) between England and France and their respectiv e
allies Prussia and Austria . When the war ended, there seems to have bee n

quite an interest in visiting England, particularly London, Greenwich, Ox -
ford, and Cambridge. England had been closed for years, and it now became
à la mode to travel there . The visitors were all well received by the English . '

It was neither the defeat of the Cartesian world view and its replacement

* History of Science Department, University of Aarhus, Ny Munkegade bygn . 521, DK-
8000 Århus .

' Lalande 1980, 12 .
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by the Newtonian one, nor was it Voltaire's writings alone that made Lon -

don attractive . England had a reputation for producing excellent scientific '
instruments . Maurice Daumas gave reasons for this : 2

"The English instrument makers benefited from abundant basic ma-

terials such as steel, brass, copper and tin, of consistently high qualit y

and for certain work the English were for a time unsurpassed . John

Bird was the best workman of his period for dividing scales on th e
limbs of instruments, and the most expert at constructing astronom-

ical quadrants ; instruments from his workshop had a universally high

reputation, and for almost half a century were used in all observatories ,

practically to the exclusion of instruments by other makers . "

It was of the uttermost importance for astronomers on the Continent t o
follow all improvements in scientific instrumentation .
Jérôme de Lalande was the first scientist who went there after the war had

ended, from March 15 to June 10, 1763. Jean Bernoulli was there from th e
beginning of December 1768 until late April 1769 . Thomas Bugge arrived in

England on September 7 and left on November 10, 1777 . There were many
other visitors to England at that time, but I have chosen to mention thes e

three travellers because they were all astronomers, and they kept a diary . 3

Jean Bernoulli was the only one of them to have his diary published, bu t

not in an edited version . He had it printed just as it was kept . Lalande's
diary was published many years later, first in an English translation4 in
1923, and then in a French version 5 in 1980. Bugge's diary was published
in a preliminary edition with an English translation 6 in 1997 .

2 Lalande's travels in England, 1763

Lalande, Bernoulli, and Bugge visited almost the same places in England ,
but the style and content of their diaries are very different . For Lalande ,

2 Daumas 1972, 92 .

3 A Swedish astronomer, Bengt Ferner, travelled through Europe during the Seven
Years War . He was also in London, and his diary contains several remarks on instrument s
in different observatories and collections of physical apparatus . See Ferner 1956 .

4 Green 1926 .

5 Lalande 1980 . A preliminary version is in Monod-Cassidy 1967 .
6 Bugge 1997 . A brief summary with extract including some of Bugges's drawings fro m

the diary was published in Pedersen 1982 .
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the main objective was to re-establish connections with British scientist s
and scholars. His diary is therefore mainly a list of people he had met .
Personal contacts were the most important part of his journey . There are
many descriptions of dinner parties that he enjoyed with colleagues and
other important people. Let me give a brief example of the style and content
of Lalande's diary :

At the museum, with Lord IVlaclesfield, at the Royal Society, dinne r
at the Mitre Tavern7 close to Temple with Lord Maclesfield, the am-

bassador of Venice, Lord Willoughbi, the bishop of Clarence, Short ,
Morton, Birch, Ellicot, Watson, Maskelyne, etc . Ordinary, [the dinner]
costs three shillings and a sol, but this time, because of the claret, that

is the wine from Bordeaux, which costs five shillings a bottle, we ha d
to pay four and a half shillings . Plum pudding, marque potinger, etc .

Lalande also wrote down small talk about other scientists : "Bradley was
tough, jealous, avaricious, melancholic according to doctor Bevis ." We do
not find any professionel descriptions of observatories, instruments, and
other scientific institutions, as we do in Bugge's diary .

3 Bernoulli's travels in England, 1768-69

Jean Bernoulli visited several observatories in Europe, and provides detail s
of the many instruments he saw in his Lettres astronomique . He also re -
ported about the research projects taking place at the various observatorie s
by interwieving so to speak directors and scientists . In the fall of 1768 h e
was in Göttingen, Kassel, Frankfurt am Main, Mannheim, and from th e
beginning of December he was in London. During his visits to European ob-

servatories it became more and more obvious to Bernoulli that many of th e
fine instruments he saw came from London instrument makers . So it must

have been with great expectations that he arrived in the English capital ,
and he was most certainly not disappointed . Not many scientists have been
more outspoken in their enthusiasm for their trade than Bernoulli when h e
came to London : 8

7 Later, Bugge also had dinner with members of the Royal Society. See Bugge 1997 ,
191 : "September second I was introduced into the Royal Society Club in Mitre Tavern by
Dr. Solander . The Society has dinner every Thursday, whereas a non-member is allowe d
to come only every fortnight . "

8 Bernoulli 1771, 63-64 : "je vous ferai part de la surprise agréable où est jeté un As-
tronome en parcourant les rues de cette Capitale . Vous avés sûrement ouï parler de la
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I am pleased to share with you the agreeable surprise which meet s

an astronomer when he walks in the streets of this capital . You have
certainly heard about the richness and vividness of the boutiques in

London, but I doubt you would imagine how much astronomy con-
tributes to the beauty of this spectacle . London has a great numbe r

of opticians, and the shops of these artists are filled with telescopes ,
octants, and all these instruments are well-kept, and they flatter the
eye just as much as the reflections they produce .

Bernoulli does not give any detailed descriptions of the instruments, but
he does evaluate the instruments and their makers . We are told that the
young Dollond is not so well versed in mathematics as his father, though h e

maintains a high reputation for his telescopes with acromatic lenses . When
it comes to dividing the arcs, he is helped by his brother-in-law, Mr . Rams-
den, "who is considered one of the best instrument makers in London ." 9
Also we learn that "Mr . Nairne is known as a man who produces very goo d
telescopes and other instruments ." 10 Bernoulli spent three days at Green-
wich giving a rather detailed description of the buildings and instruments .
He was shown around by Mr. Baily, assistant to the astronomer royal, Dr .
Maskelyne . From there we find the few drawings he included in his diary.
He also visited Oxford and Cambridge : 11 "Literature is primarily studied at
Oxford, and looking for geometers, astronomers, physicists, &c . one must go
to Cambridge, and there one can convince oneself that science is considere d
to be of importance for the young English student's studies ." Bernoulli is
in no doubt who is the best instrument maker in England : 1 2

The skilled people who are most distinguished for their exactness in
dividing instruments are Bird, Sisson, and Ramsden , 13 but although

richesse & de l'éclat des boutiques de Londres, mais je doute que vous vous représentiés
combien l ' Astronomie contribue à la beauté du spectacle : Londres a un grand nombr e
d'Opticiens ; les IVlagazins de ces artistes sont remplis de Télescopes, de Lunettes, d'Octan s
&c . Tous ces instrumens, rangés & tenus proprement, flattent l'oeil autant qu'ils imposen t
par les réflexions auxquelles ils donnent lieu . "

Bernoulli 1771, 69 .
' °Ibid . 70 .
"Ibid, 115-116 .
'2 Ibid . 126: "Les habiles gens qui se distinguent le plus pour l'exactitude des instrumens

à division sont Mrs . Bird, Sisson & Ramsden, mais quoique ces trois rivaux se disputent
la palme, je crois, en vous les nommant, leur avoir en même tems assigné le rang dans l e
quel ils sont mis par le plus grand nombre de ceux qui connoissent leurs ouvrages . "'3The imstrument makers mentioned are : John Bird (1709-76), Jeremiah Sisson (1720?-
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the three rivals contest the palm ; I think, having mentioned them to
you, that at the same time I have allocated their rank according t o
those who best know their work .

4 Bugge's travels in England, 177 7

"Odense poorly built . . . Assens is a poor town . . . Rendsburg and Slesvig
are very beautiful towns." The new director of the observatory in Copen-

hagen, Thomas Bugge, described in such simple terms some of the cities
and towns he passed through when in 1777 he set out for a study tou r
to Germany, Holland, and England . Bugge kept a diary and it is full of
descriptions of all kinds of episodes, incidents, and experiences, written in
brief statements and with a lot of drawings . He left Copenhagen on August
2nd and his first longish stop was in Hamburg, where Bugge observed : 1 4

In the evenings the citizens are occupying the ramparts . Everywhere

in Hamburg luxuriousness of clothing, eating, and game-playing has
increased enormously. Moreover, there is little politeness and kindnes s

to foreigners, and these are constantly pestered by hucksters, tailors ,
and Jews, all of them waiting to gain a profit .

Bugge also went to the theater, which he described as follows : 1 5

The playhouse is situated in a miserable corner and has only one exit .
The indoor decorations are tasteless. This evening's performance was
zu gut ist zu gut, translated from the English . The director Schroder
played very well . And a certain Brukman played the part of Lofstea d
Bille fairly well . The females were rather poor . The ballet was Vaux-
hall ; the representation was good ; but the composition and the dancing
were poor; the best dancers were the director's wife and a Frenchman .

At that time also young people sometimes got a little crazy : 1 6
The last evening I went to the Vauxhall . It is a small garden whic h
is fairly well illuminated . There were music and singing . The audienc e
was not numerous, but beautiful . The entertainment was poor . This
evening some young Englishmen from the Commercial School behaved
rather badly, pushing other people etc .

83), and Jesse Ramsden (1735-1800) .
14 Bugge 1997 ; 13 .
15 Bugge 1997, 9 .
16 Bugge 1997, 13 .
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From Hamburg he continued via Bremen, Oldenburg, Leer, Nienhrants ,
Windschoten, Groningen, Lemmer, Amsterdam, Leiden, Den Haag, Delft ,
Rotterdam to London where he arrived on September 7th, 1777 .

One of the first institutions he visited was the Foundling Hospital, estab-

lished in 1739 "for the maintenance and education of exposed and deserte d
young children . . . to prevent the frequent murders of poor miserable chil-

dren at their birth, and to suppress the inhuman custom of exposing new -
born infants to perish in the streets ." 17 When Bugge visited the Hospital ,
we are told there were "120 of each sex . It was said that about the sam e
numbers were in the country for their health ." 18 The children's state of mind
could be improved, so it was thought, by exposing them to the more obscur e
sides of social life, and thus giving the children a dislike for the vulgar life .
Whether this was the official strategy or not I do not know, only that th e

children every day had a view of a characteristic picture by Hogarth : 1 9

In a western room is a painting by Hogarth ; it is called Hogarth's Mas-
ter Piece. It represents the English Guard Regiment's march agains t
the Scotch rebels . Two women, one with a child and another who i s
pregnant quarrel over a soldier . One soldier is drunk and falls on the
ground; one of his companions wants to give him some water, but he
reaches for a glass of aquavit which a sales apprentice offers him . An-

other soldier overturns a girl's milk pail and lets it run into his hat . A
chimney sweeper's boy holds his black skullcap underneath . Another
soldier fingers a girl underneath her skirts, as she climbs up in orde r
to watch two men boxing .

Thomas Bugge did not set out on his journey to study art and sociology . He
wanted primarily to study observatories and their instruments so that, afte r
his return, he could initiate a restoration of the observatory at the Roun d
Tower in Copenhagen. The expectations of the outcome of his journey wer e
great . Danish astronomy should again be brought back into the front line, a s
the heritage from Tycho, Longomontanus, Romer, and Horrebow demanded .
These demands to Bugge were not rooted in his theological degree fro m
the university of Copenhagen, but in his background as a mathematician ,

17 The Encycl .opædia Britannica, Thirteenth Edition, 1926, volume 9, 747 . Entry :
Foundling Hospital .

18 Bugge 1997, 119 .

19 Bugge 1997, 121 . I have found a print resembling this description, see Fig . 1 .
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Figure 1 : In 1745 a regular and volunteer force encamped at Finchley, 7 miles from
St. Paul's Cathedral to resist the Pretender . The gathering of this force inspired
Hogarth's famous picture "The March to Finchley" . From Engravings by Hogarth ,
ed . Sean Shesgreen, Dover Publications, New York 1973 .

having been supervised by Professor Hee, and since 1759 as an observer
at the Round Tower . From 1762 to 1777 he was director of the surveyin g
of Denmark. More important, however, was his appointment as professor
of mathematics, and director of the observatory in 1777, the year when he
travelled to England .
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The new director immediately saw that the observatory had to be modern-

ized and better equipped . It is quite interesting to observe that almost al l

the new instruments that Bugge procured after his return from Englan d
were either bought in England or were constructed by the local instrument

maker, Johannes Ahl, in accordance with Bugge's instructions which origi-

nated in what he saw in England . In what follows I will show how some of

the new instruments and devices at the Round Tower can be traced back
to drawings and descriptions found in Bugge's diary .

The diary has 184 pages and is full of drawings of the many instrument s
he studied. It is a very important historical document allowing historians o f

astronomy to register instruments that later disappeared . It is not only the
drawings that are of importance . Bugge's descriptions of what he studied
also allow a better understanding of instruments still in existence in British
museums. He visited the observatories in London, Oxford, and Cambridge .

Just as important, however, were the contacts he established with leadin g

English astronomers, and he was introduced to the Royal Society and th e
Royal Agricultural Society. In what follows I shall concentrate on such de-

scriptions and drawings as pertain to instruments and devices later to b e
found in the observatory at the Round Tower in Copenhagen .

5 Illumination of wires in transit instruments

On September 23rd Bugge visited Richmond, about 14 kilometers south -
west of London where the king had his summer residence . In a corner of the
park was an observatory : 2 D

I went to Richmond where I got the opportunity to make the acquain -
tance of Doctor de 1Vlembray21 and his son-in-law Mr . Rigaud . They

were both kind enough to take me up to the observatory which the
king has erected for his own pleasur e22 . On the bottom floor or in the

20 Bugge 1997, 147 .
21 Stephen Demainbray (1710-1782) .
22 King George III had become very interested in the transit of Venus in 1769 and buil t

his own private observatory at Richmond (now Kew Observatory) where he could observ e
the transit himself. The observatory was designed by Sir William Chambers and wa s
ready by the time of transit in June 1769 . Stephen Demainbray was the observatory' s
first superintendent . When he died, he was succeeded by his son, also called Stephe n
Demainbray . See Morton and Wess 1993, 29 and 117 .
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6

Figure 2 : The transit instrument at the observatory in Richmond .

basement there are mathematical workshops . On the first floor there
are several rooms . a) one housing the transit instrument ; the telescop e
is 5 feet, the axis 3 å . At the top of the solid block A was a devic e
for the lantern [see Fig . 2] . a and b are two stationary brass stick s

with holes, through which the triangle cde can be moved . At the end
F the lantern illuminating the filaments is placed . At the other end i s
placed a bar cg with a counter-weight, so that the lantern remains i n
the wanted position.

Bugge gives us here a description of a transit instrument that can mov e
around a horizontal axis in the north-south meridian . Inside the telescope i s
a thin horizontal and several vertical wires, the middle of which determine s
the meridian. These wires serve to determine the coordinates of the stars .

The method requires that the wires can be seen, and therefore they must be
illuminated by a lamp, and this is what interested Bugge . He carefully tell s
how this is done at the observatory in Richmond . Whenever the telescope i s
rotated the lamp must follow and that mechanism Bugge carefully drew in
his diary. But how does the light from the lamp enter the telescope? If the
light from the lamp should enter the telescope properly, the lamp should b e
placed in front of the telescope, in which case the stars could no longer be
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Figure 3 : A transit instrument in Oxford .

seen. What they did at Richmond, as can be seen from Fig . 2, was to place

the lamp close to the axis of the telescope so that sufficient light entered th e

telescope. That was, indeed, a rather simple solution to the problem of il-

luminating the wires . In general, the collection of instruments at Richmond

was not of the highest quality ; they were made by "many people, some o f

whom were not highly skilled ." 23

However, in Oxford Bugge found another, more ingenious device for illumi-

nating the wires : 24

A is the axis of the transit instrument [see Fig . 3] . ab is a circle o f

mahogany around the axis attached to the pier without being con-

nected to the axis. Round it is another circle cdef , connected to the

piece hg which is of about the same length as the telescope . Q is the

lamp, illuminating the circular piece of polished brass MN with the

requisite aperture O . At P a. weight counterbalances the lamp . When

the telescope has been adjusted to focus upon the star, the observer ,

23 Morton and Wess 1993, 123-24 .
24

Bugge 1997, 225 .
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Figure 4 : Ahl's transit instrument made for the Round Tower in Copenhagen . From
Thomas Bugge : Observationes astronomicæ annis 1781, 1782 & 1783 . Hauniæ 1784 .

with one hand, moves the piece hg and the lamp Q up and down until
he finds that the wires are well illuminated .

It is easier to see how the device worked from a drawing of the transi t
instrument that Ahl made at Bugge's request and in accordance with hi s
instructions [see Fig . 4] . The lamp is suspended from a rod that can move
around the horizontal axis of the telescope . Bugge did not use the rathe r

complicated suspension he saw while at Richmond, but the simpler device
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Figure 5 : A transit instrument from the Geodetic Department in Copenhagen ; now

in the Steno Museum, Aarhus . Photo : Hanne Teglhus .

from Oxford . The light from the lantern is reflected in a brass mirror that

has a hole in the middle such that the light from the star and the lanter n

can enter the telescope. The same device illuminating the wires is found on

a transit instrument from the Geodetic Department in Copenhagen, now

at the Steno Museum in Aarhus shown in Fig . 5. From the drawing o f

Ahl's instrument we can see that two counterweights are suspended at each

extremity of the horizontal axis of the telescope, a device Bugge also saw a t

Oxford : 2 5

25 Bugge 1997, 221 .
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Figure 6 : A transit instrument with counterweights from Oxford .

The whole weight of the instrument was more than 100 pounds, an d
in order to relieve the weight from the pivots, levers (bed) are placed
at its extremities [see Fig . 6] . Their centres of suspension c rest on
the iron bars AB . bd and ba are made of mahogany . The latter (ba )
is shown in figure 2 [here Fig . 6] . The weight p counterbalances hal f
of the weight . With one finger I could lift the instrument out of it s
bearings at a.

The director of the observatory at Oxford, Dr . Hornsby 26 , was proud to
guide Bugge through the buildings . The observatory was new and modern ,
in fact it was only completed the year after Bugge's visit . Hornsby had aske d
the trustees for astronomical instruments "to be made by the best instru-

ment maker of the time, John Bird" 27 , and it was accepted . The observatory

was "one of the best equipped of its time ." 28 Bugge made a lot of notes an d
drawings in his diary. Immediately after his return to Copenhagen Bugge

began reconstructing the observatory, and it was completed in 1780 . 29 It i s

difficult to relate details in the new construction to particular construction s

26 Thomas Hornsby (1733-1810) is remembered for his active part in the foundation o f
the Radcliffe Observatory in Oxford of which he became the first director . The buildings
were completed in 1778 .

27 North 1972 . That Bird was the best instrument maker is a statement in accordanc e
with Bernoulli's observation as I quoted in section 3 . The observatory's mural quadrant
was one of the best instruments produced by Bird, see Bernoulli 1771, 116 .

28 Daumas 1972, 124 .
25 Bugge 1784, xxvii and Tab. I . A reconstruction of Bugge's observatory is i n

Gyldenkerne & Darnell 1990, vol . 2, 214-215 .
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in England, but we can see from Ahl's instrument (Fig . 4) that the axis wa s

counterbalanced in the same way as in Oxford (See Fig . 6) . We do not know

anything about the instrument shown on Fig . 5, but it might well be that i t

is an instrument made at Bugge's request, since it has a circular, reflectin g

ring in front of the telescope, as described by Bugge and shown in Fig . 3 .

Moreover, the spirit level is suspended from the axis in a way similar to th e

ones shown in Figs . 6 and 7. Bugge was very impressed by the observatory

in Oxford and its equipment : 30

Not without regret did I leave Oxford Observatory which is no doub t

the best in Europe, both as regards the arrangement and instruments .

Professor Hornsby most courteously assured me of his friendship an d

correspondance .

6 A spirit level

Already in September, Bugge visited watchmaker Cumming 31 where he saw

a spirit level : 32

When the spirit level ab [see Fig . 7] had been adjusted by proper rever-

sal in the horizontal position of the meridian circle cd, Mr. Cummin g

noticed that the bubble did not remain in the centre when the tele -

scope was elevated to 20, 30, 40, etc . From this he concluded that the

axis was not on the same level or on a level parallel with the length

of the spirit level . In order to change this he had fitted a screw gh, so

that the entire spirit level can be moved to both sides .

The adjustment of this screw must then be continued until the bubble

remains at its marks in all positions of the meridian circle .

Before Bugge went to Oxford he had paid John Russe11 33 a visit and he saw

him again after he had returned from Oxford . Bugge noticed a spirit level

in his possession and made a drawing of it and described it as follows : 3 4

30 Bugge 1997, 261 .
'Alexander Cumming (1733-1814) .
32 Bugge 1997, 169 .
33 John Russell (1745-1806) was a famous painter who was also interested in astronomy.

He drew an exceedingly accurate map of the moon . Bugge's description of many of Rus-
sell's astronomical instruments is of great importance, since they had never before bee n
recorded.

34Bugge 1997, 275 .
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Figure 7 : A transit instrument with spirit level as seen in watchmaker Cumming' s
shop in London .

AliiùÎ4( f8W11 Il111illl1Rl

Figure 8 : Ahl's spirit level made in Copenhagen. From Thomas Bugge : Observa-
tiones astronomicæ annis 1781, 1782 & 1783, Hauniæ 1784 .

He [Russell] also had an excellent spirit level, 6 inches long, made b y
Bird, and constructed in the same way as the Centre or Trial Telescop e
described by Smith in his Optics . He places the spirit level on the
quadrangular plates as shown in the following figure [see Fig . 9] .

In Copenhagen Bugge had Ahl construct a spirit level in accordance with
the ideas he had learned about in England, as can be seen from the drawing
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of Ahl's instrument [see Fig . 8] .

7 Conclusion

It is clear from the diary that Bugge learned much about observatories an d

the new equipment in their possession . He brought back new ideas that

eventually were used in constructing new instruments in Copenhagen . It is ,

however, important to make clear that Bugge never went into details whe n

it concerned precision instruments and their working . Perhaps, he was no t

told about them . It was kept as a secret how the more subtle details wer e

produced and manufactured, as Dan C . Christensen made it clear in his pa-

per about spying on scientific instruments . 35 Furthermore, as Christense n

has also pointed out, it would have been impossible to construct precisio n

instruments in Copenhagen because of lack of knowledge and skill . After

Bugge's return, Bidstrup was sent to London to learn the trade, and hi s

journey to and stay in England were recommended by Bugge . From his stay

in England Bugge had learned, I believe, the importance of having skille d

instrument makers in Copenhagen, if the observatory was again to be rec-

ognized as a leading one in Europe . The observatory did not obtain that

position while Bugge was its director . He was not able to supply the fund s

for it, and Bidstrup died before he could begin his trade . Bugge's diary is a

much more valuable document than those of Lalande and Bernoulli . It con-

tains a more detailed description of how the observatories were equipped .

Today his diary is recognized as a major source of English astronomy an d

scientific instrumentation. On the 300th anniversary of Greenwich Obser-

vatory in 1975 Bugge's diary returned to England to be exhibited for som e

weeks in Greenwich where it attracted much attention from the hundred s

of historians of science and astronomy gathered to celebrate this important

event .
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Figure 9 : Bugge's drawing of Greenwich Observatory, October 1777 . Text : Facaden
at Greenwich Observatorium, saadan som det sees fra Hospitalet . Var jeg hos Mr.
Russel, som viiste mig end viidere adskellige af sine Instrumenter. Et watterpas ,
sent fra en af hans venner, hvilket til smaae operationer var scErdeles vel skikket.
Translation of the text : The front of Greenwich Observatory, seen from the Hospital .
I visited Mr. Russel who showed me several of his instruments . A spirit level sen t
from one of his friends . It is very suitable for smaller operations .
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English Instrument Makers
Observed by Predatory Dane s

Dan Ch. Christensen *

The title of this paper is hinting at the fact that for a middle sized monarchy

like Denmark-Norway scientific instruments were a prime requisite for th e
progress of scientific research, i .e . astronomy, experimental physics, geodesy ,
as well as navigation . For shortage of domestic producers the obvious re-

source to turn to would be the instrument makers in London renowned fo r
their leading position . In theory, there were four methods of transferrin g
technology :

1. buying instruments abroad ,

2. enticing skilled artisans to emigrate and work in Denmark,

3. spying on instrument makers abroad, and

4. sending talented artisans abroad for training .

The first method simply consisted in buying instruments abroad . Profes-

sional astronomers like Thomas Bugge r or amateur natural philosophers like
A .W. Hauch 2 and the Reventlow brothers 3 went to the boutiques of Rams-

den, Nairne & Blunt, and Adams to buy the instruments they adored . These

Danes were on their grand tours or study tours and usually they were law-
abiding travellers . But purchasing instruments was a simple activity tha t

meant little for promoting a national production .

* Roskilde Universitetscenter, Postbox 260, DK-4000 Roskild e
1 Thomas Bugge, Journal of a Voyage through Holland and England, 1777 . Ed. by Kur t

Møller Pedersen, History of Science department, University of Aarhus, 1997 . See also Kur t
Møller Pedersen's paper in this volume .

2 Hemming Andersen, En videnskabsmand af rang, A. W. Hauch, 1755-1838, Århus .
3 Unpublished travel diary by C .D.F. Reventlow, 1769-1770, The Reventlow Museum ,

Pederstrup, Denmark .
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Secondly, the government might send out agents to try to entice skille d

workers to emigrate to Copenhagen . In fact, the only instrument maker o f

competence in Denmark before 1800 was a Swede, Johann Ah l 4 , the journey -

man of Daniel Ekström, Stockholm, who left Sweden possibly to rid himsel f

of a personal debt . Bugge, who had seen the most advanced instrument s

on his journey to Paris and London during 1777, had Ahl imitate crafty

innovations in his Copenhagen workshop on the basis of his sketches . 5

This strategy, however, if employed in England, would violate the tool act s

which illegitimated the enticement of skilled artisans to go abroad . The

objective, of course, was to maintain a leading position on the world market .

There are many examples of British artisans entering into Danish-Norwegia n

service and setting up workshops in the twin-monarchy with government

support . 6 The glass, machine tool, iron foundry, and agricultural implemen t

industries are typical examples, but to my knowledge no British instrumen t

makers immigrated here .

The third strategy was industrial espionage. The objective of the spy

would be to make descriptions and drawings or to get hold of models o r

prototypes of advanced tools or machines from leading manufacturers . Once

this had been achieved, however, another problem arose : how to smuggle

the goods out of Britain? Spies belong to the historian's most appreciate d

agents . Not only because the historian shares everybody's fascination with

spy stories, but because the spy is the eminent supplier of reliable evidenc e

for the simple reason that in order for his intelligence to be useful for plagia -

rism it had to be thoroughly understood . Hence his notebooks are usually

superior in quality to the information supplied by manufacturers who too k

an interest in shrouding their trade in mystery.

In connection with espionage it deserves mentioning that the tool acts als o

illegitimated the exportation of core machinery of production . ? The objec-

4 See Olov Amelin's paper in this anthology.
5 See Kurt Møller Pedersen's paper in this anthology.
6 This is elaborated in Dan Ch . Christensen, Det Moderne Projekt . Teknik og Kultur i

Danmark-Norge 1750-(1814)-1850, Copenhagen, 1996 with an English Summary . List o f
spies, pp . 507-508 .

'A series of acts starting 1719 to prohibit the exportation to foreign parts, of tools
and utensils used by the iron and steel manufacturers of Great Britain and to prevent th e
seducing of artificers or workmen, employed in those manufactures, to go into parts beyon d
the seas . 25 . Geo . III cap . lxvii, pp . 286-291. See John R. Harris, Industrial Espionag e
and Technology Transfer : Britain and France in the 18th Century, Variorum, Hampshire,
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tive was to protect outstanding inventions from falling into foreign hands ,

just as patent bills protected the inventor from being exploited by domes -
tic plagiarism. It should furthermore be noticed that British manufacturer s
were divided according to opposed interests . As we shall see some man-

ufacturers like for instance Wedgwood would put pressure on Parliamen t

to extend and tighten the tool acts, whereas a group of members of The
Society for the Encouragement of Science, Agriculture, &Commerce, Lon-
don, demonstrated their idealistic belief in a universal brotherhood of ma n

by publishing patent drawings and descriptions in an international journa l
titled The Repertory of Arts, Manufactures, and Agriculture . The para-

dox was that in order to have a patent legally recognised a description an d
sometimes a drawing of the patented artefact had to be submitted to th e
court ; this procedure made the patent public knowledge . Since the patent

was valid in Britain, but not abroad, there was no legal obstacle to us e
this knowledge to plagiarise the innovation abroad . An illustrative example
would be Bryan Donkin's paper-making machine from 1808 . An issue of The
Repertory containing patent drawings of this machine appeared in Denmark
and a skilled artisan, Ole Winstrup, made efforts to imitate it . 8

There were a number of Danish-Norwegian civil servants spying on British
manufacturers between 1760-1807. 15 spies have been identified, many o f

them professors and free masons .9

The most eminent Scandinavian spy, no doubt, was Professor J .M. Ljung-
berg, a Swede by birth, operating on behalf of the Danish government and
Count Schimmelmann, Chancellor of the Exchequer and industrialist in a
wide range of manufacture . He had several sojourns in England in the las t
quarter of the eighteenth century procuring intelligence from a good many
inventors behind the Industrial Revolution, e .g. Boulton, Watt, Chippen-
dale, Wilkinson, Arkwright, Bramah, Wedgwood, Garbett, Smeaton, Rams -
den, and Troughton. In fact, during 1788-89 he stayed for more than a year

in Birmingham getting well acquainted with Boulton, who employed him a s

an agent to sell furnishings to Chippendale and issued letters of recommen-

dation to manufacturers using his tools and steam engines, like Wedgwood
and Wilkinson. The intelligence he collected was meticulously taken down

1998 .

8 The Repertory of Arts, Manufactures, ti Agriculture, vol . 13, 2nd series, Pl .ix, London
1808 . The Danish attempt is described in DMP (see note 6), p . 460-462 .

9 cf. note 6 .
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in his notebooks 10 and he acquired a large quantity of tools (a consignment

of four boxes weighing almost half a ton), including some `clock maker' s
tools', which was a euphemism for precision tools for instrument makin g
that were blacklisted by the tool acts .

Now, just as the making of scientific instruments demands its skills and expe-

rience, so does the noble business of espionage . And just as Ljungberg knew
that industrial secrecy made spying a high-risk enterprise which challenge d

the ingenuity of the predacious agent, so he was himself utterly reluctant
to disclose his methods . His notebooks are extremely scant with informa-
tion on how he contrived his business. However, his spying on Ramsden' s
tube drawing machine reveals an interesting case . As Ljungberg well knew ,
Ramsden was very secretive . At first he managed to get one of Ramsden' s
workers to open his mouth and took down his oral report as follows :

Instrument makers use brass tubes for telescoping . The tubes must b e
exceedingly accurate in order to be drawn out and pushed in smoothly .
Mr . Ramsden and Mr . Wright have recently drawn patents for plated
telescopes . This is done in a certain way similar to the drawing of a
wire and the process is as follows :

The brass sheet for the tubes is made twice as thick as it is going t o
be . It is then hammered and soldered with the diameter it is goin g
to retain; the soldering is brass and spianter (what this is I'm not
fully aware) . One then strikes it on to a steel mandrel which is per-

fectly cylindrical and indeed very accurately turned and well polished .
(added marginal note : I think that the mandrel is in one piece and
that the split pin only enters at the neck cc to fix the mandrel) . This
mandrel has a neck in cc into which one beats firmly the edge of the
tube. Two halves of a certain pair of thongs fit into this neck. They
are pressed together and afterwards they are fixed with two split pins .
The mandrel is part of a drawing machine like the usual ones, and if
I understood it correctly it is operated by means of a chain, simila r
to a clock's chain, i .e . a crank handle and a gear. But this operation
is vertical, not horizontal as usually . A steel disc with a round hole
of appropriate size is fixed in the groove, and the brass tube is draw n

' °J .M . Ljungberg's notebook, Kungl . Myntverkets arkiv, Varia I d, Riksarkivet, Stock-
holm . The notes amount to 273 pages, written in German apart from a few pages i n
English, richly illustrated . The entry on Ramsden's tube drawing machine is from Jun e
1789 .
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between this steel disc and the mandrel, so that it stretches and be -
comes smooth and round . This process is repeated several times ; and
usually, at least as far as the plated tubes are concerned, they com e
out twice as long as they entered .

The cost of this machine is £200 .

This intelligence stems from an oral account only, becaus e
the machine cannot be observed. 1 1

Now, one might think that a tube drawing machine is a comparatively sim-

ple device. But reconstructing one on the basis of this oral account woul d
hardly be possible, since it contains too much doubt, possible misunder -
standings, and lacks measurements . Furthermore, it leaves no clue as to th e
construction either of the transmission from handle to chain or of the disc-
hole through which the tube is drawn . So, upon second thoughts Ljungber g
must have found his account rather flimsy and requested a drawing statin g
all the precise measurements and a detailed knowledge of how to operate i t
and how to tackle its most frequent malfunctions . And here it is :

AAB is a stand of wood in which a groove B is cut out, 5 inches deep ,
5 inches wide . The inside of the upper half is covered by iron rulers a s
on two sides, and where the stand ends, bent in b and as they ascen d
they also widen and serve as a frame, c, for pivots for the wheels ,
CDEF. In order to obtain more strength with less mass, rulers of 3/8"
are forged on the edge upwards vertically and similarly horizontally .
C is a cylinder of wood sitting together with an iron cog wheel, F, on a
shaft having its pivots lying in the stand cc . Around this cylinder roll s
an iron chain, h k 1, which in 1 is bolted very firmly on the cylinde r
and descends freely in the groove edged by the rulers, ab . The form
and property of the chain is apparent in the drawing, and at its lowe r
end is a shackle, h, of strong iron .

D is a large wheel of wood, nearly 3' in diameter, and it serves both
as a drive for the transmission and as a flywheel . It has its shaft in
the drive d, which gears into the iron cogwheel, E. On the shaft o f
the wheel E there is also the drive, f, which gears into the wheel F ,
and turns the cylinder C to which it is fixed so that the force on C
gets very strong because the drives are as small as the requirement s
of strength permit .
Fig . 3 shows the disc which is abt . 4 1/2" square and 3/4-1" thick .
One section of the inner ring is conical, nn, whereas the other, mm ,
is cylindrical, and it is this latter section that works on the tube . The

11 Ibid ., p . 147, translation and fat italics are mine .
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width of section mm actually touching the tube is only small, abt .
1/154/8" . The disc consists of two parts : the square G and the ring
mn,mn. The former is made of iron, only the latter is of steel . This
ring is turned and soldered with brass on the iron G . Then one glows
the whole disc and puts it into water by which the ring mn obtains
the appropriate level . One still needs to polish it afterwards .
Fig . 5 is a steel mandrel that is turned perfectly round and smooth .
At both ends, rs, it is turned thinner and is pierced with two oblon g
holes, p and q . These serve to fix to the shackles tt by putting the pin ,
u, through all three holes . The mandrel H is made of steel and strongly
heated, then turned and well polished . One has as many mandrels a s
one wants to make tubes of different diameters, and so with the discs ,
G. The pin is quite easy to put in and out . The machine is fixed t o
the floor and to the wall to make it stable .

The machine is used as follows :
The brass for the tubes is rolled sheet . One cuts it in strips of appropri -
ate size and hammers it to the shape of a tube on a long steel cylinder
which is only fixed at one end . When the tube is appropriately larg e
and round it is hard-soldered by brass and spianter which makes the
brass relatively more fluid . After the soldering one hammers it on a
polished cylindrical bar the one end of which one puts into the hol e
of a round vertical wooden beam to fix it . This rod appeared slightly
conical to me, and on this one hammers the tube perfectly round, and
the soldered places thin and even. The bar is as thick as the inne r
diameter of the tube, 4 to 5' long and while it was beaten it lay, pre-
sumably, askew relative to the horizon, abt . 30° . I suppose that he
turns the tubes quite often .
One puts the tube being 1 1/4" thick and 5" long on the steel mandre l
H, so that the edge can be folded 1" or 3/4" wide over the neck, r .
One beats this edge with a wooden hammer to fix the tube firmly. I
think the cylinder was probably tallowed beforehand .

One then took the shackle t and put it through the shackle of the chain ,
h, in the machine, kept the neck H r of the mandrel H in the shackl e
t, so that the holes fitted into one another and inserted the split pin
u. Before this, however, the upper end of the tube had been tallowe d
and a disc like G with a hole slightly narrower than the diameter o f
the tube was put on top of the neck r . Obviously, the chain had been
lowered by turning the wheel D so that the neck r was in the lower
part of the groove B, where the disc G has sufficient room, becaus e
higher up between the rulers as the distance is smaller than the widt h

12 Ibid ., p . 149 .
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Figure 1 : Ill . Ramsden's tube drawing machine 12
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of the disc G .

By turning the chain upwards the mandrel H ascends together wit h
its fixed tube and the disc G. Only the disc eventually hits the sec-

tion ii between the rulers and is stopped while the mandrel with th e
tube continues to move . In this way the tube is drawn while stretch-
ing considerably. When it is through one puts the pin out, takes th e
cylinder from the shackle and removes the disc and inserts another
one yet slightly more narrow ; each time one must be careful to tallo w

the upper part of the tube and when the disc is stopped at ii, direct
the mandrel H in the vertical position manually . In this way the tub e
passes 4 or 5 rings when, finally, it has become twice as long as i t
was in the beginning and so even, smooth and round as if it had been
turned on a lathe with the utmost care .

Mr . Ramsden is said to have had this machine for ten years .

Normally, the tube is fixed very firmly to the cylinder or the mandre l
making it quite laborious to remove it . This is done in the following
way: One takes the mandrel out, turns it around and puts on it a dis c

that fits the mandrel quite accurately, but does not let the tube slip
through . One hangs the mandrel on the shackle and turns upward s

again, so that the ring removes the tube, which is not possible without
employing considerable force. However, in case the upper end of th e

mandrel rises very high in the machine, so that the space is insufficient ,
a loose wooden frame, three-sided and about 1' long, is available t o
be placed under the section ii in order to extend the narrow groove ;
and the disc G hits this frame like earlier it hit the section ii . The

drawing shows the chain too long to enable one to see how it is fixe d
to the cylinder C . Obviously, it is no longer than the periphery of th e
cylinder C . 1 3

Now, throughout the historiography of technology there has been a lot o f

fuss about internalism which has been loathed as `nuts & bolts' histor y
a despicable hobby-activity usually practised by retired engineers . Good

history of technology should focus on the context and hence it can be re-
searched and written by ordinary historians unfamiliar with the intricacie s
of the technological artefact itself. The case of the tube drawing machine
shows, however, that unless we pay attention to the very function of tech-

13 Ibid ., pp. 148-152 .
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nology it is hard to appreciate fully the task of technology transfer . In other

words: an internalist approach is not a superfluous alternative to an exter-

nalist approach, but a necessary and indeed complementary asset to the
contextual history of technology.

The first and the second piece of intelligence collected by Ljungberg are

worlds apart, and nobody was more aware of the importance of exactitud e

for successful technology transfer than Ljungberg himself. As far as I know

this drawing and description of a tube drawing machine is the only exist -

ing piece of evidence illuminating a basic technology of the production of

scientific instruments left to the historian . Furthermore, the step from th e

oral to the written account marks two stages in espionage methodology . It

must have demanded exquisite gifts of persuasion to entice one of Rams -

den's workers to reveal the patent of the tube drawing machine. But when

we learn how Ramsden treated his workers we begin to understand that

Ljungberg must have spent quite a sum to bribe his informant to obtai n
sketch and measurements as well . Here is what he reports from inside the
walls of Ramsden's workshop . 1 4

The ordinary workers who file, turn, plane, etc . earn from 18 to 21 s .

per week of 6 days. [The foremen earn a lot more according to their
skills] . They work daily 12 hours, from morning at 6 o'clock till 8 .3 0

p.m., since they have 1 hour from 1 till 2 p .m . for lunch, half an hou r

for breakfast, and out of the 12 hours he gives them a quarter of a n

hour in the afternoon for tea . 1 5

In the workshop there is a slate on which everybody writes down the

time of his arrival . In case he comes 2 minutes past 6 he will write 6 .1 5

and is paid accordingly. If he writes a quarter of an hour too much h e

is fined 7d., and for each hour 28d ., or 2s . 4d. There is a clock in th e

shop and the other workers usually control the slate .- If one worker

pushes another he pays 1s ., if he beats him 2s . 6d . To show up drunk
in the shop is fined, and to bring a stranger into the shop costs 2s . 6d .-

Every Saturday the workers receive their wages with a deduction for

the hours they have not been working and for fines, which money i s

given to the workers who will then drink ale or porter for part of it . #

14 Anita McConnell, "From Craft Workshop to Big Business - The London Scientifi c
Instrument Trade's Response to Increasing Demand, 1750-1820", London Journal 19, 1 ,
pp . 36-53 .

15 Here Ljungberg is one hour wrong, ibid ., p . 152 .
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If a worker shows up in the shop with dirty hands or without havin g

shaved he will get fined . In other workshops the rules are different .

Ramsden's rules are pinned up in his workshop .

Is this so remarkable that it deserves mentioning? Well, to Ljungberg these

labour conditions differed from those he knew in Denmark where the guild

system protected the journeymen and required masters to abide by the rule s

common to all members of the guild . Hence, when he found that individual

instrument makers in London were capable of setting up private rules o f

conduct he was astonished. The secrecy and the costs and risks to circum-

vent it were another surprise that Ljungberg got used to during his stay in

Britain. He reported to Schimmelmann that this modern profession of in-

strument making could not be contained within the framework of the guil d

system . 16 Here in London a new division of labour, a new system of credit, 1 7

a new market of competition and secrecy and a new power-relation betwee n

employer and worker had established the pillars of modern capitalism .

A great improvement by the local instrument makers consists in th e

fact that they make smooth and even work such as rulers, discs of

brass with a plane . The plane is made of cast iron smoothed over be-

low. The iron is adjustable by one screw and can be fixed by another .

This provides for the wide, smooth planes, the straight edges and sharp

corners, and much time is gained . The plane costs 1 1/2 Guinea . Rams-

den employs about 40 workers, of whom 9 glass polishers, . . . filers ,

. . . planers . . . , turners, 1 draws the tubes, . . . divide the instruments .

He manufactures almost anything at least as far as telescopes and bi g

instruments are concerned, in his own workshop, whereas Adams an d

Nairne contract most of their products from other masters in the city . 1 8

Ljungberg's notebooks abound in useful intelligence . Ljungberg was o f

course well aware that his espionage and shipment of four heavy boxes o f

contraband were a violation of the tool acts . To avoid jeopardising his ow n

person he dissociated himself from his consignment and entrusted it to a

shipping agent . So, in August 1789 when it was seized in London by Thomas

Cross, a customs and excise officer, several years of hard work collecting i t

seemed to have been entirely wasted. Cross, however, was particularly in-

terested in the notebooks since they might contain evidence proving that it s
16 Ibid ., p. 134 .

'Ibid., p . 133 .

18 Ibid ., p. 152 .
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owner had rendered himself liable to prosecution . The tool acts contained a
carrot and a stick. The carrot was a premium of fifty per cent of the value of
the seized goods sold at a public auction. The stick was the dismissal of th e
civil servant if he let contraband slip through . Unfortunately, the notebooks
were written in gothic German, a writing and a language Cross was unabl e
to read. So he turned to Thomas Byerley for help . He was Josiah Wedg-

wood's partner and agent in London and his factory, Etruria, Staffordshire ,

appeared in the notebooks as one of Ljungberg's targets of espionage . By-
erley reported to the Committee of Staffordshire Potters presided over b y
Wedgwood, who was alarmed and took immediate action .

Wedgwood contacted Matthew Boulton for support . Ljungberg had ob-

tained a letter of recommendation to Wedgwood from Boulton since

he knew him well as a very ingenious man and a good chymist . Ljung-

berg lived at Birmingham about a year and was esteemed for his in -

genuity, modesty and gentleman-like behaviour . But we all suspecte d

that he was employed by the Court of Denmark to collect such knowl -
edge in this country as might be useful in that . And although I have
some regard for Mr . Ljungberg, yet nevertheless I hope such decide d

measures will be taken as will prevent the transplantation of any o f
our manufactures . . . 1 9

Boulton and Ljungberg had in fact been on friendly terms during the latter' s
stay in Birmingham. A few months before his departure Ljungberg expresse d
his

sincere thanks for the favour and the kind reception you pleased t o

show me in Your house during my stay in Birmingham; and also for
the many happy hours, which with the loss of your own time, hav e
been so very instructive to me . 2 0

To deserve Boulton's confidence Ljungberg had been an intermediary be-

tween him and Chippendale's in London, and other favours were returned a s
well . But according to Wedgwood, Ljungberg had already sneaked aroun d
at Etruria for several weeks trying to snatch information on kiln technology,

19 Boulton's letter of recommendation of 23 .9 .1789 attached to letter of 1 .9 .1789 fro m
Neale & Byerley to the Custom's House, London ; The Treasury, T1/673, XC 14104, Publi c
Record Office, Kew.

20 Birminghaln Public Library, The Boulton & Watt Collection .
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raw materials and know-how when he handed in Boulton's letter of recom-

mendation. Finally, however, Ljungberg had run away before he could b e

apprehended, which was Wedgwood's intention as he discovered that Ljung-

berg was bribing his workers to extract intelligence concerning his mode o f

production . 2 1

When Wedgwood had learned about the seizure of Ljungberg's notebook s

uncovering the wide range of targets of espionage, he planned to pass on

this information to his fellow-victims to gain their support to persuade Par-

liament to have the tool acts tightened and extended . With this in mind he

had approached Boulton, and he now voiced his plan to Samuel Garbett, th e

arms manufacturer and head of the Commercial Committee of Birmingham

who had prompted the 1785 extension of the list of contraband . 22 Wedgwood

aimed at nation-wide support for his claims, but to achieve this he needed a

translation of the notebooks . The intelligence collected by Ljungberg might

enable the victimised employers to prosecute their corrupt workers . It might

also reveal the names of workers whom this Danish spy had suborned or trie d

to suborn to sell their skills to a foreign power . If Wedgwood succeeded i n

uniting British manufacturers they might be able to convince Parliament

that Britain's industrial head start was at stake unless stricter preventiv e

measures were taken .

Wedgwood's strategy was only a partial success . He did obtain the per-

mission to translate Ljungberg's notebooks . After all, it was in the interest

of Thomas Cross, the seizure officer, to be able to submit evidence to th e

court to have Ljungberg convicted and his premium paid out . Nevertheless ,

Wedgwood failed to unite his fellow-victims . He was very disappointed to

learn how unaffectedly the majority of them reacted to his warnings . I have

not been able to trace the replies from manufacturers in the Wedgwood files ,

but I think it reasonable to summarise their reactions into three categorie s

on the basis of their assumed interests:

1) Wedgwood was enjoying a virtual monopoly on the world market o f

queen's ware, but his mode of production could be imitated once hi s

tools, kilns and raw materials were known .

2i-Wedgwood manuscripts 39/28404, pp . 81-88, University of Keele Library . My thank s
are due to the late Prof . John R. Harris for this reference .

22 S . Garbett's letter to W . Stiles, Commissioner of the Treasury, 25 .8 .1789, The Trea-
sury, T1/673, XC 14104, Public Record Office, Kew .
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2) Boulton 's production of steam engines and minting presses was secon d
to none. He knew that he and Watt had a head start of thirty years o r

more, and hence it was in his interest to define a visitor like Ljungber g

as a potential customer rather than as a dangerous spy. Boulton's at -

titude to the tool acts changed like the direction of a weathercock . On

the one hand he had nothing to fear from manufacturers abroad, since

his technological leadership was beyond emulation; on the other hand
he paid lip service to the policies of those fellow-manufacturers wh o
were also buyers of his steam engines, e .g . Wedgwood and Arkwright .

3) A large group of textile manufacturers and instrument makers ap-

peared to be sceptical about the effectiveness of the tool acts an d

preferred to rely on their own secrecy and to take their own precau-

tions. Examples of this are Ramsden's workshop rules and Arkwright' s

letting the dead body of an apprehended spy hang in a tree outsid e
one of his factories as a deterrent . 2 3

If this suggestion about the diverging interest of British manufacturers is

approved, how could they possibly establish a united front vis-à-vis intrud-

ers? Hence, Wedgwood's initiative petered out . 24 Ljungberg escaped and
was never charged by British authorities . 25 Four years later he was back in

London on a residence-permit to reassume espionage .

What happened to his four boxes of tools? Well, as soon as Ljungberg wa s
back in Copenhagen he reported to his superior, Count Schimmelmann, and
Count Bernstorff, the foreign secretary, instructed the Danish-Norwegian

consul in London to do his utmost to have Ljungberg's consignment released .

The consul was sceptical since the seizure had been reported by a newspaper
agitating the public . The consignment was confiscated, but part of it showed

up at an auction where the consul or his puppets offered the highest bid fo r
a number of books, queen's ware and some rather innocent objects . Most

of the goods, however, were lost, including a lathe, some `clock-maker' s
tools', and unspecified tools and scientific instruments, estimated at £250 .

This means that Thomas Cross, the customs and excise officer, received a
premium of approx . £125, or twice his per annum salary. The seizure of

Ljungberg's boxes is one of the few known manifestations of the effect o f

23 Ljungberg's notebook (note 8), p . 223.
24 Wedgwood manuscripts 39/28404, p . 88, University of Keele Library .
25I regret to confess that my statement about his imprisonment in Centaurus, vol. 37,

199/x, pp. 290-321 was based on conjecture and must be refuted .
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the tool acts .

What happened to the notebooks? For a long time their fate was a riddl e
to me. Had they survived at all? I searched them here ; I searched them
there; I searched them all and everywhere . Were they in Britain? Were they
in Denmark? Coincidentally, I learned that a notebook by Ljungberg wa s
kept by the Public Record Office in Stockholm . But was it the notebook?
I requested The Public Record Office in Copenhagen to obtain a loan o f
it, but our Swedish friends refused the request, estimating that the ite m
was too valuable to be sent abroad. So, I went to Stockholm, repeated my
request and sat down waiting in the reading room for one hour, for two
hours, when an archivist informed me that this valuable source materia l
was untraceable . From my looks the archivist must have realised that I was
somewhat perplexed by the fashion a Nordic brother and this unique piece
of evidence were being treated . So, the head of the Public Record Office
sent out his army of archivists to search several kilometres of shelves . He
called me at my hotel in the evening . Ljungberg's notebooks had surfaced .

The next morning I found myself in the reading room staring at 273 page s
mostly in gothic German and dozens of outstanding technical drawings an d
descriptions written by a master spy and last glared at more than tw o
hundred years ago by Wedgwood, the vindictive potter from Staffordshire .

Ironically, on the last page of his notebook Ljungberg had glued his lega l
residence-permit dated 1793 .

The case of Ljungberg, who has left us with probably more source material

than any other spy, shows how dangerous and troublesome it was to transfe r
technology. But even the secrecy of instrument makers and the deterrent o f
the tool acts could not prevent the know-how from falling into foreign hands .

The tube drawing machine was inaccessible to the public in contrast t o
Ramsden's dividing engine, which was at the disposal of British instru-
ment makers only. This is why Jesper Bidstrup, of whom we shall soon
hear a lot more, was thrown upon his chamber master in London when he
wanted to divide his sextant in the most accurate fashion possible . Bidstrup

could not go to Troughton's workshop himself to have his sextant divided ,
since Troughton was only obliged to divide for British instrument makers .
Secondly, although Ramsden's dividing engine was in print, the published
drawings were inadequate as models for an instrument maker wishing t o
copy it . We know that Henrik Gerner and Thomas Bugge, both member s
of The Society for the Encouragement of Science, Agriculture, &Commerce,



MfM 46:2

	

Industrial Espionage in England

	

6 1

London, the English parent organization of The Royal Danish Society fo r
Agriculture, were in possession of Ramsden's book, but Bidstrup, operating
in London in the decade 1787-1798 could not retrieve a copy . 26 And even i f
he had been able to locate it he would not have been able to copy a dividin g
engine . A workshop equipped with one of Ramsden's other notorious tools ,
the screw-cutting lathe, was the necessary prerequisite . This leads us on to

The fourth strategy consisting in sending a person to London to b e
trained in the making of instruments. In this instance Jesper Bidstrup is
the main character who has left clues of his activities in a number of pre -
served letters . 27 Thomas Bugge, secretary of the Academy of Science, an d

Chief surveyor, then selected him as being one of his talented students o f
mathematics and astronomy to go to London to acquire the skills of a n
instrument maker . Bugge contacted his colleague, Sir Joseph Banks, asking
him to recommend Bidstrup for an apprenticeship in one of the excellen t
workshops . This proved to be more difficult than anticipated . Banks sen t
notes to Bugge and Bidstrup that his inquiries had been unsuccessful .

London instrument makers maintained an attitude of reserve and secrecy

against teaching a foreigner a craft that had procured so much wealth and
reputation from abroad. An apprenticeship of seven years was costly eve n
for a natural-born British subject who had to pay £50-200, a sum that the
young man would lose to his master in case he left prematurely . The Swedish
king had paid Ramsden £200 to apprentice Appelqvist, but they did no t
get on together . And although Cassini, the French astronomer, had bought
scientific instruments from Ramsden for more than a thousand pounds ,
Ramsden refused to let any French people into his workshop .

So, Bidstrup turned towards Count Brühl, the envoy from Saxony, a wel l
known amateur astronomer and consultant, who opened the doors to tw o
of the many subcontractors in the instrument business of London, chambe r
master White, subcontractor to Nairne & Blunt for £100, and to Harbin, an
optician and chamber master working for Dollond . After two years Bidstrup
left White in friendship to join Higgins at Walworth . Higgins was Ramsden' s
first apprentice and worked long for him till they entered into some sor t

26
Description of an Engine for Dividing Mathematical Instruments by Mr . J. Ramsden ,

Mathematical Instrument maker, published by order of the Commissioners of Longitude ,
London, 1777 .

27 The account of Jesper Bidstrup is an abbreviated version of my article in Centaurus ,
vol . 37, 199), pp. 290-321 which contains all references and a few illustrations .
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of companionship ; Higgins moved into Ramsden's house in Piccadilly and
took over as a shop steward, but according to Bidstrup Ramsden's mediocre

moral character only allowed Higgins to stay for eight months . Higgins was
said to be the best supplier to Nairne & Blunt, but also worked for Adam s

and was presently completing a polar sector and the biggest transit instru-

ment yet made in England, initiated by Sisson .

Bidstrup obtained reduced working time in Higgins' workshop by two hour s
in order to open a workshop of his own at Leicester Square (in Newton' s
old house) . Bidstrup talks to Herschel about his new discoveries and instru-
ments and reports their conversation to Bugge. He then ships his sextant ,
an instrument of which he is very proud, divided by Troughton's engine ,
demonstrated to Joseph Banks and in Copenhagen assessed as matchin g
the best of English instruments . At Leicester Sq. Bidstrup also makes mi-

croscopes, a 4" achromatic telescope, and `a mechanical power' for Hauch .
Bidstrup soon realised that in order to set up an up-to-date workshop i n

Copenhagen at least five British inventions were prerequisite, viz . the di-

viding engine (to reduce costs), a glass polishing machine, a tube drawin g
machine, a cupola furnace and a screw cutting lathe .

It proved most complicated for Bidstrup to have steel foundries in Susse x
and Sheffield cast the mandrels for a tube drawing machine and the various
discs for glass polishing . He had to make the moulds himself, which he did ,
but his journey on foot to Sussex to collect the items (he communicated
with Sheffield via an agent) was postponed by lack of transfer of mone y
from Denmark, so that, when finally he showed up capable of paying, he
learned that the steel mandrels had indeed been made, but since they ha d
not been collected the steel had subsequently been recast into other items ,
his moulds had been ruined and had to be reconstructed by himself fro m
scratch .

