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Abstract

For a convex body K in R" with surface area S(K) it is shown that

S(K) S(B)(1 +2n-2c(n)ß 2 +o(ß 2)) ,

where B denotes the ball with the same volume as K and centred at the centre of gravity of K (with Lebesgue
measure), while ß denotes the volume of K \ B divided by the volume of K, and the constant c(n) is take n
with its biggest possible value . It is shown that 1 < c(n)/(n + 1) < 1 .4943 and that

c(n) =

	

f
llo ( Z -(n -

ILII ;

	

u E C I (E,R), uo = u i =0~ ,

where E denotes the unit sphere in R", V the gradient in the Riemannian sense, II . II the L2 -norm and II . I I

the L 1 -norm on E . Finally, u k denotes (for any L2 -function u on E) the projection of u on the eigenspac e
for (minus) the Laplace-Beltrami operator on E corresponding to the kth eigenvalue ~k = k(k + n - 2) ,
k = 0, 1, 2, . . . . The following dual characterization of c(n) is obtained :

	 1	 Ilfkll 2
= max

c(n)

	

-k=2 ~k 1 y
f : E -- [-1, 1] measurable .

It is shown, moreover, that every function f realizing the maximum 1/c(n) takes the values +1 only, an d
(at least in dimension n < 4) that f is even: f (-) = f O . For even n = 2m it is shown that the function
f O - sgn(1 + . . . +'", - 1/2) is a stationary solution to the above maximum problem in a natural sense ,
and it is conjectured that the maximum 1/c(n) is attained by this function and essentially by no other . For od d
n = 2m + 1 the constant 1/2 must be replaced by the solution to a certain transcendental equation involvin g
hypergeometric functions . The stated conjecture is proved valid for n = 2, thus recovering a recent resul t
of R . R . Hall, W. K . Hayman, and A . W. Weitsman . The conjecture remains open for n > 3 .
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1 . Introductio n

Recently it was shown by Hall, Hayman and Weitsman in [HHW], [HH] that, when .f
ranges over all measurable functions on R (mod 27r) taking the values 1 and -1 only, and
having the Fourier series Eko(a k cos kB + bk sin k9), the quantity

1

	

°O
a 2

	

2-I- b
k

has the biggest possible value

A(.f)=2 E
k=2

k2 -1
(1 .1 )

4
rc(2) :=maxA(f) =--1, (1 .2 )

7r

attained by the function sgn(cos 20) and its translates . From this they derived the following
sharp lower bound for the isoperimetric deficit of convex domains K in R 2 (with are a
A(K) = A, perimeter L, and `asymmetry' a, see (1 .4) below) :

L2 >47rA (1+	 7ra2 +O(a
4-7r

as a 0, the constant rr/(4 - Tr) = 1/K(2) being best possible. They also described
a family of convex domains which approach a ball and for which the equality sign holds ,
[HHW, p . 113] .

The asymmetry a = a(K) was defined as follows by L . E . Fraenkel (unpublished) :

A(K \ B(x, v) )
a = a(K) := mRz

A(K)

as B(x, v) ranges over all discs with the same area as K, i .e ., A(K) = rrv 2 .
The determination of K (2) in [HH] involved subordination theory from complex analysis .

The present paper is an attempt - only partly successful - to obtain similar results in higher
dimensions . Our method allows us also to recover (1 .2) and (1 .3) along with some additional
information .

In Section 3 we use the Fraenkel asymmetry a, now in arbitrary dimension n, and als o
the similar barycentric asymmetry ß (> a) defined by fixing the centre x of the ball B(x , v )
of equal volume as the barycentre of the domain K (see (2 .1) and (2 .2) below) .

If V denotes the volume and S the surface area of a bounded convex domain K in R'
we obtain the following slightly weaker n-dimensional analogue of (1 .3) :

(S)fl>
V ()n_J

C1
+

(n
+ l)ß2 + o(ß2),

	

(1 .5 )
nwn

	

con

	

n

3 ))
(1 .3 )

(1 .4)
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where con is the volume of the unit ball in Rn . The function ß 2 is sharp in order o f
magnitude, but the constant 2 (n + 1) is no longer best possible (not even in dimension 2) .
In proving (1 .5) we may of course assume that K is normalized so that V = con and the
barycentre b of K is the origin . We then expand the radial function R = 1 + u for K i n
spherical harmonics, while drawing on results from an earlier paper [F1] . We also obtain
more precise information about the remainder term o(ß 2 ) . An inequality similar to (1 .5) ,
but without the remainder term o(ß 2 ) and without assuming K to approach a ball, was
obtained in [F3], though with a very small constant coefficient (unspecified, but calculable )
to ß 2 .

Writing the biggest possible value of the constant coefficient to ß 2 in (1 .5) in the form
c(n) we thus have c(n) > n + 1 . We show that c(n) > n + 1 and that c(n) is also th e

biggest possible constant in the Poincaré style quadratic inequality

11Vu1I 2 - (n -1)IIu1I 2 ? c(n)IluIli,

	

(1 .6 )

valid for all real-valued C I -smoothh functions u on the unit sphere E in Rn such that

f Udo- =0, J u(M daO=0 for j=1, . . .,n .

	

(1 .7 )

Here Vu denotes the gradient of the function u on E in the sense of Riemannian geometr y
on E . Moreover, du refers to the normalized surface measure on E, and II . II and II • II I
denote the L 2 (Q)-norm, resp . the L I (6)-norm. There exist non-zero functions u satisfyin g
(1 .7) such that the equality sign holds in (1 .6) . One may regard (1 .6) as the infinitesima l
version of (1 .5) corresponding to making the radial function R = 1 + u infinitely close
to 1, whereby the side conditions (1 .7) express the above normalization V = con , b = O .
The presence of the L 1 -norm l u l l , I in (1 .6) (rather than the L 2 -norm) makes the precise
determination of c(n) difficult.

In Section 4 we consider the following n-dimensional generalization of A (f) from (1 .1) :

A (f) := 	 II .fkII 2

k-2
(1 .8 )

where f = Eko fk is the expansion of a (real-valued) function f E L 2 (a) into spherica l
harmonics fk (of degree k), and 'k = k(k + n - 2) is the kth eigenvalue of (minus) th e
Laplace-Beltrami operator A on E . We give the following dual characterization of c(n) :

(1 .9)

It turns out that the maximizing functions f in (1 .9) take the values 1 and -1 only (al -
most everywhere on E) . This duality result (1 .9) is inspired by what is essentially th e

1
= K(n) := max{A(f) I -1 f 1} .

c(n)
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2-dimensional case thereof, obtained in [HHW, p . 109-113] where the Fourier expansion
of the support function of K was used .

As described in Section 8 the sum A(f) in (1 .8) can be evaluated as an integral a s
follows :

A(f) = ff G( .77) f (Of (TO do- (O do- (TO ,

where the kernel G(t), -1 < t < 1, has been determined explicitly by recursion w .r.t . the
dimension n by Berg [Be] .

The variational problem of determining the biggest possible constant c(n) in (1 .6) under
the side conditions (1 .7) leads to the following Euler type equation in the distributional
sense (after a suitable normalization of u) :

-Au-(n-1)u= f :_

	

fk, where f =sgnu ,
k= 2

again under the conditions up = u l = 0 from (1 .7) . The presence of sgnu on the right
makes the Euler equation non-linear.

Similarly, let us denote by T c * (n) (> n c(n)) the biggest possible constant coefficient
to a2 in the estimate obtained from (1 .5) by replacing ß with a . Alternatively, c* (n) is the
biggest possible constant in the inequality obtained from (1 .6) by replacing Il u 11 r with the
quotient norm II • II * on L 1 (o)'H I denoting the space of restrictions to E of the linear
forms on R . (The second side condition in (1 .7), amounting to u l = 0, is unnecessary
here .) In analogy with (1 .9) we obtain

= rc* (n) := max{A(f) I -1 < f < 1, fl = 0} ,
c * (n)

and the Euler equation is the same as above, but now with the side conditions up = ft = 0 .

In Theorem 4 .4 we show in dimension n < 4 that every maximizing function f for x (n )
in (1 .9) is even : f (-) = f O (almost everywhere), in particular fl = 0, and henc e

Ic * (n) = K(n), c* (n) = c(n)

	

for n < 4 .

It follows that every minimizing function u for c(n) in (1 .6) is likewise even . The proof
of these symmetry properties is rather long ; it is inspired by a construction due to Hal l
and Hayman [HH] in the 2-dimensional case. We use spherical harmonics and Legendre
polynomials, and spherical potential theory with respect to the operator A + (n - 1) on E
as developed by Berg [Be] . - Although our proof of Theorem 4 .4 only seems to work for
n < 4, it is conjectured that the result holds in all dimensions .

In Section 5 we treat the case n = 2 and prove that x(2) = x * (2) = 4/n - 1, by
using the corresponding Euler equation and also Theorem 4.4 . We further show that th e

1
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maximum (1 .2) remains in force when f is allowed to take arbitrary values in the interval
[-1, 1], and moreover that, up to isometries of E, this maximum is attained only by th e
function sgn(cos 29) = sgn(2 - 2t ) .i

Section 6 contains an incomplete discussion of the case n > 2 . (For the complet e
solution of a related, but more manageable problem, see [F5] .) Writing n = 2m for even
n and n = 2m + 1 for odd n, we consider the function

.f

	

sgn(q + . . . + ~m - r2 )

of E E and show that this function is stationary in a certain natural sense for precisel y
one value of the constant t = r (n) (> 0), namely r (n) = 1[4 for n even, while for n od d
r(n)2 is the root of a certain transcendental equation involving hypergeometric functions .
In terms of the corresponding stationary value A( f (n ; •)) we have because f (n ; •) is an
even function on E with values in [-1, 1] :

1
A(f (n ; •)) < K*(n) ~ K(n) <

n+l '

the last inequality being equivalent to c(n) > n + 1, cf. above just before (1 .6) .
We also consider certain other stationary functions . We conjecture, however, that f (n ;

from (1 .10) is maximizing for K (n), so that the first two inequalities in (1 .11) are equalities ,
but we cannot prove this (except for n = 2, cf. above) . For even n = 2m we find

	

1

	

F(m2t)P(4) F(2 + q )

	

A(f(2m; ')) = 2m - 1 F(z)r(z) F(4) F(z +

	

- 1

	

(1 .12 )

(which equals 4/n - 1 for m = 1) .
For n = 3 we have from (1 .10) f (3; ) = sgn(i - r 2 ), and we find tha t

log 1+t =	 2

	

i .e ., t

	

0.5644 ,

	

1-t

	

1-ßt '

A(f(3 ; •)) = (1 - t)2

	

0 .1898 .

The conjecture that, with the stated value of t, the function sgn(ll - t2 ) is maximizing for
K(3), which then equals (1 - r) 2 , has also been proposed in a different form by Richar d
R. Hall (personal communication) .

Stirling's formula applied to (1 .12) leads to the following asymptotic formula for th e
ratio between the lower bound A( f (n ; •)) and the elementary upper bound 1/(n + 1) i n
the estimate (1 .11) (at least when n is supposed to be even) :

1 P(1/4 )
n
li~(n + 1)A(f(n ; •)) = ~P(3/4) - 1 ti 0.6692,

(1 .10)



MfM 44 :1

	

9

the sequence (n + 1)A ( f (n, •)) being decreasing through even n . In particular, we obtai n

0 .6692 < (n + 1)K * (n) < (n + 1)K(n) < 1 for n even.

The same estimates hold for n odd (Theorem 6) .
In connection with (1 .5) we mention that a different estimate, somewhat similar in spirit ,

has been obtained by Schneider [Sc] with ß replaced by another average measure of non -
sphericity of K, defined in terms of the L 2 -distance between the support function of K
and that of the associated Steiner ball (like in [HHW] for n = 2) . - For other so-calle d
stability versions of inequalities for convex bodies see [F4] and [GS] (with references) an d
the survey article [G] .

We close this introduction by comparing the results mentioned above with similar result s
(first in dimension 2) in which the `average' asymmetries a and ß of K are replaced by a
stronger `uniform' measure 8 of the deviation of K from circular shape, such a s

8-re-ri

	

(1 .13 )
v

where r e denotes the circumradius and ri the inradius of K, while v as above denotes the
radius of a disc with the same area as K . Virtually all work on the present topic has it s
background in the inequality

L 2 > 4nA(1 + 1 82)

	

(1 .14)
7 I

obtained by Bonnesen [Bo] for convex domains K in R2, the coefficient 1/n to 8 2 being
best possible . Actually, Bonnesen's inequality (1 .14) holds for arbitrary planar domain s
K bounded by a simple closed rectifiable curve, [F2] . However, (1 .14) does not exten d
to multiply connected or disconnected domains (not even if we replace 82 /7r by any other
positive continuous function of 8 approaching 0 as 8 -+ 0), as one sees by taking for K

the difference or the union of the unit disc and a small disc (inside, resp . outside the uni t
circle) .

It is in this connection that the Fraenkel asymmetry a from (1 .4) (but not the barycentric
asymmetry ß) has an advantage over the uniform measure of non-sphericity 8 from (1 .13) .
In fact, it was shown in [HHW] tha t

L 2 > 4 rA(1 + 6a 2 )
holds for arbitrary planar sets K (of finite area A and finite perimeter L) . (The constant

ô is not claimed to be best possible .) It is conjectured that a similar result (with another
constant to replace 6) holds in higher dimensions, mutatis mutandis, but this has been
proved only in the convex case, see [F3] . On the other hand, for convex domains K in Rn
we also have lower estimates of the isoperimetric deficit (when sufficiently small) in term s
of the n-dimensional version of 8 from (1 .13), the term 82 /a in (1 .14) being then replaced
by a constant times 8 + if n > 4, and by a constant times 8 2/ log(1 /8) if n = 3, and these
functions of 8 are again sharp in order of magnitude, see [F1] .
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2 . Preliminaries

In Sections 2 and 3 we shall mostly use the same notation as in [Fl, §1, p . 622-623] :
K denotes a bounded measurable subset of Rn , n > 2 (with further properties to be

specified later) . (The set K was denoted by D in [F1] . )
V = V (K) denotes the volume of K (n-dimensional Lebesgue measure) .
S = S(K) denotes the surface area of K (i .e ., of 8K), assumed to exist .
co, = 7r n/2 / F (n/2 + 1) is the volume of the unit ball S2 = B(0, 1) in R'1 , hence neon is

the surface area of the unit sphere E = 8S2 in W .
D = D(K) denotes the (dimensionless) isoperimetric deficit of K . This deficit (denoted

by A in [F1]) is defined by

S

	

V -„
- ~
„

D = -

	

-1 .
ncon Lon

b denotes the barycentre of K, with jth coordinate v fK xj dx, j = 1, . . . , n .

v = (V/co n)' /n is called the volume radius of K .

Ko = v -1 (K - b) is called the normalized set associated with K .
d = d(K) = inf{t > 0 I (1 - t)+S2 C Ko C (] + t)S2} is the Hausdorff distance

between Ko and SI . We call d the spherical deviation of K (cf. [F1, Definition 2 .1]) .
Further we consider in Section 3 the asymmetry of K in the sense of Fraenkel :

V (K \ B(x, v)) _

	

V (B(x, v) \ K)
a _ - a(K)

_

	

= min (2 .1 )
Rn

	

V(K)

	

V(K)

and also the following barycentric asymmetry of K :

(2 .2)
V (K \ B(b, v)) - V(B(b, v) \ K)

ß = ß(K) =

	

-V(K)

	

V(K)

Note that each of the quantities D, d, a, ß is the same for K as for the normalized set
Ko =v -1 (K-b) .Clearly 0<a<ß<1 .
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Throughout the paper we denote by a the normalized surface measure on the unit sphere
E in R . The abbreviation a .e. means : almost everywhere with respect to a . We conside r
the usual LP (a)-norms of a-measurable functions f : E - R:

I /P

Il f Iln = (f I f O I PdaO) ,

	

1 < p < oo ,
E

Ilfll~=mint( ER+ 1 IfO1 <t a-a.e .} .

For simplicity we shall mostly write I I f 11 in place of 11 f 112 .
An important role will be played by the decomposition of L 2 (a) into eigenspaces for the

Laplace-Beltrami operator A on E, cf . e .g . [Sp, p . 193 f.] and [M, p . 38] . For any integer
k > 0 we denote by 7-(k the vector space of all spherical harmonics of order k, i.e ., the
restrictions to E of the harmonic polynomials homogeneous of degree k . These subspaces
7-lk of the Hilbert space L 2 (a) are mutually orthogonal and span together L2(a) :

00

L2(a ) = ®7-1k .
k= O

For any function f E L2(a) we denote by fk the orthogonal projection of f on 7-lk, and
we have the expansions

f = > fk,

	

IIf 11 2 = E 11fk11 2 ,

k=0

	

k= 0

the former expansion being convergent in the L 2 (a) -norm 11 • II . Note that

fo = J fda,

the mean-value of f In dimension n = 2 the above expansion of f is the Fourier expansio n
because fo =dao, fk (cos 9, sin 9) = ak cos(k9) + bk sin(k9) for k > 1, in terms of the
Fourier coefficients a k , bk of f; hence II fk 11 2 = z (ak + bk) fork > 1

The Laplace-Beltrami operator A on E (acting in the distribution sense) is a self-adjoint
operator on L2(a) with discrete spectrum, the eigenspaces being 7-lk with the corresponding
eigenvalues (actually for -A)

Xk=k(k+n -2),

	

k=0,1,2, . . . ,

cf. e .g . [M, Lemma 2] . For any function u = E o uk in the domain of A we thus have

-Au = i Xkuk = ~ Xkuk .
k=0

	

k=1
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For m = 1 or 2 we denote by W ind' = W'n ' p (E) the Sobolev space of all real distri-
butions u on E whose partial derivatives of order m (hence also of orders < m) in local
coordinates on E are (locally) in LP (a) . In particular, W 1,00 = Lip l , the functions on E
satisfying a Lipschitz condition .

