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Synopsis

The flux of recoil atoms in atomic collision cascades induced by an ion beam or another sourc e
of energetic particles in a material is known to approach isotropy at kinetic energies far belo w
the beam energy. A variety of irradiation effects can be explained satisfactorily on the basis o f
an isotropic particle flux, but significant deviations from this simple behavior are known to exist .
While numerous examples have been studied by numerical simulation of cascade processes, th e
systematics is, by and large, unknown . The present study aims at general scaling properties and
estimates of the magnitude of moderate deviations from isotropy and their spatial dependenc e
for a wide range of beam and material parameters . Anisotropies introduced by crystal structur e
are ignored .

Although it is well established that cascade anisotropy is related to the momentum of bea m
particles, previous attempts to quantify this relation have failed . We have found that there ar e
two leading correction terms to the isotropic particle flux, a well-known term centered aroun d
the beam direction as a symmetry axis and a new term proportional to the gradient of th e
deposited-energy density. As a general rule the two contributions are either both significant
or both negligible . Specific situations in which the gradient term dominates are, however, of
considerable interest in applications . The parameters which characterize the anisotropy of collisio n
cascades also determine the deposition of momentum, but the connection is less straightforwar d
than asserted hitherto .

General principles are first illustrated on the specific case of elastic-collision cascades under
self-bombardment which contains the essentials . Thereafter several generalizations are made ,
including atomic binding forces and inelasticity as well as allowance for multicomponent materials .
Application areas in mixing and sputtering are outlined .
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1 Introduction

Energetic particles like ions, neutrons, and electrons may induce cascades of recoi l
atoms when interacting with matter . Such atomic collision cascades lead to a
variety of observable radiation effects in solid or liquid materials such as defec t
formation and sputtering, disordering and mixing, and phase transitions . Collision
cascades may also influence electronic effects such as ionization and electron o r
photon emission in both gaseous and condensed matter .

The number of atoms participating in a collision cascade is dependent primaril y
on the available energy, where key parameters are the binding energy of a recoilin g
atom to its original site, the cross section for subthreshold (non-recoil) scatterin g
events, and the rate of electronic excitation (LINDHARD ET AL ., 1963a ; SIGMUND ,

1969a, 1972) .
Except for effects caused by regular crystal structure, the overall velocity distri-

bution of recoiling atoms is close to isotropic if the number of participating atoms
is large, i .e ., if the initial energy is high compared to the binding energy . Direc-
tional memory is lost rapidly since atoms recoil most frequently at large angle s
from the initial direction of a colliding particle . Some degree of preferred motio n
must yet prevail because of conservation of the momentum of the initiating particl e
(SANDERS, 1968) .

The approximation of an isotropic recoil cascade has also been imposed on
the local velocity distribution of moving atoms in limited regions in space as a
consequence of heavy-ion bombardment (THOMPSON, 1968), where its validity i s
not obvious . A detailed study provided support in the asymptotic limit, i .e ., fo r
recoil energies far below the initial beam energy (SIGMUND, 1969b), but only very
qualitative information was provided on where the approximation breaks down .
Even in the asymptotic limit there can be little doubt that in the outer regions o f
a collision cascade the motion must be preferentially directed outward .

Several attempts have been made to estimate the dependence of local anisotrop y
in a collision cascade on the masses of the participating atoms as well as primary an d
recoil energy. These attempts were based on the recognition that both the overall
and the local anisotropy in a cascade must be related to momentum conservation
(ROOSENDAAL ET AL ., 1980, 1982 ; SIGMUND, 1981) .

Momentum-induced anisotropy in collision cascades came up again in connec-
tion with attempts to understand pronounced preferential sputtering effects fro m
isotopic mixtures that were predicted by molecular-dynamics computer simulation s
(SHAPIRO ET AL ., 1985, 1988) . While an analysis by two of us did not confir m
the assertion that momentum anisotropy was a factor of major importance in thi s
context (SIGMUND & SCKERL, 1993), several problems had been left open in previ-
ous studies of momentum anisotropy. There were ambiguities attached to the very
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definition of the term ` deposited momentum', in particular at the low-energy end of

the cascade (URBASSEK & VICANEK, 1992) . Moreover, the accurate connection be -

tween deposited momentum and particle flux had never been established . One of u s

had published an approximate relation between particle flux and deposited momen-

tum long ago in a review without documentation (SIGMUND, 1981), and relation s

have appeared in the literature that are either misleading or wrong (ROOSENDAA L
ET AL ., 1980, 1982) . Moreover, spurious divergencies were found, the origin o f

which has been discussed only recently (SCKERL ET AL ., 1995 ; GLAZOV, 1995) ,
even though it has been clear for some time that there is no real problem if mor e

terms are taken into account (ROOSENDAAL ET AL ., 1982) . Altogether, publishe d

information on either momentum deposition profiles or angular distributions of

particle fluxes is sparse to say the least .

In view of this state of affairs we found it desirable to analyse the whole comple x

of problems in some detail . We define key parameters from first principles and

consider their mutual relationships to some degree of generality. In that respect ,

this work may be considered as an extension of a previous discussion of scala r

quantities (HUANG ET AL ., 1985) .
The paper has been organized such that the discussion focuses initially on self-

bombardment of a single-component material of infinite extension . Extension t o
more general bombardment conditions is discussed subsequently while results ap-

plying to a multicomponent material have been collected in appendix A . Explicit

analytic results will be presented for the case where scattering is assumed elasti c
and governed by a power-law cross section . Arguments will be given which allow
generalization to a wider variety of scattering laws, and explicit estimates will b e
given of the effects of electronic stopping and lattice binding forces . Results of this
project were reported at a recent conference (SCKERL ET AL., 1995) .

2 Fundamentals

2.1 Particle Density and Flux Densit y

Consider some source of radiation, typically an ion beam or a source of fast neu-
trons, which generates energetic particles via collision cascades in a polyatomi c
medium, the composition of which may be characterized by a set of density pro -
files Na (r), where j = 1, 2, . . . n in an n-atomic medium and Nj (r)d3r is the mea n

number of j-atoms in a volume element d 3 r . For high irradiation fluences thi s

profile may depend on time . If so, Nj (r) is meant to denote the profile seen b y

an individual incident beam particle . As a result of the interaction between on e

beam particle and the material a cascade of atomic collisions develops which ma y

be characterized by a density gj (w, r, t) of moving particles in phase space such
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that gi (w, r, t)d 3wd3r is the mean number of j-atoms moving in volume element s
(r, d3r) and (w, d3w) in real and velocity space, respectively, at time t . The aver-
age is taken over a large number of primary impacts with identical initial condition s
as far as measurable beam and target parameters are concerned .

For the purpose of the present study the central quantity is the time-integrated

flux density,

G wr =w

	

dt wrt

	

( 1 )

which is known from transport theory to play the role of a Green function from
which several other statistical distributions may be derived (DUDERSTADT & MAR-

TIN, 1979) .
It will frequently be necessary to include a specification of the initiating particle

in the definition of the density. Then the notation g ib (v ; w, r, t) implies that the
collision cascade has been initiated by an i-particle impinging with a velocity v in
r = 0 at t = O . Here an i-particle may be either an external particle (i = 0) or an

energetic recoil atom of the material (i = 1, . . . n) . Similar extensions apply to th e
flux density and other statistical distributions to be introduced in the following .

The essential arguments to be presented in the following apply equally well t o
self-bombardment of a monoatomic medium as to arbitrary bombardment of a n
arbitrary medium, but discussing the former allows for a simpler notation and ,
hence, a more transparent presentation . Therefore the bulk of the paper empha-
sizes self-bombardment of a monoatomic medium . More general results have bee n

collected in section 6 .1 on pp . 26 for non-selfbombardment and in appendix A
for polyatomic media . Reference to these sections will be made where appropriate .
This eliminates the need for atom labels here . We may then operate with a particl e
density g(w, r, t) and a flux density G(w, r) .

2.2 Freezing Density, Deposited Energy, and Deposited Mo-
mentum

Consider now some energy U below which all motion of beam and recoil particle s
is assumed to be frozen in . We introduce the freezing density F(w, r, U) which
reflects the distribution in real and velocity space of a cascade after all participatin g
atoms have slowed down below U . Thus, F(w, r, U)d3wd 3r is the mean number of
atoms per incident particle emerging from collisions in a volume element (r, d3r )
at velocities in an interval (w, d3w) wit h

W Mw2 /2 < U,

	

(2 )

when cascade processes are recorded only for particles with energies above U . Here ,
M denotes the mass of the particles involved .
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Except for the name the freezing density was introduced into this field b y
SANDERS (1968) . It makes possible a precise definition of the useful concepts
of deposited energy and momentum ,

FD(r , U ) =
fw<U

d3 w W F(w, r, U)

(3 )

Fp(r,U) _
W
f <u d3 wMwF(w,r,U) .

For an elastic-collision cascade', the integral over all space of these distributions
must equal the initial energy and momentum of the beam particle, respectively,
irrespective of the choice of U .

In addition to densities of deposited energy and momentum one may also con -
sider the associated current densities or fluxes . Conservation laws satisfied by thes e
quantities have the form of continuity equations which have been collected in ap-
pendix B .

2 .3 Connections

The leading term in the standard expression for the particle flux in the limit of
high ion energy is approximately proportional to the density of deposited energ y
(SIGMUND, 1969b) . It is also known that corrections to this term depend on th e
deposited momentum (SANDERS, 1968 ; SIGMUND, 1981) . Before discussing thos e
important connections we derive the inverse relationships which, unlike the former ,
are exact since the flux density is a Green function .

In the following we shall assume a random distribution of scattering centers in
the material . The connection between the freezing density and the particle densit y
is found most conveniently by a physical argument . Indeed, writ e

f

	

f
f

F(w, r, U) = N(r) J

	

d3 w'

	

dt w 'g(w', r, t) J da(w'; v ' , v" )

w,>u x (ö(v' -w) + S(v " - w)) . (W < U) (4)

Here, do-(v ; v', v") is the differential cross section for scattering of an atom with a
velocity v hitting an atom at rest, v ' and v" denoting the respective velocities afte r
collision, and 6( . . .) is the Dirac function. By definition, d' w'g(w', r, t) represent s
the mean number of particles per volume moving with velocity (w', d3w') at time

'By definition, the sum of the kinetic energies of all particles in motion is constant in a n
elastic-collision cascade . The effect of two major sources of inelasticity, electronic stopping of
primary and target recoil atoms, and binding of target atoms, will be studied in sections 6 .2 - 6 .4 .



MfM 44 :3

	

9

t, and N(r)w'dtda(w' ; v', v") is the probability for a collision with the outcom e
(v', d3v'), (v", dav") . The contents of the parentheses represent the probabilit y
density for either the colliding or the recoiling atom to have a final velocity aroun d
w .

We identify the flux density (1) in eq. (4) and insert into eqs . (3) with the result

FD (r, U) = N(r) J

	

d3 w G(w, r) (
J

	

E 'da +

	

E"da
`

J

	

(5 )
W>U

	

\ E'<U

	

"<U

Fp(r,U) = N(r) J

	

d 3 w G(w, r) ~J

	

Mv ' da + J

	

My"da) (6)
W >U

	

E'<U

	

E" <U

where E' = Mv' 2 /2 and E" = Mv" 2 /2 represent the energies of the scattere d
atom and the recoil, respectively .

Differential cross sections most often exhibit azimuthal symmetry around the
direction of the colliding atom . If so, the first integral in the parentheses of eq . (6)
reduces to

f

	

Mv 'da(w ; v ' , v") = w f

	

Mv ' cosØ 'da
'<U

	

W E'< U

where 0' denotes the scattering angle in the laboratory system . A corresponding
expression holds for the second integral .

It is common to replace velocities by energy and angular variable s

G(w, r)d3 w E G(W, SZ, r)dWd2 S1

where SI = w/w is a unit vector in the direction of the velocity w . Then eqs . (5 )
and (6) reduce to

/ r

	

f
FD = N J

	

dWG(W) I J

	

E'da +

	

E" da I
W>U

	

\ E'<U

	

"<U

( 8 )

FP = N f dWH(W ) I J

	

Mv' cos Ø'da + f

	

Mv" cos Ø"da 1
W>U

	

\ E'<U

	

"<U

	

111

where

G(W) = J d? SZ G(W, SZ )

H(W) = f d2 SZ SZ G(W, SZ) .

The spatial variable r has been suppressed for clarity and Ø" denotes the recoi l
angle in the laboratory system .

(7 )

( 9 )
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Eqs . (8) represent rigorous expressions for the densities of deposited energy an d
momentum in terms of the flux density G(W, St) . An approximate expression fo r
the inverse relationship - which is of much greater practical importance - will b e
found in section 5 .1 (p . 22) .

2 .4 Elastic Scattering

Now assume elastic collisions . For equal-mass colliding particles we may writ e

E' =E-T;

Mv ' cos 0 ' = -(E - T) ;

E" = T

Mv" cos Ø" = 2 T (10)
w

where T is the energy transfer in conventional notation. Then eqs . (8) reduce t o

FD = Nf dW G(W) (S ' (W,U) + S" (W, U))

	

(11 )
W> u

Fp = Nf dW2H(W)(S'(W, U)+S"(W,U))

	

(12)
W >U w

where

S'(W,U) =
W-T<U

(W -T)
'

-(W,T )

S" (W,U) = f Tda(W,T)

	

(13 )
<UU

and do (W, T) is the differential cross section for energy transfer (T, dT) from an
atom with kinetic energy W to an atom at rest . With this, the same transport
cross sections occur in both deposited energy and deposited momentum .