When the mandrels, now having been cast twice, were to be shipped t o

Copenhagen from Yarmouth the utmost care had to be observed, since thei r
exportation was illegal according to the tool acts, so the consignment wa s
handled by a trustworthy agent, Mr . Wheeler . Bidstrup, of course, would
learn from the bad luck Ljungberg had experienced in 1789 . An additiona l
complication, however, occurred . The Duke of Portland had established a
private corps of guards to enforce the tool acts, and Bidstrup, although i n
possession of a valid passport and having cleverly dissociated himself fro m
his consignment, felt obliged to hide and change his itinerary . Neverthe-
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less, he did escape and his tools, so arduously acquired, arrived safely i n
Copenhagen .

However, this is not a happy ending story . Bidstrup established his worksho p
at least partially, and the magnificent tools were ready to be operated .

Then, in 1802, he fell ill and died . His widow had to sell his equipment by
auction because she owed its value to the government . Five years later the
British bombardment of Copenhagen hit the Round Tower, and Bugge' s

library and collection of instruments were partly blown up . McKenzie, a
Scottish surveyor working on Iceland and a friend of Bugge 's, assured him

that he and his fellow scientists in Britain had talked about the inciden t
with much concern and all felt convinced that the bombardment must b e
some misunderstanding . After all Bugge was a fellow of the Royal Society .

In conclusion I would like to stress two points . Firstly, instrument making
was revolutionised during the second half of the eighteenth century. Before
that time all parts of the instruments were made by hand, but from no w
on most parts were made by improved tools and machines . This transition

changed the division of labour in the workshop and the old guild system onl y
survived by name. Hence, transferring modern instrument making involved

the acquisition of the innovations of the trade such as the tube-drawin g
machine, the glass polishing machine, the cupola furnace, the screw-cuttin g
lathe, and the dividing engine . It also involved the training of skills to oper-

ate these innovations, and since there was nobody capable of this in Copen-

hagen, where, furthermore, the old guild system still prevailed, these skill s
had to be appropriated by one person. Secondly, the cases of Ljungberg

and Bidstrup indicate that no matter how secretive manufacturers wer e

and no matter how carefully the tool acts were observed by determined

civil servants they did not succeed in preventing their precious technology
from falling into foreign hands . All they could do was to make the life of
predacious spies and trainees more troublesome and dangerous .
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Instrument Maker on the Run :
A Case of Technology Transfe r

Olov Amelin *

Abstract

This paper will deal with a number of design principles and a n
instrument maker. The most important parts are played by a circle ,
the number 96 and the craftsman Johan Ahl (1729-1795), who made
the instruments that were used by the Norwegian surveyor and math -
ematician Caspar Wessel.

Whether Ahl is to be regarded as a deserter or not depends on th e
view one takes of the relationship between the Royal Swedish Academ y
of Sciences and the Royal Danish Academy of Sciences and Letters
in the 1760's . The question of technology transfer can also be see n
from two points of view. From a Swedish point of view it was highly
undesirable; from a Danish point of view it was most welcome and
wanted .

Introduction

Johan Ahl came to the workshop of the instrument maker Daniel Ekström i n

Stockholm in its heyday around 1750 . Most likely he was one of the "math-

ematically trained workmen" who together with three younger apprentice s

were in the workshop in 1754 . 1

After the death of Ekström in 1755 there was no obvious heir to the busi-

ness . Various solutions were discussed, but it appears that Ekström himsel f

* The Nobel Museum, P .O . Box 2245, SE-10316 Stockholm, Swede n
'The tax records of 1754, City archive in Stockholm .
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wanted Johan Ahl and Johan Zacharias Steinholtz, one of the other appren -

tices, to take over the workshop, which was actually owned by the Roya l
Swedish Academy of Sciences. The Academy agreed with Ekström and ap-

pointed Steinholtz as director and Ahl as his partner .

However, joint management by Ahl and Steinholtz does not appear to have
worked successfully. Steinholtz took over the business and Ahl found him-

self making more simple instruments such as thermometers, compasses and
drawing instruments . 2 In 1760 we find Ahl mentioned in the tax register
of "Lower West Klara" , an area in central Stockholm . 3 He is mentioned as
"The partner in the workshop Johan Ahl, married, 1 powder, 30-31 year s
of age" . The living quarters and the workshop were located in the bloc k
Kajan No. 49, which also included a herb garden . Ahl and Steinholtz had
moved from Ekström's old workshop in the observatory to new premise s
in Stockholm . Altogether twelve people worked here, including Ahl's part-

ner, the three-year-younger Steinholtz, and Steinholtz' wife . Two maids, five
apprentices and a lodger are mentioned in the register . The information " 1
powder" indicates that they could afford the luxury of powdering their wigs ,
for which a tax was paid . But the wealth was illusory. In March 1760 the
relations between Ahl and Steinholtz had deteriorated to such an exten t
that the Academy thought it would be best to separate them . Financially,
Steinholtz benefited from the separation . Two-thirds of the allowance, which

since Ekström's day had gone to the workshop, now stayed with Steinholtz .
Conditions for Ahl were difficult, as may be seen from the Academy minutes .
By May 1760 he was having to ask for 600 copper dalers in advance, which
he was granted . 4 Ahl's requests to be paid in advance appear frequently in
the minutes and suggest that his terms of employment were poor . 5 How-
ever Ahl probably owed money to others besides the Academy and he wa s

also dabbling in high finance and was defrauded by a clerk at the Bank o f
Stockholm . 6

2 Lindroth, Sten, Kungl Vetenskapsakademiens historia 1739-1818, p . 799, Stockholm
1967.

3 Fataburen 1915, Stockholm 1915 .
4 The Royal Swedish Academy of Sciences, Minutes 21 .5 .1760 .
'Ibid . 21 .5 .1760 (600 copper dalers), 14/10 1761 (2000 copper dalers), 18 .11 .1761 (150 0

copper dalers) .
5 The Royal Swedish Academy of Sciences, Secretary ; Paper 33 :1 Johan Ahl, Memo-

randum, not dated but probably 1763 ; Promissory note signed by Colliander, Stockholm
8/10 1760 . Colliander returns to the bank and Ahl tries to pay his debts to the Academy
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The last notes we can find in the Academy minutes about Ahl's work i n
Stockholm date from 17 March 1762 . The Academy's experimental physicist
Johan Carl Wilcke demonstrated an inclination compass, an instrument for

vertical measurement of the earth's magnetic field, that he had designed
and Ahl had manufactured .

The next note in the minutes tells of Ahl's escape from his creditors . The

Danish government promised the Swedish minister in Copenhagen to pay
Ahl's debt to the Academy. This is as early as June 1763 . In other words ,
Ahl must have established himself quickly in Denmark and managed t o
make contact with the right people . Little is known about his departure ,
but in June 1762 Ahl is mentioned in a memorandum written by Henri k
Hielmstierne, secretary to the Royal Danish Academy of Sciences and Let -
ters in Copenhagen . According to the memorandum he had "[ . . . ] with

great difficulty arranged for immigration of a very skilful instrument make r
from Stockholm" 7 (author's translation) . The letter does not tell what thi s
difficulty was. Maybe Ahl had hesitated, but more important was the fac t
that Ahl's escape to Copenhagen meant that Sweden lost one of her tw o

most competent instrument makers, also one in whom the Royal Swedis h
Academy of Sciences had invested large amounts of money . The state of

Swedish instrument-making was poor, even before Ahl's disappearance . Im-
portant knowledge had now fallen into the hands of a foreign country . The
Danes, on the other hand, had everything to gain . On 26 June 1761 the
Royal Danish Academy of Sciences and Letters had been granted funds b y

the King for the cartographic surveying of Denmark and the publishing of a
nation-wide map . Behind the project were the professor of mathematics and
member of the Academy Christen Hee (1728-1782), and the young assistant
at the Round Tower Observatory Thomas Bugge (1740-1815) .

The need for surveying instruments was great in Denmark after the King
had approved the project . At this time Muth was the royal instrument

maker, but he was considered too old and too slow to be able to provid e

and Steinholtz using a promissory note . The promissory note was not accepted by th e
Academy, see 33 :1 Utdrag af kongl. seereteraren Faæels skrivelse till h :s ex:ce . . .
Cantzlie ilresidenten grefve Ekeblad dated Copenhagen 20 November, 1763 .

7 Memorandum 27 .6 .1762 from H . Hielmstierne to J . L . Holstein, archive of the Roya l
Danish Academy of Sciences and Letters, Special archive, Geografisk landmaaling 1761-
1765 . Written at the top of the document in another hand is a statement about salary fo r
Ahl (150 Rdlr) paid as from 21 May 1 .762 . From these sources we can date his "escape"
to Denmark to April or early May 1762 .
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the Royal Academy of Sciences and Letters with the necessary equipment . 8

Johan Ahl, or Johannes Ahl as he was called in Danish, came to Copenhage n

in the spring of 1762 . He immediately started to provide the Academy wit h

instruments . Ahl must have been asked to come to Copenhagen to provide

Bugge with equipment . The Swedes' talk about desertion therefore gives a

misleading impression of the course of events . It is likely to have been an

easy decision to make for Ahl, who was burdened with debt, and also o n

poor terms with his former partner Steinholtz .

Furthermore, orders placed by the Royal Danish Academy of Sciences an d

Letters had been received in Stockholm as early as the winter of 1761-62 .

Parts of them had been carried out, probably by Ahl and Steinholtz, an d

delivered to Joachim Otto Schack, the Danish agent in Stockholm . Some

of the larger instruments, though, probably made by Steinholtz, had no t

been delivered. The Royal Swedish Academy of Sciences, with its minin g

consultant Daniel Tilas and its secretary Per Wilhelm Wargentin leadin g

the way, retained the ordered instruments, to try, if possible, to force the

Danes to return Ahl to Stockholm. In Denmark Ahl immediately received an

annual salary of 100 Rigsdaler, which was raised after a couple of months t o

150 Rigsdaler . By 1769 Ahl . was receiving 300 Rigsdaler a year plus another

50 Rigsdaler for the employment of an apprentice . 9 Ahl quickly reached

the position of being the foremost instrument maker in Denmark, and was

spoken of as "[ . . . ] our skilful Ahl" or "[ . . . ] our skilful and deserving

Ahl" .1 o

Ahl's debt to the Royal Swedish Academy of Sciences was paid off in 1764 ,

when the Swedish envoy, Mr . Sprengtporten, informed the Academy membe r

Count Ekeblad, that "after long drawn out proceedings" he had received the

4000 copper dalers that the departed Ahl owed the Academy. For his work in

connection with the recovery of this debt Sprengtporten received a specimen

sIbid: "og den her værende naunlig Muth som har aarlig pension af Hs Majesteet ,
findes deels at være meget uaccurat og langsom deels kostbar med Hs arbeide, det og oft e
forefalder at der gaaer Slid og fall paa deslige Instrumenter, som i en Hast maa giøres til
Rette for ei at sinke arbeidet . "

9 C . Molbech, Det Kongelige Danske Videnskabernes Selskabs Historie 1742-1842 .
Copenhagen, 1843, p . 77 .

' °The information on Ahl's stay in Denmark is, unless otherwise stated, taken fro m
Keld Nielsen, Hvordan Danmarkskortet kom til at ligne Danmark, Videnskabernes Selskab s
opmåling 1762-1820, Foreningen Videnskabshistorisk Museums Venner, Århus, 1982 .
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of every medal minted by the Academy . '

1 The mapping of Denmark

The implementation of this project has been described carefully by Keld
Nielsen, but a brief reference to the methods used may be useful .

The Danish mapping project was large and ambitious . It undoubtedly made

Denmark one of the leading nations in the area of land surveying . The aim

was to make a nation-wide triangulation net . The method used came fro m

France, where it had been in use since Jean Picard (1620-1682) had mea -

sured a part of the meridian through Paris and Amiens in 1669-1670 . The
Cassini family then used this method when the mapping of France started

in 1747. It involved connecting dots along a meridian with a series of trian-

gles with carefully measured angles, after which it was enough to carefully

measure the length of one side of one of the triangles - the baseline . With

simple trigonometric calculations, the lengths of all other sides of the tri-

angles could then be calculated and finally also the length of the meridian .

The disadvantage of this method was that any mistake in measurement

was transferred to the final determination of the meridian. This made ex-

tremely accurate angular measurements absolutely essential, and the in-

struments had to be manufactured and used with great skill . To meet thi s

need, Denmark began an extensive training programme, in which land sur-

veyors were taught to perform the triangulation measurements . The whole

project was described by Thomas Bugge in 1779 in Beskrivelse over den
Opmaalings Maade, som er brugt ved de Danske geographiske Karter; med
tilføiet trigonometrisk Karte over Siveland, og de der henhØrende Triangler,
beregnede Longituder og Latituder, samt astronomiske Observationer. 1 z

2 The Ekström circle in Denmar k

Johan Ahl was trained in Ekström's workshop, a workshop that can be sai d

to have specialised in land-surveying instruments . At least this was the area

11 The Royal Swedish Academy of Sciences, Minutes 9 .1 .1765 .
12A description of the surveying method used for the Danish geographical maps wit h

an attached map of Zealand, including the triangulation net, calculated longitudes an d
latitudes, and astronomical observations (author's translation) .
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in which Ekström made his most significant technical innovations with the

introduction of the levelling tube and the circumferentor, also called the

Ekström circle. The instrument was much appreciated in Sweden and was

Ekström's most successful invention. The circle was presented to the Roya l

Figure 1 : Daniel Ekström's geographical circle ; illustration from his article in the

Transactions of the Royal Swedish Academy of Sciences 1750 .

Swedish Academy of Sciences in 1750 and was described in an article in the

academy's transactions the same year . 13 An interesting detail was that i t

incorporated elements of a Danish tradition of instrument-making .

In England and France parts of circles (quadrants, sextants etc .) were pre-

ferred for different angular measuring instruments . Ole Römer (1644-1710)

on the other hand favoured complete circles and designed his own instru-

ments of this type . Complete circles were more stable and the scales wer e

' Ekström, Daniel, Beskrifning på Et nyt Geographiskt Instrument, Kungliga Veten -
skapsakademiens Handlingar 1750 (Transactions of the Royal Swedish Academy of Sci-
ences), Stockholm 1750 .

70
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easier to provide if the division of the scales could be checked against th e
diagonal of the circle . Whether or not Ekström was influenced by Römer's
designs when he made his circle is not clear . In 1763 Ahl had made a cir-

cumferentor for the Royal Danish Academy of Sciences and Letters, for
measuring the angles of the triangles mentioned earlier . The instrument
was much appreciated by Bugge, because it was so easy to handle . In his
description of the instrument he says that the right angles were divide d
both into 90° and into 96 sections, in other words using George Graham's
method of dividing the circle by bisection . 1 4

The scales on the smaller circular instruments (to which category the surviv-
ing examples belong) were probably divided by using a template and bea r
no traces of division into 96 sections . The instrument depicted in Bugge' s
book differed on several accounts from the original design by Ekström. The
stand was more stable and the circle was provided with a semicircle with a
cog positioned at a right angle to the surface of the large circle . This made it
possible to place the circle at any angle between 0° and 90° by using an ad-

justable screw . The scales could be read, according to Bugge, by using fou r
vernier scales. At both ends of the adjustable tube there was a vernier scale
for the 90° scale and one for the scale divided into 96 sections . With these ,
readings as small as 15 seconds of arc could be taken . As a complement

14 Thomas Bugge, Beskrivelse over den Opmaalings maade som er brugt ved Dansk e
geographiske karter, Copenhagen, 1779 .

The circle made by Ekström, now in the Old Observatory in Stockholm, does not hav e
a scale divided into 96 sections . In Denmark three circumferentors are preserved . Th e
one mentioned in the text, signed by Ahl and later modified by his apprentice Jesper

Bidstrup who added more bubble levels, does not have a scale divided into 96 section s
(Bugge is referring to Bidstrup's work with Ahl in a letter to J . Banks in 1787, see Ny
Kgl . S . 287.1, 4°, Royal Library, Copenhagen) . The instrument is now in the Ole Römer
museum in Taastrup . Another instrument, much like the one mentioned earlier, is at Kort
och matrikelverket in Copenhagen . There is no sign of a scale divided into 96 sections
on this instrument either . The third instrument at the Aalborg University Centre is of
a somewhat simpler and probably earlier construction . It is reminiscent of the original
instrument made by Ekström . Even the construction of the stand is identical with that o f
Ekström . All three of these instruments were probably made by Ahl . Yet another circle by
Ahl is at the National Administration of Shipping and Navigation in Norrköping . There
is no trace of a scale divided into 96 sections on this instrument either.

On both contemporary illustrations of Ahl's circular instruments in Thomas Bugge' s
Beskrivelse over den Opmaalings Maade . . . (table 1) and Observationes Astronomica e
Annis 1781, 1782 f 1783 (table VIII) (in the latter a somewhat larger circle mainl y
intended for astronomical use) the scale is shown as divided into 96 sections .
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to the vernier scales there was also a micrometer placed in the adjustable
tube. Ahl made his circle in different versions, a simple variant much lik e
the one Ekström had constructed and a couple of more advanced version s
both for geographical and astronomical use . The large circle used by Bugge
has disappeared ; however, if we compare Bugge's description with the tw o
surviving geographical circles in Stockholm and Uppsala signed by Johan
Zacharias Steinholtz, there are several similarities . The adjustable tube has

a micrometer and the adjustment of the circle is the same as on Bugge' s
instrument . The stand is also similar to Bugge's . Steinholtz' instrument No .
11 was made in 1761 when Ahl was still in Sweden. Today the instrument

is at the Royal Swedish Academy of Sciences in Stockholm . Instrument No .

10 is in the Observatory Library in Uppsala . Most likely Ahl participated in

the making of No . 10, even though Steinholtz signed it . The improvement s

to the Ekström circle described by Bugge had therefore already been de-

veloped when Ahl decamped to Denmark . Perhaps some of the instrument s

preserved in Sweden were even originally made for Denmark as parts of the

order executed but not delivered by the instrument makers in 1761 .

Bugge touched again upon Ahl's circle in an account of his visit to Paris i n
1798-1799 as a member of the "international" commission of weights an d

measurements. There he had come into contact with the repeating circl e
made by Borda . Bugge wrote that the instrument in question which had a

two-foot radius, gave very good results, but that the reports of its accuracy
were exaggerated . After analysing a few of the results he found a measurin g

error of six seconds of arc . Bugge writes proudly that circle instruments of

similar design have been used in Denmark for nearly 40 years . He describes

some design differences, but goes on to say that in his opinion Ahl's circula r

instrument generally gives the same accuracy of reading as those of Borda . 1 5

Bugge's description of Borda's instrument is both interesting and reveal-
ing . 16 There were major differences in design between Ahl's and Borda's
scales. Ahl's best instruments had two scales, one 90° scale and one divided
into 96 sections. The technique was that employed in the making of quad -

rants, using a pair of compasses to divide smaller and smaller angles . This

was the method developed by Graham in the 1720's, which Ahl had learne d
from Ekström in Stockholm. In Borda's case there was a scale on which the

quarter circle was divided into 100 sections . Bugge saw this as something

15 Thomas Bugge, Reise til Paris i Aarene 1798 og 1799, (Copenhagen, 1800, pp . 553) .
16 Allan Chapman, Dividing The Circle (London, 1990, p . 118) .
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Figure 2 : Ahl's geographical circle de-

	

Figure 3 : J .Z. Steinholtz's geographi-

picted in Bugge's "Beskrivelse over

	

cal circle made around 1761 . Now in

den Opmaalings 114aade . . . ", 1779. the collections of the Royal Swedish

Academy of Sciences . (Courtesy of the

Royal Swedish Academy of Sciences) .
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negative, but Borda most probably divided his scale with more modern
tools, i .e. some kind of dividing engine giving high precision without any
need for another scale. When Bugge visited Paris in 1798-1799 he found
circles that were divided by machines equipped with microscopes . These
were also read with microscopes equipped with micrometers, giving a much
higher precision than Ahl's instrument. Both Bugge and Ahl had missed
out on this development . Circles and, more particularly, the technique fo r
dividing the scale continued to develop elsewhere in Europe .

3 Ahl's Quadrant

The Danish triangulation network that was measured with the circumfer-

entor was orientated with the meridian passing through the observatory at
the Round Tower in Copenhagen . The position of the meridian was fixed by
solar observations . To orientate the meridian in the field Bugge measure d
the angle between the meridian in the northern direction and the line o f
sight towards the south spire of the cathedral in Roskilde . Another line, at
right angles to the meridian through the observatory, "the Perpendicular" ,
was measured to enable the construction of what we would call a co-ordinat e
system with an x-axis and an y-axis . We shall not go deeper into the techni -
cal details of mapping, but the two lines through the Round Tower and the

triangulation net made up the framework for the whole mapping project .
To be able to give the map the exact degree of longitude and latitude i t

was necessary to perform a very careful determination of the Round Tower .
For this purpose Bugge ordered several instruments from Ahl's workshop ,
one of which was a 3-ft quadrant (92 .5 cm radius) delivered in 1778 . With
this quadrant Bugge could determine the polar altitude of the observatory
after measuring 28 fixed stars during the winter of 1778/79 . Complemen-

tary measurements were also made using a circumferentor . The result that
Bugge arrived at was 55° 40'56", which may be compared with the moder n
measurement of 55° 40' 52 " 17 . The work was done mainly with the quadrant
made by Ahl . Once again we can find similarities with instruments that Ah l
had seen or worked with in Stockholm . The stand was similar to the on e
made for the quadrant delivered to the Stockholm Observatory in 1757 . The

17
Nielsen, p . 40 . Nielsen states that Bugge had calculated the value 55° 40' 52" but

changed the seconds to 56", because it gave a more even number when working wit h
six-digit logarithms . Log sin 55° 40' 56"=-0,083060, an even and "handier" number .
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Figure 4 : Quadrant made by Ahl in

	

Figure 5 : Quadrant made by Bird in
1778 .

	

1757 . (Courtesy of the Royal Swedish

Academy of Sciences) .

maker of this instrument was John Bird, the most famous of all instrumen t
makers at the time . The size of the instrument differs by six inches fro m
Bird's construction . One important point of difference is in the metal frame -
work; Ahl's design has squares, whereas Bird's has spikes radiating from a
central hub around which the quadrant could be turned . Both instrument s
had two scales, one divided into 96 sections and one 90° scale. Ahl's quad-
rant was provided with an adjustable tube with both a vernier scale and a
micrometer . Today the instrument is at the Round Tower. Tubes and other
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parts are missing .

The longitude was of course harder to determine exactly, but based on th e

eclipse of the moons of Jupiter the position of the Round Tower could b e

determined in relation to the Paris Observatory and the Stockholm Obser-

vatory.

4 The restoration of the Observatory at the
Round Tower - a comparison with the Stock-
holm Observatory

At the time of these measurements Bugge was busy restoring his observatory

at the Round Tower . A new top storey with an octagonal room in the middl e

and two wings was built on the roof of the tower . Ahl continued to receive

orders for more instruments . In addition to the quadrant, Ahl was asked t o

make a zenith sector, a mural quadrant and a transit instrument . A Swedish

traveller, the astronomer Henrik Nicander, visited Bugge in the late summe r

of 1778 and reported back to Wargentin about the work on the observatory :

The largest observatory room is a hexagon [finally the room was buil t

like an octagon, author's note], with a window to the north and south .

Inside a mural quadrant with an 8-ft radius will be placed . It has not

yet been built, but has been ordered from the skilled instrument make r

Ahl, who is residing in Copenhagen . A sector with a 16-ft radius will

also be installed, but in such a way that it is placed in a hole from th e

bottom of the tower, all the way through the hexagon . Through this

hole the stars can be observed clearly during daytime. On the sides of

the hexagon, to the east and to the west, are two rooms . In the roo m

to the east, a 6-ft transit instrument by Ahl will be placed on a marble

pillar . On another pillar in the same room the observation clock ha s

been placed. In the other room to the west, a quadrant with a 3-ft

radius will be placed, which is now in the hands of Ahl [ . . . ] The

view from all sides extends for miles and to adjust the mountings o f

the instruments on the meridian a sign will be placed on the beach o f

the island of Amager - a Swedish mile [10 km] from the observatory . 1 8

18 Nicander to Wargentin 5 .9 .1778, The Royal Swedish Academy of Sciences .
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Bugge built the best-equipped observatory in northern Europe . The pro-

totypes were mainly the English observatories that he had visited in 1777 .
The ambitious nature of the project forced the instrument maker Ahl t o

work on very demanding tasks, and he was able to develop his skills . In
the letter quoted above, Nicander sends Ahl's compliments and states tha t

Ahl "seems to be more appreciated in this place, than he was by us" . Al-

most a year later Bugge himself writes to Wargentin and tells of his plans .

Either Nicander had misunderstood some matters or Bugge had adjuste d
sizes and positions of the instruments . The mural quadrant was supposed
to have a 6-ft radius and the zenith sector a 12-ft radius, not 8- and 16-ft
respectively as stated by Nicander. Bugge does not mention anything abou t
placing the zenith sector in the centre of the tower . The zenith sector was

placed together with the other instruments in the observatory building o n
the roof .

Bugge's observatory contained all instruments that were used at this tim e
in the large European observatories . A comparison with Wargentin's set of
instruments in Stockholm shows that Bugge made greater use of precisio n
angle instruments . During his tour of England he visited several of the mos t
famous instrumentmakers and watchmakers in London . Bugge was able t o
learn the design details both at Edward Nairne's and at Jesse Ramsden' s
workshops. At the observatories in Oxford and Greenwich he was given the
opportunity to make observations using both transit instruments and mu-
ral quadrants . 19 In the diary that Bugge kept during his tour, there are
details of the instruments with drawings and comments . This knowledge

was passed on to Ahl upon Bugge's return and we can find similarities be-

tween the instruments constructed by Ahl, the drawings in Observatione s
Astronomicae Annis 1781, 1782 and 1783, and the English instruments de -
picted in Bugge's sketches . 20 Ekström had also made similar instruments ,
and Bugge's contribution can be seen as a refinement of details . Ahl knew
the basic principles already.

In Bugge's letters to Wargentin he describes several technical details of th e
instruments. The sight tube in the movable quadrant and the transit in-

strument had an achromatic lens system . The scales were divided into 96

19 K . M. Pedersen, "Uddrag af Thomas Bugges Dagbog 1777", Festskrift i Anledning af
Universitetsbibliotekets 500 Års Jubilaurn (Copenhagen, 1982) .

20 Ibid . pp . 155 . and Bugge, T . Observationes Astronomicae annis 1781, 1782 é1 1783,
Hauniae 1784 .
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sections and 90°. A special construction to turn the movable tube on the

quadrant was designed by Bugge himself . He took a great interest in the in-

struments and participated in the development and construction work wit h

Ahl in a way that Wargentin never did with Ekström . This also depended

on the difference in scope between Bugge's and Wargentin's work . From

the beginning Bugge worked with observations where precise calculations o f

position were of great importance . That Bugge had great confidence in his

instrument maker is well expressed in the following letter :

All these instruments have been made by Mr Johannes Ahl, Swedis h

by birth, whom I respect highly for his competence . I do not think

that he will yield to any instrument-maker in Europe except to th e

deceased Bird and the yet living Ramsden . 21 (author's translation) .

Wargentin's studies of the moons of Jupiter were not dependent upon an -

gular measurements in the same way . But there was also a basic differenc e

in attitude between the two astronomers ; this can clearly be seen in War-

gentin's reply, written in November 1779 :

I have not wanted to recommend the Royal Swedish Academy of Sci-

ences to purchase such expensive instruments, because it is hardl y

worth the effort in our climate, where the opportunities to observe ar e

very few . The three to four months of summer, are one long day, whil e

the winter is either cloudy or so cold that one cannot handle such sen-

sitive instruments with a steady hand. Also I think it is unnecessar y

to put so much money into astronomy when so many observatories in

Europe, in better climates, are already equipped with the finest instru-

ments and the best observers, which I could never hope to equal, muc h

less surpass . They all have the same sky, the same work . When one

does not think one can do better than them, less joy and honour come s

out of the cost, the watching, the effort . 22 (author's translation) .

The halcyon days of the Round Tower end around 1800 . Thereafter Bugge

had to devote more time to military work in connection with the war wit h

England, and his astronomical work was therefore neglected. The instru-

ments fell into decay and most were removed from the Round Tower . In

1808 The Copenhagen Fire commission decided to convert the tower int o

21 Bugge to Wargentin 20 .6 .1779, The Royal Danish Academy of Sciences and Letters .
22 Wargentin to Bugge 2 .11 .1779, The Royal Library, Copenhagen .
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a fire tower . 23 But Bugge stopped the plans and his building was able to

continue to work as an observatory until the end of the 1850's .

5 Summary

When Ahl left Sweden, Swedish instrument-making was on the brink of ruin .

In Denmark on the other hand, it began to flourish . Why?

Denmark had all that was required for the successful co-operation betwee n
instrument makers and scientists that was essential . In Sweden this co-
operation lapsed when Ekström died. Wargentin did not have confidence i n

Steinholtz and Ahl, so large orders were placed abroad .

Was Ahl a deserter ?

From a Swedish point of view Ahl's move to Denmark was most unfortunate .
Every attempt was made to get him back . His departure caused both ex-
pense and the loss of valuable knowledge to Sweden . From a Swedish point
of view the transfer of knowledge was therefore highly undesirable . Den-
mark, on the other hand, no longer had to import surveying instruments .
Instead it became one of the largest manufacturers . The investment in Ahl
enabled Denmark to build the most advanced instrument-making workshop
in Scandinavia . The large mapping projects, both the theoretical and th e
technical aspects, placed Denmark far ahead in the field of cartography .

Ahl's work is an interesting and clear example of how technology coul d
be transferred. First from English instrument makers to Ekström, then t o

Ahl, who took his knowledge with him to Denmark, where Bugge adde d
the knowledge he acquired on his tour to England . The circumferentor, or

Ekström circle, was a unique construction heralding theodolites and repeat -
ing circles. But the decisive factor in the successful cartographic project wa s
the co-operation between artisans and scientists . Without this, the scientifi c
image of Denmark would not have received the boost that it did .

23 Kjeld Gyldenkerne, Per Barner Darnell and Claus Thykier, Dansk ast7onomi gennem
firehundrede år (Copenhagen, 1990), p . 103 .
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Wessel as a Cartographe r

L . Kahl Kristensen *

Abstract

The primitive level of geodesy at the time the young Caspar Wesse l
became assistant surveyor is described . Fundamental geometric con-
cepts were not yet developed and the shape of the Earth still debated .
Many computations tacitly assumed a flat Earth . When Caspar Wes-
sel took over the triangulation of Jutland he proposed a division of the
country. His plan was approved by the Royal Danish Academy of Sci -
ences and Letters at a meeting on February 5 1779 . Although this plan
is often mentioned, the content of it is not known . Inspection of
the published maps, however, shows that it was a rational division, stil l
in use, which allowed the sheets to be joined . This system is continued
to the present day.

The kind of applied mathematics which filled Wessel's professional lif e
is indicated by Thomas Bugge's writings .

A new geometric theorem shows simply, in terms of the Gauss cur -
vature, the size of the error in regarding the Earth as flat . This "gap
theorem" is invented for the present paper .

1 Introduction

Soon after the mathematically talented Caspar Wessel arrived in Copen-

hagen to study law he was employed (from 1764 to 1805) by the Roya l
Danish Academy of Sciences and Letters in the surveying of Denmark .

This project was an imitation of the mapping of France under the auspices of
the French Academy. It involved practical work in the countryside, applie d

`Institute of Physics and Astronomy, University of Aarhus, DK-8000 Århus C, Den-
mark
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mathematics and much computing . The kind and level of this mathematics ,
on which Wessel must have spent much time, is shown in Chapter 2 . The
leader of the mapping was Thomas Bugge (1740-1815) whose publishe d
works show the state of the art of geodesy at this time .

In Chapter 3 the cartographical work of Wessel is shortly discussed . He
continued Bugge's triangulation but used a much more rational system fo r
the division of the maps .

Finally, in Chapter 4, we mention the improvements after the epochs o f

Bugge and Wessel, when the topographical survey became the responsibility
of the General Staff of the army. Again the project was copying an earlier
French project, but Wessel's rational division of the maps was continue d
and in some respects the maps even surpassed the French archetype .

2 The epoch of Thomas Bugge

In 1762, the Royal Danish Academy started an 80-year work on the mappin g
of Denmark in scale 1 :120000 by engaging two surveyors, one of whom was
Bugge. At the age of 19 he had assisted in a plane table survey where th e
position of the table was determined by a triangulation on the table itself .
This gave the dearly bought experience that error accumulation rapidl y
distorted areas at a distance from the base lines . After this Bugge became
a devotee of what he called "the method of parallel lines" . Here paralle l
lines were marked out by sticks in the field at a distance of 10000 alen' and
measured by a chain . The intention was that these lines should serve as a
frame and be stations for the tables . In Zealand the parallel lines were as
long as 200000 alen and aligned by sticks at a distance of 30-70 alen, and
by higher signals at distances of the order of 1000 alen . The longest lines
thus required the placing of a stick about 4000 times !

Bugge discussed observational errors very carefully. He distinguished be-
tween random and systematic errors, and estimated instrumental errors by
the widths of threads and division lines . He also made psychophysical exper-
iments [4, p .16] with different people to determine the visibility of signals
under different illuminations and determined the resolution power of the

'Measures used : 1 alen = 2 fod (Rhine or Leyden feet) = 0 .6277 m . 1 favn ("fathom" )
= 3 alen = 1.8831 m. 1 mil = 12000 alen = 7.532 km .
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human eye to +1' in clear sunshine (from behind) and to ±2' under less
favourable conditions .

When possible, Bugge, after critical discussions, combined several indepen-

dent determinations of the basic parameters . For the latitude of the Royal
Observatory in Copenhagen (the "Round Tower") he even included Jean
Picard's approx. 100 years older data . If the critical examination did no t
indicate that some data should be rejected, he used simple averages . He

warns explicitly against the use of "raisonnerte" averages or a preferenc e
for values which happen to appear twice . Very reasonably he argues that ,
by chance, such values could be most in error [1, p .85] .

Due to his expertise, Bugge was ordered by the king [5, p .12] to be a mem-

ber of the International Commission on the Metric System . He pointed out

that the definition of the metre in terms of the meridian quadrant could, a t
best, be realized to +0 .1mm. Today we know he was right : the prototyp e
metre is actually 0.2 mm too short! On a commission with starry-eyed theo-

rists Bugge represented common sense . Among the radical proposals of th e

Commission were, for instance, that a day should have 10 rather than 1 2
hours, a mariner's compass point should be 1/10 rather than 1/8 of a right

angle, and even the currency should be reformed to the metric system (1
franc = 5 g 90% silver) . With his great practical experience Bugge pointed

out that such reforms would cause much confusion, be very expensive and
take a hundred years to be accepted and in common use . Fortunately, in hi s
opinion, there was no need to introduce this system in Denmark . From the
Elbe to Nordkap we had, since 1682, a uniform system of weights and mea -
sures [5, p .539] which was constructed by Ole Romer, one of his predecessor s
as Astronomer Royal .

Despite his sound attitude to a theory of errors, Bugge badly lacked ou r
days' statistical theory for the accumulation of errors . From 244 repeated
weighings [5, p .632] he found, as mean value, 1 kg = 2 .002769 Danish pound s
and he estimated the error to be less than +0 .000002 pound, but the con-
cepts of "probable" or "mean errors"- could not be used as they wer e
not yet known to Bugge .

The want of a statistical theory of errors is clearly illustrated in his discus-

sion of the accuracy of staking out straight lines [4, p .20] . The sticks should
be sighted equally from both sides "so that the small errors would be now

on one side, now on the other, and hence, ultimately the line will approach
mathematical accuracy" . If trees were in the way of the line they should be
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passed by parallel lines alternatively to the right and the left of the

obstacle . These displacements were allowed because the diameter of a tre e

is too small to be drawn in the scale of a map !

Assume a sighting error ±2' and a 1000 alen distance between the signals .

Bugge is aware that each stick introduces an error so their number shoul d

be kept small by making the distances between them as large as possible .

He could not know that the transverse error would increase as the inverse

square-root of this distance and, for a main line across Zealand of 20000 0

alen, ultimately become :

2 x
3438'

x 200000 x 3	 OOOÔô= 1900 alen

	

(1 )

corresponding to ±10 mm on the final map . Bugge was aware of an intoler-

able error but was so confident in his alignment method that he ascribed it

to the 1/2-1% shrinkage of the paper when the draft maps in scale 1 :20000

are cut from the plane tables . With his usual care, [1, p .5] this shrinkage

was investigated as a function of time and humidity.

We cannot tell if it was expected that the "method of parallel lines" could

stand alone and only needed a triangulation as a supplementary check . The

original plan from 1761 [1, p .VIIl] included a supporting triangulation, but

the actual work started after the plane table survey. The sides of the trian-

gles should not be less than about 2-3 mil and their angles were measure d

with a full circle with radius 1 fod constructed by Johannes Ahl (1729-

1795) 2 . In a critical discussion of this instrument [1, p.21] Bugge estimate d

its accuracy to 8-10 " , in good agreement with a mean error ±9" estimated

from the sum of the angles in his triangles .

Bugge's 80 main triangles on Zealand mainly followed the coast line and

avoided the central part of the island . Angles less than 30° were measure d

several times if they could not be avoided. The angles were adjusted by

judgment so that their sum in each triangle became 180° exactly. If the

angles were considered equally well determined they obtained the same cor-

rection . 3 Haze or bad sightings during observations resulted in larger correc -

tions. Small angles obtained smaller corrections, maybe due to the greate r

2 See Olov Amelin's paper in this volume .
3 These corrections are due to observational errors . Legendre's theorem, published in

1772, was not used by Bugge . The spherical excess correction in Bugge's largest triangle ,
No. 79 [1, p .75}, is only 0,7 " . Incidentally, no correction at all was made in this triangle
No. 79 . This indicates that one of the angles was computed .
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care in their measurement. A significant number of triangles (14 of 80) ar e
not adjusted, indicating that one angle may have been computed . Not al l

geometric constraints were satisfied by this procedure . 4 It appears, however ,
to be a very reasonable method prior to the invention of the method of leas t
squares .

Without any estimates of the degree of approximation involved, Bugge con-
sidered the Earth flat in his computation of the triangles . A justification he

could have had in mind is the small difference between arcs and chords . In
his textbook on surveying [4, p .21 he compares an arc s = 7 .505 geographical

miles on a sphere with radius R = 860 miles with the corresponding chord .
Curiously enough he finds the difference arc minus chord to be 0.000124
miles, or five times the correct result 0 .000024 (= s3/24R2 ) . This error i s
due to excessive roundings and appears unchanged in the 1795 and 181 4
version of the text .

Let us now prove that the flat Earth approximation can be justified fo r
Bugge's task of producing a topographic map . This will be done by th e

useful, though rarely used, "gap theorem" probably formulated and prove d
here for the first time :

From a point O on a spheroid a traverse to a point P is made along geodesic s
through A, B, . . . . The corresponding distances and angles, as measured on
the spheroid, are then plotted in the plane as shown in Fig . 1 . Let a different
route from O to P follow A', B', . . . . In the plane the end-point P' is different
from P. If the area bounded by the two traverses is small then the gap PP '
is obtained up to terms of a higher order by rotating P an angle around th e
centre of mass of the polygon OAB . . . PP' . . . B'A' with area w. The angle
e is equal to the excess w/MN, where M denotes the radius of curvature o f

the meridian and N denotes the other principal radius of curvature . Thi s
theorem is proved in the appendix . Often M and N were multiplied by
7/180 to give the length of a degree . This notion, which has given name
to an entire branch of science, "measurement of degrees", was preferred b y
Bugge [1, p .104] .

Zealand is about 90 by 130 km, M 6379 km and N 6393 km. The excess
is e = 90 130/(6379 . 6393)

	

2 .9 . 10-4 rad . The maximal distance from

4For instance, the sum of angles covering the entire horizon around the trigonometri c
station "Hellingehøj ved Høje-Taastrup" (denoted H by Bugge in triangles Nos . 3, 4 and
6 [1, p .64]) is 10" less than 360° .
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o
Figure 1 : On a spheroid, with principal radii of curvature M and N, we follow a

polygonal line from O to P through A, B, . . . and a different one through A', B ' , . . . .

The figure shows the tracks plotted in the plane with the conservation of angle s

and distances. The end-points P and P' will not coincide . The area of the close d

polygon OAB . .PP' . .B'A'O is w and the excess is E = w/MN. The centre of mass

of the polygon is denoted by C . The gap PP ' is the excess E times the distance

PC and is orthogonal to PC in the approximation (A .6) .

the centre to an edge is 79 km so the gap (PP') becomes 2 .9 . 10-4 • 79000

m = 23 m. This corresponds to 1/5 mm on the final map which is hardly

visible .

The example above is an extreme one and the excess E will also be reduced

because the sums of the angles in the individual triangles are adjusted t o

exactly 180° . Even today mathematical ambiguities are justified in practic e

if the errors are negligible for the purpose in mind or hidden by observational

errors. This is for instance the case for the present cadastral coordinates in

"System 1934" .

The result of the computations in the plane was two coordinates: the dis-

tance x to the normal orthogonal to the meridian through the Round Towe r

and the distance y between the foot point and the Round Tower along this
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"perpendicular" . These coordinates are not defined uniquely when com-

puted in the plane but depend on the chosen path . In view of the obser-

vational errors these inconsistencies will hardly be noticed if the different
paths cover small areas . The coordinates were used as rectangular coordi-

nates in the plane and the draft maps adjusted to these points . Although

the concept of a map projection was not mentioned this implies a projection
of the Cassini-Soldner type .

The Earth could not be considered flat, however, in the computation o f
geographic latitude y) and longitude A from the plane coordinates (x, y) .

Referring to Bouguer, Bugge used a non-elliptical spheroid with flattening
1 :179 for the Earth . Its figure is defined by a table of the length (M) of a
meridian degree and of the normal (N) as a function of cp . 5 The adopted
geographical position for the origin (x, y) = (0, 0) at the Round Tower was
cpo = 55°40'56", ao = 0°.

To derive ((p, a) from (x, y) is today a standard problem in geodesy an d
solved by an expansion in e2 , where e is the eccentricity of the ellipsoid .

When the Earth is not an ellipsoid we must integrate the differential equa-
tion for the geodesic curve with arbitrary M and N. This requires a sharp
definition of the rectangular coordinates not given 	 but implicitly used -
by Bugge himself.

Expanding in terms of the small quantities x/M, y/N, N' = dN/dy, and
M' = dM/dcp, we have to third order :

X

	

y 2 tan cpo

	

xy2 tan2 cpo
(P = Po + m+

2N M' 2MN

	

2MN2

and to second order :

A _ Ao +	
y	 	

(3 )(N + 2MN') cos(cpo + M)
If r denotes the distance along the geodesic and the polar angle cr denotes
the angle between the geodesic at the origin and the meridian, we hav e

x = r cos a and y = r sin a.

	

(4 )

5 In modern notation : M = p + q sin4 cp, N = p + q(1 - 2/3 cos 2 + 1/5 cos4 (p) ; p =
58756 .14 favn, q = 992.86 favn . N > M . The figure of the Earth was defined by M
as given by Bouguer (1698-1758) [1, p .105] . N is derived from M and the flattening is :
5q/(15p + 8q) 1 : 179 .1 . The numerical values of p and q are here adjusted to Bugge' s
table [1, p .104] .

(2)
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Formulae (2), (3) and (4) thus give a parameter representation of the
geodesic in terms of the distance r .

Such formulae, or similar ones, were not derived by Bugge . It was not hi s
style and he says explicitly that he did not "fill the book with theorems and
formulae, which after my conviction, and long experience, are of no use an d
cannot be utilized in practice" [4, p .VII] . He always solved the problems by
some kind of reasoning and geometric intuition .

The first term in (2), the distance x divided by the length of a meridian
degree (M), seems obvious . The intuition does not, however, indicate that
M should refer to the mean latitude . The next, y 2-term, is the distanc e

between the perpendicular and the latitude circle and is given by a table
with 12 entries [1, p .106] . This table is not smooth, the second difference s
have a random variation of the order +2" . It was probably computed from
12 right-angle triangles on a sphere with 6-figure logarithms and given, i n
Bugge 's habit, to only 1 " . The angle y tan coo/N between the meridian an d
y-axis (meridian convergence) increases with y . The cosine of this angle
must be applied on the main term to project it onto the axis . This gives the
last third order term which is neither estimated nor mentioned by Bugge .
An example [1, p .106] gives the details of the computation of the latitude
difference between Copenhagen and the Lighthouse at Kullen . The mean
latitude is 56 .0° but the M used corresponds to 57.0° which is outside th e
range of latitudes . This is only one of several examples where Bugge did no t
interpolate but used tabular values, and not even with the nearest argument .

The computation of the longitude A was not performed by the simple for-

mula (3) but by a rather unwieldy method. First r and a were computed
from (x, y) by (4) and hereby defining the precise meaning of these coordi-
nates . The length (R) of 1° of the oblique arc with polar angle a was then
computed by an approximation to Euler's formul a

1 _ sine a cost a
R N + M

Now let P = (0,0) be the origin at the Round Tower, S = (x, y) be the
station in question and Z the North Pole . Bugge now imagined a spherical
triangle PZS with sides SZ = 90° - co, PZ = 90° - coo and PS = s = r/R.
The longitude is then computed as A = ZPZS . The problem is, however ,
that there is no such spherical triangle because the normals at P and S
do not intersect the Earth axis in the same point due to the non-spherical

(5)
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spheroid and are not in the same plane. Nevertheless, the procedure gives
some approximation to (3) . The triangle PZS gives in modern analyti c
notation :

2

	

cos	 2(Po
sin 2

	

= sine
2

	

cos 2
	 	 2

	

sin	 Po

	

2

	

~2

s -

The first line in (6) is derived from the spherical cosine-relation and i s
the exact form of the familiar approximation s 2 = (cp - (po) 2 + (A cos cp) 2 .

Expanding in small quantities and inserting (4) and (5) gives	 after some
reductions - the final term .

For M N this is an approximation to (3) but in the limit r -* 0 it does
not converge correctly to this expression . The method does not represent a
lasting solution to a main problem in geodesy .

An example with y = 66850 favn, cp = 55°01'34" and N = 59568 is give n
in detail in [1, p .110] . Bugge's inconvenient method gives 1°57'29" whil e
formula (3) simply gives :

66850/(59568 x cos55°01'34") = 1°57'28"

We note that N refers to the mean latitude but the argument of the cosin e
in (3) refers to the actual latitude - a fact not evident by intuition . Again ,
in this example Bugge does not use the mean latitude (55 .4°) but 56.0°
outside the range .

Evidently Bugge did not waste time over such trifles . His goal was the
printed maps and for economy and speed the tolerances were adjusted to thi s
purpose . Bugge actually achieved his goal and the field work was finishe d
in 1821, a few years after his death .

3 Caspar Wessel

From the very beginning it was the duty of every surveyor also to trai n
apprentices in the field . One of Bugge's first apprentices was an elder brother

) 2

4
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of Caspar Wessel . From 1764 Wessel was himself involved in the work as his

brother's assistant .

We have seen above the kind of theory and the standard of applied math-

ematics which met Wessel . There seems to be little stimulation for a gifte d

mathematician. There was no "higher mathematics" in the sense of anal-

ysis, differential equations, series expansions or so forth . Such topics were

not a part of Bugge's curriculum - on the contrary! In his text-book [3 ,

p.15] Bugge criticized the physicist H.C . Ørsted for using differential cal-

culus as being both "superficial" and "ill-timed", because the problem in

question could be clearly explained in more familiar terms . 6 Bugge's main

tools remained the 6-7 figure logarithmic tables and trigonometry.

Wessel surveyed in the field during the summer and compiled the maps i n

1 :120000 from originals in scale 1 :20000 during the winter . The first map,

with his name on it, was finished in 1768 and covered NE Zealand . In rapid

succession appeared the three maps covering the remaining parts of Zealand .

Finally, in 1777, the four maps were put together to a single map in 1 :240000 .

In 1779 Wessel was appointed trigonometrical observer with the duty t o

push the triangles further west in order to cover the whole of Jutland t o

the Elbe, as Slesvig and Holstein were in those days in personal union wit h

Denmark. When Bugge wrote his book [1] others had succeeded him in the

field. The westernmost trigonometric station reached was denoted "Hes-

lebierg" (nowadays "Hesselbjerg") in Jutland 3°11 .5' west and 1 .6' south o f

Copenhagen. Bugge erroneously placed this station on the island of Fune n

[1, p .113] .

When Wessel took over and started from there he proposed a plan for the

continuation of the work which was approved by The Royal Danish Academy

of Sciences and Letters at a meeting on February 5 1779 [13, p .193] . This

plan for the division of the country is often mentioned, among others, in a

biography [16], but its content is not known [11, p .106] . Let us now try to

reconstruct this plan from the distinct appearances of the published map s

before and after Wessel was in charge of the triangulation .

6 The university professor criticizing the work of a colleague in his text-books must
have amused the students . Bugge also warns against using Ørsted's value for the lengt h
of the new French metre in terms of the Danish unit fod [3 . p .132] . After his death, Bugge
was himself criticized by the influential Ørsted brothers ; the physicist's brother became
prime minister .
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Figure 2 : The copperplate of Thomas Bugge's textbook (ref . 2, copper XII) shows

the outline of his concept of a map . The central meridian is AB, to which th e

borders ED and FG are parallel and the North and South borders FE and CD
are orthogonal . Due to the meridian convergence such rectangular frames cannot

be joined together with neighbouring sheets at their edges .
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Bugge's maps had a rectangular shape which was symmetric relative to a

central meridian (AB in Fig.2) . The central meridian and the two latitud e

parallels (CD and EF), which were practically straight lines, were in tru e

scale (Flamsteed projection) . Due to the meridian convergence the uppe r

boundary covers 1 .1' more in longitude than the lower . A main point is tha t

the sheets could not be joined together at the border lines due to an overla p

and the non-parallel rectangular frames . The centre of Zealand, as covere d

by the four maps, is shown in Fig .3. It appears very confusing with a smal l

area having as much as three times overlap [1, p .128[ .

55°40'

1 2 1

--..TE

2 ~SE 3 SW ' 2 NW
55°30 '

1 2 1

55°20'

1 °00'

	

0°50'

	

0°40 '

	

0°30'

	

0°20 '

Figure 3 : Zealand is covered by 4 maps (NE, NW, SE and SW) and the figure show s

how they overlap . The numbers of overlaps (max . 3) are indicated . The maps are

also slightly twisted due to meridian convergence . The appearance is confusing bu t

Thomas Bugge made the best use of the given paper size ("Grand Aigle") and
the scale 1 :120000. Caspar Wessel's frames were equal rectangles (at first 131- by

71, later 131 by 8 mile ) fitted together on both sides of the meridian 3°12 ' W of

Copenhagen as a common border .



MfM 46:2

	

Wessel as a Cartographer

	

93

The new maps were divided by a rational system, and Bugge mentions [1 ,

p .VI] that it was decided that the future maps could be joined together .

Inspection of the published maps shows that their east or west border s

are 3°12' west of Copenhagen . This is exactly the meridian through the

trigonometric station Hesselbjerg mentioned above . This division is also

alluded to several times in the literature [11, p .67,107,131] . The north and

south borders are then not latitude parallels but orthogonals to the 3°12 '

W meridian. The latitude scales of the east and west borders are then not

identical but displaced by the y 2-term in (2), or 0 .66' .

This rational system was probably invented by Wessel in 1779 and ever sinc e

rectangular maps, which could be joined, were used in Denmark . This idea

may have been Wessel's main lasting contribution to cartography . His actual

field work was necessarily surpassed . However, the production of maps which

cannot be joined is continued elsewhere, for instance the Prussian polyeder

projection and the International Map of the World .

In 1805, bowed down by age (59 years!) and feebleness Wessel applied fo r

retirement with full salary [13, p .199] . His work had always had a hig h

reputation and when in 1808 the French, then allied to Denmark, asked fo r

the survey of Slesvig and Holstein Wessel undertook the copying . Actually

the French only received the Holstein data . By a diplomatic excuse the

king avoided forwarding a copy of the Slesvig survey! Wessel renounced the

pay and received a silver-medal, books and maps instead [13, p .413] . The

intention of Napoleon's France was to have maps from Trieste to Slesvig

[11, p .156] .

4 Developments after Bugge and Wesse l

During the last part of Bugge's and Wessel's active working periods there

was an increasing demand for better maps . All over Europe the enclosure

movements in agriculture demanded large scale cadastral maps and the

armies wanted relief maps with more topographical details .

Napoleon once said that a good map was half the victory. In 1808 he planne d

a new atlas of France, in scale 1 :80000, to replace the old Cassini maps .

The work on this "Carte de 1'Etat Major" started after his fall in 1815 an d

continued until 1880. It was using Bonne's projection (after Rigobert Bonne

(1727-95), in Denmark denoted : "modified Flamsteed projection") with the
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central meridian through the Paris observatory. The southern latitude (45° )
of osculation reflects that Italy and Spain were within Napoleon's sphere o f
interest . Occupied German-speaking areas, like Hanover, were surveyed b y
the French army. As we have seen, Wessel provided similar data for Holstein .

Already during Bugge's last years, plans were made by the Danish Genera l

Staff to prepare improved maps based on the original measurements of th e
Royal Academy, [9, p .24] . In 1842 the Academy stopped the productio n

of maps and transferred the archives to the General Staff which had no w
planned to produce an atlas in 1:80000 based on a quite new triangulation .

Like the French, the projection should be Bonne's with the central meridian
2°12' west of the Round Tower and osculation at 56°N . The relief was finall y
shown by equidistant level curves .

The French map in 1 :80000 did not stand the test of the First World War .

The trenches were so close that they could not be shown with accurac y
on any scale smaller than 1 :20000 so large scale maps were redrawn [14 ,
p .255,261] . The generalization errors inherent in the signatures became to o

large for the artillery and the British expeditionary force had to re-survey
their entire front lines . For this work a conformal projection would have
been an advantage . The Bonne projection, however, has a shear

( cP - Po) x (a - Aa) x cos cpo

which amounts to 16' in the disputed area of western Germany and which
was inadmissible in computations . According to Deetz : "In the rigorous

tests of the military operations these errors became too serious for the pur -

poses which the maps were intended to serve" [6, p .71] . The conical confor-
mal Lambert projection was used in a later French survey and by learnin g

this the Americans became enthusiastic supporters of conformal projections :
"the excellent qualities of the Lambert projection, although not unknown ,
had been systematically forgotten for some time and were evidently no t
fully appreciated until the beginning of the First World War" [6, p .213,90] .

However, in this respect the Danish survey had been far ahead . The theory
of the Lambert projection on an ellipsoid appeared in 1868 [14] . About thi s

time the survey by the General Staff was finished on the Danish island s
and was about to start in Jutland . As previously this was taken as an
opportunity for improvements and the conformal Lambert projection was
introduced .

(8)



MfM 46:2

	

Wessel as a Cartographer

	

95

5 Conclusion

The geodetic work of Bugge and Wessel was destined to become obsolet e
already during their lifetime . The revolution of geodesy was then already
in the mind of C . F . Gauss . In 1799 a letter [7, p .136] by Gauss to the
editor of "Allgemeine Geographische Ephemeriden" (F . von Zach) treated
the determination of the figure of the Earth by several arcs of the merid-

ian combined by the method of least squares . Exactly the same data wer e
simultaneously analysed by Bugge [5, p .586-588] . In a letter to Schumacher
[8, p .345] from 1816 Gauss offered to compute the Danish first order tri -
angles by his own (read : least squares methods) . In the same letter he also
proposed the problem of conformal projections for a prize essay	 which he
won himself in 1825 . Incidentally he mentioned in the letter the great ad-
vantage that Denmark had already been surveyed once - but an advantag e
only in connection with the reconnaissance for trigonometric stations! H e
complained about this time-consuming work and that he could not obtai n
similar data from the French survey of Hanover .