For u E
W1,2 we denote by Vu the gradient of u in the sense of Riemannian geometr y

on E, cf. e .g . [Sp, p . 188], and by II Vu1I the L 2 (6)-norm of the length 1Vul of Vu .
We denote by dorn A the domain of A as a self-adjoint operator in L 2 (a), and similarl y

for other operators . It is known that dom A = W 2 ' 2 , cf. e .g . [Se, p . 685], or argue as in
Remark 4 .4 below, using [Hö2, Theorem 17 .1 .1] . The following lemma is presumably
known. (It was used implicitly in [F1, (18), p . 625] .)

Lemma 2 . For any u E dorn A we have

- J u A udQ=

k=1

~kllukll 2 = II Vu II 2 .

The latter equation holds more generally for any u E WL2 (E) .

Proof. The former expression for - f u Au do is obvious since a.o = 0. Because
dom o = W2,2 C W 1,2 it remains to establish the second equation in the lemma for
u E W1,2 . The positive self-adjoint operator -A has a positive self-adjoint square root Q ,
and

/
Qu =E y Xk u k ,

k=1

oo

IIQu11 2 = E Àklluk11 2

k =l

(2 .3 )

for any u E dorn Q (the domain of Q, characterized by the finiteness of the latter sum in
(2 .3)). For any u E C 2 (E) (C dom Q 2 C dom Q) we have

IIQu11 2 = f uQ2udo=- f uAuda=II Vu 11 2

	

(2.4)

E

	

E

by partial integration . For any u E WL2 (E) there exists a sequence of functions u (n) of
class C2 (E) such that

llu (n) url-mio,

	

I1V(u (n) -u)II-mio .

This can be shown by regularization in local coordinates combined with the use of a partition
of unity, cf. e .g . [DL, p . 312] . In view of (2 .4) the sequence (Qu (n) ) is Cauchy in L 2(a) ,

and since Q has a closed graph it follows that u E dom Q and Qu(n) -* Qu . From (2 .3) ,
(2 .4) we therefore conclude that

oo

Ex/Juke = IIQuIl 2 = lim IIQu
(n) II 2 = lim IIVu (n) II 2 = IIVu11 2 .

	

D

k=1

	

n
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Note that
A I =n-1, A 2 -A~=n+1 ,

and if uo = 0, the expression, important in the sequel ,

II Vu11 2- (n-1 )IIu11 2= ~(Ak -A1)II u k11 2

	

(2 .5)

k=2

is independent of the linear component u l E H I . If moreover u l = 0, the stated expression
is > (A 2 - A 1) 011 2u 11 2 = (n + 1) I I u 11 2 , with equality precisely when u E 7-12 .

3 . The case of strongly starshaped domains

In this section the set K in Rn is supposed to be strongly starshaped with respect to its
barycentre b in the sense that the boundary 8 Ko of the normalized set Ko can be represented
in polar coordinates R = Ix , = x/ Ix 1, x E R n \ [0}, b y

R= R(O = 1+ u(O ,

	

E ,

with R (•) of class Lip l = W" , cf . Section 2 . Note that d = 11 u 6 . We may assume that
K itself is normalized, i .e ., K = Ko . As in [Fl, p . 623] we then hav e

	

S

	

f
1+D==

J
R n-2 ~R2 +IVR1 2 dQ

	

nwn

	

E

= f(1 + u)n-11
+ (1 + u) 2ou12 da,

	

(3 .1 )

V

= fE (1 + u)n da (=
E

1 da = 1),

	

(3 .2)

b =
f

(1 + u(o
n+t

da(4) (= 0) .

	

(3 .3)
E

Similarly, from (2 .2) above ,

2 ,8= f

	

(3 .4 )

In the first approximation, (3 .2) and (3 .3) imply that uo

	

0, u l

	

O. More precisely we
have, as the spherical deviation d = Il u Il oc, tends to 0 ,

Iluoll . , 1114116 = ~(1)I1 u 11 2 = o(d)Ilulll•

	

(3 .5)
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(Here and elsewhere the Landau symbol O (•) is understood to apply uniformly with respec t
to the strongly starshaped domain K for any prescribed dimension n . In some cases O (• )
may take negative values .) From (3 .2) we get in fact

0 = f ((1 + u)n - 1) dß = nuo + O(1)Ilu 2

whence Iluo 00 = O(I1u11 2) . Also, IIu112 < IIu1100I1uII, = caulk . From (3.3) and
fu i da = 0 (since u, E no we obtain

II u i11 2= f uu da=n+1
f

((1 + u)'-1-(n+1)u)u,da

= 0(1)11u111~IIu11 2 ,

whence
I l u 1100 = O (1l u

II 2 ) = O (d) 11 u II 1 because II u 1100 equals a positive constant time s

IIu111 -

Definition 3. For any function u E L 1 (a) we write

(l u ll * = min {flu -1111 l E 911} ,

the L 1 (a)-distance between u and the n-dimensional subspace 7-11 of all linear function s
(restricted to E) . Thus Hu 11* is the quotient norm on L 1 (a)/7-1 1 .

Remark 3.1 . Clearly II u II * < 11 u I I 1 . The following estimate in the opposite direction
will be used in Remark 3 .2 below and in Section 7 . Consider any u E L' (a) orthogonal
to 7-[1 : f u j da = 0 (j = 1, . . . , n), and any minimizing l E 7-11 in the above definition .
Then

E

		

(3 .6)11 1 111 <(111ull *

with a constant q = q (n) to be determined below. It follows that

Hulk <- IIu -1111 + 111111 < (1 + q )Ilull * .

	

(3 .7 )

In fact,

11i11å= f 1 (1 - u ) do"<11111 .111-u1I1=11111 .11ull * ,

and since l is a constant multiple of S~1 after a change of coordinates, (3 .6) ensues with

1111111111100
=n f 1 11 dQ = 1/ f (1 _1-2) n2 dt =	

2 I ( n 2 z )
q =

	

l1111å

	

E

	

o

	

r( n2 1 ) '
This constant q is best possible in (3 .6) as well as in (3 .7) . We shall not use this fact ; it
can be shown by taking u (identified with the measure u da) weak* close to the measure
aa- e_a-2n 1 da (orthogonal to 7 -l1), where e .g . ea denotes unit mass at a = (1 , 0, . . . , 0) .

If u is even: u(-) = uO for 4' E E, then (l u ll* = Hulk . In fact, for any l E 7-11 ,
2IIuhh,

	

II u -1111+IIu + 1 111 =2 11 u -1111 since l(-)=-1(0 .
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Remark 3 .2 . For any function u E L2(a) write

00

ü = u -uo -ui=E uk .
k= 2

Returning to strongly starshaped domains K in Rn we then have (in the notation explaine d
in the beginning of the present section) :

Iluoll . + II1116 = 1lûl11O(d) = Ilûll*o(d), (3 .9 )

Hulli = Iii Iß(1 + O(d)), (3 .10 )

hull * = Iii iI * ( 1 + o(d)), (3 .11 )

Iloull2 - (n - 1 )IIuII 2 = (Iloull 2 - (n - 1 )I1 u 11 2)(1 + o(d2 )) . (3 .12)

From (3 .5) we have in fact

Iluoll . + lluilloo = IlulliO(d) = (Målli + Iluolloo + Iluill00)o(d) ,

from which the former equation (3 .9) follows, and it implies the latter by application o f
(3 .7) to ü (which is indeed orthogonal to H-i i ) . Next, (3 .10) and (3 .11) follow from (3 .9 )
and the triangle inequality. Finally, (3 .12) is obtained by use of Lemma 2 :

Il o4 2 -(n - 1 )Hu II 2 =lloû ll 2 -(
n - 1)I1 6 11 2 -(n- 1)IIuoI1 2

= (IIoûI1 2 - (n - 1 )IIulI2 )(1 + 0(d2 )) ,

noting that

lluoll 2 = 0(d2 )lluHi = O(d2 )(Hvû11 2 - (n -1)11ûH 2 )

according to (3 .9) and the last two lines of Section 2 applied to ü .

Lemma 3 .1 . For strongly starshaped domains K in Rn we have

D=z(Il Ou lI 2 -(n- 1 )11 u ll 2 )( 1 +O(d+HoulI )) ,

ß= Ilull~(1+O(d)) ,

a=zllull* (1+O(d)) ,

IFI = v 0 ( d) ,

where F denotes the compact set of points x in W. realizing the minimum in the definition
(2.1) of a, and IFl := max,EF Ix', while v is the volume radius of K .

(3 .8)
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In view of Remark 3 .2 the stated expressions for D, ß, and a remain in force if u is
replaced throughout by it = u - up - u l from (3 .8), except in the term I I Du I I ~ .

Partialproof. Ad D. The term - (n - 1 )I1 u 11 2 arises when the term f u da is eliminated
from f (1 + u)n- ' da by use of (3 .2), keeping only terms order 2 at most ; and the term

z II Du I1
2 is obvious . See Section 7 for a complete proof .

Ad ß . According to (3 .4) we have

2ß = f I(1+u)n -lido =
E

do,

n
I 2ß - nllullt

	

Li:t:2, (l)d,

-' lul do = O(d)IIuIIt •

Ad a . We may assume that K is normalized . For any x E F (see the notation at the end
of the lemma) the representation of 8K in polar coordinates centred at x rather than at th e
barycentre 0 is, in the first approximation, R = 1 + uO - lO with lO = x•l . This is
because 1 1 x 1 1 is small for small d, by the final estimate of the lemma . In view of Definition
3 and the above proof concerning ß this explains the main term 211uII* . See Section 7 for
a complete proof .

Ad IF I . This estimate is used only in the proof of the above expression for a and wil l
be established in Section 7 .

	

q

Remark3 .3 . Forconvex domains K the remainder term O (d+II V u 11 2,,,,) in the expressio n
for D in Lemma 3 .1 can be replaced by 0(d) because II V u II ôo = 0(d) according to [Fl ,
Lemma 2 .2] . Even for non-convex K this replacement can be made in the estimate of D

from above (i .e ., with the equality sign replaced by <), see the proof in Section 7 .
Without discussion of the remainder term, the principal term in the expression for D in

Lemma 3 .1, expanded in spherical harmonics, was given for n = 3 in [PS, p . 33] .

Lemma 3 .2 . For any C2-smooth function u on E such that up = u 1 =0 there exists
a C 2 -smooth function u (t, ), defined for real t in a neighbourhood of 0 and for E E,
such that u (0, ) = u ( ) and that the se t

K(t) := {r I E E, 0 < r < 1+ tu(t, )}

	

(3 .13)

is convex and normalized (i.e ., K(t) has volume con and barycentre 0). For t -+ 0 ,

Iltu(t, •)II00, IIV(tu(t, •))IIoo = O(ItI) .

	

(3 .14)
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Proof. For s

	

(so, s1,

	

,

	

E R"+ 1••• Sn)

	

write

us (4. ) = u(O +so+
j= l

Guided by (3 .2), (3 .3) we consider the following polynomials fo, fl , . . . , fn in (s, t) E

Rn+2 , all of which take the value 0 at (s, t) = (0, 0) :

= ns o
+ k (k)tk -1 f(t( ) kd

EE .

fo(s, t) = t-1
E

((1 + tus) n - 1) d6 (for t ~ 0 )

andforj=l,2, . . .,n :

fj (s, t) = t_1 fß ((1 +tus( ))n+i - l) jdaO (for t 0)

n+1 n+l n+ 1
n
	 sj

+kE ( k
)tki f(us()) i da(S) ,

where we h ave used that f u da = 0, f u j do = 0, f da = 1, f daO = 0, and
f j Ada(e)=n-t81 .At(s,t)=(0,0)wethus have afo/asp= n,afj /asj =(n+1)/n
for j > 0, and aft /ask = 0 for j k. By the implicit function theorem the equation s
fj (s, t) = 0, j = 0, 1, . . . , n, can be solved near the origin in Rn+2 in the form

S = s( t ) = (so(t ), si (t ), . . . , Sn ( t)) ,

where s( . ) is analytic in some interval I = [- t, -c], and s(0) = 0. Writing

n

u (t, ) = u s(t) (O = u (O + so (t ) + Esj ( t) ,
j = t

the function u( . , .) is C 2 -smooth on I x E, and u(0, ) = u(4) . The estimates (3 .14) are
obvious by the compactness of I and

	

We may therefore take t small enough so that
1 + t u(t, ) > 0 for (t, ) E I x E . The set K(t) defined in (3 .13) is then normalized
for each t E I in view of (3 .2), (3 .3) because fj (s(t), t) = 0, j = 0, 1, . . . , n . It remains
to establish the convexity of K(t) for small 1 t I . It is convenient to extend the function
u(t, ) to a C 2 -smooth function on I x R n , likewise denoted by u(• , •) . Consider any
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2-dimensional linear subspace E of Rn , and choose an orthonormal base q, for E . Then
K(t) n E is given in polar coordinates (r, 8) by 0 < r < R(t, 8), where

R = R(t, 8) := 1 +tu(t, n cos0 + sin8 )

is of class C2 on I x R. Denoting partial differentiation w.r.t . 8 by a dash we have

R =1 + O(Itl), R ' = O(Itl),

	

R" = O(ItI )

uniformly w.r.t . 8 E R, t E I, and also w.r.t . E and its orthonormal base rl, This is shown
much like (3 .14) above by application of the chain rule of differentiation while observing
that rl cos 8 + sin 8 E E and that E and I are compact. It follows that there exists a
number t0, 0 < to < t, independent of ri, and hence of E, such that

R2 +2(R ' )2 -RR" =1+O(tl)> 0

for every 8 provided that ItI < to . In view of the expression for the curvature of a planar
curve given in polar coordinates, the above inequality shows that K(t) C-1 E has positivel y
curved boundary and hence is convex, provided that I t

	

< to . Since this holds for any
choice of E, K(t) is itself convex when 111 < to . q

Theorem 3 . For strongly starshaped domains K in R n we have

(3 .15 )

D> 2(n +1)Hu11 2(1+O(d+1loulIL) )

The constant

	

(n + 1)

> 2(n 2l)ß2(1 +

	

+ llVuLIL)) .

(3 .16 )

O(d
n

=

	

A 1 ) in the former inequality is best possible .
The best possible constant c(n), resp. c * (n), in the ensuing inequality

D

	

c(n)ß 2 (1 + O(d+ II Du lI 203 )) ,z
n

D >

	

c * ( n)a 2 (1 + O(d + IIouII 2c.)), (3 .17 )
n

respectively, for strongly starshaped domains is the same as for convex domains, and is
also the best possible constant in the quadratic inequality

II ouII 2 - (n - 1)IIu112 > c(n)II ulli,

	

(3 .18 )

IIouII2 - (n -1)Ilull2 > c,(n)II ull *,

	

(3 .19 )

respectively, valid for all u E W t °
22

(E) for which uo = u l = 0, i.e . ,

fuda=O fu()jda()=Ofori=1	 n .

We have
c * (n) > c(n) n + 1 .

	

(3 .20 )
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Proof. As usual we represent the boundary of the normalized domain K 0 in polar
coordinates as x = (1 +u(0), E E, whereby u E Lip i (E) = W 1 ' O°(E) . Expanding in
spherical harmonics we obtain by Lemma 2, taking into account that 1, 0 = 0, A l = n - 1 ,
and )1. k > A2 fork > 2 :

II ou 11 2 -(n - 1 )Il u ll 2 = E( ),k-xi)Ilukll 2

k= 0

»2 - x1)Ilukll 2 - A,211uoII 2

	

xi)Ilui 11 2
k= 0

= ( )L2 - X I ) 114 2 (1 + 0(d2 ) )

in view of (3 .5) . Since )n.2 - A l = n + 1, this leads to the former inequality (3 .15) in view
of Lemma 3 .1 . The constant n + 1 in that inequality is best possible (even for convex K) in
view of the final statement in Section 2 together with Lemma 3 .2 applied to some non-zero
u E 7-12 . The second inequality (3 .15) follows likewise from Lemma 3 .1 since I I u > l u 11 .
By comparing the ultimate inequality (3 .15) with (3 .16) we see that c(n) > n + 1, while
c* (n) > c(n) follows from ß > a, thus establishing (3 .20) . From the comment after
Lemma 3 .1 we also see that e .g . (3 .18) (applied to û) implies (3 .16) . Invoking also Lemma
3.2, we see that, conversely, (3 .16) implies (3 .18) in the case where u is C 2 -smooth. For
general u E W L2 with uo = u, = 0 we merely approximate u in W 1 ' 2 -norm by C2 -smooth
functions v (by regularization) . Then vo --->- uo = 0 and v l -+ u l = 0. It follows that the
function w = v - v0 - v l is C2 -smooth, w0 = w l = 0, and w u (in wL2 ) . The validit y
of (3 .18) for u therefore follows from its validity for w . Similarly, (3 .17) and (3 .19) are
equivalent.

	

q

Remark 3.4. The condition u j = 0 is unnecessary in (3 .19) because either member of
the inequality remains unchanged if u is replaced by u - l for some l E 7-11 . As to the left
hand member this is because Al = n - 1, cf. (2 .5) .