2 .5 Inelastic Processes

Scattering processes between atoms are more or less inelastic because energy is
spent in electronic excitation and ionization . This is known to affect the energy
balance (LINDHARD ET AL ., 1963a) ; a similar effect on momentum balance must
be expected . We need to distinguish between the influence of inelastic losses o n
particle flux, deposited energy and momentum on the one hand, and the influenc e
of such losses on the relations connecting them . Here we are concerned only about
the latter aspect . The effect of electronic stopping on the quantities themselves i s
going to be considered in sections 6 .2 and 6 .4 .
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We shall employ a scheme introduced by LINDHARD ET AL . (1963a,b) in which
electronic interactions are treated as occurring between two separate systems, elec-
trons and nuclei_ This scheme does not properly account for inner-shell processe s
and other forms of strong coupling but is well suited in cases where electroni c
processes are expected to cause minor perturbations . Temporarily we introduce
separate flux densities G () and G (e) for atoms and electrons as well as separat e
expressions FDn) , FDei and F(n) FPe) for energy and momentum deposited in atomi c
and electronic motion, respectively. Going through the above arguments one ar-
rives at an expression for FD ' containing two terms, one identical with eq . (11) ,
G(W) being replaced by G(n) (W) . The second contribution is a coupling term of
the form

OFDni = N f dWG (e) (W) f TdQen(W,T)
. <U

where daen (W,T) is the differential cross section for scattering of an electron of
energy W on an atom. Similarly the momentum term receives an addition of th e
form

	

r
AFpn) =N

J
dWH(e)(W) f 32MTcos"daen (W,T) .

< U

In the conventional picture (LINDHARD ET AL ., 1963a,b) any transfer of energy
from electronic to nuclear motion is ignored because of the large difference in mas s
between nuclei and electrons . To the extent that this picture is valid it should als o
apply to deposited momentum because the total amount of momentum containe d
in electronic motion is small . On the other hand, numerous processes have bee n
identified, in particular in insulators, which efficiently transfer energy from elec-
tronic to nuclear motion (JOHNSON & ScHOU, 1993 ; REIMANN, 1993) . Wheneve r
one of those processes is active the above coupling term between energy deposited
in atomic motion and the electron flux needs to be taken into account .

Equations expressing the energy and momentum deposited in electronic motion
may be established by interchanging labels and `e' . Here the coupling term wil l
in general not be negligible .

3 Transport Equation s

In the following we shall assume the density of moving atoms to be low enough
that the neglect of collisions between moving atoms be justified . Collisions ar e
formally taken as binary, but this does not preclude taking into account distant
simultaneous interactions with several particles as long as they may be describe d
within first-order perturbation theory.

On the basis of the above assumptions one arrives at linear transport equations
which are wellknown (SIGMUND, 1972, 1991) . These equations may be written in
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forward or backward form. For a homogeneous stopping medium the two forms ar e
equivalent . They differ in the roles played by the instantaneous velocity variabl e
w and the initial velocity v .

3.1 Forward and Backward Equation s

The particle density g(w, r, t) is a convenient starting point . The forward Boltz-
mann equation reads

	

/

	

r
8g (w )_ + w . Vg(w) = N

J
d3w'

J
d 3w" {w'g(w')K(w' ; w w" )

+w'g(w')K(w' ; w" , w) - wg(w)K(w ; w ' , w") }, (14 )

where K(w; w', w")d3 w'd3w" dcr(w ; w', w") . Eq. (14) follows readily from a
comparison of g(w, r, t + St) with g(w, r, t) since Nwdv is the collision rate per
unit time. The time and space variables have been suppressed for clarity . The
particle density N in the medium will henceforth be taken constant .

The corresponding equation for the particle flux is found by integration ove r
time with the

f

	

icondition g(w, r, 0) = S(r)S(w

- N
J

d 3 w' d3w"{G(w)K(w;w',w") - G(w')K(w' ;w,w" )

-G(w')K(w' ; w " ,w)} + S2 • OG(w) = S(w - v)S(r) . (15 )

The backward equation for the particle density reads

ag(v) +v • Vg(v) = Nv
f

da(v; v ' v") {g(v') + g(v") - g ( v) }at

where the variables w, r, and t all have been suppressed . Several ways to derive
these equations have been outlined in the literature (LINDHARD ET AL ., 1963a ,
1971 ; SIGMUND, 1969b, 1991) but will not be reproduced here . Integration ove r
time with the above initial condition yields the flux equatio n

N
f

da(v ; v ' , v " ) {G(v) - G(v ' ) - G(v") l + e VG(v) = S(v - w)6(r) (16 )

where e = v/v is a unit vector in the direction of the initial velocity v .
The linearity of eqs . (15) and (16) and the occurrence of the Dirac functions o n

the right-hand side make it formally clear that the particle flux is a Green function .
The velocity variable w is an active variable in the forward equation but mute i n
the backward equation . Therefore the backward equation allows integration over w
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with an arbitrary weight function and, hence, derivation of a transport equation fo r
quantities that can be derived from the particle flux . Consequently such equations
are identical with eq . (16) except for the inhomogeneity on the right-hand side .
This holds in particular for the transport equations obeyed by deposited energ y
and momentum .

3.2 Planar Geometr y

The assumption of an infinite random scattering medium implies isotropy . There-
fore the particle flux can depend only on two rather than three independent di-
rectional variables . We may fix one directional variable according to convenienc e
without loss of generality . Although the `natural' directional variable is the bea m
direction as expressed by v, for many purposes in ion beam physics it is mor e
convenient to keep the direction of the spatial variable r fixed . For a semi-infinit e
target with a plane surface the x-axis is chosen along the inward surface normal .
For an infinite medium the choice is arbitrary. In either case the particle flux and
all derived quantities will be integrated over the lateral coordinates (y, z) . Then
eqs. (15) and (16) reduce t o

N J d 3 w' J d3 w" {G(w)K(w ; w', w" ) - G(w ')K(w' ; w, w" )

-G(w')K(w' ;

	

O O~(~ )} +

	

S(ww" w)

	

cos

	

=

	

- v)S(x) (17 )

and

(18 )N f do(v ;v',v"){G(v)-G(v')-G(v")}+cosec (v) =S(v-w)S(x)

where 0 and O are the angles between the instantaneous velocity w and the initia l
velocity v and the x axis, respectively . These two relations form the starting poin t
for solutions of the transport problem .

3 .3 Deposited Energy and Momentu m

Deposited energy FD(v, r, U) and momentum Fp(v, r, U) obey backward trans -
port equations. These equations are identical with the one satisfied by the flu x
density eq . (18) except for the inhomogeneity on the right-hand side . For planar
geometry and E > U we fin d

N
J

d"(v ;v',v") {FD(v) - FD (v ' ) - FD (v")} + cos O a FD (v) = 0 (19 )
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N
J

du(v ;v',v"){Fp(v) - Fp(v ') - Fp(v" )} + cosOFp(v) = 0 (20)

where, for convenience of notation, the inhomogeneities on the right-hand side hav e
been replaced by normalization condition s

f dxFD (v, x, U)

	

= E for E < U (21 )
00

00

dxFp (v, x, U)

	

= My for E < U. (22)

4 Moment Equations

4.1 General

For an infinite medium a convenient way to solve transport equations goes ove r
spatial moments . We follow the procedure applied previously (SANDERS, 1968 ;
SIGMUND, 1969b ; WINTERBON ET AL ., 1970) and take the backward equation (18)
as a starting point . Expand the flux in terms of the angular variables ,

G(E, e;W, SZ, x) =E E -V47r(2t + 1W47r(2.e' +1)
e,u e a ,g'

x Gt, ,e, (E ; W, x ) Yeµ ( e )Yé ( SI )

where energy and directional variables have been introduced just as in eq . (7) on
page 9, and Ye o (e) are spherical harmonics in one of several standard notations .
The numerical factors have been chosen such that conventional notation is recovered
for p = 0 . Spatial moments are introduced according t o

GQ 2 ; e, ,µ, (E ; w) = J ~ dx xn Ge,u;e',p' (E ; W, x) .
00

With this the backward equation reduces to the following multi-dimensional set o f
equations for moments ,

(2t + 1)N
J

do-(E; E ' , E") {GP k .e, µ, (E; W) - Pe(cos Ø' )Gé 2,e, u , (E ' ; W )

-Pe(cos Ø")GQ m ;e',µ' (E" ; W) } = 6nO 6ee' buu'
41~r 6(E - W )

+ n (V'2 - u2 GQ 1 u;e ,µ (E W ) + 3V + 1) 2 - 11 2Gé+j,u ;e', p ' (E ; w)) (23 )

where the Pe are Legendre polynomials . This system of equations can be solve d
recurrently starting from n = 0 .
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4 .2 Elastic Scattering and Power Cross Section

The case of power-law elastic scattering (LINDHARD ET AL ., 1963a, 1968) is a useful
reference since it allows finding solutions with a considerable amount of rigor . The
cross section is written in the form

da2j(E, T) = Cii E-mT-1-mdT ;

	

0 < T < ryz jE,

	

(24 )

where 'y = 4MiM? /(Mi + Mß) 2 and

2

	

(2ZI Z2 e 2 y'
Cij = 2~m aij

(
(25 )

c7

Here the Zi and Mi are atomic numbers and masses, respectively, and ail screening
radii for interaction between i and j atoms. The quantity m is an exponent i n
the interval 0 < m < 1 and a,,,, a dimensionless quantity depending on m an d
determined by the screening function . It has been shown (LINDHARD ET AL ., 1968 )
that this cross section approximates the scattering law for a power-law interaction
potential a R-1/m, R being the internuclear distance between two interactin g
atoms . It is also known that screened-Coulomb-type interatomic potentials behav e
power-like over limited ranges of the internuclear distance. An alternative version
of eq . (25) applying to other repulsive potentials was proposed by ANDERSEN &
SIGMUND (1974) .

The common strategy of solving equations like eq . (23) (ROBINSON, 1965 ; SIG-
MUND, 1969c, 1972) is to switch to logarithmic variables u = log (E/W) and t o
take the Laplace transform of the moment equation (23) . For the monoatomic case
where ryi,j = 1 this leads t o

(2 .e + 1)NCW-2m.ei7l,),e u , ( s )Ie( s ) = 8no6ee,sµu' 47r W
+ n (02 - GPn 1 u,e,,µ, (s - 2m) + \/(t + 1) 2 - GI+1 µ;e A , (s - 2m)) (26 )

with G(s) = foe(' du exp(-su)G(u) denoting the Laplace transform an d

fIs(s) =

	

dtt 1-m {1 - P(cos ')(1 - t) s - P(cos)t s }

	

(27 )

For arbitrary masses of collision partners we have

cos Ø' = (1 - t) 172 + aijt(1 - t) -1/2 ;

	

cos "Ø_ (t/'yî5) 112

	

(28 )

with aid = (Mi - Mj)/2Mi . Eq. (26) represents a system of algebraic equation s
which can be solved rigorously up to any order n .
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4 .3 High-Energy Expansio n

The solutions in energy space of integral equations of the above type may be writte n
in the form of asymptotic series (SIGMUND, 1969c, 1972) ,

E Aa (E/W)a

where the a form a monotonically decreasing sequence of real but in general not
integer numbers. In Laplace space this read s

EA,/(s -a) .
a

Therefore, individual terms making up the asymptotic series of any moment may b e
found by location of poles and determination of residues in the Laplace transfor m
of that moment . For E » W the leading terms originate from the poles at th e
highest values of s .

For n = 0 the poles of Ge,, ;e,µ(s) are identical with the zeros of li (s) . For
equal masses the function I0 (s) has zeros at s = 1 and one each in the interval s
-v < s < -(v - 1) for v = 1, 2, . . . . Eq. (27) shows that h(s) - Io(s + 1/2) for
equal masses and, hence, has its leading zero at s = 1/2 . All Ie(s) for .e > 2 have
zeros only at negative values of s .

In the following only terms differing by at most one power of E/W from the
leading term will be taken into account in any moment G( n) . This implies that fo r
n,= 0 only the terms cc (E/W) for e = 0 and a (E/W) 1/2 for .e = 1 will be take n

as significant . From eq . (26) follows that for n = 1 the poles of G (1) (s) fall into

two groups. One group originates from the pertinent poles in G (0) (s - 2m), i .e . ,
poles in s = 1+ 2m and 1/2 + 2m. The other group originates in the zeros of If(s) ,
primarily s = 1 and 1/2 . Similar considerations apply to higher moments . As a
result we get the list of moments indicated in table I which, for 0 < m < 1, eithe r
contribute to the leading term for a given n or differ from it by at most a factor of
E/W .

