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Preface

These are the proceedings of the symposium held in Copenhagen, April 24-25, 1987, o n

the occasion of the centenary of Harald Bohr (April 22, 1887 -January 22, 1951) . The

symposium was arranged by the Danish Mathematical Society which appointed a n

organizing committee consisting of C . Berg, B . Fuglede, and L .-E. Lundberg. The

scientific programme comprised 13 lectures of which 11 were given by invited foreign

scholars . Former colleagues, students and friends of Harald Bohr profited from thi s
occasion to commemorate the work and personality of a Danish mathematician of hig h

international rank .

The organizing committee was happy to have the symposium opened by the rector of

the University of Copenhagen, O. Nathan, a former student of Harald Bohr during

those years of the war which they had to spend in Sweden .

The main achievement in the mathematical works of Harald Bohr - the theory of

almost periodic functions - has developed in several directions during the past sixty

years, and the papers in the present Proceedings will show some of these trends .

We take the opportunity of thanking all the participants for their presence and thei r

scientific contribution to the symposium .

The Danish Mathematical Society gratefully acknowledges financial support fro m

The Augustinus Foundation
The Carlsberg Foundatio n

The Danish lblinistery of Educatio n

The Danish Natural Science Research Counci l

The Otto Mønsted Foundation .

The Organizing Committee
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Harald Bohr
Professor and Head of Departmen t

By HANS TORNEHAVE

This is an attempt to tell about Harald Bohr as we knew him, "we" meaning students
and junior teachers . I was his student 1935-1940 and a junior teacher at the institute til l
after his death in 1951 .

The nineteenhundred and thirties were the peak of Harald Bohr's career . The almos t
periodic functions had made him known all over the mathematical world . The original
papers appeared in 1924-26 and the monograph in Ergebnisse in 1932 . He had been a
professor at the Technical University since 1914, but was called to our university i n
1930 . He got his new mathematical institute in 1934 at the 450' h anniversary of th e
university . It was a grant from the Carlsberg Foundation, and it was built as a new wing
of his brother's Institute for Theoretical Physics, which is now called the Niels Boh r
Institute .

Before he started in his new position at the university, Harald Bohr went on a tour t o
U.S .A ., where he visited Stanford University and the Institute for Advanced Study . H e
was a member of the Royal Danish Academy of Sciences and Letters from 1918, and h e
was the chairman of our Mathematical Society from 1935 .

According to Harald Bohr the textbook in mathematical analysis known as "Bohr
and Mollerup" was inspired by Jordan's Cours d'Analyse, but also Hardy : A Course of Pure
Mathematics has had some influence . Johannes Mollerup has probably been somewha t
underestimated and most of the details in the text-book have certainly been the result o f
discussions between the authors . However, Bohr wrote very much like he talked, and
we who knew him hear the echo of his voice when we read his book . Hence, we think
that Bohr is responsible for the formulation, but we also know that he was extremel y
willing to accept good ideas proposed by others .

Bohr did not give elementary lectures at the university . The students attended th e
lectures for engineering students on mathematical analysis, theoretical mechanics an d
physics, while they shared the chemistry lectures with the students of medicine . The
students had separate elementary lectures only in geometry and astronomy .

In 1933 Bohr tried just once to lecture over his textbook for the mathematics students .
The lecture went on until the fall term in 1935 . Bohr was somewhat more sedate than i n
his younger days . He had given up the habit of keeping the sponge on the floor, kicking
it ceilingwards and catching it neatly, when he had to erase something. He had been a
top soccer player, expert dribbler and very popular. He continued playing even as a
professor at a time when tailcoat and tophatwere standard equipment at the university .
In the thirties it was a lot more informal, although most students wore a suit and a tie at
the lectures .
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Bohr talked very fast and with a flat " a" reminiscent ofCopenhagen dialect . He used
the blackboard in a systematic way starting upper left and finishing lower right, writin g

in long horizontal lines . He supplied the lecture with many cross references whil e

moving rapidly back and forth and underlining this and that on the blackboard i n

different colors . He did not spend much time on straightforward proofs, but where a
trick was needed he demonstrated how the obvious method failed, and he also motiv-

ated the kind of trick to be used . He used many words in the text-book, but still more i n

his lectures .
For his advanced lectures Bohr always prepared a complete manuscript written b y

hand in a solid bound volume with ruled pages . If he had an interested assistant, h e

discussed the text with him, and suggestions from the assistant were quite often trie d
out in the manuscript and in the lecture . Nevertheless it happened quite often that Boh r

improvised something, and his improvisations were the best parts of his lectures . He

lectured regularly on number theory and on complex analysis, but the content of thes e
lectures varied considerably . He arranged it usually so that his assistant could continu e
the lecture in a subsequent term and talk about his own particular interests .

Mathematicians of to-day would find Bohr ' s lectures rather old-fashioned, but on e
must remember the current state of mathematics at that time . The shift from combina-

torial to algebraic topology had just started and Hilbert space and spectral theory wer e

known, but hardly in the abstract form. General topology was also known, but it ha d
not a quite definite form . Measure theory had not yet become abstract, and convexity
theory was mostly finite dimensional .

Bohr was very open for new ideas and he enjoyed the abstract points of view, but h e

did not lecture on these modern subjects although he quite often treated very moder n
subjects in brief talks, e .g . in our mathematical society . We had also lectures by Bohr ' s
friends, former pupils, young assistants etc. on such modern subjects, but before I star t

on this I must tell a little about the life at the institute .
The former institute building looks small to-day, but it was really quite ample . Abou t

20 students per year started in the compulsory combination of mathematics, physics ,

chemistry and astronomy and about half of them specialized in mathematics . The other
professors in mathematics were N . E . Nørlund and J . Hjelmslev, but NØrlund was als o
the director of the Geodetic Institute and only part time professor . He gave two lecture s
a week, sometimes on geodesy . Hjelmslev was really a genius and he contributed muc h
to the understanding of the interactions of the axioms of geometry . His lectures were
brilliant and convincing, but he did not really care about minor details, and man y

students found it hard to follow him . His assistant David Fog interpreted Hjelmslev' s
text quite well, and he was very popular with the students . Nørlund 's assistant G .
Rasch was well liked by the students who attended his exercises on differential equa-

tions, but he was dismissed some time in the thirties . He was son of a missionary and h e
became a preacher of statistics himself and did a lot to improve the statistical work i n
medicine and biology, and in the end he became a professor .
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Most students ofmathematics specialized with Bohr . His assistant J . Pal was also th e

mathematics teacher of the chemical engineering students . He was probably the firs t

jewish mathematician helped by Harald Bohr . He was Hungarian, and Bohr found hi m

in Göttingen, where he seemed more or less lost . He was interested in real and comple x

analysis, topology, convexity, formal algebra and projective geometry . He did not loo k

like a jew, and very few persons knew that he came from a jewish family, and he did no t

really like jews in general . He was religious, and he called himself a catholic . He had

very strict views on morality and on teaching, and he insisted that students should lear n

only what they were able to learn well . He was very helpful to several students including

myself, but he could be very disagreeable to some students . His exercises in connectio n

with Bohr's elementary lectures were considered a trial by most of the students .

It was unfortunate that there was too little contact between Bohr 's students and the
students who specialized with Hjelmslev or Nørlund, but it was fortunate that Bohr was

the center of much debate and activity . Many teachers of the technical university

participated in seminars arranged by Bohr and they lectured occasionally at th e

university . Among them were A . F. Andersen, Richard Petersen, Johannes Mollerup
(who died in 1937), Kaj Rander Buch,VilhelmJorgensen, Svend Lauritzen . Most of al l

Børge Jessen, who stayed with us from 1941, and Svend Bundgaard, who was with us

much of the time . Erik Sparre Andersen, Erling Følner and some more joined u s

towards the end of the thirties . A few high school teachers were also regular guests .
There were also mathematicians whom Bohr had helped to get away from Hitler ' s

Germany. Most of them stayed in Denmark only for a short time, but Werner and Käte

Fenchel came for good, and Otto Neugebauer was here for many years . He started ou r

tradition of history of science . Olaf Schmidt and Asger Aaboe were his pupils .

The physicists had even more guests and there was fraternization between the two
populations . Hevesy did chemistry and biology and talked Hungarian with K . Frisch

and Meitner told us about their discoveries . The brothers Bohr talked much with eac h

other, but always quite in private . It was very obvious that they were great friends .

Occasionally, we also exchanged some small talk with Niels Bohr, but seldom with bot h

brothers simultaneously .

An important event was the big lecture series in 1936/37 on almost periodic func-

tions . Jessen lectured and Bohr was the most eager commentator . Most of the mathe-

maticians mentioned above were in the audience and also some students . The lectur e

included the generalizations to Abelian groups and the theory of analytic almost

periodic functions, but not the generalizations to Lebesgue-integrable functions . These

were investigated very thoroughly shortly afterwards by Bohr and Følner in a large

joint paper and in Folner's thesis. Følner and Jessen collected a nearly complete

bibliography of almost periodic functions, and it was during this work that Følner

found Bogoliubov ' s second proof of the approximation theorem .
It has been said that everybody in Hilbert ' s Göttingen discussed everything wit h

everybody else, while nobody in Poincaré ' s Paris discussed anything with anybody else,
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and Bohr was as much influenced by Göttingen as Nørlund by Paris . Bohr was muc h
attached to Landau, and he quoted occasionally some of Landau 's deprecating remark s
about Hilbert, but he really also admired Hilbert very much . It was probably one of th e
greatest disappointments in Bohr ' s life that nobody succeeded in finding a place fo r

Landau outside Germany .

Hardy was another friend of Harald Bohr and had a lot of influence on him . Hardy
was the typical diner at high table in college, who liked the learned discussions an d
enjoyed taking a standpoint and defending it, even in matters he knew little about . H e

was the genuine English combination of the extremely refined with the quite informal ,
and he was very outspoken . Bohr has told that Hardy called his English atrocious an d
that Hardy had to teach him that it was important to say "he did not come" rather than
"he does not came " . Hardy was obviously a clever teacher, and Bohr ' s English grew
much better . His German was very efficient, but he spoke it with the flat Copenhage n

It is easy to understand that Bohr and Hardy fascinated each other . Both liked taking
standpoints on everything, but Bohr did it experimentally and his standpoints were to
be changed eventually . Hardy enjoyed defending his standpoints as a kind of sport .

Bohr and Hardy paid visits to each other and Hardy liked the Danish landscape wit h
the red cows drawing circles in the pastures .

Our mathematical society had more frequent meetings in those days ; there was n o

competition with advanced colloquia . We had a good many foreign guests . It is true

that it was not very wealthy, but even a small grant went a long way . So, we were quit e

well informed about new mathematical events . For instance we had Landau ' s assistan t

Heilbronn giving a brief series of lectures on Vinogradov's proof of the weak Goldbach
conjecture .

Bohr understood and accepted new ideas quite readily, as e .g . the theory of distribu-

tions when he heard Laurent Schwartz lecture on them shortly after the war . In hi s

teaching, however, he stuck to the classical subjects, which he knew extremely well, bu t

he encouraged the junior teachers to lecture on these modern subjects . Sv . Bundgaard
lectured in abstract algebra and on Lebesgue integration theory . Occasionally a

teacher from the technical university gave a course .Jessen has already been mentioned ,

but also Jakob Nielsen gave a course on his own subject, surface topology .
Theoretical logic was viewed by Bohr with some suspicion, and most of the othe r

mathematicians at the institute agreed with him . Kronecker ' s strict point of view was

generally respected, but Bohr and everybody else were as unwilling as Hilbert t o

abandon Cantor's paradise, and nobody was able to manage without Zermelo's result .
In the teaching Landau ' s Grundlagen der Analysis was more or less chosen as a basis .

As a matter of fact the professor of philosophy Jørgen Jørgensen was a preacher o f

formal logic . He read an introductory course in philosophy . It was compulsory for al l
university students, but they could choose between three very different teachers . Jørgen
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Jorgensen experimented with polyvalent logic, and he was also once invited to give a

special course at the institute . One student specialized in logic, and Bohr was not very

happy about it, but the student passed with nice marks . The attitude to logic change d

while Jessen was head of department, and Gutmann Madsen started lecturing on it .

Bohr enjoyed talking informally with us when we were engaged in idle discussion i n

the lunch room at the institute, and when we were discussing whatever it might be, he
quite often added some very surprising remarks . He was very observant and had a kee n

sense for all kinds of absurdities in the real world, and occasionally he enjoyed talkin g
nonsense . I remember once, when the news of the discovery of the rabbits ' "chewing

pellets" first reached us, that one student stated that hares and rabbits were reall y

ruminants, and, of course, he met intense opposition, but then Bohr appeared and h e

supported the student because, he said, he knew that these animals could not b e

imported in Sweden, and he thought that was because of the mouth and hoof disease ,
which attacked only ruminants . Then he went on telling that he once caught the mout h

and hoof disease himself and it was really quite disagreeable .

Ulla Bohr has told a story from Bohr's visit in U .S .A. shortly after the crash in 1929 .

When they first visited a private home over there, Bohr went to the bathroom and got s o
much absorbed in studying the gadgets that the company became nervous and cam e

looking for him . He was interested not only in things, however, but also in people and h e

had a deep understanding of relations between people .

Quite often Bohr celebrated the end of a term of lectures by inviting the participant s
and perhaps also some of his colleagues to a dinner in his home, and afterwards h e
might read something to us, and quite often something with overtones of absurdity . H e

has read to us from Babbitt by Sinclair Lewis and from Winnie the Pooh in the Danish

translation " Peter Plys " , and he made very similar comments on the two texts . Babbit t
was the American who lived through the boom and the crash and who said and did jus t

what everybody else said and did and understood nothing of what happened, and th e

ways of Winnie the Pooh were much the same, although his crash was less definite .

After the war Bohr became the Provost of Regensen, our closest equivalent of Trinity
College . It is governed by three persons with mock clerical titles, the provost, the vice

provost and the bell ringer, who is the students ' representative . The provost lived in

Regensen, where he had an old-fashioned, but comfortable apartment, and it was an
attractive setting for his parties .

He also owned a fine old fisherman 's cottage with leaded window-panes and a

thatched roof. It is situated on a low cliff about half a mile south of Fynshav on th e
island Als . In those days the ferry harbour was at Mommark some 6 miles farther south
and Fynshav was very peaceful . It was also on the edge of a very small village with a fe w
farms and some small houses . Bohr invited his foreign and Danish friends to stay with

him at Fynshav, and he found living quarters for them in the village . I visited him ther e
a few times during the war, when he had no foreign guests, but it was charming to
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discover that the villagers knew Landau, Hardy, Weyl, Bochner and many othe r

famous mathematicians .
We learned in Fynshav that Bohr was a nasty player of croquet and boccia, and on a

rainy day the relatives of his mother, the Adler 's, were even more nasty players of

parlour games like writing lists of as many famous persons as possible with their las t

name starting with E . Occasionally, the blackboard was carried outside on the grave l
and somebody gave a lecture . Some ofJacob Nielse n ' s results were presented there first .
He had a house about half a mile northwest of Fynshav and the two families paid many
visits to each other, Jacob Nielsen often travelling in his kayak .

Bohr ' s health was not quite satisfactory . On Als we saw how he spread sesam seed s

on his oatmeal in the mornings, and during the terms he might take a little time off fo r

recreation at Aldershvile by Bagsværd Lake, and we might have to go there to discus s
some problem with him . Nevertheless he was always quite cheerful, although he wa s
nervous now and then about the success of some effort to get somebody away fro m
Germany .

We remember Harald Bohr as extremely mild mannered, but it would be very wron g

to consider this as a symptom of weakness, and he could be incredibly stubborn whe n

he fought for a cause that he felt was just . Once, when he had to judge a docto r ' s thesis ,

which was barely acceptable, he did accept it, but at its defence he told the doctor in no
uncertain terms that it was just barely acceptable, and he did it in such a way that als o

the doctor was convinced .

As told above, Bohr enjoyed many kinds of absurdities, but he really hated th e

absurdities used by the German nazis as excuses for the worst atrocities . He also felt
that the German jews should be helped indiscriminately, since they were persecute d

indiscriminately . This led to his disagreement with På .1, who did not like jews indiscrim -
inately, and Pål left the institute . Actually there were many jews among Pål ' s bes t

friends, and the real background for the break was the strict religious-moralistic poin t

of view of Pal, who wanted everybody to follow the straight path regardless of the kind o f

provocations they met with .
Harald Bohr died, and the message of death reached us at the institute a drear y

winter morning immediately before we should start a day of examinations, which wen t

off rather badly . But Bohr had been the kind of leader who left a healthy institute ,
which lived on and thrived . He would have enjoyed being with us to-day .

Matematisk Institu t

Universitetsparken 5
DK-2100 København Ø

Denmark
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Introduction to
the Almost Periodic Functions of Bohr

By CHRISTIAN BER G

O. Introduction
The content of this paper was presented at the Centenary of Harald Bohr with th e
purpose of serving as an introduction for the many non-specialists present . It is ou r

hope that this written version will incourage the reader to study the work of Harald

Bohr . The collected mathematical works appeared in 1952, cf [8], and at the occasio n

of the Centenary his mathematical papers with a pedagogical aim-written in Danish -
have been published, cf. [9] .

In the following we will concentrate on Bohr ' s main results about almost periodi c
functions, but we shall briefly indicate how he was led to the theory and how it later

merged into the theory of harmonic analysis on locally compact abelian groups . Th e
so-called Bohr compactification of a group has become a standard concept in harmonic

analysis .
The readers interested in a further study of almost periodic functions are referred t o

the many monographs on the subject, e .g . Amerio and Prouse [1], Besicovic [3], Boh r

[7], Corduneanu [10], Maak [Ill . A complete bibliography on almost periodic func-

tions from 1923 to march 1987 has been collected, see [13] .

1 . Background
Harald and the two years older brother Niels were sons of the professor of physiolog y
Christian Bohr, and from their youth they felt veneration for science and were acquaint -

ed with the scientists of the time . Harald began to study mathematics at the University

of Copenhagen at the age of 17, and already in 1910 he defended his doctoral dis-

sertation ([5]) on the summability theory of Dirichlet series, that is series of the form

an -

	

1+ I

~

a e gll °~^_

nz
n=l

	

n= 1

where (a) is a sequence of complex coefficients, and = x+ j, is a complex variable .
Jensen had shown i 1884 that there is an abscissa of convergence yo such that (1) i s
convergent for x > yo , divergent for x < y0 .

Bohr showed that there is a decreasing sequence y0 ? v ? y2

	

of abscissas o f
summability such that (1) is Cesàro summable of order r for x > y but not for x < y .

(1)
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Furthermore, the width et), = y,1- of the strip y < x < y 1 , where the series i s
summable of order r but not of order r-1, satisfie s

1?ze ?zø ~ . .
1

	

2 -

Bohr could furthermore show that the inequalities (2) were characteristic for the
sequence of summability abscissas because, for given numbers yo ? y > . . . such tha t
(2) holds, he constructed a Dirichlet series having these numbers as abscissas o f
summability . The sum of the series (1) is a holomorphic functionfin the halfplane x >
yo . By the Cesàro summability f has a holomorphic continuation to the half-plan e
x > lim y. Bohr also showed the remarkable result that lim y is characterized as

the infimum of the numbers Œfor which f has a holomorphic extension to the half-plan e
x > ce satisfying an estimate

f(x+y)

	

A+
where A,B depend on cr.

About the same time the Hungarian mathematician Marcel Riesz had examined th e
summability theory of general Dirichlet series

R „z
a n e

n= 1

where (A) is a sequence of real numbers . Bohr had also considered this general case ,
but in the dissertation he restricted the investigations to the special case of A = -log n .

As a result of his investigations on dirichlet series Bohr got into fruitful collaboratio n
with Landau in Göttingen about the Riemann zeta function .

For a period of several years partially overlapping with the first world war Bohr wa s
engaged in writing a treatise in Danish on mathematical analysis together with
professor Mollerup . Bohr knew the famous Cours d ' Analyse of Jordan from his years o f
study and he was very much influenced by it . The mathematical analysis textbook o f
Bohr and Mollerup should get an enormous influence on the teaching of mathematic s
in Denmark, and it was used from 1915 to the 1960 ' ies both at the University o f
Copenhagen and at the Technical University, although in revised editions . Further
information about the life and work of Bohr can be found in his own lecture "Lookin g
backwards" and in the memorial address by B . Jessen, both published in the collected
mathematical works [8] .

2 . Almost periodic functions
It was after the completion of the mathematical analysis textbook that Bohr took up th e
investigations which should eventually lead to his main accomplishment, the theory o f

(2 )

(3)
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almost periodic functions . The starting point was an attempt to characterize the

functions f(.) which admit a representation by a Dirichlet series (3) .

On a vertical line = xo +iy this leads to the representation of a function f(xo+y) ofa

real variabley as sum of a series

b n e')`°Y where b n = a
n= i

Such series comprise Fourier series for periodic functions with period p > 0 corres-

ponding to A = fn, n c Z . Bohr's main contribution was to give an intrinsic cha -

racterization of the class of functionsf: R - C which can be uniformly approximated
by trigonometric polynomials,

N

~ a
')'.Y

,
n= 1

where the frequences A
n

can be arbitrary real numbers, and the coefficients a
n

arbitrary

complex numbers .

He proved that the uniform closure of the trigonomtric polynomials are thos e

continuous functions which are almost periodic in a sense explained below .
Iff: R -~ C is a function of a real variable and E. > 0, then r E R is called a translatio n

number or an almost period for fcorresponding to E if

f(x+r) f(x) l LS_ E for all x E R .

A subset A Ç R is called relatively dense in R, if there exists a sufficiently big number
1 > 0 such that every interval of length l contains at least one number from A .

Finally a continuous function ,f: R - C is called almost periodic, if for every E > 0 th e
set {T. (E)} of translation numbers forf corresponding to E is relatively dense .

In other words, a continuous function f is almost periodic if to every E > 0 there corresponds a
number l = 1(E) > 0 such that any interval of length l contains at least one number r such tha t

f(x+r) f(x)I E for all x E R .

A continuous periodic function is almost periodic since a period p is a translatio n
number corresponding to any E > O . Iff is an almost periodic function which i s
non-periodic, and if 1(E) denotes the smallest possible length corresponding to E > 0 ,
then 1(E) will increase to infinity as E decreases to zero . In fact if1(E)

	

1 for all E > 0 ,

(4)
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then the interval [1,21] contains a sequence (z) such that is a translation numbe r
n.

corresponding to n. Any accumulation point for the sequence (a) is a period forf.

The first basic result in the theory is easy to prove : An almost periodic function i s

uniformly continuous and bounded .
The set f-°ofalmost periodic functions is stable under addition and multiplication ,

so ri?:T is an algebra of functions . More generally iff, . . . f : R -4 C are almost periodi c
and p : A - C is a continuous function defined on a subset A Ç C' such tha t

closure { (f (x), . . .,f (x)) I x E R} ç A,

then p(f (x), . . .,f (x)) is again almost periodic .
This is not so obvious and uses the fact that there exists for every E > 0 a relativel y

dense set of common translation numbers for f, . . .,f corresponding to E.

The principal concept for the further development of the theory is the mean value of an
almost periodic function f. Bohr proved that the number

has a limit as T tends to infinity, even uniformly for a E R. This limits is called the mea n
value off and is denoted ,A{f} .

It is easy to see that ,/Zl is a positive linear functional on

	

and iff ? 0,f 0 then

//,(f } > O . If we put

(f ,g ) = ., G { J } f o r f,g E . d4

then (-,-) is a scalar product, turning,,-einto a pre Hilbert space with the norm 1[fII =

Vff) . The exponentials cA, E R defined by e A (x) = e'~ e form an orthonormal family s o

,/d is a non-separable pre Hilbert space . It is not complete .

Withf E ,e, Bohr associated the orthogonal expansio n

f .,.~ aÂe r:~.r

;tER

where of (fey) _G{f(x)e
2~ X

} .