Remark 3 .5 . For convex domains K the remainder term 0(d + Iloull2c,o ) in Theorem
3 can be replaced by 0(d) in view of [Fl, Lemma 2 .2] . For planar convex domains
0(d + II Va II ôo) may further be replaced by 00) in (3 .16) and hence in the ultimate
inequality (3 .15). In fact, for any convex domain K C R2 such that D < z c(2)ß2 we hav e

from Bonnesen's inequality (see (1 .14) in the Introduction) : d = O (S) = O (D ) = O (ß) .
(As to the relation d = O (l) see [Fl, p . 634] .) Similarly O (d + ll V u 11 2 ) can be replaced
by 0(a) in (3 .17) in the case of convex domains in R2 ; this leads to [HH, Theorem 1] ,
where c,k (2) is found to be 7/(4 - Jr), as will be recovered in Section 5 . - For convex
domains K C Rn with n > 3 we may similarly replace 0(d + Il oul&), e .g . in (3 .16) ,

a
by O (ß,/log(1/ß)) if n = 3, and by O (ß n+~) if n > 4 . (In the above argument replac e
Bonnesen's inequality by the n-dimensional version of it, obtained in [Fl, Theorem 2 .3] .)
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4. The infinitesimal version . Duality

In view of Theorem 3 we are led to investigate the best possible constants c(n), c* (n) i n
(3 .18), (3 .19), respectively ; that is (in the notation of Section 2) :

c(n)=min~
Ilvu112 -(n- 1)Ilull 2

l

	

Hull ;
u E W 1 ' 2 (E) \ {0}, uo = u1 = 0 1,

(4 .1 )

c * (n) =min~
lIoull2 -(n- 1)IIIl 2

ll

	

Ilull*
u E W l ' 2(E) \ {0}, uo = 0 }, (4 .2)

where
IIuII*

denotes the quotient norm on L 1 (Q)/7-1 1 (Definition 3) .
The fact that there are actual minima in (4 .1), (4 .2) derives from the compactness of the

identity map from W 1,2 (E) with the Sobolev norm 111411 1,2 = 3 II
Vu

11 2 + llu 11 2
into L 2 (a)

with the norm Hull ; this is Rellich's theorem [R] (applied in local coordinates on E) . Als o
note that, on the relevant subspace (cf. Remark 3 .4 in the case of c * (n) )

{u E W 1 ' 2 (E) 1 up = ul = 0} ,

111411 1,2 and ( I l V u ]2 -
(n - 1) I I u ll 2 ) 2

are equivalent norms because, by Lemma 2 ,

Ilull l z =

	

+ 1)IIuk1I 2

k= 2

2n + 1<
n+l

2
(~k - )L1)IIuk11 =

2n

n+

+
1

	 1
(llvull2

	

(n- 1 )Ilu
2

1I

	

) .
= 2

Remark 4 .1 . The minimum in (4 .2) remains the same if u is subjected to the further
condition I l u I I 1 = Hull * . In fact, if

I I u I I 1 > H u l l * we may replace u by u + l with l E 7-1 1

so chosen that Hu u + 1 1 1 1 = l l u I I *, cf . Definition 3 ; this substitution leaves
uo,

4111 * , and

1 I
V u

11 2 - (n - 1) 11
u 11 2 unchanged, cf . Remark 3 .4 .

Lemma 4 .1. I f u E L I (a) and H u l l * = Hulk then the function f defined by

1 ifu(O > 0
f (O = sgnu(O ={_1 ifu(O < 0

can be extended to a function f E L° O (a) such that 11f ll~ < 1 and f1 = 0 (i .e ., ffl do-
= 0, 1 E H1) . In particular, if u() 0 0 a.e., then f = sgn u satisfies f1 = 0 .
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Proof. Write

E=[ EEu()=0}, E E ={ EEIu( )I<E}

for s > 0 . We first show, by a variational argument, that

(sgn u)l da < f 11 1 da,

	

l E H I .

	

(4 .3 )
CE

	

E

We may assume that 11111 00 < 1 and that f0E (sgn u)l da > O. Then

H u ll] =llull * <Ilu-slll t

= f lu - Ellda +s f Illda+ f

	

lu - Ellda
CEE

	

E

	

EE \E

= f (sgnu)(u - El)da +s f Illda+ f

	

lu - Ellda
CE E

	

E

	

EE \E

= f (sgn u)(u - El) da + E f Ill da + O (E)a (E E \ E)
CE

	

E

= Huh - s (f
E

(sgn u)l da - f 11 1 da + o(s) ,

which is only possible if (4 .3) holds .

	

/
If a(E) = 0, there is nothing left to be proved, so suppose that a (E) > 0 . The

restriction map l 1 1E of l-l t into L I (E, a) = L I (E) is then injective because any
(n - 1)-dimensional subspace of R" meets E in a null set for a. We may therefore define
a linear form ço : {1 1E I l E î-li }

	

R by

01E ) = -

JE'

	

l E .

By (4 .3), Iw(lIE)I < fE Ill da = II I IEIIL' ( E) , and so ço extends, by the Hahn-Banac h
Theorem, to a linear form ço on L I (E) such that

Iw(g)I

	

IIgII L I (E) ,

	

g E L 1 (E) .

There exists f E L°O (E) with cp(g) = fE fgda for all g E L 1 (E), and IIfIIL°(E) =

II~II (L I (E))* < 1 . In particular,

- f (sgn u)! da = f fl da,

	

l E H I ,
CE

	

E

and so the function f which equals the above f in E, and sgn u in CE, satisfies II f Ilod < 1
and ft = O .

	

q

The following dual characterization of c(n) and c* (n) was inspired by [HHW], [HH ]
(in which n = 2) .
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Theorem 4 .1. Wehavec(n) = 1/K(n), c*(n) = 1/K* (n), where

1I f 1100 = 1 },

	

(4 .4 )

IIf Iloo = 1 , fl = 01 .

	

(4 .5 )

Proof. First of all, there is an actual maximum in (4 .4) and in (4 .5) . To see this, w e
define for f E L 2(a )

K * (n) := max { ~	 II.fkII 2

k=2 ~k - À 1

K(n) := maxIt	 Il .fkll 2

k=2 J`' k

	

k l

k
Tf =

	 fk

~k-),1
(4 .6)

(convergent in the L 2(a)-norm) . Here T is an integral operator with a symmetric kerne l
G(•n) determined in Section 8 with reference to [Be] . At the present stage it

suffices, however, to note that Tf E dom A and that

(-0 - (n - 1))Tf = f : fk = f - fo - .f1 (4 .7 )

k= 2

in the notation employed in Remark 3 .2. (This follows from (4 .6) because -Afk = Akfk
and Al = n - 1 .) Since At - .l 1 -+ oo as k -* co, the self-adjoint operator T : L 2(a) -*
L2(a) is compact, and the quadratic form

A(f) = f (Tf)f do- =
	 	 IIfkll2

	

(4.8 )

k=2 Xk - X 1

is therefore continuous as a function of f in the weak topology on L 2 (a), a fortiori in the
weak* topology on L°O (a) viewed as the dual of L I (a) . Because the unit ball in L" (a) is
weak* compact, A (f) has an actual maximum K (n) when considered on this unit ball, and
by homogeneity this maximum is attained on the unit sphere { f E L" (a) 111 f 11 co = 1 1 .
Similarly as to K* (n) because the condition fl = 0 is equivalent to ff/du = 0 for all
l E ?-l1, and hence determines a weak* closed subspace of L" (a) .

We bring the rest of the proof for the case of c * (n), K*(n), the case of c(n), K(n) being
similar and slightly easier .

1° K * (n)c*(n) > 1 . Consider any non-zero function u e W 1 - 2(E) with up = 0 such
that 11V u 11 2 - (n -1) II u 11 2 = c * (n) II u II * (briefly: a minimizing function for c * (n), cf . (4 .2)) .
According to Remark 4 .1 we may suppose that

Ilulll = II u II *•
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Choose f E L" (o-) as in Lemma 4 .1 (i .e ., II f Il od < 1, ft = 0, and f O = sgn u (O for
any E E with u(O 0) . Then

Ilull *=J
fuck" =

	

f
'14
	 fk	

- ~ 1k=2J
	 u k 3,l k -XI da ,

o°

	

2 00
(lull*
	 	 IkfkIIA

	

(A k - A 1)IIukHI 2
k=2

	

k=2

	

(4.10 )

< x* (n)(ll Vull 2 - (n - 1) Hu 11 2 )

/by Lemma 2 and the Cauchy-Schwarz inequality applied to the vectors ET uk V Xk - A l
and ET fk /,,/A k - A I in the Hilbert space L 2 (a) _ ® Ic,''"0 7-Lk . It follows from (4.10) that
indeed x* (n)c * (n) > 1 because u is minimizing for c * (n) .

2° x* (n)c* (n) < 1 . Consider any f E L" (a) with ft = 0 such that A(f) = x* (n )
(briefly : a maximizing ,function for x * (n)), and write as in (4.7) ,

f := Efk = ffo ft

k=2

(= f - fo in the present case) . Choose l E 7-11 so that II Tf + 111 1 = II Tf II * (cf. (4.6) and
Definition 3), and write u = Tf + 1, whereby Ilu II 1 = Il u II* . Then u E dorn A, and sinc e
.l 1 = n - 1 we obtain by (4 .7) and Lemma 2

-/Au-(n-1r)u= f,

	

(

	

(4 .11 )

I1o0 2 -(
n -1)IIu0I 2 = J fuda- =

J
fudo-=

J
f(Tf)do- =x* (n )

because up = fi = 0 . In view of (4 .2) this implie s

x* (n ) = IlVuII 2 - (n - 1)IIull 2 = J fudo < Ilulll = (l u ll *

	

< J(IIVull 2 - (n

	

1)IIu1I 2)/c* ( n) = \/x * (n) /c* (n) ,

and consequently x * (n)c * (n) < 1 .

	

q

Remark 4.2. x*(n) < x (n) < 1/(n + 1) . The former inequality is trivial . In view o f
Theorem 4 .1 above, the latter is a reformulation of (3 .20) except for the sharp inequality
sign. Here is a direct proof : For any measurable function f : E -+ [-1, 1] (not equal to
0 a .e .) we have from (4 .8) because À2 - A l = n + 1

A(f) <

	

~l2fkli2l

	

n	
+ l IIf I I < n + 1 Ilf II 2~ .

(4 .9 )

(4.12)
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These inequalities cannot all hold with equality, for then f would be of class R2 and hence

f II < f 11 00 . An adaptation of this proof leads in principle to a better upper estimate
of K(n), e .g . K(2) < 1/3 - ((84/7r) - 1)/15 0.3067, but we shall not go into that

because the calculations are complicated for n > 2 .

Remark 4 .3 . Every maximizing function ,f for K (n) or K* (n) satisfie s

f (4-) _ + 1 a-a .e . on E .

To establish this, suppose that f is maximizing e .g . for K * (n), and imagine that the set F
= { E E I 1fOI < 1 - e} has measure a(F) > 0 for some e, 0 < s < 1 . Choose
g E Lc (a) with Mg 1100 = 1 so that g = 0 off F, f(T f)g da = 0 with Tf from (4 .6), and
finally that go = 0, 8, 1 = 0, i .e ., f gl da = 0 for all l E No + Hl . This is possible since
L°O (F, a) is infinite dimensional . Then 11 f + eg11 < 1, (f + eg) i = 0, and

J (T (f + eg)) (f + sg) da = J (Tf)f da + e 2 f (Tg)gda > K* (n) ,

because f(Tg)gda = E ckl2 I1 gk11 2/(4 - A,) > O. From this contradiction we see tha t
actually a (F) = 0 for any choice of e, and so indeed f (4) = + 1 a .e .

In the next two theorems we establish a bijective correspondence between the set of
all (suitably normalized) minimizing functions u for c(n), resp . c* (n), and the set of all
maximizing functions f for K(n), resp . K * (n) . In addition, these theorems contain further
properties of the minimizing or maximizing functions in question .

Theorem 4.2 . Any minimizing function u for c(n), resp. c * (n), is C 1 -smooth (after

correction on a null set), and .

u(O 0 0 a.e . on E .

	

(4 .13 )

Let u be such a minimizing function, normalized so that c(n) llu Il i = 1, resp . c * (n)11 u 1 1

= 1, and suppose i n the case o f c * (n) that Huh = 11 u II * . Then f := sgnu is maximizing

for K (n), resp. K* (n), and

u =Tf, resp. u-ul =Tf.

Consequently, u is in the domain of A and satisfies the Euler type equation

-Du- (n - 1)u = f := fk (4 .14)
k=2

(= f - fo in the case of c * (n)) .
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Proof. Again we bring the proof for the case of c * (n), K * (n) . Suppose then that u is
minimizing for c* (n) and normalized so that Hulk = I 1411 * = x * (n) (viz . c * (n) II u II * = 1) ,
cf . Remark 4 .1 . Consider any f as in Lemma 4 .1 . Then (4 .9), (4 .10) hold, the latter with
equality throughout because K* (n) = 1/c * (n) . In view of (4 .9) there is hence a constant
y > 0 such that

uk\/ k k - Al = Yfk/ Àk -k > 2 .

Since uo = 0 it follows by Lemma 2 (with Tf from (4.6)) that

oo
u - u 1 = Euk = Y

	

fk/PL k - ~1) = YTf,

	

(4 .15 )
k=2

c* (n )IIuII* = IIDuII 2 - (n - 1)IIuII '" = EP,k - ~l)Ilukll 2
k=2

ffku k da = y f f udQ = YIIuIII=YIIuII *
k= 2

(in the third last equation we used that uo = fl = 0) . Consequently, y = c* (n) II all * = 1 ,
and

k= 2

E	 IIfkII 2

k=2 )`k - ~ 1
f fkuk da = IIuII * = K* (n) •

k=2

Thus f is maximizing for K * (n) . In view of (4 .15), u is in the domain of A, and the Euler
equation (4 .11) holds with f = f - fo by (4 .7) . Since f E L°°(6) this implies by Remark
4.4 below that u is C 1 -smooth (after correction on a null set) .

It remains to establish (4 .13), which implies that the above f equals sgn u a .e . Suppos e
that the closed set E := { E E uO = 0} has measure a(E) > 0 . It is known that
Vu = 0 a.e . in E because u E W 1 ' 2(E) . (In fact, there exists locally in E\E a sequenc e
of smooth functions u (J) of compact support such that u (j) u in W 1 ' 2 , cf. [DL, p . 359] . )
Each component of Vu (in local coordinates on E) is likewise of class W l ^ 2 because
u E dour A = W 2 ^ 2 (E) according to [Se, p . 685] or Remark 4 .4 below. Consequently, the
second order partial derivatives of u (in local coordinates) are likewise null a .e . in E, and
so f = 0 a .e . in E, by (4 .14) . It follows that f = fo + fi a.e. in E, and this contradict s
a(E) > 0 because f = +1 a .e . in E according to Remark 4.3. (If fl 0 note that
-1 < fo < 1 because we cannot have e .g . fo = 1, for then .f = 1 a.e . on E, hence u > 0
a .e. on E, cf. Lemma 4 .1, and this contradicts uo = f u d6 = 0 . And if fl $ 0, the
set where I fo + fl I = 1 is either empty or the union of at most two (n - 2)-dimensiona l
spheres (or single points) on E, hence of a-measure 0 .)

	

q

Remark 4 .4 . Consider any f E L0 (a) . By standard regularity theory for elliptic
operators every solution u to (4 .14) (in particular the function u = Tf) is of class W2 ' P (E)
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for every finite p and hence of class C 1 (E) (after correction on a null set) according to
the Sobolev embedding theorem, cf. e .g . [Höl, Th. 4 .5 .13] . In the first place it follows
e .g. from [Hö2, Theorem 17 .1 .1], applied in local coordinates in E, that (4 .14) locally ha s
solutions of class W2'P, and hence all solutions are of this class (even globally on E, b y
compactness), the solutions of -Av - (n - 1)v = 0 being analytic .

Theorem 4.3 . Let f be a maximizing function for K (n), resp. K*(n) . In the case of k(n )

write u = Tf with T from (4 .6) . In the case of K * (n) define u = Tf + 1, where l E 7-1 1

is uniquely determined by 11Tf + 111 1 = 11Tf II * . In either case u is then minimizing for
c(n), resp . c * (n), and

sgnu(4) = f (4 )

for almost every 4 E E . Moreover, u is in the domain of A and satisfies the Euler equation

(4 .14) . Finally,
H u ll]

= K(n), resp. (l u ll * = K* (n ) •

Proof. Again we bring the proof for the case of c* (n), K* (n), so suppose that f is
maximizing for K * (n) . Consider any/ E ~-l l with 11Tf + 111 1 = 11Tf

II * (cf. Definition 3) ,
and write u = Tf +1. By Theorem 4 .1, K * (n) = 1/c *(n), and so (4 .12) holds with equality
throughout. Since uo = 0 this shows that u is minimizing for c * (n), that H u ll * = K* (n) ,

and that f (4) = sgn u(4) a .e ., cf. (4 .13) . From (4 .6) follows again (4 .14) .
To establish the uniqueness (not used in the sequel) of l E H 1 with 1I Tf +111 1 = 1I Tf 11 * ,

suppose by contradiction that there exists m E 7 - 6 with m l and lI Tf + m I I , = II Tf I1 *
Write v = T f + m ; then v is likewise minimizing for c * (n), and sgn v = f a .e . With the
convention sgn 0 = 0 we infer that sgn v = sgn u everywhere, u and v being continuou s
by Theorem 4 .2 . Consider the hemispheres

E+ =E E I m(~) > 1(0}, E_ = { E E I m(O < 1(0} ,

and their common boundary Eo = {m = l} . Any point 4 E E at which u(4) = 0 must lie
on Eo because also v(4) = 0, hence m(4) = i(4) . It follows that u has constant sign in
E+ and in E_, and these two signs are opposite because uo = 0 . Consequently, u = 0 on
Eo, and either sgn u = sgn(m -1) throughout E or else sgn u = - sgn(m - l) throughout
E . But in either case this leads to a contradiction:

f Im -lld6= J (m -l)sgnud~= J (m- l)fdQ = O
E

	

333 E

because fl = 0andm-l EH l .

	

q

Remark 4 .5. We show in the beginning of Section 8 that the operator T from (4 .6) i s
an integral operator on L 2 (a) with a kernel of the form (4, rl) H G(4 . 0, where G is a
certain continuous function on [-1, 1] (finite except that G(1) = +oo when n > 2) . More
precisely, ä(t) = 1/(n - 1) + G(t), t E [-1, 1], where G : [-1, 1] --> ]-oo, +a)] (apart
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from a negative constant factor) equals the kernel gn constructed by Berg [Be] in his study
of potential theory on the unit sphere E in Rn associated with the differential operato r
A + (n - 1) . When f E L°O (E) we thus have

Tf() = J G( . n)f(Il) d6 (~7)

	

(4 .16 )
E

a .e . for 4 E E ; and because Tf can be taken to be continuous this holds for every 4 E E, the
function ??I-->- G(4 . ) being integrable, cf. [Be, Theorem 3 .3], and the right hand membe r
of (4 .16) being a continuous function of 4, cf. [Be, Prop. 2.9] .