There is a vast contrast between the good workmanship of Bugge and Wes-

sel, which we have seen above, and the mathematical genius of Gauss . The
importance of the work of the latter can only be put in the proper per-

spective by a comparison with that of his predecessors . We have seen how
badly Bugge needed a statistical theory of errors and he explained [5, p .580 ]
how the repartition of specific errors was considered quite arbitrary an d
was a matter of debate between the members of the International Commis-

sion of the Metric System . Gauss practically removed this arbitrariness an d
introduced rigour in the entire theory .

6 Appendix : Proof of the gap theorem

Bugge's triangles were computed in the plane. This was done at that time
also in France and some German states. We shall here estimate the ap-
proximation of this procedure . The first rigorous definition of rectangular
coordinates on the sphere was introduced by J . von Soldner (1776-1833) in
1809 in a survey of Bavaria. Let y, counted positive towards the east, be th e
shortest distance AA' from a given point A to its projection A' on a chosen
prime meridian and x the distance from A' to a fixed point on the meridian
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measured positive towards the north . ? From the point A = (x, y) we now

go to B by a distance s to a point B along a geodesic that at A makes an

angle a with a curve equidistant to the prime meridian . Reference 10, p .265

(modified here by a generalization to a spheroid, essentially a substitutio n

of r .2 by MN) gives for the Soldner coordinates of B = (x', y') :

x' = x+scosa+sy t cosa/2MN, y ' = y+ssina

	

(A.1 )

and the direction at the end-point

a ' = a - sy cos a/MN.

	

(A .2 )

If the same distance s is drawn as a straight line in the plane the endpoin t

will have the coordinate s

x ' = x +scosa, y ' = y +ssin a

and the angle a will not be changed at B. We now consider AB as being

a part of the traverse GAB . . . P . By stretching s we have displaced the

remaining part of the traverse by (sy2 cos a/2MN, 0) and we have rotated

it by an angle sy cos a/MN . This will displace the endpoint P = (xp , yp ) by

(sy2 cos a/2MN, 0) + sy cos a/MN • ((yp - y), -(xp - x))

	

(A.3 )

Thus if we replace the entire geodesic polygon by its plane counterpart w e

can obtain the total displacement of P by integrating the expression (A .3 )

along the polygonal path GAB . . .P . Setting dx = s cos a we get :

1

	

. P

MN JO
dx ((yyp - y2/2) ; -y (xp - x))

MN

fP
dx J p dy ((y - y ) ,-(x - x)) .

	

(A.4 )
// o

If we subtract the corresponding integral for the alternative route OA'B'
P we obtain a double integral bounded by the closed figure with are a

w :

MN
fdxfdY(yp_y),_(xp_ x)) .

	

(A.5)

7 Note: Soldner's coordinates form a left-hand system .
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Introducing the centre of mass coordinates (x e , ye) this integral is easily

evaluated to the rotation s around the centre of mass :

F ((yp - y~} -(xp - xe)),

	

(A.6)

where s = w/MN is the excess .

7 Addendum

At the Wessel Symposium I learned that Bodil Branner and Nils Voje Jo-

hansen had procured Wessel's original handwritten reports from the archive s

of "Kort- og Matrikel Styrelsen" . The notes for 1787 describe the plan fro m

1779 mentioned above. What was concluded above from the published map s

is essentially confirmed. The puzzling increase of the rectangular frames o f

the maps from 132 x 72 mi l 2 to 132 x 8 mil2 is, however, explained in Wessel' s

notes. The country extended farther north than expected in advance of the

survey! The spheroid with flattening 1:179 used by Bugge was replaced by

an ellipsoid with flattening 1 :230. This ellipsoid, based on older pendulu m

observations by Richer, is mentioned by Bugge [2, p .284] . Wessel 's concepts

of map projections do not seem clarified. It seems that he computed rect-

angular coordinates by zigzagging along narrow strips on the ellipsoid an d

then unfolded the strips in the plane . The computations were made by imag-

inary numbers and took into account the meridian convergence ignored by

Bugge . The method was affected by the ambiguities described by the above

"gap theorem" .
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Heinrich Christian Schumacher	 mediator
between Denmark and Germany ; Centre of

Scientific Communication in Astronomy

Jürgen Hamel *

1 Communication in Astronomy

The structure of scientific communication in the field of astronomy ha s

undergone manifold changes during the past 500 years . The main factor s
determining this process are the following :

1. The number of persons interested in scientific communication ,

2. The amount of material suitable for scientific communication ,

3. The traffic situation for scientific communication as far as speed, se-

curity and cost are concerned .

For centuries two forms of communication have been of great importance :

1. correspondence, and

2. academic lectures passing new points of view about scientific fact s
from master to student. Since important universities recruited stu-

dents from a wide geographical area, and since students used to mi -
grate from university to university, hand written lecture notes circu-

lated among them, providing thereby efficient structures of communi-
cation .

The exchange of letters was of less importance . As an extraordinary exampl e
in this respect the letters exchanged between Johannes Regiomontan an d

Giovanni Bianchini in 1463 should be mentioned as a game of questions and

* Archenhold-Sternwarte, Alt-Treptow 1, D-12437 Berlin, Germany
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answers measuring mental and creative powers . 120 years later a historically

very important correspondence between Wilhelm IV, landgrave of Hessen

in Kassel, and his astronomer Christoph Rothmann with Tycho Brahe took

place.' Supported by Wilhelm, Tycho Brahe on May 23, 1576 had bee n

granted the island of Hveen by his feudal lord the Danish King Frederi k

II in addition to 400 thalers for the construction of an observatory. 2 The

letters exchanged between Hveen and Kassel between 1585 and 1590 wer e

apparently delivered by Brahe's disciples when they travelled back and fort h

from the book fair in Frankfurt . They are still an important source for the

history of astronomy.

Nevertheless the need for scientific communication was still very limited ,

except on special occasions such as the introduction of the Gregorian ca-

lendar in 1582 and the subsequent discussions in the Protestant countries ,

as well as the appearance of comets, eclipses or other celestial phenomena .

On such occasions opinions and ideas were exchanged by letters or small

printed volumes of high circulation and low price .

A hundred years later, by the end of the 18th century, firm structures of

research and communication in the field of astronomy had been established .

There existed a number of scientific research institutions of international

importance and reputation . Among the earliest were the observatories in

Greenwich, Paris, Copenhagen and, a bit later and as such rather modest ,

in Berlin . In Copenhagen an observatory was set up already under Brahe ' s

student Christian Severin Longomontanus, author of the recognised manual

Astronomia Danica (1622) . This observatory became really famous under

Ole Rømer, who had been able to measure the speed of light very precisely.

He constructed and used new instruments, as for instance the prototype s

of circle instruments which after 1750 led to the great success in celestia l

mechanics .

About 1750 astronomy with its modern structure was represented at univer -

sities and academies . Since practical and theoretical astronomy was prac-

tised in many places there was a great demand for higher quality in the

exchange of observations and their mathematical treatment . In addition ,

'Hamel, Jürgen: Die astronomischen Forschungen in Kassel unter Wilhelm IV. Mit
einer Teiledition der deutschen Ubersetzung des Hauptwerkes von Copernicus um 1586 .
Thun ; Frankfurt a . Main 1988 (Acta Historica Astronomiae ; 2 )

2 Dreyer, J .L .E . : Tycho Brahe. Ein Bild wissenschaftlichen Lebens im sechszehnte n
Jahrhundert. Karlsruhe 1894; Reprint Vaduz 1992, 91
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the changed social demand for astronomy had to be taken into considera-
tion. It was no longer astrology, and casting of horoscopes, that brought
high prestige to astronomy. The interest predominant came from the de-

termination of the latitude and longitude at sea, surveying and improvin g
the calendar . In addition, astronomy gained public interest due to Newton' s
physics, the very precise methods of orbit calculation and the new result s
in comet research, reflected in ideological, philosophical and theological sys-
tems .

As long as astronomical research was rather sporadic and the individual
scientists did not have to'discuss and agree with each other very much, th e

number of persons interested in communication had remained very small .
This was now changing profoundly . Correspondence as a means of exchang
information started to play an important role ; membership in a circle of

corespondents was of great importance as a pre-condition for one's ow n
scientific research as well as for propagating it . Of course, all this went

alongside the publications of the academies, independent printed matter and
the first scientific journals, often founded in relation to scientific academies .

For the German language area the yearly Ephemeriden by Gottfried Kirch ,
published since 1681, should be mentioned. They had a literary annex where

Kirch used to publish research of his own as well as results which he learne d
about in letters from his correspondents or in new books . Kirch continued

these literary annexes in his calendars published by the Berlin Academ y

after 1700 and the tradition was carried on by Johann Heinrich Lamber t
and Johann Elert Bode in the Berliner Astronomisches Jahrbuch founded
in 1774 . 3

The publication of an astronomical annual supplied a demand among as-
tronomers . As a proof one should mention the great number of contributions
that flooded Bode, who could hardly manage the contributions . Almost all
contemporary astronomers were among his authors . He usually publishe d
their writings in the form of "From a letter from Mr . N.N. to the publisher" .

Nevertheless, a real handicap was the lack of a fast outlet for informatio n
due to the annual publication only.

3 Hamel, Jürgen : Geschichte der Astronomie . Von den Anfängen bis zur Gegen-
wart . Basel 1998, 271 ; Herrmann, Dieter B . : Die Entstehung der astronomischen Fach-
zeitschriften in Deutschland (1798-1821) . Berlin-Treptow 1972 (Archenhold- Sternwarte /
Veröff. ; 5), 15-74
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This shortcoming was made up by Franz Xaver von Zach, whose work was

actively supported by the Duke Ernst II of Sachsen-Gotha . In 1798 Zach

founded an astronomical-geographical journal, the monthly Allgemeine Ge-

ographische Ephemeriden. The combination of astronomy, cartography an d

geography, however, turned out to be a failure very soon . Despite all the

connections between these two disciplines mainly through the geographica l

determination of latitude and longitude, they had progressed in their spe-

cialisation to such an extent that they had to be covered by special journals .

Therefore, in 1800 Zach founded the Monatliche Correspondenz zur Be-
förderung der Erd- and Himmelskunde, a specialist journal of astronomy

where geography was included mainly in so far as it was relevant for th e

geographical determination of latitude and longitude. With a change when

Bernhard August von Lindenau became the publisher the Monatliche Cor-

respondenz existed till 1814 as the central means of communication betwee n

the astronomers next to the literary annex of Bode's annual . It was discon-

tinued because Zach went to France to found a new journal, the Corre-
spondance Astronomique, which was published from 1818. In the beginning

it contained papers from well-known astronomers, among them the young

Heinrich Christian Schumacher . However, the journal could not gain real

importance . It published articles in French and Italian only, Genua, where

it was published was too far from the centres of astronomy, and the postal

service was insecure due to political turmoil . Publisher Zach soon became

isolated and in 1826 he stopped its publication .

At the same time Lindenau together with Johann Gottlieb Friedrich v .

Bohnenberger published the Zeitschrift für Astronomie and verwandte Wis-
senschaften, with a circulation of 200 copies and strongly concentrated o n

astronomy. They received contributions from the most important scientists ,

but the two co-publishers did not collaborate very well . Moreover, Lindenau

found himself in a difficult situation, being a state employee of Saxony wit h

manifold political duties (he later became state minister of Saxony) . The

journal was discontinued in 1818, only three years after it was founded .

These detailed introductory remarks are necessary in order to understan d

the problems of scientific communication and the difficult problems of th e

foundation and maintenance of an astronomical journal . There was the need

and demand, and whenever a publication was stopped it was regretted ver y

much because the astronomers lost the possibility to publish their results o f

research . But nobody was ready to undertake the troublesome efforts of a
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publisher - neither Gauß nor Olbers, Encke or Bessel .

2 Heinrich Christian Schumache r

Now the time has come to turn to Heinrich Christian Schumacher . 4 Schu-

macher was born in 1780 in Bramstedt/Holstein near Hamburg as a son

of the chamberlain and Danish senior civil servant in Segeberg Andreas

Schumacher . His father had apparently a close relation to the King . Indeed ,

Heinrich Christian was introduced to King Frederik VI at the age of 7 . 5

This acquaintance turned out to be important both for Schumacher and fo r

astronomy, in so far as the well-educated King till his death protected an d

promoted Schumacher in many ways .

After Schumacher had lost his father at the age of ten, he was educated

by the erudite pastor J .F.A. Dörfer who was known for his topography of

Schleswig and Holstein . Later he attended the grammar school in Altona ,

whose headmaster J . Struve became the progenitor of a well-known family

of astronomers . From 1799 he studied jurisprudence in Kiel and Göttingen

and in 1804 he went to Livonia as a private tutor and soon became a lecture r

of law in Dorpat . Simultaneously he studied mathematics and astronom y

together with Johann Wilhelm Andreas Pfaff. His doctoral thesis in 1806

dealt with Roman Law .

Some remarks concerning the history of Holstein will not be amiss . Tra-

ditionally Holstein as a county, later duchy had its cultural and political

position between Denmark and the German lands . Belonging to the Ger-

man Reich on the one hand, it was under Danish fief on the other . At the

Vienna Congress it came under the rule of Denmark and the Danish King

became the Duke of Holstein . At the same time Holstein belonged to the

loose German Alliance as for instance Hanover, too, politically belonging t o

the English Crown .

4 Olufsen, Christian Friis R.ottböll: Heinrich Christian Schumacher . Oversigt over det
Kgl . danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider i Aare t
1851 . København, 226-235, German transi . : Astronomische Nachrichten 36 (1853), 393-

404 ; Petersen, Adolph Cornelius : Schumacher's Tod . Astronomische Nachrichten 3 1
(1851), 369-370; Repsold, Joh . A . : FLC . Schumacher . Astronomische Nachrichten 208
(1918), 17-34

5 Briefwechsel zwischen C.F . Gauss und H.C . Schumacher . Hrsg. von C.A.F . Peters ,
vol . 3 . Altona 1860, 345
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Figure 1: Heinrich Christian Schumacher (Nationalhistoriske Museum, Frede-
riksborg )

This status quo was practised peacefully in Holstein. The Danish King re-
spected the German language and culture and the population accepted th e
Danish rule. By birth Schumacher was a Danish subject, he felt himself a s
such and turned this circumstance to his own advantage and to the advan-
tage of astronomy.
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A promised employment at the King's chamber of finance came to nothin g

due to war accidents in Copenhagen, but in 1810 Schumacher was offered an

extraordinary professorship of astronomy at the University of Copenhagen .

At the same time he made the acquaintance of important astronomers an d

constructors of instruments such as Johann Georg Repsold in Hamburg an d

exchanged letters with Friedrich Wilhelm Bessel in Königsberg, Johann E-

lert Bode in Berlin and Wilhelm Gibers in Bremen . Having been granted a

King's scholarship , 6 see figure 2), he worked in 1808/09 for a year with Gauß

in Göttingen . In 1812 he got a leave of absence and became the director of

the observatory in Mannheim because of disagreement with the professor of

astronomy Thomas Bugge. This appointment must have been offered on the

initiative of Bernhard August von Lindenau, who not only directly patron-

ised him, but also personally supported this decision : "Surely you are abso-

lutely right to prefer the friendly Mannheim with its excellent instrument s

to the harsh Copenhagen with, as I think, its bad instruments" . 7 However ,

to his Danish compatriot Hans Christian Ørsted, secretary of the Royal Da-

nish Academy of Sciences and Letters since 1815, Schumacher complaine d

that his position in Mannheim was a bit difficult because the observator y

was rather modestly equipped with instruments and "in an incomprehensi-

ble state of neglect and disorder" . 8 But he did not get the time to modernise

it because already in 1815, after the death of Bugge, he returned as ordinary

professor of astronomy and director of the observatory in Copenhagen . On

December 8 of that year the Royal Danish Academy of Sciences and Letter s

admitted him as a member . 9

It was his desire to return to Denmark even with financial loss, becaus e

obviously Schumacher did not feel well in Mannheim, as he had told Ørsted

before . "My dearest friend, maybe you could remind the King of me?", h e

6 Rigsarkivet, København. Fonden ad usus publicos 1810-1812, 1808 Apr . 26 ; Fonden
ad usus publicos . Aktenmaessige bidrag til belysning af dens virksomhed . Udgivet a f
Rigsarkivet, vol . 2 . København 1902, 123-12 4

'Schumacher-Nachlaß, Staatsbibl . Berlin, Preuß . Kulturbesitz, Lindenau 1, 15 .2 .181 3
( "Gewiss haben Sie in jeder Hinsicht Recht, das freundliche 1Vlannheim, mit seinen vortreff-
lichen Instrumenten, dem rauhen Copenhagen mit den dortigen wie ich glaube schlechte n
Instrumenten vorzuziehen ." )

$ Ørsted, Hans Christian : Correspondance avec divers savcents. Publ. M.C. Harding, vol .
2 . København 1920, 512 ("Mir wurden die Instrumente in einem unbegreiflichen Zustand e
der Verwahrlosung und Unordnung übergeben ." )

9 Det Kongelige Danske Videnskabernes Selskab 1742-1942, Samlinger til Selskabet s
Historie (ed. A. Lomholt), vol . 1 . Kobenhavn 1942, 366



106 MfM 46 : 2J. Hamel

Figure 2 : Schumacher's application for a scholarship to visit foreign observatories ,

Altona 26.4.1808, 1 (Rigsarkivet, København . Fonden ad usus publicos 1810-1812 ,

for the full text see the appendix)
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asked Ørsted pleadingly. In fact immediately after Bugge's death on January
15, 1815 everything was prepared for the return of Schumacher . Already on
March 2 he could inform Ørsted that he had received "a kind of recall" »

But in the "Round Tower" in Copernhagen he found antiquated instru-
ments . ll In order to take up important scientific work he conceived the
project of a new Danish land surveying from Skagen to Lauenburg (at that
time belonging to Denmark) . It was to replace the hardly completed sur-

veying done under the auspices of the Academy to which Bugge and Wesse l
had contributed . To get the King's support for the plan he argued in Apri l
of 1816 in the following clever way :

If you would allow me to add a few words concerning my own per -

son then I would like to say that here [in Copenhagen] I sit aroun d
in such complete idleness as an astronomer can ever do . The observa -

tory is simply no good for any scientific use and I cannot make any
observations there of the slightest value . . . However, all my life and

work is devoted to astronomy and my strongest desire urges me to do
this work. Having left an excellent observatory in Mannheim, may I

at least hope to find support for scientific work in my homeland, es -
pecially when it will reflect the major part of Denmark's glory? Eve n

more, should the financial situation after some years make it possibl e
to built an observatory that might serve science, this work would fill
the time in between . 1 2

One might consider his evaluation of the Mannheim observatory to be a
tactical exaggeration . However, the plans of land surveying were approved ,
and before long an observatory was build in Altona (not in Copenhagen) .
For the project of a new observatory, started in 1818, Schumacher got first-
class instruments by Repsold in Hamburg and practical support from the
Danish officers Alexander Caroc (1784-1827), Johann David Nehus (1791 -
1844), Christian Wilhelm Nyegaard (1796-1846) and Christian Christophe r
'°Ørsted, H .C ., Correspondance, 513, 516 ("Könnten Sie vielleicht nicht wertheste r

Freund den König an mich erinnern und ihm den Wunsch äussern Ihren Freund wieder z u
sehen?") ; for Bugge's biography see : Dansk Biografisk Leksikon, vol . 3 . København 1979 ,
59-61, his publications : Fortegnelse over det Kongelige Danske Videnskabernes Selskab
publikationer 1742-1930 . København 1930, 38-40

"
Schumacher, H.C . : Sternbedeckungen in Copenhagen . Astronomische Nachrichten 1

(1823), 195-19 6
12 Nielsen, Axel V . : H .C . Schumacher and the observatory at Altona during the war of

1848-50 . Meddelelser fra Ole Rømer-Obs . Århus 22 (1951), Nr . 22, 267-268
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Zahrtmann (1793-1853), later the minister of the Royal Danish Navy . Schu-

macher spent the winter of 1820 working in Copenhagen, where the Kin g
had allowed him to construct a small observatory at "Holmens Bastion "
where he could measure latitude and longitude . According to information
from 1837 the King granted 30 000 Reichsbankthaler per year for the land
surveying in Holstein . 13 From Copenhagen it was rather troublesome to or-
der instruments and to collaborate with Gauß . Therefore Schumacher rente d
a few rooms in Altona to which he moved in June of 1821, having been tem-

porarily relieved from his duties and ordered to report regularly to the King .
This was a very favourite situation for Schumacher . He was still officially
professor of astronomy in Copenhagen and therefore financially safe, and a t

the same time he could deal with his extensive scientific work undisturbed
by any hustle and bustle at the university.

In the garden of his roomy house that he bought in 1821 with the King' s
support at the "Palmaille" in a noble living quarter from 1800 Schumache r
built a little practical observatory. Often he welcomed prominent astronomer
colleagues there, among them Bessel and Gauß . Later he bought an addi-

tional neighbouring house, again with financial help from Copenhagen . 1 4
From his studios he could overlook the river Elbe .

The land surveying, the elaboration of a map of Holstein, the revision of th e
system of Danish weights and measures and its comparison to the Prussia n
and French ones occupied his time for many years . But this is not the subject
of the present paper. Still let me make two comments: To give reasons for

the Danish measurements of latitude and longitude Schumacher referre d
to the resulting possibility of fixing the shape of the earth . The former
French and English measurements, he argued on September 14, 1816, ha d
led to contradictory results . Therefore Denmark with its own activities in
this field could bring the decision . 15 In fact, in 1840 Bessel used the Danish
measurements of latitude and longitude for his very exact calculation of the
flatting of the earth .

In his own works Schumacher, of course, knew about the results of hi s
predecessors, among them Caspar Wessel . In a letter from Ørsted dated

13 Encke-Nachlaß, Archiv der Berlin-Brandenb . Akademie der Wiss . Berlin, C .H.F. Pe-
ters, 18 .7 .183 7

14 Schumacher-Nachlaß, Mösting 1, June 1821, Jan ./Feb . 182 6
''Rigsarkivet . Fonden, 14 .5 .-14 .9 .1816 ; Fonden ad usus publicos . Aktenmaessige bidrag ,

231-237
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February 3 1827 one reads that the general staff had ordered him to send

"the journals concerning the triangulation of Seeland to the general staff

of the quarter master [Generalquartirmeisterstab] . . . The quarter master

says in his letter that he believes there exist 5 journals by Bugge and 5

by Wessel . He promises to return them very soon ." The General combining

several special maps "had found some important inaccuracies" that so far

have not been clarified . In his letter dated February 20 Ørsted confirmed

the receipt from Schumacher . 1 6

Moreover it should mentioned that Schumacher together with Ørsted de-

veloped the plan to establish a workshop for precision instruments at the

Polytechnical Institute of Copenhagen to reduce the dependence of Den -

mark in this field . "Under these circumstances, I am convinced you will

have a workshop soon that can compete with any workshops abroad an d

replace them", Schumacher wrote on November 23, 1830 . 1 7

3 Astronomische Nachrichten

Let us return to the times of the failure of the astronomical journals founded

around 1800 . Since about 1810 Schumacher had been acquainted with th e

most important astronomers of his time. Despite the fact that in scienc e

Schumacher had not achieved much, he was highly regarded, and it was gene -

rally believed that he would become an efficient astronomer in the future .

"In this Doctor Schumacher, who stayed with Gauß this summer I have

met a very talented and clever man promising a lot for astronomy", Olber s

wrote in November 1809 to Bode in Berlin .' 8 Like many other astronomers

Schumacher worried about the question how to guarantee the existence of a

special astronomical journal . In September 1819 he asked Olbers in Bremen :

"Would it be possible for you to take over the journal of astronomy now

16 Schumacher- Nachlaß, Ørsted 1, 3 .2 ., 20 .2 .1827 [the Schumacher estate in the Staats -

bibl. Berlin contains 64 letters from Ørsted to Schumacher 1817-4850, not mentioned i n
Ørsted's printed Correspondance]

17 Ørsted, H .C ., Correspondance, 518-519 ; Schumacher-Nachlaß, Ørsted 2-3, 4 .12 . 1830-
13 .9 .1831 ; Ørsted was the director of the Institute since 182 9

18 Olbers, Wilhelm : Aus einem Schreiben . . . v . 21 . Nov . 1809 . Astronomisches Jahrbuch
für das Jahr 1818. Berlin 1810, 256 ("An dem Doct . Schumacher, der sich diesen Somme r
bey Gauß aufgehalten hat, habe ich einen sehr talentvollen und geschickten Mann kennen

gelernt, von dem sich die Sternkunde noch viel zu versprechen hat" .)
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that Lindenau has resigned? It must be a man with excellent reputation ,
otherwise everything will fail soon" . 19 The reply is not preserved but Olber s
refused .

Schumacher was right to demand certain qualifications from the future pub-
lisher of an astronomical journal . On the one hand he had to be a well-know n

astronomer trusted by his colleagues, on the other hand he had to be read y
to sacrifice much of his time for organisational and editorial work in th e
interest of the journal. And he had to be able to control this complicate d
project fully. In addition the publisher had to be able to evaluate critically
the manuscripts and to collaborate sensitively and consistently with the au-

thors - he should have, according to Lindenau "along with thoroughnes s
and versatility of mathematical-astronomical education at the same time t o
a high degree the trust of the entire astronomical world" .2 0

Schumacher did not suspect that before long he would have to play thi s
important role . The first hint that Schumacher might be a suitable candi-
date can be found in a letter from Sept . 1819 from Lindenau to Schumacher
where referring to Zach's "Correspondance Astronomique" he writes: "Do
you really feel like taking over the publishing of such a journal in the German
language?" . 21 But by the beginning of 1820 Lindenau thought that Olbers
was a desirable candidate, too . 22 A bit later they seem to have concentrated
on Schumacher . Lindenau argued as follows : `"Since Schumacher combines
a great literary erudition with diligence I might think that he is well fitte d
for such a job . i23 After the summer of 1820 many negotiations must hav e
been conducted behind the scenes among the astronomers as well as be-

tween Schumacher and the officials of the Danish King's government . As a
clear result in March 1821 Schumacher was officially requested to found a n

19 O1bers-Nachlaß, Staats- und Universitätsbibl . Bremen, Briefwechsel Schumacher-
Olbers, 01 1 ff ., 3 .9 .1819 ("Es muß ein Mann von erstem Rufe sein, sonst fällt alle s
bald zusammen ." )

20 Bessel-Nachlaß, Archiv der Berlin-Brandenb . Akademie der Wiss . Berlin, Nr . 287 ,
Lindenau, 1 .3 .1820 ("der neben der Gründlichkeit und Vielseitigkeit mathematisch -
astronomischer Bildung, zugleich auch das Vertrauen der ganzen astronomischen Wel t
in hohem Grade besitzt" )

21 Schumacher-Nachlaß, Lindenau .
22 Bessel-Nachlaß, Nr . 287, Lindenau, 1 .3 .1820 .
23 Lindenau an Gauß, 7 .7 .1821 . Niedersächs . Staats- u . Univ .-Bibl . Göttingen, Cod . Ms .

Gauß 101, Briefe A (Lindenau V), Brief Nr . 208 ("Da Schumacher mit einer grossen
litterarischen Bekanntschaft einen grossen Fleiss verbindet, so möchte ich glauben, das s
er zu einen solchen Geschäft gut geeigenschaftet sey" .)
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astronomical journal (see figure 3) . This request was made by Johann Sigis-

mund von Mösting. Mösting was a highly educated person . Having studied

jurisprudence in Copenhagen, he was the director of the Danish Reichsbank

in 1813 . Soon thereafter he became minister of finance, president of the

Chamber of Finance and for many years the Prime Minister of the Danis h

Kings, chancellor of the Dannebrog-Order, in 1838 director of the King's

Library and, last but not least, he was a friend and promoter of astronomy

as well . 24

About Mösting's intention to found an astronomical journal we know first

from Schumacher's information to Gauß on 1Vlarch 27, 1821 . Unfortunately,

the 1211 preserved letters from Mösting to Schumacher from 1821 til l

1845 started on June 12, 1821 . 25 The mentioned "request" by Mösting ,

probably in the form of a King's order, indicated to Schumacher tha t

he should "publish an astronomical newspaper in Altona with approxi-

mately one printed sheet per week serving the most lively communicatio n

among astronomers" . 26 In the preface to the first volume of Astronomisch e

Nachrichten dated Altona September 1821 Schumacher wrote : "By higher

support I am able to offer this journal to astronomers and mathematicians a s

a means of quick circulation of individual observations and short news" . 2 7

Schumacher had sent his colleagues a similar text already in June, 1821 ,

inviting them to collaborate .

At that time Schumacher was still formally a professor of astronomy i n

Copenhagen and he received his salary at least till 1845 . 28 But in connec-

tion with the foundation of the Astronomische Nachrichten he was allowed

to have Altona as his permanent residence and further to suspend his dutie s

at the university. This privilege must have been a basic precondition for him .

For the foundation and later the maintenance of the journal money was pai d

from the King's budget : "By publishing astronomical news and treatise s

our Minister of Finance wants to promote the rapid publication of scientifi c

works and therefore really covers all expenses", Schumacher wrote to Encke

24 Jørgensen, Harald: Johan Sigismund v . Mösting . Dansk biografisk Leksikon, vol . 10 .
København 1982, 300-302

25 Schumacher-Nachlaß, Möstin g
26 Briefwechsel zwischen Gauss und Schumacher, vol . 1 . Altona 1860, 27 .3 .182 1
''Schumacher, H.C . : Vorwort . Astronomische Nachrichten 1 (1823), 1- 2
28 Københavns Universitet 1479-1979, vol . XII.1 . Det matematisk-naturvidenskabelig e

Fakultet . København 1983, 63
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Figure 3 : Astronomische Nachrichten, title page of volume 1
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on January 26 1822 . 29 For the year 1849 there is the information that Schu-

macher received an annual financial aid of 640 Reichsbankthaler in order t o

cover the expense for the publication of the Astronomische Nachrichten. 30

During the first decades the publication of the Astronomische Nachrichte n
was possible only because of the generous support by Frederik VI and afte r

his death in 1839 by Christian VIII . It can be considered as an extraordinar y

example of international promotion of science . Looking back to history it is

difficult to find another time and place where it would have been possibl e

to publish permanently an astronomical journal . To underline this I would

like to refer to the circumstances under which the Astronomisches Jahrbuc h
had been published in the Prussian capital . In 1774 the Berlin Academy

founded an annual with a literary part because it was considered to b e

useful for the communication between astronomers . Very soon, however, th e

Academy no longer wanted to bear the financial risk and retreated from th e

project . Therefore Bode had to run it as a completely private enterprise .

It was extremely difficult to find a publisher for the supplement edition s

containing scientific articles because the financial profit was doubtful . 3 1

Johann Sigismund von Mösting (1759-1843) was the mediator in the projec t

between the Danish King and Schumacher. He was bound to Schumacher by

ties of deep friendship and gratitude . This is attested by the great number

of letters exchanged between them where they addressed each other wit h

the rarely used "Dear friend" . They often wrote about very private matters ,

but also about political affairs in Altona, revealing interesting insights int o

Schumacher's living conditions . On July 27, 1827, for instance, Schumache r

reported about an incident in Altona with a police officer von Aspern: "For

the calm inhabitants of Altona this turmoil had the unpleasant effect tha t

the police have almost disappeared . Beggars rush into the houses and I

guess that thieves will not refrain from taking advantage of the situation .

I barricade myself every night, as well as I can with my chronometers an d

instruments in my house and I will try to defend the fortress ." 3 2

29 Encke-Nachlaß, Archiv der Berlin-Brandenb . Akademie der Wiss . Berlin, Schumacher ,
26 .1 .1822

30 Schumacher, H .C ., an J . Collin, 3 .3 .1849, quotation Nielsen, Axel V ., H .C . Schu-
macher, 29 6

31 Herrmann, Dieter B . : Die Entstehung, 23-2 4
32 Rigsarkivet . Privatarkiver J .S . Mösting, No. 6023, 27 .7 .1827 ("Für die ruhigen Ein-

wohner Altonas hat dieser `tumult die unangenehmen Folgen, daß die Polizei fast ganz
darniederliegt . Die Bettler drängen sich jetzt in die Häuser, und ich vermuthe die Diebe
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Mösting did not play the role of the willing financier but encouraged Schu-

macher to undertake the important and difficult publication of the journal .
Nevertheless, it seems to be a bit exaggerated when Schumacher on April 10 ,
1821 mentioned to Gauß that "everybody will believe that it is my idea, but

in fact it comes from our minister of finance and is not imposed on him" .3 3

In the first volume of the Astronomische Nachrichten Schumacher wrote as
follows: "With the sincerest gratitude for the great measure of support fo r

my scientific plans I feel the rare happiness to live under a King like Fred-

erik, loving and protecting in a King's manner the exact sciences, and unde r
a minister like Mösting, full of the same love, putting the great plans of hi s
King into practice ." 34 It was mainly Mösting who presented Schumacher' s
petitions and reports to the King and hurried to send the confirmation t o
Altona. Schumacher also had good relations with other officials of the cour t

such as Johan Gunder Adler (1784-1852), Royal Secretary of the cabine t
and secret state councillor . 3 5

But the relation to the court was kept mainly through Mösting . Schumacher
knew his ideas to be in good hands there . Most probably it is thanks to
Mösting that a number of the most important astronomers working at Ger-
man observatories became Knights or even Commanders of the Dannebrog-
Order, as for instance Bessel, Olbers, Hansen and Gauß . It was Schumacher' s
unofficial duty to explain to his colleagues how to wear the "decorations "
and to write the letter of thanks to Mösting as the Chancellor of the Orde r
and the King . 36 Christian as well as Frederik allowed Schumacher to sug-
gest who among his colleagues deserved to be decorated . 37 One may have
different opinions as far as decorations and medals are concerned, but th e

attitude of the Danish Court reflects the high esteem for scientific researc h
hardly to be found at any time in any other country.

In this connection the medal endowed by Frederik VI for the discovery o f

werden auch nicht unterlassen, auf die Conjunctur zu speculirn . Ich verschanze mich
jede Nacht, nach besten Kräften mit meinen Chronometern und Instrumenten in meine m
Hause und werde die Festung zu vertheidigen suchen ." )

33 Briefwechsel zwischen Gauss und Schumacher, vol . 1, 10 .4 .182 134 Schumacher, H .C . : Zusatz des Herausgebers . Astronomische Nachrichten 1 (1823) ,
376

35 Schumacher-Nachlaß, J .G . Adler ; Rigsarkivet . Privatarkiver J .G. Adler, Nr . 500 8
36 Briefwechsel zwischen Gauss und Schumacher, vol . 3, 382-383, 390-391 ; Olbers-

Nachlaß, 01 17, 26 .3 .1825 ; the Dannebrog-Ridders-Ordens Statuter in : De Kongelig e
Danske Ridderordener og Medailler, vol . 1 . København 1950, 94-10 2

37 Privatarkiver J .G . Adler, 4.6 .1840
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comets by telescope should be mentioned, 38 (see figure 4) . The "Gold meda l

of 20 ducats" confirmed by Christian VIII in April of 1840 had a special

dedication: "The medal will be dedicated to the person who first discover s

a comet invisible by the naked eye but visible by telescope at the time o f

discovery and with unknown time of orbit" . 39 As had been the case with

the Astronomische Nachrichten, an international effect was intended . On

the one hand the origin of the discoverer was of no importance, on the other

hand Frederik had formed an international jury consisting of Schumache r

and Francis Baily in London . For the case that the two could not agree a

referee was appointed . After the death of Olbers in 1840 Carl Friedrich Gauß

became the referee, chosen by Christian among Schumacher's proposals :

Bessel, Gauß and Herschel . 40 The medal was designed in 1834 by the Danish

artist Christen Christensen41 under supervision of the important classical

sculptor Bertel (Alberto) Thorvaldsen .

The endeavours to intensively promote science in Copenhagen, of which th e

examples mentioned are only a few among many, were honoured with grati-

tude by astronomers . In 1823 Johann Franz Encke, successor of Lindenau at

the Seeberg-Observatory near Gotha and later outstanding director of th e

Berlin Academy Observatory, exclaimed : "Where else than in Denmark can

one nowadays find such a sense among the rulers to heavily support reall y

useful work?" 42 The astronomers expressed their gratitude to the King' s

minister of finance in a special way: In their classical works about the to-

pography of the moon in 1837 Wilhelm Beer and Johann Heinrich 1Vlaedle r

named a lunar crater after him . 43 It is to be seen as "Mösting" A and B ; a

second object was named "Schumacher" . Moreover, Christian VIII in 1840

was honoured as the first foreign ruler to be elected member of the Royal

38 Schumacher, H .C . : Abbildung der Cometen-Medaille . Astronomische Nachrichten 11
(1834), 137f.

39 Schumacher, H .C . : Allerhöchste Bestätigung der Cometen Medaille . Astronomisch e
Nachrichten 17 (1840), 24 1

40 Briefwechsel zwischen Gauss und Schumacher, vol . 3, 36 5
41 Dansk Kunstnerleksikon, vol . 1 . København 1994, 502-503 ; Allgemeines Lexikon der

bildenden Künstler 6 (1912), 53 7
42 Encke, Johann Franz : Auszug aus einem Briefe . . . anden Herausgeber . Astronomis-

che Nachrichten 1 (1823), 375
43 Beer, Wilhelm ; Mädler, Johann Heinrich : Der Mond nach seinen kosmischen und indi-

viduellen Verhältnissen . Berlin 1837, 306f., 204; Gondolatsch, Friedrich : Johan Sigismun d
von Mösting und der Mondkrater Mösting A . Die Sterne 22 (1942), 17-26
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Figure 4a

Figure 4a,b : "Circulair" related the foundation of the medal for the discovery o f
comets by telescopes by Frederik VI ., 17 .12 .1831, with a postscript by Schumacher
to Encke (Encke-Nachlaß, Archiv der Berlin-Brandenb . Akademie der Wiss . Berlin ,
Schumacher, 6 .1 .1832)
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Astronomical Society in London . 44

Schumacher's Astronomische Nachrichten - the only international journa l
in the field of astronomy with its first 31 years edited by Schumacher himself

- made the observatory in Altona the centre of international relation s
between astronomers. The success was immense as immense as the amount
of work for the publisher! In a letter to George Biddel Airy from 1845
Schumacher speaks of about 1500 letters per year he had to draft and writ e
himself. 45 This seems not to be an exaggeration. In the estate in the Berli n
State Library alone nearly 10 000 letters to Schumacher from more than 75 0
authors can be found . Shortly before the Astronomische Nachrichten were
started Bohnenberger mentioned to Schumacher : "I am extremely please d

that thanks to your astronomic news and articles astronomers will get int o
closer relations with each other again ." 46

These expectations were truly fulfilled . The Astronomische Nachrichten
published with support of the Danish Kingdom, became a centre of in-

ternational communication in the field of astronomy. All astronomers of
any importance published in this journal whether they came from Ger -

many, France, England, Russia, Italy, the Netherlands, the United States ,
Denmark, of course and so on . Thanks to his connections through corres-

pondence Schumacher became an international "bureau of conference", a
scientific "news agency" . He received information and spread it via his As-
tronomische Nachrichten or by letters to his colleagues . In a letter to Jonas
Collin (1776-1861), deputy in the Ministry of Finance, Schumacher wrote :
"Altona now has become the centre of astronomic relations recognised eve n
by England and France" . 47 And the famous John Herschel, secretary of the
Royal Astronomical Society in London, concluded in a letter to the Danis h
King of 1Vlarch 13, 1840 that Schumacher's journal, was "one of the mos t
remarkable and influential astronomical works, which have ever appeare d
and which, while operating more beneficially on the progress of its Scienc e
than any similar work of modern times", has "made Your Majesty's city o f
Altona . . . the astronomical centre of the civilised world" . 48 Nothing more
has to be said .

44Privatarkiver J .G. Adler, 25 .2 .-4 .6 .1840, incl . the letter from J . Herschel to Christia n
VIII, 13 .3 .1840, and its German transl . by Schumacher

45 Nielsen, Axel V ., H.C . Schumacher, 274
46 Schumacher-Nachlaß, J .G .F. Bohnenberger, 2 .10 .182 147Nielsen, Axel V ., H.C . Schumacher, 29 1
45 Privatarkiver J .G. Adler, 27 .5 .1840
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The Astronomische Nachrichten survived many difficult situations : First
around 1848/50 the differences between Denmark and Germany concernin g
the status of Holstein; 49 later the first and second World Wars, and finally
the transfer of the centres of astronomical research from Middle Europe . In
1998 the journal appeared in its 319th volume. The editorial bureau is at
the Astrophysical Institute in Potsdam. 50

Appendix

Schumacher's application for a scholarship to visit foreign observatories, Altona
1808 April 26, Rigsarkivet Kobenhavn . Fonden ad usus publicos 1810-1812 (fig .
2) .

An die Königliche Direction des Fonds ad usus publicos

Heinrich Christian Schumacher Doctor der Rechte bittet unterthänigst um Un-
terstützung in seinen astronomischen Studien durch Bewilligung des Reisestipendii
zu einer astronomischen Reise .

Die Bitte mit der ich mich zu nahen wage scheint so kühn, daß ich ohne Gefah r
unbescheiden zu scheinen nicht die Entwickelung ihrer Motive übergehen darf, Mo-
tive die aus einer kurzen Darstellung meiner Lage hervorgehen .

Von Jugend an, durch Neigung zu den mathematischen Studien hingezogen, mußte
ich nachher aus fremden Rücksichten, mich mit dem Rechte beschäftigen, aber nu r
um bald mit desto grösserem Eifer, mich zu den früheren Untersuchungen zu wen-
den. Ein überwältigtes Hinderniß beschleunigt, statt zu hemmen .

Kaum war es mir vergönnt aus der reinen Theorie in die Anwendungen zu treten ,
als vor allen die Astronomie mich anzog . Wenn andere Wissenschaften theils auf
dem, ietzigen Zustand der Ausbildung, theils sogar auf menschlichen Schwächen ,
und moralischer Unvollkommenheit gegründet, ihr ephemeres Daseyn mit diesen
Veränderlichen selbst wechseln, oder verlieren; so kann sie in der Natur gegründet ,
mit ihr von gleichem Umfange, gleicher Würde, nur mit dem Weltall veralten, und
vergehen . Ihre leuchtende Bahn wird nur durch das Unendliche begränzt . Denn
wie die Naturwissenschaften in absteigender Linie, die Organisation bis zum Ato m
verfolgen, so geht sie in aufsteigender von der Erde zur Sonne, von der Sonne z u
ihrer Sterngruppe, von dieser zum Sternenheer .

49 Schwarz, Oliver ; Strumpf, Manfred: Peter Andreas Hansen und die astronomisch e
Gemeinschaft . Beiträge zur Astronomiegeschichte 1 (1998), 141-154 (Acta Historica As-
tronomiae; 1 )

50 Present attempts to work scientifically with the Berlin estate of Schumacher so fa r
have failed because of the lack of funding . Allow me to propose the idea to put this into
practice as a German-Danish joint project, in Schumacher's spirit .
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In der Ruhe des Landes, nach vollendeten academischen Jahren, beschäftigte ich
mich ausschließlich mit ihrem theoretischen Theile, zur Praxis führte nachher mic h
mein Freund der Professor Pfaff in Dorpat . Mit ihm beobachtete ich ein Jahr hin-
durch, das nur zu schnell verging .

Dann, ohne günstige Aussichten in Frankreich zu benutzen, fest überzeugt mei n
Glück sey an mein Vaterland gebunden, kehrte ich zurück voll Hoffnung nicht die
verlassenen juristischen Studien wieder ergreifen zu dürfen . Dennoch scheint mic h
iezt die Nothwendigkeit dahin zurückzuführen, da Mangel des Vermögens mich ver -
hindert eine künftige Anstellung in meinem Fache abzuwarten . Die einzige Hoff-
nung mit der ich iezt meinen Muth belebe, beruht auf eine gnädige Gewährung
meiner Bitte um Unterstützung, bis sich eine für mich passende Anstellung ergebe n
sollte .

Um nun die Zeit bis dahin so nützlich wie möglich zu verwenden, wünschte ic h
die vornehmsten Sternwarten zu besuchen um alles kennen zu lernen, was iezt zu r
Vervollkommnung des beobachtenden Apparats geschehen ist, und zugleich mich mi t
den ersten Astronomen in nähere Verhältnisse zu setzen, Verhältnisse die mir be y
einer künftigen Anstellung von dem grössten Nutzen seyn würden .

Ich wage also meine Bitte mich durch gnädige Unterstützung in den Stand zu setzen ,
die ersten Sternwarten besuchen zu könne n

unterthänigst Altona den 26st . April 1808 . Heinrich Christian Schumacher .
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Viète's Generation of Triangle s

Otto B. Bekken *

Caspar Wessel's main aim in his On the Analytical Representation of Di -
rection is from given directed line segments to form others by algebrai c

operations and to form the product of two lines in the same plane as th e

positive unit :

As regards length, the length of the product should be the product o f

the length of the factors ,

and "the directional angle of the product, or its deviation from the

positive unit is the sum of the directional angles of the factors . "

As Branner and Voje Johansen have recently discovered (see [Wessel (1999) ,

44-49]), Wessel used complex numbers to represent line segments in his sur -

veying reports as early as 1787 - ten years before he wrote his theoretica l

memoir on the subject . Where he got his inspiration for this, we do not

know . His only reference on these matters reads "nobody else has treate d

it . An exception might be Master Gilbert in Halle, whose prize memoir

on Calculus Situs may contain some explanation on this subject ." [Wesse l

(1999), 103] All attempts to find this prize memoir by Gilbert have so fa r

failed . l

I will here only recall some material from two papers by Francois Viète

(1540-1603) and his collaborator Alexander Anderson (1582-1619) . T .R .

Witmer's translation of 1983, which is our source, was based on Frans van

Schooten's 1646 edition of Viète's manuscripts . In this context, these pa-

pers by Viète have been brought forward by Glushkov, by Bashmakova an d

Slavutin, by Bashmakova and by Itard (see the bibliography below) .

In Viète's Isagoge in Artem Analyticern we find a section entitled The Gen-

esis of Triangles with his proposition XLVI and the accompanying figure s

* Kristiansand, Norway
'However, see Kirsti Andersen's argument on p .72 of [Wessel (1999)]
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IBG - DF I

BG + DF

Figure 1 : "To construct a third right triangle from two right triangles"

(see figure 1) . His reasoning, which is verbal, can be symbolized throug h

( ZH) 2

	

= Z2H2 = (B2 + D2 )(F2 + G2 )
B2F2 + D2 G 2 + B2 G2 + D2F2

=

B2F2 + 2BFDG + D2G2 + B2 G 2 + 2BGDF + D2F2
(BF + DG) 2 + (BG + DF)2

Only the sides of the new triangle are presented in his third triangle gener-

ated from two right triangles by either of these methods. Moreover, a right
triangle generated by the first method is called a synaeresic (taken together )
triangle, and by the second method a diaeresic (taken apart) triangle, "fo r
reasons set out in the proper place" , says Viète .
This proper place seems to be his Ad Angularium Sectionum Analyticen
Theoremata which opens with two theorems

Theorem I
If there are three right triangles the
acute angle of the first of which differs
from the acute angle of the second by
the acute angle of the third, the firs t
being the largest of these, the sides of
the third will have the likenesses of the
diaeresic triangle made from the firs t
and the second .

Theorem I I
If there are three right triangles and the
acute angle of the first of these plu s
the acute angle of the second is equa l
to the acute angle of the third, the side s
of the third will have the likenesses of
the synaeresic triangle made from the
first and the second .
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The acute angle is the angle between the hypotenuse and the base, an d

the figure above has been amended by adding symbols to these angles . The

demonstrations given by Anderson are based on Euclidean arguments, bu t

can easily be interpreted as proofs of the trigonometric formulas for the sine

and the cosine of the difference and the sum of two angles .

Viète's theorems say that if we want the acute angle of the product to b e

the sum of the acute angles of the factors, then we must use the synaeresic
product of triangles with

base BF - DG, and perpendicular BG + DF,

and if we want the acute angle of the product to be the difference of the acute

angles of the factors, then we must use the diaeresic product of triangle s

with

base BF + DG, and perpendicular BG - DF .

The reader skilled in complex number multiplication, can see the analogy

to the real and imaginary parts of the product of the complex number s

B + D-V-1 and F + GA/-1 in the synaeresic case, and the product o f

B + D,/-1 with the complex conjugate F - G-/-1 in the diaeresic case .

The similarity between Viète's product of triangles and Wessel's product o f

directed line segments is also quite apparent, but whether Wessel had acces s

to or had seen these papers by Viète, this we do not know .
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Argand and the Early Work on Graphical
Representation: I\ ew Sources and Interpretations

Gert Schubring *

The aim of the present paper is to investigate the works of some of th e

mathematicians who dealt with the graphical representation of the comple x

numbers independently of Wessel and in particular with the most famou s

of them: Argand. However let me begin by mentioning some of the basi c

concepts in Wessel's paper in order to establish connections with the ongoin g

discussion in the mathematical community at large and more specifically i n

France .

Wessel was not concerned with epistemological problems associated with the

idea of negative quantities in the French discussion - rather, he extracte d

from it two basic notions and rearranged them : the notion of être numériqu e
and the notion of être spécifique or qualité of a given quantity. Whereas these

two notions had been treated as separate concepts in the French discussion s

of the 18th century, Wessel forged them together renaming them as line

segments and directions of lines .

His innovative procedure was to enlarge the notion of direction . He con-

sidered the concept of simply opposed directions like positive and negative

directions as well-known and envisaged going beyond the restriction to di -

rections along the same line, extending the concept to directions in the entir e

plane and even in the sphere . As Wessel explains :

if one takes the operations in a wider sense, and does not, as before ,

restrict them to be used only on segments of the same or opposit e

direction, but extends their formerly restricted concept somewhat, so

that it becomes applicable not only in the former cases, but also in

infinitely many more cases (Wessel 1999, 95) .

*Institut für Didaktik der Mathematik, Universität Bielefeld, Postfach 100131, D-
33501 Bielefeld, Germany
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An example of a generalization proposed by Wessel based on this approac h
is the perpendicular unit.

My intention is not to analyse the application of these generalizations but t o
discuss the point raised by Valentiner, one of the editors of the French ver-

sion, in 1897. Valentiner expressed his astonishment about the innovation s
achieved by mathematical "outsiders" in these words :

il est étonnant qu'un homme puisse composer un ouvrage aussi remar-
quable que celui qui nous occupe, après avoir dépassé la cinquantaine ,
sans avoir jamais, ni avant ni après, produit aucune oeuvre scientifique
(Valentiner 1897, V) .

Almost the same remark can be made about most of the inventors of th e

graphical representation of complex numbers before Gauß's publication o f
1831 . In fact, historians of mathematics frequently wonder about the simul-

taneity of these inventors around 1800 and about their common pattern o f
marginality to the mathematical communities, and of amateurism .

My intention is to contribute somewhat to an understanding of this mys-
tery. Two authors who provide some elements for illuminating the issue are
Argand and Buée .

1 Argand

Argand, the author of the booklet Essai sur une manière de représenter les
quantités imaginaires dans les constructions géométriques, is usually iden-

tified as Jean Robert Argand, who lived from 1768 to 1822 and is reported
to have been a bookkeeper in Paris (teneur de livres) . As we will see, thes e
few known data seem to be doubtful .

Argand's text, allegedly published in 1806, did not remain unknown lik e
Wessel's, but was discussed beginning in 1813/14, with Argand himsel f
participating in the discussions . These debates took place publicly in the
Annales de mathématiques pures et appliquées, the first journal which spe-
cialised in mathematics, published by J . D . Gergonne at Montpellier . Yet ,
the public of this journal was a restricted one, as the dominant Parisian
mathematicians did not participate in it . l Like Wessel, Argand begins wit h

'Lacroix, for example, did not communicate the fact that Buée's paper had been
published in 1806 to Gergonne and his journal but rather to a colleague of Gergonne's .
Lacroix's note became known to the Annales (vol . 4, 1814, 367) only by this intermediary .
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reflections on oppositely directed quantities and uses the analogous concep-
tual differentiation of rapport numérique and rapport de direction . He goe s
on to ask if one can generalize these concepts to imaginary quantities, give n

that one cannot assign them a geometrical representation on one line as i s
the case for two opposed, so-called positive and negative directions . Thus ,
he looks for a geometrical construction in the same plane . He proposes such
a construction in the plane by interpreting the proportion

1 :-1=-1 : 1

as yielding the mean proportional . By this approach, Argand transforme d
the proportion 1 : -1 = -1 : 1, which up until his time had been the touch -
stone for every approach to understand negative numbers, into the corner -
stone of a new theory. Argand is therefore a nice illustration of Lakatos' s
model of conceptual development : former monsters become the definitiona l
foundation for innovations . Having identified the notions of grandeur ab-
solue and of direction as constituting his conceptual basis, he investigates
whether it would be possible to combine them so as to assign a place to th e
imaginary quantities within the conceptual field of positive and negativ e
quantities ("une place dans l'echelle des quantités positives ou négatives
(Argand 1874, 6) .) His answer was to exploit the basic proportion in a geo-
metric way :

En y réfléchissant, il a paru qu'on parviendrait à ce but si l'on pouvai t
trouver un genre de grandeurs auquel pût s'allier l'idée de direction ,
de manière que, étant adoptée deux directions opposées, l'une pour les
valeurs positives, l'autre pour les valeurs négatives, il en existât un e
troisième telle, que la direction positive fût à celle dont il s'agit comm e
celle-ci est à la direction négative (ibid . )

In expanding on this approach, Argand did not restrict himself to per-

pendicular lines, to imaginary quantities . Hence, he instead constructed all
directions in a given plane geometrically and thus achieved the construction
of complex numbers as well . Argand gave as the general algebraic form fo r
complex numbers

+a+ b1/-1 (ibid., 12)

and showed, using figure 1, the corresponding lines with their direction .
Leading mathematicians seemed - during this period - not to be very
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Figure 1 : Argand 1874, 7

interested in these foundational efforts . A revealing example is presented b y

Adrien Marie Legendre (1752-1833) . As is well known, Argand's ideas

attracted some public interest for the first time when Jacques Frédéric

Français (1775-1833), an Alsatian mathematician, published an article in

Gergonne's Annales in 1813 where he referred to the ideas of an unknow n

author :

Je dois [ . . . ] à la justice de déclarer que le fond de ces idées nouvelle s

ne m'appartient pas . Je l'ai trouvé dans une lettre de M. Legendre à

feu mon frère [François Joseph Français, 1768-1810], dans laquelle ce

grand géomètre lui fait part (comme d'une chose qui lui a été commu-

niquée, et comme objet de pure curiosité) du fond de mes définitions

2 e et 3 e , de mon théorème IeT , du corollaire 3e de mon théorème IIe

[ . ] . Je désire que la publicité que je donne aux résultats auxquel s

je suis parvenu puisse déterminer le premier auteur de ces idées à se

faire connaitre, et à mettre au jour le travail qu'il a fait lui-même sur

ce sujet (Français 1813a, 71) .

As is likewise well known, this appeal induced Argand to enter into th e

debate and to show that he was the author .

I have been lucky enough to find this letter from Legendre to Français the

elder brother . It is a letter dated 2 November 1806 ; in its final part, Legendre

reports to Français that an unknown person had given a mémoire to him .

Legendre was astonished by the quality of this paper and by the lack o f

ambition of its author .
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Il y a des gens qui cultivent les sciences avec assez de succès san s

être connus et sans courir pour la renommée. Dernièrement j 'ai vu

un jeune homme qui m'a engagé à lire un travail qu'il avait fait sur

les imaginaires ; il ne m'expliquait pas très bien son objet, mais il m e

faisait entendre qu'il regardoit les quantités dites imaginaires comme

aussi réelles que les autres, et qu'il les representait par des lignes . J'ai

témoigné d'abord bien des doutes à l'auteur, cependant j'ai promi s

de lire son mémoire . J'y ai trouvé contre mon attente, des idées assez

originales, fort bien présentées, appuyées de connaissances de calcu l

assez profondes, et enfin qui conduisent à des conséquences fort exactes

telles que la plupart des formules de trigonométrie, le théorème d e

Cote, etc . Voici une esquisse de ce travail qui vous intéressera peut-

être et qui vous fera juger du reste . 2

Legendre then explained Argand's approach for the geometric construction

of imaginary and complex quantities and went on to outline two of Argand ' s

applications :

trigonometric formulas such as

cos(a + b) = cos a cos b - sin a sin b ,

- Cotes's theorem (also called de Moivre's formula) :

cos(na) + \/-1 sin(na) _ (cos a + \/-1 sina)' .