Sometimes A -4 a2 is called the Bohr transform off. For any finite set A of real numbers
Bessel ' s approximation theorem yield s

If 12
-

11.f~a~,e~111

	

±
A
~

(5 )

(6 )aÅl z
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showing that only countably many of the numbers a, 2 E R are different from zero .
Therefore, the orthogonal expansion (5) has only countably many non-zero terms ; it i s

called the (almost periodic) Fourier series off. The set S = ER a 0 0} is called the spectru m

off and the numbers ) E S are called the frequences off

It is furthermore easy to see that the Fourier series of a periodic function fcoincides

with the almost periodic Fourier series off.

The theory developed so far is quite elementary . The importance of the theory was

underlined by the following fundamental results, the proofs of which given by Boh r

were long and difficult .

The theorems are :

(A) The uniqueness theorem .

Iff,g E .

	

have the same Fourier series then f = g. Equivalently (eA)SER is a maxima l

orthonormal system i n

(B) Parseval 's formula.

2
If 11 2 =, R la for any f E {l/

(C) The approximation theorem .

Forf c WSJ and E > 0 there exists a trigonometric polynomial p of the form (4) such. tha t
1,f(x)-p(x)I

	

afor all x ER.

The theory outlined so far appeared in two long papers in Acta Mathematica from

1924 and 1925, see [6],I,II, comprising more than 200 pages . The results had bee n

announced in two notes in Comptes Rendus de l'Academie des Sciences, Paris 1923, se e

[8] .

The first Acta paper contains the proof of Theorem B, and Theorem A is an eas y

consequence of Theorem B . In the proof of Theorem B Bohr considered for T > 0 th e
piecewise continuous functionfT which is equal tofon [0, T[ and periodic with period

T. By Parseval's formula for periodic functions one ha s

2 dx =

where

T

IS ►f(x)
0

~j
al

L~I Ia, TI2 '

2,

a T- T Tf(x)e
in TX dx .

0
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Via a very delicate analysis Bohr obtained the result by letting T- co . In the secon d
Acta paper Bohr proved the approximation theorem using periodic functions of infi-

nitely many variables .
In 1927 Bochner gave the following very important characterization of almos t

periodic functions, cf. [4] :

A .functionf. R -* C is almost periodic if and only if it is continuous and the set of translate s
{f(x+a) la c R} has compact closure in the uniform metric .

The importance of this result lies in the fact that the compactness characterization
can be used as starting point for the more general theory of almost periodic functions o n
groups as developed by von Neumann in 1934 . From Bochne r 's result it is also obviou s

that the sum and product of almost periodic functions are again almost periodic .

Alternative proofs of the three fundamental theorems A, B, C were given shortly afte r
Bohr's work by many different mathematicians e .g . Bochner, de la Vallée Poussin,

Weyl and Wiener. This demonstrates the enormous interest the theory raised .

In a third major paper in Acta Mathematica from 1926 ([6],III) Bohr studied
analytic almost periodic functions and their corresponding Dirichlet series .

For the definition of this concept it is useful to introduce the notion of an equi-almos t
periodic family Y of continuous functions f. R -~ C, thereby meaning that the set of
common translation numbers for the functions in Ycorresponding to E> 0 is relatively
dense, i .e .

fEn {zf (E)} is relatively dense for any E > 0 .

An analytic function fin a vertical strip ee < x < in the complex plane is calle d

almost periodic in the strip if the family Y= {f(x+iy) Ix E] ce,ß[} is equi-almost periodic

as functions ofy ER. It turns out that the functions in Y have the same frequences (7 )

and that the Fourier coefficient s

an (x) =
,%

; ~f(x+iy)é ' }

	

have the form a

	

for a constant a * 0, showing that the Fourier expansion has th e

	

n

	

n

form

.f(x+iy)

	

ane
Vx +y)

called the Dirichlet expansion off.

We shall not go further into the analytic almost periodic functions, which in a sens e

was the goal of Bohr' s investigations .
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3 . The Bohr compactificatio n

Let us consider the theory from another point of view.

The continuous group characters of the real line, i .e . the continuous homomor-
phisms of (R,+) into (T, •), where

T= {zEC~ IzI =1} ,

are precisely the functions (eÅ)Å ER . The coarsest topology on R for which these functions

A c R are continuous, is strictly coarser than the ordinary topology . We propose t o
call it the Bohr topology . With the Bohr topology the real line is organized as a topologica l

group, and a basis for the neighbourhoods of zero is given by the following set s

e' Â' z -1 < s, . . ., el~„ T-1 < b} ,

where m E N, 7t1 , . . .,7~ E R and â> 0 are arbitrary .

The real line with the Bohr topology is not compact, not even locally compact, but i t

can be compactified . Let TA. be a copy of the circle group for each A E R and le t

J : R ~kR T

j (x) = (ea (x))ÅER- (ezk')
ÂER '

The product set is a compact group under the product topology . The mapping j i s

clearly a homeomorphism of R with the Bohr topology onto the image j(R) . The
closure of j(R) is a compactification of R with the Bohr topology, called the Boh r
compactification of R and denoted /3(R), i .e .

~(R) = .7 (R) ,

which is a compact group . In the sequel we identify R and j(R) .

By the approximation theorem an almost periodic function f.• R ---> C is uniformly

continuous in the Bohr topology, and therefore it has a unique continuous extension F
to the Bohr compactification . Conversely, if F: /3(R) -~ C is a continuous function on

the compact group /3(R), then it is uniformly continuous, and so is the restriction fofF

to the real line with the Bohr topology . This means that for any E > 0 there exists a
neighbourhood of zero of the form [A1, . . .,A, ;b] such tha t

1f(x+z) f(x)~

	

E for all T E [Â, . . .,a ;S] ,

but this set is an ordinary neighbourhood of zero and relatively dense as is easily seen ,

so f is actually almost periodic .

be defined by
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This shows that there is a one-to-one correspondence between the almost periodi c

functions of Bohr and the continuous functions on the Bohr compactification /3(R) .

The Bohr compactification /3(R) can be described as the set of all characters of R, i .e .

the set of all homomorphisms cp. R - T. In fact, since /3(R) is the closure of the set of

continuous characters, /3(R) consists of characters, and the fact that all character s

belong to /3(R) is an easy consequence of Kroneckers's theorem .

4. Harmonic analysis on locally compact abelian groups
Bohr's theory of almost periodic functions has many resemblances with those of Fourie r

series and Fourier integrals . During the 1930 ' ies these three theories merged into a

common theory called harmonic analysis on locally compact abelian groups . Many

mathematicians contributed to this achievement e .g . Bochner, van Kampen, Pontrya-

gin, Weil . The starting point was the theorem of Haar about the existence of a n
invariant measure on a locally compact group, now called Haar measure . With th e

publication in 1940 of Weil ' s fundamental monograph [12] the theory became widel y

known although many simplifications and refinements have appeared since then .

To every locally compact abelian group G is associated a dual group 0 . As a se t

G concists of the continuous characters of G, i .e . the continuous homomorphisms y .•

G -. T . With pointwise multiplication and the topology of uniform convergence o n

compact subsets of G it turns out that G is a locally compact abelian group . It is
customary to write (x, y) in place of y(x) for x E G, y E G .

For a continuous function f.• G -b C with compact support the Fourier transfor m

f • G --> C is defined by

f (y) = $fx) (x, y) dmG (x) for y E Ô,

and it is possible to choose the Haar measures Inc and moon G and G in such a way that

S(x)I2dmc(x) = ~ f(Y)l2dm o(Y)

G

for all suchf. This formula shows that the Fourier transformation f-~ fhas a unique

extension to an isometry of L2 (G) onto L2 (6) .
For G = T we have G ,--- Z andf(n) is the n' th Fourier coefficient, while (7) is Parseva l ' s

formula .

For G= R we have G ~ R, fis the ordinary Fourier transform and (7) is Plancherel' s

theorem .

(7)
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For G = /3(R) and an almost periodic functionf.• R - C with unique continuous
extension F: /3(R) - C to the Bohr compactification /3(R), it turns out tha t

3ß/6{f} =

i .e . the mean value off is the Haar integral of the extension F. The dual group of /3(R)
can be identified with R with the discrete topology, and P(A) = ak, the A.'th Fourie r
coefficient, while (7) is Parseval ' s formula, cf (B) in §2 .

Pontryagin's duality theorem states that the dual group of G~ can be identified with G ,
i .e . G~ = G.

Furthermore, for any locally compact abelian group G there is a Bohr compactifica-
tion /3(G), which can be realized as the compact dual group of Ô considered as a discret e
group . Again there is a one-to-one correspondence between continuous almost periodi c
functions on G and continuous functions on ß(G) . The term Bohr compactification
seems to have been introduced by Anzai and Kakutani in two papers from 1943, cf . [2] .

5 . Conclusion

We shall not attempt to describe the many generalizations and applications of th e
theory of almost periodic functions . The literature is enormous, cf. [13], and it would b e
an overwhelming task .

The other papers in this volume will shed some light on the various aspects of th e
subject and thereby show the richness and beauty of the theory initiated by Harald
Bohr .
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Almost-Periodic Functions in Banach Spaces

Byy LUIGI AMERI O

1 . Definition of almost periodic function . Elementary properties
The general theory of almost-periodic (a .p .) functions with complex values, created b y
Harald Bohr in his two classical papers published in Acta Mathematica in 1925 and
1926 [1], has been greatly developed by Weil, De La Vallée-Poussin, Bochner, Stepa -
nov, Wiener, Bogoliubov, Levitan .

Fundamental results, in the theory of a .p . linear ordinary differential equations, ar e
expressed by the theorems of Bohr-Neugebauer and of Favard [2] .

Bohr's theory was then, in a particular case, extended by Muckenhaupt [3] and,
subsequently, by Bochner [4] and by Bochner and von Neumann [5] to very genera l
abstract spaces .

The extension to Banach spaces has, in particular, revealed itself of great interest, i n
view of the fundamental importance of these spaces in theory and applications .

Let X be a Banach space ; if xEX, we shall indicate by 1x11, or by 1lxlla-, the correspond -
ing norm .

Let J be the interval -oo <t<+co and

x =f(t)

	

(1 .1 )

a continuous function (in the strong sense), defined on J and with values in X.

When t varies inJ the point x =f (t) describes, in the Xspace, a set which is called th e
range of the function f(t), indicated by Rf .

A set ECJ is said to be relatively dense (r .d .) if there exists a number l>0 (inclusio n

length) such that every interval [a, a + l] contains at least one point of E .
We shall now say that the function f(t) is almost-periodic (a.p .) if to every e>0 there

corresponds an r.d. set {r}e such tha t

SJp11f(t+ r) -f(t) 11 £

	

Vre{r}E .

	

(1 .2 )

Each rE{r} E is called an E-almost period off(t) ; to the set {r}E therefore corresponds a n

inclusion length É and it is clear that, when E- 0, the set {TI E becomes rarified, while (i n
general) l,->+ oo .

The above definition was given by Bochner and is an obvious extension of th e

definition adopted by Bohr for his theory of a .p . functions . It is, undoubtedly, in itself a
very significant definition : its real depth can actually be understood only "a posterior i " ,
from the beauty of the theory constructed on it and the importance of its applications .

The theory of a .p . functions with values in a Banach space is, in the way it is treated
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by Bochner, similar to Bohr 's theory of numerical a .p . functions : new development s

arise, as is natural, in connection with questions on compactness and boundedness .

These questions (which have been particularly studied in Italy) are of notable interes t

in the integration of a .p . functions and, more generally, in the integration of abstract

a .p . partial differential equations [6] .

Let us now recall the first properties of a .p . functions, which can be easily deduce d

from their definition .
We add that when we say thatf(t) is uniformly continuous, or bounded, or that th e

sequence {f (t)} converges uniformly etc ., we always mean that this occurs on th e
n

whole intervalj

I f(t) a .ß . f(t) uniformly continuous (u .c.) .

II f(t) a .p . Rf relatively compact (r.c .) (that is the closure Rf is compact) .

III f (t) a .p . (n = 1, 2, . . .), fn (t)

	

f(t) uniformly

	

f(t) a .ß .

IV f(t) a .p ., f' (t) uniformly continuous

	

(t) a .ß .

V x = f(t) X-a .ß ., y = g (x) with values in Y (Banach) and continuous on Rf g (f(t)) Y-a .p .

In particular:

f(t) a .p ., k>0

	

f(t)llk a .p .

2 . Bochner's criterio n

The class of a .p . functions has been characterized by Bochner by means of a compact-

ness criterion, which plays an essential role in the theory and in applications . The

starting point consists in considering, together with a given function f(t), the set of it s
translates {f(i + s)} and its closure {f(t + s)} with respect to uniform convergence .

We have then :

VI Let f(t) be continuous, from j to X. A necessary and sufficient condition for f(t) to be a .p. is

that from every sequence {sn } it may be possible to extract a subsequence {l } such that the sequenc e
{ f(t + ln )} be uniformly convergent .

A very important consequence of Bochner 's criterion is that the sum f(t) + g(t) of tw o
X a.p . functions is X - a.ß . ; the product cp(t) f(t) of f(l), X - a .ß ., by a numerical a .p . fùnctio n

:)(t), is a .p . It follows, in particular, the almost-periodicity of all trigonometric polynomials :
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l
x~ (ak E X,

Observation . Let x = f(t) ELL(J; X), with 1-p<+0c : assume in other words, that
f~l)f(t+ ~)Il d77<+ co VtEJ, where A = [0,1] .

The functionf (t) is said to be a .p . in the sense of Stepanov if to every E> 0 there corresponds an

r.d. set {z} e such tha t

S
j
up {Sd Ilf(t+z+r7) -f(t+)]) Ip do

	

v rE{aL.

	

(1 .3 )

As has been observed by Bochner, the almost periodicity in the sense of Stepanov can be reduce d

to that in the sense of Bohr (for vector valued functions) . Consider, in fact, the Banach spac e
LP (4; X) and define, VtEJ, the vector f(t) = { f(t + 7)} EL? (A ; X) . We have the n

{S Ilf(t+v+ TI) -f(t+0IP dn} "" = II f(t+z) .f(t)I Lp ra ;x;A

and the thesis follows from (1 .3) .

3. Harmonic analysis of almost periodic functions

The harmonic analysis of a .p . functions extends to these the theory of Fourier expan -

sions of periodic functions . The following statements hold :

VII (approximation theorem) . Iff(t) is a .p . there exists, VE> 0, a trigonometric polynomial PP (t)

such that

Sup lV(t) - P£ (t) II~ E.
J

VIII (theorem of the mean) . If f(t) is a .p . there exists the mean valu e

M (f(t)) =r~~ 21TSTf
(t) dt

It follows that the function of )

a (A; f) = M(f(t)e zÀE)

is defined on J; a(2 ; f) takes its values in X, as does f(t) : we shall call this function th e
Bohr transform of the a .p . function f(t) .
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It can be seen, by VII, that a(71 ;f) = 0 on the whole of ,, with the exclusion, at most, of a

sequence {A } .

The values At for which a = a (A ;f) ~ 0 are called the characteristic exponents off(t) .

The vectors a are the Fourier coefficients off(t), to which we can associate the Fourier series
n

f(t)

	

a
e~~

"` •
n n

IX (uniqueness theorem)

	

f(t) and g(t) X-a .p ., a(ßî, ; f) = a(a, ; g)

	

f(t) g(t) .

The correspondence between almost-periodic functions and their Bohr transforms is therefor e

one-to-one . A property of the transform a(A ; f) is given by the following proposition :

X a(X ; f) = 0 slim a (/l ; f) = 0, that is the Bohr transform is continuous at all points i n

which it vanishes . Furthermore :

lima(~,f)=0 , lima =0 ,
? .moo

	

nßø n

and, for Hilbert spaces :

M ( VOA 2 ) _
1 l

a
11 2

1 n

(Parseval ' s equality) .

We recall moreover that Bochner's approximation polynomial can be constructed also in th e

abstract case .

4. Weakly almost-periodic function s
Given the Banach space X, we shall call X* its dual space (a Banach space too )
constituted by the linear functionals continuous on X. IfxEX, x*EX* we shall indicat e

by <x*, x> the complex value that, through the functional x* corresponds to x, and by

IIx*II the norm of x*.

We shall say that f(t), with values in X, is weakly almost periodic (w.a .p .) if Vx*EX*, the

numerical function

<x'; f(t) >

is a .p . [7] .
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As may be seen, the definition given here has, with respect to that of an a .p . function ,

the same relation as the definition of weakly continuous function has with respect to

that of continuous function .

Its interest is particularly connected with statement XIV below. A different defini-
tion of weak almost periodicity is due to Eberlein [8] : the w.a .p . functions in the sense of

Eberlein possess notable properties, particularly in relation to ergodic theorems .

It is clear (as <x* x> < xi 11 xi) thatf(t) a .p. f(t) w.a .p . In order to indicate tha t
{x } is a sequence converging weakly to x (i .e . <x* xn >--><x* x>, Vx*EX*) we shall mak e

use of all the following notations :

x

	

or lim* x = x,
n

	

n~ø n

and xis called the weak limit (which, if it exists, is also unique) of the sequence { xn
} . Le t

us remember that, in an arbitrary Banach space, a sequence {x } can be scalarly
n

convergent (i .e . lim <xe xn > exists and is finite Vx*EX*) without necessarily being weakl y
convergent, that is without there being an x which is its weak limit . If this circumstance
is not present (i .e . if scalar convergence implies weak convergence) the space Xis said t o
he semicomplete (reflexive, and, in particular, Hilbert spaces are semicomplete) .

Let us now indicate some properties of w.a.p . functions .

XI f(t) w.a .p .

	

Ri. bounded and separable .

When necessary, we can therefore assume that Xis separable .

XII f (t) w.a .p . (n = 1, 2, . . .), 4(0 f(t) uniformly f(t) w .a .p . VI) f(t) uniformly

means that, Vx*EX*, <x* 4(0> -> <x*, f(t)> uniformly) .

XIII LetXbesemicompleteandf(t) weakly continuous. Then f(t) w.a .p .

	

V{sn } there exists a

subsequence {s in } such that {f(t + s') } is uniformly weakly convergent .

This proposition extends Bochner 's criterion to w .a .p . functions (though with a re-

strictive hypothesis on the nature of the space X) .

As we have already observed, f(t) a .p. f(t) m.a .p . It is important to note that th e

property that has to be added to weak almost-periodicity to obtain almost-periodicity i s
one of compactness. The following theorem can, in fact, be proved .

XIVf(t) w.a .p . and Rf r.c.

	

f(t) a .p .
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5 . Integration of almost periodic function s
Iff(t) is an a .p . function with values in a Banach space X, we will write, in what follows ,

F(t) = .f(rl) d~ .

	

(5 .1 )

The problem of the integration of a .p . functions in Banach spaces is of notable interest ,
also because it serves, so to say, as a model for classifying Banach spaces in relation to th e

theory of abstract a .p . equations .

	

IfX is Euclidean, then Bohr 's theorem holds : F(t) bounded

	

F(t) a .p .

For thegeneral case (X arbitrary Banach space), the almost-periodicity of F(t) has been proved by

Bochner under the hypothesis that RF is r.c .

This condition is obviously much more restrictive than that of boundedness ; it can

not however be substituted in the general case by the latter, as can be shown in the

following example (Amerio, [9]) .

Consider, in fact, the space l' of bounded sequences of complex numbers : x = { }

with Ilxll = Sup (n~ . The functionf(t) = {n -i cos (tin)} is a .p . and has the integral F(t) =

{sin (tin)} , which is bounded (1F(t)1

	

1) and weakly a .p . (see a) below), but not a .p .

One can prove nevertheless [9] that Bohr 's enunciation remains unaltered if the space X i s

uniformly convex (it holds therefore in Hilbert spaces, in Ip and LP, with 1< p<+00) .

Let us prove now the following theorems .

XV (Bochner) X arbitrary, f(t) a.p ., RF r.c.

	

F(t) a .p .
XVI (Amerio) X uniformly convex, f(t) a .p ., F(t) bounded

	

F(t) a .p .

a) Proof of the theorem XV. As RF is r.c ., F(t) is bounded :

SuPIIF(t)II = M< + ~ .

Furthermore, b'x*EX*

<x*, F(t) >1 = 1<x*, Sof(r)) dt1 > I _ ISo<x* .f(n)>d rIllIx* M .

As <x*, f(t) > is a .p., from Bohr ' s theorem it follows that <x* F(t)> is a .p . ; F(t) is

therefore w.a .p .

RF has been supposed r .c . ; our thesis follows then from theorem XIV.
b) Proof of theorem XVI . We have already proved in a) (utilizing only the bounded-

ness of F(t)) that F(t) is w.a .p . It is therefore sufficient, making use of the properties of

uniformly convex spaces, to prove that RF is r .c .
We first of all remember that a space X is called a uniformly convex (or Clarkson)
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space if in the interval 0 < 6. 2 there exists a function w(a), with 0 <w (6)
that

1, such

1 andIlxyllŒ
x2y

II

	

1 -w(a) .

	

(5 .3 )

Now we observe that from (5 .3) it follows for any x andy :

(1-w(a')) max {11x4, I YD .ß max ly{ Ilxll ,

Let us assume that the range RF is not r.c . There exist then a constant 6>0 and a
sequence {sn } such that

IIF(;) - F(sk )II , 6

	

(j�k) .

	

(5 .5 )

We can suppose that {ss} is regular with respect to f(t) and F(t), that i s

limf(t+ s) = f (t),

	

lim* F(t+s) = F (t)

	

(5 .6 )

uniformly . The last relation follows from Bochner ' s criterion (theorem XIII), notin g
that the space X is semicomplete (being reflexive) .

It also holds that

F(t + s.) = F(s~.) +

	

+ s.) d~
~

	

~

and, consequently, for j #k,

1F(t+5) - F(t+sk )II

	

F (,) F (s )II - So lf(n+sj) - f(n +sk )) d~ l

If we fix t€j, we will have, by (5 .5) and the former part of (5 .6) ,

F(t+s) - F(t+sk) II =
2

forj > k nt .

Therefore, by (5 .2) ,

F(t+i) - F(t+sk) 11 = 2M max { IF(t+,.) .II, II F(t+sk) I }

and, by (5 .4) ,

211 F(t+s .) + F(t+sk) l (1

w(2M))
max {IIF(t+,)II, IF(t+sk)II }
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0-w
(2M))

M.

From the latter part of (5 .6) it then follow s

~F (t)I=(l-w(2M)) M

and, consequently,

S~p IIF(t)I

	

(1
-w(2M))

M.

Relation (5 .7) is absurd ; from the latter part of (5 .6) follows in fact, the weak conver-
gence being uniform,

hm* F(t-n) = F(t)

and therefore

lim inf F(t-s)

	

(1
-w(2M))

M,F (t) ~

which contradicts (5 .2) .
It is of interest to note that the previously given example is, in a certain sense, the onl y

possible . Both functionsf(t) and F(t) belong in fact to the subspace co of of numerica l
sequences which converge to O . The analysis of Banach spaces Xwhich do not con tain co
is due to Pelczynski [10], and the important role of these spaces in the problem of
integration was indicated by Kadets [11] . The following theorem in fact holds :

XVII (Kadets) Assumef(t) a .p ., F(t) bounded. Then F(t) is a .p . ifand only if the space X
does not contain co .

Observation . As we have observed in §1, the above considerations are essential in th e
study of some typical equations, linear or non linear, of mathematical and theoretica l
physics ; in particular [12] : the wave equation, Schrödinger 's equation with time -
dependent operator, and, in the non linear field, the wave equation with non linear
dissipative term and the Navier-Stokes equation (assuming, in all cases, the presence o f
an a .p . forcing term f(t), and setting the problems in Hilbert or uniformly convex
spaces) .
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Almost Periodicity in Solid State Physics an d
C *Algebras

By JEAN BELLISSARD

I . Almost Periodic Physics:
Several physical phenomena involve almost or quasi periodic functions . The earlies t
examples concerned applications in Classical Mechanics . More recently almost peri-
odicity has been important in Quantum Mechanics especially in problems involvin g
conductors . Most of the corresponding examples concern Schrödinger operators with
quasi or almost periodic potential or some tight binding approximation of it . The aim
of this section is to provide physical examples taken from Solid State Physics .