We conjecture that the following theorem holds in all dimensions n > 2, but the method
of proof, which is based on an idea in [HH, p . 105] for the case n = 2, does not seem
adaptable to dimensions n > 4.

Theorem 4 .4 . Suppose n < 4 . We have

K(n) = K * (n), c(n) = c* (n) .

The maximizing functions f for K (n) are the same as those for 4(n) . The minimizing
functions for c (n) are precisely those minimizing functions u for c *(n) for which II u Il l
= I I u I I * . All the stated maximizing or minimizing functions are even :

f (-4) = f (4), u(-4) = u(4)

	

a .e . for 4 E E.

Plan of proof. The proof uses Legendre polynomials, spherical harmonics, and potential
theory with respect to the operator A + (n - 1) on E as developed by Berg [Be] for th e
purpose of studying the first surface measure of a convex body .

In the first part of the proof, given in Section 8, we establish (for n < 4) the existence
of even, maximizing functions f for K (n) . Any such f satisfies of course fi = 0 and
is therefore a fortiori maximizing for K*(n), and so K (n) = K * (n) . It follows in view of
Theorem 4 .1 that c(n) = c* (n) . The identity K (n) = 4(n) implies that any maximizin g
function for /c . (n) is likewise maximizing for K (n) .

In the second part of the proof, given in Section 9, we show that every maximizing
function for K(n) (n < 4) is even .

According to Theorem 4 .2, if u is minimizing for c(n) and normalized so that c(n) II u II i
= 1 then f := sgn u is maximizing for K (n), hence even . Consequently, u = Tf is even ,
whence I I u I I i = u1 1I * by the end of Remark 3 .1, and so u is minimizing for c * (n) as well .
Conversely, any minimizing function u for c * (n) such that l u luI i = I I u II * (cf. Remark 4.1 )
is afortiori minimizing for c(n) because c(n) = c * (n) .

	

q
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Corollary. At least for n < 4 the best possible constant is the same in (3 .16) and in

(3.17) in Theorem 3, namely c(n) = c *(n) .

Stationary functions and values . In addition to the maximizing and normalized mini-
mizing functions considered above we shall discuss more generally stationary functions .
In this connection it is useful to note that, for any f E L 2(a), the function u := T f from
(4 .6) satisfies by (4 .7) the differential equation (4 .14) ; and Tf is the only solution to (4 .14)
such that u l = O. In fact, if u E dom A denotes any solution to (4 .14) with u l = 0 then
u - T f belongs to 7-I1, the nullspace of A + (n 1), and hence u - Tf = 0 because
(u -Tf)t =0.

Definition 4.1 . A x(n)-stationaryfunction is a function f E L 2(a) such that the func-
tion u := Tf satisfies u() 0 0 a-a .e . and sgn u = f .

The number A(f) = II a II 1 is then called the x (n)-stationary value corresponding to f.

Indeed, by (4 .8),

A(f)= ffTfda = f fuda =
J

Iulda= Mull l .

	

(4 .17 )

Definition 4 .2. A c(n)-stationary function is a function u E dom A with uO

	

0

a-a.e. such that u = T f holds for f := sgn u . It follows that up = u l = O .

The number
IIou11 2 - (n -1)IIulI 2	 1	

Ilulll

	

Hulk
(4 .18 )

is then called the c(n)-stationary value corresponding to u . Indeed, by Lemma 2 ,

IIouI1 2 -(n-1)Ilu11 2 = f u(-Au - (n - 1)u)da

= fulda =
f ufda= f Iulda=Ilull l

because f - f E 7-lo + Ni and up = u = O. According to Remark 4 .4, u = Tf i s
C 1 -smooth . Moreover, u satisfies the Euler equation (4 .14), as mentioned above.

A bijective correspondence between the class of all x (n)-stationary functions f and the
class of all c(n)-stationary functions u is clearly given by either of the relation s

u=Tf, f =sgnu .

The corresponding x (n)-stationary and c(n)-stationary values A(f) = f (Tf) f da and

(I1 Du II 2 - (n - 1 ) Il u h 2 )/Mu II are the reciprocals of one another according to (4 .17), (4 .18) .
Every maximizing function for x(n) is K(n)-stationary . Every minimizing function u

for c(n), normalized so that c(n) I u II t = 1, is c(n)-stationary. These assertions follow
immediately from Theorems 4 .2 and 4 .3 .
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5 . The case n = 2

Using the general results in Sections 3 and 4 we shall now recover and slightly extend the
results from [HHW], [HH] quoted in the Introduction .

We begin by determining on the unit circle E in R 2 all those x (2)-stationary functions f
for which fi = 0, that is, the Fourier coefficients of order 1 of f considered as a 27r-periodi c
function of 9 are both 0, whereby

(cos 9, sin 0) = ( 1 , 2 ) = E E.

We also determine the associated c(n)-stationary functions u = Tf , cf. (4 .6), and the
stationary values . In particular, this will allow us to determine x(2) and c(2) and the
associated maximizing, resp . minimizing functions .

In terms of the above coordinate 9 the normalized Haar measure on the unit circle E i s
du = (2,r) -1 dØ, and the Laplace-Beltrami operator takes the form

d2 u
Au =

dØ 2
.

The eigenvalues of -0 are Xk = k2 , k = 0, 1 , 2, . . . , and the eigenspace Hk c L 2 (o)
has for k > 1 the two orthonormal basis vectors cos k9, 4 sin 0, and for k = 0 the
normalized basis vector 1 .

Consider any x(2)-stationary function f such that fl = 0, i .e ., the Fourier series of f
has the form

f (0) = ao +

	

(ak cos kB + bk sin k9),

	

(5 .1 )
k=2

where Iaol < 1 because we cannot have f = 1 a.e . or f = -1 a.e., for that would imply
Tf = 0 in contradiction with Definition 4 .1 . The associated c(n)-stationary functio n
u = Tf satisfies the Euler equation (4 .14) from Theorem 4.2, where f = f - fo = f -ao ,
and we have sgn u = f a .e .

Now consider any component Uo, resp . U1 , of the open set where u(Ø) > 0, resp .
u(8) < O. In U1 (j = 0, 1) equation (4 .14) read s

-u" - u = (l) j - ao,

	

(5 .2)

and its solutions in these two intervals have the form

u = -(-l)1 + ao + (- 1) 1 c1 cos(9 - B1 ),

	

(5 .3 )

where c1 , Ø1 are constants, Ø1 being the mid-point of U1 since u equals 0 at the end-points
of U1 . Because (-1)1 u(8 1 ) > 0, we therefore have

c1 > 1-(-1)1ao>O .
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More precisely it follows from (5 .3) that

1 - (-1) J ao
Uj = ]Bj - pj, Bj+pj[, COS pi =

cj

with 0 < pj < n/2 . By differentiation of (5 .3) ,

u ' = -(-l)'cj sin(B - (9j ),

	

(5 .5 )

which has the same non-zero absolute values, but opposite signs, at the two end-point s

8j + pi of Uj . Because u is of class C 1 everywhere, the only possibility is that an interva l

of type Uo is followed immediately by an interval of type U1, and vice versa . If Uo i s
followed by U1 , let U2 denote the interval of type Uo following immediately after U 1 , and

denote by c2, p 2 the numbers associated with U2 in the same way as co, po were associate d

with Uo in (5 .4) . Then (5 .5) holds at the end-points of U 1 , and this in conjunction with

the version of (5 .4) with j = 2 shows that (c2 cos p2, C2 sin p2 ) = (Co cos po, co sin po) ,

and consequently (C2, p 2 ) = (Co, PO) . Similarly, all intervals of type U 1 have the sam e

associated couple (c l , p1) . The sum of the lengths of Uo and U1 must therefore divide 2n,

that is,
2n

2po + 2p 1 = -

	

(5 .6)
p

for some integer p > 2 (because po, pi < 7r/2) . We have thus shown that u and f have
period 2 r/p and that

2 7cao
=

J
fn

f dB = p f

	

f dB = 2p(po - p1) .

	

(5 .7 )

7r

	

uouui

The smoothness of u at the common end-point Bo + Po = 01 - p1 of the closed interval s

Uo and U is expressed in view of (5 .5) b y

co sin po = c1 sin p 1 .

From (5 .6), (5 .7) we get ao(po + pi) = po - pi, that is

(1 - ao)po = (1 + ao)p i .

Combining the last two displayed equations with (5 .4) leads to

tan po

	

co sin po

	

c1 sin p1 _ tan p 1

Po

	

( 1 - ao) p o

	

(1 + ao) pi

	

p 1

hence po = pi , and consequently, by (5 .7), (5 .6), (5 .4) ,

TL

	

7ï
a0 = 0, po = p1 =- , co = c 1 = 1 cos - .

2p

	

2p

(5 .4)
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After a translation in the variable Ø we may assume that Øp = 0, B t = po + pi = 7r/p i n
(5 .4) . Accordingly (5 .3) reads (with some integer p > 2)

(cos(9_j)

-

/
(-1)j (	 1

COS Zp
for (5 .8 )

It< 2p ,- j p

valid for j = 0, 1 , and in f a c t for j = 0, 1 , 2, . . . , 2p - 1 since u has period 2n/p . We
obtain

1 f~~`/(2p) cos 8
Ilull ] = Zn

	

lu(Ø)1 dB =2p	
L/(2P)

(	 - 1~d B
2cos zp

	

JJ
(5 .9 )

/n) - 1

	

Jr
1\

	

tan - - 1 .
2p

	

2p

Conversely, the function u defined by (5 .8) (with p > 2) is (7r/p)-antiperiodic in th e
sense that u(B + n/p) = -u(9) ; and hence up = u i = O. Similarly, f := sgn u =
sgn(cos(p8)) satisfies ao := fo = fi = 0, and so the Euler equation (5 .2), or (4 .14) ,
holds . Since u = 0 we infer from an observation in the paragraph preceding Definitio n
4.1 that u = Tf, and so u is c(n)-stationary and f is x(n)-stationary, with fi = O .

Summing up, the above analysis establishes the following result.

Theorem 5 . The x (2) -stationary functions f of the form (5.1) are precisely the translate s
of the following functions f (p, •) :

f(p,8) = sgn(cos(pØ)), p E N, p > 2 .

The corresponding c(2)-stationary functions u = T f are the translates of the function s
u(p, .) given by

cos B

	

n nu(p,Ø)
=

	

n
-

cos

	

1

	

for Ø E
- 2 22p

	

p p

continued so as to be (7r/p)-antiperiodic: u(9 + zip) = -u(8) . The x(2)-stationary
values are

2p

	

Jr
A (f(p, -)) = Il u (p , •)111 =

n
tan

	

-1 .
P

Since the function p H p- tan p occurring in (5 .9) is increasing for 0 < p < n/2, the
x(2)-stationary value A ( f (p, •)) is biggest when pis smallest, i .e . for p = 2 . By Theorem
4.4 (valid in the present case n = 2) the maximizing functions f (9) for K(2) have perio d
n and are therefore in particular of the form (5 .1) . Consequently, we have the followin g
corollary of the above theorem, containing the result obtained by Hall and Hayman [HH]
quoted in (1 .2) in the Introduction :
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Corollary. K (2) = K,,(2) = 4/n - 1 . The maximizing functions f for K (2) are the
translates of the function f (8) = sgn(cos(28)), and the minimizing functions u for c(2) ,

normalized so that Ilu 11 1 = K(2), are the translates of the function

	

u (e) _

	

cos 8 - 1 for 9 E [-Tr/4, rr/4] ,

continued so as to be (7r/2)-antiperiodic .

Remark 5.1 . For the c(2)-stationary function u = u (p, •) defined in Theorem 5 the set
{ E E uO 0 0} has 2p connectivity components (arcs) . Note that u is an even, resp .
odd, function on the circle E if p is even, resp . odd .

Remark 5.2 . Returning to the geometric interpretation given in Theorem 3 conside r
convex domains K in R2 with area A = A(K), perimeter L = L(K), and barycentri c
asymmetry ,8 = ß(K) = A(K \ B)/A(K), where B denotes the disc of equal area
A(B) = A(K) centred at the barycentre of K, cf. (2 .2) . In view of Theorem 3, Remark
3 .5, and the inequality (1 + D) 2 > 1 + 2D, we thus obtai n

2

L	 =(1+D)2 >1+	 ß2 +O(ß3)

	

(5 .10)

	

4rrA

	

-

	

4-rr

as ß -+ 0, and c(2) = 1/K(2) = 7/(4 - n) is the best possible constant here . This
strengthening of the estimate (1 .3) in the Introduction is essentially what was proved i n
[HHW, p . 109-113], [HH], though with the Steiner disc of K in place of B in the abov e
definition of ß. As to 7r/(4 - n) being best possible in (5 .10), it suffices to produce a
family of planar convex domains Kt such that ß (Kt) -} 0 as t -> 0 while the equality sign
prevails in (5 .10) . (Similarly for the weaker estimate with ß replaced by a .) Such a family
(Kt ) can be obtained in polar coordinates (r, 9) in the form

0<r<1+tu(9)

in terms of the solution u from the above Corollary because u is even (as a function on the
unit circle) and C 1 -smooth . For infinitesimal t 0 the C 1 -smooth boundary aKt consists
of 4 nearly quartercircles, two of which have radius slightly smaller than 1 and separate
the other two which have radius slightly bigger than 1, all four circular arcs having thei r
end-points on the unit circle . Also this geometric interpretation is given in [HHW, p . 113] ,
based on an elegant, heuristic argument involving the classical isoperimetric property o f
circular arcs .

6. The case n > 3 . Examples, estimates, and a conjectur e

Our starting point is, for each dimension n, a detailed study of altogether n - 1 eve n
K (n)-stationary functions and their corresponding c(n)-stationary functions (Lemma 6 .1 ,
Lemma 6 .2) .
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Lemma 6 .1 . Fo r any dimension n > 2 and a n y integer m = 1 , 2, . . . , [n/2] (the bigges t

integer < n/2) there is precisely one constant a (necessarily with 0 < a < 1) such that

the following even function f = f(n, in) on the unit sphere E in Rn is K(n)-stationary

(Definition 4 .1) :

f(~) = f(n , m ;

	

= sgn(z - a),

	

z =

	

+ . . . -I-

	

(6 .1 )

for = ( 1 , . . ., fin ) E E . This constant a = a(n, m) is the unique root with 0 < a < 1
in the transcendental equation (6.10), (6.11) below, involving the h ypergeometric function s
U, V from (6.8) and B from (6.4) . The c(n)-stationary function u = u(n, m) = Tf
corresponding to f (cf. (4 .6) and Definition 4 .2) likewise depends only on z from (6.1) ,

and u is given by (6.9) . The ic(n) -stationary value A(f) = uII i , cf. (4.17), is given by

(6.17) .

The limitation m < [n/2] is only apparent in view of the isometry of E taking int o

( m.+1, . , 4 i, . . . , W. Note that, for any constant a, we have z - a ; 0 a-a.e . on
E . Clearly, z and hence f and u are even functions of . In the particular case n = 2m we
have a = a(2m, in) = 1/2, see below .

Proof. We use the following parametric representation of E consistent with the defini-
tion of z in (6 .1) :

_r7, 3 1 -zzE[0,1] ,
>? = ( Ill , . . . , 1 7m) E Em,

	

~ _ (0, . . . , yrt m) E En-m ,

where e .g . Ent denotes the unit sphere in R .
Suppose first that the function f in (6.1) is K(n)-stationary for a certain a, and denote

by u = Tf, cf. (4 .6), the corresponding c(n)-stationary function, which is C 1 -smooth .
Clearly 0 < a < 1, for otherwise f = 1 or f = -1, hence u = O . To see that u depends
only on z, note that f O is invariant under isometries of E leaving z invariant, and so i s
therefore each term fk (0 in the expansion f = E fk . It follows that each fk depends

only on z, and so does therefore u = Ek2 fk/PÇ k - A1) .
Because u is analytic in the two open subsets of E where f = sgn u = +1, that is

z a, we see by using the parametric representation (6 .2) (writing z = t 2 or 1 - z = t 2
and noting that e .g . (t p, ,N/1 - t 2 ) remains unchanged if t is replaced by -t and q by
-27) that u as a function of t extends in a neigbourhood of 0 e C to a function which i s
even and holomorphic, and hence u as a function of z extends holomorphically near z = 0
and z = 1 .

In terms of the normalized surface measures am, an-m, and a on E rn , En_m, and E,

one finds from (6 .2) that

(6 .2 )

da(O = B (1)-1B' (z) dz dvm,(q) dan-m(0 ,

	

(6 .3)
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where
Z

B (z) _ ~ xm/2 -1 (1 - x)n/2-m/2-1
dx

0

is an incomplete betafunction . The Laplace-Beltrami operator A on E is

a2

	

a

	

1

	

1
A=4z( 1 -z) aZ2 + 2 (m - nz)az +-Am+

1-z
An-m ,

where e .g . A„ denotes the Laplace-Beltrami operator on Em with variable point n as in
(6 .2) . In (6.3) and (6 .5) there is the limitation 0 < z < 1 .

The Euler equation (4 .14) for u as a function of z now reads in view of (6 .5 )

2
-4z(1 - z)

dz2
2(m - nz)-

dz
- (n - 1 ) u = f (z) - fo ,

where fo = fE f da ; this is because f is even and so fl = 0. The corresponding
homogeneous equation (after division by -4) is the standard differential equation for th e
hypergeometric function u = F(a, b; c ; z), IzI < 1, with parameters

a = - 1/2, b = n/2 - 1/2, c = m/2 .