Legendre declared himself not to be interested in this as a research subject

but appealed to Français to further develop these ideas :

Je ne rends ici qu'une petite partie de ses idées, mais vous y suppléerez

et peut-être vous trouverez comme moi qu'elles sont assez singulière s

pour mériter attention . Au reste je vous les abandonne simplemen t

comme objet de curiosité et je ne me chargerois pas de les défendre .

It seems that without this letter from Legendre to Français, Argand's pape r

would neither have been discussed by contemporary mathematicians no r

would it ever have become publicly known . In fact, there is no proof that

this paper was published in 1806 . The only indication of this date is given

by its appearance on the title page of the printed book. This is not decisive ,

for three reasons :

2 In my talk, I showed a copy of this letter, which belongs to a private collection.
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The booklet was not deposited at the Dépot Legal at Paris as pre-

scribed by the law for published books, as my research at this offic e
has shown .

In all my searches I was unable to identify an original version in a
French or a foreign library. All the copies in libraries are either the

1874 second version published by Hoüel or later reprints . And the
1874 edition is made on the basis of a copy which Argand had sent to
Gergonne .

As I have learned recently from Luigi Pepe (Ferrara), there is, how -
ever, at least a second copy of the first printing . It is in the possession
of Jean-Luc Verley (Paris), who, as a bibliophile mathematician, pos-

sesses an impressive collection of old books . Curiously enough, a n

inspection of this copy proved that it belonged to Gergonne, too! 3

Legendre 's letter gives a supplementary argument : Legendre wouldn' t
have communicated Argand's ideas to Français and invited him t o
pursue and further develop them if the paper had already been pub-

lished or if publication were imminent . Moreover, according to the
rules of the Paris Institut, only unpublished manuscripts were allowe d
to be fully reported upon in this Academy . Thus if Argand wanted t o

have a chance of such a report, his paper had to remain a manuscript .
In fact, Argand himself mentioned in 1813 that Legendre examined ,
in 1806, "mon manuscrit" (Argand 1813b, 133) .

The only thing which one can say with certainty is that the paper wa s
printed somewhere between 1806 and 1813, without an indication of the
author; it was, however, only privately distributed 4 and not published .
Even in 1813, it did not attain the character of a real publication, as th e
only known copies all belonged to Gergonne (see above) . Although Argand
had offered, in his 1813 paper in the Annales, to sell copies of his Essai
(Argand 1813b, 133), 5 apparently no other contemporary mathematicia n

3I am very grateful to Jean-Luc Verley for his cooperation and assistance in this re -
search . There is a manuscript note in his book which states that this copy had belonge d
to Gergonne and that it was used for Hoüels reprint . Since Verley's copy does not bear
Argand's dedication to Gergonne of 1813 (written on the page with the printer's data, op-
posite to the title page), which is reproduced in the reprint, it is clear that this dedicatio n
was taken by Hoüel from a second copy originally belonging to Gergonne .

4 As Argand affirmed himself in 1813, he had distributed the printed version only i n
a "très-petit nombre" (Argand 1813b, 133), probably to some friends . In this passage h e
characterized his paper as only being an "écrit" (ibid .) .

5 On the title page of the copy which he dedicated to Gergonne, he had crossed out the
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contacted Argand or ordered the booklet . Even Français, most interested
in the text, did not address Argand and rather preferred to borrow a copy
from Gergonne (cf . Français 1814b, 222) . It was only due to Hankel's revival
of interest in Argand's original paper (Hankel 1867, 82) that Hoüel was
motivated to search for it and to reprint it .

Besides the extraordinary history of Argand's mémoire, his biography of-
fers at least as many questions . In fact, Legendre's letter has caused me t o
question all the biographical information available on Argand, which is ac-

tually quite scarce . I began to wonder about the fact that Legendre calls the
paper's author "un jeune homme" . Legendre was 54 years old in 1806 and
the Argand of the standard sources already 38 years old . Can one believe
that Legendre would, at age of 54 years, call a man of 38 years a "youn g
man"? This is at least doubtful, the more so since Legendre's first sentence
seems to imply that he rated Argand as capable of a scientific career if h e
had been interested in it .

Almost all the available biographical information on Argand is due to Hoüel
who undertook some research on the matter for his 1874 edition . All this in-

formation is based on Hoüel's assumption that Argand originated in Genev a
(Hoüel 1874, ix) . Hoiiel gave no justification for this claim, and one can only
guess that he came to this assumption by induction : Ami Argand (1750-
1803), an inventor active in physics and chemistry, known for the construc-
tion of a lamp, who had lived a certain time at Paris, was in fact born i n
Geneva. This hypothesis led Hoüel to address colleagues at Geneva and t o
ask them to conduct biographical research . They came up with the infor-
mation on birth date, first names and profession of a certain Jean-Rober t
Argand (ibid ., xv-xvi) . Although they added a cautionary remark about the
identity ("C'est très probablement l'auteur du Mémoire de Mathématiques
en question", ibid.), their information has been taken up to now as pure
truth, in all related historical publications and in all biographical dictionar -
ies . 6 The article on Argand in the Dictionary of Scientific Biography, fo r

distributor's address and indicated his own so that one should order copies of the bookle t
there .

Only once, a doubt has been raised by an anonymous person (again!) in the journa l
L'intermédiaire des Chercheurs et Curieux : in 1875, one "T . de L." remarked that one
has the biographical data of this Jean-Robert Argand, "mais on n'a pas la certitude qu'i l
s'agisse lå de l'auteur de l'Essai sur une marnière de représenter• les quantités imaginaire s
[ . . . ]" (8e année, 1875, 424) . He received two answers : the first declared Ami/Aimé
Argand to be the Essai's author (9e année, 1876, 688) and the second only repeated
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instance, shows no hesitations or doubts and even reports that the "ver-

ification of the dates of his birth and death is given by H . Fehr in the

Intermédiaire des mathématiciens" in 1902 . An inspection of this sourc e

shows, however, that Fehr had started from the conviction of correctness o f

Hoüel's hypothesis and just checked in the "Archives de l'État de Genève"

the death date of that Jean-Robert Argand born in Geneva.?

What objective information about Argand do we have? Unfortunately, we

do not even have any primary evidence as to Argand's first name : his letters

as printed by Gergonne show only his last name . Also the tables of content s

of Gergonne's Annales cite him by his last name only. The only objective

information is his address in 1813 in Paris . Unfortunately again, as a resul t

of the fights of the communards in Paris 1870/71, most of the registers of

the administration of Paris are lost and it is therefore impossible to infe r

anything about the citizens living there from an address alone . The death

registers were also burnt . 8 Since historians of the nineteenth century faile d

to do adequate biographical research, it will now be quite complicated t o

obtain better information . One can, at least, infer from Legendre's letter

that in 1806 Argand was unknown in the scientific community . Moreover ,

it is clear from his immediate reactions in 1813 and 1814 that he had eas y

and regular access to scientific journals . Apart from this we can only stat e

	 in terms recalling medieval history	 that Argand "flourished" in 1806 ,

1813, and 1814 .

As regards his profession, there are two clues which point in the same di -

rection . Firstly, the address for distribution as given in the original print-

ing is the shop of a clockmaker . And secondly, the very first paper which

Hoüel's affirmations (ibid ., 715) . These sources are mentioned in the (relatively) new:
Dictionnaire de Biographie Française, t . III, 1939, 504 .

7 L'Intermédiaire des mathématiciens, 9(1902), 74 . Fehr had answered to a query by G .
Eneström in 1900 in this journal ; Eneström had remarked that the death date of Argand
was unknown . This unique journal functioned in an analogous way to the electronic -
mail newsgroups of today . The journal "L'intermédiaire des chercheurs et curieux" was
a somewhat parallel journal addressing all the sciences and the arts . As 1 have learnt
from the Archive d'État of Geneva, Fehr had more information at his disposal than h e
published later in his answer to L'Intermédiaire : the Archive had communicated to hi m
in 1901 - quoting from the acte de décès submitted to the Geneva registration office i n
1822 by the mairie of the tenth Paris arrondissement	 that Jean-Robert Argand had
been an employee at the hospital of the Garde Royale . Had Fehr been afraid that thi s
additional information would falsify this person's authorship ?

8 Communication by the Direction des services d'Archives de Paris .
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Argand had sent for publication - his 1813a, written in February 1813 ,

occasioned by a problem announced in the Annales in 1812, and published

several months before Français's paper (1813a) which opened the debat e

about Argand's Essai - discusses technical constructions of artisans fro m

an expressly theoretical point of view. Argand shows himself in this paper as

closely familiar with all the details of technical production, in particular of

portable thermometers in the form of clocks, and as knowledgeable in recent

scientific publications . For example, he quotes Laplace's Système du Mond e

in order to criticize certain shortcomings of practitioners (Argand 1813a ,

39) . In his conclusion, Argand pleads against the trial-and-error practice s

of artisans, which devalue the work of even the highly skilful, and plead s

for guidance by theoretical principles . His claim to have achieved better

practical results by such guidance (ibid., 41) suggests that Argand was a

scientifically oriented technician, based in the Parisian clock industry .

Figure 2 : Figure of Argand's construction of a portable thermomenter (Argand

1813a, Planche I)

It is useful to try to create a reconstruction of the events around Argand' s

Essai. A fairly probable one is the following . In the autumn of 1806, Legen-

dre was approached by Argand, who tried to outline the main results in hi s

manuscript to him in a direct conversation . Legendre responded with skep-

ticism as to the method and its applications . Upon leaving, Argand urged

Legendre to read his manuscript . Legendre had not retained the name of this
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man and assumed that the manuscript would show the name of its author .
When Argand had left, Legendre realized that the paper indicated neither
the address nor the name of the author . Upon reading the Essai, Legendre

noticed its quality, he waited for a further visit from its author, but the au-

thor did not appear again . In order to end his own involvement with thes e
conceptions he wrote the report to Français in the letter of 2 Novembe r
1806 . Since Legendre firmly asked not to be bothered with discussions o n
this paper, neither the elder nor later the younger Français dared to ask him
about the paper or its author . On the other hand, Argand - apparently a

shy man - abstained from publishing his paper, due to Legendre's uninter-
ested and sceptical reaction . Only the quite indirect reception of his ideas
via the brothers Français induced Argand to organize a later printing wher e

he arranged for the date of its composition to be put on the title page .

2 Adrien-Quentin Buée

The third author productive around the same period is Adrien-Quentin
Buée (1748-1826), a French Catholic Priest 	 a "prétre réfractaire " as the
French during the Revolution called those priests who refused to give thei r
oath on the Constitution . Buée fled in 1792 to England and returned to
France in 1813 . His paper Mémoire sur les quantités imaginaires was read
in 1805 at the Royal Society and was published in 1806 .

Buée's paper is remarkable in its systematic evaluation of the earlier French
discussion on the nature of negative and imaginary quantities . He achieves
the establishment of a conceptual connection between the two basic concept s
of length or absolute value and of direction which had been separated so
systematically in France during the 18th century.

Buée's achievements are likewise important for the conceptual developmen t
of the negative numbers and for the graphical representation of the comple x
numbers .

The important step in Buée's approach is that he clearly distinguishes be-

tween the two different meanings of the signs plus and minus, namely a s

- signs of operations, on the one hand, an d

signs of qualities of the quantities themselves, on the other . As he
notes :
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Des Signes "+" et "- "

Ces signes ont des significations opposées .

Considérés comme signes d'opérations arithmétiques, "+" et "-"
sont les signes, l'un de l 'addition, l'autre de la soustraction .
Considérés comme signes d'opérations géométriques, ils indiquent
des directions opposées (Buée 1806, 23) .

Buée interpreted this sign of quality in geometrical terms, as direction, while
he attributed length to an arithmetical meaning . His important step was
not restricted, however, to this conceptual clarity of distinguishing between
what he called arithmetical operation and geometrical operation, rather his
decisive step was to propose to unite both operations :

Lors donc qu'on réunit ces deux opérations, on fait réellement une
opération arithmético-géométrique,

Buée immediately applied his approach to the investigation of imaginar y
quantities and hence expanded the applicability of the novel arithmetico-

geometrical operations :

Je mets en titre, Du signe et non De la quantité ou De l'unité
imaginaire \/-1 ; parceque ,/-1 est un signe particulier joint à l'unité
réelle 1, et non une quantité particulière . C'est un nouvel adjectif joint
au substantif ordinaire 1, et non un nouveau substantif (ibid ., 27) .

Ainsi , est le signe de la PERPENDICULARITÉ, dont la pro-
priété caractéristique est, que tous les points de la perpendiculaire
sont également éloignés de points placés à égales distances, de part
et d'autre de son pié . Le signe -/-1, exprime tout cela, et il est le seul
qui l'exprime (ibid ., 28) .

This novel approach where the perpendicular direction is treated in a man-

ner analogous to the two traditional opposed directions on a line, is wel l
explained by Buée's following figure (see Figure 3) .
Like Wessel and Argand, Buée was no professional mathematician . As a
Catholic priest exiled in Britain, he engaged in publishing political-religiou s
tracts . Except for his paper on the imaginaries, his sole other scientific paper
is on physics . And as Valentiner did in the case of Wessel, one can wonder

how an author of political-religious tracts could arrive at such a level of
clarté regarding the foundations of mathematics .

In order to further complicate the matter one can add that there was even a
fourth inventor, active in about the same period : Henri-Dominique Truel .
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Figure 3 : Figure 1 (Buée 1806, planche annexée )

Truel's existence and activity are asserted by Cauchy, who attributed the

priority of the discovery of the graphical representation to him . Truel, who

is not known otherwise, was called "un savant modeste" by Cauchy, who

reported that Truel had found the greatest part of Buée's and Argand' s

results by 1786 but that he had concealed them in his manuscripts . By

1810, Truel had communicated his research to a marine engineer, Augusti n

Normand, at Le Havre, and it seems that Cauchy learned via Normand

during his engineer's service at Cherbourg	 of Truel's work and of thi s

graphical representation in particular (Cauchy 1847/1938, 175) .

3 François Daviet de Foncenex

Fortunately enough, Buée has given us a clue as regards the source of hi s

innovation . I have to confess that I noticed this hint quite late since this i s

a remark at the end of his paper ; maybe other authors missed it entirely

since it is mentioned nowhere in the literature . This indication is given as a

"Postscriptum" :

Since I wrote this mémoire, I have read - in the first volume of th e

Turin Academy Transactions a paper by M . Foncenex with the title :

Refléxions sur les Quantités Imaginaires where one finds the following

paragraph (Buée 1806, 83 ; my translation, G . S .) .

He quoted this paragraph 6 completely. Due to its importance for our in-

vestigation, I will quote it completely, too :
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6 . Si l'on réfiechit sur la nature des racines imaginaires, qui com-

me on sait impliquent contradiction entre les données, on con-

cevra évidemment qu'elles ne doivent point avoir de construction

Géométrique possible, puisqu ' il n'est point de maniére de les con -

sidérer, qui lève la contradiction qui se trouve entres les données im-

muables par elles mêmes .

Cependant pour conserver une certaine analogie avec les quantités

négatives, un Auteur dont nous avons un cours d'algébre d'ailleurs

fort estimable a prétendu les avoir prendre sur une ligne perpendic-

ulaire à celle où l'on les avoit supposé, si par exemple (pl . I . Fig . I) on

devoit couper la ligne AB = 2a de façon que le rectangle des parties

x x (2a-x), fut égal à quantité 2a 2 on trouveroit x = a+ \/(-a2), pour

trouver donc cette valeur de x, qu'on prenne sur la ligne AB, la partie

AC = a partie réelle de la valeur de x, & sur la perpendiculaire ED le s

CE, CD aussi = a, on aura les points D, E qui resolvent le problème

en ce que AD x DB, ou AE x EB = 2a 2 , mais puisque les points E,

& D sont pris hors de la ligne AB, & qu'une infinité d'autres point s

pris de même, auroient aussi une propriété semblable, il est visible ,

que si cette construction ne nous induit pas en erreur, elle ne nous fai t

absolument rien connoître, c'est cependant là un des cas ou elle pour-

roit paroître plus spécieuse, car le plus souvent on ne voit absolument

pas comment le point trouvé pourroit résoudre la question, quelque s

changemens qu'on se permit dans l'énoncé du problême .

Les racines imaginaires n'admettent donc pas une construction géo-

métrique, & on ne peut en tirer aucun avantage dans la résolution des

problèmes : on devroit par conséquent s'attacher à les écarter autan t

qu'il est possible des équations finales, puisque prises dans quel sens

que ce soit, elles ne peuvent pas résoudre la question, comme les racine s

négatives, dont toute la contradiction consiste dans leur maniére d'être

à l' égard des positives (Foncenex, 1759, 122-123) .

Who was this Foncenex? François Daviet de Foncenex (1733/4-1799) was

an officer, living at Turin, interested in the sciences and in engineering .

He has published - besides the paper on imaginarres several papers on

physics and technology. He is said to have been a friend of Lagrange durin g

Lagrange 's stay at Turin and one even reports that Foncenex ' 1759 paper

expressed thoughts of Lagrange .

This sixth paragraph leads to at least three questions :
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an analysis of its mathematical meaning ,

the reception of this part of the paper ,

the identification of the algebra textbook mentioned at the beginnin g
of the 6th section .

As regards the analysis of the text, one should note beforehand that it i s
not mentioned in the historical literature not even by Cajori who is the
only one to extensively discuss other parts of the mémoire . 9

Looking concretely at the text, it must be said that it is ambiguous and
even contradictory. This character becomes visible only by considering th e
figure which is printed in another part of the volume :

E

Figure 4 : Foncenex 1759, fig . 1 : planche annexée

On the one hand, Foncenex clearly shows how one can construct the imag-

inary quantities geometrically, and visualizes this construction by means of
this figure . In fact, transforming the equatio n

x x (2a - x) = 2a2

for x immediately yields :

x = a + a2 -2a2 =a+ia.

In the text, Foncenex assures us that the construction does not lead to
errors .

9 The only exception is Pieper, who just mentions Foncenex's interdiction verdic t
(Pieper 1984, 214) .
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On the other hand there is the commenting text before and after the con-

structive part . This commentary sets up signs saying that such numbers are

"off limits!" For instance, in the introductory comment, Foncenex gives an

epistemological argument :

Evidently, one understands that imaginary roots do not admit a pos-

sible geometric construction

and in the concluding comment :

imaginary roots do not, hence, admit a geometrical construction, an d

one cannot infer any advantage in resolving problems by using them :

one has therefore to pay careful attention to eliminate them, as fas as

it is possible, from the final equations (my emphasis, G . S .) .

The mathematical legitimation which Foncenex gave for his refutation i s

rather weak: He concedes that the construction is correct but argues that

one learns nothing new from it . And he adds that one can construct an

infinity of other points with analogous properties .

This analysis of the sixth section already leads to an at least partial answe r

to the second question: Among the readers of Foncenex's mémoire, there

certainly were some who became more convinced by the force of the visu-

alization of a geometrical construction and who did not let themselves b e

deterred by epistemological interdictions . It is quite probable that one might

find, among such readers, marginal figures who as autodidacts might hav e

been less permeated by the dominant epistemology than those who adhere d

professionally to the mathematical norms .

And one has to know that the readers of Foncenex's mémoire were numer-

ous: Foncenex had written this paper to investigate the difference of opin-

ion between d'Alembert and Euler about the admissibility and the meanin g

of logarithms of negative quantities (cf. Youschkewitsch, Taton in : Euler

1980) . 10 I cannot enter here into a presentation of this year-long contro-

versy which reveals highly illuminating epistemological dimensions of basi c

mathematical concepts . However I should mention that they ended this con -

troversy by exhaustion, without either of them convincing the other . The

fact that two famous mathematicians had not been able to reach a consensus

'°The strong reception of Foncenex's paper is due to d'Alembert's paper of 1761 where
he made his controversy with Euler publicly known for the first time . In an appendix to this
paper written already in 1752, d'Alembert extensively discussed Foncenex's arguments .
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about basic concepts, attracted the attention of a great many people durin g

the second half of the eighteenth and at the beginning of the nineteent h
century who tried to develop their own solution . The problem seemed to
be accessible by "common sense" and attracted, hence, in particular the
interest of amateurs . Almost everyone who worked on the problem and sub-

sequently wrote about it stumbled on Foncenex' mémoire and read it . 1 1

I can now pass on to the third question: who is the author not named

by Foncenex who published a highly esteemed algebra textbook where th e
construction of imaginary roots on a perpendicular line was proposed ?

Foncenex's paper led me to assume that he had an author of his own time in
mind. Consequently, I consulted a great many algebra textbooks of his tim e
and of the entire first half of the eighteenth century ; I consulted even general
textbook series for mathematics since they contain parts on algebra, too . I

detected, however, no author who had discussed or allowed such geometrica l
constructions . My subsequent evaluation of Robin Rider's bibliography o f
publications on algebra gave no better result (cf. Rider 1982) .

4 John Wallis

The only solution seems to be that Foncenex alluded to John Wallis's algebr a
treatise, published in 1685 in English and in 1693 in Latin, the latter in a
somewhat extended form. This first proposal for a geometric construction
is relatively well known so that I will just recall the structurally important
points .

On the one hand, Wallis denied there that quantities less than zero can exist .
On the other hand, he added that such a supposition is nevertheless no t
useless and not absurd ; in fact, Wallis continued to freely develop operations
with negative quantities (Wallis 1693, 286) .

Using this conceptual basis, Wallis was the first to admit a geometrica l
construction of imaginary roots by interpreting them as mean proportionals :

" Buée, e .g ., protested against Foncenex's principle of excluding imaginary roots (Bué e
1806, 85) . Buée's claim to have read Foncenex's paper only after completing his own on e
seems to be a "Schutzbehauptung" : In quoting Foncenex's paragraph no . 6, he refers to his
own - quite analogous - figure ; Buée has not only renamed the points within that quot e
according to his own figure but also tacitly corrected a misprint in Foncenex's origina l
text .
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Firstly, he explained the well known fact that i/bc is the mean proportional

between +b and +c , and then he formally extended this interpretatio n

to ANC as mean proportional between -b and -c. Eventually, he rather

postulated than demonstrated that i/-be can also have the signification of

the mean proportional between +b and -c. Likewise, he interpreted i/- be

as the mean proportional between -b and +c (ibid ., 287) .

Wallis exemplified his algebraic argumentation by several geometrical con-

structions . As an introduction to his examples, he even seems to have been

the first who visualized the quadrants of the plane with their respectiv e

signs, by a graphic (ibid.) . Then, he showed how one can interpret trigono-

metric lines as the geometric construction of some imaginary quantity. For

example, he showed, after having chosen lines a and b in a circle conve-

niently (AB = + b, BC = +c), that the tangents can be represented as th e

mean proportional i/-be (ibid., 288) :

Verbi gram ; Si prorfum' ab A fumatur AB+b,
& prôrfum adhttc (in eaden reaa) BC = + c ; fit-
queAC (=AB+BC-+b+c) diameter ci r
cull : erit fnus re&us-, feu media proportionalis,
BP=I/+bc.

Sinietrorfi n ab A (adeoque cum contrario figno)
fumatur -AB .----b; &, à B prorfum,BC= +c ;
rnanente cad= circuli diametro AC = - AB +BC

-b+ e : erit .Tangens, feu media proportiona-
lis, EP-V-bc.

What was the effect of this textbook and in particular the impact of thi s

method for interpretation? I could find no trace of a discussion or a recep-

tion by contemporaries of Wallis or of later authors of the first half of the

eighteenth century. This silence is the more astonishing since Wallis had

expressed this approach in an earlier letter . In a letter of 6 May 1673, ad-

dressed to John Collins (1625-1683), (who was acting as secretary of th e

Royal Society), Wallis explained his interpretation of imaginary roots a s

"mean proportionals" in the context of a discussion on Cardan's rules fo r

solving higher degree equations .

As Wallis reported, he had earlier on had scruples as "too young an al-

gebraist to innovate without example" . But since he had become "more

venturous" in the meantime, he "had several projects" for "designing geo-

metrically" imaginary roots (Rigaud 1841, 578) . It seems that Collins did

not raise objections to Wallis's argumentation .
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It seems, therefore, that Wallis was the first to propose a geometric con-

struction of imaginary quantities but that he remained without an echo and

an impact in his time, or even later on . Foncenex's discussion means a new
beginning of related reflections .

5 Wenceslaus J .G . Karsten

As a concluding element, I will present a little-known but highly instructive
example of a direct impact of Foncenex's mémoire, one which gives a much

more sophisticated geometric construction than those discussed up to now .

It is a paper on the logarithms of negative quantities, by W .J.G . Karsten

(1732-1787), a mathematics professor at one of the smallest German univer -
sities, at Bützow, when he published its first version in 1768 . Karsten was

later professor at Halle, then ranking as the second university in Germany,
when he published a revised version in 1786 .

In this paper, which referred to Foncenex, Karsten, too, discussed the possi -

bility and legitimacy of a geometrical construction of imaginary quantities .

He asserted, firstly, that an algebraically impossible (i .e . imaginary or com-

plex) quantity does not admit a geometrical construction. He continued

nevetheless his reflection, by introducing the distinction that if an alge-

braically impossible quantity is given in the form b \/-1 one can construct
the possible factor b geometrically. Karsten remarked that it would be suf-

ficient to bear in mind that the geometric quantity thus constructed is no t
identical with the quantity sought (Karsten 1786, 379) .

He went on to give, as an example, a particular relation between a hyperbol a
and a circle . Karsten defined an equilateral hyperbola by the equation x 2 -
y2 = 1 and the related circle by x2 + z2 = 1, with y = z//-1 (ibid . ,
380, see figure 5) . In this case, for x = 0 the ordinate is imaginary : y =
f-/-1 = +W-1, and putting CE = CF = 1 yields y = ±CE \/- 1 and
+CE = -y-/-1 ; in general, all values y of the hyperbola for x between
+1 and -1 are imaginary. And Karsten explained that one is able in thi s
way to draw ("zeichnen") the respective ordinates for all these x : these
ordinates are in themselves ("an sich") possible quantities, but they appea r
as imaginary quantities here in the calculus since they cannot intersect the

hyperbola and are hence imaginary, regarded as ordinates of the hyperbola .
Moreover :
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Figure 5 : Fig . No. 46

All ordinates of this circle are imaginary ordinates of the hyperbola ,
since z = ±y N/-1; but also vice-versa, all ordinates of the hyperbola
are imaginary ordinates of the circle, since y = z '/-1. As a conse-
quence, the circle is an imaginary part of the hyperbola, as the hyper -
bola is an imaginary part of the circle . (Karsten 1786, 380-381 ; my
translation, G . S .) . 1 2

And Karsten, who was aware of the periodicity of the circle, even showe d
that there is an infinity of such correspondences (ibid ., 381 ff.) .

Resuming his discussion, Karsten asserted that the geometric design of a n
algebraic formula can never lead to consequences which are different from
those obtained by algebraic methods (ibid ., 385) . Remarkably, by this point
Karsten had skipped over the distinction between `possible' and `impossible '
algebraic terms .

Cajori seems to have been the only one who has discussed Karsten's paper .
He commented in the following terms that he could see no reception :

It looks very much as if transactions of academies had been in som e
cases the safest places for the concealment of scientific articles fro m
the scientific public (Cajori 1913, 111) .

12I am quoting here from the revised later version . Although profoundly revised, the
example of this construction with the hyperbola and the circle had remained unchange d
as compared to the first version (Karsten 1768, 96-98) .
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One has to add that Cajori did not know that Karsten had organized a sec -
ond printing of his paper in 1786, which certainly did not remain unnoticed .

Actually, we have not studied sufficiently the impact of the enormous num -
ber of foundational reflections by mathematicians who are not regarded
as great mathematicians on the evolution of the thinking of the greater
mathematical community. 13 The foundational work of marginal contribu-
tors prepared well the passage from an epistemology favouring a geometrical
relation to real-world existence to an epistemology favouring internal sys-
temic coherence . It is quite paradoxical that this passage paved its way b y
reinforcing the geometrical legitimation of abstract mathematical objects .
Foncenex 's proposal to admit imaginary quantities only as auxiliary means
during the calculation process but not in the final solution provoked th e
eventual breakthrough of their general admission as algebraic concepts .
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Inexplicable? The status of complex numbers in
Britain, 1750-1850

Adrian Rice *

"The history of algebra shows us that nothing is more un -
sound than the rejection of any method which naturall y
arises, on account of one or more apparently valid cases i n
which such method leads to erroneous results . Such cases
should indeed teach caution, but not rejection : if the latte r
had been preferred to the former, negative quantities, an d
still more their square roots, would have been an effectual
bar to the progress of algebra, which would have been con -
fined to that universal arithmetic of which Newton wishe d
it to bear the name: and those immense fields of analysi s

. would have been not so much as discovered, much less
cultivated and settled ." [De Morgan 1842b, 566]

1 Introduction

The period from the mid-18th to the mid-19th century is generally regarde d
as the time when complex numbers were finally accepted as legitimate alge-
braic objects by the mathematical community . It is also widely viewed that
it was the work of Carl Friedrich Gauss (1777-1855) which was primaril y
responsible for bringing these numbers into the mathematical mainstream ,
with his proofs (in 1799, 1815, 1816 and 1849) of the fundamental theore m
of algebra, as well as his description of their geometrical representation i n

* Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505 ,
U .S .A .
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1831, serving as the final impetus to their eventual acceptance . [Lewis 1994 ,
725]

However, while this is basically true, especially for countries at the heart
of the mathematical mainland of western Europe, such as France and Ger -
many, the story of the acceptance of complex numbers was a little different in
the British Isles.' So, although the general recognition of complex numbers
dates from around the same time in Britain as on the rest of the continent ,
there were noticeable differences in the underlying causes . One of these was
the relatively isolated position of British mathematicians arising from thei r
rejection of the continental approach to the calculus and related topics . 2

Thus, while still in touch with developments in mainland Europe, mathe-
maticians in Britain were inevitably slower in assimilating results from th e
continent than might otherwise have been the case .

The country's peripheral geographical position, together with the effects o f
a prolonged war with France, also resulted in the slight delay and limite d
availability of continental publications (especially obscure ones) reachin g
its shores . Consequently, if this paper neglects to draw detailed attentio n
to the work of, for instance, Wessel, Argand or Grassmann, it is becaus e
their British contemporaries would have known little or nothing of them -
although in this regard, they were far from unique . For example, it shoul d
be said that in cases such as that of Grassmann, whose work was almos t
unintelligible to contemporary mathematicians, many of his compatriot s
were equally unacquainted with his work . [Lewis 1977]

One final factor was the distinctive intellectual environment in Britain a t
this time, with its emphasis on wide-ranging amateurism rather than profes-
sional specialisation, in which mathematical questions were often intimatel y
connected to more general philosophical problems . Thus the British debate
over complex numbers has been interpreted as part of "a three-quarters-
of-a-century dialogue on general terms and sound reasoning in which ma-
jor British thinkers intricately interwove mathematical and philosophica l
insights" . [Pycior 1984, 438] In this view, the change in predominant phi-
losophy among British scientists in this period, from Locke to Berkeley t o

'By this, as well as by the word "Britain", I refer to the countries of England, Wales ,
Scotland and Ireland . The latter was officially incorporated as part of Britain by the Ac t
of Union in 1801, although it had been effectively under British rule for centuries .

2 Although this isolation was not as complete as earlier historians have suggested .
[Guicciardini 1989, vii--viii]
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Kant, resulted in a corresponding shift in mathematical point of view to-
wards, among other things, complex numbers .

The purpose of the present article is to survey these changing British at -
titudes during this time, a subject which, while it has been the subject o f
much recent research, still awaits a definitive history. It will therefore pro-
ceed as follows. Following a brief summary of the early history of comple x
numbers (j2), it will review the peculiarly British position towards the m
in the period up to around 1830, in order to determine precisely how the y
eventually came to be accepted in Britain 69-4) . Sections 5 and 6 will the n
highlight the largely forgotten but influential work on imaginary number s
of two British mathematicians, John Warren and John Thomas Graves ,
the details of which have been essentially overlooked by recent historian s
of mathematics . The influence of this work is traced in §7, via the familiar
story of the birth of quaternions, concluding with a survey of how the notio n
of "inexplicable quantities" subsequently came to be extended .

2 The first 200 years

The early history of imaginary and complex numbers is well documented .
Their first recorded use is by Girolamo Cardano (1501-1576) in his Ars
Magna of 1545 . There he poses the problem of dividing 10 into two part s
such that their product is 40, obtaining the solutions 5 + ./-15 and 5 -
\/-15 . However, his attitude towards them was hardly progressive . Indeed ,
given contemporary reservations about the validity of negative numbers in
algebra, it is hardly surprising that Cardano describes the use of these new
forms as involving "mental tortures" [Cardano 1968, 219] .

It was Descartes who, in La Géométrie (1637), introduced the term "imagi-
nary" [Smith and Latham 1954, 175] to describe such entities, 3 although he
himself did not regard them as actual numbers . From the mid-17th centur y
onward, however, mathematicians appear to have had fewer qualms abou t
imaginaries and made frequent use of them . Newton believed that complex
roots were helpful for determining which problems have real or explicable
solutions . He said : "it is just that the Roots of Equations should be ofte n

3 Albert Girard, in 1629, referred to them as "solutions impossibles" - the phrase
"impossible numbers" was widely employed during the eighteenth and early-nineteent h
centuries . It was Gauss who introduced the term "complex" in 1831 . [Gauss 1876, 1021
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impossible, lest they should exhibit the cases of Problems that are impossi-
ble as if they were possible ." [Newton 1728, 193] Yet their epistemologica l
status remained unclear, as reflected in Leibniz's description of them a s
"that amphibian between being and not-being, which we call the imaginar y
root of negative unity" [Leibniz 1858, 357] .

Not surprisingly, considering their ambivalent status, by the early 18th cen-
tury, results concerning negative and complex numbers were the cause o f
heated debates among many of the leading mathematicians . One of the most
vigorous discussions concerned the nature of their logarithms. [Cajori 1913 ,
35-47, 75-84] During this period, Leibniz and the Swiss mathematician Jo-
hann Bernoulli put forward contrasting opinions on the subject, the latte r
proving for example that

2log \/- 1
7r=

-\/- 1

Related results soon followed which quickly established a connection be-
tween logarithms, exponentials and trigonometric functions . In 1714, the
Englishman Roger Cotes (1682-1716) was able to show that

x-/-1 = log(cos x + ,i-1 sin x) ,

which of course is equivalent to Euler's later result

ex`V-1 = cos x + A/-1 sin x.

Another theorem which originated in England at this time was the following ,
which Euler was also able to re-formulate and prove :

(cos x ± 'V-1 sin x)n = cos nx ± //- 1 sin nx, n E R .

This result is implicitly used in the work of the French emigré Abraham
de Moivre (1667-1754), although he never stated it or attempted a proof .
[Schneider 1968 ]

The question of imaginary logarithms was finally resolved by Euler in 1749 .
By writing a complex number x = a + bV-1 as r(cos 0 + \/-1 sin 0), where
r = e°, he obtained

x = ec (cos 0 +

	

sine) = ece

	

( 0+2 7170 .
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Thus

log x = c + -V-1(0 ± 2n7r), nEN orn =0.

He therefore concluded that, when x is positive and real, one value of th e
logarithm will be real, but for negative and imaginary values of x, all log-
arithms will be imaginary. [Euler 1749] But despite this successful resolu-
tion, no one was any clearer as to what complex numbers actually were, o r
whether it was mathematically valid to use them .

Moreover, because of the anti-intuitive nature of the results obtained b y
their use, even those who admitted their value in mathematical research
were liable to make mistakes . For example, although Euler correctly calcu-
lated that = e-7/2 0.20787957 . . . , he omitted to mention the
other values this number could be . Another error, made by Bernoulli an d
D'Alembert, was that (-a)2 = a2 implied log(-a) 2 = log a 2 . This led them
to the result that 2log(-a) = 2 log a, or log(-a) = log a . [Woodhouse 1801 ,
114]

The resulting mixture of correct and erroneous conclusions concerning neg-
ative and complex numbers served only to intensify the confusion . As late a s
1815, the British mathematician Charles Hutton reported that "the arith-
metic of these imaginary quantities has not yet been generally agreed on "
[Hutton 1815, I, 675], contrasting Euler's claim that \/-2 x '/-3 =
with William Emerson's 4 belief that '/-a x '/-b = \/-ab. "And thus," he
concluded, "most of the writers on this part of algebra are pretty equall y
divided." [Hutton 1815, I, 675]

3 The British debate 1750-183 0

The unease with negative and imaginary numbers was especially strong i n
Britain. [Pycior 1997] The primary concern was that the lack of a proper def -
inition of negative numbers, and hence imaginary quantities, rendered the m
meaningless . John Wallis (1616-1703), for example, in his Arithmetica Infin-
itorum (1655) had expressed the view that negatives were not only greate r

4Emerson (1701-1782), an English mathematician, was later described as "the write r
of many works, which had considerable celebrity : but he was as much overrated as Thomas
Simpson was underrated" [De Morgan 1847, 78] .
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than zero but actually larger than infinity, a view also held by Euler over
a century later . [Kline 1972, 253, 593] Yet, throughout the 18th century ,
negative numbers were also variously defined as "quantities less than noth-
ing" and "quantities obtained by the subtraction of a greater quantity fro m
a lesser" . [Pycior 1981, 28] Since it was almost universally acknowledged
that there existed no adequate justification for either negatives or complex
numbers, it is hardly surprising that opposition to their employment wa s
eventually expressed .

This came in the form of A dissertation on the use of the negative sign
in algebra, published in 1758 by Francis Maseres (1731-1824), a Fellow o f
Clare College, Cambridge and the Royal Society of London . In this work
he advocated the complete rejection of all negative numbers as solutions
to equations or algebraic processes . His purpose, as he explained in the
preface, was to "remove from some of the less abstruse parts of Algebra ,
the difficulties that have arisen therein from the too extensive use of the
Negative Sign, and to explain them, without considering the Negative Sig n
in any other light than as the mark of the subtraction of a lesser quantit y
from a greater" . [Maseres 1758, i]

He went on to demonstrate how to evade such difficulties by separatin g
those equations with negative roots from the rest and only admitting thei r
positive roots . In Maseres' algebra, therefore, there was no place for negative
(and therefore also imaginary) roots to any form of equation since "they
serve only, as far as I am able to judge, to puzzle the whole doctrine o f
equations, and to render obscure and mysterious things that are in their
own nature exceeding plain and simple . . . " In his opinion, "It were to be
wished therefore that negative roots had never been admitted into algebra ,
or were again discarded from it" . [Maseres 1758, 34 ]

Although the Dissertation was somewhat radical in its emphatic denial o f
the validity of negative concepts, and although Nlaseres' extreme opinion s
were not shared by the majority of his contemporaries, it should not be
assumed that he or his work were ignored or derided. On the contrary,
Maseres was a competent and respected mathematician who, two years later ,
would compete (albeit unsuccessfully) for the prestigious Lucasian chair o f
mathematics at Cambridge . [Pycior 1997, 306-7] Indeed, the fact that a
man of his intellectual stature was prepared to make such a bold statement
added impetus to the need felt among the British to justify the obscur e
notions of negatives and imaginaries .
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Towards the end of the century, Maseres was joined in his attack of thes e
"impossible" quantities by another Cambridge mathematician, William
Frend (1757-1841), 5 whose Principles of algebra, published in two volume s
in 1796 and 1799, endorsed the abridged interpretation of the subject . In the
Principles, Frend criticised foregoing algebra texts, including both Newton' s
Arithmetica Universalis (1707) and Maclaurin's Treatise of Algebra (1742) ,
for attempting to define negatives by resorting to analogy, such as financia l
debts or directed lines : "when a person cannot explain the principles of a
science without reference to metaphor, the probability is, that he has neve r
thought accurately upon the subject" . [Fend 1796, x]

Supporting Maseres ' contention that negative and imaginary numbers were
"a parcel of algebraick quantities, of which our understandings cannot for m
any idea" [Maseres 1778, 947], Fend branded such concepts as "jargon ,
at which common sense recoils", adding that "like many other figments, i t
finds the most strenuous supporters among those who love to take things
upon trust, and hate the labour of a serious thought" . [Frend 1796, xi] His
chief concern was that if these poorly-defined concepts were used in algebra ,
even valid reasoning could produce incorrect results : "from false notions ,
falsehood must necessarily flow, if the reasoning employed upon them ha s
been properly conducted" . [Frend 1798, 3 ]

As a mark of his endorsement of Fend's work, Maseres provided an ap-
pendix on the solution of cubic and quartic equations . Here he observe d
that the treatment of this subject by previous authors "has been made th e
subject of much mysterious and fantastick reasoning, (or, perhaps, I ought
rather to say, discoursing, since it deserves not to be called reasoning,) con-
cerning negative and impossible quantities . . . All these writers have . . .
treated this subject with an astonishing degree of obscurity, and almost a s
if they had been contending with each other which should treat it mos t
obscurely" . [Frend 1796, 253-4] In consequence, he claimed, "the Science o f
Algebra, or Universal Arithmetick, has been disgraced and rendered obscur e
and difficult, and disgusting to men of a just taste for accurate reasoning" .
[1Vlaseres 1800, 1v ]

While Maseres and Frend may have been in the minority with their belief i n
the necessity of excluding negatives and imaginaries from algebra, they were
very much in harmony with the majority of the mathematical community

5 For a biography of Frend, see Knight 1971 .
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in their diagnosis of the problem . In the 75 years following Maseres' initia l
attack, a number of works by prominent British mathematicians responde d
to the anti-negative argument . Indeed, the last half of the 18th century an d
the opening third of the 19th saw the question of negative and imaginar y
numbers occupy a major place in the discussions of British mathematicians ,
philosophers and men of science . However, the overall consensus was that ,
although a satisfactory definition was still absent, their utility as indispens-
able mathematical tools meant that they could not be abandoned .

One of the first to come to their defence was the Scottish mathematician
John Playfair (1748-1819) who, in a paper of 1778, presented his readers
with the following paradox: "If the operations of this imaginary arithmeti c
are unintelligible, why are they not also useless?" [Playfair 1778, 321] His
answer was that although imaginary numbers, and the operations performe d
on them, have no direct meaning themselves, they act as "notes of referenc e
to others which are significant" . [Playfair 1778, 326] Thus, although the re -
sults obtained through them are justified by argument from analogy, this
does not impair their validity. Rather, the use of negatives and imaginarie s
serves as a means of deducing meaningful results when no other method i s
available . "For this reason, many researches concerning it, which in them-
selves might be deemed absurd, are nevertheless not destitute of utility. "
[Playfair 1778, 342]

In the following decade, William Greenfield, professor of rhetoric at the Uni -
versity of Edinburgh, entered the controversy. Although he conceded that
"the Method of negative quantities . . . is supported, rather by inductio n
and analogy, than by mathematical demonstration," [Greenfield 1788, 134 -
5] he was opposed to the idea of their exclusion from mathematics . While
agreeing that "the whole business of algebra might be carried on without
the consideration of the negative roots," he stressed that since their ad -
mission "evidently affords so great elegance and universality to algebraical
solutions; to find our author [1laseres] gravely declaring that he can se e
no advantage in it, is perfectly astonishing" . [Greenfield 1788, 136] Indeed ,
Greenfield goes on to rebuke Maseres for failing to "exert his industry an d
ingenuity, rather to confirm than to destroy; rather to demonstrate, how
far we might rely on the method of negative quantities, than to overturn a t
once so great a part of the labours of the modern algebraists" . [Greenfield
1788, 136]

The debate continued into the 19th century with two works by a young
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Cambridge mathematician, Robert Woodhouse (1773-1827) ; a paper pub-
lished by the Royal Society in 1801 and a textbook entitled The Principles of
Analytical Calculation which followed two years later . In the first of these ,
Woodhouse attempted to demonstrate why results obtained by means o f
imaginary numbers were necessarily true . To do this, he discarded Play-
fair's appeal to analogy, preferring to justify imaginaries by stressing the
validity of their formal laws of operation as opposed to the meaning of the
individual characters operated upon . As he argued, "a conclusion expresse d
by certain characters and signs, if general, must be true in each particula r
case that presents itself, on assigning specific values to the signs " . [Wood-
house 1801, 93 ]

Thus, he asserted that since (a+b) (c+d) and ac+ad+bc+bd are algebraically
equivalent for all real a, b, c and d, replacing the real quantities b and d with
the imaginary numbers bV-1 and d-/-1 would lead to the conclusion that
(a + b-/-1)(c + d\/-1) and ac + ad\/-1 + cb\/-1 - bd are also equivalent
forms. But, he said, these latter expressions are "not proved equivalent, but
put so, by extending the rule demonstrated for the signs of real quantitie s
to characters that are insignificant" . [Woodhouse 1801, 93] Similarly, he
claimed, just as (a+b) x was regarded as being equivalent to ax +xax-l b+ . . .
so (a+b)x 3-1 was likewise equivalent to ax 'V-l +x~/-lax -1 1b+ . . . "not
by any proof, but by the extension of a rule" . [Woodhouse 1803, 8-9 ]

Thus, if either negative or imaginary quantities were to be made the sub-
jects of mathematical demonstration, "it must be in consequence of som e
arbitrary rule" . [Woodhouse 1803, 7] But since these rules had already bee n
established for general terms, regardless of their meaning, he could therefor e
conclude that "although the symbol \/-1 be beyond the power of arithmeti-
cal computation, the operations in which it is introduced are intelligible, an d
deserve, if any operations do, the name of reasoning" . 6 [Woodhouse 1801 ,
108]

An alternative defence was offered by the French expatriate Adrien-Quenti n
Buée in 1806. Unlike Woodhouse, however, he emphasised the need fo r
meaning in algebra . Dividing it into "universal arithmetic" and a "mathe-

6It is interesting to note that, despite his vigorous defence of the use of comple x
numbers in algebra, in a letter to Maseres, dated November 16, 1801, Woodhouse writes :
"Till the doctrines of negative and imaginary quantities are better taught than they ar e
at present taught in the University of Cambridge, I agree with you that they had bette r
not be taught" . [De Morgan 1842a, 147]
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matical language", where the symbols 1- and - were also characterised b y
the vaguely-defined notion of "quality", Buée returned to Playfair's philos-
ophy of analogy to make his case . Thus "when one says that a negative
quantity is smaller than zero . . . it is not the quantity which is smaller than
zero ; it is the quality which is inferior to nullity . For example, if my debt s
exceed my assets, I am poorer than if I had neither assets nor debts" . [Buée
1806, 25] While this paper contained some original ideas on the meaning an d
interpretation of both negative and imaginary quantities (including geomet-
ric representation), it was "presented in a very vague and unscientific for m
. . . [and] accompanied by many other attempts which were either imperfec t
or altogether erroneous" . [Peacock 1830, xxvii]

It was in a critique of Buée's memoir, published 30 years after his initia l
foray, that Playfair made a second contribution to the debate . Rejecting al l
intervening explanations, he insisted that while the utility of imaginaries
was certain, neither the numbers themselves nor the operations performe d
on them could be assigned any meaning . He illustrated his point by con-
sidering the operation of dividing by an imaginary number : "what is meant
by dividing by an impossible quantity, or telling how often an impossible
quantity contains another ; if the quantity be impossible, to multiply or di-
vide by it, or to make it the subject of any arithmetical operation, must b e
impossible also . The operations performed with the symbols are therefor e
destitute of meaning ; they are as imaginary as the symbols themselves . "
[Playfair 1808, 315 ]

And so the debate rumbled on for the next twenty years, with additional
articles and textbooks adding further opinions to those already mentioned .
For the most part, however, these contained mainly reiterations or mino r
variations of views already aired [Bonnycastle 1820, II, 24-25n ; Hutton 1815,
I, 675, II, 93] . The final significant contribution came from Davies Gilber t
(1767-1839) in his valedictory address as President of the Royal Society i n
1830 . Although not a practising mathematician, Gilbert was able to offe r
some perceptive remarks on the current status of imaginaries in mathe-
matics . He referred to them as "Creations merely of arbitrary definition,
endowed with properties at the pleasure of him that defines them" . [Gilbert
1831, 93] Their use in mathematics is thus perfectly justified since, althoug h
an imaginary quantity has only potential existence while the V-1-symbol i s
attached to the -1, "it stands ready to exist in energy whenever that sign
is removed" . [Gilbert 1831, 94]
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The year of Gilbert's address marks the end of three-quarters of a century o f
dispute over the status, meaning, interpretation and validity of negative and
imaginary numbers . This was not because interest in the subject had wane d
or a consensus had been reached, but because of the publication of a new
work which offered a new approach to the practice of algebra and effectivel y
rendered the question of the legitimacy of complex numbers immaterial .
That work was A Treatise on Algebra by George Peacock (1791-1858), th e
first publication to propose a purely symbolic approach to the subject	
although, as we shall see, some aspects of the new philosophy were not
entirely novel .

4 Peacock's symbolism : a new approach?

The algebraic work of George Peacock 7 represented the most significant
contribution to the (British) debate thus far . This is largely to be found i n
two main sources . The first was his aforementioned Treatise on Algebra, pub-
lished in 1830, of which a second edition, substantially revised and extended ,
appeared in two volumes in 1842 and 1845 . His other principal publication
was a book-length "Report on the recent progress and present state of cer-
tain branches of analysis", which he presented at the third meeting of th e
British Association for the Advancement of Science in 1833 . With these two
works, Peacock initiated a different, more abstract, algebraic methodology ,
which fundamentally altered the way the subject was perceived in Britain .

In common with recent authors on the subject, Peacock was in full agree -
ment with the claims of Maseres and Frend regarding the inadequate justifi-
cation of negatives and imaginary numbers in mathematics . However, he was
also adamant that any restriction which limited algebra merely to a for m
of universal arithmetic would be equally unsatisfactory. This, he explained ,
was because of the "great multitude of algebraical results and propositions ,
of unquestionable value and of unquestionable consistency with each other ,
which were irreconcilable with such a system, or, at all events, not deducibl e
from it, . . . and which made it necessary to consider negative and even im -
possible quantities as having a real existence in algebra, however vain migh t
be the attempt to interpret their meaning" . [Peacock 1833, 190-1 ]

' Like Maseres, Frend and Woodhouse, Peacock was a Cambridge man, being a fello w
and tutor of Trinity College, Cambridge, and later the University's Lowndean professo r
of mathematics .
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The root of the problem, he decided, was that "Algebra has always bee n
considered as merely such a modification of Arithmetic as arose from th e
use of symbolical language, and the operations of one science have bee n
transferred to the other without any statement of an extension of thei r
meaning and application" . [Peacock 1830, vi] This had led to the erroneous
practice of using arithmetical symbols in algebra as if they represented th e
same operations with fewer limitations . The result was that, by appealing
to a basis in arithmetic, mathematicians had enlarged the scope of thes e
operations without adequate justification . In other words, they had taken a
special case and used it to justify a generalisation .

Peacock's solution was to divide algebra into two distinct subjects, arith-
metical and symbolical . Arithmetical algebra was basically the system o f
universal arithmetic insisted upon by Maseres and Frend . Here, symbol s
could only represent positive real numbers, "whether abstract or concrete ,
whole or fractional, and the operations to which they are subject are as-
sumed to be identical in meaning and extent with the operations of th e
same name in common Arithmetic" . [Peacock 1842-5, II, 1] Symbolical al-
gebra, on the other hand, was a far more abstract system "which regard s
the combinations of signs and symbols only, according to determinate laws ,
which are altogether independent of the specific values of the symbols them -
selves" . [Peacock 1830, vi ]

In this second system, the symbols could be not only "the general repre-
sentatives of numbers, but of every species of quantity" . [Peacock 1830, ix]

Moreover, it was now possible to assume that operations such as subtraction
or extracting square roots were possible in all cases, thus enabling negative
and imaginary quantities to be perfectly legitimate within this system . The
emphasis now, then, was not on what symbols such as -a or i/-1 actually
meant but under what laws they operated . Thus, for Peacock, symbolical
algebra was a subject based not on a generalisation of arithmetical concepts ,
but on a series of arbitrary assumptions envisaged as "a means of evadin g
a difficulty which results from the application of arithmetical operation s
to general symbols" . [Peacock 1830, ix] In short, given that the question
posed was to legitimise negatives and imaginaries in algebra, Peacock had
answered, not by attempting to clarify the meaning of such entities, but by
redefining what was meant by algebra itself .

Yet, although Peacock's views and ideology were certainly different to wha t
had gone before, it has been successfully argued that he was probably influ-
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enced by previous (unpublished) work by Charles Babbage [Dubbey 1977 ;
1978, 93-130], and that both Peacock and Babbage can be seen to be build -
ing on ideas previously laid down by Woodhouse [Becher 1980 ; Nagel 1935 ,
446] . In turn, Woodhouse can be said to owe an intellectual debt to the
writings of George Berkeley, while Babbage was deeply affected by the phi-
losophy of Dugald Stewart . [Pycior 1984, 434-38 ; Sherry 1991, 47-54] In -
deed, looking back, one can even see the germ of a symbolic philosophy in
Playfair's paper of 1778 : "In algebra again every magnitude being denote d
by an artificial symbol, to which it has no resemblance, is liable, on som e
occasions, to be neglected, while the symbol may become the sole object o f
attention ." [Playfair 1778, 319 ]

In his separation of algebra into two distinct parts, Peacock's approach
also displays the influence of Buée's paper of 1806 . Indeed, by virtue of hi s
earlier division of algebra into "universal arithmetic" and a more general
"mathematical language", Buée was later recognised as being "though in an
imperfect manner, . . . the first formal maintainer of that exposition which
remove[d] the long standing difficulty [of negative and imaginary numbers]" .
[De Morgan 1842a, 151] But Buée's work, flawed though it undoubtedly was ,
exercised influence not only on the innovative work of Peacock with regard
to algebra, but also on a different attempt to justify imaginary numbers ,
this time by means of geometry.

5 Warren and the geometrical approach

The earliest hint at the possibility of a two-dimensional representation o f
complex numbers was in John Wallis's Treatise of Algebra of 1685 . There ,
he had demonstrated a procedure for determining the real coefficients of th e
complex roots of quadratic equations, by means of two perpendicular axes ,
one for the reals and one for the imaginaries - although this latter was no t
necessarily the y-axis . [Wallis 1685, 266-73] However, while correct, Wallis' s
method, and others formulated during the 18th century, failed either to exer t
any influence on further developments or to persuade the mathematica l
community of the validity of complex numbers .

Thus, despite its great merit, when the Norwegian Caspar Wessel (1745 -
1818) published his paper "On the analytic representation of direction"
in 1799, it received virtually no attention until its republication nearly a
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hundred years later . A similar fate befell the work of Jean-Robert Argand .
While his Essai sur une manière de représenter les quantités imaginaire s
dans les constructions géométriques (1806) did provoke some discussion o n
the subject in the French journal Annales des mathématiques around 1813-
15, its immediate effect was otherwise entirely negligible . 8

Not surprisingly, therefore, neither Wessel's paper nor Argand's Essai had
any influence on the debate in Britain . Indeed, it is almost certain that none
but a tiny fraction of British mathematicians were aware of the existenc e
of either work, and still fewer had actually read them . 9 In Britain, it was
Buée's paper (coincidentally published in the same year as Argand's work )
which appears to have been the first to offer a new approach to the geo-
metrical representation of complex numbers . Like Argand, Buée interpreted
the symbol A/-1 as representing perpendicularity in geometry. Thus pass-
ing from a point x on the real axis to a point -x on the same line could
be achieved by rotating the point through a right angle and then repeatin g
the process, which would be equivalent to multiplying x by -/-1 and then
again by '/-1, to obtain -x.