I-1 . Quasi ID conductors :

In 1964 Little [Little], in a remarked article suggested that superconductivity could b e
enhanced in organic conductors . More generally, molecular conductors represent a
favourable case for such a mechanism because they may contain easily 20 to 40 tim e
more atoms than a metal in a unit cell and the intermolecular vibrations permit a n
increase of the interactions between Cooper pairs . These remarks led the community t o
search for conducting organic crystals . In the early seventies the salts of TTF (tetra-
thiofulvalene) were produced in particular the TTF-TCNQ . The corresponding mole -
cules are planar and are vertically linked together through hydrogen bridges leading t o
a very strong anisotropy and also to the existence of a conduction band in the vertica l
direction . It was soon realized however that most of them even though quite goo d
conductors at room temperature, became insulator at low temperature preventing a
superconductor transition to occur. In 1919 Jerome, Bechgaard et al . [Schultz] found a
new family of molecules, similar to the TTF salt, the so called TMTSF salts (tetrame-
thyl-tetraselena-fulvalene) providing a superconductor transition at low temperature .
Our aim here is not to consider the superconductor transition but rather to provide a n
explanation for the existence of a metal-insulator transition in the early examples .

In describing the metallic properties of such a chain, one usually ignores the electro n
interaction, and the only collective constraints comes from Paul i ' s principle leading t o
the Fermi-Dirac distribution at thermal equilibrium . It is then sufficient to investigat e
the one electron Hamiltonian . In our problem since the conductivity is essentially on e
dimensional, it will be sufficient to represent it as a 1D Schrödinger operator . Thanks t o
the periodic arrangement of the molecules, the effective potential V seen by a typical
conduction electron will be a spatially periodic function of a period "a" determined b y
the chemical forces . The Bloch theory, the Solid State analog of Floquet ' s theory,
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predicts that the energy spectrum is obtained by searching eigenfunctions satisfying

Bloch 's boundary conditions namely, in suitable units :

z
{

dx2
+ V(x)

k (x) = E(k) k (x) 'Pk(x+a) = ée a

,Pk(x)
(1 )

The electron gas will then occupy all energy levels below the chemical potential whic h

usually coincides at low temperature with the Fermi energy level EF . However in these

systems, because the chemical bonds are not as strong as in metals, the electron gas ha s

another possibility to decrease its overall energy, namely by creating a gap at the energ y
level (fig . 1) . This is called the "Peierls instability " [Peierls (55)] . It is obtained through

E

r--n
-1

mk p + n .2a
	 Æ

Fig . l : 1) left : in absence of spatial modulation of the charge density the electron gas occupies the states with

energy below the Fermi level .

2) right : if the charge density modulated itself spontaneously, a gap opens at the Fermi level, decreasing th e
overall energy of the electron gas . This modulation of the CDW is thereibre stable (Peierls instability) .

a modulation of the electron gas at a spatial frequency aF= 2 sr/kF where kF is the quas i

momentum such that E(kF) = EF. Actually the modulation usually affects the "charge

density wave " (CDW), namely the charge distribution in the electron gas along th e

chain . This effect creates an additional contribution to the effective potential with a

spatial period al, . Since in general aF is not commensurate to a the effective potential seen by th e

conduction electrons is quasi periodic. Aubry [Aubry 78] proposed, to describe this phenom -

enon, the following tight binding model, called the Almost Mathieu equation :

Ø(n+l) + Ø(n-l) + 2,ucos2a(x-an) Ø(n) = E Ø(n)

	

(2 )

In this equation, ,u represents the strength of the interaction, ca=aF/a is the frequenc y

ratio, and x is a random phase representing the arbitrariness of the origin in the crysta l

(phason modes) . We will see later on in this review that indeed if the extra modulation i s

strong enough, the corresponding quasi periodic Schödinger operator has a pure point

kp k,
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spectrum at low energy leading to exponentially localized states and zero conductivity .
It is therefore not surprising to find in general a metal insulator transition at lo w

temperature for these systems . What makes the difference between various molecules i s

the strength of the Peierls instability. In the TMTSF salts, it seems to be weak enoug h

to avoid the insulator state, and therefore to permit at low temperature the creation o f

Cooper pairs leading to superconductivity .

I-2 . 2D Bloch electrons in a uniform magnetic field :

The second example of a system described by a quasi periodic potential concerns a n

electron gas in a two dimensional perfect crystal submitted to a uniform perpendicular

magnetic field . This problem has been one of the most challenging encountered by

Solid State Physicists . The first proposal to treat it goes back to the thirties with th e

works of Landau [Landau (30)] and Peierls [Peierls (33)], who gave the lowest orde r

approximation of the effective hamiltonian at respectively high and low magnetic field .

The question of finding an accurate effective hamiltonian occupied most of the expert s
during the fifties (see [Bellissard (88a)] for a short review of that question) . The main

reason comes from the usefullness of the magnetic field in providing efficient experi-

mental tools for measuring microscopic properties of metals . The Hall effect, the d e

Haas-van Alfven oscillations, the magnetoresistance, for example provide precis e
information on the charge carriers, the shape of the Fermi surface, the band spectrum ,
etc . During the sixties and the seventies, many improvements were obtained on th e

nature of the corresponding energy spectrum . In particular D . R . Hofstadter computed

the spectrum of the so called Harper model as a function of the magnetic flux through a
unit cell, end exhibited an amazing fractal structure (see fig . 2) which is still now unde r

Fig . 2 : 1) left : the Hofstadter spectrum as a function of the parameter a .

2) right : measurement of the transition curve between normal and superconduction phase in the (T,B )

plane for a square network of filamentary superconductors (taken from [Pannetier (84)]) .



38

	

MfM 42 : 3

study, even though recent results permit to say a lot on it (see [Bellissard (88b)] for a

review) .

In order to give an idea of how quasi periodicity enters in this game let us consider a

rather simple example . Let us assume that an electron be described in a tight bindin g

approximation, by a wave function 2p on a 2D square lattice Z.In absence of magneti c

field, the energy operator may be effectively described, as a first approximation, by
means of nearest neighbours interaction, namely b y

H~ (m, n) = (m+1, n) + (m- l, n) + 2(~ (m, n+ 1) +(m, n-1) .

	

(3a )

Adding a uniform magnetic field will result in adding a U (1) gauge field, namely i n

changing the phase of each therm in (2) :

H(B)

	

(m, n) =

	

e2inAi(m,rz) .1p(m+l,n) + 2
2inA i (m-l,n)

+ e 2i.rcA ,(m, n )
2p (m n+l) + é2inA2(m,n-1) (m,n-1)

where A(m, n) represents the product of e/h (h being the Planck constant) by the line

integral of the vector potential between the point (m, n) of the lattice and the point

(m+l,n) for µ=1, or (m, n+l) if ,u=2. In particular, because the magnetic field is uniform ,

one must have :

(m,n) + A2(m+l,n) - Al (m,n+l) A 2 (m,n) = ~ = a

	

(4 )

where Øo = h/e is the quantum of flux and the flux through the unit cell . One solution

of the previous equation (4) is the " Landau gauge" namely :

A1 (m, n) = 0

	

A2 (m, n) = arre

In this case, the operator H(B) commutes with space translations along the n-direction .

Therefore the solutions of the stationary Schrödinger equation will have the form :

H(B) 2/1 = E 2/i . with

	

V (m,n) = e2nkn
Ø(n)

	

(6 )

leading to Harper's equation :

Ø(n+l) + Ø(n-l) + 2cos2ar(k-an) Ø(n) = E Ø(n)

	

(7 )

Thanks to eq . (4) "a" is a physical parameter liable to vary, and will be therefor e

(3b )

(5)
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irrational most of the time . The Harper equation appears as a discrete version of a l D

Schrödinger operator with a quasi periodic potential .

If the crystal is not a square lattice but a rectangular one, leading to anisotrop y

between the two components, the same argument leads to the Almost Mathieu equa-

tion :

Ø(n+l) + Ø(n-1) + 2µcos2z(k-crn) Ø(n) = E Ø(n)

where ii represents the anisotropy ratio of the coupling constants in the vertical versu s

the horizontal directions . This equation also represents the effective hamiltonian for a

tight binding representation of the effect of a Charge Density Wave in a lD conducto r

provided µ represents the strength of the Peierls instability (see eq . (2)) .

It is important to remark that (3b), (6) or (7) can be written in an algebraic way b y

introducing the following two unitaries U and V:

U 2~1 (m, n) = e 21 '(m-1,n)
lp (m-1,n) V 4/l (m,n) = e- 2"A, (m '" -I)

	

(rn,n-1)

	

(8 )

They satisfy the following commutation relation :

UV=e
22"

VU

	

(9 )

The Almost Mathieu hamiltonian can be written as :

H= U+ U*+µ(V+ V*)

	

(10 )

and in general it is possible to show (see §III .1) that the band hamiltonian for a 2 D

Bloch electron in a uniform magnetic field belongs to the C*Algebra generated by U

and V.

I-3 . Superconductor networks :

In the Landau-Ginzburg approach [Landau (50)] of the superconductivity, the state of

the electron gas is represented by a unique coherent wave function W(x) . It plays the

role of an order parameter like the magnetization in magnetic systems . The square

W(x) 2 of this wave function will represent phenomenologically the probability densit y

of Cooper pairs in a sort of Hartree approximation . Landau and Ginzburg postulated

that the corresponding free energy is given by :

(7 )

F=Id3 x
{ 1

(2iird 2eA(x)) W(x) 1 2 + cti

E

11f(x) 12 + ß
4 + 	 1H(X)12

} (11 )
a~-r

'IJ(X)
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where Xis the volume occupied by the superconductor, e the charge of the electron, d

the gradient operator, A the vector potential, H the effective magnetic field in the bulk ,
and a,/3 are temperature dependent phenomenological parameters . To insure th e

stability of the system, we must have ß > 0. The actual state of the system is provided by
functions minimizing the free energy . Since at temperature bigger than the critica l

temperature there is no Cooper pairs, one must assume that the minimum is reached fo r

W=O . This implies in turn that ais positive for T > Tc. If T < T, we must have a no n

zero solution, and therefore a <0 . Assuming a smooth dependence in the temperature ,

we get :

a (T) -~_ (T - T~1 (	 a) T

	

ß (T)

	

at T T

	

(12 )

In a large superconductor, the magnetic field does not penetrate in the bulk (Meissne r

effect), unless under the form of quantized flux tubes [Mermin] . The penetration

length (T) can be computed in terms of the parameters aand ßand is of order of abou t

1000Å at small T' s . This can be seen by computing the minimizing solution of (11) for a

half space for instance [Landau (50), Jones] . Near the critical temperature however th e
penetration length diverges like T

	

1- T/T) -I/2 , and W must be very small, i nSAO~ ~ (
such a way that the quartic term in (11) may be neglected . Therefore whenever the
external magnetic field is uniform, for superconductors of small size, the minimizin g

solution of (11) is such that H const . in the bulk and W satisfies the linearized

equation :

h
d - 2eA(x) } z W(x) = EW(x)

	

E =
(~T)T (T-T)

with some proper boundary condition . To get the minimum of the free energy, E must b e
the groundstate of (13) .

These remarks were the basic elements for the study of filamentary superconductor s
as initiated by DeGennes [deGennes (81)] and Alexander [Alexander], in the study o f

random mixtures of superconductors and normal metals . The solution of (13) for a thi n
filament of finite length can be obtained through the one dimensional analog of (13) and
a gauge transformation . It is therefore sufficient to know the wave function at th e
filament ends to know the solution everywhere . The compatibility conditions (curren t

conservation) at the filaments edges give rise to a sort of tight binding representation o f
the linearized Landau-Ginzburg equation (13) . For regular lattices of filamentar y
superconductors these equations have been written by Alexander, Rammal, Lubensky

and Toulouse [Rammal (83)] . For a square lattice of infinitely thin filaments of length
"a" one gets :

(13)
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H(B) i) = E tfi

	

E = 2 cos (a . (E) 1'2 ) = 2 cos (a/ (T))

	

(14 )

where p represents the sequence of values of W at the vertices of the lattice, H(B) is the

operator given by eq . (3) provided the electron charge e he replaced by the charge of a

Cooper pair 2e and e be the groundstate energy of H(B) . For real filaments, the

thickness is usually not small enough, and a correction due to the bulk must b e

introduced to fit the experiments .

Eventually the Grenoble group (Chaussy, Pannetier, Rammal and coworkers) per-

formed an experiment on a hexagonal lattice [Pannetier (83)] and a square lattic e

[Pannetier (84)] : they measured the field dependence of the critical temperature, which

is related through (13) to the corresponding groundstate energy of the linearize d

Landau-Ginzburg equation . The calculation of E is quite easy numerically and th e
comparison with the experiment is amazingly accurate (fig . 2) . Not only do we get a flu x

quantization at integer multiples of Øo (Øo
= h/2e) but also at fractional values, exactly

like in the Hofstadter spectrum . Later on the experiment has been performed on a

Penr ose lattice, a quasi periodic one [Behrooz], and also on a Sierpinsky gasket [Ghez] .

More recently, the Grenoble group realized that the measurement of the magneti c
susceptibility near the critical line is related to the derivate of E with respect to flux Ø/Ø0
thanks to the Abrikosov theory of type II superconductors [Abrikosov] . The Wilkin-

son-Rammal formula (see [Bellissard (88b)] and section III below) permits to com-

pute this derivative at each rational value of Ø/Øo Again the comparison with th e
experiment is amazingly accurate [Gandit] . The magnetic susceptibility admits a
discontinuity at each rational value of Ø/Øo in agreement with the Wilkinson-Ramma l

formula . To date this is the only experiment where these quantities about the Hofstad -

ter spectrum, can be measured so accurately .

I-4 . Normal Conductor networks :

In a normal metal, one usually explains the weak localization by the existence of a n

interference increasing the backscattering [Bergmann] . More precisely, due to the

slight disorder in the metal, one considers the electron wave as scattered by th e

randomly distributed impurities . In this process, considering a diffusion path 0, A l ,

A2 , . . ., An , O'the averaging over the positions A l , A2 , . . ., of the scatterers usually decreases

the sum of the diffusion amplitude destroying all interference . However, if 0=0 '

(backscattering), the waves following the path forward 0, A l , A2 , . . . A , 0 and backwar d

0, An, A 1	 Al , 0 have no phase difference and they always interfere whatever th e

position of the scatterers . Thus the backscattering amplitude is higher than the forward

scattering, decreasing the electric conductivity .

This effect however occurs as long as the time reversal symmetry is not broken .

Adding a magnetic field will decrease the backscattering and the magnetoresistance a s

well . The phase shift between the two forward and backward paths will be given by
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2 :re 0/h for each of these paths, namely 2 gr2eØ/h=27E0/0 with now Øo = h/2e. Thus as
0

for superconducting systems the effective charge is 2e instead but the mechanism is
completely different .

A(2 )

A(n-1 )
Fig . 3 : A typical diffusion path for a quant um wave . The phase shift between the path O . A(1), . . ., A(n), O an d

the path O, A(n), . . ., A(1), O is 2n04„ where Øo ° h/2e . The replacement of e by 2e comes from the wea k

localization effect and not from the existence of pairs as in the theory of superconductivity .

The computation of the conductivity is always tricky, in order to take into accoun t

the collision time and the phase coherence time . But this weak localization approac h

gives rise to a correction åo- to the conductivity given by [Bergmann, Douçot (85) &

(86)] :

Su(x) = -2/ gc e 2 /h C(x,x)

where C(x,x) is the Green function defined as the solution of:

{ (-id - 2~2e A(x)) 2 + L2 } C(x,x ' ) = å(x-x ')

In this formula, L, represents the phase coherence length . C(x, x) is usually called the
"Cooperon" .

One way to investigate this effect consists in looking at a filamentary conductor i n

which there are loops . If L is the typical loop size, and l the mean free path, one must

have 1<< L, in order to get weak localization results, but L Lo if one wants to observe
the interference effect . In this case, the magnetoresistance must be the same for each
magnetic field such that the flux through the loop is an integer multiple of Ø o These

oscillations have been observed first by Sharvin and Sharvin [Sharvin] on a simple loo p
and the phenomena are enhanced for a regular lattice of thin wires . Treating eq . 16 as

(15 )

(16)
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the Landau-Ginzburg equation for a lattice of filamentary superconductors, we eventu -
ally obtain the Cooperon from the value of the Green function of the Harper hamilto-
nian H(B) . The actual formula for the resistance of a regular 2D lattice was compute d
by Douçot and Rammal [Douçot (85)&(86a)] and is given by :

9c 9 s9 2

	

I=x{

	

( 1
R

	

r~shtJ

a

)+2shot(

	

)Z

	

4chg

	

H(B)

2e2LØ

(17 )

~= LØ x-
6o hS

(18)

where Z is the coordination number of the lattice, "a"is the lattice spacing, S is the cros s
section of the wires, cso is the conductivity of the corresponding perfect conductor a s
computed by neglecting the weak localization effect, and H(B) is the Harper operator
for the corresponding lattice (for a square lattice see eq . 3) . In the formula (17), t
represents the trace per unit volume of the operator in parenthesis (see § III) .

The measurement of such a resistance has been performed again by the Grenobl e
group [Douçot (85) (86b)] and the comparison with the experiment is also amazingl y
good . This is a spectacular confirmation of the validity of weak localization theory .

I-5 . Quasicrystals :
In 1984, Schechtman, Blech, Gratias, Cahn [Schechtman] found a new kind of crystal -
line order in an Al-Mn alloy giving rise to a perfect X-ray diffraction pattern with a
five-fold symmetry . Since it is well known that no cristalline group in 3D exists with a
five-fold symmetry axis [Mermin], they were led to admit that the translation invar-
iance was broken . Nevertheless because of the quality of the diffraction picture, the y
proposed a quasi periodicity atomic arrangement . In the early seventies, Penros e
[Penrose] had produced examples of quasi periodic tillings of the plane, leading t o
examples with a five-fold symmetry axis . A systematic rigorous framework of his ideas
was proposed by de Bruijn [de Bruijn] and new constructions permitted to produc e
such arrangements in 2D and 3D . One construction consists in projecting a highe r
dimensional regular lattice onto a 2D or 3D linear subspace with incommensurat e
slopes . The icosahedral symmetry observed in the original samples, is realized in Z 6 ,
supporting a representation of the icosahedral group [Duneau, Kramer] . This repre-
sentation can then be decomposed into a direct sum of two irreducible representation s
of dimension 3 corresponding to subspaces denoted by E and E . To get an example of a
quasiperiodic lattice the strip method consists in considering the "strip" obtained by
translating the unit semi open cube [0,1) 6 in R6 along the E directions, and in
projecting all points in Z6 fl I' on E along the E direction . If now E is identified wit h
R3 one gets a sublattice in 3D invariant by the icosahedral group which is obviousl y
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quasi periodic by construction . Moreover it can be shown that such a structure is als o

invariant by a discrete group of dilations generated by some power of the golden mean .

This last fact is not so surprising since the golden mean is related to the cosine of 2 z/5 .

If one represents the sites of this lattice by means of the sum of Dirac measures locate d
at each site, the diffraction pattern obtained by taking the Fourier transform of thi s

measure coincides in position and also rather well in intensity with the experimenta l

observation [Gratias] . Other kinds of quasicrystals have been observed with ten-fold ,

twelve-fold, and more recently eight-fold symmetries [Kuo] giving rise to a new area i n

crystallography, called " non Haüyan " in contrast to the standard theory originall y

formulated by Haüy .
Nevertheless we will have eventually to understand the electronic or mechanica l

properties of such structures . The phonon spectrum, namely the distribution of th e

vibrational modes is needed to compute the heat capacity of the thermal conductivity o f

the quasicrystal . The electron spectrum will help in computing the electric conductiv-
ity . Unfortunately quasi periodic Schrödinger operators in more than one dimension

are not yet understood . This is probably the reason why most of the models investigate d

up to now are one dimensional . The strip construction in one dimension from Z2 lead s

to a chain of points x on the real lines such that xn+1-xd takes on two incommensurate
n

values distributed in a quasiperiodic way. The phonon spectrum for such a crystal ca n

be described by the spectrum of the following discrete Schrödinger equation [Luck] :

lji(n+l) + lp(n-l) + A x4 (x -na) tfi(n) = E tp(n)

	

(19 )

where x represents the characteristic function of the interval A of the unit circle, x is a

random phase defined modulo 1 and a is an irrational number . It turns out that th e

spectral properties of this family of equations are fairly different from the properties o f

the Harper or Almost Mathieu equations . As was proved by Delyon and Petriti s
[Delyon (86)], for a large set of a' s (19) has no eigenfunctions converging to zero a t

infinity. Moreover, an argument due to Kadanoff, Kohmoto and Tang [Kadanoff], an d

Ostlund [Ostlund (83)] supplemented by rigorous proofs of Sütö [Siitö] and Casdagl i
[Casdagli], shows that for a the golden mean, and A big enough, the spectrum is a

Cantor set of zero Lebesgue measure and non-zero Hausdorff dimension . In particula r

the spectral measure is singular continuous . The spectrum of (19) as a function of chas
been computed numerically by Ostlund and Pandit [Ostlund] and has a simple r

structure than the Hofstadter spectrum (fig . 2) . This work suggests that the spectrum i s

a Cantor set of zero Lebesgue measure for any irrational a's . The corresponding

eigenstates for tithe golden mean were partially computed by Kadanoff, Kohmoto an d
Tang and also by Ostlund et al . [Ostlund] and exhibit strong recurrence properties in

space, being localized around an infinite sequence of points, a result which looks lik e
intermittency . In other words if the wave function is interpreted as the amplitude of the



MfM 42:3

	

45

lattice excitation in the crystal, there is an infinite sequence of clusters of atoms far awa y

from each other, in which the lattice oscillations are big whereas the other atoms ar e

essentially at rest .

The corresponding two dimensional model on a Penrose lattice has been studie d
numerically by Kohmoto and Sutherland [Kohmoto], and is likely to provide also a
Cantor spectrum with spatial intermittency . They have discovered also the existence of

infinitely degenerate eigenvalues with eigenstates localized in a bounded region (mo-
lecular states), like in the case of a Sierpinski gasket [Rammal (84)] . However essential -
ly nothing is known on the nature of the spectrum .

II . Schrödinger Operators with Almost Periodic Potential :
In this section we consider a Schrödinger operator H on R D (continuous case) or Z D
(discrete case) with D=1 in most cases and some indications for D?2, namely :

H 2p(x) = -AiP(x) + V(x) Ip(x)

	

1p(x) EL 2(RD )

or (1 )

H 1~J(x)

	

1p(x-e) + V(x)V(x)

	

1(x) E1 2 (Z D )

where V is almost periodic on RD or on Z D .

These operators exhibit three kinds of properties :

they tend to have nowhere dense spectra . But it is only a generic property in general ;

counter examples are known .

if Vis sufficiently smooth, they have a tendency to exhibit a transition between a n

absolutely continuous and a pure point spectrum when the coupling constant i s

increased . This is interpreted physically as a metal-insulator transition . In mos t

cases investigated, the eigenfunctions corresponding to the absolutely continuous
component are Bloch waves whereas the eigenstates of the pure point spectrum ar e

exponentially localized .

if the potential is not smooth, if the frequency module is not diophantine or if th e

coupling constant is critical, the spectrum has a tendency to be singular continuous .

II 1 . Nowhere dense spectra .