Table I shows that all moments may be classified into families . A family orig-
inates either in a term a E/W or a VE/1Y in any given order n, and for every
subsequent generation a factor (E/W) Zm is added . The dominating family origi-
nates in (n, i) = (0, 0) . The subsequent two families originate in (n, .e) = (0,1) an d
(1, 0), respectively. The former is in the lead for m > 1/4 while the latter domi-
nates for m < 1/4 . We recall that the prime selection criterion requires to neglect
all terms which, at any given order of moment n, differ by more than one power
of E/W or E/U from the leading term, i .e ., the term originating in (n, L) = (0, 0) .
Within that criterion, the term originating in (n, e) = (0,1) is always significant
while the term originating in (n, t) = (1, 0) is significant only for m < 1/2 .
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Table I . Leading terms in asymptotic expansion of moments over the particle flux ;
listed are exponents a of (E/W)a. Only moments for n < 3 listed .

l 0 1 2 3 4
n

0 1
1/2

1 1+2m
1/2+2m 1/2+2m

1
1/2

2 1+4m 1+4m
1/2+4m 1/2+4m
1+2m

1/2 + 2m 1/2 + 2m
1

1/2
3 1+6m 1+6m

1/2 + 6m 1/2 + 6m 1/2 + 6m
1+4m 1+4m

1/2 + 4m 1/2 + 4m
1+2m

1/2 + 2m 1/2 + 2m
1

1/2

Another two families derive from (n,t) _ (1,1) and (2, 0) . Again the forme r
dominates for m > 1/4 and the latter for m < 1/4 but both are significant only fo r
m < 1/4. Of the two families originating in (n, e) = (2,1) and (3,0) the former is
significant for m < 1/8, the latter for m < 1/6, etc. It is seen that the number of
significant families increases when m approaches zero .

We shall argue in section 4.4 that only the leading three families need to b e
considered . Then we obtain

2m n

	

2m n

8( NC) +
3 bei

V W
B~ ( Nc )

	

2m

	

2m n-1

	

+ 3 b~

1

6110 h(1 1 2m) W N C
	 Cén~

NC

	

(29)

p.pTG T

~ µ
;-e',u'

	

4SNS( nW )
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Table II . Same as table I but ordered into A-, B-, and C-families .

Family 1
n

0 1 2 3 4

A 0 1
1 1+2m
2 1+4m 1+4m
3 1+6m 1+6m

B 0 1/2
1 1/2 + 2m, 1/2 + 2m
2 1/2+4m 1/2+4m
3 1/2+6m 1/2+6m 1/2+6m

C 0
1 1
2 1+2m
3 1+4m 1 +4yn

where

m
Fm

CI ) - ~ J0(1 - m)

	

_
d log F(e )

de
(30)

Moreover,

S(I/V) =	 CW l - 2 m
1- m

is the stopping cross section . The numerical coefficients are determined by th e
recurrence relation s

A(n)
=

	

n
-QA~

n	 11)+ + 1)A~+ 1 1)

~

	

2t + 1

	

I~(1 + 2mn)

(n) _

	

n

	

~2B

É

nl,µ + 3 (~ + 1) 2

	

2 C~ (
+ ~

~t ,µ

	

2t + 1

	

_W1/2 + 2mn)

(31 )

(32 )

C~n) _
n ~C~ n 1 1) + (t + 1)47-i 1 )
+ 1 It (1 + 2m(n - 1) )

and the initial values
4ô° ) =

	

=Col) = I .

The recurrence scheme for the three families is illustrated in table II .
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4.4 Choice of Exponent

Realistic atomic interaction potentials are screened-Coulomb like, i .e ., close to R-1
at small internuclear distances and steeper at greater interaction distances . This
feature translates into power-like elastic scattering cross sections but with energy-
dependent exponents m such that m decreases with decreasing projectile energy .
A reasonably reliable procedure for fixing m may be based on the stopping cros s
section, calculated accurately for a given interaction potential and matched in value
and slope by a power law as a function of energy .

Collision cascades are typically initiated by a high-energy particle but the ma-
jority of atoms set in motion has quite low initial energies . The question then arises
of the choice of exponent m to properly characterize the development of a cascade .
The answer is that one exponent is insufficient in general but that the m-values ap-
propriate to the initial velocity v and the instantaneous velocity w jointly provide
an adequate description (SIGMUND, 1969b) . Since the point is central we briefl y
go through the argument .

Choose the moment Golo ;l o as a representative example . According to table I

the leading terms in the asymptotic expansion go (E/W) I/2+2m and a E/W ,
respectively. Eq. (23) on page 14 read s

N J da (E; E' E" ) {Gô'ô ;i,o (E ; W) - Gôlô ;i,o (E' ; W)111

	

W)} - Gi°ô;i,o(E ; W) (33)

where Gi°ô ;1,o(E ; W) is asymptotically a (E/W) 1/2 according to table I . Now inser t
Gôi

ô ;i o a (E/W) 1 /2+2m and the power cross section for du . This results in

E 2

G
ôô

;I,o (E. W ) = G(0
ô
;i o (E ;

	

E2"'/NC
Io(1/2 + 2m)

which is valid asymptotically . Note that Io(1/2 + 2m) is a finite nonvanishin g
number except for m = 1/4 . On the other hand, when G,(01,40 a E/W is inserted
into eq . (33) the left-hand side vanishes everywhere except near the integratio n
boundaries where the asymptotic expressions must be inaccurate . Here subsequent
terms in the asymptotic expansion of G, ;I,o(E ; W) need to be taken into account .

Since it is the low-energy behavior of Gålô ;i,o(E ; W) which determines the slope o f
this linear function it must be the low-energy value of m, i .e ., the value appropriat e
to the energy range around W, that is relevant in this evaluation .

The above argument may be applied to all terms listed in table I . As a result
we conclude that exponents 2m reflect the length scale E2m /NC of the collisio n
cascade taken at its initial energy while powers E/W and VE/W are governed by
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the low-energy behavior . This may be rephrased differently : After classification
of all contributing terms into families as noted above, the origin of each famil y
is governed by the low-energy behavior . The recurrence scheme for higher-order
moments, as expressed by eqs . (32) as well as the factors (E2m /NC) n in eq. (29) ,
on the other hand, concerns the overall dimensions of the cascade . Therefore these
factors are determined by the high-energy scattering law .

The asymptotic expansion of the particle flux is meaningful only so long as
E » W . This implies that in order to arrive at meaningful results we shall have to
assume E to be large enough that for common interaction potentials the exponent
na valid at E exceeds the low-energy value m 1/6 . This implies that the familie s
originating in (n, f) = (1,1) and (2, 0), which are significant only for m < 1/8 and
m < 1/6, may be ignored . The same is true for all families originating in highe r
moments . Then any significant moment over the particle flux must belong to on e
of the three families entering into eq . (29) and indicated in table II .

4 .5 Symmetry Considerations

An important point of consideration is the dependence of moments on the direc-
tional variable S2 which is expressed by the labels t' , p' of the significant terms . For
moments of zero'th order, n = 0, only terms with t' = £ and p' = p contribute ac-
cording to eq . (26) on page 15 . This implies that the leading A family of moments ,
originating in t = p = 0 and hence t' = p ' = 0, does not introduce any dependence
on SZ into the underlying distribution . Therefore that part of the flux density must
be isotropic . It is the flux density utilized in sputter theory (SIGMUND, 1969b ,
1981) .

The B family, also originating in the zero'th order, stems from t' = £ = 1
and, consequently, p = p' = 1, 0, -1. This dependence propagates into higher
orders . The angular dependence is centered around the incoming direction via
e ' SZ = (47r/3) ~~ Yip (e)Yiµ (S2) .

The third significant family, C, originates in n = 1 and t = p = O . In Laplac e
space this term becomes proportional to the zero-order moment t = L' = 1, p =
p' = 0 and therefore carries with it a factor cos 0 = S2 - ex that propagates int o
higher orders in n . Here, ex denotes a unit vector along the x-axis .

It is evident that our classification of moments into families according to their
dependences on ion energy at the same time implies a separation of the underly -
ing flux distribution into three contributions, each of which has its characteristi c
dependence on ft .
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4.6 Deposited Energy and Momentu m

Moment equations for deposited energy and momentum are established in close
analogy to those for the particle flux. After expansion in terms of spherical har-
monics

FD (v ; x, U) -

	

n/4ir(2f + 1) FD . (E; x, U) Ye o (e)
e, u

and taking spatial moments FDne µ (E ; U) = f dx xn FD,I,u (E; x, U) one finds the
following set of moment equations ,

(2 .e+1)Nf da(E;E',E"){FDL(E;U)

- Pe(cos Ø')F(Dr'' 4 (E'; U) - Pe (cos 0" )FM,(E" ; U) }

= n (,/t2 - I12FDneli µ(E; U ) + /(e + 1) 2 - µ2FD,te+3),,0(E ; U)) . (34 )

These equations may be solved recurrently starting from n = 0 where the normal-
ization condition (21) on page 14 reduces to

FD ,i µ (E; U) = Se 0 Su, oE

	

for E < U.

	

(35 )

Definitions and moment equations for FPé u are analogous with those for FD but
the normalization condition (22) leads to

FPO e ,4 (E ; U) = 'v23
E Sele t,, for E < U.

Here a set of orthogonal unit vectors

1

	

1
eo = e x ; e -1 =

=(
e5 +iez) ; e l = (-ey +ie z )

has been introduced . The exact definition of the spherical harmonics is importan t
here . The present notation follows SCHIFF (1981) .

For the special case of elastic scattering, energy and momentum are conserved .
Then eqs . (35) and (36) become valid for all energies . This determines the Laplac e
transforms

F(0)l,(s)

	

= 1USt, o SA,o s

	

1 ;

N/2MU 1
FP,I,u( s ) = Sl ' 1

e
3 s- 1/2

(36)



2 2

for the zero-order moments . We then find
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~
Ea m~ (n)

	

=
D,~, u

F~ple,ri

	

=

d
(

	

)
oEA (n) (37 )µ

	

e

	

NC

3-V2MEe m 13.t(µ
(NC

n
+

1

	

P,,,, E

	

1
3 ~/2MUeoauo

NS(U) 1/2 - 2rn CQ

(E2m \_i

NC
(38)

where the coefficients Aeni , û, and C (e n) are identical with those entering the flux
density, eq . (29) on page 17 . Note that the freezing energy U enters only into th e
moments belonging to the C-family and even there only as a common factor . Not e
that according to the criterion of significance spelled out in section 4 .3 all moment s
with

	

> 2 have to be ignored .
It is seen that the family of moments determining the deposited energy is equiva -

lent with the leading family governing the flux density, i .e ., the A family originating
in (n, t) _ (0,0) and shown in the upper part of table I . The deposited momentu m
generates two families originating in (n,t) = (0, 1) and (1, 0), respectively, corre-
sponding to the B and C families in table II . However, the relative weight of the tw o
families differs from that in the flux density. The origin of this behavior is obvious :
The integrated momentum is exactly proportional to \ and, therefore, has th e
simple Laplace transform - (s 1/2) -1 . On the other hand, the anisotropic ter m
in the integrated particle flux is only asymptotically cx and its Laplace trans -
form is oc 1/Il (s) which is a more complex expression . This feature is immaterial
to the moments in the B-family which are built up on the asymptotic form of th e
zero'th moment, but it does affect the moments of the C-family which originate in
the low-energy behavior of the first moment . This difference propagates into al l
higher orders .

5 Depth Profile s

5 .1 Approximate Expression for Flux Densit y

Since B- and C-terms enter with different weights into the moments over flux an d
deposited momentum, the anisotropic part of the flux density cannot just be pro-
portional to the density of deposited momentum as has been asserted previously
(SIGMUND, 1981) . It is, therefore, necessary to separately consider the three dis-
tributions underlying the A-, B-, and C-families .

It was recognized recently that the missing link is a term proportional to th e
gradient of the deposited energy (SCKERL ET AL ., 1995) . We may write the flux
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density in the form

G(E, e ; W, SZ x) =	
I ,,,	 [FD(Ee ;x )

W

-Km(5Z
e) aFDNS(W))l8x + 3	

1/2M W
	 x)

	

(39 )

where Km is a constant to be determined . The function F°° is defined throug h
its moments via eq. (38) . Only the .B-moments contribute . F°° is one of two
contributions making up the deposited-momentum profile, cf . eq . (42) below. The
C-contributions have been collected in the gradient term . Thus, F°° has simpl e
scaling properties, its symmetry is governed by the direction of the incident beam ,
and just like FD it is independent of U (or W) . The latter feature was utilized i n
writing down eq. (39) .

For a proof of eq . (39) all terms on the left and the right are expanded in terms
of spherical harmonics and moments are taken over the depth coordinate . The
resulting equation has to be satisfied separately for all (t, µ), and further separatio n
is possible into terms proportional to Y°0(SZ), Yli,(SZ), and Ylo(0), respectively.
Terms belonging to the A- and B-families turn out to be identical on both side s
while terms belonging to the C-family become identical provided that

K„1
(1 m)I° (3 /2 - 2m) (40 )

1

and

nA(n-n) = Cy nl .

	

(41 )

Eq. (41) follows readily from eqs . (32) on page 18, and eq . (40) specifies Km.
A slightly more complex decomposition was `applied in our recent communica-

tion (SCKERL ET AL., 1995) . Note in particular that the constant km introduce d
there differs from Km as introduced above. The present form requires more cau-
tion with regard to divergent terms (as will be seen below) but makes the scalin g
properties more transparent .

5 .2 Deposited Momentum

We may similarly decompose the density of deposited momentum into contributions
from the B- and C-family. This yield s

Fp(E,e ;x,U) = -3(1/2-2m)-/2MUex	
(ES(Û))lôx +FP(E e; x) . (42 )

This decomposition, which has been proposed by GLAZOV (1995), is simpler than
the one made in our previous note (SCKERL ET AL., 1995) .
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5 .3 Inverse Relationships

We have now the option to insert the asymptotic expression eq . (39) into the exact
relations (5) and (6) on page 9 and in this way to check the accuracy of the former .
Insertion of eq . (39) into eq . (9) yields

G(E, e ; W, x) _ FD (E, e ; x)

NS(W) W

P,n

	

1

	

8FD (E, e ; x) /dx F°p (E, e ; x )

NS(W) [
3 Kmex	

NS(W)

	

+ \/2MW

Insertion into (8) and integration over the interval U < W < E yields relation s
that are fulfilled asymptotically in the limit of U « E . The leading deviation s
from identity go as (U/E)1-m

5 .4 Divergencie s

Go back briefly to the first moment, n = 1 in eq . (29) on page 17 for t = µ = O .
The third term in the brackets is seen to diverge for m = 1/4 because of the factor
11 (1 - 2m) =11 (1/2) = 0 in the denominator . However, the corresponding secon d

term contains a coefficient 130 10 which also becomes infinite for m = 1/4 becaus e
of the denominator 1° (1/2 + 2m) = 1°(1) = 0 in the recurrence relation eq . (32) .
This latter divergence has long been known (SANDERS, 1968) .