However, as has been mentioned, the clarity of the explanation and th e
rigor of some of Buée's arguments left a good deal to be desired, bein g
accompanied by much that was unintelligible or simply wrong, such as a
"proof" that (-/-1) 'n =

	

[Buée 1806, 67-71] Indeed, in the preface
to his Treatise, Peacock pointed out that "even in those cases in which his
conclusions were correct, his reasonings were insufficient to establish them" .
Nevertheless, he still acknowledged the influence of the paper "as having firs t
directed my attention to this subject" . [Peacock 1830, xxvii ]

It would appear, however, that Buée's influence did not extend much further ,
since the next significant work to be published on the subject made n o
reference to him (or indeed any other previous writers on the subject) a t
all . This work, A treatise on the geometrical representation of the square
roots of negative quantities (1828) was written by John Warren (1796-1852) ,
yet another Cambridge mathematician, this time from Jesus College .'° The

8 See the paper by Gert Schubring in this volume .
9 De Morgan listed Argand's Essai among the works on this topic "which I have eithe r

not seen, or cannot immediately obtain" [De Morgan 1849, vi], while Hamilton admitted
that he knew of it "only by Dr . Peacock's mention of it in his Report [of 18331" [Hamilto n
1853, 31 ]

' °Warren's explanation for the absence of any citation to Buée was that he was "not
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book was original in many ways, not least in its notation . Warren expressed
a line of length a, inclined to the real line at an angle A (< 360 0 ), as ô . More
generally, pa denoted a line of length a inclined at an angle of A+p .360° . So
that, "if (, )m/n

= b, b is inclined to unity at an angle = n (A + p.360°) . "
[Warren 1828, 29]

Using this convention, Warren was able to prove that both roots of - 1
represented anticlockwise rotations of 90° and 270°, respectively :

2 1 has two values, viz . (01)1/2 and 11 )
1/2 '

180° ,

2(180°) = 90°

2 (180° + 360°) = 270°

Taking this concept further still, he demonstrated that if c = e(1) n , for
e > 0 and 0 < n < 1, then when n < 4 , c would be of the form +a+ b\/- l ;
similarly, for ,14 < n < , c = -a + b,/-l, and so on. [Warren 1828, 64 ]
Warren's Treatise thus gave the most comprehensive rationale to date (in
English) for the geometrical representation of complex numbers ; and while
there were omissions, 11 it was praised for having "completely succeeded in
giving an interpretation of the roots of unity, when attached to symbol s
which denote lines in Geometry" . [Peacock 1830, xxvii ]

The work of John Warren, though virtually unheard of outside Britain, an d
largely forgotten within twenty years inside, was otherwise significant in
two respects . Firstly, it would later influence Hamilton in his research on
algebraic triples and hence provide a starting point from which the theory
of quaternions would develop . Secondly, it marks the genesis of a change i n
aware of the existence of M . Buée's paper till November 1827, when my treatise was i n
the press" . [Warren 1829a, 251 ]

11 The Treatise contained no interpretation of numbers of the form (a +
an oversight not realised by Warren until he read C .V. Mourey's La vraie théorie de s
quantités négatives et des quantités prétendues imaginaires (Paris, 1828) .

Now -1 is inclined to unity at an angle =
1 _1) 1/ 2

1 1/ 2and ( 1 ) 	 _

[Hence] if (01)1/2 be represented by

	

\/- 1

(-11) 1 / 2 will be represented by -

[Warren 1828, 59-60]
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attitude amongst British mathematicians - an attitude completely share d
by Peacock - in which the justification of complex numbers is only part o f
a broader framework which is more concerned with how mathematics ca n
be extended once their use is permitted .

Indeed, if anything, Warren's work was less an attempt to justify "impos-
sible" numbers than a bid to demonstrate their geometric utility . In fact
he rarely used the word "impossible" to describe complex numbers, since
"by the word `impossible' no impossibility is necessarily implied, but on th e
contrary, . . . the quantities called impossible have a real existence, and are
capable of geometric representation" . [Warren 1829b, 340] This progressiv e
attitude characterised much of British work on complex numbers from thi s
point onwards. In British eyes, thanks to Warren and Peacock, the veracity
of their use in both algebra and geometry was now established . 12 The ques-
tion now was to discover in what ways the subject could be extended . The
first area considered was that of logarithms .

6 A new logarithmic controvers y

As was seen in §2, Euler had successfully solved the contentious problem o f
imaginary logarithms in 1749 . This had shown that the general logarithm i s
dependent on an arbitrary non-negative integer . However, the late 1820s and
early 1830s saw a minor reprise of the controversy in Britain . It began with
research undertaken by a young Irish mathematician by the name of Joh n
Thomas Graves (1806-1870) . A lawyer by profession, Graves had studied
mathematics at Trinity College, Dublin, and while there had formed a strong
and lasting friendship with fellow student William Rowan Hamilton (1805-
1865) . For the next forty years, their regular correspondence would act as a
mutual source of stimulation for each other's mathematical work .

In 1826, Graves obtained a result that in the most general case of a, logarith m
of a complex number taken to a complex base, two integers are necessary

12 Not all British mathematicians were immediately convinced, however . Taking the ex-
ample of Augustus De Morgan, Helena Pycior points out that he "seems to have full y
recognised only in the mid-1830s that the geometrical representation of the complex num-
bers made a sound basis for legitimation of the imaginaries and justified the symbolica l
approach itself" . [Pycior 1983, 220] For a discussion of the reservations expressed by D e
Morgan, Frend, William Whewell and others with regard to symbolic algebra, see Pycio r
1982 .
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to ascertain the solution. After lengthy consultation with Hamilton, Grave s
submitted the result to the Royal Society for publication in their Philosoph-
ical Transactions in 1828, but the referees (who included George Peacock )
remained unconvinced by the proof. The problem was that Graves' argu-
ment was long, circuitous and very difficult to follow. Had it not been for the
intervention of Hamilton on his friend's behalf, the paper would certainl y
have been rejected . [Hankins 1980, 262] Thanks to his persuasion, it finally
appeared in 1829 under the title "An attempt to rectify the inaccuracy o f
some logarithmic formulæ" .

The crux of Graves' argument ran as follows: Starting from the premises

f (0) = cos 0 + v/-1 sin 0 (1)
f(0)=1+ 3-1 .0+

	

2.8~ Th +-

	

+ l (2 )

(3 )

(4 )

(5 )

(6)

f (x0) = a value of If ( 0 )}x
f-1 f (0) = 2nnr + 0

f {x(2nir + 0)} = { f (0)} x , where n is an integer, 1 3

he let y = a' and

a = f (0) .

Therefore, by (5) ,

But, by (4) and (6),

ax = { f (0)} x = f{x(2n7r + 0)} .

2n7 + 0= f-1 f(0) = f -1 (a) .

Therefore

y = ax = f(xf-1(a))• (7 )

Re-arranging gave

log

	

= f'(Y)

	

1 4loge y = (8 )a

	

f
-1 (a )

13Graves credits premises (1) and (2) to Euler, (3) and (4) to de Moivre, and (5) to
Louis Poinsot (1777-1859), although he admits that his knowledge of the latter's research
"is derived not from the original Essays, but from abstracts of their contents given in the
Dublin Philosophical Journal" . [Graves 1829, 183]
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From (2),

.f(-,/-1)=++ . . .+	 1	 + . . . =e.
1 .2 . . . n

Therefore, by (4),

r1(e) 2nnr - \/-1 .

So the logarithms of k2 (positive) were given b y

log e (k2) =
	 f-1

(k
2 )	

	 11-k 2

	

1

	

1-k2 2nF 1
f - 1 (k2 ) = 2m7r + 2~/-1

1 + k 2 +
. . . + 2n + 1 (1 + k 2 )

	

+ . . .

where m is an integer, which equals 2m~r when k2 = 1. Thus, he said, by
(9), if k 2 = 1, the logarithms of unity will be given by

2n

	

/1 .
The announcement of this result provoked a series of publications both sup-
porting and opposing it . Overseas, work by the French and German mathe-
maticians Alexandre Vincent and Martin Ohm arrived at the same conclu-
sion . 15 At home, however, Peacock, in his Report to the British Associatio n
of 1833, continued to express his doubts about its validity [Peacock 1833 ,
266-7n; Cajori 1913, 178] Support came once again from Hamilton who ,
at the Association's meeting in Edinburgh the following year, defended hi s
friend's theory, offering a proof which confirmed the expression Graves ha d
obtained . [Hamilton 1834; Hankins 1980, 391-6]

Objections still lingered, however, although less about the final result than
the methods Graves had used to obtain it . Doubts as to the soundnes s

14 Note that, by (4), there are an infinite number of possible values here, since f -l (y) =
f -1 f (xf -1 (a)) = 2nn + xf -1 (a) . We must assume that Graves is considering the cas e
where n = 0 .

15 Vincent, a professor at the Royal College at Reims, published results in 1832 which
corroborated those obtained by Graves . [Vincent 1832] The results of Ohm (a professor
at Berlin), which actually pre-dated those of Graves, were published in volume two o f
his Versuch eines vollkommen consequenten Systems der Mathematik in 1823 ; although
British mathematicians only learned of them via the second edition . [Ohm 1829 ]

2nir -

	

1

	

(9)

Then, by a series of elaborate substitutions, Maclaurin expansions and fur-
ther manipulation, Graves arrived at the expression
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of the proof were expressed by Augustus De Morgan (1806-1871), profes-
sor of mathematics at University College London, in 1836. Pointing out
that Graves had used the premise f (0) = cos 0 + \/-1 sin O to prove that
{ f (0)}x = f (x f-1 (a)), De Morgan observed that "this is equally true where
f (0) = c c°, c having any value whatever, as appears sufficiently if the com -
mon processes of Algebra be true" . [De Morgan 1836a, 62n]

Graves responded by issuing an alternative (and much shorter) proof, thi s
	 2m, r

time designed "to show that 1 is among the values of e 2n,r-,f'-f ." [Graves
1836, 281] This time his premises were the standard Maclaurin expansion s
for cos x and sin x, together with the assumptions that

x x2

	

x3

	

y y
+

	

x

	

2

{1

		

y 3

+ 1 + 1 .2 + 1.2 .3
. . .
}{1 + 1 + 1 .2 + 1 .2 .3 +

.

= 1 + x+y + (x+y) 2 + ( x + y)
3

+ . . .
1

	

1 .2

	

1 .2 . 3
that

(1 x x2

	

x 3
exlx+ l

+ 1.2 + 1 .2 .3+
. .

)

and that

lx = cos(2wx7r) + -/-1 sin(2wx7r), for w = 0, +1, +2, +3, . . .

From these, it immediately followed that

(

	

\/-1 .2wx7r W-1 .2wx7r) 2

	

(

	

x

	

x2
ex ={l+

	

1

	

+

	

1 .2

	

+ . . .}x{1+1+1 .2+
. .

.} .

Therefore

ex
= 1 + (\/-1 .2w7r + 1)x + (\/-1 .2w7r + 1) 2 x 2

1

	

1 . 2
+ (-/-1 .2w7r + 1)3x3 +

1 .2 . 3
Letting x = 2m	=JI (where m and n are both integers) resulted in th e
expansion

+ / 2w7r - N/=1 \ 2 (~/-1 .2m7r)2
+

2n7r - ~/ 1

	

1 . 2

	 2m~r	

e 2,17r-,/ -'--L-T = 1 +	 	 J(2wlr - ~/-11 -V-1.2m7r
2n7r - -V-1

	

1
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1 +
A/-1 .2m'Tr + (\/-1.2m7r)2 + (\/-1 .2m7r)3 + . . .

1

	

1 .2

	

1 .2 . 3
cos(2rn7r) +

	

sin(2m'T)

1 .

This appeared to satisfy De Morgan, who declared "I see no further ob-
jection to Mr . Graves's system, but quite the contrary . . . the extension
may be highly useful, and I am happy to bear testimony to the ingenuit y
which suggested it, and the talent with which it has been carried out" .1 6

[De Morgan 1836b, 253] This left Peacock to be convinced, a feat which wa s
achieved in 1837 by a young Scottish mathematician Duncan Farquharson
Gregory (1813-1844) . 17 In the first edition of his Treatise, Peacock had as-
serted the existence of logarithmic values common to positive and negative
numbers [Peacock 1830, 569-70] ; but in a paper published in 1837, afte r
providing a further proof of Graves' formula, the young Gregory went on t o
prove the fallacy in Peacock's argument . [Gregory 1837, 134-5] Peacock' s
second edition of 1845 duly contained an acknowledgement of his mistake
and another proof of the Graves result . [Peacock 1842-5, 444-5 ]

Given this eventual acceptance of Graves' generalisation, it is not unnat-
ural at this point to ask why it is rarely (if ever) used . After all, modern
texts on complex function theory employ only the Eulerian definition of th e
logarithm of a complex number, and make no reference to any extende d
formulation . The reason is simple : not only was the generalised version un -
necessarily complicated, but it was also superfluous the standard Eulerian
logarithmic formulæ are perfectly sufficient to solve exponential equation s
in complex numbers . In short, no real advantage could be gained from usin g
Graves' system in preference to that of Euler .

Nevertheless, the extension of the theory of imaginary logarithms gives an
indication of the renewed interest in Britain at this time in complex num-
bers, whose existence and legitimacy were now no longer in question. But
this interest extended further ; indeed "from the 1820s through the 1840 s

16Graves and De Morgan were later colleagues at University College, when Graves
served as professor of jurisprudence between 1839 and 1843 .

17A great-great-grandson of the great 17th-century mathematician James Gregory
(1638-1675) .

So, when w = n ,

	 2mr
e 2n,r-3-1
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the study of the foundations of algebra became almost a British monopoly" .
[Hankins 1980, 249] In this respect, as we shall see, the work of both Warre n
and Graves was significant not merely in its own right as innovative mathe-
matical research, but also as a catalyst which would eventually lead to one
of the most significant mathematical discoveries of the 19th century.

7 "New inexplicables" : the search for triples

The inspiration (at least in part) behind Graves' work on logarithms had
been the idea that there might be other imaginary numbers . Although
Hamilton was sceptical that new imaginaries could be found in that area ,
his interest in complex numbers was aroused by reading Warren's Trea-
tise in 1829 (at Graves' instigation) . [Hankins 1980, 262] Together with th e
prompting of Graves, it was this work which suggested to him the possibilit y
of extending the representation of complex numbers from a plane to three -
dimensional space . As he later recalled, "To suggestions from that Treatise I
gladly acknowledge myself to have been indebted" . [Hamilton 1853, 31] Thu s
began the search for the new algebraic entity of "hypercomplex" number s
capable of three-dimensional geometrical representation .

Although involved in the same area of research as those so far mentione d
(Peacock, Graves, De Morgan, Gregory), Hamilton's philosophy of the sub-
ject was entirely different . 18 As he said to Graves in 1835, "we belong to
opposite poles in Algebra; since you, like Peacock, seem to consider Alge -
bra as a `System of Signs and of their combinations,' somewhat analogou s
to syllogisms expressed in letters ; while I am never satisfied unless I thin k
that I can look beyond or through the signs to the things signifie d" . [Graves
1882-9, II, 143] For an opponent of Peacock's formal approach such a s
Hamilton, algebra was too significant to be reduced to the mere manip-
ulation of arbitrary symbols . Thus, while agreeing that complex number s
were mathematically sound, he maintained that they had yet to be give n
meaning.

18 Because of his shifting attitudes towards algebra, it has been argued that De Morgan' s
views on the foundations of the subject both differed from [Hankins 1980, 249-50], and
moderately agreed with [Pycior 1983, 223-4 ; Nagel 1935, 4611 those of Hamilton . Similarly,
it has been shown that Hamilton's initial opposition to symbolical algebra softened in later
years . [Koppelmann 1971, 226 ; Hankins 1980, 310-11]
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Of course, for Peacock and his followers, one could be sure that the result s
obtained in symbolical algebra were both true and meaningful . If they had
been derived by means of a consistent set of rules of combination and op-
eration, then they could be viewed as correct within that system . However ,
in order that the results obtained were meaningful, Peacock imposed th e
arbitrary restriction that, the operations of symbolical algebra must obey
the same fundamental rules as those of arithmetic, including what are no w
known as the commutative and distributive laws . 19 He called this criterion
the "Principle of the Permanence of Equivalent Forms" . 20 [Peacock 1830 ,
104, 1842-5, II, 59 ]

Hamilton's priorities were completely different . Whereas Peacock playe d
down the meaning of the individual symbols, emphasising the rules under
which they operated, Hamilton aspired to give meaning to the algebrai c
objects to be sure of obtaining interpretable results. Thus, his view of alge-
bra was "a science of meaningful symbols governed by necessary principle s
stemming from intuition" . [Pycior 1981, 41] In this approach, he showed the
influence of the philosophy of Immanuel Kant, who, in his Critique of Pure
Reason (1781), had stated that the intuitive notion of time served as the
basis for both arithmetic and algebra. From this primitive intuition, Hamil-
ton sought to define the concept of real numbers, and hence the foundation s
of a meaningful algebra .

He did this in a lengthy paper (written in sections between 1833 and 1835 ,
and published in 1837) entitled the "Theory of conjugate functions, or al-
gebraic couples ; with a preliminary and elementary essay on algebra as the
science of pure time" . By basing number on the notion of steps in time
from an arbitrary point of origin, Hamilton was able to easily define bot h
positive and negative numbers, since a negative number value would simpl y

19 The terms commutative and distributive were introduced by François-Joseph Servoi s
(1767-1847) in 1814. The laws were used by Peacock in his Treatise, but it was Gregory
who was the first to mention them by name in an English work. [Gregory 1838, 211 ]
The associative law, although implicitly present in preceding works, was first stated by
Hamilton in 1843 . [Hamilton 1967, 114]

20 Peacock's statement of this principle varied slightly in the two versions of his Treatise.
The 1830 version reads as follows: "Whatever form is Algebraically equivalent to another ,
when expressed in general symbols, must be true, whatever those symbols denote . What-
ever equivalent form is discoverable in arithmetical Algebra considered as the science o f
suggestion, when the symbols are general in their form, though specific in their value, will
continue to be an equivalent form when the symbols are general in their nature as well a s
in their form ." [Peacock 1830, 104]
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represent a time-step in the opposite direction to that of a positive number .
However, that still left the difficult problem of giving a meaningful definitio n
of complex numbers .

Hamilton solved this by defining number couples (a, b), where a and b were
two real numbers, 21 or moments in time. Defining operations such as

(a,b)+(x,y) = (a+x,b+y) ,
(a, b) .(x, y) = (ax - by, ay + bx) ,

(a, b)

	

C
ax + by bx - ay 1

(x , y)

	

x2 + y2 ' x2 + y2 '

he was able to show that, not only do they give consistent results, but that
any real couple (a, b) is exactly equivalent to the complex number a+b \/-1
in its mode of operation . Thus, by substituting these ordered couples of
(meaningful) real numbers for complex expressions, the whole question o f
giving meaning to imaginary quantities was made redundant . But by th e
time Hamilton published his theory of number couples, the justificatio n
of imaginaries was no longer of importance ; indeed "it was not clear that
Hamilton had created anything more than a new representation of what wa s
already known" . [Hankins 1980, 275] British mathematicians now not only
accepted complex numbers : they wanted to find more !

The endeavour now underway in Britain was to discover if there were num-
ber triples (a, b, c) which would do for three-dimensional geometry wha t
Hamilton's couples and the standard complex numbers could do for th e
two-dimensional case . Clearly, such an extension of the theory of comple x
numbers would be a far more general and, most importantly, applicable al-
gebraic subject . Yet, as De Morgan recognised, "an extension to geometry
of three dimensions is not practicable until we can assign two symbols, f
and w, such that a + K2 + cc.~ = a l + b 1 S2 + clw gives a = a l , b = b 1 and
c = cl : and no definite symbol of ordinary algebra will fulfil this condition . "
[De Morgan 1839, 177]

Once again, Hamilton's interest in triples was periodically maintained
throughout the 1830s and 1840s by John Graves, who himself made sev-

21 Although Gauss appears to have had the notion of couples as early as 1831, there i s
no evidence to suggest that Hamilton was aware of this . He seems to have obtained the
idea from Cauchy's Cours d'analyse (1821), which had included the statement that "every
imaginary equation is merely the symbolic representation of two equations between rea l
quantities" . [Cauchy 1882-1938, vol .2, 3]
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eral investigations into representing lines in space by means of triples, an d
attempting to multiply them together . One of these systems, which Grave s
developed in 1836, was independently discovered ten years later by his
younger brother Charles . 22 This gave a satisfactory geometrical interpre-
tation of numbers of the form a + bi + cj (i j, i 2 = j 2 = -1), but while
most of the usual laws of algebra held, multiplication was not distributive .
[Hamilton 1853, 37-9] Hence, for formalists such as the Graves brothers ,
this system was not regarded as satisfactory.

Meanwhile, De Morgan was also developing his own theories regarding
triples and their geometrical representation . In a paper read to the Cam-
bridge Philosophical Society in 1839, he hinted at a use for the cube roots of
unity as geometrical operators : " in passing from x to -x by two operations ,
we make use in ordinary algebra of one particular solution of 02x = -x ,
namely Øx = \/-1 .x . An extension to three dimensions would require a
solution of the equation 0 3 x = -x, containing an arbitrary constant, and
leading to a function of triple value, totally unknown at present ." [De Mor-
gan 1839, 177]

Although this theory was never fully developed, one of the by-products of D e
Morgan's paper was that it prompted Hamilton to re-embark on the ques t
for a sound system of triples . [Hamilton 1853, 41] Since the early 1830s, he
had formulated various triple systems, which for various reasons had failed
to produce unequivocal results regarding multiplication . In particular, they
failed to obey the rule that the product of two non-zero numbers must
also be non-zero - known as the product law . His latest attempt was t o
prove more fruitful, although, since there already exist a number of excellen t
accounts of the eventual outcome of this research, [e .g . van der Waerde n
1985, 179-83 ; Hankins 1980, 293-300] it is only necessary to give a basic
outline of the main details . The first problem came from multiplying tw o
triples together . Hamilton obtained

(a + bi + ej )(x + yi + zj )
= (ax - by - cz) + (ay + bx)i + (az + cx)j + (bz + cy)ij .

This was obviously not a triple, unless the ij-term could somehow be ac -
counted for . Also, the norm of a+bi +cj (obtained by multiplying a+bi+cj

22 Charles Graves (1812-1899), professor of mathematics at the University of Dublin ,
and later Bishop of Limerick .
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by a - bi - cj) was expected to be a2 + b2 + c2 since, by analogy to ordi-
nary complex numbers, multiplying complex conjugates a + bi and a - bi
gave a2 + b2 . But in fact it was a 2 + b2 + c2 - 2ijbc . Attempts involving
ij = 1, ij = -1 and ij = 0 all failed to produce satisfactory results, un -
til he let ij = -ji and defined this as a new unknown : "I made therefore
ij = k, ji = -k, reserving to myself to inquire whether k was = 0 or not" .
[Hamilton 1967, 107 ]

Then, on 16 October 1843, he had a sudden idea of what this k could be :
"there dawned on me the notion that we must admit, in some sense, a
fourth dimension of space for the purpose of calculating with triplets ; or ,
transferring the paradox to algebra, must admit a third distinct imaginary
symbol k, not to be confounded with either i or j, but equal to the product
of the first as multiplier, the second as multiplicand, and therefore I was le d
to introduce quaternions such as a + ib + jc + kd, or (a, b, c, d) ." [Hamilton
1967, 108] By defining k to be a third imaginary quantity, so that k2 = -1 ,
ik = -ki and jk = -kj, he was now able to quickly deduce the fundamenta l
formulae of his new algebra :

22= j2 = k2 =-1, ij=-ji =k, jk = -kj =i, ki=-ik =j.

It thus immediately followed that the norm of a quaternion was

(a +bi +ej +dk)(a -bi -ej - dk) a2+b2 +c2+ d2( -k2)
- bd(ik + ki) - cd(jk + kj)

a2 + b2 + c2 + d2 ,

and that the product of any two quaternions (a + bi + cj + dk) and (w +
xi + yj + zk) would also yield another quaternion :

(aw - bx - cy - dz) + (ax + bw + cz - dy) i

+ (ay - bz + cw + dx) j + (az + by - cx + dw)k .

Hamilton's quaternions had arisen from his search for a coherent syste m
of number triples capable of representing lines in three-dimensional space .
The unexpected inclusion of a fourth term, while ensuring a consistent alge -
bra, made the geometrical interpretation of quaternions somewhat harder .
While the imaginary (or "vector") parts i, j and k could be said to represent
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three perpendicular lines, Hamilton interpreted the real part as represent -
ing " extra-spacial, or simply SCALAR direction", 23 [Hamilton 1967, 359] in
other words, direction on a uni-dimensional line, or a concept independent
of space, such as time .

The "discovery" of quaternions came as a surprise to Hamilton, but more s o
to his British contemporaries . This was for two main reasons . Firstly, sinc e
the products of two distinct imaginaries depended on the order in which
they were multiplied, the commutative law for multiplication was violated .
This meant that he had created the first fully consistent generalised numbe r
system in which the laws of arithmetic no longer held in their entirety .
Thus Peacock's Principle of the Permanence of Equivalent Forms had been
proved to be no obstacle to the formation of a meaningful system of symboli c
algebra .

The second reason concerned Hamilton's "creation" of new algebraic ob-
jects; this was the first time that mathematical entities had been deliberatel y
constructed, as opposed to being discovered or evolving from pre-existin g
concepts . As John Graves said : "There is still something in the system which
gravels me . I have not yet any clear view as to the extent to which we ar e
at liberty arbitrarily to create imaginaries, and to endow them with super -
natural properties." [Graves 1882-9, II, 443] De Morgan was less surprised
than Graves at the origin of new imaginary quantities ; indeed, in a paper
completed just nine days before Hamilton's discovery, he had expressed th e
opinion that "new inexplicables might, and perhaps would arise" befor e
long. [De Morgan 1843, 142] Yet even he was taken aback at the idea o f
"imagining imaginaries" . [Graves 1882-9, II, 475 ]

Hamilton's work on complex numbers had initially begun as an attemp t
to place them on a sound intuitive foundation but had quickly developed
into a search for higher order concepts . It eventually resulted in the discov-
ery/creation of a new and surprising species of number : one that was made
up of four distinct components and one whose laws of combination did no t
permit one of the most basic ideas in elementary algebra . It is somewhat
ironic in fact that for a mathematician whose chief priority was to base th e

23 Notice the first use of the word scalar. Although Hamilton also coined the term vecto r
(in the modern sense) to denote the directed line segment represented by the imaginary
quaternion component, the phrase "radius vector" had been in use for over a century, and
was still employed at this time [e.g . Warren 1828, 137-8 ; De Morgan. 1839, 186] .
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concept of number on intuition, Hamilton was responsible for one of th e
most counter-intuitive algebraic creations in the history of mathematics .

8 After quaternions

The discovery of quaternions heralded a new era in the history of complex
and imaginary numbers . Not only were they now widely accepted by British
mathematicians, but it was also realised that further imaginaries were possi-
ble, and that meaningful and consistent systems of hypercomplex number s
were entirely conceivable within the framework of symbolic algebra . The
realisation that mathematicians were at liberty to create new algebras by
inventing algebraic elements and defining legitimate operations upon the m
was not lost on those who had previously adhered to Peacock's permanenc e
principle .

Among the most active of these were John and Charles Graves and Augus-
tus De Morgan . Although for Hamilton, the question of three-dimensional
geometrical representation had been answered by quaternions, these three
continued to try to establish a workable system of triples by exploiting th e
new freedom. In a paper written in October 1844, one year after Hamilton' s
discovery, De Morgan gave his most extensive treatment to date of the sub-
ject by constructing five distinct systems of triples . While distinguishing
his triple systems from Hamilton's quaternion one,24 De Morgan credited
Hamilton's work "for the idea of inventing a distinct system of unit-symbols ,
and investigating or assigning relations which define their mode of actio n
on each other" . [De Morgan 1844, 241 ]

Unlike Hamilton, De Morgan was not dissuaded by a lack of symmetry i n
his algebras . He wrote : "Sir William Hamilton seems to have passed ove r
triple Algebra altogether on the supposition that the modulus, 25 if any, of
a +br7+cÇ [where 2 = , 172 = (2 =

	

must be \/a 2 + b2 + c2 . . . but it is

24 In an addendum, De Morgan added that "having since I read this paper in proof,
examined Sir W . Hamilton's system of quaternions, I may state that, in my view of the
subject, it is not quadruple, but triple, since every symbol is explicable by a line drawn i n
space" . [De Morgan 1844, 254]

25 i . e. the square root of the norm . The "law of the moduli" holds if the norm of th e
product equals the product of the norms, i .e . (ai + a2 +

	

+ a2,) (bi + bz +

	

+ bet ) _

ci + ez +

	

+ cn . In 1898, Adolf Hurwitz (1859-1919) proved that this law could onl y
hold for n = 1, 2, 4 or 8 . [van der Waerden 1985, 185]
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by no means requisite that the modulus should be a symmetrical function of
a, b, and c . " [De Morgan 1844, 242] He then went on to illustrate this belie f
with a series of various triple systems, all of which had extremely irregula r
moduli . But this drawback was not the only "imperfection" in his systems .
Commenting on a case in which P = a + bra -I- cC, where 71 2 = /-2 = = - 1
he remarked "I did not at first see that though this will give PP' = P'P, it
will not give P"(P'P) = (P"P')P, except in particular cases" . [De Morgan
1844, 249]

Yet while the abandonment of symmetrical moduli and the associative law
of multiplication in De Morgan's systems was apparently no more imperfect
than Hamilton's disregard for the commutative law in his, the former re-
mained fundamentally flawed due to their failure to adhere to the produc t
law, a defect which was not present in the latter. The same applied to the
various attempts by the Graves brothers, who constructed similar system s
in the months following the birth of quaternions [e .g . Graves 1847] .

But the search for new complex systems was not limited to triples . In fact, i t
was in a higher dimension that the first successful complex number syste m
after quaternions was discovered . As early as December 1843, John Graves
constructed a consistent algebra of complex numbers with eight components
which obeyed the law of the moduli . [Young 1848, 338-41 ; Hamilton 1967 ,
648-56] This system of octaves or octonions consisted of the real element
1 , and seven imaginaries, i1 i 22, 23, 24, 25, 26 i i 7 , obeying the following rules of
multiplication :

-2

	

2_ 2

	

2_ 2_ 2

	

2 _2 1 = i2 - 23 24 - 25 - i 6 - 27 --1 ,

21 = 2223 = i4 i 5 = 272 6

22 = 2321 = 2426 = 252 7

i3 = 2 1 22 = 24 2 7 = 2 6 25

i4 = 2521 = 2622 = 2723

i5 = 2124 = 2722 = 232 6

26 = 2224 = 2127 = 2523

27 = 2621 = 2225 = 2324

-i3 2 2 = -i5 2 4 = -26 2 7 ,

-2123 = -26 2 4 = -27 2 5 ,

- 1 2 2 1 = -27 24 = -25 2 6 1

- 1 1 2 5 = -2226 = -23 2 7 ,

- 2 4 2 1 = -2227 = -26 23 ,

- i4 2 2 = -2721 = -23 2 5 ,

- î1i6 = -i5î2 = -i4i3 .

This system was also independently created in one of the earliest papers by
the young Cambridge mathematician Arthur Cayley (1821-1895) . [Cayley
1845] In a subsequent article, published two years later, Cayley observed
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that " if is iß, iy be any three of the seven [imaginary] quantities which do
not form a triplet, then (iniß) .iy = -ia .(ißiy ) . Thus, for instance, (i3i4) .i5 =
-i7 .i5 = -i2 ; but i3 .(i4i5) = i3 .i1 = i2 . . . " . Graves ' and Cayley ' s octaves2 6

were therefore neither commutative nor associative, "which is still a wide r
departure from the laws of ordinary algebra than that which is presente d
by Sir W. Hamilton's quaternions" . [Cayley 1847, 257-8 ]

From this point, a variety of new systems of hypernumbers began to emerge .
Hamilton created a new system of biquaternions (quaternions with complex
coefficients) in 1844, although he noticed that they failed to obey the prod-
uct law. [Hamilton 1853, 650] A generation later, another young Cambridge-
trained mathematician, William Kingdon Clifford (1845-1879), produce d
another form of number, which he also termed biquaternions, although his
definition was very different from that of Hamilton . 27 [Clifford 1873] These
satisfied the product law but not the associative . The introduction of "Clif-
ford algebras" five years later gave a generalisation for systems with 2 n

elements ,î2n_1, where i 2a = -1 and ia i b = -ibia for a b.
[Clifford 1878] But Clifford, although British, had been more influenced
by recent German work on hypernumbers, particularly that of Herman n
Günther Grassmann (1809-1877), than by his contemporary countrymen .

This provides an indication that, by the middle of the century, researc h
into higher-order complex numbers was no longer dominated by Britis h
mathematicians . Indeed it was to be elsewhere, especially in Germany, that
the major advances in this area were achieved in the second half of th e
19th century. This work culminated in Adolf Hurwitz's 1898 proof that th e
only linear associative algebras which satisfy the product law are the rea l
numbers, complex numbers, real quaternions and Clifford's biquaternions .
[Kline 1972, 793] Thus it was finally confirmed that a triple system of th e
kind originally envisaged by Hamilton, De Morgan and the Graves brother s
was impossible .

While the latter half of the 19th century witnessed profound developments
on the algebraic implications of quaternions, similar extensions were also
being made to the geometrical side of the subject . Through the work of
Scottish mathematicians Peter Guthrie Tait (1831-1901) and James Cler k

26 Because Cayley was the first to publish his findings, octaves are known today as
Cayley numbers .

27 Clifford's biquaternions are of the form p + wq, where p and q are real quaternions, w
commutes with every real quaternion, and w 2 ' = 0 or w 2 = 1 .



176

	

A . Rice MfM 46: 2

Maxwell (1831-1879), the three-dimensional properties of quaternions were
adapted for use in physics . These ideas were developed by Oliver Heavisid e
(1850-1925) in England and Josiah Willard Gibbs (1839-1903) in the Unite d
States to found the subject of vector analysis, one of the most valuable
tools in modern applied mathematics . [Crowe 1967] Thus, by the end o f
the century an algebraic system derived from imaginary numbers would b e
employed to model the real world .

In the space of one hundred years, complex numbers had gone from bein g
concepts of uncertain meaning and dubious mathematical validity to univer -
sally recognised mathematical entities of acknowledged importance . As the
basis of far-reaching extensions to both algebra and geometry, they acted a s
a catalyst for the vast developments in those fields in the latter part of th e
19th century. But as far as British mathematicians of the mid-19th century
were concerned, all this lay ahead . While the future of complex numbers in
mathematics was secure, the outlook was still uncertain . But to those who
advocated the more risk-averse approach which had characterised much o f
the British mathematics of the late-18th and early-19th centuries, Augus-
tus De Morgan had the following words [Richards 1987, 28] : "The motto
which I should adopt against a course which seems to me calculated to sto p
the progress of discovery would be contained in a word and a symbol -
remember -/-1 . "
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Bellavitis's Equipollences Calculus and his Theory
of Complex Numbers

Paolo Fregugli a

Abstract

The aim of this contribution is to present a detailed analysis of
Bellavitis's work. In particular, we will examine Bellavitis's theor y
about the geometrical nature of complex numbers and the connections
with his equipollences calculus . Afterwards, we will examine some as -
pects of the resulting theory of algebraic equations .

Introduction

Although Bellavitis's analysis of the theory of complex numbers was of se-
condary importance compared to what other mathematicians had done a
little before him on this subject, it was the geometrical representation of th e
complex numbers that led him to make the equipollences calculus . More -
over, during the first half of the XIX century, in Italy it was he who took
most interest in the "nature" of complex numbers . The aim of the present
contribution is to go through some essential features of the equipollences
calculus and to look at some interesting links between this calculus an d
the theory of complex numbers . Synthetically, we can say that Bellavitis' s
goal was to carry out Lazare Carnot's program regarding the position cal-
culus and hence to establish a parallelism between algebraic calculus an d
geometrical calculus in the wake of the barycentric calculus .

Giusto Bellavitis was born in 1803 at Bassano del Grappa, near Padua ,
where he studied . He worked as a clerk at the municipality of Bassano ,

*Dipartimento di Matematica pura ed applicata, Università di L'Aquila, Domu s
Galilaeana, Via S .Maria 26, I-56126 Pisa, Italy .
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until 1843, when he was called to teach at the Vicenza "liceo" . Throughou t
this period he maintained close contact with the mathematical circle at th e
University of Padua . In 1845 Bellavitis became a full professor of descriptive
geometry at Padua University. His colleagues included such interesting Itali-
an mathematicians as Conti, Minich and Turazza . Moreover, Bellavitis late r
became rector and a senator. When he died in 1883 he left approximately tw o
hundred works mainly on geometry, in particular the geometrical calculus
(equipollences calculus) and its applications and on the theory of comple x
numbers . l

1 The sources which inspired Bellaviti s

Bellavitis's intellectual itinerary was rather singular, but at the same tim e
emblematic of a certain cultural atmosphere present in Italy during the firs t
half of the XIX century. As a starting point for his research he took theme s
connected with Lazare Carnot's Géométrie de Position 2 (1803) (analogous ,
for instance, to J .F .Français 3 ) . However, he was also interested in the prob-
lems which were being discussed between the end of the XVIII and the first
half of the XIX century regarding the geometrical representation of complex
numbers . In 1847 he wrote : 4

The geometrical representation of the imaginary numbers, which ha d
been almost completely forgotten when I drew the equipollence s
method from it some years ago, has now become the object of sev-
eral essays in the Philosophical Magazine.

However, from a theoretical point of view, the equipollences calculus come s
first, as this method justifies the theory of complex numbers . So we wil l
begin with the equipollences calculus . In 18765 Bellavitis reviewed the works

' Regarding the analysis of Bellavitis's work we have already devoted some papers (se e
P.Freguglia [1991], [1994] and with G .Canepa [1991]) and a book (see P.Freguglia [1992]) .

2 The word "equipollence" is drawn from the Géométrie de Position, but with a different
meaning, see p .83 of L.Carnot [1803] .

3 See J .F .Français [1813] .
4 See "Saggio sull'algebra degli immaginari", G .Bellavitis [1847], p .249, "La rappre-

sentazione geometrica degli immaginari, the era quasi affatto dimenticata quando alcun i
anni or sono io ne traevo il metodo delle equipollenze, forma ora oggetto di frequentissim e
comunicazioni nel Philosophical Magazine" .

5 See G.Bellavitis [1876] pp . 469-473 .
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of those mathematicians (Buée, Argand, Français, Mourey, Warren) who ,
before him, had analysed the "nature" of complex numbers . The author
whom Bellavitis considered to have influenced him most was Buée6 , who in
an essay published in Philosophical Transactions in 1806 had suggested a
geometrical representation of the imaginary numbers which was afterward s
used as a basis for Bellavitis's approach . Buée's fundamental idea is wel l
summarised in this short passage drawn from his essay : 7

So \/-1 is the sign of perpendicularity, whose characteristic is tha t
every point belonging to the perpendicular is equally far from [two ]
points placed at the same distance from either side of the foot (of the
perpendicular) . The sign \/- 1 expresses all this and it is the only sign
that does this .

It seems that for Buée the nature of \/-1 (imaginary unit) is purely geo-
metrical and it has no other meaning.

As a matter of fact the main concern for mathematicians such as Buée ,
Français, Argand, etc . was to find the "true" nature, the "true" essence of
the imaginary numbers. Argand, 8 for instance, saw the imaginary unit as a
geometrical mean between the real positive unit and the real negative unit ,
that is :

-1 : -V-1 = \/-1 : 1 or - 1 : - -V-1 = \/- 1 : 1 .

But we must not forget that the "true" theory of ratios was traditionally a
geometrical theory.

The accepted view gave an epistemologically acknowledged foundation onl y
to the positive real numbers, which were connected to Euclidean geometr y

6 See A . Buée [1806] . Bellavitis says : "In reality, it was while I was studying a geo-
metrical representation of imaginary numbers, which Buée had proposed, that I had th e
first idea (1832) about the equipollences method [ . . . ]" ("Fu veramente considerando una
rappresentazione geometrica degli immaginarii proposta da Buée the a me venne (1832 )
la prima idea del metodo delle equipollenze [ . . . ]"), see G .Bellavitis [1876], p .58 . See als o
Schubring's paper in this volume .

'See A . Buée [1806] p .23, "Ainsi \/-1 est le signe de perpendicularité, dont la propriét é
caractéristique est, que tous les points de la perpendiculaire sont également éloignés de
points placés à égales distances, de part et d'autre de son pié . Le signe -/-1 exprime tout
cela, et il est le seul qui l'exprime" .

8 See J .R.Argand [1806] p .6 .
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(theory of quantities) . Because of this none of the negative roots of alge-
braic equations were accepted because they disagreed with the synthetic Eu-
clidean geometrical interpretation . In this respect, it is interesting to make
a comparison with D'Alembert's article "Negatif" in the Encyclopédie and
with his essay "Mémoire sur les quantités négatives", which is in the VII I
book of his Opuscules mathématiques . These papers were well known to
Lazare Carnot and also, indirectly, to Bellavitis . Now we turn to examin e
the equipollences method .

2 The equipollences calculu s

In his principal work, written in 1854, Bellavitis motivated the theory a s
follows9 :

This method [of the equipollences] satisfies Carnot's wish to find an
algorithm which represents at the same time the length and the po-
sition of the various parts of a figure ; we therefore have, directly, el-
egant easy graphic solutions for geometrical problems . The equipol-
lences method includes as particular cases the method of parallel o r
polar co-ordinates, the barycentric calculus etc . [ . . . ] . He who knows
the principles of Carnot's Géométrie de Position, will easily follow m e
[ . . .

	

] .

The equipollences calculus is a geometrical algebraic structure analogou s
to that of a vector space where the multiplication and division operation s
(between vectors) are defined . Bellavitis never considers the possibility o f
an axiomatic theory. His position is strongly heuristic . He starts from the
definition of parallelism (23rd definition [opo(] of the Ist book of Euclid's El-

ements) and from the following principle (which in this theoretical attitud e
is not a theorem) :

[P.1] : "two angles which have parallel sides are equal" (see Figure 1 )

9 See G.Bellavitis [1854] p .2, "Questo metodo [delle equipollenze] soddisfa un desiderio
del Carnot di trovare un algoritmo the rappresenti nello stesso tempo e la grandezza e l a
posizione delle varie parti della figura; ne risultano quindi per via diretta eleganti e semplic i
soluzioni grafiche dei problemi geometrici . Il metodo delle equipollenze comprende come
casi particolari i metodi delle coordinate parallele o polari, il calcolo baricentrico ecc . [

] . Chi sia abituato ai principi della Géométrie de Position di Carnot troverà facile
seguirmi [ . . . ]" .
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Of course this principle is equivalent to Euclid's proposition (theorem) I,29 :
if r s and t H t' then a = b .'° Thus for Bellavitis two oriented segments AB
and CD are called equipollent if they have the same length and the same
direction . We will denote this fact by writing as follows :

AB = CD .

Instead of calling AB an "oriented segment", which is the term used by
Bellavitis, we will often call AB a "vector applied in a point", which is a
more modern mathematical term . Now in the plane, if a horizontal straigh t
line is given, Bellavitis defined for an oriented segment AB the inclination
operator as follows. Consider a point O and a fixed straight line OR ; then
the inclination operator can be defined by means of the relations (see Fig .
2) :

D'

OA'

	

R

Figure 2 :

inc AB = ang B'A'R which means the angle B'A'R oriented in an anti-
clockwise direction. Here A'B' = AB and A' - O . It follows that inc OR =

10 We must observe that Euclid's I,29 is logically equivalent to Euclid's Vth postulate .
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0 and ang BAD' = inc AB - inc CD. Bellavitis gives the other following
fundamental principles :

[P.2] inc BA = inc AB ± 180 °
[P.3] (the rule of parallelogram) AB H- BC = A C

[P.4] AB + 0 r- 0+ AB = AB (existence of vector 0 which has length equal
zero and no direction )

[P.5] AB + BA = 0 or AB = -BA .

From AB + BC AC we have AB + BC + CA = 0 or AB = AC - BC .
Bellavitis also implicitly considers the composition + to be associative an d
commutative .

He gives this following definition :
AB tCD, where t e R, if AB and CD have the same direction . However
the length and the orientation of tCD depend on t .

Moreover Bellavitis defines :

i) AB = BD • EF if gr AB = (gr CD) • (gr EF) and inc AB = inc BD +
inc EF, where gr AB means length of AB .

ij) BD ^ AB/EF if gr BD = (gr AB)/(gr EF) and inc BD = inc AB -
inc EF.

With regard to the orientation of AB, every ambiguity is solved by taking
each oriented segment to its respective equipollent which has its origin i n
the point O of the fixed straight line . The operator inc - as we can easily
observe - has the same formal behaviour as the operator log . Moreover ,
as is well known, the equipollences calculus is a geometrical plane calculu s
which presents some difficulties if we want to expand it to three dimensions .
Bellavitis gave some canons which are helpful for facilitating the calculus .
These canons (twelve in all) are in reality similar to lemmas (preliminary
theorems) . The fifth canon deals with the conjugate A'B' of an oriente d
segment AB (A'B' = cj AB) that is its mirror image in OR (see Fig .3) .

Clearly gr(cj AB) = gr AB = gr A'B', inc(cj AB) = - inc AB = inc A'B' .

cj is like a 180 degrees overturning operator which carries the semiplan e
ABC on to the semiplane A'B'C' . The notion of a conjugate of an oriente d
segment is, of course, suggested by the analogous notion relating to comple x
numbers . Bellavitis also examines the behaviour of the operator y whic h
turns an oriented segment AB by 90 degrees, that is :

yAB = A'B' if and only if AB is perpendicular to A'B' .
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R

Figure 3 :

The author says that -y behaves in calculus as V-1 (which he calls "ra-
muno", an abbreviation of "radice di meno uno", or in English "root o f
minus one") . Bellavitis states that all the elementary geometrical theorem s
(and also those relating to projective geometry, such as Desargues's theore m
(plane case) about homological triangles) can be proved by the equipollence s
calculus. Bellavitis writes : 1 1

In elementary geometry the method of equipollences can be use d
[ . . . ] to deduce from a few easily demonstrable principles all th e
theorems which we use to teach, and many others besides [ . . . ] .

To prove Desargues's theorem about homological triangles we need only the :

[Th. 2.1] Second canon . If the terms of a binomial equipollence have dif-
ferent inclinations, then every term of it is zero .

That is, let us suppose that mIL ^ nMN (binomial equipollence), where
IL and MN are different from zero. We know that if inc IL inc MN
then mIL and nMN are not equipollent . But we suppose mIL nMN ,
therefore IL = MN O .

The statement, which Bellavitis gives, regarding Desargues's theorem on
homological triangles is the following: "If the vertexes of two triangles ABC

11 See G .Bellavitis [1843] p .5, "Nella geometria elementare il metodo delle equipollenz e
pue) servire [ . . . ] a dedurre da pochissimi principi di facile dimostrazione tutti i teorem i
che soglionsi insegnare, oltre molti altri [ . . . ]" .
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and A'B'C' are in a straight line with the fixed point S, then the intersectio n

points T, U, V of their corresponding sides are also in a straight line" 12 (see

Appendix Fig.10 and ibid . § .A .1 for the proof) . On the other hand, to prove
Pythagoras's theorem (see Appendix ß .A.2) we need 13 the next two canons .

The third canon deals with the following situation :

LM +IVIN +NL O .

[Th. 2.2] Third canon . If two terms of a trinomial equipollence hav e
equal inclinations, the third term (if we decide to transpose all three term s
to only one member) will have an inclination which will differ 180 degree s
from that of the other two and its length will be equal to the sum of th e
length of the first two terms .

The proof of this canon is trivial .

L

	

M

Figure 4 :

[Th. 2.3] Fourth canon . If we compare the terms of a trinomial equipol-
lence with the terms of the identical equipollence :

LM+MN +NLAO .

and we ascertain inc ML + inc LN = 2 inc MN (and the three inclinations
are unequal) then it follows that gr LM = gr NL, and vice versa : if gr LM =
gr NL then inc ML + inc LN = 2 inc MN .

Proof. In Fig . 5 let MLA L'N and L'M + MN + NL' 0 and inc ML =
inc L'N = ß, inc ML' = S and inc MN = T . Let it be given that

N

(hyP . ) : 6+,3 =2T .

If we substitute T = a + ß, S = a + ß + a l into the hypothesis we have

ß+a+3+al = 2(a+ß) ,
12 See G.Bellavitis [1854] pp . 20-21 .
13 See G.Bellavitis [1854] pp .13 and foil .
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M

Figure 5 :

so that a + a 1 = 2a that is a = ctr l and hence :

(th.) :

	

gr ML' = gr L'N .

Conversely, assume :

(hyp .) :

	

gr ML' = gr L'N

then a = a 1 so that S = 2a + O . By adding ß to the two members of the
last expression we have :

+0= 2a +2O

but T = a + ß and hence :

(th.) :

	

S + /3 = 2T .

	

q

Epistemologically these demonstrations of theorems from elementary geom-
etry using equipollences calculus offer a certain interest . It is a new way t o
see things and an anticipation of the modern ideas of geometrical algebra ,
where the main concept of vectorial space has a central role . 14 Indeed, with
Bellavitis's help we have a calculus which governs all geometry and whic h
enables us to find the solutions to geometrical problems .

"For instance see Emil Artin Geometric Algebra (1957), Interscience Publishers, Inc . ,
USA, John Wiley and Sons, 3rd ed . 1964 .
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3 The theory of complex numbers

In "Saggio sull'algebra degli immaginari" Bellavitis asserts :' '

[ . . . ] the [geometrical] representation of imaginary quantities was of -
ten used by Analysts long before I deduced my method of equipollence s
from it ; Cauchy also utilises it a lot, but always as a tool to express
more clearly certain situations relating to imaginary quantities, but
not for their sole definition: instead I am going to take it as the true
definition and from it I deduce the properties of imaginary numbers .

Bellavitis clearly believed that the geometrical road was the main one to b e
followed in approaching the foundation of algebra . According to Bellavitis
the algebra of real numbers also has its basis in the geometry of the straight
line . Bellavitis considered the algebraic calculus to be a useful representative
simplification . Thus by means of the equipollences calculus Bellavitis alge-
braized the complex numbers . First we must say that a complex number
is represented by an oriented segment in a plane . 16 So addition and sub-
traction are operations like those between two oriented segments . Also for
multiplication (and division) Bellavitis applies the equipollences calculus ,
but in this case for a better geometrical agreement he gave a geometrica l
construction where the length of the resulting oriented segment is graph-
ically determined . 17 This construction is completely analogous to the on e
given by Argand . 1 8

'See G.Bellavitis [1847] p .247, "[ . . . ] la rappresentazione [geometrical delle quantità
immaginarie, fu data da parecchi Analisti molto prima the io ne deducessi il mio metod o
delle equipollenze ; anche Cauchy la adopera non rade volte, ma sempre come un mezzo
di esprimere più chiaramente qualche circostanza relativa alle quantità immaginarie, no n
già come l'essenziale ed unica definizione delle medesime : io invece la prenderb come la
vera definizione e da essa dedurrà le proprietà degli immaginari" .16Bellavitis gives also the trigonometrical representation of a complex number (se e
G.Bellavitis [1847] p .260) . He writes :

z/u = OM = OP + OQ = z cos u + z sin u .V ,
where .3 = i and u E Q is the number (whole or fractional) of right angles (7r/2) .
Obviously, ,vu = cosu + \/sinu, for instance when u = 1 we have: ,‘/1 = cos(7r/2) +
.3sin(7r/2) = .3.

170f course the subtraction and the division are deduced respectively from the additio n
and the multiplication .

18 See J .R .Argand [1806] p .21 .

MfM 46:2
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The powers are iterations of the product . For the cases of the square and o f
the cube Bellavitis gave an explicit geometrical construction .

Y

X

Xl

Figure 6 :

Square case : where OX 1 ^ -OX; OX2 OY means gr OY = (gr OX) 2 ,
inc OY = 2 inc OX ± 2krr . 19 The triangle OXY is made similar to triangle
01X and it is possible graphically to determine the point Y . We have (for
the lengths) :

01 : OX = OX : OY with 01 = 1

hence :

gr OY = (gr OX)2

Moreover, if we pose OX 1

	

-OX, that is gr OX 1

	

gr OX (and
angX1O1 = angX1OY) we have from (1) :

01 : OX1 = OX1 : OY.

Hence ~/OY OX, OX 1 or \,/OY ±OX.

As we can see, Bellavitis was concerned to find the lengths of oriented seg-
ments (the moduli of complex numbers) by methods of Euclidean syntheti c
geometry. The constructive geometrical features are prominent in Bellavi-
tis's work .

19 The behaviour of values of k is according to De Moivre's formula .

1

(1)
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Finally we want to discuss what Bellavitis calls the fundamental theorem
(or fundamental canon) for the equipollences calculus. This canon - as we
will see - plays an essential role in the theory of complex numbers . It is
not difficult to demonstrate this theorem .

[Th. 3.1] . "In the equipollences / . . . J we can do all operations and al l
calculations which would be lawful in the case of equations, and the resultin g
equipollences are always correct " . 2 0

Besides we have the following corollary : 2 1

[Th. 3.2] . "If any relation among the distances of points of a straight line
is found and expressed by an equation, we also have a corresponding re-
lation among the points of a plane which transforms the equation into an
equipollence " .

For example (see Fig .7), for any position of A, B, C, D and E on a straight
line, where EB = CD, we have :

AE•BC=AB•BD-AC•CD .

	

(2)

If we put AE = x, EB = CD = a, BC = y and we substitute it into (2 )
then we have the identity :

x•y=(x+a)(y+a)-(x+y+a)a.

In the plane this corresponds to the following equipollenc e

AE•BC--AB•BD-AC•CD

	

(3 )

(see Fig .7) .

Bellavitis's interpretation of these theorems is that the algebraic properties
of the complex numbers (oriented segments in a plane) and those relatin g
to the real numbers (oriented segments in a straight line) are the same .

20See G.Bellavitis [1876] . The results were already found in 1832 (see G .Bellaviti s
[1832]) .

21 See G .Bellavitis [1876] p .455, "[ . . . ] trovata tra le distanze dei punti di una retta
una relazione qualunque espressa in equazione, si ha una relazione tra i punti di un piano
mutando 1'equazione in equipollenza" .
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Y

	

a

A E

	

B

	

C

	

D

Figure 7 :

4 Algebraic equations

In § II (entitled "About algebraic equations") of his essay on the algebr a
of imaginary numbers (1847), Bellavitis examined some applications of hi s
theory of complex numbers to the theory of algebraic equations . His treat -
ment is based on geometrical constructions, taking the general equation o f
fourth degree as an example . Afterwards he studies the numerical solutions
of equations . But Bellavitis's essential and partially original contributio n
concerns the following . He states : 22

For any value of the unknown X we will build the polynomial Y =
D + CX + BX 2 +AX3 +X4 by drawing the DC I equal and parallel t o
the straight line [oriented segment] which is expressed by the produc t
CX; similarly, C1 B1i B 1 Al , A 1Y are equal and parallel to those give n
by the other monomials BX2 ,AX3 ,X4 . (The polygon ODC1 B IA I Y

of the figure [see Fig .8] corresponds to the case where X = 1, so that
22 See G .Bellavitis [1847] p .265, "Per un qualunque valore dell'incognita X si costruirà

il polinomio Y = D + CX +BX 2 + AX 3 + X 4 tirando la DC1 eguale e parallela alla retta
espressa dal prodotto CX ; similmente le C1B1, B1A1, A 1 Y egauali e parallele a quell e
espresse dagli altri termini BX 2 ,AX3 ,X 4 . (I1 poligono ODCiB 1 A 1 Y della figura [see
Fig .8] corrisponde al caso X = 1, sicchè DC 1 = OC, C1B = OB, B1 A,. ~ OA, A 1 Y = 01,
esprimendo con il segno = la condizione di due rette di essere uguali, parallele e dirett e
per lo stesso verso) . Al variare di X variano anche i punti Cl , B 1 , A1, Y ; e se X è una
radice dell'equazione il punto Y cade in 0" .
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DC1 = OC, C1 B OB, B1 A 1 OA, AlY = 01 where the sign =
expresses the condition that two straight lines [oriented segments] ar e
equal, parallel and going in the same direction) . When X changes valu e
Cl , B1 , Al , Y also change values ; and if X is a root of the equation the n
the point Y coincides with O .