Historically, one of the first rigorous results concerning the gaps of a Schrödinge r
operator with a quasi periodic potential was provided by Dubrovin, Matveev and

Novikov [Dubrovin] . Investigating quasi periodic solutions of the KdV equation by
means of the inverse scattering method, they were able to construct a class of potentials
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for the 1D case giving rise to a spectrum having finitely many gaps . This result has been
recently extended by a work of Johnson and de Concini [Johnson] for the case o f
infinitely many gaps having some regularity property . This family of potentials i s
obtained by constructing a Jacobi surface depending on the spectrum and a canonica l
torus associated to that surface, in such a way that V is the restriction of an algebrai c
function on this torus to the orbit of a constant vector field on this torus . This is the
reason why such a potential is called "algebraic-geometric" . They constitute a famil y

with a finite number of parameters and for this reason it is non generic in the space o f
almost or even quasi periodic functions with the same frequency module .

THEOREM 1 : The set of almost periodic finite zone potentials with a spectrum given by T
= UPE[0 N] [E2r, E2 .+1] with E2N+1= oo is isomorphic to the Jacobian variety J(I) (namely a
2N-torus) of the Riemann surface R(T) = { (W, E) EC 2 ; W2-P21\,+l (E) = 0} ifP2n+1(E) is
the polynomial IIEip

N]
(E-E) .

In 1980, J . Moser [Moser], J. Avron and B . Simon [Avron (81)] and Chulaevski
[Chulaevski] proved a result concerning the generic character of nowhere dens e
spectra . A limit periodic function f is a continuous function on R which is a unifor m
limit of a sequence {f } of continuous periodic functions on R . If T is the period off wen

	

n
must have T +1 /T e N. The same definition applies for limit periodic sequences . Let L
be any separable Fréchet topological vector space of limit periodic functions or se-
quences, we get :

THEOREM 2 : IfD=1, there is a dense GS set L °in L such that if VEL°, the operator Hin (1 )
has a nowhere dense spectrum .

An interesting class of the limit periodic models giving rise to a nowhere dens e
spectrum, is given by Jacobi matrices of a Julia sets . The first example was provided b y
Bellissard, Bessis and Moussa [Bellissard (82d)], and concerned polynomials of degre e
2 . Their work was extended to polynomials of higher degree by Barnsley, Geronimo and
Harrington [Barnsley (83,85)] . Let P be a polynomial of degree Nwith real coefficients .
One will assume that Pis monic, namely P(z)=zn+0(z'1 ) . One considers the dyna-
mic on the complex plane C defined by :

z(n+1) = P (z(n))

	

( 2 )

In general it has finitely many attracting fixpoints including the point at infinity, eac h
having an open basin of attraction . The Julia set J(P) of P is the complement of the
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union of them. It is a compact set . The Fatou Julia theorem [Fatou, Julia] give s
necessary and sufficient condition in order that J(P) be contained in the real line an d
completely disconnected . When this happens, there is a unique probability measure pp
on J(P) called the balanced measure, which is both P and P-1 invariant . It is singula r
continuous . The general theory of orthogonal polynomials allows to associate canoni-
cally to yp a Jacobi matrix (namely an infinite tridiagonal matrix indexed by N) in the
following way: consider in L 2 (J (P), pp ) the orthogonal basis pn obtained from the set o f
monomial functions xEJ(P)->xn, nEN, by the Gram-Schmidt process . It is easy t o
show thatpn is a monic polynomial of degree n, such thatpn (P(x))=pnlv (x) andpo = l . Th e
Jacobi matrix H(P) associated to P is the matrix operator of multiplication by x in
L2 (J (P), µp), in the previous basis properly normalized . SinceJ(P) is compact it follow s
that H(P) is a bounded operator. By construction,J(P) is the spectrum of H(P) and p
is equivalent to its spectral measure . Therefore we get a class of self-adjoint operators
having a singular continuous spectrum . The remarkable property of this class lies in th e
following remark. Let D be the operator on L 2 (J(P), p) defined by D*f(x) f(P(x)) .
Due to the invariance properties of the balanced measure, it is easy to see that D is a
partial isometry such that [Bellissard (85b)] :

DD*=1 D*D =TT

	

D (r1-H(P)) -'D*= P(z)lN{P(z)1-H(P) }-1

	

(3 )

where His the projection onto the subspace generated by the polynomials of the for m

pnx, nEN. If one identifies L 2 (J (P), ft) with l2 (N) through the basis given by the pn's, D
appears as the dilation operator .13f(n) = f(Nn) . The main expected result can b e
summarized in the following conjecture (this part has been only partially solved i n
[Bellissard (85b)]) :

CONJECTURE : IfPis a monic polynomial of degree Nwith real coefficients, such that n o
critical points lie in its Julia set, its Jacobi matrix H(P) is the norm limit of a sequenc e
H (P) of periodic Jacobi matrices indexed by N, with periods N" .

If P is a polynomial such that the conclusion of the previous conjecture is true, we wil l
say that it has the property LP. LP has been rigorously proven in the following cases
[Barnsley (85)] :

THEOREM 3 : P has the property LP in the following cases :
(i) ifP(z) = z2 -Xwith A>3 .

	

_
(ii) if P(z) = a NTv(z/a) where Tv is the Nth Tchebyshev polynomial and a> V3/2 .
(iii)ifP(z)=a'''TA,(z/a)+b where N= 3 provided a � 5, lb <5orN=4 anda?2,~b 22 .
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Another class of limit periodic operator of interest is given by the so-called "hierarchi-
cal models" . The first examples were provided by Jona-Lasinio, Martinelli and Scop-
pola [Jona (84&85)], to illustrate ideas on long range tunneling effect . They got a large
class of models with nowhere dense spectra and singular continuous spectral measure .
Along the same line Livi, Maritan and Ruffo [Livi] introduced a more specific example
given by (1) with :

V(0) =0

	

V(2'(2l+1))=v(n)

	

(4 )

for which one can prove rigorously that the spectrum is nowhere dense with zer o

Lebesgue measure provided limsupp_>, (v (n+l)-v (n)) / (r (n) r (n-1)) > 2 [Bellissard

(87) ]
The most challenging problem is obviously the spectrum of the Almost Mathieu

operator H(ce„u,x) defined on 12 (Z) by (1) withV(n) = 2y cos2ir(x-na) . Here y

represents a coupling constant and can be restricted to R+without loss of generality ; a is

a real number but since H(a+l, .t, x) =H(a, .t, x) it can be seen as an clement of the toru s
T; xis in T and represents a generic translation on Z for it is shifted by awhen H(a, .t, x)

is translated by 1 on Z . When ais irrational H(cx, y, x) is periodic and the usual Bloch or

Floquet theory applies . Let I (a, lt) be the union over x in T of the spectra ofH(a, y, x) .
We first get :

THEOREM 4 : (i) If a is irrational, the spectrum of H(a, Ft, x) coincides with Z(a, ,u) .
(ii) Aub y-André's duality : for every in T, , t (a, l/µ)=I (a„u) .
(iii) Aubry-André-Thouless 's bound: the Lebesgue measure ofI(a, u) is bounded below b y
4 1-1.t I .

(i) Results from the remark that H(a+1, pu, x) is unitarily equivalent to H(cr, , x) by
translation, and is is norm continuous with respect to x . Thus its spectrum is un -
changed under the shift x->x+a, and is continuous with respect to x . The Aubry-
André duality is an argument due to Derrida and Sarma [Derrida] and used by
Aubry-André [Aubry (78&80)] to exhibit a metal insulator transition . At last Aubry
and André discovered numerically the bound on the Lebesgue measure of X(a„u) and
Thouless proved it rigorously [Thouless (83)] .

In their original work Aubry and André found also that . '(at) was a Cantor se t
whenever ais irrational . This was an extension of the work by Hofstadter on Harper' s
equation [Harper, Hofstadter] (see fig .2) . The earliest rigorous result in this contex t
was given by Bellissard and Simon [Bellissard (82c)] :

THEOREM 5 : There is a dense G,5 set Q in [0,1] xR such that if (a,p) EQ then X(a„u) i s
nowhere dense .
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Actually, one may conjecture that for u� 0 and a irrational the spectrum is nowhere
dense . In this result only a generic set of values of a' gives this property . This i s
insufficient for we do not even know whether Q has positive Lebesgue measure . Thi s
theorem has been supplemented by the following result of Sinai [Sinai] :

THEOREM 6 : Let a be an irrational number with continued fraction expansion [ao , a1 , . . . ,
n, . . .] such that n~const.n2 . There is uo>0 such that if u > 90 or if ,uo then th e
Almost Mathieu operator H(a, u, x) has a nowhere dense spectrum of positive Lebes-
gue measure .

The previous result is in a sense complementary to theorem 5, for the set of tifor which
theorem 6 holds is the complement of a dense G6 set but has a full Lebesgue measure .

Another recent result has been provided by Helffer and Sjöstrand [Helffer (87) ]
using a semiclassical analysis following a renormalization group argument of M .
Wilkinson [Wilkinson (84b)] . It concerns specifically the case 12=1, namely the Harpe r
equation .

THEOREM 7 : Let E0 be positive . There is No a positive integer such that for any irrationa l
number a' with continued fraction expansion [ao, a1 , . . ., a, . . .] such that an No th e
spectrum of the Almost Mathieu operator H(a„u=1, x) has the following structure :

(i) its convex hull is an interval of the form [-2+0 (1/a1 ), 2-0 (1/ad] .
(ii) there is an interval Jo of length 2E0+0 (1/al ) centered at an energy orderO (1/a l )

such that SpH(a, u, x ) I Jo is contained in the union of intervals J (N

	

it 0) of
length exp(-C(i)/ai ) with CO)

	

1, separated from each other by a distance of orde r
0(1/al ) .

(iii) for i±0 let f be the affine increasing map transforming J into [-2,2], then
f. (SpH(a, u, x) n J) is contained in the union of intervals

Jz,k having the same propertie s
as theJ's provided al be replaced by a2 , and so on .

In this result at each step one has to exclude a central hand Jo , J . 0 , . . ., in such a way tha t
nothing can be said on the Hausdorff measure of the spectrum which is believed to b e
1/2 from numerical calculations [Tang] . On the other hand, the restriction on a' i s
drastic for if V 1, it excludes a set of Lebesgue measure one . However it takes int o
account the self-reproducing properties seen on the Hofstadter spectrum [Hofstadter] .

A complementary result on a wider family of quasi periodic operators will be given in
section III (Theorems 6&7) .

Another interesting class of almost periodic Schrödinger operator with nowhere
dense spectrum, is provided by 1D quasicrystals . The first results were provided
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simultaneously by Kadanoff et al . [Kadanoff] and by Ostlund et al . [Ostlund] . They
considered the following model on 1 2 (Z) :

HIp(n) = fp(n+l)+ fp(n-1) + tlx[

	

, (no) ~(n)

	

u=	 	
(5 )	 2- 1

a .~ ]

Writing the eigenvalue equation Hy~(n) = E21~(n) in the form W(n+l)=M(n)W(n) where

W(n) is the vector in C 2 with components (lp(n), 2/ß(n-l)) and M(n) is a 2x2 matrix

depending upon E, they showed that if Fn is the n th Fibonacci number defined by

F =F =1 and F =F + F one obtains A(n)=M(F) M(F -1) . . . M(1) through th e
0

	

1

	

n+I

	

n

	

n-l'

	

n

	

n

following recursion :

A(n+l)=A(n-1)A(n) (6 )

If now t(n)=trA(n), one easily gets :

t(n+2) = t(n+l)t(n) - t(n-1) ( 7 )

If T(n)=(t(n-1), t(n), t(n+l)) ER 3 , (6) is equivalent to T(n+l)=G(T(n)), where

G (x,y, z) = (y, z,yz-x) . A constant of the motion is provided by I (x, y, z) = x 2 +y 2 +z 2
-xyz

which defines a hypersurface .' (E) in R 3 depending on the choice oft and E. By lookin g

at those values of E for which the sequence t (n) is bounded one gets a closed subset o f

the spectrum of H [Kadanoff, Ostlund (83)] . That it is the full spectrum is a result of

Sütö [Sütö] . Remarking that G admits some homoclinic point on .'(E) [Kadanoff] ,

Casdagli [Casdagli] described the spectrum by mean of a Markov partition and a

symbolic dynamic to prove that the spectrum is a Cantor set of zero Lebesgue measur e

and non-zero Hausdorff dimension for µ> 8(this value is probably not the optimal

one) : .

THEOREM 8 : Let H be given by (5) :

(i) The spectrum of H is given by the set of energies E such that the sequence t(n) =
tr{M(F,) M(F-1) . . . M(1)} is bounded .

n
(ii) The spectrum of H is a Cantor set of zero Lebesgue measure and non-zero

Hausdorff dimension for µ> 8 .

II-2 . The Metal-Insulator transition :

In their original work Aubry-André [Aubry (80)] gave an argument on the Almos t
Mathieu operator to show that a metal insulator transition should occur while th e
coupling constant varies from µ<1 to µ>1 . This argument called "Aubry-André' s
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duality" was originally provided by Derrida and Sarma [Derrida] and has been
interpreted by Aubry -André in the context of ID incommensurable chains . Let be a
sequence indexed by Z and solution of the Almost Mathieu equation :

2p(n+l) + 2p(n -1) + 2u cos2z(x-ncti) lp(n) = E lp(n)

	

(8 )

For y very small, a perturbation argument suggests for V an expansion of the form :

2f1(n) = e2i.rtkn

	

f(p
1 e 2in~i(x-'

P~

(9 )

Taking this ansatz seriously leads for the f(p)'s to the following equation :

f(p + 1 ) + f(p-1) + 2/,u cos2ir(k-pa) f(p) = E/ f(p)

	

( 10 )

We recognize the Almost Mathieu equation after changing ,u into 1/µ and rescaling th e
energy E into Ely. Suppose that (9) converges say uniformly with respect to x, it follow s
that the sequence {f(p) ;pEZ} is certainly square summable, and that for pt small, the
"dual equation" (10) admits E as an eigenvalue . Thus ,u=1 is critical and separates a
regime where perturbation expansion should in principle be relevant leading to Bloch -
like waves, namely extended states, whereas at high coupling the previous "duality"
argument gives eigenvalues with localized states . Moreover this argument shows tha t
exponential fall-off of the f(p) ' s, namely exponential localization, implies analyti c
dependence of the Bloch waves in the parameter x-n cr.

To go beyond this heuristic argument, one usually introduces the so-called "Lyapou -
nov exponent " y representing roughly speaking the rate of exponential increase of a
generic solution of (8) at infinity . More precisely let IF= (yß(0), lp (1)) be a vector in C 2 ,
then let 1J be the unique solution of (8) with initial conditions given by II'. Then y i s
defined by :

Y(E,y, cf, x , W) = limsugn-ø
log(I2V(n+l)12 + 1z/(n) 2 )

	

(11 )

2 n

PROPOSITION 1 : Let H be given by (8) with cr irrational :
(i) y(E, u, a, x, W) is independent of W almost surely (Lebesgue measure) .
(ii) y(E, p,, ce, x) is non-negative and independent of x almost surely (Lebesgue mea-
sure) .

(iii) Herbert-Jones-Thouless formula : [Herbert, Thouless (72)] : ifx [_n, m is the character-
istic function of the interval [-N,N], one has :

Y('"' c') = "N--

	 l

2N+ 1

	 Tr{x[
NA]

log
-

E-H1 }

	

(12)
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(iv) Aubry-André's duality formula [Aubry (80)] :

y(E„u, a ) = log u + y(E/u, 1/y, cr)

(v) Aubry-André- Herman 's bound [Aubry (80), Herman] :

y(E, u, ce) ? log t

This set of results can be used for getting an information about the nature of the spectral
measure :

THEOREM 9 : Let H be the self-adjoint operator given by (8) :
(i) Floquet-Bloch theoy : If cr is rational, H has purely absolutely continous spectrum .

(ii) .Pastur-Ishii theorem [Ishii, Pastur] : If cris irrational, for , t> 1, the absolutely contin-

uous spectrum of H is empty .

(iii) Delyyon's theorem [Delyon (87)] : If ais irrational, for µ< l,the point spectrum ofHi s
empty . If y= 1, the point spectrum if it exists is contained in the set of energies where th e

Lyapounov exponent vanishes, and the eigenstates are in l 2 (Z) but not in 1'(Z) .

In the rational case H is periodic and the usual Floquet-Bloch theory applies . I n

particular the eigensolutions of (8) are Bloch waves of the form given by (9), with a n

energy E(k) depending analytically on k . In the irrational case, due to the Aubry -
André-Herman bound, for ,u> 1 the Lyapounov exponent is positive, and the Pastur-
Ishii theorem, which is valid for any ID Schrödinger operator with random potential ,

implies the absence of absolutely continuous spectrum. The Delyon result is specific t o
the Almost Mathieu model since it uses Aubry-Andre ' s duality in an essential way.

The question is now to know whether for lt> 1 the spectrum is pure point as predicted

by Aubry-André's duality . The answer is actually no in general as it follows from th e
following result by Avron and Simon [Avron (82)] :

THEOREM 10 : Let H be given by (8) . There is a dense G S set 2' of irrational numbers i n

[0,1] of zero Lebesgue measure such that if crEX, and y> l, H has a purely singular
continuous spectrum .

This result is actually a special case of a theorem by Gordon [Gordon] which extends t o
a wide set of examples . On the other hand, the E is contained in the set of " Liouvill e
numbers " namely those irrational numbers for which there is a sequence of rational
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pn/qn such that 1 c -pn /qn f -1/qn n for all n . These numbers are so rapidly approximated by

rationals that the solution of (8) look like Bloch waves on long distances, and neve r

succeed to vanish at infinity .

CONJECTURE : There is a dense Gå set ' of irrational numbers in [0,1] such that if cr

and Et<1, H has a purely singular continuous spectrum .

However one can always argue that Liouville numbers are exceptional since they hav e

Lebesgue measure zero . Almost every number is "diophantine" namely for every a> 2 ,

there is C> 0 such that ce-p/q I ? C/qa for all p/q . Using the Kolmogorov-Arnold-

Moser method, Dinaburg and Sinai [Dinaburg] got the existence of some absolutel y

continuous spectrum with Bloch waves for models given by (1) on R . The adaptation o f

their technics led Bellissard-Lima-Testard [Bellissard (83a)] to a partial proof of th e

Aubry-André conjecture, in the sense that only a closed subset of positive Lebesgu e
measure of the spectrum exhibits a metal insulator transition . This result has bee n

recently supplemented by Fröhlich-Spencer-Wittwer [Fröhlich] and by Sinai [Sinai]

which gives :

THEOREM 11 : Let H be given by (8) and let a satisfy a diophantine condition of the form

cr-p/q I ? C/qa for all p/q for some a? 3 . Then :

(i) there is ,uo >0 such that if ,tto , the absolutely continuous component of th e
spectrum of H is non empty and is supported by a set of Lebesgue measure bigger tha n

4-o (1) as , e-> O .The corresponding eigensolutions have the form (9) with exponential -

ly decayingf(p)'s .

(ii) there is ,ttu >0 such that if, t? tte ,for almost all x, the spectrum of His pure point with

exponentially localized eigenstates .

The previous result has been extended to various examples on the real line in particular
[Dinaburg, Fröhlich] :

THEOREM 12 : Let H be given by (1) on R .

(i) If V(x)
=1nEz,,

v (n) exp (in . w x) with we R v satisfying I n . w ? C/I n a for all nEN ' and

some C> 0, a> v . We suppose V v(n) I exp (-r nD) < 00 . Then there is Eo real
such that in the interval (E0 ,cx) H admits some absolutely continuous spectrum wit h
eigenfunctions given by Bloch waves of the form (x) = exp (ikx) XEz „f (n) exp (in . w x )

where the Fourier coeliicients f(n) decrease exponentially fast .
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(ii) If V(x) = - u { cos 2~cx + cos tat (ax+ 9) } where asatisfies the diophantine conditio n
a-p/ql ~ C1g3 for alle/q, ,et is large enough, then for almost all q, the spectrum ofHin

the interval [-2,u,-2,u+O(V,u (1+a 2 ))] is pure point with exponentially localize d
eigenstates .

d

It is interesting to note that before these results, nice examples of quasi periodi c
Schrödinger operators on Z have been produced . P. Sarnak [Sarnak] investigated a
large class of non self-adjoint operators for which he has been able to compute exactly
the spectrum, and found also a transition between pure-point and continuous spec-
trum. One of the simplest examples of Sarnak operators is given by H(,u) t(2(n) = (n+l )
+ i p(n) exp (2i .7ran) . Using a KAM algorithm and an inverse scattering method W.
Craig [Craig] produced almost periodic potentials having essentially an arbitrary pur e
point spectrum . Along the same line Bellissard-Lima-Scoppola [Bellissard (83b)] an d
Pöschel [Pöschel] exhibited a class of unbounded potentials having dense point spec-
trum on R. This class was derived from the "Maryland model " [Fishman (82) ]
described by Fishman-Grempel-Prange and which is solvable: it is given by (1) on Z
with V(n) = ,utan .x(x-na) . It has dense pure point spectrum on R if is diophantine ,
whereas if xis in some class of Liouville numbers it has singular continuous spectru m
[Fishman (83), Simon (84)] (see section II-3 below) .

Another question is related to the existence of mobility edges, namely points in th e
spectrum separating pure point from continuous spectrum . This has been observed
numerically by Aubry and André [Aubry (80)], and Bellissard-Formoso-Lima-Tes-
tard [Bellissard (82b)] found an almost periodic Schrödinger operator on R for which
mobility edges do exist . However the corresponding potential is not smooth and th e
existence of mobility edges for smooth potentials is still an open question .

II-3 . Singular continuous spectra :

In 1978 Pearson [Pearson] gave an example of Schrödinger operators with a potential
vanishing at infinity with purely singular continuous spectrum . For a long time thi s
example was considered as pathological and most of the rigorous results in the litera -
ture were concerned with sufficient conditions to avoid singular continuous spectra . I n
the early eighties, when one started getting results for Schrödinger operators with
almost periodic or random potentials, the result ofAvron-Simon [Avron (82)] (theore m
10) changed completely the situation and one soon realized that singular continuou s
spectra were not exceptional, if not the rule for problems related with Solid Stat e
Physics . One of the most famous still conjectured example is proved by a 2D Bloch
electron in a perfect cubic or hexagonal or triangular crystal submitted to a uniform
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magnetic field such that the flux through a unit cell is an irrational multiple of the flux
quantum: the Hofstadter spectrum is a good example .

The argument of Avron and Simon was based on the remark that 1) in a certai n
regime, the Lyapounov exponent is positive, which by the Pastur-Ishii theorem pre -
vents absolutely continuous spectrum, and 2) that for a certain class of Liouvill e
numbers the potential is extremely well approximated by periodic potentials (Gordon
potentials), which implies by Gordon's theorem [Gordon] the absence of point spec-
trum. The very same argument applies in various situations . For example in the
Maryland model namely the equation (1) on Z with V(n) = tan r(x-na), Simon [Simon
(84) ] defined the quantity L (a) = limsup _>,. 1/n log ( sin (,7tn(41) and proved that if
L (a) _ 00, the spectrum is purely singular continuous . Fishman-Grempel-Prange [Fish -
man (83)] investigated the properties of wave functions and found a scale-invariance,
showing that they are almost localized on a very sparse sublattice which recurrently
reproduces itself at larger scales . The very same argument works as well for a potentia l
of the form V(n) = 2,u cos 2 .7r(an 2 +xn+y), for both Herman's bound (proposition 1 (o) ), if
a is irrational and Gordon 's theorem, if a belongs to a class of Liouville numbers,
apply .