	

(6 .7 )

A second solution is known to be F(a, b ; a + b + 1 - c ; 1 - z), cf. e .g . [El, (5), p . 105] .
In the present situation we thus have in the interval 0 < z < 1 the linearly independent
solutions to the homogeneous equation :

U(z) = F(-1/2, n/2 - 1/2 ; m/2; z) ,

V (z) = F(-1/2, n/2 - 1/2 ; n/2 - m/2 ; 1 - z) .

Because none of the parameters a, b, c in (6 .7) is an integer < 0, U is not a polynomial ,
and U (z) as a function of a complex variable z is holomorphic for l z < 1 (in particular fo r
0 < z < 1), but not extendable holomorphically near z = 1 . (Indeed, the power series of
U(z) has radius of convergence 1, and the only possible finite singularities of a solution t o
(6 .6) are at z = 0 or 1 .) Similarly V (z) is holomorphic for 11 - zI < 1, but not at z = 0 .

The mean-value of f from (6 .1) over E is according to (6 .3), (6.4)

fo = 1 - 2B(a) /B(1) .

In the intervals of constancy z 5 a for the right hand member of (6.6) this equation has the
following constant solutions Z. 0 :

fo + 1
=-	

2 B(1) - B(a)
for z < a,

	

fo- 1 _

	

2 B(a)
for z > a.

n-1

	

n-1

	

B(1)

	

n-1

	

n-1B(1)

(6 .4 )

(6 .5 )

(6 .6 )

(6 .8)
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Invoking the solutions (6 .8) to the homogeneous equation for z > a and taking into account
the singularity of U at 1 and of V at 0 we find from f = sgn u (with u = u(z) continuous
for 0 < z < 1) that u(a) = 0, U(a) 0 0, V(a) � 0, and hence we must have

2 B(1) - B(a) (U(z) -
n-1

	

B(1)

	

U(a)

	

'

	

0<z< a

u(z)

	

2 B(a) V(z)

	

(6 .9 )

	 -1),

	

a<z<1.n - 1 B(1) V(a)

The smoothness of u (z) at z = a leads to the following equation serving to determine a:

0(a) = 0,

	

(6 .10 )

where

Ø(z) = B(z)U(z)V'(z) + (B(1) - B(z))U'(z)V(z) .

	

(6 .11 )

Note that

	

U(0) = V(1) = 1, U ' (z) < 0, V ' (z) > 0,

	

(6 .12)

e .g . by use of the hypergeometric series for U and V from (6 .8) . For example ,

V(z) = 1 + 1

	

(1/2) k (n/2 - 1/2)k
(1 - z) k

	

(6 .13 )
k=1

	

(n/2 - m/2) k k r

for 0 < z < 1, using the notatio n

(a)k=a(a+1) . . .(a+k-1),

	

k=1,2, . . . .

For m = 1 this gives V(z) =

	

and for arbitrary m > 1 we therefore find for 0 < z < 1
by comparison of the (negative) terms in (6 .13 )

m-1

	

n-1 t~2

	

n-1 1_12

	

)V (z) < -	 +

	

z

	

v'(z) ?

	

-z /(6.14
n-m n-m

	

n-m 2

with equality for m = 1 . Similarly for 0 < z < 1

-m-1 n-1

	

n-1

	

~ 2
U (z) ~

_ n

m

	

+ m (1 -z) 2 , -U (z) a-	

2m (1
- z) -/(6 .15 )

with equality for n - m = 1 .
Using (6 .12), (6 .14), (6 .15), and the behaviour of B(z) for z near 0 or 1, it is easy to

check that Ø(z) from (6.11) satisfie s

4)(z) > 0 f o r z near 0, Ø (z) < 0 for z near 1,
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and so (6 .10) has at least one solution in the interval ]0, 1 [. (Consider separately the case s
m = 1 and 2 < m < [n/2] . )

Conversely, let a E ]0, 1[ denote a solution of (6 .10), and define u by (6 .9) in terms of
z from (6 .1), noting that U (a) and V (a) are non-zero and have the same sign . Indeed, if
e.g . U(a) > 0 and V(a) < 0 then both terms on the right of (6 .11) would be > 0 at a

in view of (6.12), and hence U(a) = V (a) = 0 by (6.10), but that contradicts U and V
being linearly independent solutions to the homogeneous equation corresponding to (6 .6) ,
whence their Wronskian UV' - U'V does not take the value 0 . Reversing our steps we
see that u satisfies the Euler equation (4 .14), namely (6 .6) for 0 < z < 1 . As observed in
the paragraph preceding Definition 4 .1 it follows that u = T f because ul = 0 ; in fact, u

is an even function on E since u depends on z only. To prove that f is rc (n)-stationary it
remains to show that sgn u = f , and this follows from (6 .9) and (6 .12) because

U(a) > 0, V(a) > O .

	

(6 .16)

In fact, we have just seen that the only alternative here would be that U(a) < 0 and
V (a) < 0, but then it would follow from (6 .9) that sgn u = - f , and we would be led to
the contradiction

-Hulk = J uf dß = J (T .f) .f da = E	 >	 Ilfkll2

	

0 .
E

	

k-2 %k - -

Because u = Tf we have uo = f u da = 0 and hence from (4 .17) and (6.9), (6.3 )

~(f) = Ilulll = -2f

	

u do-
{z<(Y )

4 B(1) - B(a)

(

-4am/2(1 -
a)"l2-m/2

U'(a)
- B(a)) ,

n - 1

	

B(1) 2

	

n - 1

	

U(a)

where we have used that fo zm/2-1 (1 - z)"/2-m/2-1
U(z) dz can be expressed in terms

of U'(a) in view of the homogeneous equation corresponding to (6 .6) (e .g. in divergence
form) applied to U . There is a similar expression for Il u lll = 2 f{z>a) u do- containing
V'(a)/ V (a), and the two expressions are equal on account of (6 .10), (6 .11) .

The uniqueness of the solution a E ]0, 1[ of (6 .10) will be established first for m = 1 ,
where we show that the function Ø from (6 .11) is strictly decreasing in ]0, 1 [ .

For n = 2, m = 1, we write z = sin2 9, 0 < 0 < 7r/2, and obtain B = 29, U = cos 9 ,
V = sin 9 (cf . above), and henc e

Ø = B /tanB - (7r/2 - 0 ) /tan(7c /2 - B) ,

which is strictly decreasing and has the unique zero 9 = 7r/4, i .e ., z = a = 1/2 . Inserting
in (6 .17) leads to l u 11 1 = 4/7r - 1, cf. Section 5 .

(6 .17)
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For n > 3 and m = 1 we have from (6 .13) and from the power series of U(z) :

V(z) = z1/2 , U (z) =1 2 1/2 1-
z

x -3/2( (1 - x)1/2-n/2 - 1) dx .
o

	

l (6 .18 )

(As functions of t, with t 2 = z, the functions V = t and -U are the Legendre functions in
dimension n of degree 1 and of the first and second kind, respectively.) The Wronskian o f
U and V as fuctions of z E 10, 1[ is

U(z)V'(z) - U'(z)V(z) = z-1/2(i - z) 1/2-n/ 2

and we therefore obtain from (6 .11), (6 .18) for 0 < z < 1

2Ø(z) = z -1/2B( 1 )U(z) - z -1/2 (1 - z)1/2-n/2(B(l) - B (z)) ,

4 z( 1 - z)B'(z)Ø'(z) = - B(z) + 2B'(z) - (n - 1)
B(1) - B(z)

< 0z

	

1- z

because (6 .4) in the present case m = 1, n > 3, implie s

B(z)

	

J z x-1/2 (1 - z)n/2-3/2 dx = 2z1/2 (1 - z)n/2-3/2 = 2zB '(z) .
0

In the remaining case, where m > 2 and n - m > 2, it follows from (6 .16) that we shal l
work only in the interval

J = (zE]0,1[ U(z)>0,V(z)>0} ,

and here we consider the function 41 = Ø/(U V), that is by (6 .11 )

4(z) = B(z)
VO

+ (B(1) - B(z)) zU (z )

To establish the uniqueness of the zero a E J of Ø, or equivalently of 41, we will show that
z(l - z)B'(z)W (z) is strictly decreasing in J (when m, n - m > 2) . Writing for brevity
B for B(z), etc ., we obtain by differentiating 41 and eliminating U" and V" by use of the
hypergeometric differential equation satisfied by U and V :

(z(l - z)B'W) ' _

	

V' 2

	

,V'

	

n - 1	
(B(1) - B )

z(1-z)B'

	

B' VJ -B V +4z( 1 -z)

-
+ (B(1) - B) (U

I ) 2
+ B '-	

+ 4z( 1
	 lz) B .
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The latter line arises from the former (after the equality sign) by interchanging m and n -m,

z and 1 - z, B(z) and B(l) - B(l - z), cf. (6 .4), (6 .8) . It therefore suffices to prove that

the former sum is > 0, and we do that by showing that the discriminant of this quadrati c

polynomial in V'/ V (> 0) is negative for all z E ]0, 1[, or equivalently that

D(z) := z(1 - z)B'(z) 2 - (n - 1)B(z)(B(1) - B(z)) < 0

	

(6 .19)

for 0 < z < 1 . Note that B ' (0) = B'(l) = 0 because m, n - m > 2, cf. (6 .4) . Hence
D(O) = D(l) = 0, and it suffices to prove that D is strictly convex as a function of B, or

equivalently that

D'(z)/B'(z) is strictly increasing.

	

(6 .20 )

For convenience write

m= p+2, n-m =q+2, n= p+q+4,

whereby p > 0, q > O . By differentiating (6 .19) and expressing B" in terms of B' one

finds after reduction (for 0 < z < 1), writing w = 1 - z :

D'(z)/B'(z) = ((p + 1)w - (q + 1)z)B ' ( z) - (p + q + 3)(B(1) - 2B(z)) ,

2z(1 - z)(D'/B')'/B' = (pw - qz) 2 + pw 2 + qz2 + (p + q + 8)zw > 8zw > 0 .

This establishes (6 .20) and thus completes the proof of the lemma .

	

q

The case n even and m = n/2 (> 1) . This is the simplest and most interesting case .
Here m = n - m and hence V(z) = U(1 - z), B(2) = B(1), cf. (6.8) and (6 .4) .

Consequently, (6 .10) holds with a = a(2m, m) = and we may therefore write

n

	

in m

.f (2m, m ; ) = sn

	

= sn~~ ~~ - E

	

) .

	

(6 .21 )
=1

	

a-1

	

i= 1

Moreover, (6 .17) leads to

21-m

	

-4 U ' (2 )
(2m-1)=

B(z, 2)2m-1 U(z) -l'

where U(z) = F(-Z, m - Z ; 2 ; z) . Applying (50), (20) in [El, §2.8] we obtain

U'(2) - 2m - 1 r(4)r( 2m4+1 )
U(2) -
	 4	

r (4)r( 2 	
4
	 3 )
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and

	

A(.f(2m, m)) = Huh =

	

i	 	 r(m21)	
r(4) r(2 +	 ~) 1l

	

(6 .22 )
2m - 1 (r(2)r(2) r(4) r(2 + 4) - /

where we have used that 21-mF(m)/(F(1))2 = r ( m211)/(r(2)r(2 )) according to Le -
gendre's identity . For n = 2, m = 1, we thus recover once more the K (2)-stationary valu e
4/n - 1 from Section 5 .

Using [E1, (4), p . 47] (or Stirling's formula) we find from (6 .22) the asymptotic formula

	

A(.f(2m , m)) =

	

1

	

1 F(4) - 1 +
O ( 1 /m2 ) ,2m-1 ,fi-i-( )

and so
1 F(4)

lim (n + 1)A(f (n, n/2)) =	 	 - 1 0.6692 .

	

(6 .23 )
n
n ven

	

s" r(
4

)

It can also be shown by Stirling's formula that the sequence (2m + 1)A(f (2m, m)) i s
strictly decreasing (from 3( - 1) ti 0 .8197 to the above limit) .

The case n odd and m = [n/2] (> 1) . This is the main case for odd n.
For n = 3, m = 1, we write z = t 2 , 0 < t < 1, and obtain from (6 .4) B = 2t and fro m

(6.18), (6.11) :

V=t, U=1--log l+t
Ø-	

1 - l log l+ t
2

	

1-t '

	

1+t

	

2

	

1 - t .

One finds that the strictly decreasing function cl) equals 0 for t = r 0 .5644, i .e . z = a =
i2

	

0 .3185; and (6.17) gives A( f (3, 1)) = Il u Il i = (1 - -02 ti 0.1898 .

In the next example we exclude the case n = 2m in which the two examples would be
the same : f (2m, m) = g(2m, m), cf . (6 .21), (6 .24) . See however Remark 6 .1 below.

Lemma 6 .2 . For any dimension n > 2 and any integer m with 1 < m < n/2 the
following even function g = g(n, m) on E is ic(n)-stationary (Definition 4 .1) :

m

	

m
g(O = g(n, m ; 4) = sgnv,

	

v = E - E m+i •

	

(6 .24 )
i=1

	

i= 1

For even k = 0, 2, 4, . . . the projection gk of g on 7Ik is given by (6.37) (see also (6.34)
and (6.41)-(6.45)), and 11 gk 112 is given by (6.46) . The K (n) -stationary value corresponding
to g can thus be computed by

A(g) _ E	 Il g k11 2

k even ''k - À1

(6 .25 )

k>2
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Proof. Note that v 0 a-a .e . on E . In order to show that g is rc(n)-stationary write
u = Tg, cf . (4 .6) . Consider the isometry J of E by which 4i and 4/z+ i are interchanged
f o r 4 E E and i = 1, . . . , m . Then g(J4) = -g(4), and henc e

go = J f g do= O .

	

(6 .26)
E

It also follows that gk(J4) = -gk (4) and hence u(J4) _ -u(4) . In particular, u(4) = 0
if J4 = 4, and more generally if E' z

42 = ri l 4.2 +i because g and hence gk and u are
invariant under any isometry of E involving only 41, . . . , 4m or only 4m+1 > • • • , 42m . Thi s
also shows that gk as well as u only depends on 4? + . . . +

	

and m+t + . . . + 2m .
We proceed to show that

u > O in { v > 0 }, u < O in { v < 0 }

	

(6 .27 )

with v from (6 .24), hence sgn u = sgn v = g . Consider any connectivity component V of
{ v > 01, say. Note that v is of class 7-l2(E) because Em 1 (.q - xm+i) is harmonic in Rn .
In particular,

Av+X2v=0 in V, v-)- 0 at 0V ,

and since v > 0 in V, X2 must be the first non-zero eigenvalue of -A considered in V ,
with the requirement of zero boundary values, cf . [CH, Chap. 6 .6] . Choose a connected
open proper subset W of E with smooth boundary 0W so that W D V , but also so that the
first non-zero eigenvalue X (< X2 ) of -A considered in W still exceeds X1 = n - L cf.
[Co] . Let w denote a corresponding eigenfunction of - A in W :

Aw+~w=0 in W, w-> 0 at 8W .

It is known that w(4) 0 0 for 4 E W, and we may hence assume that w > 0 in W . Then

-Aw-(n-l)w=(X.-(n-1))w>0 in W .

This shows that the C 2 -smooth function w in W is spherically superharmonic in the sense
of Berg [Be, p . 48-49], or equivalently, by [He, Prop . 34 .1], superharmonic in the sens e
of Hervé [He, Chap . 7] applied to the elliptic operator A + (n - 1) (expressed in loca l
coordinates), with reference to the axiomatic potential theory of Brelot [Br] .

By (4 .11), u = Tg satisfies the Euler equation

-Au-(n-1)u=g in E

because go = gi = 0, by (6 .26) together with the fact that g is even and so

gk = 0 for odd k .

(6 .28 )

(6 .29)
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Since g > 0 in V, u is spherically superharmonic in V, by (6 .28) . In the beginning of
the proof we saw that u = 0 on (ll = 01, cf. (6 .24), hence on aV . Since the sphericall y
superharmonic function w > 0 is bounded away from 0 on V C W we conclude from a
well-known boundary minimum principle that u > 0 in V, and in fact u > 0 in V, se e
[Br, p . 33] . This proves that u > 0 in (g > 0}, and similarly the latter assertion in (6 .27) .
Consequently, sgn u = g a-a .e . in E, and g is indeed K(n)-stationary.

In the sequel we use the parametric representation (6 .2) of E = E n , but now we replace
m by 2m (< n) in the notation for z, 17, This leads to

_(.NFz 77,/1-zZ = 1+ . . .+zmE[0,1] ,

77 = (771, . . . , 172m) E E lm,

	

= (0, . . . ,

	

E En-2m ,

and so by (6 .3), (6 .5) for 0 < z < 1 (with B denoting the betafunction )

da(e)
= B(m, n/2 m) Z

m-1 (1 - z)n/2-m-l dz da2m(T7) don-2m(6 .31 )

82

	

1

	

1
A = 4z(l - z) 2 + (4m - 2nz)- + A2m +

	

An-2m .