First he says that it is necessary to distinguish a formal algebraic equation ,
for instance

x4 + ax3 + bx 2 + ex + d = 0 [with a, b, c, d, x E C]

from the corresponding equipollence . The former is a purely syntactic ex -
pression, conceived as a combination of symbols which obey the laws o f
algebra (logistica speciosa, according to Viète) . The latter, on the othe r
hand, is an algebraic-geometrical expression, for instance :

X 4 +AX3 --f-BX 2 +CX+D= O

where A, B, C, D, X are oriented segments (vectors) .

Bellavitis 's treatment of the various theorems is a little obscure . Thus we
will try to reconstruct the essential meaning of Bellavitis's ideas by giving
them philological attention . We think that Bellavitis, who always had a
great respect for the mathematical tradition, related his construction to
the theme of the geometrical construction of algebraic equations as it was
studied by the algebraists of the XVI century (and the XVII century) and
differently by Descartes . 23 Substantially, Bellavitis obtained the following
results :

[Th . 4.1] . Given an algebraic polynomial function :

y = aoxn + alxn-1 + . . + an,

	

(4 )

23 The geometrical constructions of algebraic equations which we find in the treatment s
of algebrists of the XVI century (Cardano, Ferrari, Tartaglia, Bombelli, Bonasoni, Stevin )
constitute the `synthetic geometrical theory of algebraic equations' (see P .Freguglia "Sur
la théorie des équations algébriques entre le XVI et le XVII siècle", Bollettino di Stori a
delle Scienze Matematiche, vol . XIV(1994) fasc .2, and "Sul principio di omogeneità dimen-
sionale tra Cinquecento e Seicento", Bollettino UMI 1999, (8) 2-B) . These construction s
are different from those made by Descartes in his Géométrie (see H .J .M.Bos "Argument s
on Motivation in the Rise and Decline of a Mathematical Theory ; the `Construction o f
Equation', 1637-ca . 1750", Arch. for Hist . of Exact Sciences, XXX (1984) ) .
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B 1
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D

	

C
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Figure 8 :

then an equipollence :

Y - AoXn + A 1 X' I + . . . +. An

	

( 5 )

exists and it represents (4) in Il8 2 (Euclidean plane) .

We will present the construction as regards (4) for the case of fourth degree ,
in the same way Bellavitis did. For any x E C we can give the following
construction (see Fig .8) :

1. X can represent any complex number, but let us consider (wit h
Bellavitis) the case X = 1 to make the drawing easier .

2. We will draw (see Fig .8) the vectors - points 1, A, B, C, D (coeffi-
cients of the equation, which are in general complex numbers) .

3. DCI - OC ; C1BI - OB; B1A 1 OA and then A 1Y 01 .
4. So we have the open vectorial polygon ODC 1B 1A1Y .

We have gone from O as far as Y . We obtain the same result if we add
vectors in succession as follows :

OD+OC

OC1 + OB

OBI + OA

0A 1 +01

OC 1 ,

OB I ,

OA1 ,

OY.
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Therefore :

and also :

OY ~ O1 +OA +OB +OC +OD

OY-- 14 +OA•1 3 +OB-12 +OC -1+OD

and thus, by putting X in place of 1 (of course the variable of Y depends
on X) :

Y-=X4 +AX3 +BX2 +CX+D ,

which is (5) for the case of fourth degree .

Now, if F(x) = 0 is an algebraic equation, we will associate to the equatio n
F(x) = 0 an identity namely F(xo) = 0, where xo is a root of F(x) = O .
Moreover, an (open or closed) vectorial polygon is a finite succession o f
vectors where the origin of one coincides with the end of the previous one ,
save that we say otherwise . It is possible to have a closed vectorial polygo n
where its first vector has the origin which coincides with the origin of it s
last vector (see for example Fig .9, where OB is the first vector and OA is
the last vector of the closed vectorial polygon) . We have :

[Th. 4 .2] . If Xo is a geometrical representation of a root xo of the equation :

xn +alxn-1 +-• +an=0,

	

(6 )

then a closed vectorial polygon (of n + 1 vectors) exists in such a way tha t
the origin of the first vector coincides with the origin of the last vector an d
they both coincide with the origin O (for example see the closed vectoria l
polygon OBA of Fig.9) .

Proof. Indeed if xo is a root of (6) then to equation (6) we associate th e
identity :

xå + a 1 4-1 + + an = O .

But (7) is (4) for x = xo and y = 0 . According to the earlier theorem 4 . 1
we can then represent (7) in R 2 by the (vectorial) equipollence :

Xp + A1Xå-1 + . + An n 0,

	

( 8 )

(7)
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where Xo represents xo in R 2 . Fig .9 represents the special case of the
quadratic equation .

	

x2 - 2x + 4 = 0,

	

with the root xo = 1 +'1
making the angle a = 60° with the fixed axis .

Xô-2Xo+4o 0

	

Xô -- 2Xo 4

	

OBA is the closed vectorial polygon of 3 vectors :

Xô - OA ; -4 w OB ; 2Xo = BA .

Figure 9 :

Bellavitis wrote this essay in 1847 . Later, Karl Culmann in his Graphische
Statik (1864, 1865) proposed a method of solving algebraic equations by
using graphical-numerical approximate values . 2 4

From a foundational point of view Bellavitis's position regarding the fun -
damental theorem of algebra is in line with Français's formulation of thi s
theorem, that is : 2 5

All roots of an algebraic equation of whatever degree are real, and
they can be represented by segments whose lengths and directions ar e
given .

24 Culmann was inspired by the works of some of his contemporary mathematician s
(Stamm, D'Egger, Jäger), see K.Culmann [1880] pp.16-19 .

25 See J .F. Français [1813] p .73, "THÉORÈME IV . Toutes les racines d'une équation de
degré quelconque sont réelles, et peuvent être représentées par des droites données de
grandeur et de position" .
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5 Conclusion

Bellavitis had an extensive correspondence 26 above all with Italian mathe-
maticians (for example Fusinieri, Casari, Genocchi, Chelini, Minich, Piola) .
He also had contacts with foreign (European) mathematicians such as th e
Frenchmen C .A. Laisant and M.J .Hoüel, and the Bohemian Zahradnik, who
all translated and elaborated27 Bellavitis's work, in particular his equipol-
lences theory. Bellavitis was one of the first mathematicians in Italy wh o
knew and studied W .R.Hamilton's work regarding quaternions . He trans-
lated the theory of quaternions into his own language and gave a lectur e
on this subject at the Istituto Veneto di Scienze, Lettere ed Arti on March
21st 1858 . In the same year he wrote and published an essay about the re-
lationship between quaternions and the equipollences method . 28 The ideas
of H.Grassmann were also known to and studied by Bellavitis . 29

Lastly we can try to draw some conclusions about Bellavitis's ideas on com -
plex numbers. We can conclude that Bellavitis's contribution was interest -
ing, but conceptually it imparted no particularly new ideas compared t o
the contributions of other authors who studied the same theme during th e
same period . The epistemological approach of Bellavitis was closely related
to that of Buée and Français . Nevertheless, we must give credit to Bellaviti s
for having developed the structure of the calculus and for having applied i t
to the foundation of the theory of complex numbers and to the deductio n
of theorems of elementary geometry (see the following appendix) and so t o
have proposed a synthetic and constructive method which is not in contrast
with analytical geometry.

Appendix

A.I . Bellavitis's proof of Desargues's theorem on homological
triangles

(See G.Bellavitis [1854] pp.20-21)-( Theor .) : "If the vertexes of two triangles
ABC and A'B'C' are in a straight line with the fixed point S, then the

26 See Appendix B (by G.Canepa) of P.Freguglia [1992] and G.Canepa [1994] .
27 See M.J .Hoüel [1869], C .A.Laisant [1874], [1887] .
28 See G.Bellavitis [1858] .
26 See G.Bellavitis [1854b] .
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intersection points T, U, V of their corresponding sides are also in a straight
line "

(Proof) : The given conditions on the triangles ABC and A'B'C' can be
translated into the following equipollences (see Fig .10) :

SA' aSA, SB' bSB, SC' cSC .

A'

T

S

Figure 10 :

where a, b, c are numerical coefficients . Moreover the condition that V be-
longs to the straight line AB is expressed by AV = nAB, or if we reduce
to SA, SB and SC, by :

SV = SA + AV = SA + nA B

= SA - nBA ^ SA - n(SA - SB) z (1 - n)SA + nSB. (9)

But V must also belong to A'B', hence analogously we will have :

SV (1 - m)SA' + mSB' all - m)SA+ bmSB .

	

(10 )

Comparing (9) with (10) we have :

(1 - n)SA + nSB a(l - m)SA + bmSB,
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which by the second canon implies tha t

(1-n)=a(1-m) and n=bm .

	

(11)

From the system (11) we can deduce the value of m ., and if we replace it i n
(10) we have :

	

SV = [(1 - b)/(a - b)]SA ' + [(a - 1)/(a - b)]SB' .

	

(12 )

Analogously we have :

	

ST = [(1 - c)/(b - c)]SB ' + [(b 1)/(b - c)]SC'

	

(13)

and

	

SU = [(1 - a)/(c - a)]SC ' + [(c - 1)/(c - a)]SA' .

	

(14)

From (13) we find SB' and from (14) we find SA' . If we replace the respective
expressions in (12), we have

(a - b - ac + bc)SV + (c - a + ab - bc)SU + (b - c - ac - ab)ST -0. (15)

But since SV = TV + ST and SU -- TU + ST, we get from (15) :

	

(a - b - ac + bc)TV + (c - a + ab - bc)TU = O .

	

(16)

From the second canon we conclude that TV has same inclination as TU,
i .e . that the points T, U, V are in the same straight line . Hence Desargues' s
theorem is demonstrated .

A .2. Pythagoras's theorem as proved by Bellavitis

(See G.Bellavitis [1854] pp .13 and foil .)	 Given any triangle ABD (see
Fig.11), where AC is its median, the n

AB + BC = AC that is AB = AC + CB .

Similarly

AD= AC - CB .
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A D

Figure 11 :

By multiplying these two equipollences with each other we have :

AB•AD=(AC+CB)(ACCB)=(AC) 2 -(CB)2
or AB•AD+(CB) 2 -(AC) 2 =AB•AD+(CB) 2 +AC•CA=0. (17)

Besides, if we suppose that CB is perpendicular to AC, that is

inc CB =incAC+90°,

	

(18)

we also have :

2 inc CB = 2 inc AC f 180°

	

(19 )

Moreover :

since (CB)2 = CB • CB we have 2 inc CB = inc CB + inc CB (20 )

and

since - (AC) 2 = AC . CA it follows that
inc AC H- inc CA = inc AC + inc AC ± 180° = 2 inc AC ± 180° . (21. )

If we compare (20) and (21) with (19) we find that the last two terms of
(17) have the same inclination . Therefore we can apply the third canon (t o
(17)), that is :

gr(AB • AD) = (grCB)2 + (grAC) 2

inc(AB - AD) = (2 inc AC ± 180°) ± 180° = 2 inc AC .

	

(22)
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But since inc AC ± 90° = inc DB we have that 2 inc AC + 180° = 2 inc DB
or 2 inc AC = 2 inc DB + 180° ; from which :

inc(AB AD) = inc AB + inc AD = 2 inc DB ± 180 °

and inc AB + inc DA + 180° = 2 inc DB ± 180°

so that :

inc AB + inc DA = 2 inc DB . (23)

We also have :

AD + DB -- AB or BA + DB + AD r- O . (24)

Given (23) and (24), we can apply the fourth canon, from which we conclud e
that :

gr AB = gr AD .

	

(25)

If we substitute (25) into (22) we have :

(gr AB ) 2 = (gr CB ) 2 + (gr AC)2

which is Pythagoras's theorem .

From the technical viewpoint this proof is different from the Euclidean proof ,
but it is based on the same principles (see definition of equipollence and the
proof of the fourth canon) .
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Hypercomplex Numbers in the Work of Caspa r
Wessel and Hermann Günther Grassmann :

Are there any Similarities ?

Karl-Heinz Schlote *

1 Introduction

At first glance one might argue that it is somewhat peculiar to compare th e
work of Caspar Wessel and Hermann Günther Grassmann with regard to
hypercomplex number systems . In fact, it is quite apparent that Grassman n
never heard of Wessel's paper "Om Directionens analytiske Betegning" (O n
the analytical representation of direction) 1 , and reading that title as well as
the titles of most of Grassmann's papers we would not expect a contribu-
tion to hypercomplex number systems . However, a second glance at thei r
lives and work already reveals that there are some formal similarities . Both
Wessel and Grassmann had rather isolated positions in the scientific com-
munity and their ideas and findings were only appreciated after considerabl e
delay. Until now there are only a few points of resemblance in the living cir-
cumstances of these two mathematicians . Therefore, this article examines
whether there are similarities in the contributions of Wessel and Grassmann
to the theory of hypercomplex numbers .

* Sächsische Akademie der Wissenschaften, Postfach 100440, D-04004 Leipzig, Ger -
many

'In the following the English translation [Wessel, 1999] of Wessel's essay is used .
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2 The contribution of C . Wessel to the theory of
hypercomplex numbers

In his publication "On the analytical representation of direction" C . Wesse l
aimed at developing a geometrical calculus for calculation with directe d
magnitudes, i .e . in modern terms - for calculations with vectors . In the
introduction he stated : "The present attempt deals with the question o f
how to represent the direction analytically, or, how one ought to expres s
straight lines, if from a single equation in one unknown line and some give n
lines one is to be able to find an expression representing both the length
and the direction of the unknown line." ([Wessel, 1999], 103 )

Thus, Wessel had to give an appropriate definition of operations with di-
rected magnitudes . While working on this, he was led to fundamental con -
siderations on the character of these operations . He clearly expressed that
the new magnitudes differed substantially from the ordinary numbers an d
that the operations with the former had to be redefined . He solved this prob-
lem by generalising from the operations known for calculating with natural
numbers . In other words, he wanted to expand the domain of applicability
or	 in modern terms	 the domain of definition of these operations. At
the same time he tried to maintain as many properties of these operations as
possible . In this sense his approach is comparable to the ideas developed in
the English algebraical school, and in particular it reminds us of Peacock' s
principle of permanence of form . However, Wessel's work only marked the
beginning of this development .

Late in the 18th century, several mathematicians tried to work out an exact
foundation for the number system, above all, to incorporate negative an d
imaginary numbers into the system . During their studies they recognised
basic properties of calculations with numbers, i .e . those properties from
which all other rules for numerical calculations could be derived . However ,
basic rules for number systems and calculation with numbers had yet to b e
abstracted and, in consequence, the principle of permanence for operation s
with abstract magnitudes likewise remained unknown . We can trace thi s
process in the work of Wessel . His general notion was to speak of propertie s
for calculations with numbers, and he stressed for the operation of addition
that the added terms can be permuted and that multiplication and additio n
are distributively connected . Of course he did not use the terms commuta-
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tive and distributive, since they were only coined several years later . 2 At
nearly the same time, C .F . Gauß, working on binary quadratic forms (cf .
[Gauss, 1801]), pointed to the fact that commutativity and associativit y
cannot be taken for granted for connections in domains of general mag -
nitudes. These properties must be proven as specific in every connection .
This clearly demonstrates the basic problem of that process : To be able
to investigate a system of magnitudes which includes the realm of positive
real numbers or contains magnitudes which are different from numbers, on e
has always to decide which rules of connections are the basic ones . In other
words, one has to depict which rules of combination determine the algebrai c
structure of the realm of magnitudes . Therefore, Wessel's statement to the
effect that the rules of connection traditionally used in numerical realms ar e
maintained, was definitely not a trivial one . At that early stage of develop-
ment it represented a first significant insight into the structure of numerica l
domains .

Shortly after Wessel had published his essay, the now well known propertie s
associativity, commutativity and distributivity were abstracted and becam e
standard conditions in considerations about numerical realms . However, it
should be underlined that this process of abstraction was not only due t o
investigations on number systems (cf. [Novy, 1973], Chap . 4 & 5) .

A second important feature of Wessel's work should be considered . Wessel
chose two directions, first the real axis and a second axis perpendicular t o
the first . He introduced the units 1 and e, corresponding to those directions ,
and made clear that all other magnitudes, i . e. every line segment in the
plane, can be represented by a linear combination of these units . Wessel
derived the multiplication of the units with each other including -1 and -e
as units . At this stage he remarked that e = V-1, and therefore comple x
numbers are contained in his investigation as a special case . The geometrical
representation of the units, together with the rule that the amplitude of th e
product of two line segments is equal to the sum of the amplitudes of it s
factors, formed the basis for Wessel's determination of the multiplication of
any two line segments . He stated that the product was taken componentwis e
and was determined unequivocally by the products of the units .

That concept of unit was geometrically motivated but one should not mini-
mize its stimulating impact on algebra . The same is valid for Wesel`s insight

2The terms "distributive" and "commutative with each other", for instance, wer e
coined by F .-J . Servois in a paper about the theory of operators in 1814 . [Servois, 1814]
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that the product was determined by the products of the units . The geomet-
rical motivation caused Wessel to extend his method to space, hence t o
extend multiplication to three-dimensional magnitudes. Trying to realize
this, Wessel introduced a further unit rl, whose square is equal to -1, which
was the same condition as for E . Geometrically, the new unit represented a
direction which is perpendicular to the plane generated by the units 1 an d
E . Then Wessel defined a specific connection, though not a multiplication
as Wessel remarked, since it was applicable only to some but not to al l
of his three-dimensional magnitudes. The connection pointed to a strong
geometrical influence and was constituted in such a way that products o f
the units e and rl were avoided . Thus, Wessel had targeted a problem, the
solution of which resulted in the emergence of the first system of hyper -
complex numbers . However, the solution of the problem was not given b y
W.R. Hamilton until October 1843, after more than 10 years of intensive
investigations . This was the birth of the quaternions and marked a climax
in the history of hypercomplex number systems . His own restricted calculus
was obviously sufficient for Wessel to reach his objectives .

Apart from the idea of extending and generalizing the complex numbers t o
space, most of Wessel's results mentioned above were also stated by other
mathematicians who directed their efforts toward the foundation of imagi-
nary numbers .

Concluding the discussion on Wessel's work, two aspects should be em-
phasized . First, Wessel's essay was the first publication giving an exac t
treatment of the geometrical representation of complex numbers and, on
this basis, of calculation with them . Second, Wessel situated his investiga-
tions in the general framework of searching for a geometrical calculus . This
forced him to think about the foundation of the connections of the ne w
magnitudes and the properties of the connections . Furthermore, his search
for a geometrical calculus was an important impulse to extend his derive d
method to space. Although Wessel was not entirely successful in this at -
tempt, the description of which new problems emerge in the calculation s
with three-dimensional magnitudes was of the utmost importance for fur-
ther developments .

In this context it should only be noted that Wessel prepared and develope d
basic elements of a vector calculus . It remains speculative whether Wesse l
had been aware that he followed the tradition of Leibniz . The commenta-
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tors on the French translation of Wessel's article, H . Valentiner and T .-N .
Thiele, did not refer to this tradition . They only indicated that the geome-
trical representation of imaginary numbers as well as calculations with the m
are of relevance and established a relation to the quaternions of Hamilton .

3 The contributions of H . G . Grassmann to the
theory of hypercomplex numbers

Many of Grassmann's ideas, developed about 50 years later, can be seen as a
continuation of Wessel's results . This supports the assessment that Wessel' s
essay had already uncovered important problems for future research .

At first some biographical data on Grassmann should be given as far as
they concern his research discussed below. Hermann Günther Grassmann
was born in Stettin on April 15th, 1809 . Starting in 1827 he studied the-
ology for 6 semesters at the University of Berlin . During this time he also
attended lectures in philosophy and philology . Thus, Schleiermacher's idea s
on dialectics, with which he became acquainted during his studies, as wel l
as the philosophy of Kant, had a strong impact on Grassmann's work . After
he had returned to Stettin in 1830, he devoted his efforts to the intensive
private study of mathematics and physics as well as theology . Finally, he
qualified to teach these subjects with a career as a teacher in view . Be-
tween 1831 and 1840 he passed teaching examinations for the gymnasiu m
in Stettin, where he worked as a teacher from 1835 onwards . All his effort s
to obtain a professorship at a university failed even though he publishe d
his theory of extensions ("Die lineale Ausdehnungslehre . . . ") in 1844 and
contributed to the advance of mathematics in several books and articles . .
Only a few years before Grassmann's death did some mathematicians com e
to appreciate his ideas, at which point he received some acknowledgement in
the scientific community. An exception was his philological studies on San -
skrit which were immediately appreciated by scientists . Grassmann died on
September 26, 1877 .

The mathematical ideas of Grassmann developed slowly . It took severa l
years before he had brought these into a programme which he attempted
to realize in cooperation with his brother Robert . One source from whic h
Grassmann derived aspects of his research was his occupation as a teacher .
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In this context he undoubtedly had to think about the structure of math-
ematics as a science and realized that it was necessary to give an exac t
foundation and construction of mathematics . Thus, at the beginning of the
1830s he was led to the concept of a new addition of directed line segments .
This was nothing less than the addition of vectors . From a retrospective
point of view, the description Grassmann gave was very similar to Wessel' s
explanations in his essay. However, daily duties at school prevented Grass -
mann from working out his new method in more detail . Moreover, he had
not yet been convinced of the efficiency of the new method . His further re-
search was stimulated by publications of his father, who had investigate d
products in geometry in particular in the book "Raumlehre" [Grassmann,
1824] . Grassmann developed his father's approach further, defined a produc t
of directed line segments which corresponds to the modern vector product ,
and combined the product with the addition of vectors established some
years ago . This last step seems to be very natural, but it was a decisive
one. Now he suspected that he had created the beginnings of a new efficient
method . It was already during this early stage that Grassmann discovere d
that the new multiplicative operation was non-commutative . In fact thi s
"curious result" as Grassmann named it initially embarrassed him, never-
theless it was not a sufficient reason for him to reject this multiplicatio n
([Grassmann, 1894] Band I, Theil 1, 8) . Once again, he did not have the
time to elaborate his findings . He returned to his method only in 1839 whe n
he worked on the theory of ebb and flow of P.S . Laplace during his teaching
examinations . He simplified and improved the representation of Laplace' s
theory and concluded :

Thus I feel entitled to hope that in this new analysis I have found th e
only natural way in which mathematics should be applied to nature ,
and likewise that in which geometry should be treated . . .
([Grassmann, 1844a], 10) 3

Within four years he elaborated the calculus completely and published th e
book: "Die lineale Ausdehnungslehre . . . " Nobody denies that Grassmann

3 "Durch diesen Erfolg nun hielt ich mich zu der Hoffnung berechtigt, in dieser neuen
Analyse die einzig naturgemässe Methode gefunden zu haben, nach welcher jede Anwen-
dung der Mathematik auf die Natur fortschreiten müsse, und nach welcher gleichfalls die
Geometrie zu behandeln sei, . . . " ([Grassmann, 1894] Band I, Theil 1, 8) . The quotation
follows the English edition of Grassmann's theory of extension . (I am grateful to Dr . G .
Schubring who sent me a copy of a part of that edition .)
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presented important new results on geometry but here we shall consider
only his ideas on hypercomplex numbers . One would not expect a relation
between geometry and hypercomplex numbers in a book entitled "Lineare
Ausdehnungslehre" (Linear extension theory) . The results on hypercomplex
numbers are basically due to the fact that Grassmann treated problems in
a very abstract manner . He started the book with a general philosophical
introduction and defined mathematics as a formal science that examined
objects established by pure thought . He intended to give a uniform formal
and constructive development of mathematics . 4 For that, he chose the con-
cept of form or of "thought-form" as a starting point and began with genera l
considerations on connections of abstract magnitudes . In the end he justi-
fied his discussions for fitting in the new science too . Grassmann regarde d
the properties of connections as those rules which are valid for all forms
and with it for all parts of mathematics . This resulted in an emphasis on
the rules of connections and a removal of the connected magnitudes fro m
the world of concrete particular objects . In abstracting from the concrete
realization of the connections in several parts of mathematics, Grassman n
performed an important step and tried to grasp the structure determine d
by the connections . This demonstrates Grassmann's insight that it was nec-
essary to abstract from the peculiarities of the connected objects to arriv e
at common structural properties . The significance which Grassmann at-
tached to the rules of connection was documented, among other things, b y
his division of mathematics into four branches and his definition of math-
ematics as a "science of the connection of magnitudes", both based on the
concept of connections . This opinion was still expressed in more detail i n
the book "Formenlehre" (Theory of forms) [Grassmann, 1872] written b y
Robert Grassmann in cooperation with H . G. Grassmann . There Robert
Grassmann wrote :

The theory of forms or mathematics consists of five branches, a general
one, the science of magnitudes, and four particular branches .

1) The science of magnitudes, both the first and general branch o f
the theory of forms, tells us about the connection of magnitude s
which are a common part of all branches of the theory of form s

([Grassmann, 1872], 11) 5

4 The philosophical background is discussed in [Lewis, 1977] .
5 The following quotations were translated by the author . The original German version

is given in the notes . "Die Formenlehre oder die Mathematik zerfällt in fünf Zweige, einen
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The "theory of forms" was part of the programme for a new foundation o f
mathematics pursued by Robert and Hermann G. Grassmann . The above
quotations also reflect H.G. Grassmann's opinion towards this aspect . More -
over, these quotations express an extended concept of magnitudes elabo-
rated by Grassmann in his research . In 1844, in the "Ausdehnungslehre" ,
Grassmann refused the characterization of mathematics as a science of mag-
nitudes because the concept of magnitudes was too narrow and as a conse-
quence restricted to numbers . Step by step Grassmann presumably recog-
nized that his definition of a magnitude as "everything which was receive d
via thinking" ([Grassmann, 1894] Band I, Theil 1, 24) can be interpreted
in a much more abstract manner than he had done in the book "Aus-
dehnungslehre" .

After he had divided mathematics into four branches and determined th e
position of the theory of extensions as a new branch of mathematics, Grass -
mann analysed the properties common to all connections in the genera l
theory of forms. At first he introduced the concept of equality, then h e
treated the connections . He supposed the following as a principle : Any two
magnitudes are connected and the result of their connection has to be un-
ambiguous . If more than two magnitudes should be connected, this will b e
carried out by successive operations on two magnitudes .

In this context Grassmann addressed the important problem of whether
a set of magnitudes is closed under the connection . This property is ver y
conclusive for defining a mathematical structure. Grassmann did not discuss
the question in an abstract manner . That is understandable, since it was
not his purpose to define and analyse mathematical structure . Nevertheless
it can be seen that Grassmann discerned this problem as an important
one . In most of the cases he investigated, Grassmann considered the syste m
of magnitudes as closed . He derived this conviction from the manner i n
which magnitudes were generated . But in some cases he could not dra w
this conclusion : for instance, when he connected extensive magnitudes by
multiplication he got extensions of a higher degree . The result was again an
extensive magnitude of course, but the multiplication could formally yiel d
a magnitude (or extension) of any degree . In such cases Grassmann did

allgemeinen Zweig, die Grössenlehre und vier besondere Zweige . 1) Die Grössenlehre, der
erste oder der allgemeine Zweig der Formenlehre, lehrt uns die Knüpfungen der Grösse n
kennen, welchen allen Zweigen der Formenlehre gemeinsam sind, . . . "
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not answer the question of closure . Only when the system is reduced to a
finite number of units of first degree the extensions of higher degrees becom e
closed in a natural way. (Every product with more than n factors is equal
to zero .) As examples we mention, first, the combination of progressive an d
regressive product to the "product with regard to a principal domain" an d
second, the investigation of sub domains in a larger domain of magnitudes (or
what we would call, in modern terms, the properties of a vector subspace) .
In the first case the product was defined in such a way that the result wa s
contained in a domain determined in advance . To describe the second cas e
Grassmann stated :

Since every system which contains some magnitudes has to contain
also all magnitudes depending on the former ones and also the oute r
product of them, i . e . the whole system which is determined by the m

([Grassmann, 1894], Band I, Theil 1, 206f) 6

Again, both instances clearly showed the significance which Grassmann at-
tached to a closure of the system .

In a system of magnitudes with one connection, the permutation of the
members and a change of the brackets are the only two possible operation s
which could be carried out without changing the forms or the result of the
connection, respectively. This would mean that the connection satisfies th e
commutative and the associative laws . A connection which satisfies bot h
laws is called a simple connection . After that Grassmann treated the so -
called resolution of a given connection or the inverse operation, which h e
called an analytical connection . The definition of this resolution is so gen-
eral that a non-commutative connection can be considered initially, whic h
Grassmann also termed a synthetic one . However, Grassmann restricted his
investigations immediately to simple synthetic connections and asked for
conditions under which both operations can be permutated and brackets ca n
be added or omitted. He recognized that the analytical connection can b e
ambiguous in some particular cases . In cases where the synthetic connectio n
was simple and the accompanying analytical connection was single-valued ,
he called the former addition and the latter subtraction . Later Grassman n
additionally introduced an indifferent and a purely analytical form . In mod-
ern notation these correspond to an identity element and an inverse element ,

6 "Da nun jedes System, welches gewisse Grössen enthält, auch sämmtliche von ihne n
abhängige Grössen, das heißt das ganze durch sie bestimmte System, also auch das äussere
Produkt jener Grössen, enthalten muss, . . . "
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respectively. The indifferent form was obtained by an analytical connectio n
of two equal forms, the purely analytical one by an analytical connectio n
of an indifferent form with the initial one . Notably, Grassmann explaine d
that if the analytical connection is assumed to be single-valued, then the
definition of the indifferent form is independent from a special choice of th e
form. This can be seen as a first sign of a new algebraic way of thinkin g
and as a step towards defining objects by means of equivalence classes . In
addition to this prospective aspect one can find a remarkable weakness i n
this definition . An identity element had only been defined, if the inverse op-
erator existed and was unambiguous . Thus, a ring with zero-divisors would
never have an identity.

When a second synthetic connection existed, Grassmann regarded the mu-
tual relation as the main problem. He gave an argumentation from which a
distributive combination of both operations derived . If the operations wer e
distributively connected and the first one was an addition, then he called
the second one a multiplication . A set of magnitudes supplied with two
such connections constitutes a ring, but Grassmann neglected this struc-
tural point of view. There is no one position in Grassmann's work where
he alluded to the definition of a new mathematical object, a new algebraic
structure . Although he had mentioned all properties which are neccessary
for an axiomatic characterization of a commutative group or a ring, he neve r
realized this step. The possibility of defining a set of magnitudes having one
or two connections as a new mathematical entity was overlooked by Grass -
mann. He identified the concept of connection in a system of magnitude s
as the most decisive one, and the different determinations of the connec-
tion as presenting possibilities for the analysis of the various systems o f
magnitudes, but he did not recognize that the systems represent differen t
mathematical objects with regard to the different algebraic structures . This
gives a clear idea of the extent to which Grassmann contributed to the gen-
esis of modern algebra and his limitations . He established the opportunity
for defining abstract structures, but he was not in a position to consider
abstract algebraic structures. However, this does not diminish Grassmann' s
achievement . How far he was ahead of his contemporaries can be seen fro m
the fact that according to him, a system of magnitudes carrying an addition
has to fulfil certain conditions which implicitly suppose the existence of a
certain structure .

Grassmann concluded his general theory of forms with some remarks on di-
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vision as the analytical connection to multiplication, but he did not presen t
any new ideas . Again he stated the necessity of defining two analytica l
connections as a consequence of the non-commutative multiplication . After
these general considerations on connections, Grassmann developed his elab-
oration of the theory of extensions in which he applied his ideas in various
ways . His description was verbose and difficult to understand . Grassmann
was not satisfied with the level achieved by his theory, and he therefor e
explained some of its details in further articles . Finally, he published a re -
vised edition of the "Ausdehnungslehre" in 1862 "in Euclidean form" (that
is, in stronger Form), which pointed out the formal aspects and completel y
omitted the philosophical considerations . This shows that Grassmann did
not extend the domain of research chosen earlier, but within it he expresse d
his ideas more clearly and gained a better mastery of the methods .

Within a relatively short time he had reached a new grasp of the structur e
of his theory and an improved mastery of it . This can be derived from a
comparison of the book "Ausdehnungslehre" (1862) with his textbook on
arithmetic from 1861 and the article "Sur les différents genres de multipli-
cation" from 1855 . What basic changes can be traced ?

Grassmann started with the concept of unit and a system of units as a
basis of a system of magnitudes or extensive magnitudes, respectively. An
extensive magnitude was defined by

al e' + a2e2 + . . . _ Eaiei

with ai real numbers, called numbers of derivation (Ableitungszahlen) by
Grassmann and {ei} denoting a system of units . The sum above was of
course a finite one, but Grassmann did not mention it in any case, and usu-
ally it is also possible to think of an infinite one . He defined the addition of
extensive magnitudes componentwise and had then to define the multipli -
cation of an extensive magnitude with a scalar, usually a real number . He
determined it in a formal way by

~ * E aiei, _ (E aiei) * ß = E(ßai) e i •

Although he regarded only real numbers as the domain of coefficients, i t
is possible to choose any abstract coefficient field without difficulties . The
multiplication satisfies the following rules (cf . [Grassmann, 1894], Band I,
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a*ß * a,

	

(a*ß)*-y

	

= a *(ß'y) ,
(a+b) * a*ß+b*ß,

	

a* (ß+y)

	

= a*ß+a*y ,
a*1 a ,
a* 13 0

	

if and only if either a = 0 or ß = O .

In an attempt to compare Grassmann's and Wessel's work, a short overvie w
of some geometrical aspects of Grassmann's theory of extension should b e
given at this stage . At first Grassmann had selected all properties which he
would need for an abstract definition of a linear vector space as a new math-
ematical object and again he omitted this level of abstraction. He performe d
his calculations in a domain or system of extensive magnitudes without con -
sidering it as a mathematical object in its own right . Nevertheless, he derive d
important results for vector spaces . Thus he described the linear dependenc e
of extensive magnitudes as standing in a numerical relation to each other .
In the article mentioned above he also supposed the linear independence o f
the relative units which form the basis of the extensive magnitudes. All in
all Grassmann included the following theorems of linear vector spaces in hi s
book :

A domain (or system) of nth order is generated by exactly n indepen-
dent elements . The concept of a basis is not used by Grassmann . A
domain of nth order corresponds to an n-dimensional space .
The theorem of exchange, later also called the fundamental replace-
ment theorem of Steinitz, considering the possibility of replaceing a
certain set of q vectors from among the vectors a l , a 2 , . . . , ap which
span a vector space L by q linear independent vectors bi , b2 , . . . , bq
of L (q < p) .
The theorem on the dimension of the sum of two linear subspaces

dim(E + F) + dim(E n F) = dim E + dim F.

Even in this context Grassmann appears as an intellectual successor of Wes -
sel, and his initial findings on vector calculus . It is common knowledge that
some of the above stated theorems of linear spaces also play an importan t
role in algebra, which was probably first announced by R . Dedekind in his
famous 10th supplement to Dirichlet's "Lectures on number theory" . How-
ever, Grassmann could not have foreseen those aspects .
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There is still another problem on a less abstract level which has to be anal-
ysed with regard to Grassmann's contribution to the theory of hypercomple x
numbers . It concerns the product of two extensive magnitudes . The most
detailed description is given by Grassmann in the already mentioned articl e
"Sur les différents genres de multiplication" written in a priority claim mad e
against A.L. Cauchy.

In accordance with his general remarks in the "Ausdehnungslehre" of 1844,
Grassmann defined the multiplicative connection of two extensive magni-
tudes by

i arer * > ßses = > ar38 (er * e s )

The distributive law was tacitly assumed and no further restrictions wer e
made. This was completely correct since he wanted to define a multiplicative
connection of magnitudes which were already connected by addition . In
this case both connections have to be combined by the distributive law .
Furthermore he stressed that the product of the two relative units has t o
be regarded as a new unit of second degree, or of nth degree if n unit s
are multiplied . This point of view was very general, even too general, t o
derive some results or to apply his considerations on a geometrical problem ,
for instance . Thus Grassmann had to make further specifications to the
product (er * e s ), and therefore he introduced the so-called "equations of
determination" (Best immungsgleichungen) . He stated :

Since the product of two extensive magnitudes is according to the def-
inition again either an extensive magnitude or a numerical magnitud e
(Zahlgröße), it must be numerically derivable from a system of units .
This definition does not explain which system of units it should be an d
how the products [e r * e 5 ], of which these products are composed, ar e
numerically derivable from these units . If a particular product shoul d
be determined in detail, the necessary determinations on this syste m
of units and these derivations have to be made . ([Grassmann, 1894] ,
Band I, Theil 2, 28) 7

'' "Da das Produkt extensiver Grössen nach der Erklärung wieder entweder eine exten -
sive Grösse oder eine Zahlgrösse ist so muss dasselbe ( . . . ) aus einem System von Ein-
heiten numerisch ableitbar sein . Welches dies System von Einheiten sei, und wie aus ihnen
die Produkte [e, .*e 5], aus denen jenes Produkt zusammengesetzt ist, numerisch abzuleiten
seien, darüber sagt die Definition nichts aus . Soll also der Begriff eines besonderen Pro-
duktes genau festgestellt werden, so müssen noch über jenes System von Einheiten un d
über diese Ableitungen die nötigen Bestimmungen getroffen werden ."
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Each system of equations of determination defined a specific kind of prod-
uct . Grassmann realized that different products result in different system s
of magnitudes and therefore the kinds of products or the equations of deter-
mination furnish a decisive distinguishing feature for systems of magnitude s
and a possibility to classify them . To master this problem would require a
complete classification of hypercomplex number systems, and thus it is no t
surprising that Grassmann solved these problems only in particular cases .
His choice of equations for a further determination of the products was
clearly influenced by geometrical ideas, since, as he said: "nature calculates
in a geometrical manner" ([Grassmann, 1894], Band III, Theil 1, 33) . But
many factors which cannot be analysed in this article have to be borne i n
mind . 8 Only two facts should be stated . Firstly, Grassmann did not take
into account other ideas of his time such as Hamilton's quaternions, maybe
as a consequence of Grassmann's isolated position at his grammar school
at Stettin . Secondly, he restricted the equations of determination to thos e
in which all products have the same number of factors, mostly on prod-
ucts comprising only two factors . Grassmann gave no explanation of thi s
very restrictive condition and his reasons remain a mystery for us . Maybe
his statement that only connections of two objects will be considered ha d
an impact on the decision . As a consequence, the reduction of a produc t
to a linear combination of units was excluded since in this case a produc t
of two units would be equal to a sum of basic units (with some numerical
coefficients) . The same was applied to relations like the associative law for
instance . Only as far as the associative law was concerned did Grassman n
break this rule and he considered some associative systems, too .

In order to select from the infinity of possible special multiplications those
which seemed to be useful in science, Grassmann formulated three genera l
properties. He formulated these properties as an invariance of the equations
of determination towards some transformations of the units of the basis .
These transformations were as follows :

(1) The change of the sign of a relative unit or the change of the signs o f
two units and the permutation of those units with each other .

(2) The substitution of any two units by two extensive magnitudes, whic h
are formed by those units but which are different from those units as

8 For an extended discussion of that problem as well as Grassmann's contributions t o
the theory of hypercomplex number systems cf . [Schlote, 1985] .
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well as a multiple of them.

(3) The substitution of any unit by any extensive magnitude formed b y
these basic units .

The multiplications satisfying the first, the first as well as the second, and
all properties were called symmetrical, circular and linear, respectively. De-
spite the restrictions, Grassmann distinguished between sixteen differen t
types of symmetrical multiplications and analysed them . Applying thes e
examples he was able to demonstrate how he perceived the realization of
his principles . Among others, he deduced the equations of determination fo r
all these different kinds of multiplication . These equations were obtained by
a combination from the following ones :

er*es=es*er ,
er*es+es *er =0,
el*el =e2*e2= . . =en*en ,
el * el + e2*e2+ . . .+en*en=0 .

Grassmann continued by separating the circular multiplications and, finally,
the linear multiplications from the deduced 16 kinds . The four linear ones
he characterized as being of the utmost importance for analysis, geometry,
mechanics and physics . Among the linear products there are some of partic-
ular interest: the algebraic product which generates a commutative algebra
(in general, the algebra is assumed to be associative) ; and the combinatoria l
product or outer multiplication from which a non-commutative algebra wa s
derived (later called a Grassmann algebra by W.C . Clifford) . The equation s
are

er * es = -es * er and er = O .

The circular multiplication also encloses some further remarkable product s
which were not linear, the inner product or inner multiplication and the com -
plex one . The first was known from its geometrical applications and Grass -
mann refered to his "Ausdehnungslehre" and his "Geometrische Analyse"
where he extensively used this product . The latter one was a generalization
of the multiplication of complex numbers, a fact which was also pointed out
by Grassmann. The defining equations wer e

er * e s = 0 and el * el = e2 * e2 =

	

= en * en , r ~ s, respectively

er* es =es *er and el*el+e2 *e2 + . . . + en *en=0 .
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Again, there is an analogy to Wessel's work . Both Wessel and Grassman n
referred to a useful application of their ideas in the theory of functions .
However, Wessel's remark was only a very vague suggestion . It is difficul t
to estimate how far they went in this direction or whether they had con-
crete important results in mind . In the final analysis, a lasting value can
be seen in the attempt to stimulate some parts of mathematics which were
to constitute a dominating feature in the development of mathematics i n
the nineteenth century : the theory of complex functions and the theory o f
functions of several variables, respectively.

4 A comparison of Wessel's and Grassmann' s
work

The analysis of Wessel's and Grassmann's work on hypercomplex number s
has revealed several similarities . With regard to their mathematical researc h
they had a comparable fate. Their ideas were not appreciated by their con-
temporaries, and the importance as well as the implications of the ne w
methods was underestimated . Whereas Wessel published his article as a
man of mature age, Grassmann was a young man at the beginning of hi s
career . The failure of Wessel's essay to find an audience did not influence hi s
professional career, while Grassmann suffered from the lack of acceptanc e
of his ideas . His professional career was also affected by this . During his life
he fought for the diffusion of his method and for an appropriate assessment
of it but only with little success near the end of his life .

From the mathematical point of view the investigations of both mathemati-
cians can be integrated into the Leibnizian programme to look for a geomet -
rical calculus. At first Wessel and Grassmann did not see themselves in th e
Leibnizian tradition . Later however, Grassmann perceived it and considere d
the theory of extensions as a solution of the Leibnizian task . He drew up the
theory from this point of view in the article "Geometrische Analyse" (Th e
geometrical analysis) [Grassmann, 1847] . Of course, there were many other
factors which had an effect on the work of both mathematicians and which
were quite different . Nevertheless, the search for a geometrical calculus was
a common characteristic . In addition, there are some similarities in the ap-
plications of their methods they searched for, in geometry for instance, but
also in other parts of mathematics . In many ways Grassmann's work can be
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seen as a continuation and broadening of Wessel's ideas without any direc t
reference of Grassmann to Wessel's essays . The topics they discussed were of
interest at their time, and both men provided a number of solutions whic h
were ahead of their time . Their mathematical achievements had erroneousl y
been marginalized for a long time, but they were never outsiders in math-
ematical research. On the contrary, Caspar Wessel and Hermann Günther
Grassmann had a profound knowledge and understanding of mathematical
research problems . Their contributions to mathematics were durable, and
they are still appreciated in our time .
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Julius Petersen, Karl Weierstrass, Hermann
Amandus Schwarz and Richard Dedekin d

on Hypercomplex Numbers

Jesper Lützen *

Abstract

Caspar Wessel's paper On the Analytical Representation of Direc -
tion was the first Danish-Norwegian contribution to the field of hyper -
complex numbers . The present paper is devoted to the second Danis h
contribution to this field : the papers by Julius Petersen . These con-
tributions that were marred by flaws and unrecognized repetitions o f
earlier results are analysed in the context of the contemporaneous wor k
of Weierstrass and Dedekind . This brings out the central position of
H.A . Schwarz . As a side issue it is discussed how diverging interpreta -
tions of a quote by Gauss resulted in a polemic between Weierstras s
and Dedekind .

1 Petersen and Danish Mathematics at the end o f
the 19th Century

While astronomy and geodesy flourished in Denmark-Norway around Wes-
sel's time Wessel's own, then overlooked paper, was the only valuable Dan-
ish and Norwegian contribution to mathematics . After Erasmus Bartholin
(1625-98) and Georg Mohr (1640-97) Danish mathematics only reached a n
international level around 1880 with the works of H.G . Zeuthen (1839-1920)
on enumerative geometry and history of mathematics as well as those o f

* Department of Mathematics, Copenhagen University, Universitetsparken 5, DK-2100
Kobenhavn Ø, Denmark
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Julius Petersen (1839-1910), T .N. Thiele (1838-1910) and later J .P. Gram
(1850-1916) and L .V.W.V. Jensen (1859-1925) . Julius Petersen, who was
Zeuthen's former schoolmate and lifelong friend, was a docent at the Poly -
technic Highschool in Copenhagen from 1871 to 1887 when he got a chai r
at the University of Copenhagen . He was famous (infamous) to Danis h
schoolchildren who almost all used his system of textbooks in mathematics .
Internationally he became known at the time as the author of Methods and
Theories for the Solution of Problems of Geometric Constructions [1866/79] ,
the best selling mathematics book ever written by a Danish mathemati-
cian, translated into innumerable languages and republished as late as 1990 .
His book on the theory of equations [1877] and his lectures on mechanic s
[1881,84,87] also enjoyed wide fame . In recent years he has become famous
mainly through his pioneering contributions to graph theory, cryptography
and mathematical economy .

His works were characteristic through their concise, elegant, often geomet-
ric intuitive style, which was not overburdened by details and sometime s
passed over major problems without noticing it . The way he did research
had several connected characteristics : 1° he rarely read the works of other
mathematicians, 2° he was a problem solver, not a builder of theories, 3 °
he only pursued an idea a little way (until he had solved his problem) an d
then dropped it . This had the unfortunate consequence that many of hi s
"discoveries" turned out not to be new and his genuinely new ideas ha d
little influence on his contemporaries because he did not pursue them fa r
enough .

In this paper I shall illustrate many of these points in a discussion of Pe-
tersen's research on hypercomplex numbers . More information about Pe -
tersen and his work can be found in [Lützen, Sabidussi and Toft 1992] and
[Christiansen et al 1992] .

2 Petersen on the Foundation of Mathematic s

Petersen displayed his first interest in hypercomplex numbers in 1883 in con-
nection with a discussion on the nature of mathematical axioms that took
place in the Danish journal Tidsskrift for Mathematik, also called Zeuthen's
Journal. Compared to other participants in the discussion who argued tha t
axioms were based on experience or were a priori in Kant ' s sense, Petersen ' s
view was extremely modern :
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Mathematics chooses its assumptions in an arbitrary way and deduce s
from them what can be deduced in a logical way. It has little scientifi c
importance that the assumptions are chosen for practical reasons wit h
a view to what appears in nature [ . . . ] When I have said that Math-
ematics can choose its assumptions arbitrarily, it should perhaps b e
added that the assumptions must not contradict each other . [Petersen
1883, 3-4]

Petersen illustrated this view of axioms by introducing a model of a non -
Euclidean geometry (the so-called Riemannian or single elliptic geometry
in Klein's terminology) . He added the model of hyperbolic geometry pub-
lished by Poincaré the previous year in Acta Mathematica [Poincaré 1882] ,
but he seems to have been unaware of Beltrami's work as well as of Klein' s
more farreaching work from 1871 on the "so-called non-Euclidean geome-
try" [Klein 1871] . However, he soon learned about it . Indeed, a highschool
teacher from Schleswig-Holstein, Rudolph von Fischer-Benzon (1839-1911) ,
who over the years translated many books and papers by Petersen into Ger -
man, also translated this paper and sent it to Felix Klein (1849-1925) fo r
publication in the Mathematische Annalen . Klein did not find much new in
Petersen's paper :

The comparison with Poincaré's geometry is old . The same applies t o
C3 [Petersen's projective model] . The use of the linebundle is also du e
to me as well as the criticism of Legendre's proofs . What is now left fo r
Petersen? Many interesting specific points . Then the exposition of th e
general principles which are indeed creditably clear . [Klein's remark
in the margin of a letter from Fischer-Benzon to Klein, November 6 ,
1886]

In the end Klein decided that the new observations and the clarity of th e
exposition warranted that the paper be printed in the Mathematische An-
nalen provided that Petersen added references to the relevant literature tha t
he had originally ignored .

3 Petersen's 1885 Paper on the Basic Concepts of
Algebra

Petersen's 1883 paper also contained a few remarks concerning the basi c
concepts of algebra . He returned to this subject two years later in a talk to
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the Royal Danish Academy of Sciences and Letters, of which he had becom e
a member in 1879 . The paper was printed in Tidsskrift for Mathematik the
same year [Petersen 1885] . Petersen defined algebra as a theory of sign
language with the following characteristics :

1) The language must contain signs that designate the elements in on e
or more sets (Petersen used the word "group" in the sense "set" o r
"algebraic structure") . The meaning of the signs is only determine d
when the algebraic theory is applied .

2) The language must contain signs for operations .

3) The language contains an equality sign .

4) The language has certain arbitrarily chosen basic characteristic equa-
tions .

This characterization of algebra and Petersen's description of isomorphi c
structures again seem very modern in view of the fact that by 1885 the de-
velopment of algebra as the science of algebraic structures was hardly visible .
However, it is in fact unclear precisely how generally Petersen considere d
his characterization . As one among the commonly chosen "basic equations "
Petersen mentioned the commutative law : a + b = b + a, but he did no t
introduce the axiomatic definition of a group (in the modern sense of tha t
word) . In his algebra book from 1877 groups were defined as permutation
groups. In fact, in order to illustrate what he had in mind, Petersen di d
not mention any of the axiomatic structures that were taking shape aroun d
this time such as group or field (cf . e.g. [Wussing 1984]), but he turned t o
hypercomplex numbers .

3.1 Complex Numbers

He first introduced ordinary complex numbers in an unorthodox projectiv e
way: Let L be a given straight line and O a given point outside the line .
Petersen now defined the sum C of two points A and B in the half plane
containing O by the construction in figure 1 . He claimed without proof tha t
this definition of addition is commutative and associative and has O as
a neutral element (called 0) . Moreover, the points of L are infinite in th e
sense that they are not changed if another point is added to them . Although
addition of two points on the same line through O is not directly defined b y
the above construction, Petersen hinted that it can be defined by a limiting
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Figure 1

process or by first adding a point outside the line and afterwards subtractin g
it . In this way one can define k . a, where a is a point in the half plane an d
k E N by first setting a + a = 2a, 2a + a = 3a etc: "in the usual way we
can extend to fractional and irrational values of k" [Petersen 1885, 4] . Now
Petersen introduced two arbitrary but fixed half lines OP and OR and chose
a point called 1 and i on them. Every point of the half plane can now b e
decomposed as a sum of a point on OR and a point on OP and therefore
has the form a • 1 + b . i, a, b E R or as Petersen wrote a + bi . He did not
remark that he had here confused the real number 1 and the point 1 o n
OR . He remarked that if one chooses L at infinity, OR perpendicular t o
OP and Oi = 01 then one would get the usual description of the complex
numbers . That this usual description had been presented by Wessel to th e
same learned society to whom Petersen addressed his talk was unknown t o
him as well as to all his contemporaries .

Finally Petersen introduced multiplication . He remarked that in order t o
"obtain the usual laws of calculation" one must assume tha t

(a + ib)(a l + ibi ) = aa l + (abi + bal )i + bb 1 i 2

(distributativity. associativity and commutativity are used, but Petersen did
not specify which "laws of calculation" he specifically referred to) . More-
over, in order for this to make sense (for the "group" to be closed unde r
multiplication) i 2 must be of the form a + iß, a, E R . "It is most nat -
ural to put i2 = -1" he continued without explaining in what sense thi s
choice was the most natural ; nor did he give a geometric explanation o f
the resulting multiplication. Instead he argued that just as lines through
O are "closed subgroups" under addition and subtraction, so the ellips e

(1)
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{x = a + ib a2 + b 2 = 1} is the only infinite "subgroup" with respect t o
multiplication and division . How he could miss the positive real axis, i .e .
the half line OP (with O left out), is odd.

3 .2 Ternions

Having hinted at the new possibilities opened by such a more general treat-
ment of complex numbers Petersen turned to "ternions" . From the outset
he wrote a ternion of the form x + ay + /3z, where 1, a, O are points on th e
three `"axes" (probably orthogonal) and x, y, z E R. Addition is defined by
the parallelogram rule (vector addition) . In order to define a multiplication
that satisfies the "usual rules" (only commutativity is mentioned explicitly )
we must define a2 , aß and ,(3 2 , i .e . we must choose ai , bi , ci , (i = 1,2,3), so
that

a2 = aia + b 1 ß + c 1 ,

n3 = a2a+b20 +c2,

	

( 2 )
û 2 = a3a+b3ß+c3 .

In fact one should also define 1 2 , in and 10 where 1 is the point chosen on
the first axis . However, since Petersen confused this with the real number 1
he implicitly assumed that 1 2 = 1, in = a and 10 = ,3 .

Petersen remarked that one cannot chose ai , bi , ci arbitrarily; it is required
that expressions of the form am•/3n always give the same result independently
of the order . He did not explicitly state if there were other requirement s
that had to be fulfilled, nor did he spell his one condition out as an explicit
condition in ai , b i and c i because it "is rather complex" . However, he stated
that the requirement could be satisfied in "different ways" and went on t o
consider "one of the simplest", namely :

2 =ß ß2a

	

= a~

	

, a~3 =1 . (3 )

As in the two-dimensional case Petersen then sought "groups" that ar e
closed under multiplication and division. He found the surfac e

x3 + y3 + z3 - 3xyz = 1

	

(4 )

as well as the "null surface"

(5)x+y+z=0
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and the "null line"

x = y = z . (6)

The null surface and the null line have the additional property that a product
lies in the null surface (null line) when one of the factors lies in the nul l
surface (null line) . This means that the product of a point in the null surfac e
and a point on the null line is zero . Thus, there exist zero divisors, an d
division is not always uniquely defined . The null line and the null surfac e
span the whole space (they are orthogonal in this case) and so any ternio n
can be decomposed as a sum of a point .e on the null line and a point p o n
the null plane . Expressed in this way multiplication can be expressed in th e
simple form :

(Q+p)(f'+p') = ee ' + pp ' .

Here £ and L' multiply as real numbers and Petersen showed with som e
geometric considerations that points in the null plane multiply like complex
numbers .

Finally he argued (§12) that an n'th degree ternion equation has less than n 2
solutions. However, that is not correct . Indeed, if the polynomial equation

bx + . +hxm = 0

has coefficients that all belong to the null plane (or all belong to the nul l
line) then all the infinitely many points on the null line (null plane) will
solve the equation . More generally, if all the coefficients of

a+bx+

	

•+hxm =0 (8 )

are products of the same null divisor k :

a=ka', b=kb' , . . . ,h=kh' (9 )

then if a', b', . . . , h' are chosen such that

(10)a' +b'x+ . . .+h'xn= £

has solutions for infinitely many values of .e for which k - E = 0, then all thes e
infinitely many solutions will solve the original equation . This consequenc e

(7)
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of the existence of null divisors played a major role in Weierstrass's discus-
sion of hypercomplex numbers (see below), but it was entirely overlooked
by Petersen .