In the section II-1 . we also introduced the Jacobi matrix of a Julia set, by construc-
tion, its spectral measure class is given by the balanced measure on the Julia set . If it is
completely disconnected, then one knows that this measure is singular continuous, thu s
we get another class of singular continuous spectra . For a polynomial of degree 2, P (z) =
z2 -2., the corresponding Jacobi matrix is given by [Bellissard (82d)] :

	

H7p (n) = r(n+l) zy(n +l) +r(n) lp(n-1)

	

nEN

	

2p(-1) = 0
r(O) = 0

	

r(2n) 2 +r(2n+1) 2 = A

	

r(2n-1)r(2n)=r(n)

	

(15)

THEOREM 13 : Let H be given by (15) on N . For A> 2 the spectrum of His a Cantor set of
zero Lebesgue measure and the spectral measure is purely singular continuous . An y
point E in the spectrum can be uniquely labelled by an infinite sequence (or coding )
g=(ao,61, . . .,O, . . .) of 0 's and l 's, such that E = c ( .+tr(Ä+62 . . .)"2)"2 The spectral
measure on R is the image by this map of the Bernoulli measure on the coding . Th e
corresponding eigensolution of Hip = Etp satisfies yo (2 /c n) = yTt(n) wher e
Ta= (6, 62 , . . ., a +1 , . . .) and the Lyapounov exponent vanishes on the spectrum .

This result can be extended to any polynomial . It shows in particular that wav e
functions are not well localized, in contrast with they result of the Maryland group .
Moreover they exhibit some chaotic behaviour in space since their value in the larg e
depends upon a random sequence of Os and 1s .
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In the case of 1D quasicrystals Delyon and Petritis [Delyon (86)] proved the

following result :

THEOREM 14 : Let H be given by (1) on Z with V(n) = µxA (x-nce) whereA is an interval on

the circle . For Lebesgue almost all or, and any A, the spectral measure of H is purely

continuous for Lebesgue almost all x .

Ostlund and Pandit [Ostlund (84)] computed the spectrum of this operator as a

function of a and they found a fractal structure suggesting that the Lebesgue measure of

the spectrum may be zero . This is an indication that the spectrum may be singula r

continuous .

At last hierarchical models of Jona-Lasinio, Martinelli and Scoppola [Dona (85) ]
also give rise to singular spectra . In the case of Z, the class of models described by Li ,

Maritan, Ruffo [Livi] gives [Bellissard (87)] :

THEOREM 15 : Let Hbe given by (1) on Z with . V(0) = 0 and V(2"(2k+l)) = v (n) for al l

kEZ . Iflimsup"_00 (v(n+l)-r(n))/(rr(n)-v(n-1)) > 2, H has a purely singular contin-

uous spectrum .

These various results show that singular continuous spectra occur normally in many

problems of Solid State physics . However Simon et al . [Simon (85&86)] in an argu-
ment used for localization gave a result which shows that such spectra are in a certai n

sense quite unstable under a random perturbation :

THEOREM 16 : Let H be a self-adjoint operator having a spectrum supported by a

nowhere dense set C of zero Lebesgue measure . Let V be a unit vector cyclic for H. Then

for Lebesgue almost all ,u, the operator H(µ) = H+,u(yi, .) tip has pure point spectrum

and the eigenvalues belong to the gaps of C .

This result has been verified for the Jacobi matrix H of the Julia set of a polynomial P by
Barnsley-Geronimo-Harrington [Barnsley (85)] .

III . C*Algebras of Almost-Periodic Operators :
In 1972, Coburn, Moyer and Singer [Coburn] proposed a generalization of the Inde x

formula for elliptic operators on R " with almost periodic coefficients . They introduced
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the C*Algebra of pseudodifferential operators of zeroth order with almost periodi c
coefficients, and showed that essentially all steps of the usual Index theorem were stil l
valid provided the usual trace of operators be replaced by the trace per unit volume .
This idea was exploited later on by Shubin [Shubin] who realized that the integrate d
density of states of the physicists had a very simple form in this algebraic set-up . In th e
late seventies, A . Connes generalized the construction to elliptic operators on a foliate d
compact manifold differentiating along the leaves of the foliation [Connes (82)] . I n
many cases this C *Algebra admits a natural trace, but there are foliations for which n o
trace exists . It turns out that most of the problems in Solid State physics involving
disordered media, in the independent electrons approximation have hamiltonian affil-
ated to such a C*Algebra [Bellissard (86)] . This has been used to get generic propertie s
of the energy spectrum, such as a gap labelling theorem [Bellissard (82a), (85a), (86) ,
Johnson (82), Delyon (84)], expressions of physical quantities as integrated density of
states, Lyapounov exponents, current correlations, for instance . More recently, th e
definition of a differential structure which is quite natural physically and mathemat-
ically, permited to provide a mathematical framework to give a proof of the Quantu m
Hall Effect [Bellissard (88a&b)] and a detailed study of the Hofstadter spectrum
[Bellissard (88b)] .

I-1 . Observables and the non-commutative momentum space :

To start with, let us consider the Almost Mathieu operator . In the section I, eqs . (7, 9 ,
10) we wrote it in the form :

H= U+ U*+,u(V+ V*)

where U and V were two unitaries such that :

UV = e2' V U

These two operators generate a C*Algebra .7(cr) called the rotation algebra. It has
been introduced by M. Rieffel [Rieffel] and constitutes a remarkable object in the sens e
that it is nontrivially non-commutative whenever cr is irrational . Nevertheless it is a
simple object .

More generally, let H be the Schrödinger operator H = -A + V where V is almos t
periodic on R D . The physical system described by H has no longer any translational
symmetry and nevertheless it reproduces almost itself under a large translation . On th e
other hand the translated hamiltonian H is equivalent to H in describing the system .
Therefore the whole family {H ; aE RD }is a natural set of observables . If we insist in
performing algebraic calculations, and we need them in practice, we will consider th e

(1 )

(2)
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C*Algebra generated by {H ; xE RD } . Since H do not commute with H for x±y, thi s

algebra will not be commutative in general . It turns out that this algebra is usually

simple to compute in practice [Bellissard (86)] : since Vis almost periodic, there is an

abelian compact group Q call the hull of V, a group homomorphismf from RD into Q

with a dense image and a continuous function v on Q such that V(x) = v (f(x)). Q i s

entirely defined by V or equivalently by H. The C*Algebra , ;d is then the crossed
product C (Q) x RD of the algebra C (Q) of continuous functions on Q by the action o f

RD defined byf.
A similar treatment can be performed ifHis a tight binding approximation, namel y

an hamiltonian on a lattice like Z D . It is then sufficient to replace the translation grou p
RD by Z D .

A . Connes developed an analogy with topology or geometry . By Gelfand ' s theorem

(see [Pedersen] for instance), an abelian C*Algebra is isomorphic to the space o f

continuous functions on a locally compact Hausdorffspace vanishing at infinity . Let u s

decide, by analogy, to identify a non-commutative C*Algebra with the space o f

continuous functions on some virtual object which will be called a "non-commutativ e

topological space " . In our framework, let us consider the special case for which V i s

periodic . The same construction as before, with the addition of Bloch theory leads to a

C*Algebra isomorphic to the tensor product CV)© .Y where .)V is the algebra of

compact operators on a separable Hibert space and represents degrees of degenaracy ,
and C(. ) is the space of continuous functions on the Brillouin zone .6 (which i s

usually isomorphic to a torus) . Therefore, the periodic case is just the algebra o f

"functions " over the Brillouin zone (up to the deneracy described by .Af) which is th e

crystal analog of the momentum space . By extension, the quasi periodic algebra will b e
naturally associated to a "non-commutative Brillouin zon e" . In order that this analogy

be efficient, one has to define on these C*Algebras the tools useful in usual geometry :

integration theory, differential structure, etc, . . .
Integration may be obtained through a trace, namely a positive linear (non necessar-

ily bounded) functional Ton ,7e, such that r(AB) = r(BA) whenever it is defined . It turns

out that natural traces can be defined in our situation by mean of a " trace per uni t

volume" . Namely let dw be the normalized Haar measure on Q, which is invariant an d
(uniquely) ergodic with respect to the action of the translation group RD. Let also A b e

an element ofA given by the kernel a(w,x) namely acting on L 2 (RD) through :

A w 1p(x) = fRD dx' a(w-f(x') ; x-x' ) 1p(x ' )

and a similar definition if Z D replaces RD . We recall that elements of . z? given by smoot h
kernels are dense in A . The trace per unit volume is then given by :

(3 )

r (A) = limn 1, RD (1 / I A~) Tran Ao)

	

(4)
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Using the definition (3) of A and the Birkhoff ergodic theorem (see [Halmos] fo r
instance) one gets for almost every w in Q:

T (A) = limA t R, (1/ AI) f dx ' a(wf(x' ) ; 0)= f Q dw a(w ; 0) (5 )

Actually, in the present case, since the action defined by f is uniquely ergodic (namely
the Haar measure is the unique ergodic f-invariant probability measure on Q) th e
convergence in (5) is uniform with respect to wcQ . One can easily check that (5) defines
a faithful trace on which is unbounded in the case of R D but bounded and
normalized in the case of ZD .

A natural differential structure can be defined if one remembers that our algebra i s
supposed to represent functions on the Brillouin zone : differentiating with respect t o
momentum variables is usually represented in Quantum Mechanics by commutator s
with the position operators . Let X=(X)iE{1, . . .,D} be the position operator acting on
L2 (RD ) through :

{X'tp} (x) = x 2p(x)

	

i= 1 , . . .,D

We define derivations d on ./Z by :

{dzA} = 2ï .rc[xz,A w ]
cu

or equivalently :

d, a (w, x) = 2iYr x a (w, x)

The d.'s are linear commuting maps on A, satisfying the fundamental formula of
derivations, namely d. (AB) = (dz.A)B + A (dB)~ . Moreover T(dA)z = 0 whenever the
formula makes sense . This allows to get an integration by parts formula r((d .A)B) =
-r(Adz.B) showing that usual rules in calculus still hold in this non commutativ e
context .

In [Connes (86) ] A . Connes gave also a generalization of line or surface integrals o f
differential forms . In the commutative context they define a de Rham current . In the
non commutative case one may define a closed current as follows : giving A 0, A 1, . . .,A in
A, one introduces the formal objects NdA1 . . .dA by asking that d satisfy the usual rule s
for a differential, namely d(AB) = (dA)B+A(dB) and d 2 =0; a linear combination o f
such objects for a fixed n, is called a form of degree n or n-form; let Qn be the space o f
n-forms, and Q(.) be the direct sum of the Q's . One extends the differential d to Q(.w )
by linearity . A closed current is a linear functional Ton Q (A) with complex values suc h
that if bw denotes the degree of w:

(6 )

( 7 )

(8)
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(i) r
(w1(02)

= (_)ôwiôw,r
(w2 o )

(ii) r (dw) = 0

(iii) r is a current of degree p whenever r (w) = 0 for every we 52 ifn gyp .

As it has been shown by A . Connes in [Connes (86)], a closed current is entirely define d

by the (n+l)-linear mappings

	

(Ao dA1 . . .dAn) characterized by

the following relations :

(a) ir (A 1 ,A2 , . . .,A t,Ao) = (-1) „ ~(Ao, . . .,An)

n

(b) E(-l)i rz(Ao, . . ., A ., A .+ .,A +) +

	

l)n
+1 n(4n+1'A~

A 1, . . .,A ) = 0

This non commutative differential form theory gives rise to some cohomology namely

the Connes cyclic cohomology and a generalization of the abstract index theore m
which has already been used partially to the mathematical proof of the Quantum Hal l

Effect [Bellissard (88a)] .

Let us also indicate that besides the previous algebras, one has other physicall y
relevant examples of observable algebras even in the quasi periodic context . For if on e
considers the situation in which a two dimensional Bloch electron is submitted to a

uniform magnetic field B perpendicular to the plane where the electron lies, th e
hamiltonian is now :

H=	 2~ E (P.- eAi (X)) 2 + V(X )

i=1 .2

where P=(P1 ,P2) is the momentum operator (namely P=h/2iit d), A = (AI, ) is the

magnetic vector potential solution ofd1 A2-d2 A1 = B, mis the electron effective mass, e its

electric charge, and Vis a periodic potential . The kinetic part is no longer translation

invariant because the vector potential breaks the translation symmetry . However

adding a phase factor to the translation operator we get the following " magneti c

translation" [Zak] on L 2 (R2 ) :

{ U(a) yi} (x) = e ''
Bx/1a/h.

Tp(x -a)

	

(10 )

If a is a period of V, H commutes with U(a) . One can then show that the algebr a

generated by bounded functions of H and its translated is generated by operators A

given by a kernel a (w, x) defined on T2xR 2 as follows :

{A~} (x) = fR, d2x
n a(-x, x.-x) ei7reBx/1x' lh v(xn )

( 9 )



MfM 42:3

	

6 1

In much the same way one gets a trace per unit volume and a differential structure on it .

A lattice version of this algebra is precisely given by the rotation algebra we define d

in the beginning of this section . The trace and the differential structure are entirel y

defined by the following conditions :

T
( um"

) = ~,, oS o

	

(12 a )

d1 U=2LreU

	

d1 V=0 = d2 U

	

d2 V=2ijrV

	

(12b )

We see that U and V become analogous to the coordinate functions e2i', (i=1, 2) of a

2-torus, if the trace is replaced by the normalized Haar measure, if the d's represent th e

usual partial derivatives . Because of (2) however this torus is non-commutative .

If one considers the problem of an electron on a quasicrystal submitted to a uniform

magnetic field and will get another kind of algebra which will be hopefully described i n
a further work [Bellissard (88c)] .

III-2. Gap labelling and K-Theory :

In the section II we saw that a Schrödinger operator with almost periodic potential ha s
a tendency to exhibit a Cantor spectrum . In particular it must have infinitely man y

gaps in a bounded interval . The question is whether there is a canonical way o f
labelling the gaps which is stable under perturbations or under modifications of the
frequency module . It happens that this question is related to the computation o f

integers in the Quantum Hall Effect, and this justifies a complete study . The first gap

labelling was provided by Claro and Wannier by a heuristic analysis of the Hofstadter

spectrum [Claro (78)] . This labelling was stable under changes of the magnetic fiel d

eventhough the spectrum itself is modified in an intricate manner . The first rigorou s
results came in 1981 with the works of Johnson and Moser [Johnson (82)] and the resul t

ofBellissard-Lima-Testard [Bellissard (82a, 85a, 86)] . Aproof in the case of the Almos t

Mathieu equation was provided by Delyon and Souillard [Delyon (84)] . Johnson an d
Moser proved it for the case of a lD Schrödinger operator with an almost periodi c

potential using ODE technics . But BLT used an algebraic approach namely the

K-theory of C*Algebras and got general results valid in any dimension and for an y
reasonable pseudodifferential operator with almost periodic or even random coeffi-

cients [Bellissard (86)] . They used many of the powerful results discovered in the earl y

eighties by the experts in C*Algebras and especially several explicit formular due to A .

Connes . It is our aim here to summarize these results .
Let be one of the C *Algebras of operators built in the previous section . Let also H

be a self-adjoint operator on L 2 (R D) (or on l2 (Z D )) bounded from below such that

bounded continuous functions of H belong to , . Physicists introduce first the in-
tegrated density of states (the IDS) in the following way :
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.A=(E) = limARo (1/IAI) # {eigenstates of H
A

with energy �E}

	

(13 )

where # denotes " the number of", and HIA is the operator obtained by restricting H
(say in the sense of forms) to a domain D of functions supported by A dense in L 2 (A) ,
whenever this makes sense . One can show that because bounded continuous function s
of H belong to A, if A is one of the previous algebras, HIA has discrete spectrum

bounded from below and therefore the definition of the IDS makes sense. It turns ou t
that the previous formula can be written in a purely algebraic way thanks to the Shubin
formula [Bellissard (86), Shubin] : ifX represents the characteristic function of the se t

one gets

~~ ' (E) = r .(X ( ,,,,,E1(H))

where r represents the trace on which is extended to the von Neumann algebra
generated by A in the GNS representation of the trace . From this formula it follow s
that .4 (E) is a non decreasing function of E which is constant on the gaps of H. Thus one
levy way of labelling the gaps is to affect to it the value of ,./17 (E) for E in this gap . On the other
hand whenever E belongs to a gap of H, x~ (H) is actually a continuous and
bounded function of H and therefore it belongs to . and it is also a projection . By
Shubin's formula (14) the trace of this projection coincides with the value of the IDS o n
the gap . This trace actually depends only upon the equivalence class of the projectio n
under unitary transformation . On the other hand A is a separable C*Algebra and b y
standard results [Pedersen], the set of such equivalence classes is countable . Therefore
the set of values obtained by taking the traces ofprojections in A is a countable subset of the positive
real line, Is it possible to get a rule for its computation ?

The answer is actually yes, and the K-theory is the key for it [Atiyah] . For indeed ifP
is a projection in A, let [P] be its equivalence class as defined by von Neumann, namel y
the set of projections P ' such that there are S and Tin ._4 for which ST=P and TS=P '.
One can check that if P and Q are orthogonal projections, namely if PQ= QP= 0, thei r
direct sum POQ coincides with P+ Q and is still a projection in A . Moreover its clas s
[P®Q] depends only upon the classes [P] and [Q] and can be denoted [P] + [Q],defin-
ing on the set of classes an addition . This law is not always everywhere defined for i t
may happen that giving P and Qin A, there is not always a pair P ' E[P] and Q' E [Q]
such that P ' Q' Q 'P' = O . However, if one enlarges the algebra by taking the C *Algebra s

0+,7z generated by finite rank matrices over .A, one can show that this is alway s
possible to define the sum of two arbitrary equivalence classes . Then by a canonica l
construction due to Grothendieck one extends this set into an abelian group, which i s
called Ko ( .4) . If ,.4 is separable this group is countable .

The trace r(P) of a projection Pin .A has the property that it depends only upon th e
class [P] . Moreover, r(POQ) = r(P) +T(Q) . Therefore it extends into a group homo-

(14)
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morphism *from Ko ( .fd) into the real line . From which it follows that (i) the set of rea l

numbers given by the traces of projections in is a generating subset of the countabl e

subgroup z*(Ko (~d)) of R, (ii) the gap labelling defined in this way satisfied sum rule s
since r*(Ko(A)) is a group. Thus (see [Bellissard (86)]) :

THEOREM 1 (first gap labelling theorem) : If E belongs to gap of H, the IDS ./P(E )

belongs to the countable subgroup of R given by the image t*(Ko ( ) of the Ko-group
of 3 under the trace homomorphism .

This theorem is actually useless as long as we cannot compute explicitly the K-group .

This has been done for the first time for the rotation algebra by Pimsner and Voiculesc u

[Pimsner] using earlier results of M . Rieffel [Rieffel] :

THEOREM 2 : Is .%ô is the rotation algebra generated by two unitaries U and V such tha t

UV= e2" VU, its K-group is isomophic to Z 2 and the image *(Ko ( .tea)) of its K-group

by the trace homomorphism is Z + aZ . IfP is a projection in .athere is a unique integer

n such that z(P) _ {na} where {x} denotes the fractional part of x .

The last part of this theorem comes from the remark that since the trace on the rotatio n

algebra is normalized the trace of a projection must belong to the inverval [0,1] .

Soon after this result appeared, A . Connes gave a general formula for computing th e

K-group and its image under the trace homomorphism [Connes (82)] . We will not give

it here in detail but we will only give the result one gets in the case of quasi periodi c

pseudodifferential operators [Bellissard (85a)] :

THEOREM 3 : Let H be a pseudodifferential operator on L 2 (R D) with quasiperiodi c
coefficients . Let T vbe the hull of its coefficients, and letf(x) = tl .x. be the correspond-
ing homomorphism with dense image from R D into Tv. IfE belongs to a gap of H, the

IDS .;l (E) belongs to the subgroup L of R given by L Elk Za ) where the a(k) 's are th e
minors of maximal rank of the matrix a . . If D = 1, L coincides with the frequenc y

u a

module of the coefficients of H .

THEOREM 4 : Let H be a finite difference operator on 1 2 (Z D) with quasiperiodic coeffi-

cients . Let Tv be the hull of its coefficients, and let f(n) =E.a .n . be the corresponding

homomorphism with dense image from ZD into T v. If E belongs to a gap of H, the
IDS.;P(E) belongs to the subgroup L ofR given by L

=d(k)
Za(k) where the a(k) 's are the

minors of any rank of the matrix a . including 1 as a minor of rank zero .
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IfD =1, L coincides with Z+F where Fis the frequency module of the coefficients of

H.

Various applications of these gap labelling theorems can be found in [Bellissard (86)] ,
especially in connection with the non existence of gaps . Indeed H will have a Canto r
spectrum only if the subgroup r*(Ko (45)) is dense in R . Algebraic arguments show tha t
there are examples for which this cannot happen .

In order to illustrate the power of this approach let us however give one example for
which the Johnson-Moser argument could not work but the K-theory predicts th e
result . Consider the operator H on 12 (Z) defined by :

H'tp(n) = 2/ß(n+l) + lp(n-1) + 4(04 (x-na) tfi(n)

	

(15 )

It was shown in [Bellissard (82e)] that the values of the IDS on certain gaps did no t
follow the rules given by theorem 4 when a and /3 were rationally independent . Thank s
to a recent result of Putnam, Schmidt and Skau [Putnam (85)&(87)] it is possible t o
compute the K-group of the C*Algebra generated by the H's and one finds :

PROPOSITION 1 : Let PI, be given by (15) on 12 (Z) where 1, a and 3 are rationall y
independent . If E belongs to a gap of H, the IDS . (E) belongs to the countable
subgroup Z+Za+Z/3 of R.

III-3 . Spectrum boundaries :

As we saw in §I-3, the measurement of the normal metal-superconductor transition
curve for a network of superconductors in the temperature magnetic field parameters i s
equivalent to the measurement of the ground state of the Hofstadter spectrum as a
function of the parameter a. This raises the question of computing the spectru m
boundaries of a self-adjoint element of the rotation algebra a as a function of a.

Unfortunately, the algebras . //n and a are isomorphic if and only if a=± tx (mod. 1) .
Nevertheless there are many quantities of interest which are obviously continuou s
functions of this parameter. To overcome this difficulty, one can remark that the family
{ fda ; aE T} is a continuous field of C*Algebras in the sense of [Dixmier] . To see thi s
more precisely, let us define the universal rotation algebra .45 as the C*Algebr a
generated by three unitaries U, VR such that :

[U, A ] = 0 = [VA

	

UV= ~vU

	

(16)
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This algebra is mapped onto ,7n, through the *homomorphism pa defined by :

pa, (U) = U

	

pa, (V) = V

	

pp) = e
2i' (17)

In much the same way to any closed subset Jof [0,1], one associates the algebra .ze,(J)

obtained by restricting the elements of mil, to J (the norm on .' (J)satisfies All =

supœEj Ipa(A)II) . The next theorem of G . Elliott [Elliott] gives continuity properties with

respect to cu

THEOREM 5 : Let H belong to the universal rotation algebra . Then :

(i) If H=H* the gap boundaries of the spectrum ofp p (H) are continuous functions of a.
(ii) The norm 11 pa (H) 1 is a continuous function of a.

This theorem has been supplemented by a theorem of Avron and Simon [Avron (82)] :
the spectrum of a Schrödinger operator describing a particle in a uniform magneti c

field is continuous with respect to the magnetic field .

It turns out from numerical calculations that the gap boundaries are usually no t

smooth functions of a (see fig . 2) . This has been recently proved by Bellissard (an-
nounced in [Bellissard (88b)] following semiclassical ideas developed by Wilkinson

[Wilkinson (84a&b)] and Rammal et al . [Wang (87a&b)] . To see this we need furthe r

notations .

Let .M(k, a) be a continuous function of the variables k = (ki , k2 ) E R2 and aE(-e, e)

for some E> O . We assume that it satisfies the following properties :

(i) .M is periodic with respect to k of period 27r in each component of k.