	

(6 .32 )
az

	

az z

	

1 - z

For any even integer k > 2 (cf. (6 .26), (6 .29)) let 7-lk (E n ) denote the subspace of 7-lk (En )
consisting of all functions R E 7i k (En ) for which RO only depends on (1, . . . ,2m) ,

that is on (z, 77) in (6.30) . Adapting the procedure leading to the definition of the associated
Legendre functions in Müller [M] we proceed to determine for each even integer k > 2 a
family of functions z H A k, j (z), j even, 0 < j < k, such that the functions

R( ) = Ak, j (z)Sj ( 77),

	

Sj E

	

(E2m),

	

(6 .33 )

belong to 7-lk (E n ) and hence to 7-lk(En), and that they together span 7-lk(En) . In view
of (6 .31) any two functions of the form (6 .33) corresponding to distinct values of j are
orthogonal to one another in L2(En ) because the respective Si E (E2m ) are mutuall y
orthogonal in L2(E2m) . From the requirement AR + XkR = 0 one finds by separation o f
the variables z, 17 and using (6 .32) a differential equation for A k, j solved by

(6 .30)

1)
Ak,j(Z) =Zj/2(k

/2 + .7/2+ m

k/2 - j/2

= (-1)hz.ll2e,P)(t),

F ( k-j k +i+n -2 ,-	
2 ,

	

2

	

,j+rn ;z)

1 -{- t
z = 2 ,

(6 .34)

in terms of the Jacobi polynomial P
h
a '~ ) in Szegö's notation, cf. [E2, §10 .8], whereb y

n

	

k - j
a =

2
-m-1, ,B= j+m-1, h=

	

.
2

(6 .35)
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The fact that the functions (6 .33) span the whole of 7-q(E n ) follows from the dimension
relation

dim7-lk(En) _ E dim7-lj(E2m) ,
j even
0<j< k

which we shall establish by extending the proof given in [M, p . 25] for the particular case
n - 2m = 1 . First we note that the extensions to R n of the functions in 7-I (En) b y
homogeneity of degree k are precisely the harmonic polynomials H on Rn of the form

H ( x ) = E Hk-j (xi , . . . , x2m )(x2m+1 + . . . + x~)» 2

j even

0<j< k

with Hk _ j a homogeneous polynomial on Rem of degree k - j . From the requirement
that the Laplacian of H be 0 one easily finds that Hk can be prescribed arbitrarily, an d
that Hk _ 1 , . . ., H0 are uniquely determined from Hk . This implies that dim 7i (En) =
M(2m, k), where M(q, r) denotes the dimension of the space of all homogeneous polyno-
mials of degree r in q variables . As shown in [M, p. 3] ,

dim7-ij (E2m) = M(2m - 1, j) +M(2m - 1, j - 1) ,

and since M(2m, k) = Ek_o M(2m-1, i) we obtain the stated expression for dim 7-lk (En) .

For z > 0 write
m

	

m
E 11 -E 772+i =,n

	

(6 .36 )s =
=1

	

i=i

	

z

with v from (6 .24). Then s 0 a-a .e . on E, and gO = sgnv = sgns. As shown
in the first paragraph of the proof g k depends only oni + . . . + im = z(1 + s) an d

m +t + • • . + zm = z(l - s), in other words on (z, s) . In particular, gk (4) depends
only on (z, n) in view of (6 .36), and so gk belongs to 7-lk(En) as defined in the paragrap h
containing (6.33) . Accordingly, gk has (for even k > 2) a unique representation of the form

gk (4. ) =

	

Ck , j Ak , j (Z)Sj (II) ,

	

(6 .37 )
j even
0<j<k

where the constants Ck , j and the normalized functions Sj E Hi (E2m) are to be determined.
From (6 .31) we obtain since f S~ da2,n =

ak,j : = f(Akj (z)si ())2 da( )

1

B(m, n/2 - m) 0f (A k, j (z
))

2zm-i (1 - z)n/2-m-id.z .

(6 .38)



MfM Ø:1

	

4 3

Inserting (6 .34), (6 .35) and writing h = (k - j)/2 we obtain (cf. [E2, §10 .8] )

2-~-~-t

	

1

ak,j = B(m , n/2 - m)

	

(Ph«'ß)(t))2(1 - t)a (1 + t)ßdt1

1'(n/2)F(h+n/2-m)F(k-h+m)
F(n/2-m)(m - 1)!h! (k+n/2- 1)F(k -h + n/2 - 1 )

Next we determine Si (q) . Because gkO depends only on (z, s), as mentioned afte r
(6 .36), it follows by the uniqueness of the representation (6.37) that Si depends only o n
s and so is a polynomial in s of degree j/2 . Applying (6 .5) with n, m, , z replaced by
2m, m, q, (1 + s), respectively, to S1 (17) as a function of s, we obtain, noting that Si is an
eigenfunction to -A2m corresponding to its jth eigenvalue j (j + 2m - 2) :

2 d 2 S i

	

dSj

	

1
(1 - s)	

ds2
-ms

ds
+

4j (j
+ 2m - 2)Sj = 0

	

(6 .40)

with the normalized solution

i
Si ( 17) = bj z

Pj /2(m + 1, s) ,

where Pj/2 (m + 1, s) denotes the (generalized) Legendre polynomial in dimension m + 1
and of degree j/2, cf . [M, pp . 17, 21], and wher e

=	
1

bJ

	

B ( 1/2 , m/2) jil `Pj/2(m
+ 1, s)) 2(1 - s 2 )m/2-lds

_

	

1

	

_

	

(j/2)!(m-1) !
N (m + 1 ,j/2) (j+m-1)(j/2+m-2) !

with the notation N(q, r) = dim 7-1r(Eq) . Here we have used [M, p . 1], [M, Lemma 10] ,
and [M, (11), p . 4] .

From (6 .37), (6 .38), (6 .31), (6.41) we obtain (always for even k > 2 )

Ck,j = 1 J g( )Ak,j(z) Sj(77) da ( ) =
Pk'Îgk,j

	

(6 .43)

	

ak,J

	

ak,jbj
l 2

where

	

1

	

f
Pk, j =

	

A k, j (z)z m (1 - z) n /2-m- ' dz ,

	

B(m, n/2 - m )

1

	

1
gk, j =

B(1/2, m/2) f (sgn s)Pj/2(m + 1, s)(1 - s2),,,/z-tds .

(6 .39 )

(6 .41 )

(6 .42)



44

	

MfM 44 : 1

Inserting the expansion of the hypergeometric polynomial z-j/2Ak , j (z), cf. (6 .34), in pow -
ers of z and integrating term by term leads after some calculation t o

k/2 - 1 l'(j/2 +m)I'(k/2- j/2 + n/2 - m)
644

pk ' j - k/2 - j/2}

	

B(m, n/2 - m)T (k/2 + n/2)

	

( )

by use of the Pfaff-Saalschütz identity, cf . [El, p . 188] .
From (6 .40) with Sj replaced by Pj/2 (m + 1, •), cf. (6 .41), we get after integrating from

0 to 1

	

2
B ( 1/2 , m /2 ) Rk,j -

j/2 (j/2 + m- 1)
Pj/2 (m + 1, 0 )

2

= m
Pjl2_1(m + 3,0 )

according to [Be, p . 32, line 1] . Expressing Pj/2_ 1 (m + 3, •) by Gegenbauer functions and
applying [E2, §10 .9, (19)] leads to

i F(i +m/2 -I-- 1/2) 2i + m -1
Rk,j = (-1)

it~T(m /2+1) ( 2i }

for j/2 odd, while clearly qk,j = 0 for j/2 even .
From (6 .37), (6 .38), (6 .43) we obtain for even k > 2, cf . (6 .29) ,

i = (j - 2)/4,

	

(6 .45 )

llb'k 0 2 = jakg =
P k

2 , 2
	 ,jvk , j

j/2 odd ak,j bj
0<j< k

j even
0<j<k

(6 .46)

in which (6 .39), (6 .42), (6 .44), and (6 .45) can be inserted .

	

q

Remark 6.1 . The formulae obtained in Lemma 6.2 and its proof (notably (6.25), (6 .37) ,
(6 .39), and (6 .42)-(6 .46)) hold also for n = 2m (the case where f (n, m) = g(n, m), as
observed just before Lemma 6 .2) . One merely has to interpret various undefined expression s
in the obvious way, whereby ck , j = ak, j = pk,j = 0 for j < k, while ak,k = pk,k = 1 .

Theorem 6 . For any dimension n we have

1 > (n + 1)K(n) > (n + 1)x* (n) >	 1F( ~ ) - 1 (~ 0.6692) .
r

(q)

Proof The first inequality is contained in Remark 4 .2 and the second is trivial . For
even n = 2m the third inequality follows from (6 .23) and the subsequent lines since
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x* (2m) > A( f (2m, m)) in the notation of Lemma 6 .1 . For odd n = 2m + 1. use the fact
that x * (2m + 1) > A(g) with g = g(n, m) from Lemma 6.2 . Taking k = 2 in (6 .46), and
inserting (6 .39), (6 .42), (6 .44), (6.45), leads in view of (6 .25) (where X2 - X1 = n + 1) to

	

2 p2,2 g 2~2

	

4 2m +3~r( m 2~) y
(n + 1)x * (n) > (n + 1)A(g)

	

1i g211 ?

	

_
a 2,2 112

	

7rm 2m + 1

	

F(i)

22m+3

	

1

	

2>

7r 2m + 1
exp~

2m~ > rr (~
0 .6366) ,

using Stirling's formula . In order to obtain the slightly sharper lower estimate stated in the
theorem one must take also the terms in (6 .25) with k > 2 into account. In the notation
explained after (6 .13) one obtains f o r k = 4i + 2, i = 0, 1, 2, . . . ,

lim	
n+1

I1gkll2=
1

	

1
n+oo
nod ~k- A 1

	

7r l+

	1	 )(Di

	

i f

	

,
(6 .47 )

while the limit is 0 for other values of k . This is because the terms with j < k in (6 .46 )
contribute with 0 to the stated limit, while the term with j = k equals 0 unless k has the
stated form k = 4i + 2, cf . (6 .45) . It follows now by (6 .25) that

Dc+

	

n+ 1

	

2

	

( 4()i

	

2(?)i ~(2)ilim ~f (n + 1) x* (n) >

	

lim	 Ilgk II >

	

L,

	

5

	

3 f
nØd

	

i=0 n odd
k-71

	

~ i=0 (4)i

	

(Z)i

	

i .

4

	

,

	

1 5

	

2

	

1 1 . 3 . 	 1	 F(4 )= - F(4' 2' 4, - 7r F( 2' 2 ' 2 , 1) = ~ F(3) -
4

according to [El, (14), p. 61] . By the way, the same holds for even n -* co (cf. Remark
6 .1 above), and this leads to an alternative proof of (6 .23) and of the third inequality in the
present theorem for even n because it can be shown that (n + 1) 11 gk 11 2/ (k k - x1) is a strictly
decreasing function of even n for fixed k = 4i + 2 (now of course with g = g(n, n/2)) .
Unfortunately, when i > 1 (i .e ., k > 6), the corresponding function of odd n is no t
decreasing, and its values for large n are smaller than the limit in (6 .47) . The completion
of the proof of the theorem for odd n therefore requires a further analysis which we omi t
here .

	

q

Comparison of stationary values. For any measurable function f : E --> [-1, 1] we
have from Remark 4 .2 (or the above theorem)

1
A(f) < x (n) < n + 1
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We begin by comparing the particular K (n)-stationary values A ( f (n, m)) and A(g(n, m) )

from Lemmas 6 .1 and 6.2 above . In Table 1 below we list for a few pairs n, m with
1 < m < [n/2] the root a = a(n, m) of the transcendental equation Ø(a) = 0 with Ø

from (6 .11) in Lemma 6 .1, and the corresponding K(n)-stationary value A ( f (n, m)) give n
by (6 .17) . In view of Theorem 6 we also list the values of (n + 1)A(f(n, m)) (< 1) . In

the last column we list the analogous products (n + 1)A(g(n, m)) from Lemma 6 .2 (cf.
Remark 6 .1) . Entries followed by a double, resp . single, asterisk pertain to the main cas e
n = 2m, resp . n = 2m + 1, in the example in Lemma 6 .1 .

n

	

m a(n,m) A(f(n,m)) (n+1) x
A(f (n , m))

(n+1) x
A(g(n , m))

2

	

1** 0 .5000** 0 .2732** 0 .8197** 0.8197

3

	

1* 0 .3185* 0.1898* 0 .7591* 0 .705 1

4

	

1 0 .2323 0.1424 0.7119 0 .6487

4

	

2** 0 .5000** 0 .1530** 0 .7649** 0 .764 9

5

	

1 0 .1825 0.1134 0.6804 0.615 2

5

	

2* 0 .3933* 0 .1241* 0 .7445* 0 .725 2

6

	

1 0 .1502 0 .0941 0.6584 0.5930

6

	

2 0 .3237 0 .1037 0.7256 0.6989

6

	

3** 0 .5000** 0.1056** 0 .7390** 0 .7390

20

	

10** 0 .5000** 0 .0330** 0 .6931** 0 .693 1

21

	

10* 0 .4757* 0.0315* 0 .6920* 0 .691 0

50

	

25** 0 .5000** 0 .0133** 0 .6791** 0.679 1

51

	

25* 0 .4901* 0 .0131* 0 .6789* 0.6787

Table 1

By comparison of the last two columns in Table 1 it seems tha t

A(f (n, m)) > A(g(n, m)) when n > 2m .

	

(6 .48 )

(Recall that f (2m, m) = g(2m, m) .) The table f irthermore seems to indicate that, for each
dimension n (> 4), the biggest among the K (n)-stationary values A(f (n, m)) is the one
for which m = [n/2], the main case discussed after the proof of Lemma 6 .1 .

For each dimension n there are infinitely many equivalence classes (modulo isometr y
of E) of K (n)-stationary functions, cf. Remark 6 .2 below, and it seems difficult to classif y
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them, except perhaps for n = 2, where at least we have found in Theorem 5 all K(2) -
stationary functions f such that fl = 0 (probably there are no others) . For each integer
p > 2 we found that there is precisely one equivalence class of K (2)-stationary function s
f with fl = 0 such that the se t

{ E E I u(O 0), where u = Tf,

	

(6 .49)

has precisely 2p connectivity components ; and this is the class of all translates of the
function f (p, t) = sgn(cos(p8)) . The maximizing functions for K(2), i .e . the translate s
off (2, •), thus have the smallest possible number of components of the set in (6 .49) above,
namely 4 .

Remark 6.2 . For any dimension n > 2 and any integer p > 2 it can be shown by
the method from Lemma 6.2 that the function sgn(cos(p9)) is K(n)-stationary, writing
(cos 9, sin g) _ (1, 2), = (e1, . . . ,fin) (cf. Theorem 5 in case n = 2, and Lemma 6 . 2
with m = 1 in case p = 2) . But in dimension n > 3 there seem to be infinitely many
other (equivalence classes of) K(n)-stationary functions, among which certain functions
depending only on z from Lemma 6.1 . Yet another example (for n > 4) is fO =
sgn(4'142 3 4), etc .

Conjecture. For any dimension n > 2 the particular K(n)-stationary function f =
f (n, [n/2]) from Lemma 6.1 is maximizing for K(n) ; and f and -f are the only maxi-
mizing functions for K (n) up to isometry of E .

For n = 2 this conjecture is true by Theorem 5, but the case n > 2 remains open . Recall
that the isometry z H (,,,+1, . . . , . . . , transforms f(n, m) into - f (n, n - m) .
In particular, the function f (n, [n/2]) from the conjecture is equivalent (under isometry of
E) to -f(n, [n/2]) if n is even, and to -f (n, [n/2] + 1) if n is odd .

The conjecture, if confirmed, implies in view of (6 .23) that the lower estimate in Theorem
6 above is best possible in the limit as n - co .

In order to somehow support the conjecture we first observe that, for any even continuous
function u 0 on E with mean-value up = 0 (thus in particular for any minimizing functio n
u for c(n), at least if n < 4, cf. Theorem 4.4), the open set {u 0 01, cf. (6 .49), has at least
4 connectivity components if n = 2; at least 3 components if n = 3 (this uses the Jordan
curve theorem) ; and of course at least 2 components if n > 4 .

This minimal number of components of the set {u 0} is attained by the c(n)-stationar y
function u = Tf = Tf(n, [n/2]) corresponding to the K(n)-stationary function f =
f (n, [n/2]) entering in the conjecture . More generally it is attained by the c(n)-stationary
function u = Tf (n, m) from Lemma 6 .1 except if n > 4, in = 1 (in which case there
are 3 components instead of 2) . This follows easily from the parametric representatio n
(6 .2) of E = En because the unit sphere E„2 in R' is connected when m > 2, but has 2
components when m = 1 .
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For the c(n)-stationary function u = Tg(n, m) from Lemma 6.2 the number of compo-
nents of {u 0} is minimal except for n > 3, m = 1(in which case there are 4 component s
instead of 3 or 2) .

For any dimension n > 2 it seems plausible (in view of Theorem 5 and the observatio n
just before Remark 6 .2) that any maximizing function f for K (n) must lead to the smalles t
possible number of components of the set {Tf 0} ; and further that the only K (n) -
stationary functions f for which (Tf 0} has this minimal number of components are
(up to isometry of E) the functions ± f (n, m) and g(n, m) from Lemma 6.1 and Lemm a

6.2, with (n, m) as stated above ; here we appeal to the high degree of symmetry of thes e
functions . Finally, Table 1 above indicates that it is f (n, [n/2]) which is maximizing fo r
K(n) . However, no proof of the conjecture is in sight.

All I can show is that, for even n = 2m, we have A(f (n, m)) > A (f) for any measurabl e
function f depending only on z from (6 .1) and taking values in [-I, 1] ; and the sign of
equality holds only for f = + f (n, m) = + sgn z .

7 . Completion of the proof of Lemma 3 . 1

Proof of the expression for D . We may assume that K is normalized, and we begin b y
estimating D from below. Because A/1 + t > 1 + (1 - 4) for t > 0, the integrand on the
right of (3 .1) is no less than

(1 + u)

n_1
+ (1 + u) n-3

1ou1 2 (1 - 4( 1 + u ) -2 I Du l2)

>(1 + u) n- 1 + z (i + O(d + Iloull2oo)) Ioul
2

since (1 + u) -2 < (1 - d)-2 < 4 if d < ; and (1 + u) n- 3 > 1 - In - 3I lu l = 1 + 0(d) .
Inserting this estimate in (3 .1), and using the relation

(1 +u)" -1 dQ = 1 - n"21 (I + O (d))I1u 11 2

(cf. the proof of [F1, (14)]), leads to

D

	

zII o u11 2 - n2 1 1Iu11 2 + O(d+ II Vu ll 2olo)(II Vu 11 2 + 111411 2 )

V u11 2 - (n - 1 )1111 2)( 1 + O(d+ Ilou ll~)) ,

the desired lower estimate . Here we have used that

Iloull 2 + 11u11 2

	

2(11vuII 2 - (n -1)IIul1 2 )

L (7 .1 )

(7 .2)
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for d sufficiently small . In fact, by Lemma 2,

Iloull 2 - (n - 1)I1 u 11 2 =

	

~1)Iluk11 2 - ~111uo11 2
k= 2

> n+ 1

2n+1 E(~k+l)IIukII 2 - ~lIIu0II 2

> - (2n+1
+O(d2))

k=0
( Â,k + 1 ) Iluk 11 2

2(llou11 2 + 11u11 2 )

for small enough d since 1114 0 11, Il u r II = O(d) (l u ll by (3 .5), and (n + 1)/(2n + 1) > 1/2 .
For the easier estimate of D from above we use that N/1 + t < 1 + t for t > 0, and

hence by (3 .1), (7 .1), (7 .2 )

1 + D < f ((I +
u) '1 + z(1 + u)n-3 IDul 2) do-

< 1 + ( Ilvull2 - (n -1)IIu412 ) + O(d)(Iloull 2 + H u ll e )

<1+2(1+O(d))(IVu11 2 -(n

	

1)IIu11 2 ) ,

noting that (1 + u)n-3 = 1 + O(d) since lul d .