It is easily seen that the two divergences cancel each other and that the sum o f
the two contributions is finite . This feature propagates into all higher moments that
originate in these first-order moments . It is important, therefore, that for m 1/ 4
the two contributions to the moments over the particle flux that are associate d
with the 13- and the C-families of moments, either are both taken into account
or both neglected, dependent on their significance compared to the contributio n
from the A-family. Since this statement applies to all moments it must also hol d
for the entire distribution . In other words, as long as eq . (39) is taken literally,
with a uniquely defined power m, the second and third term in the brackets mak e
up jointly the leading correction to the isotropic particle flux . If one of them is
neglected the correction diverges for m = 1/4 .

A similar statement may be made for the deposited momentum . This was first
realized by ROOSENDAAL ET AL . (1982) and has been discussed recently (SCKER L
ET AL., 1995 ; GLAZOV, 1995) . Since the deposited momentum receives contribu-
tions only from the B- and C-families of moments, calculated momentum profile s
based on the 13-family alone (LITTMARK & SIGMUND, 1975 ; GLAZOV, 1994b) are
meaningful only for m significantly greater than 1/4 . Momentum deposition profile s
have subsequently been evaluated with due account of both families (ROOSENDAA L

.H(E, e ; W, x)
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ET AL ., 1982 ; SCKERL ET AL ., 1995 ; GLAZOV, 1995) . Meaningful and mutually
consistent results were achieved for E » U . Artefacts are observed when E/U is

not large : In that case more than the leading families would have to be taken int o
account .

Very few applications have been pointed out for the deposited-momentum pro -
file itself (SCKERL ET AL ., 1995) . In fact, unlike the deposited energy which is very
closely related to the damage profile, the deposited momentum has never bee n
measured directly . On the other hand, any measurable parameter depending o n
cascade anisotropy must be related to deposited momentum . The question arises ,
therefore, which quantity should be tabulated .

From eqs . (39) and (42) we may deduce that the primary quantities are F° and
DFD /ax from which other parameters, including deposited momentum if needed,
can be determined . Caution is to be exerted when one of them is considered withou t
the other . The moments over the function F°° are those studied by LITTMARK
(1974) .

5.5 Physical Origin of the Gradient Term

It is seen from eq. (37) on page 22 that the deposited-energy profile FD (x) i s
determined entirely by the high-energy behavior (near E) of a collision cascade .
At the same time eq. (39) is supposed to characterize the particle flux at the low -
energy end (near W), but nevertheless the leading term in the spatial distribution
appears to be a FD (x) . This cannot be generally true and a straight inconsistency
can easily be constructed . Indeed assume the stopping power to decrease rapidl y
with decreasing energy, say, power-like with m negative . Then the dominatin g
portion of a particle trajectory stems from the motion at low energies, and low-
energy recoil atoms may move over a wider depth range than outlined by th e
slowing-down behavior of the ion and the high-energy recoils .

On the other hand, low-energy recoils are generated in the region of high energ y
deposition, and their initial directions of motion are distributed approximatel y
uniformly over the unit sphere . Therefore the flux goes predominantly from hig h
to low energy deposition, i .e ., the particle flux must contain a contribution governe d
by the negative gradient of FD just as in Fourier's law of heat conduction .

A more quantitative argument may be formulated by means of the forwar d
transport equation (18) on page 13 . We consider a range of recoil energies W GC E

so that the source term becomes immaterial, go over from velocity to energy -
angle variables, and expand in spherical harmonics YQ ,w(SZ) just as in case of the
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backward equation (17) . For p! = 0 we find

(2e + 1)N
J

dT {K(W,T) ,o (W, x )
l

- I

	

}

=

	

(t'Ge,-i,o(W,x) + ( Q' + 1)G$'+i,o(W,x) )

where Ø' and Ø" are determined by the energy variables in case of elastic collisions .
Consider the case of L' = 1 . Here the right-hand side contains an isotropic contri-
bution 5Goo (T4', x) /0x which is essentially the OFD /ax term on the right-hand sid e
of eq . (39), and a contribution that varies rapidly with angle and may be neglecte d
as a first approximation . The left-hand side contains three terms which all contai n
Glo (W, x), i .e ., a contribution related to the third term on the right-hand side o f
eq. (39) . Approximating Glo(W,x) by the appropriate power law in W makes it
possible to evaluate the integral and construct a quantitative connection . However ,
the essential conclusion is that the gradient term originates in the low-energy be-
havior of the cascade and will have the form given in eq . (39) for a wide variety of
initial conditions .

6 Generalizations

Eq. (39) on page 23 has been written in a form that suggests it to be more genera l
than what can be inferred from the actual derivation . It is the purpose of the
present section to document that this is indeed true and to provide guidelines for
how corrections can be made for physical effects which were not included above .

6 .1 Non-Selfbombardment

Consider first the important case of a monoatomic medium bombarded by an ar-
bitrary ion with an arbitrary mass . The backward transport equation for this cas e
is a straight generalization of eq . (18) on page 13 ,

N Jdao(v;v',v"){Go(v)-Go(v')-G(v")} +cosO- Go(v)=0

	

(43)

where the subscript 0 denotes the foreign ion . It is important to note that thi s
subscript is missing in the recoil term under the integral which takes over the rol e
of a source term. A source term of the form present in eq . (18) does not occur sinc e
no target atoms are moving initially.
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Now assume the ion-target cross section duo to have power form . We may
then solve eq . (43) by Laplace transform . This yields the following result for th e
zero-order moments,

Gôt,u ;e-,µ' ( s ) =
Je~( )

	

°~, t , u , ( s )

where

Ji(s) = J ry dtt-1-m {l - Pp(cos Ø ' )(1 t) 8 }

	

(45 )
0

Ks(s ) = J dtt-1-mPi (cos O"
) ts .

	

(46 )o

Here, ry is the energy-transfer factor defined after eq . (24) . The additional subscrip t
0 indicates the incident particle, and cos 0' and cos Ø" have been specified in eq .
(28) on page 15 . Eq. (44) is remarkable since it does not imply assumptions abou t
G ,eou ;.ew (s) except that it exists . In particular no assumption enters regarding th e
relation between the power cross section duo and the cross section du governin g
target-target interactions .

For elastic collisions we know that Géµ ; e, u, (s) has its leading singularities in
s = 1 for 2 = 0 and in s = 1/2 for .f = 1 . It is easily verified tha t

Ko(1) - 1 and
K1(1/2)

- Mo4(1)

	

J1 (1/2)

	

M

where Mo and M denote ion and target mass, respectively. Therefore, within th e
approximation adopted in this paper we have

Gô~å,o ;o,o(E; W) = G
o
o

ô
;o,o(E ; W )

Gô1,u;l,u(E'W)

	

V

MO
G1,u ;l,u(E W)

	

(47 )

independent of the scattering law since Je(s) is nonvanishing for s > O. These
two terms, which generate the A and B families of moments, are thus governe d
entirely by target properties except that the factor /Mo/M needs to be taken
care of properly. This may be done by replacing the factor /E/W in eq . (29) by
\/2MoE/2117W, i .e ., the ratio of momenta .

The third term in the brackets of eq . (29) on page 17 does not have a form tha t
would suggest a dependence on ion mass . Indeed the Laplace transform G

o
;o,o ;l,o(s )

is given by
_

	

_

	

z
~	 -coG ô~ô,o ;l,o(s ) =

Jo(s)
Ko(s ) G ô~ô ;l,o(s) + NCo G i,o;l,o( s - 2m)]

(44)
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where Co denotes the constant in the power cross section for ion-target interactio n 2 .
Here only the first term in the brackets yields a singularity at s = 1 . Consequently
we have

C
o

;o,o ;r,o (s r„ 1) = Gôlô ;i (s '="-' 1 )
as was asserted above .

An analogous analysis may be performed for deposited energy and momentu m
with M being replaced by Mo in the normalization condition (22), page 14 . Similar
to eq. (47) we find

F(0)D,0 ;0,0 = Fo )D,0, 0

FP Ô ; 1 ,µ
, / Mo r (o )

jl M P>l,~' (48 )

With our decomposition into three significant families it is clear that the highe r
moments for each family apply to flux as well as deposited energy and momentum .

From eq . (48) we may conclude that eq . (39) on page 23 equally well applies t o
non-selfbombardment provided that proper beam-dependent deposited-energy an d
momentum distributions are employed .

6 .2 Electronic Stopping: High-Energy Correction

This is the first of two paragraphs providing modifications to the central relation -
ships when electronic stopping is not negligible . We shall treat the effect within th e
traditional scheme (LINDHARD ET AL ., 1963a, 1963b) outlined already in sectio n
2 .5 on page 10 ,

• separation of collisions into electronic and nuclear events ,

• neglect of angular deflection in electronic collisions, an d

• neglect of any feeding of energy from the electronic into the nuclear system .

For self-bombardment an additional ter m

(2e + 1)IVSe (E) BE-GSS .a .z, (E ; W)

	

(49 )

appears in eq . (23) (page 14) on the left-hand side, and corresponding terms have
to be inserted in eq. (34) (page 21) and the equivalent set of moment equations fo r
deposited momentum . Here Se(E) is the electronic stopping cross section .

The primary effect of electronic stopping is a draining of energy at all stage s
of a collision cascade. Therefore neither energy nor momentum are conserved a s

'This notation interferes with SIGMUND (1969b) where Co denotes the value of Cii for m = O .
The quantity called Co here was denoted C (l) in earlier work (WINTERBON ET AL ., 1970) .
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far as nuclear motion is concerned . In particular the normalizing integral over the
deposited energy FD becomes proportional to a function v(E) representing the
part of the initial energy E which ends up in nuclear motion (LINDHARD ET AL . ,

1963a) . This function is well-defined provided that Se/Sn becomes small at low
energies . Also the zero'th moment over the flux density for £ = 0 becomes oc v(E)
under the same assumption .

The assumption underlying this treatment is that v(E) becomes oc E at low
energies . In case of non-negligible electronic stopping at low energies, the propor-
tionality factor will differ from the one valid for elastic scattering . That effect wil l
be considered in section 6 .4 .

A rough estimate demonstrates the effect of electronic stopping on the zero'th
moment over the deposited-momentum profile, i .e ., moments over momentum or
flux containing 131°1 , to be given by the substitution -> Vv(E) . This relation -
which is not exact - may be rationalized by means of an approximation mentione d
by LINDHARD ET AL . (1963a) : Consider first the integral equation for v(E) ,

N fdo-n{v(E)-v(E-T)-v(T)}+NSe(E)d)E) =0.

Utilizing the fact that the cross section for nuclear scattering do- n peaks at small re-
coil energies T, one may approximate v(T) ^ T and v(E-T) v(E)-Tdv(E)/dE .
This yields the well-known estimat e

v(r)

	

E dE
'Sn(E')f

	

S(E') '
where S = Sn + Se . When the same approximations are applied to any of the thre e
components of the deposited momentum, say P(E), one find s

Ep(E) ^ 32M J E dE' S(E
')

r ) exp (f dE" 2E1S(E") I .

This expression is easily seen to reduce to -V2ME when electronic stopping i s
neglected, as it should .

For a convenient estimate assume that

Sn(E)=1-(~~T ;
S(E)

	

El

Then integration yields

T

v(E)=E
[
1-r + 1 \ Ez/ J

E<El andr>0 ;
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and
P(E)= 32MEI1-

2(r+1) (Ei ) . . . ]
by Taylor exansion for E GC E l . This confirms the above assertion .

6 .3 Role of Binding

Binding forces to lattice sites may be modelled by incorporation of a binding energ y
Ub in the recoil term of transport equations (LINDHARD ET AL ., 1963a) . Thi s
implies the substitution E" = T - Ub in eq. (23) on page 14 and complicate s
the algebra involved in the Laplace transform method . However, series expansion
in powers of Ub /W has been demonstrated to lead to valid asymptotic solution s
(ANDERSEN & SIGMUND, 1974) .

In brief, the Laplace transform of the recoil term contributing to eq . (26) changes
from G~f,, t , ,u , (s)Kt (s) to

Ke(s)
J

co
due -SUG( ~~ ;E' ~' (u) (1 + ~e u)

-5-1

0

where Ks(s) is the function defined by eq . (46) for -y = 1 . After Taylor expansio n
of the above integral in powers of Ub /W as well as of G( ,e, o , (s) itself,

(n)

	

Ge
( U
,w

)
; e

	

( .s)
(U) V

',u' ;V

	

,

the resulting system of equations may be solved recurrently starting from the zero -
binding solution v = O. It is then readily seen that all coefficients Gt(n2w,w,,,(s) are
singular at s = so where

J 1

	

for Q= 0
so _l 1/2 for £ = 1

and, therefore, contribute to the asymptotic solution for E » W > Ub . The
first few terms may be conveniently expressed by their ratios to the solution fo r
vanishing binding ,

G(~u ;e,u ;I (E)

Go)411;1,11 ;0 (E)

(so + 1)	 Kt(so )
.ti (so + 1)

(so + 1)(so + 2)	 Kt (so)

	

1 + K~(s ° +1 )

Ie( s o + 2) 2

	

Ie(so + 1) '

G~ µa,, ;o (E)

Ge
1+ ;~,11 ;2(E)
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where Jt (s) is the function defined by eq . (45) for ry = 1 .
With this we find that the n = 0 moment of the A-family receives a correctio n

facto r

This result was derived long ago (SIGMUND, 1973) . URBASSEK ET AL . (1995 )
rederived it recently and confirmed its accuracy by computer simulation . They
also pointed out an inconsistency with a later, less acurate approximation to th e
same series (SIGMUND, 1981) .