(ii) If .M=;a, h(m,a) elkA m is its Fourier expansion (where kAm = kl m2 -k2 mt )then

either :

1I .M II (k , = S up
i<kI,neZY

d`h(m,a)lda'l (1+ ) k <00

	

for some k> 2 (17a )m

or the h (m, 's are holomorphic in a in a strip of width r and

= sup
l/m(a)I,rI.EZs I

h(m,a) e 'Iml < co

	

for some r > 0 (17b )II1 .w I

(iii) For each ain (-e e) the function k-> .M(k,a) has a unique regular minimum i n

each cell of period . Without loss of generality one can assume that this minimum i s

located at k=0 for a=0 and that .M(0, 0) = 0 .
Correspondingly we define the quantization of . -Ye as the following H element of . :
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pa (H) =

	

h(m,a) W (m)

	

W(m) = eiarmn,m, Unt, v--m,

The ground state energy E(a) is defined as the infimum of the spectrum of pa (H) in .
Our first result concerns the asymptotic behaviour of the bottom of the spectrum o f
pa (H) as a->0 namely :

THEOREM 6 : Let satisfy (i), (ii), (iii) and let H be given by (18) . Then there i s
E > 0 and E e depending only on .%such that if ae (-e, e) the spectrum of pa(H)
below E is contained in the union of the intervals

n =
[E (a) - 8(a), E (a) + b(a) ]

where if .77 satisfies (17a) and Sis equal to min (3,k) :

E (a) = (2n +1)2,7c lad detu2 {1 /2 D2.:k'(0,0)} + ad.k/60(0,0) + 0 (ar/ 2 ) (19 )

0<S(œ)~CI a1 S12

	

(20 )

Here Ci is a constant depending on ,7K.
If .

	

satisfies (3b), the estimate (7) is replaced by :

0 < ô(a)

	

(.;1 gC,la

	

(21 )

where C2 r.

The proof of this result is a consequence of the semiclassical analysis by Briet-Combes -
Duclos [Briet, Combes] and Helffer-Sjöstrand [Helfer (84)] . We then remark that if
now a=p/gEQ, pa (H) can be computed by mean of the Floquet theory, and admits a
band spectrum . If a is close to p/q, the algebra

	

can be seen as the subalgebra of
M

	

a,-p~q
generate by the elements :

U

	

~ _=W
aplq

	

Ia
W

V
2

	

ap q

q

	

(7 2 )

where W and W are qxq unitary matrices such that Wq =1 and WW2 = e 2'¢/q W W . This
is a kind of Renormalization Group analysis which was suggested by the work o f
Wilkinson [Wilkinson (84b)] . Then the limit a->p/q can be analysed by using th e
theorem 6 and the functional calculus to reduce pa (H) on one band of the spectrum.
One gets the following result :

THEOREM 7: Let isatisfy (i), (ii), (iii) above with dh (m,a)/da = 0, k 3, and let B be a
non degenerate band of Hat a= p/q . The lower (resp . the upper) edge of the band E- (a)
(resp . E+ (a)) is given by the Wilkinson Rammal formula :

(18)
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E -l (a)= E±(~) (±)a I a -
q

+b(a -g)+0(~cr- q

with :

2TCq2
a =

	

• b =

	

tr {P(k) (d H(k) d P(k) - d H k d P(k
) P(E(q))

	

4i q

	

1

	

2

	

2 O

	

) JEe
~)=G - iql

The first term in this formula is therefore the value of the energy at the band edge for

a=p/q . The second represents a harmonic oscillator effect, and it produces a disconti-
nuity in the derivate . It shrinks the spectrum in such a way that the neighbouring ga p
actually increases in size due to this term . The last term comes from a Berry phase ,
namely from the fact that the eigenprojection P(k) at the value a=p/q defines in genera l
a non trivial line bundle over the 2-torus [Berry, Simon (83)] . This last term account s
for an asymmetry of the derivate around a=ß/q and may partially destroy the effect of

the first one on the enlargement of the corresponding gap . The derivative of th e
magnetization of the superconducting array at the transition with respect to th e
temperature is actually a simple function of the asymmetry of the derivate at eac h

rational point (see [Wang (87a)] .

The previous theorem is established for an element H such that dh(m, a)/da=0 . If
there is m such that dh (m, a)/da� 0 one gets an additional contribution to the secon d
term which we will not give here but which is easy to compute .

One consequence of this formula is the following :

COROLLARY : Let E(a) be a gap boundary for He .3~ satisfying (i), (ii), (iii) . For any
irrational value of a, E(a) is differentiable .

OPEN PROBLEM : Is it possible from this formula to get a proof that the spectrum of H i s
actually a Cantor set for any irrational a ?

Following the strategy of Wilkinson, Helffer-Sjöstrand [Helffer (87)] gave more detail s
in the case ofHarper's model, using special positivity properties of its quantization, and
their result is the content of the theorem 7 in §II-1 .

To finish this section let us indicate that in the previous theorem 7 we used a new type
of differential calculus similar to the Ito calculus in stochastic differential equation s
[Bellissard (88b)] . Namely let A be a polynomial in U, V, A . One can expand A as
follows :

3/2 ) (23 )

(24)

p,, (A)

	

a(m;a) W(m)

	

with W(ml ,m =e
itarnnt rria,~-n,,

	

(25 )

mEZ'
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We define the operation d by the following formula :

pa,(BA ) = ~
da(~a)

W(m)

	

(26 )

mEZ'-

C 1 (.ß) will denote the completion of the set of polynomials under the norm :

11 A

	

=

	

dAll+lld1 All+lld2AII +

This operation satisfies the following rules :

THEOREM 8: 1) If A and B belong to Cl (.)

(27 )

d (AB) = dA B + AdB + i/4 .n {dlAd2B - d2 Ad1 B} (28)

2) IfA belongs to Cl (A) and if it is invertible in , its inverse belongs to Cl (A) and

d (A -1) =

	

+ i /4ir(d1A A -1 d2A - d2A A-1d1 A)} A -1

	

(29)

The formula (29) is actually the key point in proving (23) & (24) for at close top/q once
they are proved for a small .

Centre de Physique Théorique and Université de Provence,
CNRS, Luminy, Case 907, 13288, Marseille, Cedex 09, France .

References

References in the text are given by author and year (if necessary) e .g . [Bellissard (82a)] .

Abrikosov, A . A . : On the Magnetic Properties of Superconductors of the Second Group, Sov . Phys.
JETP, 5, (1957), 1174-82 .

Alexander, S . : Superconductivity of networks . A percolation approach to the effect of disorder, Phys .
Rev., B27, (1983), 1541-57 .

Atiyah, M . : K-Theory, Benjamin, New-York, Amsterdam, (1967) .
Aubry S ., (78) : The new concept of transition by breaking of analyticity in crystallographic models ,
Solid State Sci ., 8, (1978), 264 .

Aubry, S ., André, G ., (80) : Analyticity breaking and the Anderson localization in incommensurate
lattices, Ann . Israeli, Phys . Soc ., 3, (1980), 133 .

[I ]

[2 ]

[3 ]

[4 ]

[ 5 ]



MfM 42 :3

	

6 9

[6] Avron, J ., Simon, B ., (81) : Almost Periodic Schrödinger Operators . I . Limit Periodic Potentials,
Commun. Math. Phys ., 82, (1981), 101-120 .

[7] Avron, J ., Simon, B ., (82) : Singular continuous spectrum for a class of almost periodic Jacob i
matrices, Bull. AMS, 6, (1982), 81-86 .

[8] Barnsley, M. F., Geronino, J . S ., Harrington, A . N ., (83) :Infinite Dimensional Jacobi Matrice s
associated with Julia sets, Proc . AMS, 88, (1983), 625-630 .

[9] Barnsley, M . F., Geronino, J . S ., Harrington, A . N ., (85) : Almost Periodic Jacobi Matrices associated
with Julia sets for Polynomials, Commun. Math . Phys., 99, (1985), 303-317 .

[10] Behrooz, A ., Burns, M ., Deckman, H ., Levine, D ., Whitehead, B ., Chaikin, P. M . : Flux Quantiza-
tion on Quasicrystalline Networks, Phys. Rev. Letters, 57, (1986), 368-371 .

[11] Bellissard, J., (82a) : Schrödinger operators with an Almost Periodic Potential, in Mathematica l
Problems in Theoretical Physics, R . Schrader, . R . Seiler Eds ., Lecture Note in Physics, 153, (1982), 356-359 ,
Springer Verlag, Berlin-Heidelberg-New York .

[12] Bellissard, J., Formoso, A ., Lima, R ., Testard, D ., (82b) : Quasiperiodic interaction with a metal
insulator transition, (Phys . Rev., B26, (1982), 3024-3030 .

[13] Bellissard, J., Simon, B ., (82c) : Cantor spectrum for the Almost Mathieu equation, , Func. Anal ., 48,
(1982), 408-419 .

[14] Bellissard, J., Bessis, D ., Moussa, P., (82d) : Chaotic states of Almost periodic Schrödinger Oper-
ators, Phys . Rev. Letters, 49, (1982), 701-704 .

[15] Bellissard, J., Scoppola, E ., (82e) : The Density of States for Almost Periodic Schrödinger Operator s
and the Frequency Module : a Counter Example, Commun. Math. Phys ., 85, (1982), 301-308 .

[16] Bellissard, J., Lima, R ., Testard, D, (83a) : A Metal Insulator Transition for the Almost Mathie u
Model, Commun . Math. Phys ., 88, (1983), 207-234 .

[17] Bellissard, J ., Lima, R, Scoppola, E ., (83b) : Localization in n-dimensional Incommensurate struc-

tures, Commun . Math . Phys., 88, (1983), 465-477 .

[18] Bellissard, J., Lima, R., Testard, D ., (85a) : Almost periodic Schöringer Operators, in "Mathematics +
Physics, Lectures on recent results", Vol . 1 ., L . Streit Ed ., World Sc . Pub ., Singapore, Philadelphia, (1985) ,
1-64.

[19] Bellissard, J., (85b) : Stability and instabilities in Quantum Mechanics, in Trends and developments in the
eighties, S . Albeverio, Ph. Blanchard Eds ., World Sc . Pub ., (1985), 1-106 .

[20] Bellissard, J., (86) : K-Theory of C*-Algebras in Solid State Physics, Statistical Mechanics and Field
theory, Mathematical aspects, T. C . Dorlas, M . N . Hugenholtz, M . Winnink Eds ., Lecture Notes in Physics ,
257, (1986), 99-156 .

[21] Bellissard, J., (87) : unpublished result .

[22] Bellissard, J ., (88a) : Ordinary Quantum Hall Effect and Non Commutative Cohomology, in "Local-
ization in Disordered Systems", Proc_ of the Int. Seminar Bad Schandau-Ostrau, 1986, Weller, W. & Ziesche, R
eds ., Teubner, Leipzig (1988).

[23] Bellissard, J ., (88b) : C*Algebras in Solid State Physics : 2D electrons in a uniform magnetic field, To
appear in the Proc. of the Warwick Conference on Operator Algebras, Cambridge Univ . Press, (1988) .

[24] Bellissard, J., (88e) : work in preparation .

[25] Bergmann, G. : Weak localization in thin films, a time-of-flight experiment with conduction electrons ,
Phys . Report, 107, (1984), 1-58 .

[26] Berry, M . : Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London, A392,
(1984), 45-57 .

[27] Briet, P., Combes, J. M ., Duclos, R : On the Location of Resonnances for Schrödinger Operators i n
the Semiclassical Limit II, Comm . in P D . E., 12(2), (1987), 201-222 .

[28] Brujin, N . J. de : Sequences of zeros and ones generated by special production rules, Kon . Neder. Akad.
Wetensch . proc., A84, (1981), 27-37 .



70

	

MfM 42 : 3

[29] Casdaglim: Symbolic Dynamics for the Renormalization Map of a Quasiperiodic Schrödinger

Equation, Commun. Math . Pips., 107, (1986), 295-318 .

[30] Chulaevsky, V. : Usp . Mat . Nauk (in Russian), 36,(221), (198]), 203-204 .

[31] Claro, F. H ., Wannier, W. H ., (78) : Closure of Bands for Bloch Electrons in a Magnetic Field, Phys .

Stat. Sol., B88, (1978), K147-151 .

[32] Claro, F. H ., Wannier, W. H ., (79) : Magnetic Subband Structure of Electrons in Hexagonal Lattices ,

Puys . Rev ., B19, (1979), 6068-74 .

[33] Claro, E H ., (81) : Spectrum of Tight Binding Electrons in a square Lattice with Magnetic Field ,

Phys . Stat. Sol ., B104, (1981), K31-K34 .

[34] Coburn, L . A ., Moyer, R. D ., Singer, I . D . : C*Algebras of almost periodic pseudo-differential

operators, Acta Math ., 139, (1973), 279-307 .

[35] Combes, J. M ., Briet, P., Duclos, P. : Spectral properties of Schrödinger Operators with Trapping

Potentials in the Semiclassical Limit, To appear in the Proc. of the Inter ConE on Differential Equations an d
Mathematical Physics, Birmingham (Alabama), 1986, Springer Verlag (1987) .

[36] Connes A ., (82) : A survey of foliation and operator algebras, Operator Algebras and applications, D .
Kadison Ed., 38, Part I&II, (1982), A .M.S., Providence, Rhode Island.

[37] Connes, A ., (86) : Non Commutative Differential Geometry, Pub . INES, 62, (1986), 43-144 .

[38] Craig, W. : Dense pure point spectrum for the almost Hill's equation, Commun. Math . Phys ., 88, (1983) ,

113-131 .

[39] Delyon, F., Souillard, B ., (84) : The rotation number for finite difference operators and its properties ,

Commun. Math. Phys ., 94, (1984), 289-291 .

[40] Delyon, F., Petritis D ., (86) : Absence of Localization in a class of Schrödinger Operators with

Quasiperiodic Potential, Commun . Math . Phys ., 103, (1986), 441-444 .

[41] Delyon, F., (87) : Absence of localisation in the almost Mathieu equation, J. Phys., A20, (1987) ,

L21-L23 .

[42] Derrida, B ., Sarma : unpublished (see [Aubry (78)] . I thank the physicists from Saclay for pointing i t

to me .

[43] Dinaburg, E . I ., Sinai, Ya . G . : On the One Dimensional Schrödinger Operator with a Quasi periodi c

Potential, Func. Anal. Appl., 9, (1975), 279-289 .

[44] Dixmier, J. : Les C*Algèbres et leurs représentations, Gauthiers- Villars, Paris (1969) .

[45] Douady, A . : Systèmes dynamiques holomorphes, Séminaire Bourbaki, 599 (1982), 39-63 .

[46] Douçot, B ., Rammal, R ., (85) : Quantum Oscillations in Normal-Metal Networks, Phys. Rev. Letters,
55, (1985), 1148-1151 .

[48] Douçot, B ., Wang, W., Chaussy, J ., Pannetier, B ., Rammal, R ., Vareille, A ., Henry, D ., (86b) : Firs t

Observation of the universal periodic corrections to Scaling : Magnetoresistance of Normal-Meta l

Self-Similar Networks, Phys. Rev . Letters, 57, (1986), 1235-1238 .

[49] Dubrovin, D . A ., Matveev, V. B ., Novikov, S . P. : Non linear equations of KdV type, finite zone linea r

operators and Abelian varieties, Russ . Math. Suverys, 31, (1976), 59-146 .

[50] Duneau, M ., Katz, A . : Quasiperiodic Patterns, Phys . Rev. Letters, 54, (1985) 2688-2691 .

[51] Elliott, G . : Gaps in the spectrum of an almost periodic Schrödinger operator, C. R. Math . Ref. Acad.
Sci . Canada, 4, (1982), 255-259 .

[52] Fatou, P. : Mémoire sur les Equations Fonctionelles, Bull. Soc. Math . France, 47, (1919), 161-271 : 47,
(1920), 3-94, and 208-314 .

[53] Fishman, S ., Grempel, D ., Prange, R ., (82) : Localization in an incommensurate Potential : an

Exactly Solable Model, Phys. Rev . Letters, 49, (1982), 833-836 .

[54] Fishman, S ., Grempel, D ., Prange, R ., (83) : Wave functions at a Mobility Edge : an Example of

Singular Continuous Spectrum, Phys . Rev., B28, (1983), 7370-7372 .

[55] Fröhlich, J., Spencer, T., Wittwer, P. : Localization for a class of one dimensional quasiperiodic



IvMM 42:3

	

7 1

Potentials, Preprint IASA (Princeton), Aug . 1987 . I thank the authors for communicating their work

prior to publication .

[56] Gandit, P., Chaussy, J ., Pannetier, B ., Vareille, A ., Tissier, A . : Measurement of the Derivative of th e

Magnetization of a Superconducting Networks, Eue Phys. Letters, 3, (198 77), 623-628 .
[57] Gennes, P. G . de, (66) : Superconductivity of Metals and Alloys, Benjamin, New York (1966) .
[58] Gennes, P. G . de, (81) : 1)-Diamagnétisme de grains supraconducteurs près d'un seuil de percolation ,

C. R . Acad. Sci ., B292, (1981), 9-12 . 2)-Champ critique d'une boucle supraconductrice ramifiée, C. R .
Acad. Sei., B292, (1981), 279-282 .

[59] Ghez, J . M ., Wang, W., Rammal, R ., Pannetier, B ., Belli ssard, J. : Band Spectrum for an Electron on a
Sierpinsky Gasket in a Magnetic Field, Solid State Commun . 10, (1987), 1291-94 .

[60] Gordon, A . Ya . : The point spectrum of the one dimensional Schrödinger operator (In Russian), Usp .
Mat . Nauk ., 31(190), (1976), 257-258 .

[61] Gratias, D . : Les quasi-cristaux, La Recherche, 17, (1986), 788-798 .
[62] Halmos, P. R. : Lectures on Ergodic Theory, Chelsea Publishing Company, New-York, (1956) .
[63] Harper, P. G . : Single band Motion of Conduction Electrons in a Uniform Magnetic Field, Proc. Phys .

Soc. London, A68, (1955), 874 .

[64] Pfeiffer, B ., Sjöstrand, J., (84) : (i)-Multiple Wells in the Semiclassical Limit I, Comm . in P. D . E., 9(4) ,
(1984), 337-408 . (ii)-Puits Multiples en Analyse Semiclassique Il, Ann . I. H. P., 42, (1985), 127-212 .

[65] Helffer, B ., Sjöstrand, J., (87) : i) Analyse semi classique pour l'équation de Harper, séminaire de I'Ecole
Polytechnique, p . XVII .l, Avril 1987 . ii) Preprint Univ. Orsay, Dec . 1987 . I thank the authors for
communicating their work prior to publication .

[66] Herbert, D ., Jones, R . : Localized States in Disordered Systems, J. Phys ., C4, (1971), 1145 .
[67] Herman, M . : Une méthode pour minorer les exposants de Lyapounov et quelques exemples

montrant le caractère local d'un théorème d'Arnold et Moser sur le tore de dimension deux, Comment.
Math. Hele., 58, (1983), 453-502 .

[68] Hofstadter, D . R . : Energy levels and wave functions of Bloch electrons in a rational or irrationa l
magnetic field, Phys . Rev., B14, (1976), 2239 .

[69] Ishii, K . : Localization of Eigenstates and Transport Phenomena in the One Dimensional Disordere d
Systems, Sapp . to Progress in Theor. Phys ., 53, (1973), 77 .

[70] Johnson, R., Moser, J ., (82) : The rotation number for almost periodic potentials, Commun . Math.
Phys., 84, (1982), 403-438 ; 90, (1983), 317-318 .

[71] Johnson, R ., (83) : A Review on Recent Works on Almost Periodic Differential and Differenc e
Operators, Acta App . Math ., 1, (1983), 241-261 .

[72] Johnson, R., Concini, C . de, (87) : The Algebraic-Geometric AKNS Potentials, Ergod. Th . and Dynam.
Syst ., 7, (1987), 1-24 .

[73] Jona-Lasinio, G ., Martinelli, E, Scoppola, E., (84) : Quantum Particle in a hierarchical Potentia l
with tunneling over arbitrary large scales, J. Phys ., A17, (1984), L635-L638 .

[74] Jona-Lasinio, G ., Martinelli, F., Scoppola, E ., (85) : Multiple tunneling in d-dimension : a Quantu m
Particle in a hierarchical Potential, Ann . Inst. Poincaré, A42, (1985), 73-108 .

[75] Jones, W., March, N . H . : Theoretical Solid State Physics, Vol. 2, 2 nd Ed. by Dover Pub ; New-York,
(1985), Chap . 8 .

[76] Julia, G . : Itération des applications fonctionelles, J Math. Pures et Appt ., (1918), 47-245 .
[77] Kadanoff, L . P., Kohmoto, M., Tang, C . : Localization problem in One dimension : Mapping and

Escape, Phys. Rev. Letters, 50, (1983), 1870-1872 .
[78] Kohmoto, M ., Sutherland, B . : Electronic States on a Penrose Lattice, Phys . Rev. Letters, 56, (1986) ,

2740-2743 .
[79] Kramer, P., Neri, R . : On periodic and non periodic space fillings of E ° obtaines by projections, Acta

Ciystallogr_, A40, (1984), 580-587 .



72 MfM 42 : 3

[80] Kuo, K . X . : Les plus simples des quasi-cristaux, La Recker-eke, 18, (1987), 1407-1408 .

[81] Landau, L ., (30) : Diamagnetismus der Metalle, Z. für Phys ., 64, (1930), 629-637 .

[82] Landau, L ., Ginzburg, B . L., (50) : On the theory of superconductivity, Zhur. Eksp. Teor. Fiz. ,

(Russian), 20, (1950), 1064, in "Collected Papers of L . D . Landau", E. Ter Haar Ed., Pergamon, (1965), pp

547-568 . In this work, however, the charge was taken equal to the electron charge e instead of 2e as a

result of the BCS theory on Cooper pairs .

[83] Levine, D ., Steinhardt, P. : Quasicrystals : a New Class of Ordered Structures, Pigs . Rev. letters, 53,

(1984), 2477-2480 .

[84] Little, W. A . : Possibility of synthesizing an organic superconductor, Phys . Rev ., A134, (1964), 1416 -

1424 .

[85] Livi, R ., Maritan, A ., Ruffo, S . : The Spectrum of a 1-D Hierarchic-al Model, Preprint 1987. I thank th e

authors for communicating their work prior to publication .

[86] Luck, J . M ., Petritis, D . : Phonon Spectra in One-Dimensional Quasicrystals, j . Stat. Phys ., 42, (1986) ,

289-310.

[87] Mermin, D ., Ashcroft, N . : Solid State Physics, Saunders, Philadelphia, Tokyo, (1976) .

[88] Moser, J. : An example of a Schrödinger Operator with an almost periodic potential and a nowher e

dense spectrum, Commun . Math. hele., 56, (1981), 198 .

[89] Ostlund, S ., Pandit, R., Rand, D ., Schellnhuber, H ., Siggia, E. D . (83) : One dimensional Schrödin -

ger Equation with an Almost Periodic Potential, Phys . Rev. Letters, 50, (1983), 1873-1875 .

[90] Ostlund, S ., Pandit, R ., (84) : Renormalization group analysis of a discrete quasiperiodic Schrödinger

equation, Phys . Rev. B29, (1984), 1394-1414 .

[91] Pannetier, B ., Chaussy, J., Rammal, R., (83) : Experimental Determination of the (H,T) Phase

Diagram of a Superconducting Network, J Physique Lettres, 44, (1983), L853-L858 .

[92] Pannetier, B ., Chaussy, J ., Rammal, R ., Villegier, J. C ., (84) : Experimental Fine Tuning of th e

Frustration : 2D Superconducting Network in a Magnetic Field, Phys. Rev . Letters, 53, (1984), 1845 -

1848 .

[93] Pastur, L . A. : Spectral Properties of Disordered System in One Body Approximation, Comm . Math.

Phys ., 75, (1980), 179-196 .

[94] Pearson, D . B . : Singular Continuous Measures in Scattering Theory, Commun . Math . Phys., 60, (1978) ,

13-36 .

[95] Pedersen, G . : C*-Algebras and their automorphism groups, Academic Press, London, New-York ,

(1979) .

[96] Peierl, R ., (33) : Zur Theorie des Diamagnetismus von Leitungelektronen, Z. fir Phys ., 80, (1933) ,

763-791 .

[97] Peierl, R., (55) : Quantum Theory of Solids, Chap . VII, Pergamon Press, (1955), Oxford .