	

q

Proof of the estimate of IF1 . We may assume that K is normalized, hence v = 1 .
Consider any point x E F. Since K C B(0, 1 + d) we have for small d

Ixl < 1+d <-fi ,

for otherwise B(x, 1) \ K would contain more than half of B(x, 1), and so a > Z, con-
tradicting (for small d) a < = 0(d), a consequence e .g . of the second relation in the
lemma. - Since K D B(0, 1 - d) we have

B(0, 1) \ B(x, 1) C (K \ B(x, 1)) U (B(0, 1) \ B(0, 1 - d)) .

Because the (n - 2)-sphere 8B(0, 1) n aB(x, 1) has radius \/1 - lx/21 2 > ,/1/2, we
obtain (for x E F)

con_1fin IxI < V(B(0, 1) \ B(x, 1) )

<V(K\B(x, 1))+w,ß(1-(1-d)n )

wn (,B + nd) = O(d) ,

again by the second relation in the lemma. This shows that indeed I F = 0 (d) .

k=2
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Proof of the expression for a . Again we assume that K is normalized . Consider an
arbitrary point x E B(0, 1) . In polar coordinates R, 4 the sphere aB(x, 1) is given by an
equation of the form

R= 1+

	

E E .

Elementary estimates show that

O <x ~ - v(O 5 21x1 2 ,

	

(7 .3)

and hence

Illx - vlli
< 2 1x 1 2 ,

	

lx(O := x•ï; .

	

(7 .4 )

We now obtai n

2
-V(K \ BO, 1)) = 1-V (K \ B(x, 1)) + 1 V (B(x, 1) \ K)

wn

=
E

I( 1 + u ) n -+v) n l da

= f lu - vl E(1 + u)"-j (1 + v)j-l da
j=1

= n ll u - vll i (l + o(d + Ixl))

	

(7 .5)

because lu(4)1

	

d and IvOI <
Ix1+2 1 x 12 < 31x1 < 3by(7 .3)togetherwithx E B(0, 1) .

From the former estimate (3 .5) of I I u l I I oo together with l l u l l 2 = l l u - u i 11 2 + II u i 11 2
we easily obtain Hu i 1100 = o (II u - u 111 2 ) . From (7 .4) and the fact that I xi = I I lx ll oo is a
constant times ll lx 11 we therefore ge t

Ilulllt +Ilia -vI11 = 0 (Ilu-u111 2 +114 11 2 )

= o(Ilu -u t -1xI1 2 )

= o(Ilu-ul - lxlllllu-ut-lxll„,, )

= Iluu t -ixlll 0 ( d +lxl) -

For the second equation here we have used that u - u l is orthogonal to 7-6 in L 2 (a), in

particular to lx ; and for the last relation that Il u I I oo = d and Il u l II oo = o (II u II 2 ) = o (d 2 )

by (3 .5) . By the triangle inequality (7 .6) leads to

(7 .6 )

Il u - v iii = ll u - u l- lxlll( 1 + 0 (d +Ix I)) .

	

(7 .7)
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In order first to prove that a > 1114,0 + 0(d)) take x in F (defined in Lemma
3.1), whereby Ix' < IF I = O(d) as shown above, in particular x E B(0, 1) for small d .
Combining (7 .5) with (7 .7) after inserting Ix = 0(d) in both we get by (2 .1 )

a = nV(K~B(x,l) ) =
2

- ul- lxlll( 1 +O(d))

n
>_ 2

- 1Iu11 * ( 1 + 0(d))

in view of Definition 3, noting that ui + lx E H i .
To prove the opposite inequality we apply (3 .6) to u - u l (orthogonal to

	

We thus
find l = lx E Ni (cf . (7 .4)) such that

(l u ll * =Ilu -uill * =Ilu-ul-ixlli

	

(7 .9 )

and Ix I = O (11 lx III) = O (Ilu II *) = 0(d) . In (7 .8) the first equality sign must now b e
replaced by < while the sign > can be replaced by = according to (7 .9) .

	

E

8 . The first part of the proof of Theorem 4 . 4

The projection fk of a function f E L 2 (a) onto the kth eigenspace 7-(k of -A is given by

.fk() = JFk( , n)f(y) da (y )

in terms of the reproducing kernel Fk for 'H k determined b y

Fk (, n) = N (n, k) Pk(n, ~ 17),

	

(8 .1 )

where

N(k)=N(n,k)_
(2k + n - 2) (k + n - 3) !

(n-2)!k !

is the dimension of Nk, and Pk (n, t) = Pk (t), k = 0, 1, 2, . . ., is the kth (generalized)
Legendre polynomial in dimension n, given by Rodriques' formula (cf. [M] )

k

	

n-1

	

k
Pk(n , t) _ ( 21 P(k+2n)l) (1

- t2)32n
~t)

(l -t2 )k+n23 .
2

The polynomials Pk are mutually orthogonal with respect to the measure with densit y2 ,t-s
(1 - t) z dt w.r.t . Lebesgue measure on [-1, 11 .

(7 .8)
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In view of (8 .1) the L2(a)-norm of fk is determined by

IIfk11 2 = f ffk da =N ( k ) ff Pk( -n)f()f(n)d6( da (7)) .

	

(8 .2)

Recall that Fk (, •) = Fk (•, ) is in 7-Ik for every E E, and that f (-) = (-1) k f ( ) for
f E 7-lk . With the notation (4 .8) we thus have from (8 .2) for f E L2 (o- )

A(f) =
	 	 Ifkll2 = ff 6(07) f (O f (17) da da 07),

	

(8 .3 )
k=2 )''k- ~ 1

Ak = k(k + n - 2) being the kth eigenvalue of -A, hence 4 - Al = (k 1) (k + n - 1) ;

and
N(n, k)	

pk (n, t)

	

(8 .4 )
- 1)(k-I-n -1 )

G(t) = (n, t) _
(k=

converges in L 2 ((1 - t- 2 ) -27 dt) when n < 4, as noted in [Be, p . 25-26] . In view of the

Funk-Hecke formula (cf. p . 20 in [M] or [Be]), this amounts to the kernel (, n) H G ( • n )

being of Hilbert-Schmidt class and representable within L2 (do- (0do- (n)) as in (8 .4), now
with t replaced by • n ; and so the term by term integration in (8 .3) is justified . Moreover, T
from (4 .6) is the integral operator with the kernel G( •n), as expressed in (4 .16) in Remark
4 .5 . In the present case n < 4 this appears from the polarized form of (4.8) . (For genera l
n one may apply [Be, p . 20-23] to verify (4 .16), and hence (8 .3) above, by checking tha t
both members of (4 .16) have the same formal expansion in spherical harmonics, on accoun t
of (8 .4), now as a formal expansion . Thus it is not at the present stage that the limitatio n
n < 4 in our proof of Theorem 4 .4 is essential . )

In [Be] the function G, or rather the `full' sum

N(n, k)	
pk (n, t )~(k - 1)(k+n-1 )

G(t) = G(n, t) =

(8 .5 )
_

	

1

n-
1+G(n,t) ,

is determined explicitly by recursion with respect to the dimension n . (In the notation in
[Be] our G(n, t) is expressed as -n!_1 Ilw~! i II gn (t), where II con II denotes the surface area
of the unit sphere in R n . )

Note that G(n, •) and G(n, •) are analytic in [-1, 1[, and they approach +oo as t -~ 1
(except for n = 2, where the limits are finite) .

In the sequel we shall also need the even part H(t) and the odd part J(t) of ö(t) =
G(n, t) :

H(t) =
2

(G(t) + G(-t)) = E	
(k - 1)(k(+ n - 1) Pk (0'

	

(8 .6)
k even >2



MfM 44 :1

	

5 3

J(t) = 2 (G(t) - G(-t)) = E
(k - 1)(k(+ n - 1)

Pk(t) .

	

(8 .7 )

k odd > 3

(The even part H of G itself equals z Ila n II/Il wn_1 II times the Legendre function of th e
second kind of degree 1 in dimension n . )

Consider now any maximizing function f for K (n) . Inspired by a construction in [HH,
p . 105] we associate with each point a E E the even function f (a, •) E L" (a) which
coincides with f on the hemisphere { E E I a•4 > 0) :

.f (a, 0 = x (a •0.f(~) + x (-a •0 .f (-0,

	

EE,

	

(8 .8 )

where x (t) = 1 for t > 0, x (t) = 0 for t < 0, and so x (-t) = 1 - x (t) for all t O.

It is our aim to show that f (a, •) is maximizing for ic(n) (and hence for x * (n)) for every
a e E. (This is trivial if f is itself even, hence f (a, •) = f . )

Inserting (8 .8) in place of f in (8 .2) we easily obtain for the projection fk (a, •) of f (a, • )

on 7-lk

II .fk (a , •) II 2 = 4N(k) ff Pk (-n)x (a•Ox(a-n) .f(O ,f(n) da (O da(n )

for even k, while II fk (a , •) II = 0 for odd k . From this we derive similarly to (8 .3), using
(8 .6),

A(f(a, •))
=4JJ H (7)X(a•)x(a•n)fOf(n) da (s~) da(n) .

	

(8 .9)

Because G(t) and hence fl(t) are lower bounded (see the short paragraph between (8 .5)
and (8 .6)), Fubini's theorem applies to (8 .9), and since

4 J x(a )x(a-n)da(a) = 1 + 2 aresin (•n) ,
Jr

we obtain from (8 .3) together withG = H + J (cf. (8 .6), (8 .7))

f A(.f (a , •)) da(a) - AU) =

f f (arcsin . ii ) (• n) - J(01)) f(O f(n)da(~)da(n) •

Each f (a, .) is even and takes a .e . the values 1 and -1 only, hence A(f (a, •)) < x* (n) <

K(n) . For n < 4 we proceed to show that the right hand member of (8.10) is > 0,

and since Mi.) = ,c(n) by hypothesis, this will imply that f (a, •) is maximizing for
K(n), i .e ., A(f (a, •)) = K(n) = K*(n), for almost every a E E, and indeed for every a

(8.10)
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because the right hand member of (8 .9) is a continuous function of a by the dominate d
convergence theorem and the fact that the kernel (4, 17) H H (4 • r7) is integrable with respec t
to do. (4) do- (r7) . (This property of integrability follows easily from [Be, Prop . 2 .7] because
G and hence H are integrable w .r.t. the measure (1 - t 2 )

n 2 s
dt in view of [Be, Theore m

3 .3] . )

According to eq . (8 .10) and the above comments to it, the first part of the proof o f
Theorem 4.4 will be achieved if we can show that the kerne l

2
- aresin(4•r7) H( .77) - J( a7)

	

(8 .11 )

on E x E is positive semidefinite . Because the kernel (8 .11) depends on •17 only, thi s
amounts, by the Funk-Hecke formula [M, p . 20], to the corresponding function of t being
positive semi-definite in the sense tha t

r 1

J
l ? aresin t H(t) - J(t)

1
Pk(n, t) (1 - t 2 ) n23 dt > 0

	

(8 .12)
1 \7r.

for k = 0, 1, 2, . . . . The inequality (8 .12) is trivially fulfilled for even values of k because
the integrand then is an odd function of t . Moreover, (8 .12) holds for k = 1 because

2 n-3f J(t)P,(n, t) (1 - t) dt = 0 by (8 .7) (no term with k = 1) and because the eve n
function aresin t P1 (n, t) = t aresin t has a power series expansion for -1 < t < 1 with
exclusively non-negative coefficients . Note at this point that (cf . [Be, p . 19] )

nt 2 = Po(n, t) + (n - 1)P2(n, t )

is positive semidefinite (i .e ., the kernel n(01 ) 2 is positive semidefinite), and that any
pointwise product of positive semi-definite kernels or functions is positive semi-definite .
Finally, H is positive semi-definite in view of (8 .6) .

Thus it remains to verify (8 .12) for odd k > 3 . We distinguish the cases n even (= 2 or
4) and n odd (= 3) .

The case of even dimension n . 1° In the known case n = 2, cf. [HH], we have from
[Be, p . 35] in view of (8 .5) and subsequent line s

n-
= 1 + G(t) = 1 - (2 + aresin t)ÿl - t 2 + 2t ,

and hence
2

aresint H(t) - J(t) = 2 aresint - -t .
2

Since Pk (2, t) = Tk (t) = the kth Cebysev polynomial, the left hand member of (8 .12 )
becomes (for odd k > 3) after elementary evaluation

r1 2

	

1

	

2 r

	

4

J
1 (-aresint- _

2
t)Tk(t)(1-t )- 7dt= k2~ >0 .
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2° For n = 4 we similarly obtain from [Be]

1 1 (( rc 2' 1
G(t) =

3 - 2 \2
+aresint) (1 -2t2 ) (1 -t ) - 2 4 t,

2

	

2

	

1
jr aresint H(t) - J(t)

= 37r
aresint + 4-t .

It is known that

Pk(4, t)

	

(k± i)2 dt
Tk+1(t )

cf. [M, Lemma 13], and the left hand member of (8 .12) becomes (for odd k > 3) after
evaluations involving the substitution t = cos B and a partial integration

r t

	

2

	

1

	

2

	

8

	

1

J t (3n
aresin t + 4 t Pk (4, t) (1 - t ) z dt =

3n k2 (k I 2)2 >
0.

3° For n = 6 one obtains from [Be]

2
aresint H(t) - J(t) =

2
aresint -

1 t + 2 t
zc 57r

	

8 1- t2 3 '

but now (8 .12) breaks down already for k = 3 . It is the middle term -st/(1 - t 2 ) which
tends to -oo as t -3 1-, and thus causes the kernel (8 .11) to approach -cc on the diagonal
( = r1), showing that the kernel (8 .11) cannot be positive semidefinite .

The case n = 3 . Using again (8 .5) we obtain from [Be, p . 35]

G(t)_ - 2 - tlog(1 -t) - (3- log2) t ,

? aresint H(t) - J(t) =
Jr

I aresin t (-1 + t log 1
+

t) + Zt log(l - t2 ) + (4- - log 2) (8

.13 )

The presence of both aresin and log makes this case more complicated than the abov e
case of even dimension n, and the estimates become quite delicate, as we shall see . The
polynomials Pk (n, t) are now the classical Legendre polynomials Pk(t), and the density

(1 - t 2 ) ßz3 equals 1 . Recall that Pk satisfies the differential equatio n

((1 - t2)Pk(t)) ' + k(k + 1 )Pk( t ) = 0

	

(8 .14 )
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and is the only solution regular at t = 1 with the value Pk (1) = 1 . Also recall for k > 1
the recursion formula (cf. e .g . [Be, p . 32] )

(k + 1)Pk+l(t) - (2k + 1)tPk(t) + kPk _ 1 (t) = O .

	

(8 .15 )

From (8 .14) follows for k > 1 by integration

L I
Pk(S ) ds = k(k +

1) (1 - t 2 ) Pk(t)•

	

(8 .16)

For even k > 2 we have by partial integration since Pk(-1) = Pk(1) = 1

f

	

r 1

tP(t)dt =2- J I Pk(t)dt =2 .

From (8 .15), (8 .16) we obtain for any k > 2

(2k + 1) j t1 sPk (s) ds = (1 -
t2) (k + 2 Pk+1(t) + k	

-1
Pti_ 1 (t))

	

(8 .18 )

and hence for odd k > 3 after elementary evaluations, using (8 .17) ,

(\ Lk+ ) 1
Zlog(1-t2)tPk(t)dt=	

_
1k+2 + k-1 .

	

(8 .19 )
/

In view of (8 .16) we get for odd k

I 1 aresin t Pk (t) dt =

	

1

	

1

	

1

	

t

	

Pk (t) d t
k ( k + 1 ) n _1,/1-t2

and hence in view of (8 .15), again for odd k ,

1

	

1

	

Pk+1

	

Pk- 1

(k+ )f 11 n aresin t Pk (t) dt =	 	 (8 .20)

where for even k
1

	

1
Pk(t)

	

_1/2

)

2

'
Pk _

n J 1- t2
dt = (

-

k/2 /
,

	

(8 .21 )

as it follows from (8 .26) below by integration . We therefore obtain for even k by partial
integrations

1 J aresin t Pk(t) dt = 1 - pk ,

	

(8 .22 )
Jr

	

1

(8 .17 )

J-1 n
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log 1 + t 3 1

	

Pk

	

dt

	

2qk

	

2Pk ,- t 2

	

(t)

	

=

	

- (8 .23 )

~~

1

where (for even k)
1

	

f

	

1+t

	

tPk (t )
qk =

	

log

	

dt . (8 .24)1 - t

	

t 22n
J

1

	

31-t

Summing up, we find for odd k > 3 by partial integration, using (8 .18), (8 .22), (8 .23) ,

\

	

1

(k + 2 I J ~ aresin t log 1+~ t Pk (t) dt =
i

	

1

1

	

1

	

qk+l - 2Pk+ 1

	

qk-1 - 2 1~k-1

k+2 + k -1 +

	

k+2

	

+

	

k- 1

Combining this with (8 .13), (8 .20), (8 .19) we evaluate the left hand member of (8 .12) a s
follows for odd k > 3 in dimension n = 3 :

(k +
1 /'1

(-2
2) J

	

aresin t H(t) J(t)) Pk (t) dt =
I

\\
k+2 [qk+l -(2 + k1 Pk+1] + k	 1 [qk-I

-(Z - k+1) Pk-1],
(8 .25 )

noting that t is orthogonal to Pk (t) .