Corrections to moments for n > 1 are of the order of Ub/E and are thus
negligible within a scheme where only the two leading terms in E/W are analysed .
Therefore we may conclude that the factor written up in eq . (50) also applies t o
the profile belonging to the A-family and not just to the moments .

The modifications on moments and profiles of the 13-family are evaluated simi-
larly. They are accomplished by a facto r

3

	

Ub

	

5

	

2

	

/11

	

Ub\ 911 1

1- 4 (2-m) W + 8 (2-m)2 (- )

	

W
1+ 12 (2 m) WJ1

As in eq . (50), the binomial approximation is exact to the second order in Ub /W .
Within the accuracy of the scheme this expression looks sufficiently similar to eq .
(50) to justify ignoring the difference .

The effect on the gradient term, i .e ., the C-family, is more complex since binding
corrections enter twice . Since these terms are proportional to G

i ô
;1,0(s), a B-typ e

correction enters but taken at s

	

1 - 2m instead of so = 1/2 . That correction
may be written in the for m

R = 1 - (2 - 2m)
Kl (1 - 2m) Ub

	

(51 ).T1(22m)
W

In addition, another correction enters which is of the A type and results from th e
singularity of G0,0,1,0(s) at s = 1 . That correction has exactly the form of eq . (50) .

Examination of eq . (51) reveals that this correction goes in the same direction
as all other ones discussed, but that it varies more rapidly with m . For m = 0
it has about half the magnitude indicated by eq . (50) but it approaches infinity
at m = 1/2 . While the value of m in the pertinent energy range is well belo w
that limit we do keep in mind that the binding correction is more pronounced i n
the gradient term than in the energy and momentum terms . This may be not too
surprising in view of the origin of this term in the motion of low-energy particles .

1 - (2 -m) Ub +(2-m)2
(Ub) 2

. .
W

	

W

	

1 + (2 - m)Ub/W'

	

(50)
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6 .4 Electronic Stopping: Low-Energy Correction

This paragraph serves a study of the effect of electronic stopping on the low-energ y
behavior of a cascade. A similar procedure as the one presented in the precedin g
section can be applied to estimate the contribution of electronic stopping to th e
S(W) denominators in eq . (39) . We recall that this notation is just an abbreviatio n
for Sn(W) since electronic stopping was neglected in the derivation . A physical ar-
gument (SIGMUND, 1981) generates a factor 1/NS(E) from the energy degradation
dE/dt = v dE/dx . The nature of the stopping process is immaterial in this argu-
ment . Therefore, NS(W) ought to be the total (nuclear plus electronic) stoppin g
power. Yet it is more doubtful whether a similar argument holds for the additiona l
denominator 1/NS(W) in the C term .

Assume some power dependence of the electronic stopping cross section ,

Se(E) = kEa

with a < 1, and add eq . (49) on page 28 to eq. (23) on page 14 . In Laplace spac e
this implies addition of a term

2f + 1
NSe(W)

s-a+ 1 G(n)
, (s- a +1)(

	

)

	

W

	

(

	

) e, Jl ;e >u '

in eq. (26) . Then, recurrent solution is possible by Taylor expansion in the ratio
between electronic and nuclear stopping power at energy W . With the parameter

E
NCW 1-27n '

the procedure outlined above yields series expressions for the correction factor s
to be applied to the three contributions to the particle flux derived for elasti c
collisions . For the A-family we obtai n

00

	

l
RA = 1 +

	

-EH Xo
(1

+ r(1 - a)) ,
r=1

	

/

where
X,e (s) = It(s) .

This series is divergent but offers itself to transformation into a continued fraction .
We refrain from going through the explicit procedure but approximate the resul t
by taking into account only the first term, so tha t

1
RA	

1 +sXo(2 - a)

NSe(W)

s

(52)
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For the B-family the same procedure leads t o

1
RB (53 )

1 + eX1 (3 /2 - a) '

As in the previous section, the C-family receives two correction terms . This matches
very well the occurrence of two denominators S(W) in eq . (39) in that term. The
first factor Rß ,1 is identical with RA specified in eq . (52), while the second follows
from eq . (53) by the replacement 1/2 -+ 1 - 2m, i .e . ,

1
Rß,2 ti

	

	
1+aX1 (2-2m-a)

We note that the chosen representation of the correction factors is consistent wit h
the expectation that one or several of the denominators in eq . (39) expand accordin g
to S(W) -> Sn(W) + Se(W) . The actual expansions take on the form

S(W) Sn(W) + Xm Se(W) ,

where X represents the proper expression occurring in the above three correctio n
factors .

Numerical evaluation of eqs . (52-52) shows that X/(1-m) exceeds the expected
lower bound X/(1 - m) = 1 for all feasible values of m and a. The excess i s
moderate - X/(1 - m) < 2 - for eqs . (53) and (54) but somewhat greater in case
of the energy - X/(1 - m) 3 .

The role of electronic stopping at low energies was studied many years ago but
never published (WINTERBON & SIGMUND, 1973) . The problem has also been
discussed in context with computer simulations (BIERSACK & ECKSTEIN, 1984 ;
HARRISON & JAKAS, 1984, 1985) .

6 .5 More General Cross Section s

The form of eq . (39) (page 23) also suggests that the power cross section need no t
be a necessary basis . It has already been argued in section 4 .4 (page 19) that in
applications we may be forced to operate with two power cross sections applyin g
to the range around the initial energy E and a recoil energy W, respectively .
With W varying from somewhat below E - wherever the asymptotic expression fo r
E/W » 1 may start to be meaningful - downward, the second m-value may var y
considerably.

The guiding principle in the notation underlying eq . (39) and its various analogs
is that explicit occurrences of m should be condensed into dimensionless numbers ,
here Fm and Km, , where F 72 is a well-established parameter that determines the

(54 )
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sharing of energy between collision events above and below threshold (SIGMUND ,
1969c) . rm varies slowly in the interval 0 < m < 1 (figure 1) . On the other han d
the quantity Km , although varying slowly for 0 < m < 0.2, becomes singular at
m = 1/4 . This is not influential for the flux density because the singularity is
cancelled by a corresponding one with the opposite sign in the third term in eq .
(39) .

6 .6 Isotope Effect

The present paragraph serves to provide an estimate of the particle flux for a
medium containing particles with different masses . This case is of interest in th e
study of isotope effects . This aspect has been studied long ago for the isotropi c
contribution to the particle flux (ANDERSEN & SIGMUND, 1974) and more recentl y
for the momentum term (SIGMUND & SCKERL, 1993) . We shall rederive thos e
results here, but the main goal is an estimate of the mass dependence of the gradient
term.

The general formalism has been outlined in appendix A . While the expressions
governing absolute fluxes may look a bit clumsy, their ratios reduce to fairly trans -
parent expressions . In the notation of appendix A we find the following expression s
for the ratios between particle fluxes of isotopes 1 and 2 in a binary mixture ,

21,0( 1 )
PA

E12,0 1

E'21 1,1 ( 1/2)PB
E'1'2,1 ( 1/2)

Ezl,o(1)Gll ;lo ;io(1 - 2m) + Eï2,0( 1 )6' 2
0
1 ;10 ;10( 1 2m)

Pc

Ez1,o( 1 ) (1 02). 1o ;10( 1 - 2m) + Eï2,0(1)G(2a).l0 ;10(1 - 2m)

which, according to eqs . (71) and (72) and the integrals (45, 46) reduce to

N1 C2 1PAA (55 )
N2 C1 2

P N1 C21 J21,1(1/2 )

N2 C12 K12,1(1/2 )
(56 )

N1 C21 NI C21 J21,1 + N2C2211 + N2C12 K21, 1Pc (57 )
N2 C12 N2 C12 J12,1 + N1C11I1 +

	

C21 K12 , 1 s=1-2m

Here, I(s) = J(s) - K(s), and the first two subscripts in Jz ka(s) and Kzk,t (s )
denote the collision partners .
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6

Km

4

Figure 1 : The constants rm, eq . (30) and Km, eq . (40) versus m .

It is seen that the well-known isotope effect in the isotropic flux (ANDERSEN &

SIGMUND, 1974), expressed by the ratio

NI C21 NI
/ M2 \

N2 C 12 N2 t(\
	 )

2'

by insertion of eq . (25), is common to all flux ratios . The additional factor in eq .
(56) is readily seen to reduce to /Ml /M2 , a result found previously (SIGMUND &
SCRERL, 1993) . Thus, the isotope effect in the B-term ,

NI ~ Ml 1/2-2m

PB N2 M2

is typically preferential in the heavier species, provided that m < 0 .25 at the energ y
W where the flux is recorded .

The flux ratio for the C-family is evaluated conveniently in the limit of smal l
isotopic differences . Up to first order we find

2m

Pc
M1M2 Z(m)

)

(M1)

	

(
1 + (60 )

where

N2

	

M

Z(m) - OJ
l (1 - 2m) - mIl (1 - 2m)

(61 )
J1 (1 - 2m)

and f
OJ1 (s) = 2

	

dtt-m (1 - t)
s- 1 / 2

0 .5

r m

1 . 0
0.0

0.0 0 .5

m

2

0.1.

m

0.0 0. 2

(58 )

(59)
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2

0
0 .2 5

m

0 .5 0

Figure 2 : The function Z(m) defined by eq . (61 )

The function Z(m) is shown in figure 2 . It is seen to be positive in the pertinen t
range of m-values and surprisingly large . Most notably, the gradient term prefer s
the heavy species, as does the momentum term .

7 Results

7.1 Moments

Moments were evaluated recurrently following the procedure described by WIN-
TERBON ET AL . (1970) . Numerical values were checked against those reporte d
by WINTERBON ET AL . (1970) for deposited energy and LITTMARK (1974) fo r
deposited momentum, and excellent agreement has been found .

7.2 Construction of Profile s

Profiles reported here have been evaluated by the Padê method' (LITTMARK, 1974) .
Consider some profile f () and write down its Fourier transfor m

f ( T) =
27ï

,

p~ CiE_2Tf ()

	

2~ t (
Ti !

	 )n
Î(n )

/

	

n=0
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as a Taylor series in the moments f (') over f (O . With a finite number of moment s
given, the Fourier transform can be approximated by a polynomial . The polynomial
is then matched by a Padé approximant ,

f(T)

	

Pr(T )

qs(T)

where Pr (T), qs (T) each are polynomials of degree r, s, respectively, with s > r .
Inverse Fourier transforms of the resulting Padé approximants have been foun d
numerically.

In view of the number of coefficients determining the polynomials in eq . (7 .2)
we need r + s + 1 moments . Criteria for the choice of r and s have been discussed
by LITTMARK (1974) . In the numerical procedure great care has been taken t o
find stable solutions for Padé approximants . Typically this required taking int o
account moments of order up to n = 20, but accurate solutions were in particular
cases found already with n = 6 to 8 . Profiles presented here were mostly evaluate d
with one of Littmark's favored choices, r = 6 and s = 10 .

The Fade method tends to smear out discontinuities which may be present a t
x = 0. Such discontinuities may be dramatic when the lower energy limit W or U
is set equal to zero (GLAZOV, 1994a, 1994b), and they originate in the fact tha t
dissipation of energy/momentum starts in the plane x = 0 . In particular, such
discontinuities are unrelated to the possible presence of a target surface, although
a surface, if present in x = 0, must be suspected to substantially modify them .
The results to be reported below always refer to nonvanishing values of W or U .
This feature is common with the solutions offered in our previous work (SCKER.L
ET AL . 1995) as well as a recent paper by GLAZOV (1995) .

7.3 Monte Carlo Simulation

As an independent check also Monte Carlo simulations were performed . A progra m
was developed for this specific purpose based on an existing code (VICANEK &
URBASSEK, 1988). The code was geared to simulate the physical situation in
accordance with the theoretical model described above, i .e ., random motion in
an infinite medium, characterized by a scattering law equivalent with eq . (24) and
with a cutoff impact parameter large enough to ensure a negligible systematic error .
Deposited-momentum and -energy profiles were determined in accordance with a n
adopted threshold U and a depth resolution equivalent with a grid of typically 10 0
intervals .
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NCx / Etm

Figure 3 : Deposited-momentum profiles for self-bombardment at normal incidence, cal-
culated from the B- and C-families for four values of E/U and power-law scattering ne-
glecting electronic stopping with rn = 0 .2 . Circles found by Monte Carlo simulation of
40 000 events . Lines found by Padé method on the basis of ten moments . The absciss a
unit is E 2m /NC. Profiles have been normalized to unity .