[98] Penrose, R. : in Bull. Inst. Math. Aplications, 10, (1974), 266 .

[99] Pimsner, M ., Voiculescu, D . : Imbedding the irrational rotation C*-Algebra into an AF-Algebra, J.
Operator Theory, 4, (1980), 211-218 .

[100] Pöschel, J . : Examples of discrete Schrödinger operators with pure point spectrum, Commun . Math .

Phys ., 88, (1983), 447-463 .

[101] Putnam, I ., Schmidt, K ., Skau C ., (85) : C*Algebras associated with Denjoy homeomorphism of th e

circle, (1984), J. Oper. Th . to appear.

[102] Putnam, I ., (87) : The C*Albegra associated with a minimal homeomorphism of the Cantor set,

Preprint Univ . of Pennsylvania, (1987) .

[103] Rammal, R ., Lubensky, T. C ., Toulouse, G ., (83) : Superconducting networks in a magnetic field ,

Phys . Rev ., B27, (1983), 2820-2829 .

[104] Rammal, R ., (84) : Spectrum of harmonic exicitations on fractals,J. de Physique, 45, (1984), 191-206 .



MfM 42:3

	

7 3

[105] Rammal, R., (85) : Landau Level spectrum of Bloch electrons in a honeycomb lattice, J. de Physique,
46, (1985), 1345-1354.

[106] Rieffel, M . R . : Irrational rotation C*-Algebra, Short communication to the Congress of Mathematician ,
(1978) .

[107] Sarnak, P. : Spectral Behavior of Quasi Periodic Potentials, Commun . Math . Phys ., 84, (1982), 377-409 .

[108] Schechtman, D ., Blech, I ., Gratias, D ., Calm, J. V. : Metallic Phase with Long-Range Orientational

Order and No Translational Symmetry, Phys. Rev. Letters, 53, (1984), 1951-1953 .

[109] Schultz, H . J. S ., Jerome, D ., Mazeaud, A ., Ribault, E, Bechgaard, K . : Possibility of super-

conducting precursor effects in quasi-one dimensional organic conductors,J. de Phys. Paris, 42, (1981) ,

991-1002 .

[110] Sharvin, D . Y, Sharvin, Y. V. : Magnetic-flux quantization in a cylindrical film of normal metal ,

JETP Letters, 34, (1981), 272-275 .

[111] Shubin, M . A . : The spectral theory and the index of elliptic operators with almost periodi c

coefficients, Russ. Math . Surveys, 34, (1979), 109-157 .

[112] Simon, B ., (82) : Almost Periodic Schrödinger Operators, Adv. Appl . !Elath ., 3, (1982), 463-490 .

[113] Simon, B ., (83) : Holonomy, the Quantum Adiabatic Theorem and Berry's Phase, Plys. Rev. Letters,
51, (1983), 2167-70 .

[114] Simon, B ., (84) : Almost Periodic Schrödinger Operators IV : the Maryland model, Ann . Phys ., 159,
(1984), 157-183 .

[115] Simon, B ., Taylor, M ., Wolff, T ., (85) : Some rigorous results on Anderson model, Phys . Rev . Letters, 54,
(1985), 1589-1592 .

[116] Simon, B ., Wolff, T., (86) : Singular Continuous Spectrum under Rank One Perturbation an d

Localization for Random Hamiltonians, Comm . Pure Appl . Math ., 39, (1986), 75-90 .

[117] Sinai, Ya . G . : Anderson Localization for a One-Dimensional Difference Schrödinger Operator wit h

Quasiperiodic Potential, J. Stat . Phys ., 46, (1987), 861-909 .

[118] Sokoloff, J . B . : Unusual band structure, wave functions and electrical conductance in crystals wit h

incommensurable periodic potentials, Phys . Reports, 126, (1985), 189-244.

[119] Sütö, A . : The spectrum of a Quasiperiodic Schrödinger Operator, Comm. Math . Phys . 111, (1987) ,

409-415.

[120] Tang, C ., Kohmoto, M . : Global scaling properties of the spectrum for a quasiperiodic Schrödinger

equation, Phys. Rev ., B34, (1986), 2041-2044 .

[121] Thouless, D ., (72) :A relation between the Density of States and Range of Localization for On e

Dimensional Random Systems,J. Phys ., C5, (1972), 77-81 .

[122] Thouless, D ., (83) : Bandwidths for a quasiperiodic tight-binding model, Phys . Rev., B28, (1983) ,

4272-76 .

[123] Wang, W., Pannetier, B ., Rammal, R ., (87a) : Thermodynamical description of Berry's topological

phase . Magnetization of superconducting networks, To appear in Phys . Rev. Letters, (1987) .

[124] Wang, W., Pannetier, B . ; Rammal, R ., (87b) : Quasiclassical Approximations for the Almost Mathieu

Equations, To appear in j de Physique, (1987) .

[125] Wilkinson, W., (84a) : An example of phase holonomy in WKB theory, j Phys ., A17, (1984), 3459-76 .

[126] Wilkinson, W., (84b) : Critical Properties of Electron Eigenstates in Incommensurate Systems, Proc.
Roy. Soc . London, A391, (1984), 305-350 .

[127] Zak, J. : Magnetic Translation Group, Phys . Rev., A134, (1964), 1602-1607 ; Magnetic Translatio n

Group II : Irreducible Representations, Phys . Rev ., A134, (1964), 1607-1611 .



74

	

MfM 42 : 3

Notes added in proof:

Since the manuscript was written several problems mentioned in the text have been solved :

L Let us consider the model described in §I-5 (eq .19) with A = (1-a,l] and also in §I1-1 (eq .5), §II- 2

(theorem 14) and given by the following hamiltonian on 1 2 (Z 2 ) :

H(x,a) tV(n) = ip(n+l) + (n-1) +

	

(x-na) y2(n) .

Its spectrum has been computed numerically by :

[128] Ostlundt, S ., Kim, S . H . : Renormalization of Quasiperiodic Mappings, Physica Scripte, T9, (1985) ,

193-198 .

The fractal dimension of the spectrum has been studied non rigorously by :

[129] Levitov, L . S . : Renormalization group for a quasiperiodic Schrödinger operator, to appear in Europhys .

Lett., (1988) .

Ina recent unpublished work, Bellissard, J ., Iochum, B ., Scoppola, E. & Testard, D ., have studie d

rigorously this model and proved that :

(i) The spectrum of H(x,a) is independent of x for any a's .
(ii) If cr is irrational and

	

0 the spectrum of H(x,a) is a Cantor set .

(iii) The gap boundaries are continuous functions of ce as long as ce is irrational but they are

discontinuous at each rational value of a .

(iv) The spectral measure is purely singular continuous, no states are localized .

(v) The spectrum and the wave functions can be computed from the case a = 0 through a

renormalization map similar to the map of §II-l (eq .7) leaving also the same function I(xy,z)
invariant.

H. The nearest neighbours model on a Penrose lattice with or without a magnetic field has been numerically

studied in :

[130] Tsunetsugu, H ., Fujiwara, T ., Ueda, K ., Tokohiro, T. : Eigenstates in a 2-dimensional Penrose tiling ,

J. of Phys . Soc . Japan, 55, (1986), 1420-23 .

[131] Hatakeyama, T., Kamimura, H . : Electronic properties of a Penrose tiling lattice in a magnetic field ,

Solid State Comm ., 62, (1987), 79-83.

All these works exhibit evidence for Cantor spectrum .

III . Two recent works on the spectrum of the almost Mathieu equation (§II-l) have improved the result of

theorem 5 :

[132] Van Mouche, P. : The coexistence problem for the discrete Mathieu operator, to appear in Comm. Math .

Phys., who proves that the dense Gå set in theorem 5 is actually independent of the coupling constan t

as long as it is not zero . And :

[133] Choi, M . D ., Elliott, G ., Yui, K . : Gauss polynomials and the rotation algebra, Preprint Swansea (1988 )

who give a wonderful proof that in the Harper equation (and also for the Almost Mathieu one if th e

coupling does not vanish) all the gaps which ought to be open are indeed open when ais rational ; as a

corollary they get an explicit dense set of irrational numbers for which the spectrum is a Cantor set .

IV. A one dimensional discrete Schrödinger operator with a quasiperiodic potential having two rationall y

independant frequencies has been studied rigorously b y

[134] Sinai, Ya . G . : Anderson localization for the one dimensional difference Schrödinger operator wit h

quasiperiodic potentials, Proc. Int. Congress Math . Phys . Marseille 1986, World Scientific, Singapore

(1987), pp . 870-903 .



MfM 42:3

	

75

[135] Chulaevsky, V. A ., Sinai, Ya . G . : Anderson localization for a ID discrete Schrödinger operator wit h
two-frequency potentials, subm . to Comm . Math . Plys. (1988) .

It is proved that provided the potential is given by a Morse C 2 function on Ts and the couplin g
constant is small enough, there is a set of positive Lebesgue measure in [0,1] x2 such that fo r
frequencies in that set, the corresponding Schrödinger operator has pure point spectrum wit h
exponentially localized states . On the other hand the spectrum is a connected interval .

V. In a recent unpublished work, S . Kotani proved that if H is the hamiltonian on 1 2 (Z 2 ) given by H tp(n.) =
t(n + 1) + Wiz - 1) + v(n) t(n) where v = (a(n)) n > is a sequence with values in afinite set, then the spectral
measure of H has an absolutely continuous component if and only if the sequence v is periodic .

VI. The model studied in §II-2 (theorem 15) has recently been investigated non rigorously b y
[136] Keirstead, W. P., Ceccatto, H . A ., Huberman, B . A . : Vibrational properties of hierarchical systems ,

to appear in]. Stat . Phys. (1988) .

VII . The result of J. Avron & B . Simon [Avron (82)] quoted in §III-3 has also been obtained in
[137] Nenciu, G . : Stability of Energy Gaps Under Variations of the Magnetic Field, Lett. Math . Phys . ,

11,(1986), 127-132 .

[138] Nenciu, G . : Bloch electrons in a magnetic field : rigorous justification of the Peierls-Onsager hami]to-
nian, Preprint Bucharest, (1988) (see references therein) .
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Dissipative Weakly Almost Periodic Function s

By JOHN F. BERGLUND

Using the Bochner-von Neumann [2] definition of the almost periodic functions on a
group, Eberlein [4] analogously defined the weak almost periodic functions . He then
proceeded to show that the set of weak almost periodic functions enjoys many of the
properties of the set of almost periodic functions : e .g ., that it is a uniformly closed linea r
space, indeed a C*-algebra, and, when the group is locally compact and abelian, it ha s
an invariant mean and consists of uniformly continuous functions . Furthermore, all the
functions "of interest" in harmonic analysis are weak almost periodic for a locall y
compact abelian group, at least; viz ., the almost periodic functions, the function s
vanishing at infinity, and the Fourier-Stieltjes transforms .

In his second paper on the subject, Eberlein [5] considered the formal Fourier serie s

L'aÄ <t,/1. >
a.CT

associated with a weak almost periodic functionfdefined on a locally compact abelia n
group G with dual group T, where, if M denotes the unique invariant mean on the set
WAP(G) of weak almost periodic functions on G, the n

= M[f(s) <-s,~>] .

Unlike the case for almost periodic functions, the Fourier series is not uniquel y
associated with the weak almost periodic functionf. In fact, Eberlein showed that there
is a unique decompositionf=f +A, wheref, is almost periodic and has the same Fourier
series asfandf is weak almost periodic with M( f -) = O . We are concerned with this
latter type of function, which we call dissipative .

A more general view of weak almost periodic functions was introduced by de Leeu w
and Glicksberg in [3] . The Bochner-von Neumann definition of almost periodic is a s
follows : Let f be a continuous bounded complex-valued function on the topologica l
group G . Definef byf (t) =f(ts), tEG, and define 0 (f) = {ff sEG} .Thenfis almostperiodic

if 0 (f) is relatively compact in the norm topology of G(G). Eberlein required that 0 (f)
be relatively compact in the weak topology to get the weak almost periodic functions .
Clearly, not all the properties of a topological group are required for these definitions t o
make sense ; in particular, neither group inverses nor joint continuity of the multiplica-
tion is required . Therefore de Leeuw and Glicksberg defined weak almost periodic
functions on semigroups with separately continuous multiplication . They then pro-
ceeded to define and exploit the weak almost periodic compactification (ws, S W) of a
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semitopological semigroup S; that is S ww ' is a compact semitopological semigroup ,
ze)s : S->S w is a continuous homomorphism, w s (S) is dense in S w and if fp : S T is a
continuous homomorphism into a compact semitopological semigroup, then there is a
continuous homomorphism i/ : Sw~-T such tha t

S IP T

ws

commutes . A functionf is weak almost periodic on S if and only if there is a continuous
function f 4 EG(S w) such that f = !vow s, . Properties of the algebra of weak almos t
periodic functions are reflected as properties of the compactifïcation . For example ,
WAP(S) has an invariant mean if and only ifS W has a group as its minimal ideal K(S l )
The dissipative functions fare, in that case, the ones for which fß-1,

	

= O .K(s' )Soon after Eberlein ' s original paper [4], a question arose as to whether there wer e
any functionsfEHAP(G), where G is a locally compact abelian group, which were no t
uniform limits of Fourier-Stieltjes transforms of measures on I . Given the decomposi -
tion theorem, this amounts to the question of whether there are any dissipativ e
functions on G which are not uniform limits of Fourier-Stieltjes transforms . In 1959, W.
Rudin [7] gave an example of a dissipative function which cannot be approximated b y
Fourier-Stieltjes transforms . His example on the additive group Z of integers is th e
following :

{ ein'Ogn if m = kin (k = 1, 2, 3, . . ., 1 < n k)
f(m)

	

0

	

otherwise .

I am not myself interested in the Fourier-Stieltjes aspect of this problem, but in th e
behavior of dissipative functions .

Writing out the support of Rudin's function we hav e

supp (f) = {k!n k = 1, 2, 3,,,. . ; 1 n k }

= {1, 2, 4, 6, 12, 18, 24, 48, 72, 96, 120, 240, . . . . }

Note that there are larger and larger gaps in this set of integers . How typical is this of
dissipative weak almost periodic functions? At first glance, one must conclude that it i s
not very typical since every function vanishing at infinity is weak almost periodic an d
adding one such tofwill give us a weak almost periodic function with perhaps no gaps
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in its support . The following theorem shows that, taking into account the function s
vanishing at infinity, the above pattern is typical .

THEOREM . Let (G,+) be a locally compact (not necessarily abelian) topological group ,
and let S be a closed, noncompact subsemigroup of G . Suppose that WAP(S) has an
invariant mean and that addition is continuous at every point of SxS W . Then the
following statements about a function fEWAP(S) are equivalent :

(a) J 0 on the minimal ideal K(S T") of S w .

(b) 11I(f = 0, where Al is the unique invariant mean on WAP(S) .

(c) The zero function is in the weak closure of the orbit 0 (f) .

(d) For every e > 0 and every compact subset K of S, there is an element s E S such that

E> IRA = sup { f(k+s)I : k E K} .

This is Theorem 3 .4 of [1], and the proof is given there .
Although dissipative functions f are such that f has large gaps in its "above E"

support, these gaps cannot be arbitrarily far apart, as the following theorem from [1 ]
shows :

THEOREM . Let (G,+) be a locally compact topological group, and let S be a closed ,
noncompact, subsemigroup of G containing the identity 0 . Suppose that WAP(S) has an
invariant mean and that addition is continuous at. every point of S x Sw. Supposef is a
dissipative weak almost periodic function on S. Let U0 be a compact neighbourhood o f
the identity 0 of G and let E> 0 . Then there is a compact neighbourhood V= V(U0 ,f, E)

of 0 in G such that, for every s e S, there exists r E S such tha t

(V+s) n (Uo n S + r) ~ ø

Rrf Lr = su p {,Î(t+7) : t E Lô n S} .

(Loosely speaking, this says that no matter where Vis placed in S, it will intersect a se t
as big as Go where If dips below E;thàt is, these spots are relatively dense in S. )

The above theorems give us some reasonable information on the behavior of dis-
sipative weak almost periodic functions, but a more desirable outcome would be a n
easily verified condition which would identify dissipative weak almost priodic function s
among all bounded continuous complex-valued functions . Sufficient conditions were
given by W . Rudin [7] and D . E. Ramirez [6], but they are far from necessary as ha s

and

E>
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been shown by W. Ruppert [8] . Ruppert showed that functions f such as thos e
produced by Rudin and Ramirez must vanish on [S tt\zt s (S)] 2 . On the other hand ,
dissipative functions need only vanish on K(S T'I") and, in general, [Sw\te (S)] 2 K(Sw) .
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On Maps which Preserve Almost Periodicity

By PIERRE EYMAR D

If G is a topological group, let us denote by AP (G) the set of all almost periodi c
functions on G, i .e .

AP(G) = {fG - C; the set of translates )f, where y e G, is relatively compact i n

(Ke(G),I D Y

Definition. Let G2 and GI be two topological groups . A map p : G2 --> GG is said to be almost

periodicity preserving (a .p .p .) if, for everyf E AP(GI), one hasf o p E AP(G2 ) .

In this lecture we shall see what exactly are the a .p .p . maps, under some particula r

hypothesis on the groups, and we shall give sketches of proofs in the two most classica l

cases : I) G2 = G1 = R; II) G2 = Gl = Z . These two examples are typical for the more
general situation of connected groups, and discrete groups respectively . It turns ou t
that the results are quite different in these two cases .

I. Case G2 = G, = R
Examples of maps p : R - R which are a .p .p . are :

1°) the group homomorphisms p : x -* ax, where a is a real constant ;
2°) p = h, where h is a real-valued almost periodic function on R .
Conversely one has the following :

THEOREM 1 : Ifp : R- R is a .p .p ., then there exists a ER and h EAP(R), such that p(x) =
ax+h(x) .

Generalization . Suppose G2 is an abclian locally compact connected group, and GI = R ; th e
same statement remains true, just replacing ax by a(x), where ais any continuous grou p
homomorphism of G2 into R. (Cf. [3]) .

II. Case G2 =G,= Z
Let there be given an integer p 1, and for every i = 0, 1, . . .,p-l, two integers ai and b1 . For
every x EZ, let us divide x byp, obtaining x =pq+ i, where q is the quotient and i the rest ,
and put

p(x) = ci q + b .

Definition . Such a p : Z -~ Z is called piecewise affine of modulus p) .
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THEOREM 2 . p: Z -> Z is a .p .p . if and only if p is piecewise affine . (This result i s

implicitly in [2] ) .

III. Generalizations to discrete groups (Cf. [1] )
Let G2 and GI be two discrete groups, where G1 is abelian, but not necessarily G2 . Let us

denote by .. (G2 ) the set of all subgroups of G2 which are invariant and offinite index .

Definition . p : G2 -3 G1 is said to be piecewise affine if there exists a subgroup H E

some representatives xo , x, . . .,1 of the classes of G2 modulo H, and for every i =

0,1, . . .,p-1 :

1°) a group homomorphism a = H Gl ;

2°) a fixed b . E GI ,

such that :

x = yx. ; yEH~p(x)=a(y) +b.

THEOREM 3 . IfG2 is finitely generated, then p : G2 --> G1 is a .p .p . if and only if p is piecewis e
affine .

THEOREM 4. If G2 is countable and without proper invariant subgroups offinite index, then p :

G2 -> G1 is a .p .p . if and only if p(x) = a(x) + b, where cris a group homomorphism of G2
into G1 , and b E G1 .

Example of a G2 such that ,7(G2) = f G2 } : the group of all permutations of N which act
only on finitely many elements and are even on them ; this group is countable an d

simple .

IV. Sketch of proof of the Theorem 1 (Cf . [3] )
Let p: R -. R be a .p .p . The proof proceeds in 4 steps :

Step 1 : p is uniformly continuous .

Step 2 : there exists a constant C such that, for every x ER andy E R, p (x+y) - p (x) -

C .
Step 3 : there exists a continuous group homomorphism er: R -> R (i .e . a dilation x --->

ax) and a map p1 : R -> R which is a .p .p . and bounded such tha t

p =cr +p1 .

Step 4 : if p : R -* R is a .p .p . and bounded, then p E AP(R) .
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The step 1 is quite natural . The step 4 is easy to prove, for instance passing throug h

the Bohr compactification of R. We shall give proofs for steps 2 and 3 .

Proof of Step 2: One can suppose p (0) = 0 . Put f(x) = e'P(x) and E = {t E R ; IIfz -f Iø 1} .
Sincef E AP(R), there exists a compact interval K centered at 0, such that R = E + K .

For every t E E, x E R,

Iei1P(x+a) -P (v)] - lI <_ 1 ,

p(x+t)- p(x) = m(t,x) + 2:r k (r,x)

	

(1 )

where m (t, x)

	

, and k (r, x) E Z . But for fixed r, the first member of (1) is continu -

ous in x on R (connected) ; hence k (t, x) = k (r) does not depend on x . Notice that

Ci =sup{Ip(x)-p(y)I ;xyEK}is<+co,

because p is uniformly continuous and K is compact .
Now for any x E R,y E R, choose t E E such that r-x E K. We have

I p(x+y) - p(x) - p (?') I

p (x +y) - p(t±y)I + I p (t+y) - p (y) - L p (t) - p ( 0n + p(r) - p (x) I

+ m(t,y)+2J-u k(t)-m(t,0)-2)t k(t)I+Ci

2C+ 2 -= C.

Proof of Step 3. Let M be a (Banach) invariant mean on %J (R) . According to Step 2, fo r
every fixed y E R, the function x - p (x+y) p (x) is bounded continuous on R .We put :

6(y) = M Oct)

	

(p- p(x))

From the invariance property of the mean M results that 6(y+z) = 6(y) + or (z) . Hence
u: R -4 R is a homomorphism, continuous because p is uniformly continuous .
Evidently pi = p - ßis a .p .p ., and pi is bounded, since :

I p, ~') I = I p (y) - 0-(y) I = Ip(y) - m? (p (x+y) - p (x) )
= M(p(y)+p(x)-p(x+y))~CM(1) =C .

hence
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V. Sketch of proof of Theorem 2

	

Let T be the set of z E C, z = 1 . For every z E T, the function x

	

zP(T) is almos t
periodic on Z ; in particular : b'z ET, an integer kz > 0 such that sup ~ z P(x) - zP(x+k )

L

	

x€ Z

3 an integer k > 0, i a set S T, where S is open and not empty, 1
such that Vz c S, Vx E Z, I1 - xP(.r+k)-P(X) l

	

1 .

	

J}

Necessarily the sequence x - p(x+k) - p (x) has only finite many values, because, if not ,
after H . Weyl, for a dense set of values ofz, the sequence x zP(` +k) -P(`) should be dens e
in T; but this is not true for z E S because of (2) .

Choose z

	

1 . The almost periodic function

x -> zP(x +k) -P(X)

takes only finitely many values ; hence there exists q c Z, q > 0, such that x - p(x+k) -

p(x) is constant on every class of Z modulo q . Working a little more, we can conclud e
that p is piecewise affine .

VI . The crucial lemma for the proofs of Theorems 3 and 4 . (Cf [1] )
In the proof for G2 = G1 = Z we had the great simplification that every subgroup * {e} of

G2 = Z is automatically of finite index . Under the more general conditions of Theorem s
3 and 4, we need to prove directly that some subgroup of G2 , which occurs in the proof; i s
in fact of finite index . For that purpose I proved the following lemma, which perhaps ha s

its own interest:
Finiteness lemma : Let s = { n1 < n2 < . . . < nk < . . .} be an increasing sequence of positive

integers . Suppose that

lim sup	 (n)
> 0 ,

n->w

	

n

where v(n) is the number of integers n in the sequence s.
If E > 0, let Z(E) = {z E T; for every nk E s, 1 -
Then there exists ee > 0, not depending on s, such that Z(E) is finite for E so .