To prove that the right hand member of (8 .25) is positive for odd k > 3 we evaluate q k
from (8.24) for even k, using the known identity, cf . [El, p . 176] ,

k

Pk (cos B) = E yjyk_j cos((k - 2j)B ) ,

	

(8.26)
j=o

13

	

2j- 1
yj

	

24- . . .	
2 j
	 = (-I) (8 .27)

For even h e [-k, k] one easily finds by partial integration, invoking the Dirichlet kernel ,

rn~ J log cot2
2

cos B cos(hB)
dB = h~- 1 + h 1 1o

	

I

	

1

	

l h

In view of (8 .26), (8 .27) this leads after some calculation to the following evaluation of qk
from (8 .24) (k being even )

_

	

1/2 2 k/2 4j

	

-1/2

	

-1/2
l

	

gk- (k/2) +~ 4j2-1 (k/2+j)(k/2-j/ .

	

(8.28 )
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It is also elementary to verify the inequality

(

	

2 -
(-1/2)2

Yk/2+j Yk/2-J

	

lYk/2)

	

k/2

	

= Pk ,

cf . (8 .27), (8 .21), and we thus deduce from (8 .28) that, for even k ,

k/2 4j

	

4 3
gk?Pk~+E 4j21) -15 Pk

j= l

if k > 4, while q2 > p 2 . It follows that both terms on the right of (8 .25) are indeed
positive for odd k > 3 :

5

	

1

	

43

	

5

	

1

	

1
qk +1 -

2
+

k
Pk+1

	

15 2 3 Pk+1 = 30 Pk+1 > 0,

5

	

1 1
gk-1 -(2-k+ 1) Pk-1 ?

(45
-Pk-1 = 30 Pk-1 > 0

if k > 5, while for k = 3 :

q
5

	

1

	

7 5

-(2 - k +1)Pk-i ?
(3

-2+4)P2 = 12 P2 >

In view of the text following (8 .12) this completes the first part of the proof of Theorem
4.4 in dimension n = 3, and altogether for n < 4.

	

q

For n = 5 the proof breaks down (for the same reason as in the case n = 6 above) since

n aresin t 11(t) - j (t) - -oo as t -+ 1-, and so the kernel (8 .13) (with t = • i) is no t
positive semidefinite.

9. The second part of the proof of Theorem 4 .4

Let n < 4, and suppose by contradiction that there exists a maximizing function f for K (n )

which is not an even function. The associated minimizing function u = Tf for c(n) is
C 1 -smooth, and u 0 a .e ., sgn u = f a .e . (cf. Theorems 4 .2 and 4 .3) . Because f is no t
an even function (after correction on a null set), the open sets {u > 01 and {û < 01 mee t
(we write ûO = u(-)), and so do therefore the larger open set s

int{u > 0}, int{û < 01 .

0 .
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Consider two components U and V of int{u > 0} and of int{û < 01, respectively, such
that Un V O0. Clearly u=OonaUandù=OonaV .

For any a e E write Ea, Eå , Ea for the set of E E such that a• = 0, a . > 0,
a < 0, respectively . As in (8 .8) defin e

f(a, -) = f in Eå , f (a, •) = f in Ea- ,

	

(9 .1 )

and recall from Section 8 that f (a, •) is again maximizing for ic(n) because n < 4 (see
the lines following (8 .10)) . Applying the operator T from (4.6) we know as above that
u(a, -) := Tf(a, •) is minimizing for c(n) and hence C 1 -smooth ; that u(a, •) � 0 a.e . ; and
that sgn u (a, -) = f (a, -) a .e . Also, f (a, .) is an even function, and so is therefore u(a, •) .

The case n = 2 . On the unit circle E in R2 = C we choose a point a so that -ia E

U n v, and further that the circular distance between -ia and the first point b of aU
following - i a (in the standard orientation of E) is an irrational multiple of 7r . Note that
u > 0 a.e . in a neighbourhood of -ia (E U) and u < 0 a.e . in a neighbourhood of is
(E -V) . Hence -ia, b, and is follow each other in this order. In view of (9 .1) u(a, )
changes sign when 4 passes -ia (E Ea), while u(a, ), like uO, takes both signs in any
neighbourhood of b (E ED. It follows that the open arc from -ia to b is a component
of int{u(a, •) > 0} of length dist(-ia, b) Q7r, in contradiction with Theorem 5 or it s
corollary applied to the even minimizing function u (a, .) for c(2) .

The case n = 3 or 4. First a general observation concerning the even, minimizin g
function u(a, .) = T f (a, .) for c(n) . If u(a, .) > 0 (resp . < 0) in some open set E c E
then actually u(a, .) > 0 (resp . < 0) everywhere in E . In fact, the Euler equation (4 .14)
for u(a, ), viewed in E, reads (in the former case )

-Au(a,•)-(n-1)u(a,•)=1-J f(a, .)dcr>0.

	

(9 .2)

(Note that ff (a, .) do- = 1 would imply f (a, •) = 1 a.e . on E, hence u(a, •) > 0 on E ,
and since f u (a, .) da = 0 this would lead to u (a, •) - 0 .) It follows from (9 .2) that u(a, • )
is spherically superharmonic in E, cf. page 40, and if u(a, -) equals 0 at some point of E
then also in a neighbourhood, cf . [Br, p . 33], in contradiction with (9 .2) .

First step . We show that the two maximal domains U and V chosen in the beginning
of this section must be equal :

U = V .

Because U n V 0 this amounts to proving that V n a U= 0 and (similarly) U n a V= 0 .
Suppose there is a point

i * EVnaU. (9 .3 )

Clearly E \ U has no isolated points, and neither has aU because E has dimension n -1 > 2

and so N \ {4 } is connected for any connected open neighbourhood N of a point E N.
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There exists therefore a closed solid cone of revolution Q in Rn with opening angle < 7r/4
and with vertex at r such that * is a limit point of (int(Q n E)) n BU, hence also of
Q n (BU) \ {*} and of Q n U (interiors and boundaries of subsets of E being taken
relatively to E) . In particular, Q \ {*} meets the tangent space to E at *, hence doe s
not meet the line R* passing through 0 and V . By the separation theorem there exists
therefore a point a E E such that 4 * E Ea and

QnE\{l * }CEå.

	

(9 .4 )

Now f(a, 4) = f O = 1 a.e . in U n Eå , cf. (9 .1), and hence u(a, ) > 0 for every
E U n Eå by the above general observation . Similarly, u (a , ) < 0 for every E V n E~

because f (a, ) = f (-) = - 1 a .e . for E V n E . By continuity we obtain

u(a, e) = 0

	

(9 .5 )

because r E V n E a , cf . (9 .3), is a limit point of V n E~ and also of Q n U C U n Eû
(noting that U C E \ { *} by (9 .3), and so Q n U C Eå by (9 .4)) . It follows that

Vu(a, C) 0

	

(9 .6)

according to Lemma 9 below applied to the C 1 -smooth function -u(a, .) (which we have
just shown is positive in V n E;) . In fact, the Euler equation for the even, minimizing
function u (a, •) for c(n), considered in V n E a- , has the (constant) right hand member
-1 - f f(a, .) do- < 0, cf. the argument following (9 .2) . Moreover, since r E V n Ea
there is a small closed cap K such that * E aK and int K c V n E; , hence -u(a, •) > 0
on BK .

By the implicit function theorem it follows from (9 .5), (9 .6) that the zero set {u (a, .) = 0 }

is (in a neighbourhood of *) an (n - 2)-dimensional submanifold of E . This manifold
does not meet V n E~ (where u(a, •) < 0), and is therefore tangential to E a at r . Near
each point of Q n (8U) \ {*} the function u takes both positive and negative values, and
hence so does u(a, •) by (9 .1) because Q n (BU) \ { *} C Ea by (9 .4) . It follows that
u(a, •) = 0 in the set Q n (BU) \ { } for which r is a limit point by the definition of Q
above ; and this set Q n (BU) \ WI is non-tangential to E a at r, by (9 .4) . We have thu s
arrived at a contradiction which shows that our hypothesis of the existence of a point * a s
in (9 .3) is false, and so actually U = V, as asserted .

Second step . The Euler equation (4 .14) for u itself, considered in - V where u < 0 ,

reads
-Au-(n-1)u=-1 - fo (9 .7 )

Here 1 + fo > 0 (cf. the argument following (9 .2)), and the set

A := { E E l f~ (~) ~ -1 - fo}

	

(9 .8)
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is therefore a closed cap of spherical radius < 7r/2 (except that A = Ø if ft 0) .
Anyway, A cannot contain - V, for then the analytic function u in -V would be spherically
superharmonic in the sense of Berg in view of (9 .7), (9 .8), cf. [Be, Theorem 4 .9] ; and
since u = 0 on 8(-V) and there exists a spherically superharmonic function > 0 on a
cap containing A (cf. the proof of Lemma 9 below) it would follow from the boundary
minimum principle [Br, p . 33] that u > 0 in - V, hence u = 0 in - V, in contradiction wit h
u 0 a.e . on E by Theorem 4 .2.

We have thus proved that the connected set C A meets -V, hence also 8(- V) (com-
plements and boundaries being taken relative to E) ; for otherwise C A C -V, hence
C (-A) C V, and so C (A U (-A)) C V n (-V), showing that a(V n (-V)) > 0, in
contradiction with u < 0 in -V, u > 0 in V = U, and u 0 a .e . on E, by Theorem 4 .2 .

Accordingly we may choose a point E (a (- V)) \ A and next a point b E - V so that
2 dist(b, < dist(n, A) (< 7r) , where dist refers to the geodesic distance on E (and where
dist(n, A) :_ 7r if A = Ø) . Fix a point n* E a(-V) nearest to b . The closed cap B in E
centred at b and such that n* E aB has then spherical radius < 7r/2 and does not meet A
because

dist(b, n * ) < dist(b, n) < dist(n, A) - dist(b, n) < dist(b, A) < Tr .

From b E -V and (int B) n a(-V) = Ø (by the definition of n*) follows

intBC -V .

	

(9 .9 )

Since B c E \A there is, in view of (9 .8), a constant a > 0 such that f l O > -1- f o +a
for E B, and so the right hand member of (9 .7) is < -a in int B . We have -u > 0 in
- V, in particular in B, by (9 .9), while u = 0 on a (-V), in particular u (n*) = O. It follow s
by Lemma 9 applied to -u and the point n* E aB that Vu(n*) 0 0. Writing * _ -n*
we thus have

û(n = 0, Vû(ß*) O.

	

(9 .10 )

By the implicit function theorem * has a connected open neighbourhood N in E such tha t
No := N n [i = 0} is an (n - 2)-dimensional submanifold of N (C E), separating N
into the connected open sets N+ := N n {û > 0}, N_ := N n {û < 0} . Because it < 0
in V while it = 0 on a V we actually have it < 0 in N n v, and indeed N n V = N_ ,
whence N n aV = No . It follows that int{û > 0} has a (unique) component W such that
N n w = N+ and hence

NnaW =No=NnaU

	

(9 .11 )

(recall that U = V, as shown in the first step in the proof) ; and within N this submanifold
No separates U from W .

Because the cap -B has r = -n* on its boundary, there is a (unique) point a E E
such that a . -* = 0 and

int(-B) C Eå .

	

(9 .12)
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Hence Ea and a(-B) have the same tangent space at *, and so have No = N n 8 V
(smooth) and a(-B) because r E No and int(-B) C V, by (9 .9) .

Now consider the maximizing function ,f (a, .) for K (n) with the above a E E, cf . (9 .1) ,
and the corresponding minimizing function u(a, •) = Tf (a, .) for c(n), cf. Theorem 4 .3 .
By (9 .1) we obtain

u(a, •) > 0 in U n Eå and in W f1 E~

	

(9 .13 )

because f(a, ) = f O = 1 a.e . in the former set and f (a, ) = f O = 1 a .e . in th e
latter set where û > O . Also by (9 .1), (9 .11), and by continuity,

u(a, =0 on Z : = No\Ea .

	

(9 .14 )

In fact, for given E Z we have u(a, ) > 0, by passing to the limit in (9 .13) (consider
separately the cases 4 E Ea and E

	

To see that also u(a, ) < 0, note that, i f
E Eå , every neighbourhood of (E 8U) contains points ' E E« with u(') < 0

(by the maximality of U), hence u(a,) < 0 ; and if E E~ , every neighbourhood of
(E 0U) contains points 4' E U n E a- such that û( ') < 0 (because ù < 0 a.e . in U = V)
and so u(a, ') < O .

If the point

	

(E Ea) is a limit point of this set Z then u(a, *) = 0, and hence
V u(a, -*) 0 0 according to Lemma 9 and the Euler equation (9 .2) considered in the cap

int(-B)-C U n Eå

	

(9 .15)

in which u(a, .) > 0, cf . (9 .9), (9 .12), (9 .13), recalling that U = V as shown in the first step
in the proof. By the implicit function theorem, however, this conclusion Vu(a, *) # 0
contradicts (9 .13) according to which u(a, .) > 0 near e .g . on the geodesic on E passing
through * and perpendicular to Ea, hence also to No as noted above after (9 .12) .

Third step . We are thus left with the only possibility that there is an open cap C containe d
in N, centred at 4-*, and not meeting Z from (9 .14), whence C n No C C n Ea . Actually,

CnNo=CnEa

	

(9 .16)

because C\No is disconnected, being the union of the non-void disjoint open sets C n N+
and C n N_, cf. the text between (9 .10) and (9 .11) . Since * E a(-B), C meets int(-B )
and hence also U n Eah, by (9 .15) . Thus C n E-cl- meets U, but not aU in view of (9 .11 )
and (9 .16) . Because C n Eå is connected it follows that

CnEQ CU, C n

	

CW,

	

(9 .17 )

the latter relation by a similar argument involving the lines following (9 .11) .
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From (9 .13), (9 .17) we infer that u(a, •) > 0 in C n Eå and in C n E~ , hence in al l
of C, by continuity. By the general observation in the beginning of the proof for n > 3 i t
follows that u(a, •) > 0 in C, in particular

u(a, 4-*) > 0 .

	

(9 .18 )

Since * E Ea, that is a-'* = 0, we have a E E* .. Being a sphere of dimension n - 2 > 1 ,
E . contains points c a arbitrarily close to a . For any point c of Ev, \ {a, -a) we have
u(c,•)=Tf(c,•)=OonCnE,nE F .Inthefirst place, u(c,•)>OinCnEå nE~
by (9 .1) with c in place of a because u > 0 a .e . in this open subset of U, cf. (9 .17) . And
secondly we have u(4) < 0 and hence u(c, ) < 0 for suitable points 4 E C n n E-
arbitrarily close to any given point of C n Ea n Et = C n (SU) n E-, by the maximality
of U, cf. (9 .11), (9 .16) . It follows that

u(c, *) = 0 for c E E~ * \ {a, -a}

	

(9 .19)

because * E E a n Ea is a limit point of C n Ea n E~ . By the dominated convergence
theorem we have, using again (9 .1),

m .f (c, •)

	

.f (a , •)

	

(9 .20 )

in the weak* topology on L" (a) as the dual of L I (a) .
As mentioned in Remark 4 .5 (see also Section 8 after (8 .4)), T is an integral operator with

the kernel ) i--> G• ), G(t) being defined in (8 .4) . It follows from [Be, Theorem3 .3 ]

that G and hence G are integrable over [-1, 1] w.r.t . the measure (1 - t 2 ) iz3 dt . For fixed
E E the function H G(- •) is therefore integrable w .r.t . a by virtue of [Be, Prop . 2 .7] .

In view of (4 .16) and (9 .19), (9 .20) we therefore obtain for c - a through E~ * \ {a, -a} :

0 = u (c, *) = [T.f(c , •)](n = f G W . )f (c , ) da(e)

-+ J G (~ * • ) .f(a, ) da (4) = u ( a , * )

in contradiction with (9 .18) . When Lemma 9 below has been established, this complete s
the second part of the proof of Theorem 4 .4 . q

Lemma 9 . Let B = { E E I b• > cos p) denote a closed cap in E with centre b
E E and spherical radius p < 7r/2 . Let u : B

	

R be continuous in B and C 2 -smooth
in int B, and suppose that u satisfies

-Au-(n-1)u>a in int B

for some constant a > O . If u > 0 on 8B then

u(l;)?	 a	 C b
	 -1)>O for E B .

	

(9 .21 )
n - 1 cos p

In the case a > 0 it follows that Vu( *) 0 0 for any * E lB at which u(4*) = 0 and
Vu(C) exists in the classical sense .
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Proof. The function

v(~)=	 1	
(b.1~,

	

~E B ,n- 1 cos p

	

iiiil

satisfies v = 0 on 8B and

-Ov- (n -l)v =1 in int B

because the function H b is in R I and .l l = n - 1 . Thus u and v are spherically
superharmonic in int B (cf. page 40) . Replacing p by a bigger number, again < n/2, lead s
similarly to a spherically superharmonic function ii > 0 in an open cap containing B . Since

v is bounded away from 0 on B we infer from the boundary minimum principle [Br, p . 33 ]

that indeed u > 0 in int B and hence in B . (Alternatively, argue as in [Be, pp . 49-50] . )

Applying the above to u - av in place of u leads to (9 .21) . As to the last assertion of the
lemma, note that the inner normal derivative of v (as a function in B) is > 0 at any poin t
4.* e 8B, and it follows by (9 .21) that the inner lower normal derivative of u at 4* is > 0

when u(*) = 0 .

	

q
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