7.4 Deposited Momentum and Energ y

Figure 3 shows deposited-momentum profiles for self-bombardment at normal in-
cidence, calculated from the B- and C-families for four values of E/U and power
scattering neglecting electronic stopping with m = 0 .2 . It is seen that there i s
nearly perfect agreement between the Monte Carlo results and the profiles recon-
structed by the Padé method, also near the `surface' x = 0 . The only exception
occurs in the behavior around x 0 for E/U = 10 . Here the asymptotic solutio n
predicts an inward-directed momentum for x < 0 which is unphysical . This limita-
tion of the asymptotic approximation is, of course, not found in the Monte Carl o
solution which turns negative also for this comparatively low value of E/U .

According to GLAZOV (1995), the momentum deposition profile makes a jum p
at the surface, the magnitude of which is - (U/E)1-m/(1 - m) for E » U i n
the units applied in figure 3 . This becomes 0 .2 at the lowest ratio, E/U = 10 .
Within the grid chosen for the Monte Carlo computations this value is compatibl e
with the simulation data .

Figure 4 shows similar results for m = 1/3 . This case was considered by
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Fp ,

0 1
NCx / E2m

Figure 4 : Same as figure 3 for five values of E/U and m = 1/3. Compared with result s
reported by ROOSENDAAL ET AL ., 1982 .

ROOSENDAAL ET AL . (1982) and we find surprisingly close agreement, consid -
ering that their expansion scheme for moments differed from ours . Their profiles
were also constructed by the Padé method . Again the curve for E/U = 10 shows
an unphysical behavior at x < 0 where it is still positive, as pointed out also by
GLAZOV (1995) .

Figure 5 shows similar profiles for three different power cross sections. It is
seen that for m = 0 .4 the momentum profile is insensitive to the ratio E/U except
near x = 0 while for m = 0.2 all parts of the profile are sensitive to E/U. The
latter feature, as well as the qualitative behavior of the profile is in good agreemen t
with what was found by GLAZOV (1995) for m = 1/6 . The procedure utilized in
that work to construct profiles is expected to be more reliable near x = 0 than th e
Padé method. Even though the m-values differ, GLAZOV'S profiles are noticeably
sharper around x = 0 than ours . On the other hand, the agreement with the Mont e
Carlo simulations indicated in figure 3 suggests that significant disagreement mus t
be limited to a region of the order of the grid size in the simulations, i .e ., 1-2% o f
the mean range .

The most pronounced feature emerging from figure 5 is a strong increase of th e
negative-momentum portion around x = 0 with decreasing m, i .e ., with increasing
importance of wide-angle deflection and, hence, momentum reversal events . This
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Fp x

Figure 5: Deposited-
momentum profiles fo r
self-bombardment at nor -
mal incidence, calculate d
from the B- and C-families
for four values of E/U

and power-law scattering
neglecting electronic stop -
ping with m = 0.2, 0 .3 ,
and 0 .4 . The abscissa uni t
is the mean pathlength
of the incident particle ,
R = (1 - m)E 2m/2rNC .

Profiles normalized to unity .
Note the different ordinate
scales .

o

	

x (R )

feature also shows up when the mass of the bombarding ion differs from that of th e
target, as is illustrated in figures 6 and 7 . The variation with mass ratio is ver y
pronounced; note the different ordinate scales . Figure 6 also compares the profile of
deposited energy with that of the lateral component of deposited momentum . That
component is nonvanishing for oblique bombardment . It is seen that although th e
two profiles have similar symmetry they are by no means identical . Their relative
proximity to the surface appears to be governed by the mass ratio .

7.5 Flux Density

Figure 8 shows angular distributions of the density of particle flux at differen t
depths, i .e ., the angular dependence of the quantity G, suitably normalized . Note
in particular that the flux through a plane (x = const) carries an additional facto r

cos 81 = 1St . ex .
Several features emerge from a comparison of figures 8 and 9 . Consider first
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Figure 6 : Deposited -
energy and momentu m
profiles at

	

45° incidence
for E/U = 1000 and mas s
ratios M/Mo= 4, 1, and
0 .25 . Both the longitudinal
(x) and the lateral (y )
component of the deposite d
momentum are given wit h
the y axis lying in the plane
of incidence. Power scat -
tering neglecting electronic
stopping with m = 0 .3 .
The abscissa unit is the
mean path length of the ion ,
R = (1 - m)E 2m /2mNCo .
Profiles normalized to 1/-/2 .
Note the different ordinate
scales .

x (R)

column 3 in either graph, referring to the flux at the mean depth of deposite d
energy, (x) D , i .e ., near the region of maximum flux density. An inward-directed
correction to the particle flux is observed in all cases, depending on the energy rati o
E/W but insensitive to the power exponent m and only weakly dependent on mas s
ratio M/Mo . The relative magnitude of the correction, on the other hand, appear s
noticeable : At E/W = 100 the forward flux is approximately twice as large as the
backward flux, yet at E/W 10 3 the difference is insignificant .

Consider next columns 4 referring to the far edge of the flux profile, x = (x)D +
AxD, where AxD denotes the standard deviation of the damage profile in the
notation of WINTERBON ET AL . (1970) . Here a pronounced inward-directed flux
had to be expected and is indeed found : At E/W = 100 the ratio between forwar d
and backward flux is of the order of 3-4 and quite insensitive to both m and mas s
ratio .

Column 2 shows equivalent information at the near edge of the flux profile ,
x = (x) D - AxD . With the exception of the case of m = 0.3, M/Mo = 4, thi s
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4
2

Figure 7 : Same as fig-
ure 6 for normal incidence .
There is no lateral momen-
tum deposition profile in
this case . Profiles normal-
ized to 1 . Note the different
ordinate scales .

x (R)

position appears to be close to the point of vanishing flux correction .
Finally, column 1 refers to the position x = 0, i .e ., the plane of incidence

of the primary particle where discontinuities have to be coped with and where
the deposited-momentum profile is negative . We may note that for the range
of mass ratios under consideration the position x = 0 is always to the left o f
x = (x) D - OxD . Thus, whenever the flux is noticeably anisotropie the anisotropy
is more pronounced in column 1 than in column 2 . The degree of anisotropy is ver y
sensitive to the mass ratio . A dependence on m is visible but less pronounced . Most
striking is the weak anisotropy found for M/Mo = 0.25, i .e ., for a heavy primar y
ion incident on a light target . The pronounced backward orientation of the flu x
for equal masses and M/Mo = 4 must be caused by momentum reversal due t o
wide-angle scattering . Its absolute magnitude may be subject to some uncertaint y
because of our use of Padé approximants . Moreover, the pronounced heart shap e
found for m = 0 .3 and equal masses demonstrates that the flux correction ha s
roughly equal magnitude as the isotropic term . Therefore, subsequent correction
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Figure 8 : Angular dependence of particle flux density eq . (39) at depths x = 0, (x) D -
LxD, (X)D, and (X)D +OXD from left to right, for m = 0 .3 and mass ratios M/Mo = 4 ,
1, and 0 .25 from top to bottom . Ratios E/W indicated in graphs .

terms must be suspected to have some significance . Nevertheless the tendency is
clear : The flux is directed outward at all ratios E/W, and most pronouncedly so
at the lower values, E/W 100 .

The fact that the anisotropy appears more pronounced for equal masses tha n
for M/Mo = 4, despite a pronouncedly higher momentum reversal in the latter
case emerging from figure 6 must be due to the fact that the flux at equal masse s
also contains the reflected fraction of incident particles .

Figure 10 shows angular distributions of the flux density at oblique incidence .
It is seen that the effect of momentum conservation is very pronounced at the fa r
edge of the flux profile (column 4) for all mass ratios, in particular so for a heavy
incident ion. Conversely, the flux at the surface is to some degree collimated aroun d
the direction of specular reflection, most pronouncedly so for light incident ions .

The leftmost flux diagram in the middle row of figure 8 may be compared wit h
a graph computed by ROOSENDAAL ET AL . (1982) for m = 1/3 and equal masses
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Figure 9 : Same as figure 8 for mn = 0 . 2

where a dramatic discrepancy is found . We note first that a relation for the flu x
equivalent with eq . (39) on page 23 was not derived in that work . Instead, a n
expression for the freezing density mentioned in section 2 .2 (page 7) was adopte d
and written as a sum of two terms proportional to the density of deposited energy
and momentum, respectively . The qualitative behavior for E/W 10 2 is similar t o
our finding although we find the anisotropy noticeably more pronounced at E/W
100. A major part of the diagrams given by ROOSENDAAL ET AL . exhibit an
inward anisotropy. This feature is related directly to regions of positive momentu m
deposition in the negative halfspace for E/W 10 or less, an unphysical behavio r
which we have asserted above to indicate the limits of the asymptotic expansion in
powers of E/W .

7 .6 General Behavior of the Anisotropy Factor

If only the first term in the brackets of eq . (39) on page 23 is kept one obtains
a widely used expression for the flux density in an atomic collision cascade . This
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Figure 10 : Same as figure 8 for angle of incidence 45° (from ` southwest') .

expression represents an isotropic velocity distribution of recoil atoms and has
been the starting point for estimates of sputtered-particle fluxes in the traditional
backward and the less common transmission geometry (SIGMUND, 1981) . Here we
are interested in the limitations of and corrections to this expression . Deviation s
may be expressed by way of an anisotropy parameter P(x) defined as

P(x) -	 G(E ' e ' W'	 x )	 - 1 - Kn (SI ' ex)
W 8FD (E, e ; x)/åx

	

G iso(E, e ; W, SZ, x)

	

NS (W) FD (E e; x )

+3	
W SZ•FP(E,e ;x)

	

32MW FD (E, e ; x)

	

( 62 )

where G i so represents the zero-order (isotropic) approximation to eq . (39) . A facto r
of this type was discussed by ROOSENDAAL ET AL . (1982), based, however, o n
an expression for the freezing density instead of the particle flux . Moreover, the
expression utilized did not contain a gradient term explicitly . We have plotte d
contour lines of P(x) in figures 8 - 10 for the specific case of power scattering .
The power approximation must be expected to break down in the limit of W « E
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which is of greatest interest in practice . We shall in this paragraph try to estimat e
the behavior of P(x) more broadly .

It has been argued in section 4 .4 (page 19) that a more comprehensive descrip-
tion may be based on two power cross sections, one applying to the range near the
initial energy, E and the other to the range near the instantaneous energy, > W .
This feature has already been incorporated into the notation employed in eq . (62)
where the only explicit occurrence of a power exponent lies in the numerical con-
stant Km . The arguments put forward in sections 4 .4 and 5.5 strongly suggest that
m in Km be chosen in accordance with the scattering law at energies W . For
W « E this typically implies that m < 0.25, i .e ., Km (figure 1) becomes positive
in accordance with its significance as a diffusion term .

Consider first the last term in eq . (62) and note that

\/2MW

	

S2 F°p(E, e ; x)

	

E-1/2 .
FD (E, e ; x) o(

The energy dependence of this contribution to P(x) is given by ./W/E . While the
high-energy scattering law enters through the ratio of FP/FD there is no explicit
or implicit dependence on the low-energy scattering law . Hence, this contributio n
will be negligible for, say W/E « 0 .01 .

The behavior of the second term in eq . (62) is quite different . Here we have

	

W

	

w 2 m

	

NS(W)

	

NC

	

OFD (E, e ; x)/0x

	

NC°

	

FD (E e; x)

	

a E2mo ,

where Co is a constant defining a power cross section according to eq . (25) (page
15) along with m° . This contribution is governed by R(W)/R°(E), where R and
R° stand for slowing-down ranges of recoil and projectile, respectively . Since the
nuclear stopping power decreases at low energy, ranges approach zero more slowl y
than what would be expected from the high-energy behavior (LINDIARD ET AL . ,

1963b) . Therefore the anisotropy correction from the gradient term approache s
zero more slowly than that of the momentum term . Consequently, deviations of
the anisotropy parameter from unity for W/E « 0 .01 are governed mainly by the
gradient term .

For a more quantitative statement we need an estimate of FD . Since only the
logarithmic derivative enters into P(x) that estimate does not need to be very
precise . We therefore approximate the deposited-energy profile by the Edgewort h

W
oc W1/2
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approximation which, in the leading term, assumes a gaussian profile for give n
mean depth (x)D and width (Ax 2 ) D . In the notation of SIGMUND (1968) we fin d

FD(x)
ti

V(Ax

E

2)D
Øo(6 (1 + 6I' 1 He3 (~) - - )

where Øo(e) = exp(-X 2 /2)/-/2i and He n (e) are Hermite polynomials in the nota-
tion of ABRAMOWITZ & STEGUN (1964) . Moreover ,

x - (x)D

	

_	 (Ax 3 ) D

V(Ax2)D

	

rl (Ax2 )'2

and hence,
8 log FD

	

1

	

Pl

	

1
8x

	

V (Ax2)D - + 2 Hee () . . .
1

.

This yields a rough estimate of the anisotropy factor ,

P(x) 1-K SZ•ex)	 W	 ((x)D-x + (Ax3 )D f(xD -x)2
m(

	

Ns
( W ) (Ax2)D

	

2(Ax2)D L ( Ax2 )D

For the qualitative behavior we consider only the first term in the parentheses ,
corresponding to a gaussian profile . It is seen that the deviation from P(x) = 1
is directed inward for x > (x)D and outward for x < (x) D . In particular, fo r
x = 0 it goes as E -2 '' , i .e ., the sputtered flux becomes increasingly overcosin e
with decreasing incident energy .

7.7 Power-Law Anisotrop y

It has become customary to characterize the angular dependence of an anisotropi c
particle flux by a power law of the for m

f (cos 6)

	

AI cos' 01

	

(63 )

with constants n and A . In the present picture, particle fluxes come out in th e
form of

g(cosB)

	

BcosB (1 + bl cos 01 )

with constants b and B . For overcosine distributions we have n > 1 and b > 0 . In
the opposite case distributions are under cosine .