In the last section of his paper Petersen discussed quaternions, and from the
start he chose Hamilton's quaternions . Of course he mentioned the lack of
commutativity and he mentioned the uniqueness of (right and left) divisio n
by non-zero quaternions . Otherwise he did not explicitly stress that in th e
four dimensional case he had made a choice different from the one in thre e
dimensions . He had sacrificed commutativity but avoided null divisors .

3 .3 General Evaluation

Petersen's 1885 paper is typical of his production . It is elegant, geometricall y
intuitive, not overburdened with rigour, flawed in some details and without a
single reference. It is in fact unclear whether he knew of Weierstrass's pape r
on hypercomplex numbers from 1884 or Schwarz's additions from the same
and the following year . Dedekind's paper of 1885 may not have appeare d
when Petersen gave his talk . If Petersen did not know of Weierstrass's pape r
one must grant him that particularly the section on ternions reveals som e
original insights . However, even then it is characteristic that Petersen di d
not dig deeper . For example he did not ask if there was anything special
about the choices he made in the two, three and four dimensional cases .
The answer is that the choice of i 2 = -1 in the two-dimensional case and
Hamilton's relations between i, j and k are very special giving the comple x
numbers, and Hamilton's quaternions specially nice algebraic properties .
Petersen's choice : a2 = ß, ß2 = a, = 1 in the ternion case on the othe r
hand, gives no special results that one cannot obtain with all "suitable "
other choices . It is characteristic of Petersen that he did not make thi s
discovery, and that he did not initially investigate if his arguments could b e
generalized to higher dimensional commutative n-ions .

Fischer-Benzon also translated this paper by Petersen and sent it in 188 6
to Klein for publication in Mathematische Annalen, but this time Klei n
refused . His reason was probably that Petersen's paper could at best be seen
as a simple exemplification of some of the results in Weierstrass's paper i n
Göttinger Nachrichten of 1884 .
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4 The Background to Weierstrass's 1883-84
Paper

According to his own testimony [Weierstrass 1884, 396] Karl Weierstrass
(1815-1897) lectured on hypercomplex numbers as early as the winte r
semester 1861-62, 1 but his results were not published until 1884 on the
initiative of Hermann Amandus Schwarz (1843-1921) . Schwarz had hear d
Weierstrass's lectures on hypercomplex numbers and had later tried (prob -
ably in 1877) to reconstruct their contents . However, he got stuck at a par-
ticular detail in the argument : Weierstrass had assumed that for a domain
of n-dimensional hypercomplex numbers there exists an element g such that
e g g2 g 3 gn-1 spans the space where e is the neutral element unde r
multiplication . Now Schwarz was unable to prove the theorem that ther e
exists such an element g in each domain of hypercomplex numbers . 2 He
turned to Weierstrass, but as he recalled in 1883 :

I have already once talked with you (Weierstrass) about this point ,
but you had just mentioned other things that were in the foreground
of your interests, and so we did not discuss this question in detail . 3

However, Schwarz did not doubt the truth of the theorem until 1883 when he
visited Paris and met the Greek mathematician Kyparissos Stephanos, wh o
gave him a simple example of the three-dimensional system of hypercomple x
numbers, where the theorem fails . Stephanos's numbers were of the for m

x = aoeo + a l e ], + a2e2 , cai E R,

	

(11 )

where eo, e l , e 2 are the three basic units of which eo is the neutral element
under multiplication and the other elements multiply according to the sim-
ple rules :

etel = 0, ele2 = 0, e 2 e2 = O .

	

(12 )
11 have not been able to locate any lecture notes from this lecture which Weierstrass

had to interrupt halfway through the term due to a breakdown .
2 Schwarz's attempts at reconstructing Weierstrass's theory on the basis of lecture note s

of 1863/64 and 1865/66 are preserved in [Ms 1] dated May 15th 1877 . Schwarz proved
the existence of a unit element, but when he arrived at the problem of the existence of g
his notes degenerated into a series of seemingly unfruitful examples .

3 "Ich habe schon einmal mit Ihnen über diesen Punkt gesprochen, aber Sie hatte n
gerade andere Gegenstände, welche im Vordergrunde Ihrer Interesse standen, angereg t
und so unterblieb ein genaueres Eingehen auf diesen speciellen Fragepunkt" . [Schwarz t o
Weierstrass May 9, 1883] .
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In this case

x 2 = 2ao(c oeo + a l e' + a 2 e2) - aôeo (13 )

so that

x2 - 2aox + aoeo = 0, (14)

which shows that eo, x, x 2 are linearly dependent, so that they do not span
the space, no matter how x is chosen . 4

When Schwarz returned from Paris he wrote a letter to Weierstrass (from
which I have drawn the above information) informing him about Stephanos' s
counterexample and concluded :

Now arises the question: which theorem should replace it? Do th e
consequences that you have drawn from the above theorem e .g . "in a
number domain with an uneven number of units there exists no numbe r
whose square is equal to -e0" still hold true or are they subject to a
modification?

It would really be rather horrible if one had to add the following qual-
ification to all those theorems . "There are cases where this or that
holds true ; however it does not always occur" .

Which modification applies to Hazzidakis's theorem? 5 [Schwarz to
Weierstrass, May 9 1883]

4 Kyparissos (or Cyparissos) Stephanos (1857-1917) studied mathematics in Paris until
1884 when he returned to Athens to become a professor at the University and the Technical
Highschool . While in Paris he communicated his counterexample to Schwarz on a shee t
of paper [Ms 2] preserved in the Schwarz Nachlass . Later (in 1888) he published an 1 1
page paper in Greek on "Systems of complex numbers with several symbolic units" i n
the jubilee publication celebrating the 50th anniversary of the University of Athens, an d
at the first International Congress of Mathematicians he gave a talk "Sur les systèmes
associatifs de nombres symboliques" (see the abstract in the "Verhandlungen des ersten
internationalen Mathematiker-Kongresses", Leipzig 1898 pp . 141-142 .) In this talk h e
reduced the study of hypercomplex numbers to the study of trilinear forms . Many of his
other publications, most in French journals, concern binary and ternary forms .

'Johannes Hazzidakis (or Hatzidakis) (1844-1921) studied mathematics in German y
from 1870 to 1873 . Afterwards he was first a professor at the Military School in Athen s
and then in 1884 at the University of this town, at the same time as his compatrio t
Stephanos. He published several papers in Crelle's Journal, but apparently nothing on
hypercomplex numbers . His role in the story is therefore not quite clear (see however th e
end of §4 .1 below . )
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Weierstrass answered Schwarz in a long letter that he began on May 19t h
and finished on June 27th 6 1883, a letter that Schwarz subsequently read t o
the Königliche Gesellschaft der Wissenschaften zu Göttingen on December
1st of the same year and published the following year in the Göttinger
Nachrichten, [Weierstrass 1884] .

The short version of Weierstrass's answer runs as follows . He had early
on been aware of the problem, not as a result of the example given b y
Stephanos, but as a result of an analysis of the noncommutative case, wher e
the quaternions give a similar counterexample . However, he had not explic-
itly called attention to this circumstance in his lectures prior to 1882-8 3
except for showing that it did not occur "in general" . 7 In his 1882-83 lec-
tures he had more explicitly stated the condition that had to be fulfilled t o
avoid the problem, but he had not had the time to explain why this condi-
tion was necessary, in Weierstrass's opinion, in order to have a domain o f
hypercomplex numbers that is algebraically interesting at all .

This direct answer to Schwarz's question concludes Weierstrass's letter t o
Schwarz [Weierstrass 1884, 411-414] . In the first main part of the lette r
Weierstrass aimed at giving

. an authentic account of my theory of the complex quantities ; the
notes, even by the best in my audience contain many misunderstand-

6 In the published version [Weierstrass 1884] the date is given as "19 .-27 . June" . That
does not correspond to the dates given in the original letter .

7 In his lectures of 1863/64 (only two years after his first treatment of hypercomplex
numbers) Weierstrass does not seem to have mentioned the problem at all . At least in the
lecture note [Ms 3] the tricky point is passed over in silence . Having remarked that fo r
any hypercomplex number x, the numbers e, x, x2 , . . . , x P are linearly dependent (cf. (30 )
below) when p is the dimension (called n below) he simply stated : "Wenn ich irgend eine
Zahl x als Einheit einführe und x mit der Potenze ; Jede Zahl auf die Form zu bringen :

a= ae° + ale l + a2e2 + . . . aP-Ie
p-1

"

In English translation : "When I introduce an arbitrary number x as unit and x as it s
powers ; To represent every number on the form

a = eke ° + ale l + a2e 2 + . . . aP-lep-1
i t

To be sure this passage is somewhat obscured by its odd grammatical structure and by
the change of notation (x is called e in the formula), but it is obvious that the student
who took the notes did not detect any problem concerning the existence of x (or e or g
in Weierstrass's later notation) . The lecture notes break off only half a page after thi s
introduction of e .
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ings - with or without the fault of the docent - namely in place s
that go beoynd mere reproduction of calculations . 8

This account was devoted to showing that a strong structure theorem abou t
hypercomplex numbers will hold in general, and to show that in the spe-
cial cases where it does not hold, non trivial algebraic equations can hav e
infinitely many solutions, which made such algebras too unlike the real num -
bers to be of any importance .

4 .1 Weierstrass's Theory of Hypercomplex Numbers

I shall summarize Weierstrass's argument at some length, not only becaus e
it is of interest in itself, but also because it sets the mathematical an d
historical background for both Petersen's and Dedekind's later papers .

Weierstrass considered a space (he called it a "Gebiet" (domain)) of n-
dimensional hypercomplex quantities of the for m

6. e 1 + -2e2 + . .+~nen

where ei , . . . ,G, E R and el , e 2 , . . . en are n independent basic units . I
shall call this space C . He explicitly stated that the space should be closed
under addition, subtraction and multiplication as well as under division i f
it is defined (see below), and he explicitly set down the following axioms :

(15 )

a+b = b+ a
(a+b)+c

	

(a+c)+b

	

(16)
(a-b)+b = a

a• b
(ab) c

a(b+ c)
b

(17 )

(remark the strange mix of the associative and the commutative laws . )

Weierstrass then claimed that it followed from the first set of axioms that
addition and subtraction are performed componentwise, i .e .

n
if a = ~ a2 e i and b =

i
n

then a ± b = ~( a2 ± ß2)e2 .

	

(19)
i= 1

8 A sad view from a mathematician, many of whose ideas became known through his
students!

n
(18)

Ø=1
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Here he has implicitly used that the ei 's themselves can be considered as
hypercomplex numbers and that the "+" in the expressions (18) for a an d
b is the same as the composition used to add two hypercomplex numbers .
Moreover he has assumed that the "multiplication" with the real numbers
ai satisfies the distributive law

a iei + ßiei = (ai + ßi)e i .

Weierstrass did not explicitly define a multiplication of a general hypercom-
plex number with a real number, but if we do so in the obvious way we can
consider C, ,, as a real vector space. I shall therefore somewhat anachronisti -
cally use vector space terminology in the following discussion .

Implicitly using that aje j ßkek = aj/3k(ejek) Weierstrass further concluded
that if a and b are given as in (18) their product is given by

a ' b = ~J ajA(ej ek) •

Therefore the multiplication is completely determined once ej ek has been
determined for all j, k = 1 , 2, . . . , n. If Eijk denote the coordinates of e j ek
in the basis {e i }, i .e . if

n
ej ek =

	

E ijke i
i= 1

then the n 3 real numbers eijk completely determine the multiplication .

The central exercise is to find the conditions that the e ijk 's must satisfy
in order to define acceptable multiplications . First Weierstrass pointed out
that the commutative and "associative" laws (17) will determine a numbe r
of constraining equations . These equations, namely

First
constraining

eijk

	

= e ikj

	

i, j, h = 1, 2, . . .

	

n
n

	

n
(23)

requirement Eijk,Ekrs

	

J EiskEkrj,

	

2, r, 8 = 1, 2, . . •

	

n (24)
k=1

	

k=1

were not written out by Weierstrass, but Dedekind [1885, 145] later did .

(20 )

(21)

(22)
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In order to define the quotient b = ~Zl i ei such that b - b = a, the
coordinates 7i must satisfy the equation

n

ai = ijkßj lyk - (25)
j,k= 1

This is possible in a unique way if the determinant

n

e(b)

	

Eijkßj

j=l

is different from zero. If it is zero for a given b there are either zero o r
infinitely many solutions -y l , . . . , 7n to (25), depending on the value of a .
Now Weierstrass claimed that for n > 2 one cannot define a unique division
for every b O. Indeed this is a consequence of the following analysis .
However, he required that a unique division can be defined for some value s
of b . This amounts to requiring that e(b), which is a homogeneous function o f
degree n in the ,ß 's, is not identically zero . This is his second constrainin g
requirement on the numbers Ei?k .

If both requirements are satisfied, Weierstrass claimed that there exists a
unit element eo E Cn such that eo . a = a for all a E C . Schwarz included
his 1877 proof (see footnote 2) of this fact in an appendix .

Now a third constraining requirement was made to answer the proble m
Schwarz had struggled with : Let

x = Sl e l + S2e2 + - . . +
Snere

denote an arbitrary element of Cn . Then its powers can be expressed in the
form

x U = ~ ly) e l + ~ 2 L ~ e2 +

Weierstrass made the third constraining requirement that the determi-
nant

Xo = e(P)

	

µ, v= 1, 2, . . . ,n

	

(29 )

is not identically zero . He claimed, and Schwarz proved in an appendix, that
this would indeed be the case except for "special values of the system eijk" .

(26 )

(27)

(28)
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Under this assumption we can therefore choose a quantity g = elel + 2e 2 +
+nen for which Xo 0 . Then eo, g, g 2 , . . . , gn- 1 will be a new basis o f

Cn as Schwarz had wanted .

Moreover, since eo, 91i . . . , gn will obviously be linearly dependent g must
satisfy a polynomial equation of the for m

f(g) =
gn + elg(n-1)

+
e2g(n-2) + . . . + eo eo = 0 .

Weierstrass then made the fourth and last constraining requirement on
the e ijk 's, namely that this equation, considered as an equation in C, has
n different solutions. That amounts to saying that its discriminant D2 i s
different from zero.

Now the field is laid out for the proof of the main structure theorem : First
Weierstrass remarked that multiplying in the basis eo, go g 1 g2 gn-i

corresponds to multiplying polynomials modulo f (x) where f is the poly-
nomial in (30) . More precisely : to a hypercomplex number

-1

a =

	

aig 2

i=o
(31 )

we associate the unique polynomial

n- 1

Then

(Pa =

	

aix .

i=o
(32)

if and only if

a-b=c (33 )

~Pa ' Pb = (Pc

	

mod f . (34)

Moreover, the classical result of decomposition in unit fractions states tha t
if co is a polynomial of degree less than n then ~(x) can be decompose d

f(x)
uniquely in the form

(30)

(p (x) __ cP1(x)

	

tP2(x)

f (x)

	

f1(x ) + f2(x) +
. . . <Pr(x)

fr. (x) '
(35)
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where f1, f2 , . . . , fr are the real irreducible linear or quadratic factors of f
(that by the fourth requirement are all diferent) and where pl, P2, . . . , (p i . are
real numbers or first degree polynomials (of degree less than their respectiv e
denominators) .

That means that if fl ,, is of the first degree, the subspace GI,, of hypercomplex
numbers associated (by the association (31) (32)) with polynomials of
the form

f( x)
Sop ( x )

	

(36 )
(x )

is one-dimensional and spanned by the hypercomplex numbers associated
with f(x). On the other hand if f, , is a quadratic polynomial the subspac efu(x )
G 1 of hypercomplex numbers associated with polynomials of the above form
(36) is two-dimensional and spanned by the hypercomplex number associ -
ated with w((	 )) and fy(x)) • s .

Since any hypercomplex number is associated with a polynomial cp of degree
less than n and since cp(x) =

f(x)
• f (x), equation (35) shows that any

hypercomplex number can be written uniquely as a sum of elements in
G 1 , G2 , . . . , Gr . In modern language Cn = G1 G G2

	

Gr .
Elementary calculations with polynomials modulo f now show that if a E G i
and a' E Gj then

a•a ' =0 ifi~j,

	

(37)

but

a•a' 0 ifi=j unless a=0 ora' =0.

	

(38)

Assume for the moment that all the subspaces G; are one-dimensional an d
write eo = g' + g" +

	

+ g(n) where g (i) E Gi . Then it is easy to see that

(ag (P) ) (Og(u) )
_ (

a
O) g(A )

That means that if we use g (i) . . . , g(n) as a new basis for Cn multiplication
is simply reduced to componentwise multiplication :

(39)

n

	

n
cxig(i) .

	

A
g(i )

i=1

	

i=1

n
(40)( mo i 3 )g(i) .

i=1
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With a little more effort Weierstrass was able to prove that it is possible t o
pick bases g (1) , k (u) in the two-dimensional subspace Gµ such that multipli-
cation of two elements of G m, is done as follows :

(ag(µ) + å )(O9(µ) + ß'k(12)) = (aß - a'ß')9(µ) + (a'ß + aß')k(u) (41)

i .e . they multiply exactly as the two complex numbers a+ia ' and ß+ . We
can therefore think of the two-dimensional subspaces Gi as one-dimensional
complex vector spaces .

Thus Weierstrass had proved the

Main Structure Theorem. If {eijk } satisfies the four constraining re-
quirements one can decompose Cn as a direct sum of one or two dimensiona l
subspaces :

Cn = G i + G 2 Eb ED Gr

	

(42)

such that all algebraic computations involving addition, subtraction, multi-
plication and division are done componentwise, and such that one compute s
with the components in each Gi as with real numbers (in the one-dimensiona l
subspaces) or with complex numbers (in the two-dimensional subspaces) . Or
expressed in a more modern way Cn is isomorphic to a direct sum of copies
of the real and complex numbers with multiplication defined componentwise .

This theorem is a complete and general higher dimensional analogue of th e
theorem found (later) by Petersen for his specific choice of ternions . We
remark that any hypercomplex number with a zero component in at leas t
one of the subspaces Gi will be a zero divisor because it will give zero i f
multiplied with g (i) . Thus as a special corollary Weierstrass has established
that if the dimension of Cn is higher than two (so that there will be at leas t
two terms Gi in the sum BG i ) there must necessarily be zero divisors . 9

This theorem, showing that there do not exist hypercomplex numberfields
of dimension higher than 2, is often attributed to Weierstrass (see e .g . [Kline
1972, 793]) . It is however worth mentioning that Hermann Hankel (1839-
1873) had already published a proof of the theorem in his book Theori e

9 Strictly speaking the above argument only leads to this conclusion if {6k} satisfies
all the four requirements . However, he also showed that if the last requirement is no t
fulfilled, there is a A such that x A = 0 has infinitely many solutions . This also gives zer o
divisors .
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der Complexen Zahlensysteme [1867] . Yet Weierstrass did not find it worth
mentioning . Did he not know Hankel's book or did he not feel obliged t o
mention it in a "letter" to a friend and student, since he had derived the
theorem long before the appearance of Hankel's book, or did he even feel that
Hankel had in some way stolen some of the ideas from his earlier lectures ?
I cannot say on the basis of the available documents . However, it is equall y
conspicuous that Hankel did not refer to Weierstrass's lectures in his book
despite the fact that he was in Berlin and followed courses by Weierstrass in
exactly the year 1861 [Crowe 1972], in which the latter gave his first accoun t
of hypercomplex numbers .

Another question of priority concerns Hazzidakis's contribution . Having
proved that one can choose a basis in the two-dimensional subspaces G i
such that multiplication corresponds to complex multiplication of the com-
ponents, Weierstrass added in a footnote :

As is well known to you Mr Hazzidakis has arrived at the same resul t
in a different way. [Weierstrass 1884, 406]

It is not quite clear how much of the Main Structure Theorem Hazzidaki s
had proved: Had he proved the whole theorem? This seems unlikely con-
sidering the little mention he got . It seems more likely that he had heard of
Weierstrass's decomposition On = ®Gi , and had found the special basis in
the two-dimensional subspaces Gi , in which the multiplication reveals itself
as complex multiplication . The way Schwarz referred to Hazzidakis's theo-
rem in his letter to Weierstrass (see §3) even suggests, that Hazzidakis wa s
the first to see that the two-dimensional subspaces Gi behave like complex
numbers .

Weierstrass's first two requirements seem natural, but the last two may see m
artificial . However, Weierstrass showed that if one of them is not satisfied ,
then a polynomial equatio n

a +bx + cx2 + . . . + hxm =0

	

(43 )

can have infinitely many solutions even when its coefficients a, b, . . . ,h are
not multiples of the same zero divisor . On the other hand he could show
that if the requirements are satisfied, a polynomial equation has finitel y
many solutions except when its coefficients a, b, c, . . . ,h are multiples of the
same zero divisors. Since the existence of zero divisors cannot be avoide d
(for n > 3) this is the closest one can get to the usual fundamental theorem
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of algebra . Conditions 3 and 4 therefore ensure that we keep as close as
possible to ordinary algebra, and they are therefore natural according t o
Weierstrass .

5 Petersen's 1887 Paper

In 1887 Petersen published his own treatment of general n-dimensional hy-
percomplex numbers in Göttinger Nachrichten . It is phrased as an alter-
native to Weierstrass's treatment, of which he had become aware in th e
meantime (probably through Klein or Fischer-Benzon) . In fact, much of the
treatment follows Weierstrass closely, but there are notable differences . First
of all Petersen used complex numbers . Initially he defined hypercomplex
numbers as quantities of the form ] . e l + 2e2 + • - nen where i E R. Here
he followed Weierstrass . However, when he had defined the quantity g and
the polynomial f (30), he used all its real and complex roots x i, x2, . . . ,x,,,
to define a new set of elements : p i , p2 , . . . , pn by:

pi = .Î'(x i)(x) xz)' (x = g)'

	

(44 )

f (x

where it is understood that one must set x = g after having made the
division. Petersen now showed that the new set of points p i multiplies each
other in the following simple way

pi - Pi = Si?pi
1

where 6i, ß
= 0

for i = j ,

for i L j .
(45)

The p-system is also a basis and (42) implies that expressed in this sys-
tem, multiplication is simply termwise multiplication of coordinates, i .e . if
a l , a2 i . . . , an are a's coordinates and b 1 , b 2 , . . . , bn are b's coordinates in
the p-basis, then a - b has the coordinates a l bs, a 2 b2 , . . . , anb n . In the same
coordinates the Null set has the equatio n

x lx2 . . .xn = 0

and consists of the n (n - 1)-dimensional subspaces :

xi=0,x2=0, . . .,xn=0.

(46 )

(47)
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Petersen then proceeded with the example which he had given in his 188 5
paper . However, this time he explicitly mentioned the multiplication laws
for the first "basis vector" e l (which he had implicitly identified with 1
earlier) and he decomposed the null-surface from 1885 into two complex
null-lines . He also generalized his search for "subgroups" invariant unde r
multiplication and concluded that they are all given by an equation of the
form

xa
1 2

1x~2 . . . xan = 1,~

except the earlier mentioned null-spaces and their intersections . Petersen
then went on to analyse Weierstrass's four requirements and first showed
that they were independent in the sense that the fulfilment of three of the m
does not ensure the fulfilment of the last one . He finally found a "surprisingly
simple" requirement that he proved to be equivalent to Weierstrass's las t
three requirements : Consider the equations of condition (22 )

ej ek = L ez.jke z
2- 1

as an equation in n numbers (complex numbers) e l , e 2 , . . . , en . Then Weier-
strass's three conditions are satisfied if and only if one can find n sets o f
solutions

etil e z2 ) eå3) . . . , e in)

	

i = 1, 2, . . . , n ,

such that the determinant 1 % is different from zero. Expressed in vec-
tor space language Petersen ' s argument runs somewhat along the following
lines .

First assume Weierstrass's conditions are satisfied . Then the previous argu-
ment shows that there exists a basis , P 2 , .i . . . , pn in which multiplication is
simply coordinatewise multiplication . If we express the original basis vector s
e l , e 2 , . . . , e, in this system

\\
n

ej =

	

e2Jpz ,
i=i

then the original equations of condition separate according to the coordi-
nates into the equations :

(48)

(49)

(50)

(51)

eijeik = efjk ez.e . (52)
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Thus ei', ei2, . . . , e in is a set of solutions to (49) for all i = 1, 2, . . . ,n and
since {e i } is a basis the determinant e i,j 1 of its coordinate vectors is non
zero .

Conversely, assume we can find solutions eil, eil, . . . , ein of (49), i =
1, 2, . . . ,n so that Ieij l O . That means that if we consider the n vectors
in Rn

ei l
e i l

ei =

	

i = 1, 2, . . . ,n

	

(53 )

ein

they are a basis of Cn and under coordinatewise multiplication they satisfy
the equations of condition (49) . That means that the product determined
on Cn by the equation of condition (49) has the property that it can be
described as coordinatewise product in a suitable basis, or said differently,
Cn = C ® C ® • ® C, and that can only happen if Weierstrass's condition s
are satisfied . Indeed these conditions are satisfied by the eijk that define
coordinatewise multiplication, and they remain true under a change of basis .

So when Petersen in his condition asks for n solutions of the equations (49) ,
he really asks for the construction of a set of linearly independent vector s
e l , e 2 , . . . , en in Cn , such that multiplication defined coordinatewise in th e
standard base in Cn will yield the equations of condition (49) . Since the
existence of a basis in which multiplication acts termwise is equivalent to
Weierstrass's conditions, Petersen's conditions are clearly correct .

One may question the value of Petersen's result . Indeed the structure o f
Weierstrass's argument is to establish that under rather weak condition s
(1-4) fulfilled by a host of (almost all) choices of 5ijk (and by all choices
that will yield acceptable algebras at all), one can prove that the multi-
plicative structure so to speak, separates out in the sense that expressed in
a suitable basis it is nothing but coordinatewise multiplication . Conversely
the existence of a basis in which the product is expressed coordinatewis e
implies Weierstrass's conditions, but of course, this converse result is less
interesting or surprising. What Petersen's conditions ask is to construct th e
basis in which the multiplication is termwise in order to verify Weierstrass' s
conditions . It seems to verify the less complicated by the more complicated .
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6 The Fate of Petersen's Paper

Petersen wrote his paper in German and sent it in May 1887 to Schwarz
for publication in the Göttinger Nachrichten . At this time Petersen knew
Schwarz quite well 10 . They had met for the first time in 1877 in Copenhagen ,
and later the same year Petersen had sent Schwarz a paper on integration
of differential equations in closed form for publication in the Nachrichten .
Already at this time Schwarz was faced with the problems involved in pub-
lishing Petersen's ideas . He asked Petersen to correct imprecisions and make
references to the relevant literature . Moreover, when the paper appeared i n
1878, Leo Königsberger (1837-1921) wrote a letter to Petersen calling hi s
attention to a paper he had published the previous year in Grelle's Journa l
in which he had proved a more general theorem .

In 1886 (or 87) Petersen visited Schwarz in Göttingen . It may have been
a discussion about hypercomplex numbers on this occasion that made Pe -
tersen compose his paper and send it to Schwarz . Schwarz immediately pre-
sented it to the Königliche Gesellschaft der Wissenschaften zu Göttingen on
May 1887, but already five days later, while preparing the manuscript fo r
publication, he found himself in a situation similar to the one he had been i n
ten years earlier : To be sure Petersen had referred explicitly to Weierstrass' s
paper and to a paper by Schwarz himself in which he proved that the sub -
spaces Gi do not depend on the choice of the quantity g used in its construc-
tion [Schwarz 1884] . He had also referred to a paper by Otto Hölder (1859-
1937) [1886], in which Hölder showed that the subspaces Gi are uniquely
determined by the requirements that a) they are one- or two-dimensional ,
b) every point in Cn can be uniquely written as a sum g i + g2 + • • • + gr
where gi c Gi , c) that gi • gj = 0 if gi E Gi , gj E j and d) gi • gz E Gi
if gi , gZ E Gi and the product is only 0 if gi or g'i are zero .

However, as Schwarz informed Petersen, he had missed a central paper by
Richard Dedekind (1831-1916) from the intervening year 1885 :

. . . you have not quoted a paper by Professor Dedekind in Braun-
schweig, that was printed in the volume of 1885 of our Nachrichten
on page 141-159, and to which Mr Dedekind has also published a
supplement in the present volume (1887 page 1-7) . The theorem that

"The following information is drawn from the Petersen-Schwarz correspondenc e
[Petersen-Schwarz 1877-87] .
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you have discovered is already to be found by Mr Dedekind . Therefore
it is not enough just to add a reference to Mr Dedekind's paper to your
list of references . Rather, it is absolutely necessary that you expres s
yourself clearly about the relation between the content of your pape r
and the content of Dedekind's two articles . You alone can do that .
Therefore I hurry to ask you to acquaint yourself intensively with th e
papers by Dedekind, so that you can complete your paper and you r
quotes . [Schwarz to Petersen, May 13, 1887]

The same month Dedekind himself also wrote Petersen a letter explaining hi s
approach. Apparently Schwarz had informed Dedekind about the content of
Petersen's paper, and it may very well be Schwarz who had suggested tha t
Dedekind wrote directly to Petersen . Schwarz's letter shows clearly that h e
knew it would be difficult to make Petersen read Dedekind's paper and tak e
it into account in a serious way. This proved to be correct . Petersen jus t
added the following reference to Dedekind :

The main theorem that I intend to announce in this paper says tha t
each multiplication rule for complex numbers composed of n basic
units, that are allowed according to the basic conditions stated b y
Mr Weierstrass, is determined by n systems of each n real or ordi-
nary complex quantities such that the determinant formed by thes e
n 2 quantities has a value different from zero . This main theorem has
already been formulated by Mr Dedekind . The proof I have found
seems to me to be simpler than the one published by Mr Dedekind .
[Petersen 1887, 489-490] .

Let us turn to Dedekind's paper and compare it to Petersen's . One similarity
between them which opposes them to Weierstrass is that they both treat
the problem in a complex setting. Here Dedekind is more consistent than
Petersen in dealing from the start with complex coefficients (we would say
he deals with vector spaces over (C) whereas Petersen first considered rea l
coefficients, and only later introduced complex numbers . Dedekind's main
theorem says (in slightly modernized version) :

If {eij } is a matrix with non zero determinant and we define eIJk such that
its column vectors ei multiplied coordinatewise will satisfy the equation s
(20,49)

eres = i , e tiEi,rs

	

r,s= 1,2, . . .,n

	

(54)
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then the e 21. ,s will satisfy the commutativity and associativity conditions (23)
and (24) and the condition that the determinant o f

0 = {> cïiirs>

	

(with o-i =
r,s

(55)

is non zero . Conversely, and that is the main part of the theorem, if eir s
satisfy these conditions they arise in the described way from a matrix {eij}
with non zero determinant .

Thus Dedekind's theorem did not directly establish the relation to Weier-
strass's conditions but to another condition on the determinant 0 that i s
definitely simpler to check . So, when Dedekind in the introduction to hi s
paper spoke of "a small simplification of the permissibility conditions formu-
lated by Weierstrass", he did not talk about Petersen's condition but abou t
the non vanishing of ßo1 . Although it is a direct consequence of Dedekind' s
argument, he did not specify that one may think of the numbers ei3 in each
row as a set of solutions to the basic equations (54) . To make this explicit
is Petersen's main contribution .

It is also arguably correct that Petersen's proof, as he wrote himself, is sim-
pler than Dedekind's . However, that is mostly due to the fact that Dedekind
proved a somewhat deeper theorem . Indeed, Weierstrass's conditions are so
to speak proof-generated to fit the proof that a set of basic equations (54)
with coefficients eijk satisfying these conditions, will yield a basis in which
multiplication is coordinatewise, leading in turn to the matrix {%} . To
deduce the same conclusion from Dedekind's one, seemingly simpler, re-
quirement is a long story.

On September 9, 1887 four months after presenting Petersen's paper t o
the Göttingen Academy, Schwarz was again busy preparing Petersen' s
paper for publication, and he discovered that another major correction
was needed: Petersen had accused Weierstrass of an imprecision (Unge-
nauigkeit), and had offered a counterexample to Weierstrass's proof. It seem s
from Schwartz ' s letter to Petersen (September 9, 1887) that Petersen sug-
gested that by taking g = eo in his favourite example of ternions 02) ,
one would not get the desired result even though Xo is not identically zer o
for this system. However, as Schwarz pointed out to Petersen, Xo is equa l
to zero for this particular choice of g (or rather of (1,2>3) = (1,0,0)) .
He further argued that Weierstrass had rather explicitly stated that one
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must pick g in such a way that Xo is different from zero for this particula r
g. Therefore he suggested to Petersen that "either your remark about th e
imprecision must be deleted completely or it must be phrased quite differ-
ently" (Schwarz to Petersen, September 9, 1887) . Petersen chose to erase
any criticism of Weierstrass .

Later the same day Schwarz sent Petersen a new letter suggesting a simplifi -
cation of an example in Petersen's paper . Petersen had proved that the three
quantities e, X0 , D (see (26) and (29)) were related through the equation :

Xo = eD .

	

(56 )

He had therefore asked the question: is Weierstrass's fourth condition D 0
not a consequence of the second (e � 0) and the third (X 0 0)? However ,
he correctly observed that the equality (56) had been derived under the con-
dition that X0 , e and D are all non zero, and that therefore one cannot make
the suggested conclusion. He had even given the following two-dimensiona l
example

e1 = e2, ele2 = -el - ae2, e2 = ael + (a2 - 1)e2,

	

(57 )

which for a = 2 gives D equal to zero while X0 and e are not identically
zero. He had learned this example from his friend Frederik Bing (1839-
1912) . However, Schwarz remarked that in this case the identity element i s
eo = -ael - e2 , and he suggested using e 0 and e l + zaeo as new basic units .
If we let 6 denote 4 (a2 - 4) the fundamental multiplication laws simply loo k
like :

2

	

2
eo = e0 eoei = e l

	

e l = beo .

He even indicated that any multiplication law for two-dimensional number s
could be reduced to this one .

For this reason I cannot at all accept that an underhand gaine is bein g
played in Mr . Bing's example . "

In Schwarz's example e = e - S 2 and X0 = e2( e - 6a) and a general
quantity g = el eo + e2 e 1 satisfies the equation

g2 - 2elg + ( i - b 2)eo = 0,

	

(59 )
11 "dass bei dem Beispiele des Herrn Bing thatsächlich Verstecken gespielt wird" .

[Schwarz to Petersen, September 9, 1887] .

(58)
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whose discriminant D2 is 8 2 . Therefore f = 0 gives the desired resul t
D2 = 0, X0 0, e � 0 . Schwarz even claimed to have known this exampl e
for many years .

Petersen again followed Schwarz's advice, and replaced Bing's example wit h
that of Schwarz, leaving out any reference to either of his two friends . With
these corrections Schwarz considered Petersen's paper "as a real progress "
(Schwarz to Petersen, September 9, 1887) .

The printer sent Petersen a proof on October 4, 1887, but ten days later
Schwarz informed Petersen about a new problem . He had asked Otto Hölder
to go over the proofs, and Hölder had discovered that a remark Peterse n
had made about "the factors which are substitution determinants must als o
be made about r (Schwarz to Petersen, October 19, 1887 [the meaning i s
not entirely clear to me]). However, as Schwarz remarked to Petersen :

Now this change or correction cannot be made in a twinkling, becaus e
there is a risk that it may easily lead to a worsening rather than a n
improvement . [Schwarz to Petersen, October 19, 1887 ]

Therefore Schwarz simply left out the remark . He also announced to Pe-
tersen that Hölder would write and explain this point and other points t o
him in private .

Thus, when Petersen's paper finally appeared in the November 16, 1887
issue of Göttinger Nachrichten it bore a heavy imprint of its editor H .A .
Schwarz .

7 Dedekind against Weierstrass, Göttingen
against Berli n

In addition to presenting his complex alternative to Weierstrass's treatment
and his simpler condition Dedekind had two goals with his 1885 paper on
hypercomplex numbers . He called attention to §159 in his 10th supplement
to his 1871 edition of Dirichlet's number theory. Here Dedekind had con-
sidered algebraic field extensions Q(r) of the rationale ("endliche Körper"
in his terminology) . If r is a solution of an irreducible equation of degree n
over Q then elements of Q(r) can be uniquely represented as

1 + e2r + . . . + Grn-1 (60)



MfM 46:2

	

Hypercomplex Numbers in the 1880es

	

249

where i (i = 1, 2, . . . , n) are rational numbers .

In his 1885 paper Dedekind pointed out that if we allow the coefficients z to
be real (or complex as Dedekind preferred), one would get an expression fo r
a hypercomplex number written in the basis e, g i , g 2 , . . . , gn-1(g = r) where
g is a solution of the given equation . He did not mention hypercomplex num -
bers explicitly in his Dirichlet supplement, but in the 1885 paper he claimed
that he had "dealt with them in passing", implying that this happened in
1871 . Thus the claim of priority he seems to make is that he was the first to
publish on something strongly related . Weierstrass could still claim prior-
ity for his earlier discussion of hypercomplex numbers . Indeed, in his paper
from 1884 he had written that he had "years ago conceived the following
considerations" to which he added in a footnote : "I lectured on this subject
for the first time during the winter semester 1861-62" [Weierstrass 1884 ,
396] . Dedekind did not question how many of the "considerations" Weier-
strass knew about in 1861-62, nor did he push his own claim of priority
beyond the vague hint to his 1871 supplement .

He was much more insistent on another matter, namely the evaluation o f
the following paragraph in a paper by Carl Friedrich Gauss (1777-1855) on
biquadratic reciprocity :

The author has planned to give later a more complete treatment o f
the subject which is really only touched upon in the present paper .
Here the following question will then also find its answer. Why the
relations between things that present a manifold of more than tw o
dimensions cannot yield other types of quantities which are allowed i n
the ordinary arithmetic . [Gauss 1831, Werke II, 178] .

This quote was the point of departure for Weierstrass's investigations of
hypercomplex numbers . He interpreted Gauss as saying that it is impossibl e
to define a multiplication for hypercomplex numbers of dimension 3 or mor e
that satisfies all the arithmetical rules of the real numbers (i .e . that makes
it a field) . Having proved his main theorem Weierstrass concluded :

When I compare the results of the preceding investigations with th e
quoted Gaussian remark, to wit complex quantities with more tha n
two basic units are not allowed in the usual arithmetic, it seems t o
me that Gauss believed this impossibility was founded on the fac t
that the product of two quantities (when n > 2) can vanish without
any of its factors vanishing . For if he had not considered this fact a n
insurmountable hindrance, he would probably not have failed to notice
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that it is possible to substantiate an arithmetic of such quantities i n
which the theorems are either identical to those of the arithmetic o f
the usual complex quantities, or at least find their analogue there .
In that case he would undoubtedly have modified his claim to sa y
that although the introduction of the general complex quantities in
arithmetic is not impossible, it is superfluous . In fact, the theorem
stated above (page 407) [Weierstrass's main structure theorem] show s
that the arithmetic of the general complex quantities cannot lead t o
any results that cannot be deduced from the results of the theory of
complex quantities with one or with two basic units . [Weierstrass 1884 ,
410-11] .

Thus Weierstrass thought that Gauss's insight into the matter was limited t o
seeing that all the usual arithmetic laws, including unique division with no n
zero elements, could not be generalized beyond 2 dimensions . Weierstrass did
not think that Gauss had investigated what would happen if one dropped
the requirement of unique division with non zero elements, and he eve n
suggested how Gauss ought to have phrased himself if he had seen what
Weierstrass later saw .

Such a mild criticism of the Princeps Mathemraticorurn was too much for
Gauss's former student Dedekind .

He agreed with the last part of Weierstrass's quote above and argued that
this was indeed the meaning of the quote by Gauss . However, he phrased i t
somewhat differently . In fact, as admitted above, none of the three math-
ematicians we have considered in this paper used the language of vecto r
spaces, and here is a point where it matters . Instead of talking about ex-
pressing the vectors e l , e2, . . . , en, in a base in which multiplication is co-
ordinatewise multiplication, Dedekind considered one system of complex
numbers

el , e2, . . . ;en ,

but considered the system to be multiple valued, being able to obtain the n
values

	

r

	

r

	

el e 2

	

en
u n

	

e l e2

	

en

e(n) B(n)

	

e~n )

	

1

	

2

(61)
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Here we would consider the columns to be the coordinates of the vectors ei
in the p-base . Dedekind, however, wrote that any polynomial equation in
the ei 's would hold true if it hold true whichever of the multiple values o f
the system we substitute in the equation . More particularly, if we express
everything in terms of e0, g, g2 , . . . , gn as above, any equation in the e's can
be translated into an equation in g : w(g) = 0(g), and such an equation
is fulfilled, whichever of the roots x 1 , x 2 , . . . , xn of the polynomial (30) we
insert in the equation . I .e . cp(r) = qP(r) in this multiple-valued algebra mean s

<p(r)

	

(r) = 0 mod f,

	

(62)

(this is similar to Weierstrass's observation) . Thus the arithmetic of hyper -
complex numbers is nothing but multiple-valued arithmetic of ordinary com -
plex numbers . As an example Dedekind mentioned the system of ternion s
determined by the following basic equation :

- 2e1 - e2 - 2e3

- 2e1 - 2e2 - e3
- - e1 - 2e2 - 2e3

-

	

el + e2

e2 + e3

e1

	

+ e3

It is an easy matter to check that this system satisfies Dedekind's basi c
condition. But as pointed out by Dedekind, calculation with these quantities
is indistinguishable from calculation with the three-valued periods

el = r + r-1 e2 = r2 + r 2 , e3 = r 2 +r 2

	

(64)

of the circle division polynomial

r s +r5 +r4 +r3 +r2 +r+1 =0,

	

(65)

when r runs through the different roots of this equation . Knowing Gauss' s
interest in the periods of the circle division polynomials [Gauss 1801] ,
Dedekind suggested that Gauss had already obtained the insight that Weier-
strass published, but that he drew the conclusion that such an arithmetic
was not new, but corresponded to an arithmetic of multiple-valued complex
numbers that had been studied long ago. This new interpretation of Gauss' s
somewhat ambiguous statement gives much more credit to Gauss . Dedekind

e21
e22

2e2
ele3
ege l
e l e2

(63)
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put forward his interpretation already in his 1885 paper, but since he dis -
covered that he had been misunderstood, he expressed it more explicitly i n
his supplement of 1887 .

This small difference between Weierstrass's and Dedekind's opinion is symp-
tomatic of the tensions between Berlin and Göttingen at the time . It is a
clash between a Göttingen educated former student of Gauss, who revere d
his master, and a Berlin mathematician who did not mind attributing som e
limits to the insights of the Göttingen Princeps .

Acknowledgments

I wish to thank Gert Schubring for many valuable suggestions and refer -
ences to manuscripts as well as the staff at the Berlin-Brandenburgisch e
Akademie der Wissenschaften for locating the central letter from Schwar z
to Weierstrass .

References

Letters and manuscript s

The Julius Petersen correspondence, including the letters from H.A . Schwarz, is preserve d
in the Royal Library in Copenhagen, Ny Kgl . Saml . 3259, 4°, I (A-N) and II (O-Z) .

The letter of May 9, 1883 from H.A . Schwarz to Weierstrass is preserved in the Nachlass
Schwarz, Nr . 449 and 1254 at the Berlin-Brandenburgische Akademie der Wis-
senschaften, Berlin .

Ms 1, Attempt to reconstruct Weierstrass's theory of hypercomplex numbers . Unsigned
but apparently in H.A . Schwarz's handwriting . Dated May 15th 1877, 9 pages .
Nachlass Schwarz Nr . 440 at the Berlin-Brandenburgische Akademie der Wis-
senschaften, Berlin .

Ms 2, One sheet dated May 31st 1883 written in French and signed by Cyparisso s
Stephanos, containing his counterexample mentioned in section 4 above . Nachlas s
Schwarz, Nr . 720 at the Berlin-Brandenburgische Akademie der Wissenschaften ,
Berlin .

Ms 3, Anonymous lecture notes taken from Weierstrass's lectures during the Win -
ter semester 1863/64 . Nachlass Schwarz, Nr 440 at the Berlin-Brandenburgisch e
Akademie der Wissenschaften, Berlin .



MfM 46:2

	

Hypercomplex Numbers in the 1880es

	

253

Published materia l

Christiansen, M. et al., 1992, "Julius Petersen, annotated bibliography", Discrete Math-
ematics 100, 83-97.

Crowe, M .J ., 1972, "Hankel, Hermann", Biography in Dictionary of Scientific Biography
(ed . Gillispie, C .C .), VI, 95-96 .

Dedekind, R., 1885, "Zur Theorie der aus n Haupteinheiten gebildeten complexen
Grössen", Nachrichten Königl. Ges . der Wiss . zu Göttingen, 141-159 .

Dedekind, R., 1887, "Erläuterungen zur Theorie der sogen . allgemeinen complexen
Grössen", Nachrichten Königl. Ges . der Wiss . zu Göttingen, 1-7 .

Gauss, C .F ., 1801, Disquisitiones Arithmeticae . Braunschweig, Werke 1 .
Gauss, C .F., 1863, "Theoria residuorum biquadraticorum, Commentatio secunda", Göt-

tingische gelehrte Anzeigen, 1831 . Werke 2, 169-178 .
Hankel, H ., 1867, Theorie der Complexen Zahlensysteme, Leipzig .
Wilder, O ., 1886, "Bemerkung zu der Mittheilung des Herrn Weierstrass : Zur Theorie der

aus n Haupteinheiten gebildeten complexen Grössen", Nachrichten Königl . Des .
der Wiss . zu Göttingen, 241-244 .

Klein, F ., 1871, "Uber die sogenannte Nicht-Euklidische Geometrie", Math. Annalen 4 ,
571-625 .

Kline, M ., 1972, Mathematical Thought from Ancient to Modern Times, New York .
Lützen, J ., Sabidussi, G. and Toft, B ., 1992, "Julius Petersen 1839-1910 . A biography" ,

Discrete Mathematics 100, 9-82 .
Petersen, J ., 1866/79, Methoder og Theorier til Løsning of Geometriske Konstruktion-

sopgaver, Schonberg, Kjøbenhavn 1866, 2 . enlarged edition 1879 . Translated into
many languages .

Petersen, J ., 1877, De algebraiske Ligningers Theori, Høst & Søn, Kjøbenhavn 1877 .
German transl . 1878 . French transl . 1897 .

Petersen, J ., 1878, "Beweis eines Lehrsatzes betreffend die Integration algebraischer Diffe-
rentialausdrücke beziehungsweise algebraischer Differentialgleichungen unter ge-
schlossener Form", Nachrichten Königl. Ges . der Wiss . zu Göttingen, 68-88 .

Petersen, J ., 1881, Forelæsninger over Statik, Høst & Søn, Kjøbenhavn 1881 . German
translation (Lehrbuch der Statik fester Körper), 1882 .

Petersen, J ., 1887, "Om Mathematikens Grundbegreber . Bevis for Sætningen om Trekan-
tens Vinkelsum", Tidsskr . f. Math . (1883) (5) 1, 3-11. German transl : "Bemerkun-
gen über den Beweis des Satzes von der Winkelsumme des Dreiecks", Math . An-
nalen 29 (1887), 239-246 .

Petersen, J ., 1884, Forelæsninger over Kinematik, Høst & Søn, Kjøbenhavn 1884 . Germa n
transl . (Kinematik) 1884 .

Petersen, J ., "Om Algebraens Grundbegreber", Tidsskr. f. Math . (1885) (5) 3, 1-22 .
Petersen, J ., 1887a, "Uber n-dimensionale komplexe Zahlen", Nachrichten Königl . Ges .

der Wiss . zu Göttingen, 489-502 .
Petersen, J ., 1887b, Forelæsninger over Dynamik, Høst & Søn, Kjøbenhavn 1887 . Germa n

transl . (Dynamik) 1887 .
Poincaré, H ., 1882, "Théorie des groupes Fuchsiens", Acta Math . 1, 1-62 .
Weierstrass, K ., 1884, "Zur Theorie der aus n Haupteinheiten gebildeten complexe n

Grössen", Nachrichten Königl. Ges . der Wiss . zu Göttingen, 395-410 ; Math . Werke
2,311-332 .



254

	

J. Lützen MfM 46:2

Wussing, H ., 1984--1969 The Genesis of the Abstract Group Concept, Cambridge Mass .
1984 ; transi . from Die Genesis des abstrakten Gruppenbegriffes, Berlin 1969 .



MfM 46:2

	

255

Priority Claims and Mathematical Values : Disputes
over Quaternions at the end of the ineteenth

Century

Tom Archibald *

1 Introduction : Priority and Values in the Case of
Wessel

In this volume as well as in general treatises on the history of mathematic s
Wessel is identified as the first to arrive at a satisfactory geometric rep-
resentation of complex numbers . However, Wessel's idea scarcely exhaust s
the relationship between imaginaries and geometry, as the paper of David
Rowe in this volume shows . The fact, important to Wessel and others, that
his geometric representation gives a way of making imaginary numbers real ,
likewise does not account for our declaring this particular creation as a
"first" which is worthy of interest . For as other papers in this volume in-
dicate, there are earlier efforts at resolving this imaginary character into
reality, by Wallis, Foncenex, and so on. We therefore have to ask why i t
is this particular thing, the geometric representation of complex numbers ,
that we select for attention .

It seems to me that the reasons for this lie embedded in our mathemati-
cal values . This priority question was of key interest in the second half of
the nineteenth century precisely because of the enormous importance of th e
theory of functions of a complex variable, a theory in which this represen-
tation is a fundamental tool . The work of Riemann on complex analysis ,

* Dept . of Mathematics and Statistics, Acadia University, Wolfville N . S . BOP 1X0 ,
Canada
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and the geometric interpretation of the Cauchy integral by Puiseux, Brio t
and Bouquet showed the basic importance of the complex plane . If we look
at the way in which Wessel's priority came to be accepted, we see tha t
the key event appears originally to have been taken as the 1831 Anzeige
of Gauss, after which the "usual" complex plane appears to have becom e
generally known and accepted, though the details of its reception remain t o
be worked out. In any case, looking at Hermann Hankel's 1867 Theorie der
complexen Zahlensysteme, we get the impression that during Hankel's edu-
cation the view of Gauss as originator of this representation was generall y
held . Hankel however revised this view, following Cauchy by mentioning a
number of less well-known writers, and giving priority to Argand . In my
view this is because for Hankel the exact form of the Gaussian inventio n
is the key innovation, rather than for example the work of Buée, also men-
tioned by Cauchy. Thus an earlier formulation - that of Argand - which
is essentially identical to that of Gauss counts as a prior discovery, whereas
others less completely identical to Gauss's do not . Hankel's line was fol-
lowed by Hoüel (1874), thus becoming the general view in France as well .
The discovery of the fact that Wessel had done essentially the same thing a s
Argand thus gave weight to the claim of Valentiner, Thiele and Lie, and i t
is Wessel who generally gets credit from then on, as we can see for exampl e
in the Eneyklopädie der mathematischen Wissenschaften . Thus the impor-
tance of the Wessel discovery stems from the importance originally given t o
the Gaussian contribution, via the historical revision to include Argand .

2 The Quaternion Priority Question

Quaternions are a different case . Now more marginal mathematically, thei r
geometric representation presents a more complex set of issues in the res-
olution of priority. The efforts of Wessel to create an algebra adequate t o
handle rotations algorithmically clearly prefigure quaternions, as does work
of other writers in the same vein, most notably Servois, Argand's contempo -
rary, in the Annales de Gergonne of 1813 . To grasp the negotiated character
of mathematical priority, let us examine a dispute between P. G. Tait and
Felix Klein which centres precisely on the issue of the extent to which th e
notion of rotation, and geometrical transformation more generally, capture s
the essence of the quaternion idea .
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On December 18, 1899, Peter Guthrie Tait read one of his last papers be -
fore the Royal Society of Edinburgh. Tait titled his paper "On the Claim
recently made for Gauss to the Invention (not the Discovery) of Quater -
nions" (emphasis and parentheses in the original) . Tait's paper contested
the argument advanced by Felix Klein to the effect that the essential idea
of quaternions had been discovered by Gauss as early as 1820, based on a
manuscript fragment found in the course of preparing the Gauss collected
works . Tait's argument rested on two related points : first, that Klein had
misunderstood what a quaternion was; and second, that the discovery o f
the quaternion operators (as opposed to the mere invention of the four -
dimensional algebra with imaginary units i, j and k) was far more profound
and consequential than anything envisaged by Gauss .

Tait thus was defending the priority of his old mentor Hamilton, as well as
the mathematical ability of the British in general, against an attack from
abroad . Indeed, Tait was no stranger to this genre : his Sketch of Thermody-
namics of 1868 had begun a long series of efforts to assert priority for variou s
British colleagues in diverse fields of mathematical and physical endeavour .

There is nothing particularly new about priority disputes in the sciences .
However, the specifically national context of the disputes 	 the effort t o
claim glory not only for an individual but for a nation - took on a par-
ticularly strident form in the late nineteenth century. Not surprisingly, thi s
coincides with the upsurge of national communities in mathematics an d
with national and international meetings .

In the absence of plagiarism, disputes about priority arise because of wha t
is usually called independent discovery. Even when such discoveries are no t
synchronous, they force us to think about the historical circumstances unde r
which they occur and the conditions which make such events possible . As
Thomas Kuhn has discussed (Kuhn, 1959) for the case of simultaneou s
discovery, it is often the case that there is relatively little overlap in th e
actual findings, and this is certainly true for our case . As is clear fro m
many of the other papers in this volume, considerable variation is possibl e
in representing directed quantity mathematically. In mathematics, we have
come to expect that such representations are to some extent translatabl e
into one another with the benefit of hindsight . However such translations
often overlook important aspects of the author's vision, and the difference s
between theories and their translations offer important fodder for dispute s
between interested actors .
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3 The Background to Klein's Claim

3.1 Germany

One important part of the German background to Klein's claim is presente d
in Hankel's (1867) Theorie der complexen Zahlensysteme. Hankel's histori-
cal remarks concerning the geometrical representation of complex number s
mention a number of eighteenth-century precursors, but he follows Cauchy
in giving priority to Argand (See Belhoste 1991 p . 232) . Noting one French
and one English rediscovery (by Mourey and Warren respectively) Hankel
then asserts the importance of the German rediscovery by Gauss (1831) ,
which brought this representation	 as well as the very term complex num -
ber

	

to the attention of a wider mathematical public .

It should be noted that there had already been a Franco-German priorit y
dispute in a closely related matter, namely between Grassmann in Ger -
many and Cauchy and Barré de Saint-Venant in France . The matter was
raised by Grassmann, and investigated in France by the Académie des Sci-
ences, who sagely appointed a commission to investigate (which include d
Cauchy) . This commission never reported, but the very fact of the disput e
	 which concerned the basic features of Grassmann's Ausdehnungslehre
and Cauchy's "calculus of keys" - points out problems associated with si-
multaneous discovery in mathematics . (Belhoste 1991 236-37 and notes) .
Such simultaneous discovery is usually explained by appealing to an ide a
of the "natural" character of the object or representation in question . This
appeal to what is natural, however, not only obscures the actual process o f
discovery, it overlooks the historical fact that what is natural to one observe r
may be not at all natural to another .

In the context of quaternions, the geometrical representation is certainly key .
Indeed, Hamilton was in part motivated to develop quaternions in order
to extend the geometrical properties of complex numbers in the plane t o
3-dimensional space (See Hankins 1980, Chapter 21) . Hankel's account of
the theory of quaternions is based on the usual algebraic basis but gives
a geometric interpretation which is quite his own . He is very proud of hi s
economical account of the theory, and his remarks comparing his own wor k
to Hamilton's are informative :

The theory itself he [Hamilton] then presented with some application s
in the very comprehesive "Lectures on Quaternions" [ . . . ] [of 1853],
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in a way which is extremely uncongenial to continental mathemati -
cians but which for the English is, so it seems, completely natural .
The theory is broken into scattered pieces, problems are not treated i n
their generality, but rather in special cases, then interrupted by appli-
cations and other investigations ; so that only later, and at times only
incidentally, are they solved fully.' (Hankel 1867, 194-196 )

He continues :

As I wished to transplant this theory onto German soil, it was neces -
sary to alter the presentation totally . 2 (Hankel 1867, 196 )

Hankel's change in the presentation of the work consists in the use of a much
stricter axiomatic style. There is no discursive content about the compar-
ative merits of the quaternion approach, and applications are kept to a
minimum. Thus Hankel claims that he has cut down Hamilton's original
545 pages to his account of about 50 pages with the sacrifice of only a
few applications . We note, however, that his geometrical interpretation o f
quaternions is markedly different from that of Hamilton . In particular it i s
much more restricted, treating them as motions which bring into coincidenc e
arcs on the surface of a sphere .

Hankel noted specific differences between the German approach and that o f
the British, insisting that Hamilton's work unaltered could not take root i n
German soil, indeed on the continent at all . This view is borne out by the
French reception of quaternions, which received their first serious discussion
in France via the thesis of Charles-Ange Laisant in the late 1870s and his
subsequent books .

3 .2 France

Despite the limited interest in quaternions as such, the French did take up
the question of the priority claim to geometric representation of comple x

" Die Theorie selbst hat er dann mit einigen Anwendungen derselben in den sehr um -
fangreichen "Lectures an Quaternions [ . . . ]" [of 1853], in einer den continentalen Math-
ematikern sehr unbequemen, den Engländern aber, wie es scheint, durchaus natürliche n
Weise dargestellt : Die Theorie ist aufgelöst in zerstreute Strecke, die Probleme werde n
nicht in ihre Allgemeinheit, sondern zunächst in speciellen Fälle behandelt, dann unter -
brochen durch Anwendungen und andere Untersuchungen, um erst später, zuweilen nur
gelegentlich in ihren ganzen Umfang erledigt zu werden [ . . . ]

2 Wollte ich diese Theorie auf deutschen Boden verpflanzen, so war es notwendig, die
Darstellung total zu verändern .
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numbers . A few years after the appearance of Hankel's monograph, in 1874 ,
Argand's 1806 treatise was republished in France under the editorship of J .
Hoüel . The book also contained the texts of the papers in the Annales de

Gergonne by Servois, Argand, and Français which had served to make public
the result of Argand and establish his priority. The appearance of the book
attests to the perceived national interest in Argand's work Gauthier-
Villars was notorious for business acumen, so the market must have at least
seemed to be solid . In a preface, Hofiel outlined the story of discoveries and
rediscoveries, citing Hankel to indicate that his (and Cauchy's) claim fo r
Argand 's priority was not merely a nationalistic one, but was accepted i n
Germany. At the time (1874) this was necessary as the aftermath of th e
Franco-Prussian War had seen a number of unfortunate incidents in whic h
allegations of plagiarism were traded back and forth between agitated French
and German nationals . (See Dugac, 1984, passim) .

4 Gauss, Klein and Sommerfeld

The text that roused Tait's ire was a report by Klein on the progress of th e
collected works of Gauss, which at first was available only in the Göttinger
Nachrichten but which was republished in the Mathematische Annalen in
1899 (Klein, 1899) . Specifically, Klein asserted that the foundations of th e
theory of quaternions appeared in an unpublished note of Gauss which ha d
been dated by the editor (Paul Stäckel) to 1819 . The key point, and the point
of subsequent contention, concerned what Klein meant by the foundation s
of the quaternion theory. His description makes this reasonably clear :

[ . . . ] already in 1819 he represented the mutations of space (as h e
calls them) by the same four parameters as used in the quaternion the-
ory [ . . . ] [where by mutations of space he means] rotations of spac e
about the origin of coordinates, combined with an arbitrary similarit y
transformation likewise based at the origin . He designated the concept
of these four parameters as a "mutation scale", and gives explicit for -
mulas for the composition of two scales (thus the multiplication of tw o
quaternions), in which context he used the symbolic notatio n

(abed)(crßryb) = (ABCD )

and expressly remarked that one is here dealing with a non-commu-
tative process! 3 (Klein 1899,130-131)

3 [ . . . ] er hat die Mutationen des Raumes (wie er es sagt), d .h . die Drehungen des
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To assess Klein's remarks, we first examine the Gauss fragment in ques-
tion. It should be borne in mind that Tait's later remarks rest on Klein' s
description, rather than on the fragments themselves .

Gauss's few notes on the question appear in two parts, the first of which
Stäckel, who was the editor of this portion of the Werke, dated to 1819, with
the exception of one brief note apparently of later date which he ascribed
to 1822 or 1823 . The second part is on a separate slip which he describes
merely as somewhat later . In the first of these rather sketchy notes, Gauss
appears to be thinking about generalizing the mathematical description o f
rigid body motions to include stretches . He expresses such transformations
of space coordinates (as he puts it) in terms of parameters a,b, c, and d ,
the Transformationsscale in his terms, which specify such a transformation .
The second fragment specifies that k = \/a 2 + b2 + c2 + d 2 is the stretch-
ing factor and that if r = \/b2 + c2 + d2 then the direction cosines of the
rotation are b/r, e/r, and d/r . This is implicit in the first fragment . He fur-
ther notes that if we consider the composition of two transformations wit h
parameters a, b, c, d and a, 0, y, 6 respectively, then this composition i s
exactly what Hamilton would later call the quaternion product of the two .
He specifically notes that the order of the composition is not indifferent, i n
fact using the notation that (a, b, c, d) (a, /3, y, 6) is not to be interchange d
with (a, ,@,-y, b) (a, b, c, d) . (Gauss, 1819, 360) . Missing in Gauss's notes i s
any account of the additive quaternion group, as we would call it today.

Tait's counterargument in support of Hamilton rests on the view that thi s
conception of quaternions does not capture the richness of Hamilton's ideas
about these objects . Nevertheless, the Gaussian fragment does very nicel y
prefigure Klein's own account of quaternions, which appeared in the first
part of his joint work with Sommerfeld on the mechanics of the top . This

Raumes um den Coordinaten-Anfangspunkt, verbunden mit einer beliebigen von letztere n
auslaufenden Aehnlichkeitstransformation bereits 1819 durch dieselben vier Parameter
dargestellt, welche die spätere Quaternionentheorie benutzt ; er erzeichnet den Inbegriff
dieser 4 Parameter als Mutationsscala und giebt die expliciten Formeln für die Zusam-
mensetzung zweier Scalen (also die Multiplication 2 Quaternionen) wobei er die symbol-
ische Schreibweise

(abcd) (nßyb) = (ABCD)

benutzt und ausdrücklich bemerkt, dass es sich dabei um einen nicht commutativen Proze ß
handelt!
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long book contained an "Exkurs über die Quaternionentheorie" which ap-
peared as a short section at the end of the first chapter . This book had grown
out of lectures given by Klein in 1895/96, and was originally intended t o
foster aims which Klein, writing in the third person in his preface, gave a
specific national colour: However, in contrast to Hankel's rather harsh re-
jection of the expository and theoretical chaos of Hamilton's treatise, Klein
diplomatically emphasized the richness of the subject for mechanics :

[In the lectures] first of all he [Klein] undertook to mention the direc t
expression of mechanical problems widespread in England, in contrast
to the more abstract colour of the German schools . On the other hand
he set out to render fruitful the methods of Riemann's function theor y
which were developed in Germany . 4 (Klein and Sommerfeld 1897-1910 ,
III )

It was only subsequently that Klein integrated applications into the pub-
lished work, in part due to the influence of Sommerfeld, who had by that
time taken a position involving teaching of mechanics . The book itself ap-
peared in four parts, in 1897, 1898, 1903 and 1910 repectively, and thes e
exhibit a change in authorial standpoint corresponding to a shift towards
interest in applications and to the appeal to a wider readership . Thus some
of the theory set up at the beginning of the book - for example the intro-
duction of quaternions - is not really used in what follows . Nevertheles s
we'll examine the view of quaternions given by Klein and Sommerfeld with
the end in mind of understanding Tait's objection to their approach, an d
Klein's interest in the Gauss fragment . Though the work is jointly authored
I will perhaps unfairly refer to the synthesis presented as Klein's, mostly for
abbreviation .

Klein begins by noting that despite the age of quaternions - he dates them
to Hamilton's book Lectures on Quaternions of 1853 - they remained con-
troversial, in his view due to the metaphysical language in which Hamilto n
couched his presentation. This, says Klein, obscured the "simple geometrical
meaning" which can be given to the operations of this calculus . He hopes to
clarify this, the more so as he will show that quaternions are, as he puts i t

4 Unternahm er es in erster Linie, die namentlich in England verbreitete unmittel-
barere Auffassung der mechanischen Probleme gegenüber der abstrakterer Färbung de r
deutschen Schule zu betonen, andererseits die namentlich in Deutschland ausgebildete n
Niethoden der Riemannschen Funktionentheorie für die Mechanik fruchtbar zu machen .
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"a special case" of the vector calculus . [Klein and Sommerfeld 1897-1910 ,
55 ]

In his initial efforts to describe the top and its motions, Klein introduces
parameters which are his first example of a quaternion quantity. He consid-
ers a rectangular coordinate system xyz, thought of as fixed, and another ,
XYZ, which moves with the rotating top but which is fixed with respect to
it . The orthogonal transformation from one coordinate system to anothe r
is then specified in the usual way by the 3 x 3 matrix of direction cosines .
These nine parameters are redundant, and may be reduced to three (since
the top is rigid) . The classical way of doing this involves the use of the
Euler angles Ø, 'IP, and 0, defined as follows. The nodal line (Knotenlinie) i s
defined as the line through the common origin of both coordinate systems
which is perpendicular to the plane of the vertical (the z-axis) and the axi s
of rotation (the Z-axis) . The angle Ø is then the angle between the noda l
line and the positive X-axis, -0 is the angle between the nodal line and th e
positive x-axis, and finally Ø is the angle between the z-axis and the Z-axis .
A routine calculation thus gives the matrix of the transformation from th e
XYZ to the xyz-system in terms of these Euler angles .

This familiar description is not the most useful for the top, a result of th e
fact that elliptic functions are involved in Klein's eventual description. To
obtain better parameters for his purposes, Klein then introduces comple x
variables in each of the horizontal planes, so that takin g

= (x +iy, -x-I-iy, -z )

(B; H, Z) = (X +iY, -x +iY, -Z)

he gets the transformation matrix in the for m

a2 /2

	

2a/ -
ry e S2

	

2 , y8
a-y /b ary + /S

where

zcØ+~v ~
a = cos (0/2) e 2 ,

and
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with similar expressions for the other parameters. These parameters have
various computational advantages arising from the fact that ab - ßy = 1.
The complex parameters may in turn be expressed in terms of real ones :

a =D+iC

,C3=-B +iA

-y =B +iA

6=D-iC.

In this notation the matrix of the change of coordinates become s

D2 + A2 - B2 - C2 2 (AB - CA) 2 (AC + BD )
2(AB+CD) D2 -A2 +B2 -C2 2(BC-AD)
2 (AC - BD)

	

2 (BC + AD)

	

D2 + A2 + B2 + C2 _

The quantities A, B, C and D satisfy the relation A2 +B2 +C2 +D2 = 1, and
are termed quaternion quantities by Klein . (Klein and Sommerfeld 1897-
1910, 19-22) .

We see that these do not appear to be quaternions in the ordinary sense o f
today. They are however in the sense of Klein, who regards a quaternion
as a geometric transformation called a Drehstreckung : the product of a ro-
tation and a similarity. In the transformation just described, if the angle s
between the axes of the XYZ and those of the xyz systems are a, b, and c
respectively, and if w is the amount of the rotation, then we find

A = sin
2

cos a, B = sin
2

cos b, C = sin
2

cos c and D = cos 2 .

Generalizing from this, Klein notes that if we choose any four parameters
and insert them in a matrix like the matrix of transformation just given ,
the result is a Drehstreckung with stretch factor A2 + B2 + C2 + D2 = T.
Thus from any system of four values we can get a transformation, and any
transformation of this kind can be described by four such parameters . [Klein
and Sommerfeld 1897-1910, 55-56] .

Klein then introduces Hamilton's usual notation and the terminology tha t
T is the tensor of the quaternion, D its scalar part, and Ai + B j + Ck
its vector part . Klein notes in particular that it has the character of a
vector since it has a specified "axis" given by the angles a, b, and c and a
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specified length -VT sin In this sense, Klein notes the "quaternionic" (i n
his meaning) interpretation of a pure vector: it has scalar component D = 0 ,
so the angle of rotation must be 7r, accompanied by an arbitrary stretch ( a
Wendestreckung in his terminology) .

Passing to the algebra of quaternions, Klein derives the usual multiplica-
tion from the identification of a quaternion with a Drehstreckung. This in
turn implies the identities among the quaternion units (thus far treate d
as irreducible symbols), as well as non-commutativity . He then continues
with the vectorial interpretation, noting the position of the scalar product
(Grassmann's inner product) and the vector product (exterior product) i n
the quaternion product and giving the standard geometric interpretation s
of both .

We note that Klein's quaternions are very much the Gaussian objects, as
even a casual inspection of Gauss's text shows . The Drehstreckung is ex-
actly what Gauss sought to describe, and modulo some small changes i n
notation his results agree completely with those of Klein . It is hardly nec-
essary to observe that in the Germany of the late nineteenth century one
could scarcely hope for a better pedigree for one's work . It is not clear to
me at this time whether the two are independent . Klein's announcement
of the Gauss discovery is certainly subsequent to the lectures, as is Klein' s
involvement with the Gauss edition which occurred only after the death of
Schering .

5 Tait's Criticism of Klein

Tait's complaint was to rest on the fact that the view of quaternions pre-
sented by Klein misses their essence . He emphasized various fundamental
differences between the true quaternions of Hamilton and the Drehstreckun-
gen of Klein . He underlines two aspects of quaternion theory: the invention
(as he terms it) of quaternion algebra and the discovery of the rich quater-
nion calculus spanning the last half of the nineteenth century. Both of thes e
are, in the view of Tait, entirely due to Hamilton .

Arguing in his usual polemic tone, Tait firmly rejected Klein's conclusio n
that a Drehstreckung is exactly the same as a quaternion :

Unfortunately [ . . . ] a Drehstreckung is [ . . . ] a totally different kind
of concept . It is obviously only a very limited form of linear and vector
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operator (kinematically a strain) depending on four quantities instea d
of the usual nine ; and might [ . . . ] have been designated by the name
quaternion had the name not been already more worthily bestowed .
(Tait 1899-1900, 19) .

A further problem with the Drehstreckung is the fact that the set of these
motions is not closed under addition .

What then is a quaternion in Tait's view? As he puts it, i t

expresses the relation of one vector to another, or supplies the facto r
required to turn one into another . (Tait 1899-1900, 19) .

For Tait, then, a quaternion is formally a vector quotient, where by a vector
is meant a free directed line segment . Completely determined by a pair o f
vectors, the quaternion is "as real as either" (ibid, 19) . This is the essence
of the great discovery to which Tait referred, which is accompanied by the
following representation . The pair of vectors (if distinct) determines a plane ,
an angle and has a certain ratio of lengths . This leads to the expression

q = ß= b (cos A + E sin A)
a a

where a, are the vectors, a and b their lengths, A the angle they determine ,
and e the unit normal to the plane .

The difference between this and a Drehstreckung may then be summed u p
by noting that when a quaternion is applied to a vector in or parallel to
its plane, the result is indeed a rotation combined with a change of length .
However, when the vector is not perpendicular to e, the operation still works ,
producing another quaternion, not merely a vector . Hence in Tait's analysis ,
a quaternion has no direct connection with rotation, though "as an organ
of expression capable of dealing with all space-problems it may be used to
describe a rotation" . Klein's Drehstreckung, "like everything else in space ,
can be represented by means of quaternions, but as a quaternion operator,
not as a quaternion ." (ibid. 20-21 . Emphasis in original) . This is because
a Drehstreckung is not what Tait terms a "space-reality" . It rather needs
something to operate on, or as Tait puts, it, it "requires a subject before it
can attain embodiment ." (ibid. p. 20) .

Tait elaborates on this for some pages, displaying in various calculation s
the greater simplicity (and in his view "reality") of the quaternion . The
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modern reader may feel that at times rather subtle distinctions bordering
on the theological are being insisted upon . For example, emphasizing his
point that Gauss, had he possessed the quaternion concept fully, woul d
surely have discussed addition, Tait elaborates on the impossibility of addin g
Drehstreckungen as one adds quaternions :

To add two Drehstreckungen they first must be embodied, separately ,
in any common vector, and the resulting vectors geometrically com -
pounded. Then the Drehstreckrung which produces the resultant must
be found . (ibid . 23, emphasis in original) .

6 Conclusion

What was the effect of Tait's response? There is more than one answer . As
far as quaternions proper were concerned, we see some acknowledgement o f
Tait's remarks in the relevant articles of the Encyklopddie der mathematis-
chen Wissenschaften . Writing in 1898, E. Study repeats the claim in Klein' s
paper in the first volume, before Tait's claims were made (Study 1898 p .
183) . H . Rothe's article in the third volume accepts Valentiner's claim of th e
priority of Wessel over Argand, but further states of Gauss that he had th e
multiplication theorem for quaternions in 1819 or 1820 - a more restricted
claim than that of Klein ; he furthermore notes Tait's article, though he does
not comment on its content .

By 1905, however, Study was more measured in his comments . In (Study,
1905, 423) he claims that Gauss had the multiplication theorem, but furthe r
remarks :

With this, however, he was far from possessing the entire theory o f
Quaternions, for which among other things the association of vector s
with simple figures in space - pairs of vectors is essential . We
must concur with English authors when they seek to treat Hamilto n
as the true discoverer of the quaternion theory after [the discovery
of Gauss' work] as well as before . The further assertion that ther e
is a difference of principle between Gauss' four-tuple and Hamilton' s
quaternions seems to us unconvincing . 5 (Study, 1905, 423 )

5 Damit besaß er aber bei weitem noch nicht die ganze Quaternionentheorie, für di e
unter anderen die Zuordnung der Quaternionen zu einfachen Figuren im Raume paare n
von Vektoren - wesentlich ist . Wir werden englischen Autoren recht geben müssen,
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Study thus yielded to the view of Tait that Gauss lacked the full power o f
the quaternion theory, while nevertheless holding out in support of Klein' s
view, and against Tait's, that Gauss and Hamilton were not so very differen t
in their ways of thinking .

There is another aftermath, however, one which would take us too far afiel d
to explore in detail, but which should be mentioned . This is in the context
not of quaternions but of vector calculus, where many of the most important
quaternion notions eventually came to roost . Recasting quaternion notions
gave further opportunities to examine their roots, For example, we find
Emil Jahnke in 1905 tracing vectorial analysis to the barycentric calculu s
of Möbius - again a German priority over Hamilton, this time a publishe d
one . Quaternions were eventually marginalized completely as vector calculu s
became the norm, pushing debates concerning their priority well into th e
background .
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On the Role of Imaginary Elements i n
19th-Century Geometr y

David E. Rowe *

Our present-day knowledge of the principal research trends in geometry dur -
ing the nineteenth century may aptly be characterized as fragmentary and ,
in many resepects, thin . Reasons for this are not far to seek . Some mathe-
maticians might be inclined to the ungenerous view that those few classi c
results which survived the conceptual upheaval that gave birth to moder n
mathematics during the early decades of this century constitute the vital
core of the previous century's accomplishments . Historians of mathematic s
would presumably take a more liberal stance, but they, too, have done rathe r
little to illuminate the vast body of geometrical knowledge that accrued dur -
ing the period spanned by two nearly forgotten giants, Gaspard Monge and
Sophus Lie . If modern mathematicians often take comfort in knowing tha t
today's standards in geometry are infinitely more rigorous than the one s
that guided the best work of the mid-nineteenth century, historians should
be especially sensitive to the kinds of conceptual and technical problem s
that preoccupied the geometers of the distant period .

Given the sparsity of historical studies on classical nineteenth-century geom -
etry, we might well wonder how one can hope to achieve an overview of thi s
vast terrain . One very useful source for scanning the literature on geometri -
cal research during the nineteenth century was published by Duncan Som-
merville in 1911 under the title Bibliography of Non-Euclidean Geometry,
including the Theory of Parallels, the Foundations of Geometry, Space of n
Dimensions . [34] This meant non-Euclidean geometry in the broad sense . In
fact, the territory Sommerville covered might well be regarded as an indica-
tor of the breadth of activity that served to undermine the once-dominant

* Fachbereich 17, Mathematik, Johannes Gutenberg-Universität Mainz, Postfach 3980 ,
Staudingerweg 9 (Bau 2/413), D-55099 Mainz, Germany .
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paradigm of Euclidean geometry . The so-called non-Euclidean revolution ,
however, has normally been understood, first and foremost, as a supplant -
ing of the Kantian view that physical space was a priori Euclidean by a
doctrine that at least recognized the remote possibility that space could be
curved . i Yet beyond the immediate space problem, an issue that first really
reared its head with the work of Beltrami and Helmholtz in the late 1860s ,
we encounter in Sommerville's bibliography a host of geometrical investiga-
tions written decades earlier that no longer fit into the traditional Euclidea n
mold . Based on this information alone, it would seem quite plausible to ar-
gue, as Erhard Scholz has done, that a growing familiarity with projective
properties, higher-dimensional spaces, and the geometries associated wit h
higher analysis played a major part in weakening the privileged position o f
Euclidean geometry. 2

Running alongside these developments, geometrical practitioners took vari-
ous sides in a complex, but long-standing methodological debate . This takes
us to the heart of the topic I will be concerned with here, namely the role o f
imaginaries in geometry. From nearly the beginning of the nineteenth cen-
tury, imaginary points and other constructs played a central, yet problemati c
role in numerous geometrical investigations . This issue carried profound im-
plications for the conduct of research, and not only because it reinforced th e
inner tension between those who advocated an analytic as opposed to a syn-
thetic style . As we shall soon see, even the leading lights for the promotio n
of synthetic geometry, figures like Steiner and Staudt, knew very well that
they could not dispense with imaginaries altogether . Their strategy, rather ,
was to make these "ghostlike" entities accessible to "Anschauung", which
for Staudt meant interpreting them by means of real constructions carrie d
out in Euclidean (or affine) space. Thus, while Sommerville's bibliograph y
sheds considerable light on work that undermined Euclidean geometry b y
exploring new theories of parallelism or the geometries of higher-dimensiona l
spaces, etc ., his list ought to be supplemented by a number of other pub-
lications that document the intense efforts of nineteenth-century mathe-
maticians to grapple with complexified geometries, or at least ones which
gradually made room for imaginary elements . Naturally, in this essay I can
only touch upon the relevant literature, but I do wish to leave you wit h

-For an account of how this space problem played out in Britain, see [28] .
2 For an illuminating discussion of the currents that gradually undermined the Eu-

clidean paradigm, see [33], 342-345 .
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an impression of its larger importance . This aspect of classical geometry
constitutes, in my opinion, one of the central themes that accompanied th e
non-Euclidean revolution when understood in its broadest terms . Indeed ,
one can follow the role of the same theme of complexification and realit y
relations in the context of the geometrization of relativity theory beginnin g
with the work of Minkowski . 3

1 Imaginaries as Ghosts : Poncelet and Steiner

Standard histories of mathematics have often overlooked the role of imagi-
naries in nineteenth-century geometry, in part because these accounts ten d
to portray the work of Victor Poncelet (1788-1867), Joseph Diaz Gergonn e
(1771-1859), and Michel Chasles (1793-1880) largely as a revival of syntheti c
geometry, a view promoted by both Poncelet and Chasles themselves . 4 This
interpretation can be quite misleading, however, for it tends to overloo k
how much of this French work was directly inspired by methods taken fro m
algebraic analysis . Indeed, contemporaries often referred to the approach o f
Chasles and others as a méthode mixte, a style characterized by flip-floppin g
between algebraic and synthetic techniques .

Euler's work already contributed to a widespread recognition of the utilit y
of imaginaries in algebra and algebraic analysis during the latter half of the
eighteenth century. A cornerstone property of the complex numbers, namely
the fundamental theorem of algebra, was given by Euler but without ad-
equate proof, so that both D'Alembert and Gauss sought to remedy this
flaw afterward . A still more general algebraic result was Bézout's Theorem ,
which originally arose in the context of algebraic elimination theory . From
a geometrical standpoint, this theorem simply asserts that two (irreducible )
algebraic curves Cm and Cn given by polynomial equations P(x, y) = 0
and Q(x, y) = 0 of degree m and n, respectively, will, in general, inter-
sect in exactly mn points when due account is taken of their multiplicitie s
(Cm, fl C, = mn points) . Some of these points of intersection may, of course ,
be imaginary. Maclaurin had already conjectured this result in 1720, an d
Euler handled various cases where imaginary roots arise . Bézout was able

3 See the discussion in [42] .
4 Both, however, stressed the decided superiority of modern methods over those o f

classical Greek geometry. See, for example [3], 268-269 .
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to prove that if Cm and Cn have no common asymptotic directions, then
the polynomial equation in x that one obtains by elimination methods wil l
always be of degree mn .

Figure 1 : Conics illustrating Bezout's Theorem for rra = n - 2 .

The significance of this result for geometry was undoubtedly very clear t o
Victor Poncelet, who used imaginary points freely, introducing I, J, the so -
called circular points at infinity . As the simplest example of Poncelet's bol d
treatment of imaginaries, consider a pair of intersecting circles given by th e
equations x2 + y2 + ax + by + c = 0 and x2 + y2 + a'x + b 'y + c' = O . Clearly,
these meet on the line Q, known as the radical axis, given by

(a -a')x +(b -b')y+(c -c')=0.

Noticing that the same algebra leads to a real radical axis even when th e
circles fail to intersect, Poncelet merely indicated that the vanishing points
of intersection were imaginary points that must lie somewhere on the rad-
ical axis of the two circles . His argument was based on continuity: if two
intersecting circles are gradually pulled apart, their points of intersectio n
slide along the radical axis until they eventually coincide 	 at which point
the circles touch one another	 and thereafter they become imaginary. The
crucial issue for him was to uphold the legitimacy of his principle of con-
tinuity as a heuristic device in geometry. In the face of harsh criticism by
France's leading analyst, A. L . Cauchy, Poncelet argued that his syntheti c
methods could be employed with the same freedom that the algebraist en -
joys in manipulating equations . In his Traité des propriétes projectives des
figures of 1822 Poncelet wrote :

. . . would it not be legal to accept the continuity principle in its tota l
generality in theoretical geometry, just as one has accepted it firs t
in algebra and then in the applications of this calculus to geometry,
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Figure 2 : The radical axis contains two of the four points of intersection of two
circles .

as a means of discovery and invention if not of proof? ([27], xiv, m y
translation . )

Just how problematic Poncelet's techniques were can be seen by returning t o
the case of circles considered above . The algebra of Bézout's Theorem lead s
us to conclude that two circles, just like any two conic sections, being curve s
of the second degree must have four points of intersection and not just two .
This led Poncelet to contemplate systems of concentric circles, which can b e
viewed as analogous to systems of rectangular hyperbolae . Since his mode
of argumentation was synthetic, Poncelet was necessarily obscure about the
nature and properties of imaginary points, but by the mid 1800s French
geometers had grown accustomed to such arguments, enough so that these
"ghosts" seem not to have haunted them terribly much . Indeed, imaginarie s
became part of the "standard equipment" of algebraic geometers, and little
concern was shown as to their precise ontological status . For the French
school it apparently sufficed that one could visualize the most important
imaginary constructs by employing an appropriate imaginary transforma-
tion .

Thus, for example, the circular points at infinity could be "seen" by employ -
ing an appropriate imaginary transformation on the points in the projective
plane . Poncelet argued synthetically, but for purposes of clarity we will fin d
it convenient to employ homogeneous coordinates (x, y, z), where z = 0 rep -
resents the line at infinity (homogeneous coordinates were routinely use d
by both Plücker and Möbius in the 1830s) . If we consider the image of the
family of concentric circles centered at the origin, {x2 + y 2 = rz2 r E R+} ,
under the transformatio n

x' = x,

	

y ~ =

	

z ' = z,
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the resulting curves form the family of rectangular hyperbolae {x'2 - y'2 =

rz j2 r E III+ } whose asymptotes make an angle of 45 degrees with th e
coordinate axes . In particular, the circle x2 + y 2 = 0 goes over into the
hyperbola xj2 -y'2 = 0, which shares the same points of tangency at infinity ,
namely (1, +1, 0) , with the other curves in the family . Poncelet reasoned
similarly that this behavior of the hyperbolae must also hold for the family
of circles since the imaginary circular points (1, ±i, 0) get mapped to the real
infinitely distant points (1, +1,0) . Thus, the circular points at infinity coul d
be seen as lying on all circles in the plane . Poncelet further called attention
to the analogous figure in three-space, the imaginary spherical circle which
lies on all spheres .

Figure 3 : For r = 0 the isotropic lines of the family of concentric circles go ove r
into the asymptotes of the corresponding system of rectangular hyperbolae .

In this connection, one should bear in mind that the French geometers of
the early nineteenth century never severed projective geometry from it s
Euclidean roots . Thus, Poncelet often derived projective properties from
metrical ones by employing appropriate transformations and his infamous
principle of continuity . His leading disciple, Michel Chasles, made copious
use of isotropic (sometimes called minimal) lines and the imaginary spherica l
circle at infinity. These lines arise in pairs ; in the complex projective plan e
P2 (R) they correpond to the points of the equation (x - a) 2 + (y - b) 2 = 0 ,
which factors into [(x - a) + i(y - b)][(x - a) - i(y - b)] = 0 . We see at
once that only the point P with coordinates (a, b) is real, but for any suc h
fixed P the isotropic lines will pass through the imaginary circular point s
(1, ±i, 0) .
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Chasles also cultivated the study of confocal systems of conics . Such system s
have the property that the tangents to any conic drawn from the circular
points at infinity I, J intersect in its foci (two of which are real and tw o
imaginary), as first noted by Julius Plücker .

Figure 4 : Plücker's Theorem .

The connection between confocal conics and projective concepts only be-
came somewhat clearer through Edmond Laguerre's projective formul a
for the angle e determined by two lines e 1 , Q2 that meet at a point P :
0(e1, £2) = 2ti log(CR(f 1 , £2,

	

~j)) where CR, is the cross ratio and e l , fj

I

Figure 5 : Laguerre's Formula .

denote the isotropic lines determined by the point P, i .e . the lines joinin g
P with I and J, respectively. The orthogonal intersection of confocal conic s
follows directly from this formula and the fact that the tangents .6, 6 at a
point P common to two confocal conics are harmonically separated by L, £j
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(since in this case CR(.e i ,,e 2 , , el ,e J ) = -1) .

Figure 6 : Confocal conics intersect orthogonally .

The possibilities for developing a more rigorous, but purely synthetic foun-
dation for projective geometry were first explored by Jacob Steiner (1796-
1863) . During his thirty-year tenure on the faculty at the University o f
Berlin, Steiner emerged as the most influential geometer in Germany (see
[1], 55-60) . It was no accident that he evinced skepticism when it came t o
the status of imaginary entities in geometry, calling them "ghosts" (Gespen-
ster) . 5 On the other hand, he seems to have found it impossible to dispens e
with these mysterious creatures in his own work on projective geometry.
The leading representative of the opposite, analytic approach, Otto Hess e
(1811-1874), remarked perceptively at the time of Steiner's death that th e
last part of his career :

. . . scheint dem Kampfe mit dem Imaginären gewidmet gewesen z u
sein. Es gewinnt diese Hypothese an Wahrscheinlichkeit, wenn man von
dem Gespenst-wie Steiner sich auszudrücken liebte-in der Ebene
und Raume hört, mit dessen Hilfe er die verborgenen Wahrheite n
enthüllte . ([10], 199 . )

Hesse further surmised that Steiner had been driven to publish many of hi s
findings without any kind of supportive arguments because his own syn-

5 One is reminded here of Bishop Berkeley's retort to Newton that his fluxions were
nothing but the "ghosts of departed quantities" ([39], 338) .
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thetic methods, as set forth in his classic Systematische Entwickelung de r
Abhängigkeit geometrischer Gestalten von einander, were far too weak to
support the far-reaching researches he undertook during the later part o f
his career. It should also not be forgotten that Steiner's foundational wor k
was far from complete when he turned to his more ambitious investiga-
tions of algebraic curves and surfaces . His Systematische Entwickelung of
1832 presented only part one of a study that had originally been projecte d
as consisting of seven parts . Thus, even in his systematic investigations ,
Steiner's work remained in torso .

In the meantime, Plücker, Möbius, Cayley, Salmon, Hesse, and others ha d
made impressive strides forward in algebraic geometry mainly by employ -
ing new analytic methods (homogeneous coordinates, determinants, an d
invariant-theoretic techniques) . Thus, the much-vaunted synthetic style pro-
moted by Poncelet, Steiner, and their followers looked hard-pressed whe n
it came to matching the achievements set forth by analytic geometers wh o
could appeal to a fourth dimension to explain what was meant by imagi-
nary points . If the synthetic geometers hoped to compete with them, the n
somehow they would have to create a theory of imaginary elements withi n
the context of Euclidean space . The problem of interpreting imaginarie s
within a purely synthetic framework eluded Jacob Steiner, but not his con-
temporary, Karl Georg Christian von Staudt (1798-1867), who succeede d
in creating a precise method of handling the mysterious imaginary point s
and lines that had become so indispensible to geometrical research . As Felix
Klein once commented :

" . . . bei [Jacob] Steiner sind die imaginären Größen in der Geometrie
noch "Gespenster", die gleichsam aus einer höheren Welt heraus sich
in ihren Wirkungen bemerkbar machen, ohne daß wir von ihrem Wesen
eine klare Vorstellung gewinnen können . Erst von Staudt hat . . . jene
Frage vollkommen gelöst . . . " 6

Since von Staudt, the central figure in our story, remains a barely know n
figure in the history of mathematics, I begin with a few remarks concernin g
his life and career .

6 [20], 129 .
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2 Staudt's Theory of Imaginaries

K.G .C . von Staudt was born in the charming Franconian town of Rothen-
burg ob der Tauber . His parents were both descended from prominent pa-
trician families whose ancestors had played major parts in Rothenburg' s
political and social life since the 16th century . The family home where h e
was born and raised dates from this period, and can still be seen in Rothen-
burg today. From 1817 to 1822 von Staudt studied in Göttingen, where h e
enjoyed the rare privilege of working closely with Carl Friedrich Gauss . 7 On
numerous occasions, Gauss reported on the astronomical observations car -
ried out by his young student, including those von Staudt made of Mars i n
1820, the asteroid Pallas in 1821, and particularly his findings on the path
of a comet that entered the solar system during that same year . After takin g
his doctorate in Erlangen in 1822 (apparently without having to submit a
dissertation), he taught at Gymnasien in Würzburg and then Nürnberg be-
fore his appointment as Professor Ordinarius for mathematics in Erlangen
in 1835 .

Von Staudt retained this position up until his death in 1867 . By all accounts ,
he was an extraordinarily dedicated teacher in an era when scholarly aspira-
tions ran high and neohumanist ideals dominated the German universities .
Still, Erlangen's academic environment certainly could hardly be compare d
with those in Berlin, Göttingen, or Königsberg . During the academic year
1858-59 only six students were studying for a degree in mathematics, a
rather high number in view of the fact that the entire philosophical fac-
ulty recorded only nineteen auditors . The situation during the mid-1840' s
was even worse ; then the philosophical faculty had just six students! Give n
these kinds of conditions, von Staudt clearly had little, if any, opportunity
to expose young talents to his own research efforts . Thus, like many othe r
German mathematicians of this era, he worked in quietude and virtual iso-
lation .

After von Staudt's death his successor, the brilliant young mathematicia n
and historian of mathematics Hermann Hankel (1839-1873), remained i n
Erlangen only two years before accepting a chair in Tübingen . This en-
abled von Staudt's closest disciple, Hans Pfaff (1824-1872), who had been
außerordentlicher Professor in Erlangen since 1868, to assume his forme r

7 The following information is based largely on [25] .
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mentor's position . Hans Pfaff was the son of von Staudt's predecessor, Jo-
hann Wilhelm Pfaff, and the author of Neuere Geometrie ([26]), published
in Erlangen in 1867 . This text was the first, following von Staudt's own, t o
expound the new theory of imaginaries .

Von Staudt's two principal works were entitled simply Geometrie der Lage ,
which appeared in 1847, and Beiträge zur Geometric der Lage, the first
installment of which came out in 1856 ([35], [36]) . Both represent true mile -
stones in the history of geometry. In his Geometrie der Lage von Staudt
gave the first systematic synthetic presentation of the principal theorems of
plane and solid positional geometry or, more precisely, affine geometry, sinc e
von Staudt took non-metric Euclidean space with its theory of parallels a s
his starting point. To this he appended the points at infinity where paralle l
lines intersect . These thus form a distinguished set of points, contrary to th e
purely projective standpoint which regards the so-called plane at infinity a s
indistinguishable from any other plane in projective three-space .

From the outset, von Staudt made use of topological concepts, such a s
parity or the lack thereof for curves and surfaces. Such concepts, along
with the projective notion of harmonic separation, enabled him to uncove r
systematically a host of general theorems without making any appeal t o
metrical properties . It would be fair to say that with Geometrie der Lage the
synthetic treatment of positional geometry emerged as a mature discipline .
The well-known textbook with the same title by Theodor Reye (1866-1868 ,
2nd ed . 1886) served to anchor Staudt's achievement . Remarkably, Staudt's
initial conception was quite traditional and partly inspired by the Euclidean
tradition . He began by asserting that "geometry arises from the conceptio n
of an unbounded space," and then proceeded to introduce solid figures ,
surfaces, curves and points by means of general kinematical considerations .
Thus, he observed that a moving point generates a curve, a moving curve
a surface, and finally a body emerges from a moving surface . Von Staudt' s
style of argumentation throughout was only loosely deductive . In the main ,
he relied on what might well be called descriptive arguments that steadfastly
avoided appeals to visual evidence, i .e . diagrams or pictures . Presumably the
reader was expected to produce these himself, whether mentally or on paper ,
in the course of working through the text . This kind of minimalist approach,
aimed at forcing active engagement from the reader, can be found in man y
synthetic texts of the nineteenth century, a feature that helps account fo r
the nearly total lack of appeal this genre has today.
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Already in the 1840s Staudt had hoped to develop a synthetic treatmen t
of imaginaries based on elliptic involutions (about which more below) . But ,
as he pointed out in the preface to Beiträge zur Geometrie der Lage, he
was left stymied by the problem of how to distinguish between two comple x
conjugate points, which taken together yield the same involution . His break-
through idea thus came sometime after 1847, and was elaborated beginnin g
with the first installment of the Beiträge in 1856. To motivate his theory,
he alluded in the preface to a particularly nice example of the insight tha t
imaginary elements can bring to the theory of conic sections . Although he
did not mention Newton in this connection, he was undoubtedly well awar e
that Sir Isaac had given a systematic treatment of the elements needed t o
construct a conic section in Book I of his Principia . There Newton carried
out the constructions for all six cases in which any combination of five ele-
ments, whether points on the curve or tangents to it, are given . But Newton
actually began with the easier case when two foci and a third point (or tan -
gent line) are given, thereby implicitly raising the following question . Why
do only three elements suffice in this case? Whether or not Newton eve r
asked himself this, we can be quite certain that he failed to find the follow -
ing elegant answer, which depends on Plücker's insight, mentioned above ,
regarding the foci of conics . As Staudt pointed out, were we given only one
tangent, knowledge of the two foci amounts to knowing four other (imag-
inary) tangents, since the foci are merely the points of intersection of th e
two pairs of tangents from the circular points I, J to the curve, so that fiv e
elements are, in fact, given, thereby resolving the mystery !

The theory of involutions, which von Staudt took as the basis for his theor y
of imaginaries, already formed a standard part of projective geometry in hi s
day. Several properties of involutions play an important part, for example, i n
the work of Desargues . Simply stated, an involution of the points on a line i s
a projective mapping T for which T 2 = Id . Such a mapping can have eithe r
zero, one, or two fixed points, in which case one speaks, respectively, of a n
elliptic, parabolic, or hyperbolic involution . In the first case, an analytic
representation of the mapping T sending x -* x' is given by

(x - a)(x ' - a) + b2 = 0 ,

where a, b E R and x E (C . From this, one sees at once that the two (missing )
fixed points are given analytically by x = a ± bi, which accounts for th e
representation of these conjugate imaginary points by means of the above
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elliptic involution on the real line "joining " this pair .

Staudt's basic idea was thus to consider the real line £ joining two conjugat e
imaginary points P and P, and then to associate this pair of points wit h
two oriented involutions of .e having P and P as fixed points . To make his
argument as transparent as possible, we make use of the analytic presenta-
tion first given by Otto Stolz in 1871 ([38]) . Thus, given an imaginary poin t
P with homogeneous complex coordinates ((, 77, T) one writes :

= C1+ iC2, 77 =771.+ 7712, 7- =Tl+2T2 .

These determine two real points Pi , P2 with homogeneous coordinates :

Pl = (S1> 771, Ti) ;

	

P2 = ('2, 712, T2) •

Since Pi P2 (otherwise P would be a real point), Pi and P2 determine a
real line P1 P2 given by

P = {Sl + A(2, 77i + A772, T1 + AT2} .

Here it should be emphasized that the parameter A E C, so the line P1 P2
passes through the conjugate imaginary point P with coordinates :

= (1 - iS2, 7 / = Th. - 277 2 , T = Tl - 2T2 .

Stolz showed that from the given point pair {P1 , P2 } one can write down a
formula for the other corresponding point pairs of the involution T in terms
of a parameter A :

Pi = ((i> 77i, Ti) = ((1 + A(2, 771 + A772, T1 + AT2 )

P2 =

	

7127 T2) = ((1 - 1(2, 771 - 1 712, 7-1 - 7-2) •

The oriented involutions on P1 P2 are then produced by letting A vary. Fol-
lowing Staudt's convention, the point P is associated with the orientatio n
obtained by letting A increase continually ; the opposite orientation, given
by decreasing values of A, yields a representation for P .

Now von Staudt showed that the totality of point pairs {P1', PD determined
by the imaginary point P produces an involution T of the real points of P1P2 .

and
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The fixed points (which Staudt called fundamental points) of T are just th e
imaginaries P and P. Conversely, taking any two pairs of points {P1 , P2 }

and {Pi, P2} on a real line £ one obtains a unique involution T . The fixed
points of T will be imaginary if and only if these two pairs overlap . Thus ,
one of the points Pi, P must lie between {Pl , P2} and the other outside the
latter pair if the involution is to represent two conjugate imaginary points .

This novel idea would have remained nothing more than a curiosity had it
not been possible to find a suitable interpretation for imaginary lines as well .
And precisely at this juncture one can begin to appreciate the true beaut y
of von Staudt's theory : all he had to do was appeal to duality. Since, i n
the projective plane, an oriented involution T of a real line .e dualizes as an
(oriented) involution of the pencil of real lines through a real point, it follows
that the latter yields a representation for imaginary lines by means of point s
in P 2 (R) . Analogous to the situation above, in order to correspond to an
imaginary line the pencil involution must contain no real double rays . This
results if two pairs of corresponding lines always overlap with one another .

In this new context, one can now consider the possible incidence relations
between points and lines . The following four cases arise :

1. real point and real line (the familiar situation in P 2 (R)) ;

2. real point P and imaginary line £ (since P E L r P E l it follows that
P must be identical with the vertex of the line pencil representing f) ;

3. imaginary point P and real line f (the line t must be identical wit h
the line Pp that represents P) ;

4. imaginary point P and imaginary line .e (in this case the involution
on .ep determined by P will be in perspective with the involution o f
the line pencil determined by t) .

Using these basic constructs, one could, in principle, not only distinguish
between real and imaginary figurations in P 2 (cC)) but also determine which
entities within a known incidence structure were real and which imaginary .
To see how this works, we consider how von Staudt employed the pola r
relation induced by a conic C in order to distinguish the real and imaginar y
points of the conic. For this purpose, we take an arbitrary point P lyin g
on the line L . From the polar relation induced by C, one obtains the pola r
line p' corresponding to P, and with it a new point P ' given by p ' n î = P' .
Since the polar of P' passes through P, the relationship between P and P'
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is reciprocal, and hence this procedure induces an involution on the point s
off .

By definition, the points of C consist of those points P that lie on their own
polars . This property also characterizes the points of C n f. Thus, the two
points where f meets C remain fixed ; they are the fundamental points of the
involution on f where the point pairs (P, P') satisfy P = P'. In this fashion ,
von Staudt reinterpreted the question of whether or not the point P E C is
real or imaginary into a question about the involution induced by the polar
system of C on an arbitrary line £ passing through P. In particular, an
imaginary point P on the conic C was represented by an elliptic involutio n
induced on a real line f .

Figure 7 : The involution on f pairing P with P' is elliptic .

Analytically, Staudt's construction can be carried out as follows . For a coni c
C in P2 (C) with real coefficients given by

Ax2 + 2Bxy + Cy 2 + 2Dxz + 2Eyz + Fz 2 = 0,

A, B, C, D, E, F E III ; (x, y, z) E C3 - (0,0,0)

the polar system is :

Axx' + B(xy ' + x'y) + Cyy' + D(xz ' + x'z) + E(yz ' + y'z) + Fzz' = O .

If P = (x ' , y ' , z' ) E L, then plugging into the polar equation one obtains a
linear equation for p' . Clearly f n p' = P if and only if P E C. It should be
pointed out, again, that von Staudt employed purely synthetic methods to
describe these constructions .
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Imaginaries after von Staudt : Lie and Klein

Von Staudt's achievements and their importance have been praised ove r
the years by such eminent geometers as Felix Klein, Julian Lowell Coolidg e
([6], 96-100), and Hans Freudenthal ([7]) . Still, his theory was more readily
admired from afar than it was closely emulated by leading synthetic geome-
ters. Von Staudt's uncompromising style, while fully in keeping with th e
dictates of the trend-setting Steiner school, proved a major obstacle for th e
assimilation of his ideas . One of the first to appreciate this situation was
the Austrian mathematician Otto Stolz (1842-1905) . Thus, in 1871, Stol z
gave the first analytic presentation of Staudt's theory of the imaginary i n
[38] . 8 He also introduced Felix Klein to von Staudt's ideas when they met i n
Berlin during the winter semester of 1869-70, and also in Göttingen during
the summer of 1871 .

By this time Klein had also become friends with the Norwegian mathe-
matician Sophus Lie, whom he also met in Berlin . Soon afterward Klein
and Lie gained a clearer idea of the methods of French metrical geometer s
during a three-month sojourn in Paris . This French style, promulgated b y
the so-called anallagmaticians, including Darboux, Moutard, and Laguerre ,
was based on the idea of taking circles in the plane or spheres in space as
the fundamental elements and employing appropriate coordinate systems t o
study the geometric objects that arise as envelopes of circles and spheres .
The eyelids of Dupin, for example, provided a classical model for the latter .
Lie and Klein were both deeply inspired by the possibility of finding a direc t
connection between this French tradition and the mostly German research
on line geometry that had begun with Möbius but which received its main
impetus through the work of Plücker (see [29]) . Both traditions made heavy
use of imaginary elements .

Initially, the problem of interpreting imaginary points by means of real geo-
metric structures played a central role in Lie's mathematics . Indeed, his ver y
first work presented a new theory in which points in the complex projectiv e
plane P2 (c) become associated with certain line congruences in P 3 (R) ([29] ,

8 Stolz wrote about the poor reception of von Staudt's work : "Die Untersuchungen
dieses scharfsinnigen Geometers, welche nach rein geometrischer Methode ausgeführt sind ,
haben, so viel mir bekannt ist, bisher in der analytischen Geometrie keine Berücksichtigun g
gefunden " [38], 417 .
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224-226 ; and [22]) . 9 This kind of "anschauliche " approach to imaginary figu-
rations clearly had a great deal of appeal to both Klein and Lie . But whereas
Lie soon freed himself from such concerns and came to feel entirely at hom e
with the geometry of higher-dimensional complex spaces, Klein felt drive n
to unravel the relationship between real and complex structures . In fact, he
emphasized the importance of so-called "Realitätsverhältnisse" throughout
much of his career . Moreover, Klein's pursuit of a universal framework for
geometry led him to recognize the significance of von Staudt's systemati c
methods, which he exploited in his well-known work on the projective basi s
for non-Euclidean geometries ([12]) .

We have noted already how Klein learned about von Staudt's researche s
through Otto Stolz .'» As a Privatdozent in Göttingen, Klein even lectured
on von Staudt's theory of the imaginary and thereby contributed to the dis-
semination of these ideas. One of the students who attended his lectures wa s
Ferdinand Lindemann (1852-1939) . From the latter's unpublished memoirs
we learn that this experience occasioned Lindemann to pursue von Staudt' s
theory himself and to include it in the second edition of Clebsch-Lindemann ,
Vorlesungen liber Geometrie . l l

When we hear of Klein's activities in Erlangen today, the first (and probably
only) notion that is likely to come to mind is the famous Erlanger Programm
that he wrote on his arrival in 1872 . Curiously enough, however, during his
tenure in Erlangen Klein did little to follow up on the ideas he outlined in hi s
Erlanger Programm . Instead he concentrated most of his efforts on problem s
related to the role of imaginaries in algebraic geometry . 12 As a true discipl e
of Plücker, Klein hoped to shed light on the geometrical Gestalt of algebrai c
curves and their associated Riemann surfaces . This led him to develop what
he called a "new type" of (projective) Riemann surface (see [14], [16], [17] ,
[18]) . The possibility of exploiting Riemann's function theory in algebrai c
geometry had been realized ten years earlier by Alfred Clebsch in [4] . Klein ,

9 Not long afterward, Gottlob Frege set forth an alternative theory for treating imagi-
nary geometric figures in his Göttingen doctoral dissertation (see [31]) .

' °Klein himself later acknowledged the importance of the conversations he had with
Stolz when they were together in Göttingen during the early 1870's ([19], vol. 1, 51-52) .

11 "[Klein] lud mich ein, seine Vorlesung zu besuchen, und das gab wohl die Veranlassung,
daß ich diese Imaginär-Theorie in meiner späteren Bearbeitung von Clebschs Vorlesun-
gen mit grosser Ausführlichkeit unter Hinzufügung eigener Untersuchungen dargestell t
habe ."([23], 45 )

12 For more details, see [30] .
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however, found Clebsch's approach unsatisfying, particularly because he ha d
not followed Riemann's lead with regard to the notion of genus, the funda-
mental topological invariant in Riemann's geometric approach to comple x
analysis . Yet Klein also realized that conventional Riemann surfaces were
not well suited to the purposes of algebraic curve theory, which require s
that the curves be situated in P 2 ((C) in order to exploit the advantages of
Bézout's Theorem. This circumstance motivated him to set about lookin g
for a projective analogue to conventional Riemann surfaces, which were then
constructed over C or C U {oo} . Klein used his projective Riemann surfaces
to obtain a variety of results, some of them new, regarding the number o f
real and imaginary configurations in which conics are tangent to a give n
quartic curve (see [16] and [18]) . In none of these papers, however, did h e
draw any explicit connections with von Staudt's theory of the imaginary .

Figure 8: For points P' E Int(C) one has two conjugate imaginary tangents . Klein
viewed these, following Staudt, as representing two oriented involutions of the penci l
of real lines passing through P' . By continuity, he regarded these as corresponding
to imaginary points on two leaves of a Riemann surface that joined together alon g
C. The result was a topological sphere, a surface of genus zero .

Nevertheless, in another paper from the mid-1870's, entitled "Uber de n
Zusammenhang der Flächen," ([15], 479-480) he made some brief remarks
that reveal how the . two theories dovetailed together very nicely. Klein's
main concern in this paper was to give a method for determining whethe r
or not a surface was orientable and to emphasize that this was an intrin-
sic property independent of any embedding in space . As his principal tool ,
he introduced the notion of an indicatrix, a local pencil of oriented curves
passing through a point P of the surface . This served to provide a local
orientation-if by moving P anywhere around the surface this orientation
remained preserved then the surface was orientable . Klein also emphasize d
the close connection between his indicatrix construction and von Staudt's
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Figure 9: Klein's projective Riemann surface for a nonsingular cubic C with two
real components . The three real inflection points (one of which lies at infinity) ar e
transformed into cusps in passing to the dual curve C* . This dualized curve has
class 3, so that three tangents to C* pass through each point in the plane . In the
outer and inner regions of the plane three real tangents pass through an arbitrar y
point, whereas only one tangent can be found for points in the annular region . The
"missing" imaginary tangents correspond to points on two leaves of a Riemann
surface of genus one, a topological torus .

theory of imaginary lines as represented by oriented involutions on pencils
of lines . In a projective setting, he noted that such an oriented involutio n
Ip can be localized by constructing a small conic about P whose conjugat e
diameters correspond to the reciprocal lines of Ip . This yields a directrix
that one can then move along curves of a projective surface .

Klein's key insight here lay in recognizing the compatibility of these ideas ,
borrowed from von Staudt, with his projective Riemann surfaces . The latter ,
he noted, are always orientable due to the fact that, by construction, th e
two possible orientations at a point P are realized as two distinct point s
that lie on different sheets of the surface .

Certainly much of this must be regarded as idiosyncratic mathematics, fo r
it left no discernible mark on geometrical research after the turn of the cen-
tury. Nevertheless, even after the publication of Hilbert's Grundlagen der
Geometrie all]) in 1899, various theories for treating imaginary geometrical
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structures continued to fascinate a handful of geometers . 13 As the modern ,
axiomatic standpoint grew stronger, however, the ontological issues tha t
originally motivated mathematicians to investigate possible relationship s
between real and imaginary structures eventually lost their urgency . Klein' s
journey may be regarded as one of the last to reach the frontiers of researc h
in algebraic geometry mounted on arguments that he could convey in a pic -
ture. The reliance on anschauliche approaches, which Klein often promoted ,
eventually came under sharp attack .

In 1917 Eduard Study leveled a harsh assault on the sloppy, even fallaciou s
arguments set forth by Lie and Klein in a review article published in th e
Jahresberichte der deutschen Mathematiker-Vereinigung ([41]) . Study, who
had habilitated in Leipzig during the mid 1880s under Klein's supervision ,
saw himself, and rightfully so, as the leading representative of German alge-
braic geometry in the tradition of Plücker and Clebsch. His was no whole-
sale critique of Anschauung, and to make his case for the importance o f
anschauliche arguments in geometry he even quoted Poincaré with strong
approval . Yet Study had no patience with murky thinkers like Lie and Klei n
who, to his mind, refused to recognize the importance of systematic inves-
tigations undertaken with care for the details . He considered Lie's spher e
geometry a particularly glaring case in point, but ten years earlier he als o
published a similarly devastating critique of certain results in Lie's theor y
of differential invariants ([40]) .

In the case of Klein, Study portrayed him as having betrayed the principle s
of his own Erlanger Programm. Having accompanied Klein during his trip
to Chicago in 1893, Study had witnessed up close how his former mento r
skillfully exploited the opportunity to make propaganda for his Erlanger
Programm. He also knew full well that Klein had done very little in pursui t
of this program during the intervening twenty years . As a champion of mod -
ern invariant theory, Study saw his own work as fully in accord with th e
philosophy of Klein's Erlanger Programm namely that geometry shoul d
be understood as the systematic study of those invariants associated with a
given transformation group. Yet Study ' s sweeping criticisms of Klei n 's detri -
mental influence on geometry in Germany seem to have impressed very fe w
of his contemporaries, despite the fact that much of what he asserted woul d
have been difficult to refute . Even his leading pupils, Wilhelm Blaschke and

13 See, for example, [32] . The dissertations of two Harvard geometers, J . L . Coolidge
and William Graustein, also dealt with imaginaries in geometry .
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Julian Lowell Coolidge, were among Klein's most avid admirers, probably
contributing more to maintaining his reputation than they did Study's own .
At any rate, we can see from this example, as I suggested at the outset, tha t
very little is known about even the most famous protagonists of various ap-
proaches to geometry during the nineteenth century and beyond. Surely the
time is ripe for deeper and more detailed historical investigations .
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