We may express one description by the other by chosing constants A, B such
that f and g are normalized to the same value (e .g . 1) and by equating the values
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Figure 11 : Matching angular anisotropy to a power-law profile, eq . (63) by means of eq .
(64 )

of the two functions at normal emergence 8 = 0 . This requirement, which could
also be used to extract n from measurements, yields

2 b
n=1 +	

3+2 b

The resulting relationship is illustrated in figure 11 .

8 Discussion

8 .1 Deposited Momentum and Energy

It was established long ago (WINTERBON ET AL., 1970) that the spatial distribution
of deposited energy is a well-defined quantity in both one and three dimensions t o
the extent that a limiting value exists when the freezing energy U approaches zero .

The behavior of the deposited-momentum profile is more complicated . In early
work (LITTMARK, 1974 ; LITTMARK & SIGMUND, 1975), a vector distribution was
evaluated which had scaling properties with the beam energy similar to those of th e
deposited energy and had the right normalization . This function, which is identical
with F°P in eq. (39) on page 23, has weaknesses that were recognized early on but
removed only gradually.

The fact that this profile showed a physically acceptable behavior only for m >
0.25 was recognized immediately (SANDERS, 1968) . The fact that the momentu m

(64)
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profile must be sensitive to the freezing energy U can be extracted from the work
of ROOSENDAAL ET AL . (1982) who, implicitly, included terms going beyond F°P
in their analysis . The existence of a gradient term, normalized to zero and having
scaling properties in angle and energy different from FP was established only very
recently (SCKERL ET AL ., 1995 ; GLAZOV, 1995) . The present work adds little new
to this, except for the fact that our momentum profiles, evaluated numerically b y
the Padé method, agree well with those of ROOSENDAAL ET AL . (1982) where
comparison is possible, and that there are minor differences from those of GLAZO V
(1995) in the limit of low freezing energies .

The most important lesson to be learned from these studies is the fact that un -
like measurements of energy, measurements of momentum are sensitive to threshol d
effects including binding energies . This may be illustrated on sputtering data. I t
was predicted theoretically (SIGMUND, 1968) and confirmed experimentally (AN-
DERSEN, 1970, 1971) that the main material parameters determining the energy
reflection coefficient (or sputter efficiency), are the mass and atomic number whil e
the cohesive energy is insignificant . An attempt (SIGMUND, 1968) to extract a sim-
ilar behavior from measurements of the reflected momentum (KOPITZKI & STIER,
1961, 1962) failed . One likely reason for this must be the lack of simple scalin g
properties . Therefore, studying deposited momentum as a goal in itself is no t
necessarily attractive .

With regard to the results presented in figures 3 - 7 (pp . 38-42) we recall that the
assumption of EU is essential, and that deviations from asymptotic behavio r
show up for F/U 10 . The occurrence of a positive momentum profile at negative
depths (x < 0) is indicative of a breakdown of the asymptotic picture . This was
apparently not noticed by ROOSENDAAL ET AL . (1982) . Implications from this
behavior which entered the literature subsequently (HAUTALA & WHITLOW, 1985 )
need to be taken with caution .

8 .2 Particle Flux in Bulk

Several attempts have been made to estimate anisotropic particle fluxes as well a s
energy and momentum fluxes in the literature . In this paragraph we consider bul k
fluxes where complications due to surface discontinuities are of no or only minor
importance. Effects of regular crystal structure are ignored .

Not all estimates address flux densities G or fluxes GI cos 01 as defined in the
present paper . LITTMARK & HOFER (1980), in addressing recoil mixing, evaluate d
recoil densities, and ROOSENDAAL ET AL . (1982) estimated freezing densities .
However, within the approach chosen in those papers there should be no majo r
differences between the anisotropy factors belonging to various distributions . This ,
however, ignores the existence of the gradient term which was not recognized until
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recently (SCKERL ET AL ., 1995). According to section 7.6 this term dominates over
the momentum term in the limit of E » W . Conversely, the estimates mentione d
above appear significant for moderate ratios of E/W . Such ratios are relevant
in the theory of collisional mixing, the topic addressed by LITTMARK & HOFER
(1980) .

HAUTALA & WHITLOW (1985) evaluated fluxes of particles and momentum fo r
argon bombardment of germanium by Monte Carlo simulation . The results are
qualitative because of moderate statistics . Moreover, fluxes were recorded at fiv e
distinct depths which were kept fixed even when the incident energy was varie d
from 10 to 80 keV . Nevertheless, several features emerging from the present wor k
are consistent with their findings, The graph in the upper left corner of figure 8
may be employed as a rough illustration of 80 keV Ar ions incident on Ge . In
agreement with the simulations we find a very low forward flux at the surface but a
rapid change toward isotropy with increasing depth . This qualitative feature does
not change dramatically with energy but a comparison between figures 8 and 9
indicates a certain sensitivity to the interaction potential, a feature that emerge d
already from the simulations .

While the angular distributions shown in figures 8 - 10 (pp . 43-45) refer t o
fluxes differential in energy, the fluxes found in the simulations of HAUTALA &

WHITLOW (1985) are integrated over all energies . However, a second integral i s
given where the particle flux has been weighted by momentum and hence reflect s
a higher contribution of high-energy recoil atoms . In the language of figures 8 -
10 this is equivalent with a lower value of E/W and, hence, a higher degree of
anisotropy. Also here we find good qualitative agreement between simulation and
transport theory.

8 .3 Collisional Mixing

Our findings have implications on the theory of collisional mixing . It is commo n
to distinguish between recoil implantation, i .e ., relocation of atoms knocked o n
by primary ions, and cascade mixing dealing with the effect of higher-generatio n
recoils (LITTMARK & HOFER, 1980 ; SIGMUND & GRAS-MARTI, 1981) . Here we
deal with cascade mixing which is conventionally based upon the recoil density, i .e . ,
a distribution in energy, angle, and depth of recoiling atoms in combination with a
range-energy relation for recoils . The recoil density is closely related to the particl e
flux. Elementary theory of cascade mixing is based on the asymptotic limit of an
isotropic velocity distribution . A term corresponding to the 13-family is taken int o
account routinely in some codes, following the scheme outlined by LITTMARK &
HOFER (1980) . No allowance has hitherto been made for inclusion of a gradient
term following from the C-family .
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The recoil density can easily be expressed by the flux density on the basis o f
the definition,

	

f

	

f
F(E,e ;W,1,x) = N

J
dW ' J d21'G(E,e;W',St',x)K(W',51' ;W,St) .

The resulting expression for the recoil density is found from eq . (39) on page 23 by
integration of the first term according t o

f

	

dW 'K(W' ,W)
W'>w

and the two subsequent terms according t o

f

	

dW'K(W', W) VW/W' .
w , >w

In practice, these expressions would have to be written up for multicomponen t
media in accordance with the scheme outlined in appendix A .

From this we readily find the conventional W -2 term in the recoil density
(SIGMUND, 1969a; 1972) as well as correction terms a W2m-2 and cx W -3/2 for
the C and B family, respectively. The existence of the latter has been recognized in
principle long ago (SANDERS, 1968) and was utilized with the correct coefficient s
by LITTMARK & HOFER (1980) . The gradient term cx W2m-2 is new. It is seen
that for low-energy recoils, where m is small, the dependence on recoil energy W
is very similar to that of the leading A term. In ion beam mixing, mostly the
projected relocation depth is of interest . The most pronounced modification to the
isotropic approximation is, therefore, a forward-backward asymmetry which ma y
estimated from figures 8 - 10 on the basis of the following relationship ,

Pflux = P = 1 + SPB + 6Pc
2 1- m

Precoit = 1 + ÖPB
+ 3 1 2m SPC ,

where SPB and SPc are defined by eq . (62) . It is seen that for m = 0 the anisotrop y
in the recoil density is smaller by 33 % than that in the flux due to a smaller C cor-
rection, while for m = 0 .25 the two anisotropy factors are identical . Therefore, as a
first approximation, figures 8 - 10 may be taken also as estimates of the anisotrop y
factor of the recoil density. Evidently, mixing profiles will be asymmetric, an d
the transition from profiles skewing outward to profiles skewing inward lies aroun d
(z) D AXD .

8 .4 Particle Flux at Surface

The backward particle flux at a bombarded surface is measured by sputtering ex-
periments . In addition to measurements of the absolute sputter yield, dependent
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on ion energy and angle of incidence, measurements of the distribution in ejec-
tion angle and/or energy are of interest in the present context . For quantitative
comparisons with experiment it is necessary to account for surface binding . This
is conventionally achieved by imposing a planar or, occasionally, spherical surfac e
barrier . A correction for multiple crossings of the surface in an infinite medium i s
necessary in principle but has only rarely been performed in practice, but an exact
evaluation for a solvable model has been performed by URBASSEK & VICANE K
(1988) .

8 .5 Sputter Yield

Disregarding the surface correction and adopting a planar potential barrier Us so
that W > Us/ cos2 9, we find the following expression for the sputter yield ,

Y(E, e)
F2

n
NC 4(1 2m)

FD (E
Js

e ; 0)

1-m

	

aFD(E,e,x)/axlx_o	 3	 FP,x(E , e ; 0 )
65)+ Km

(1 - 4m) (5 - 8m)

	

NS(Us )

	

2(1 4m) V2MUs

where the first term is identical with the one derived long ago (SIGMUND, 1969b) .
The correction terms are new in this form, but the third one, which is less importan t
than the second, has been invoked more or less explicitly in previous treatment s
(e .g ., MATSUNAMI ET AL., 1984) . We note that a frequently quoted estimate of
that term (ROOSENDAAL & SANDERS, 1980) had the wrong sign since it was based
on the deposited momentum integrated over all space which is directed inward .

For m « 1 we may ignore the last term in the brackets of eq . (65) . The
gradient term constitutes a positive correction to the asymptotic sputter yiel d
which increases toward lower beam energies . This is one likely reason for th e
good agreement between measured sputter yields and the asymptotic sputter yield
formula (SIGMUND, 1969b) when evaluated with the Thomas-Fermi stopping cros s
section which is known to fall off too slowly with decreasing beam energy . Since
s(u s ) a Us-27n,, the dependence of the yield on Us is hardly affected .

On the theoretical side, eq. (65) appears to accentuate the need for a proper
surface correction since OFD/ax varies more rapidly near x = 0 than FD .

8 .6 Differential Sputter Fluxes

The effect of the gradient term in the sputter flux will be visible in the distributio n
in emission angle. The energy spectrum, on the other hand, is rather insensitiv e
for small values of m .
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Angular dependencies are characterized experimentally by an exponent n a s
defined by eq . (63) which may be related to the anisotropy factor P by eq . (64 )
with

W

	

aF~/8x
(66 )b

	

Km NS(W) FD x=0

We note that this relation determines the flux at an emission energy W which ha s
not been corrected for a planar surface barrier . Measured angular distribution s
refer typically to the flux integrated over all emission energies . Nevertheless we
may extract a dependence of n on the ion energy E from eqs. (64) and (66) .
Since b x E-2m° we may conclude that n approaches 1 at high beam energie s
as 1 + const x E-2m°, while it varies more slowly at lower beam energies . The
maximum possible value of n in this description is n = 2 which, according to
eq . (64), is reached for 2b » 3, i .e ., for highly anisotropic flux distributions fo r
which several of our approximations would break down . However, these results are
modified in the presence of a real surface (WALDEER & URBASSEK, 1987, 1988 ;
URBASSEK & VICANEK, 1988) .

Measurements (ANDERSEN ET AL. , 1985) as well as Monte Carlo simulation s
(HAUTALA & WHITLOW, 1985) on Ar-Ge indicate a maximum value of n 1 . 6
and 1 .7, respectively, in the medium-keV range (- 20 keV for the experimenta l
data), i .e ., b - 2 . This is certainly too large an anisotropy to be counted as a wea k
perturbation . Thus, while the decrease in n above the maximum may be accounte d
for, the behavior at lower energies is outside the range of validity of our description .

8 .7 Isotope Effect

For an extensive review of the isotope effect in sputtering the reader is referred t o
SIGMUND & LAM (1993) . It was suggested some time ago that nonstoichiometri c
particle fluxes found in computer simulations of cascades in isotopic mixtures wer e
related to momentum balance (SHAPIRO ET AL ., 1988) . Isotope effects in the
particle flux were studied long ago (ANDERSEN & SIGMUND, 1974), and a slight
dominance of the light isotope(s) was derived for the isotropic part, cf . eq . (58) .

A more recent study by two of us addressing the B-term (SIGMUND & SCKERL ,
1993) revealed two isotope dependencies, one identical with the one inherent in th e
A-term and an additional one preferring the heavier species, cf . eq . (59) . The com-
bined effect in the B-contribution to the particle flux typically prefers the heavier
species, but in view of the smallness of that contribution in comparison with th e
isotropic particle flux, this effect was considered to be rather insignificant .

Since the gradient term is at least as important a correction to the isotropic
particle flux, the sign and magnitude of its isotope dependence is relevant in this
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context . Eq. (60) in conjunction with figure 2 indicates the C-term to be pref-
erential in the heavy isotope(s) . For m < 0.25, that preference is, however, les s
pronounced than in the B-term . This implies that the conclusions drawn by two
of us (SIGMUND & SCKERL, 1993) on the significance of momentum asymmetr y
in isotope sputtering are essentially unaffected by the gradient contribution whic h
was not known to us at the time .

A recent study of isotope sputtering by numerical simulation (SHULGA & SIG -

MUND, 1995, 1996) has shown that at high ion energies, nonstoichiometric particl e
fluxes obey essentially eq . (58) as one would expect . Very pronouncedly nonsto-
ichiometric sputter fluxes are found at low energies which involve primary recoi l
atoms and threshold processes . These effects are so pronounced that even though
they decrease in importance with increasing energy, they appear to overshadow th e
B- and C-contributions to the particle flux at least in the case studied (Ar on Mo) .

Appendix

A Polyatomic Materials

This section lists generalizations of some of the basic equations as well as result s
of the present work to polyatomic media. Unless stated otherwise definitions an d
proofs follow the same line as indicated in the main text so that the main compli-
cation lies in notation .

A.1 Fundamentals

The relations (3) defining deposited energy and momentum expand t o

FD , .j (r, U) =
fw<

d 3w WFj (w, r, U) ,
U

Fp, .j (r, U) =
fw<u

d 3w MiwFj (w, r, U)

where the freezing density Fj (w, r, U) now refers to atoms of specie s
accumulated densities of energy and momentum

j • Mainly

FD (r, U) =

Fp(r, U) =
.7
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deposited in all species are of interest, except for the considerations presented in
appendix B 34 .

The fundamental relation (4) expressing the freezing density by the flux densi-
ties reads

Fj (w ' v ' U) = EENi(v) /

	

d 3 w'C-Tk (w ' , T) J dokl (w ' ; v ' , v" )
k l

	

W'> U

x (Skj S(v ' - w) + S Ij (5(v" - w)),

	

(W < U) .

With this the relations (8) between deposited energy and momentum and the flux
densities are generalized t o

FD = E f dW (Gi(w)Nk f E'd~ k +G k (W)N E"d~kj I
j

k W>U

	

'<U

	

.
f

"<U

	

//

FD = E f dW (H(w)Nkf Mv' cos 'd~jk
W >U

	

E' < Uj,k

where

+Hk (W)Nj f

	

M . v" cosØ" dc kj 1
E" < U

Gj (W)

	

= fd21W(W, 1~ )

Hi (W)

	

= f&S2S2G j (W,II) .

From elastic-collision dynamics we obtain a generalization of eq . (10) for the lon-
gitudinal momentum component transferred from a j-atom with energy W hittin g
a k-atom at rest,

Mjv'cosØ'= 2 (W-ßjkT)
w

where

3 Subscripts •j and i• are applied here to avoid mixing up energy/momentum deposited i n
j atoms, FD • .i (r, U), FP . j (r, U), with energy/momentum deposited due to bombardment with
i-atoms to be introduced below .

4A species-dependent threshold Uj could in principle be introduced but has no function within
the context of the present work .

Mj + Mk
Njk =

2Mj
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Similarly, for a k-atom with energy W hitting a j-atom at rest we hav e

Mj v" cos 0" =
w2

/3kjT .

This yields

FD

	

dW(Gj (W)Nk Si' k (W,U,1)+Gk (W)Nj S j (W,U,1) )
jk w> U

Fp

	

fw>u (HidW(W )Nksj k (W, U, Njk)+Hk(W)NjS 'Nj(W, U, Nkj) )
j k

where

Sjk(W, U,/3jk) = (W -,Qjk T)dcjk(W, T)

Skj(W,U,ßkj) = /3 kj
T

Td6kj(u~, T )
< U

instead of eqs . (11-13) .

A .2 Transport Equations

The transport equations for polyatomic media were established already in Boltz-
mann's original work (BOLTZMANN, 1875) . The linearized versions are listed here
only for definiteness of notation. The forward equation (17) reads

E f
d3w' f d 3 w" {Gj (w)Kjk (w;w' ,w")Nk -Gj (w' )Kjk (w' ;w w")Nkk

	

f

	

1

-G k (w')Kkj (w';w" ,w)Nj }+cosO~Gj (w) =Sijo(w-v)S(x) ,

while the backward equation (18) turns int o

E Nk J daik(v ;v' ,v"){Gij(v)

	

(v') -Gkj(v")} ,
k

	

l

+cos® x Gij (v) = ô(v -w)S(x) . (67)

The normalization relations (21) and (22) remain valid also for deposited energ y
FD,i . and momentum F2,i . while the transport equation read s

E Nk f{F, .(v) - FD i (v ' ) - FD ,k (v") }ch
ik (v ; v' , v" )

k

	

J

+ cos O
x

FD,i . (v) = o .
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Here, FD,i . indicates the energy deposited in all species due to bombardment wit h
an i-particle . The equation for Fp is expanded analogously.

A .3 Solutions

The flux equations eq . (67) may be transformed into Laplace space and thus form a
generalized version of eq . (26) . The resulting multidimensional system of algebraic
equations splits into uncoupled sets of equations, one for each target species j and ,
for n = 0, one for each combination of 2 = L' and p = 1,' . Solutions may then be
found in accordance with the scheme outlined long ago (ANDERSEN & SIGMUND ,

1974) . Pertinent terms were selected on the basis of the criteria developed i n
conjunction with tables I and II above . Explicit results quoted here refer to a
binary medium with arbitrary masses M1i M2 and elastic scattering . The leading
moments in the three families then rea d

E NI S21 (W )
47rW 2 WD'A (1 )

3(eSt)

V
2MiE M1 +M2 N1 S21 (W )

47rW

	

2M1 W 2M2 WD'B (1 /2 )

3(ex . SZ)E

	

(o )W2DÅ(1)
(N1 S21(W)' 11 ; 1 0 ;10( 1 - 2m)

+ N2 S12(W)'(2Tlo ;10( 1 - 2m))

where DA(s), DB (s) are determinants that have been discussed previously (AN-
DERSEN & SIGMUND, 1974 ; SIGMUND & SCKERL, 1994) which in the present
notation rea d

D (s) =
r/
1 E'n,P ~ï1,t + E i2,E) (E21,2 + E22,1! - 1 ,i) - ï2,$Ezl, t

with t = 0, 1 for \DA , DB , respectively, expressed in terms of macroscopic transpor t
cross sections

	

(8)

	

Nk f daik {1 - Pe(cos 0') (1 - t) s }

	

(71)

	

Z%,e( s )

	

Nk

	

daik Pe (cos 0" ) i s

	

(72 )

Primes in the determinants indicate derivatives with respect to s .
The Laplace moments can be written in the for m

'21,1(s)+ '22,1(S )	 '2,1(S )
12RrW DB (s )

'-'21,1 s

127rWD B (s) .

GA(o) =

G
i',(o )

G1(1)

(68 )

(69 )

(70 )

'1~1)10 ;10( S ) -

(o )
'21 ;10 ;10( S ) =
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From this we reconstruct the spatial distribution of the flux density of 1-atom s
according to

Gii (E, e ; W, SZ, x) = Gj + G + G

with

G a = FD,i .(E,e;x) N1S21(W)

	

(73 )til

	

4xrW 2

	

WD''A (1 )

G~ -

	

3 St • F°°p . (E, e ; W, S1, x) hill + M2 N1S21 (W )
zl

	

4~rW

	

~/2M1 W

	

2M2 J WD (1/2)

	

(74 )

_

	

3(ex . St) DFD,i . (E, e ; W, SI, x )

Gil

	

W2DÅ(1)

	

åx

x (N1 S21(W) (I. 11),10 ;10(1 - 2m) +N2 S1 2(W)G (:I). 10 ;10 ( 1 - 2m)) (75)

where FD,i . (E, e ; x) is the density of deposited energy for bombardment with an
i-particle and Fop i, (E, e ; W, S2, x) the corresponding momentum density .

The corresponding flux density of 2-atoms is found by interchanging indices .
These results have been utilized in the evaluations reported in section 6 .6 .

B Conservation Laws

This section serves primarily to clarify the physical significance of some of the sta-
tistical distribution functions introduced in section 2 .3 and their generalizations to
polyatomic media in appendix A . Well-known results on energy sharing are show n
to emerge directly from conservation laws of energy and momentum in considerable
generality .

Bd Energy Conservation

Consider first elastic collisions in a monoatomic medium . Differentiation of eq . (11)
with respect to U yield s

AUD
= NU J dW {G(W)K(W,W - U) +G(W)K(W, U) - G(U)K(U,W)} ,

where K(E,T) = d6(E,T)/dT . On the other hand, integration over SI of the
forward equation (15) leads to

N
J

dW' {G(W)K(W, W') -G(W')K(W',W' -W)

- G(W')K(W',W)} + V . H(W) = S(W - E)S(r) .
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After elimination of the integral we fin d

aU
+ o • (UH(U)) = ES(U - E)6(r )

which has the form of a continuity equation expressing energy conservation . Before
discussing its significance we note first that for a polyatomic medium this relatio n
expands t o

OFD,j
ÔU + v . (UHj ( U)) + E {Gj ( U)NkSjk (U )

k

- Gk(U)NjSk j (U)} = SzjES(U - E)6(r) .

We may also allow for electronic stopping by formally c o )))nsidering target electron s
as being one of the species entering the k-sum . Disregarding energy transfer from
electrons to nuclei and expressing the electronic stopping power by stopping cross
sections of individual atoms (Bragg's rule) we arrive at

8FD , j
8U+o

.
(UHj(U)) + E {Gi (U)Nk Sjk (U)

k

Gk(U)Nj Sn,kj(U)} = S Zj ES(U - E)S(r), (76 )

where

Sjk( U) = Sn,jk(U) + Se ,jk(U )

and Se,jk (U), Se ,jk (U) denote the nuclear and electronic stopping cross section ,
respectively, of a j-atom colliding with a k-atom .

The physical significance becomes most illuminating after integration over some
arbitrary AV as well as some energy interval Ul < U < U2 < E, and use of Gauss '
theorem,

U2

	

r
Ej (AV, Ui ) - Ej (AV, U2 ) _

	

dU - J

	

d 2r n - (UHj (U, r) )f i

	

s(ov)

+ J dar E ( -Gj (U, r)NkSjk (U) + Gk (U, r)NjSn,kj (U)) 1
Ov

	

k

	

JJJ

where

Ej (AV, U) = f dar FD,j (r , U)
v

is the energy deposited per cascade in AV if the freezing energy is U, S(AV) is a
closed surface surrounding AV and n a unit vector in the direction of the outwar d
surface normal .
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We note first that

- dU /

	

de r (Un • Hi (U, r)) =
s(Av)

dU

	

d2r
fœ dt f d 2 (n .u)gj(U,,r,t )f(v)

is the net flux of energy per cascade carried by j-atoms out of AV with energies i n
the interval (U, dU) . Here, u denotes the velocity of a particle with energy U and
direction D .

Next, the term

-dU
J

d3rGj (U,r)NkSjk (U )
OV

	

k

accounts for all loss of energy from AV by nuclear and electronic collisions under -
gone by j-particles with energies (U,dU), and

-dUd3r E Gk((I, r )N.j Sn,k.7(U )v

	

k

accounts for the corresponding gain in the form of recoil atoms .
The net result of gains and losses is the energy of those j-atoms which freez e

at energies in the interval (U1 , U2 ) while in AV .

B.2 Momentum Conservatio n

A similar procedure may be applied to momentum. Differentiation of eq . (12) with
respect to U yields

auP = NU
J

dW {H(w)K(w,w - U)

+wH(W)K(W,U) - -H(U)K(U,W) } .

Now assume elastic collisions, multiply eq . (15) with St and integrate over ft JJJThi s
yields

N
f

dW' {H(W)K(W, W') - H(W') cos Ø'K(W', W' - W)

- H(W') cos ø"K(W', W) } + V • J(W) = e S(W - E)S(r) ,

where cos Ø" = w/w ' and cos Ø' = w/w', and J = (Jao) denotes a symmetric tenso r
with components

	

/d2 a ßG(W,) , Jo(W)=

	

a, /3 = 1,2,3 .
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After elimination of the integral we find

-auu + V . ( 32MUJ(U)) = Mv8(U - E)8(r) .

For a polyatomic medium this expands t o

	 au'' + p (~/2Mj U Jj(U)) + E {Hj(U )NkTik(U )~U
k

Hk( U)NjTkj (U)} = S ij Miv6(U - E)6(r )

with the momentum transfer cross section

M~
Tjk(W) _ \/f2MkTcos " dajk (W,T) -

	

+ Mk
SJk(W) -

\/2M~ W

B .3 Applications

The above relations allow to rederive or confirm basic results for particle fluxe s
found in our previous work (ANDERSEN & SIGMUND, 1974; VICANEK ET AL . ,
1993 ; SIGMUND & SCKERL, 1993) by a unified procedure . First, consider spatia l
averages only where the divergence term disappears . Eq. (76) then reduces to the
starting point of a study of energy spectra in multicomponent targets ( VICANE K
ET AL., 1993) . If, furthermore, the U dependence of FD,i is disregarded - which
should be justified for U K E 	 we arrive at

E (Gj(W)NkSjk( yF) - rs`k(W ) Nj Skj (W)) = o ,
k

a relation first mentioned by ANDERSEN & SIGMUND (1974) . For a binary medium ,
this reduces to

G 1 (W) _ N1S21(W )

G2(W ) N2S12(W )

Likewise, if the U dependence of Fp,i is insignificant one arrives at

E (Hj (W )NkT3k(W) - Hk(W)NjTk,(W)) = o
k

which for a binary medium reduces to

H1N2T12 = H2N1T21 ,

a result found by two of us (SIGMUND & SCKERL, 1993) .
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