1 .
Applying the Baire theorem we sec that :

(2)
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VII . Interpretation in terms of Bohr compactificatio n
If G is a topological group, there exists a compact group G and a continuous group
homomorphism /3: G - G,_such that ß(G) is dense in G, and such that :fEAP(G)
there existsf E q G) withf =f

Let G2 and GI be two locally compact groups, with GI abelian . Then a map p : G2 GI
is a .p .p . if and only if there exists a continuous map p : G2 - GI such that the diagra m

	

G,	 P> G ,

	

132 T

	

p

	

T >3,

	

G,	 > G ,

is commutative .
This interpretation gives curious consequences of the theorems above, concernin g

the analysis situs of groups in their Bohr compactification . For instance :

Corollary 1. Let Z = [(T) d] A be the dual group of the discrete torus . If a continuou s
map of Z into Z carries Z into Z, then the restriction of this map to Z is piecewise affine .

Corollary 2 . Let G2 and GI be discrete groups, where G I is abelian, and G2 countable
with G2 connected . If a map p: G2 --> Gl such that p(e) = 0 can be extended to a
continuous map from G9 into G1 , then necessarily p is a group homomorphism .

VIII . A problem
The hypothesis GI abelian in Theorems 3 and 4 is not very aesthetic . To determine th e
a .p .p . maps of the free group with two generators into itself seems to me an interesting
problem to attack now .
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Separated Solutions of Almost Periodi c
Differential Equation s

By A . M . FINK

It is important to look for almost periodic solutions of differential equations since the y
tend to be the stable ones . In this paper I want to trace two threads of ideas which lea d
to almost periodic solutions of differential equations because of stability considerations .
These two threads converge to give an elegant proof of Bohr's original theorem .

I recall Bohr ' s original Theorem [1] explicitly . IfF' (x) =f(x) andfis almost periodic ,
then F is almost periodic if and only if F is bounded . This is a theorem about solutions o f
the differential equation y' = f(x) . Although the original theorem was for f complex
valued, it holds equally well for f a complex vector function .

The Bohr-Neugebauer Theorem [2] is about the solutions of the equation x' = Ax +

f(t) where f is a vector valued almost periodic function and A is a constant matrix .
Again a solution xis almost periodic if and only if it is bounded . I will sketch the proof.
By a change of variable we may assume that the matrix A is in Jordan canonical form .
Then we look at a particular block,

~1 . . . 0
0x . . . 0

x ' =

	

x+f
00 . . . 1
00 . . .a,

The last equation is of the form x' = Ax +f(i) with x a scalar . Proceeding up, the rest are
of the form x ' = Ax + g(t) where x is a scalar, and g is a scalar almost periodic function .

If Re()I,)

	

0, then either

S t ~ e1(s-t)f(s)ds or

	

'e'1 (s-r~f(s)ds

is a bounded solution which is verified to be almost periodic by an obvious estimate .
Since it is the only bounded solution the theorem holds for this component . IfRe(X) = 0 ,
then all solutions are bounded and almost periodic if and only if the solutio n

Joe'l( t)f(s)ds

is bounded and hence almost periodic by Bohr's Theorem . Later we will give a differen t
proof of this result to show how it fits in with other ideas . I remark here that this
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Theorem also covers the nth order scalar equation . For this observation one needs t o
know that for such equations, the solution x being bounded is equivalent to the vecto r
(x,x', x " , . . ., xtn-1)) being bounded .

The Jordan form splits the system into systems living in invariant subspaces . Thos e
coming from Re(Â) � 0 exhibit the stability features . In those subspaces only on e
solution is bounded and almost periodic . The rest of the solutions are asymptoti c
(exponentially) to the almost periodic one either forward in time or backward in time .
Equally important, they diverge exponentially either forward in time or backward i n
time . This situation is called an exponential dichotomy .

Favard attempted to generalize the above to the case when A is an almost periodi c
matrix . In order to describe his results elegantly we need to introduce some notation .
For a real sequence s = {sl , s2 , . . . } we define Tf(t) = limtf(t+ s) whenever this limit exist s
pointwise . If the limit is to exist in another sense, we will specify each time . \Ne use T t o
denote translation along the sequence s .

The hull of an almost periodic function is the collection of functions g such that ther e
is a sequence s for which g = Tfuniformly . The hull is denoted by H(f) and is compact
in G(- m , 00) in the uniform norm. For any g E H(f) we have H(g) = H(f) . Finally for
sequences s and s ' , that s' is a subsequence of s is written as s '

	

s .
Along with the equation

x' = A (t) x +f(t)

we also consider all equations in the non-homogeneous hull, namely all equations of th e
form

x ' = B(t)x + g(t)

where B = T A and g = T funiformly, and all equations in the homogeneous hul l

x ' = B(t)x .

Faoard's Theorem [3] is that if for every equation (3) all bounded non-trivial solution s
satisfy it-1f ~ x(t) I > 0, and there is a bounded solution of (1), then each equation (2) ha s
an almost periodic solution .

This theorem includes the Bohr-Neugebauer result since those solutions of x' = Ax
which are bounded are almost periodic and therefore do not have zero infimum norm . A
quick proof of this for almost periodic solutions of (3) can be given . If x(s' .) -->O, then
take s c s ' so that TB= G, T S G = B. T x= y , T sy = x all uniformly . It follows thaty is a
solution o f); = Cy withy (0) = O. Thusy .0 and a fortiori x = 0 . The simple equationy " +5
=f(t) is an illustration . In phase space (y,y '), the solutions of the homogeneous equation
have constant norm, e .g . (cost, -sine) ~ = 1 .

(1 )

( 2 )

(3)
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Favard's proof is to show that every equation in the non-homogeneous hull has a
unique solution with minimum norm and that this implies its almost periodicity . We
will reproduce this proof below with a modern twist .

Meanwhile we will trace a different thread of ideas which converge with that o f
Favard . Doss [4] observed that Bohr 's Theorem on the primitive of an almost periodi c
function may be rephrased in the following way . If f is almost periodic then it is easy t o
see that function F(t + h) - F(t) = f t+hf(s) ds is bounded, continuous and almost periodic .
Now the left hand side can be considered without reference to integrals or primitives .
He proved then that if F is a bounded continuous function such that for every h th e
difference F(t + h) - F(t) is almost periodic, then F is almost periodic . It is easy to se e
that if the hypothesis holds for a dense set of h's and F is uniformly continuous then i t
holds for all h . A natural question arises, how many differences are required to b e
almost periodic for this theorem to hold?

Bochner [5] studied a general first order system which includes the possibility of
delays and pure difference equations . He showed that if one non-trivial difference i s
almost periodic, and Fis bounded and uniformly continuous, then Fis almost periodic .
In proving this theorem, Bochner derived a new necessary and sufficient condition for a
function to be almost periodic . This condition is one which has become very useful i n
differential equations . The condition is : f is almost periodic if it is continuous and if fo r
every pair of sequences t and s ' , there are common subsequences (the same choic e
function for both) t ands such that T T f= T+tfpointwise . The meaning of the left hand
side is that T f = g and T g both exist . The usefulness of this criterion is that th e
condition is pointwise . Of course if f is almost periodic these hold uniformly .

If x is a bounded solution to a differential equation x ' = f(t, x) where f is almos t
periodic in t uniformly for x in compact sets, then from every pair of sequences s ' and t '

one can extract subsequences so that T x = y, Ty, and T+, x all exist uniformly o n
compact subsets of R. By taking further subsequences if neccessary,y will be a solutio n
of the equation x ' = T f(t, x) and T T x and T+5 x will both be solutions of the sam e
almost periodic equation x ' = T+sf(t, x) . To see how these ideas can be useful we wil l
sketch the proof of Favard ' s Theorem. Recall that this proof will also prove Bohr' s
original theorem about primitives being almost periodic if they are bounded .

Sketch of Proof: First, if the set of bounded solutions of equation (2) is non-empty, the n
this set is a convex set which has a unique element with minimum norm . This is an ar-
gument using the parallelogram identity . For two distinct minimizing solutions x andy

x2
(t) 12 + x2 (t) 12 = 1 x(t) I 2 + 2 [y(t) 12 . Since

x2
is a bounded solution of the

equation (3), the second term is larger than some å > 0 . Taking supremums yields a
contradiction . Call the minimum norm solution x(B,g) for (B,g) in the hull of (A,f) . If
T (A,f) -* (B,g) then by taking subsequences if necessary, T x(A,f) =y is a solution of
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(2) and loll llx(A,f)ll . Now repeat the argument with the sequence -s . We get Ts y is a
solution of (l) and !ITsyll l[yl , ilx(A,fill . By uniqueness T sy = x(A,f) . It follows tha t
T x(A,f) = x(B,g), that is, the least norm solutions are translates of each other . Thus

s

T x(A,f) and T+s x(A, f) are both translates of a least norm solution and solutions of
the same equation . By uniqueness they are the same and x(A,f) satisfies Bochner ' s
condition; it is almost periodic .

The above argument can be made with any functional L defined on solutions of
equations in the hull of any almost periodic equation provided that 1) each equation ha s
a unique minimizer of the functional L and 2) L(TS x) L(x) for any solution x . The
book of Amerio and Prousé [6] consists of giving examples of weak solutions of partia l
differential equations which minimize energy functionals . The main difficulty is to
prove the existence of a unique minimizer .

A different situation where the Bochner criterion gives an elegant proof of almos t
periodicity is the case of a unique bounded solution . Specifically, suppose we have a
differential equation x' = f(t, x) such that for every equation in the hull, there is only on e
bounded solution . If x is such a solution, then T T(s x and T+/3 x are both the bounded
solution of x ' = T+ß f(t, x) so are equal and the Bochner criterion shows x is almos t
periodic . It would seem that such a situation is too much to hope for, except there ar e
nice examples where this is true . Moreover, if one replaces the word "bounded" , by
"with values in a compact set K", then the same argument applies .

It is instructive to consider specifically Bohr's original theorem for a real valuedf.
Supposey ' = f(x) has the bounded solution F(x) . Then the function G(x) = F(x) -

supF+infF
i

2

	

s the solution of the differential equation which is closest to zero i n

C(-œ,co), and a = sup G = -inf G. Since it is uniformly continuous, for any sequenc e
s ' there is an s C s' such that TG is a solution ofy ' = T f, -a inf T G, and sup TG 5 a . If
strict inequality held, then translation by -s would give a solution ofy ' = f(x) whose
norm is less than a. Consequently, for K = [-a, a] there is a unique solution of each
equationy ' = T fwith values in K and G is almost periodic by the above argument. I
think this is a very elegant argument .

Solutions which are isolated in a technical sense are called separated ; x and y are
separated solutions if there is a number d such that x(t) -y(t) d > 0 for all t . This is
the situation in Favard ' s Theorem . Amerio [7] generalized this to the non-linear case .
The hypotheses need apply to all equations in the hull . Suppose that in some compac t
set K there are only finitely many solutions and that they are separated, then they are al l
almost periodic.

A property that implies the separated property is uniform stability . Uniform stability
is a strong continuity with respect to initial conditions . A solution x is uniformly stabl e
on [a, co ) if for a given e > 0 there is a b > 0 such that ify is a solution such that l x(to) -
y(to ) < 8, then 1x(t) -y(t) { < e for all t to a . Uniform stability of a solution implies
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that it is separated on intervals of the form (-œ, b] . If ~x yl (0) = E, then Ixy (t)
å(E/2) fort < 0 else Ix- ) (0) < 8/2 . Ifn is a sequence such that Tf=fand

n -4-00, take
a subsequence t C t' such that Tx and Ty are solutions of x ' =f(t,x) . Then ~Tx-Ty
b (2) on the real line .

The various concepts of stability and the relationships with almost periodicity hav e
been studied intensly by Seifert, Yoshizawa, Fink and others including researchers i n
the USSR. The book by Levitan and Zhikov [8] outlines these developments in th e
USSR, while Fink [9] discusses all of the above ideas . A more complete discussion of al l
aspects of stability and almost periodicity is given in Yoshizawa [10] .

Some specific equations to which the above ideas apply can also be found in [9] . One
of the more remarkable results is that of Frederickson and Laser [11] . The equation x " +
f(x) x ' + x = p(t) with almost periodic p has an almost periodic solution if and only i f
F(c) - F(-00) > Tr/3 where F(x) = fofand /3= max M{p(t) sin (s-t)} . The solution i s
uniformly quasi-asymptotically stable in the large .

For scalar equations x ' = f(x, t), if there is a bounded uniformly stable solution o n
[0, co) then there is an almost periodic solution. Iff is monotone in x and there is a
bounded solution on [0,00) then there is an almost periodic solution . Each of thes e
solutions is a unique solution contained in some compact set . The compact set i s
obtained by separation in the first case and by minimization of the oscillation functio n
in the second .

A second order example is the equation x " = m(x)x ' + g(x) + e(t) where e is almos t
periodic . Define M(x) = f,'m and

M(u+vU-M(u)
v

$ 0 ;

m (u)

	

U = 0 ;

then there is an almost periodic solution . This is a unique solution with values in [a, b ]
and is stable .

A slightly different set of sufficient conditions is illustrated by the equatio n

x " +f(x) x ' + g (x) = k p (t)

If there is an a < b for which

g(a)+eft)

	

0<g(b)+eft) holds forallt,g'(t)>0 ,

and there is a A so tha t

(Ø(u, v) - /1.)' 4h(u, v)

	

0 for u, u+v E [a, b] ,

h (u, v) =
g' (u+ v) -g ' (u )

v

g(u)

	

v=0 .

v0 .
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where]) is almost periodic . Let F(x) = f]f, g(0) = 0, g' exist and satisfy 0 < g' (x) < 0 and
f(x) awhere /3 < nr- . Suppose one can find c < d so that g(c) --k and g(d) = k and a < b

such that k < min { [F(d) F(c)]f(x) + g(-b), [F(-a) - F(-b] .f(x) -g(d) } on [-b, d], then
there is a unique bounded solution which is uniformly stable and almost periodic .

Finally, I mention that the notions of stability and separatedness have their counter -
parts in the abstract theory of dynamical systems . The use of dynamical systems fo r
non-autonomous equations was inaugurated by Miller [12] .
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Value-distribution Theory for Holomorphi c
Almost Periodic Function s

By SIGURf)UR HELGASON

1 . Introduction
I am deeply indebted to the organizers for inviting me to participate in this conferenc e
on the occasion of the 100' anniversary of Harald Bohr .

My student years here in Copenhagen happened to coincide with the last 5 years of
Bohr ' s life. Although many years have passed I still have a vivid memory of hi s
inspiring lectures and of his personal kindness .

Today I am going to talk about some work of my own from this time ; this was a
response to a prize question posed by the University for 1950 concerning holomorphi c
almost periodic functions . This work was inspired by papers by Bohr and by Jessen ,
together with the works of the Finnish mathematical school (primarily Rolf Nevanlinn a
and Lars Ahlfors) on value-distribution theory of meromorphic functions . The new
results are described in § § 4-5 .

First I will describe some background material . Here I am indebted to Prof B .
Fuglede and Prof H . Tornehave for some informative references . Bohr's early work on
Dirichlet series and the Riemann zeta-function led him to the theory of almost periodi c
functions . While the principal results of his theory of almost periodic functions on R
have to some extent been absorbed in the theory of continuous functions on compac t
abelian groups, his theory of holomorphic almost periodic functions [2] has retained it s
independence and its charm .

A holomorphic functionf(s) in a vertical strip (a, /3) : ce < Re s < j3 is said to be almos t
periodic if to each E > 0 there exists a number 1= 1(E) such that each interval to< t < to + l
of length l contains a number a such tha t

.f(s+i z') .f(S)

	

E

for all s in the strip . (Here a and /3 are allowed to be infinite .) In other words, ifs = a+ it ,
a < a < ß, the function t -'f (a + it) is almost periodic on R and uniformly so fo r
a<er</3.

To each such function f one can associate its Dirichlet series

f(s) „- IA engs

	

E R ,
n

(1)
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which determines it uniquely . Her e

A = .,TZ (f (a+ it)e~„~Q+ t) )
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(2 )

where 3~G is the mean value

s
cp(t)dt ..%G(cp) = lim	 1~

S-R~ = S-R R

For cp almost periodic this limit does indeed exist and then the holomorphy off

implies thatAn is indeed independent of 6. A uniformly convergent Dirichlet series (say

S (s) = e-0° g r`)' for Re s > 1 + E) is almost periodic; on the other hand, to an almos t
periodic function f(s) in a strip can be associated a sequencef(s) of exponentia l
polynomials E Anp) exp (A s) which converge to f(s) uniformly in any closed substrip
(eel Res < 13~, where cr < a < 13, < /3) .

The original Dirichlet series

a =1 a e-(log n) r
ns

	

n

were generalized to series of the form

ø

(3 )

and both at the beginning and the end of his career Bohr investigated problems of
convergence, summability etc . for such series (3) . It is therefore worth stressing that i n
(1) the order of the exponents is unrestricted .

2 . Result ofJessen . The Jensen Function

With the Riemann zeta-function as motivation it becomes a problem of interest to stud y
the distribution of zeros of a function f(s) almost periodic in a strip (ce, ß) . For such
functions f the basic general results were obtained by Jessen [6] . He showed th e
existence of the limi t

= „A(log f(6 + it») = lim	 1fsRS-R

	

log lf(a +

	

dt
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(in spite of the fact that fmay have zeros) and proved that it is a convex function of a.

Jessen's principal result is the following theorem . If a < a < /3 ' < /3 let n(å , ß ' ; R,S)
denote the number of zeros off in the rectangle a'' < a < /', R < t < S counted wit h
multiplicity .

THEOREM 2 .1 . If cpf is differentiable at a' and ß' then the density of zero s

exists and

H(a; /3') =

	

lim
S-R-. co

n(cr, /3',•R,S)
S-R

H(a, = {Tf(ß)-~~(a) } .

If the function t -* f(a+ it) has a fixed periodp it turns out that this is equivalent to
the classical Jensen formula in complex function theory ; for this case the function cpf is a
piecewise linear function . Jessen called cpf the Jensen function forf.

Indication of proof. First we assume that the boundary of the rectangle a ' < a < ß;
R < t < S contains no zero of f(s) . Then by standard complex variable theory .

2 .7r n(a;/3 ;R,S) =

s f'(ß' + it)
dt -

S f'(a' +it)
dt - i 13'

f'(Q+	
d6 + i

iR)

	

'3'
f' + is)

dQ.

R
f(ß'+it)

	

R
f(a'+it)

	

~ f (v + iR)

	

f (Q + iS)

Consider the vertical segments a '+ it (R t S) and ß'+ it (R t S) . We can find a
simply connected region Q containing both of these segments and no zeros forf. We can
then define the logarithm logf(s) in Q, divide the relation above by S-R and let it ten d
to co . We can restrict the R and S in such a way that the two last terms above give n o
contribution in the limit . The identity in Theorem 2 .1 follows by taking real parts . The
restriction on a' and /3' is then removed by a continuity argument .

It is now an interesting problem to characterize the convex functions cp(a) which
arise as Jensen functions cpf for suitable almost periodic f(s) . This question was
investigated by Buch [4] whose results imply for example that any convex function
which is not linear on any interval arises in this fashion . A complete characterization of
the cpfwas given byJessen and Tornehave [7] , § 112 . It implies for example that a conve x
function (p(Q), a < a < ß, having infinitely many intervals of linearity in a compac t
subinterval of (a, ß) cannot be a Jensen function cpfif the slopes cp ' (a) in these interval s
are linearly independent over the rational numbers .
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3 . Normal Almost Periodic Functions
Already in his original paper [2] Bohr made a special investigation of almost periodi c
functions f(s) in a half-plane (-00, /3) and expressed their behaviour near cr = -oc i n
terms of their Dirichlet expansio n

f(s) -., 1A, e A„s

	

(An � 0) .

In [3] he singled out the so-called normal almostperiodicfunctionsf(s) for which among the
nonzero exponents Al the smallest one exists . These have the following property :

Given any a E C, there exists a halfplane (-co, a» which contains no a -point for f(s) (i .e . a zero

off(s) - a) .

Let us for a moment view such a function f(s) via the substitution s = log z as a
function Ø(z) on a piece 0 < p < po of the Riemann surface of log z . The series (1) then
becomes a generalized Laurent series

(1 )

€p(z) - E An z `'" An ~ O . (2 )

Let us for simplicity assume the normalizing property that the lowest nonzero expo-
nent, say A0 , is > O . Bohr showed in [3] that the inverse function is also normal almos t
periodic . I have proved in [5] that a similar statement can be made about th e
composition of two normal almost periodic functions (having the above normalizin g
property) .

4. Value-distribution Theory . The first Fundamental Theorem
Consider a fixed /3 oc and let z = f(s) be normal almost periodic in {- co , ß} (that is
normal almost periodic in any substrip (-K, A) where ßl < l3) . We apply stereographi c
projection of the z-plane C U {0o} onto the Riemann sphere S with diameter 1 ,
tangential to the z-plane at z = O . Given z,, z2 c C U { oo} the (chordal) distance of th e
corresponding points on S is given by

2 )

k (zi , z2) =

so the arc-length element dß on S is

lz, - z2 1

z,~ 2 ) ( 1 +lz2

dQ=
dz



MfM 42 :3

	

9 7

For any a E C U {co} let A denote the smallest exponent in the Dirichlet expansion of
a

f (s) - a . (Here f(s) - oo is to be understood as 1/f(s) which is also normal almos t
periodic) . Let Aa denote the corresponding coefficient . We now introduce a quantit y
which measures how well the function f(s) approximates the value a on the line Re s = a.
Put

M(o',a,) = .At{-log(k(f(Q+it), a))} + [log k(f(-00),a)], (1 )

where the remainder term i s

[ log k(f(-oc ), a)] =

log k(f(-oo).a), .Î(-oo) � a

log
1IA I2

	

Î( oo ) = a

log IA.

	

.f( oo ) = a = 00 .

The existence of the integral in (1) is clear from the existence of (1) § 2 . Next we pu t
n(Q,a;R,S) = the number of a-points (with multiplicity) of f(s) in the rectangl e
-90 <t<a',R<t<S(with s = r+it) .

2~c
N(a,a) = lim S-R~

6
_ n(t,a;R,S) di+n(-~,a;-~,

S-R-~ ~

	

00

where

n( -oo,a ; -00,00) = Max(Aa,O) .

The existence of the last limit is easily established by means of tools used in the proof o f
Theorem 2 .1 . The function N(u,a) is taken as a measure for the number of a-points off
in the half-plane Re s < a. Note that the remainder term in (2) appears only if a =
lim

	

f(s) .,

THEOREM 4 .1 . If f(s) is normal almost periodic in {-00 , P} then the su m

rll(Q, a) + N(a, a) = T(Q)

is independent of a . Also

c~

T(a) = lim
2 .tr~

	

A (t) di,
-oo

(2 )

(3 )

(4)
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where ARs(t) is the area of the Riemann surface VR s,(t) over the Riemann sphere onto which th e

function f maps the rectangle -co < p < t, R < t < S.
The fact that the sum M(o, a) + N (a, a) is independent of a is an analog of

Nevanlinna 's first fundamental theorem for meromorphic functions . It implies that if
N(o a) is small that is, iff(s) has few a-points, then the approximation term M(a,a) is
large and vice-versa . The function T(o) is called the characteristic function . The geometri c
interpretation (4) of T(6) is an analog of a similar interpretation for the classica l
(periodic) case given by Ahlfors [1] and Shimizu [9] .

The proof of Theorem 4 .1 proceeds along lines similar to the classical theor y
(Nevanlinna [8], VI, § 3) but requires in addition some tools utilized in the proof o f
Theorem 2 .1 . A brief indication follows . Let A E C and put

w (s) = A + f~s), v (s) = log (1 + (s)

We use Gauss' formula

dv dl=vdtdt
Q

on a region Q which is the rectangle (Jo < t < Q, R < t < S with small disks remove d
having the zeros off as the centers . Here Fis the boundary of 52 (with the appropriat e
orientation), dl the arc clement on F, A the Laplacian in the (z t) variables and d/can the
outgoing normal derivative .

The proof now proceeds along the following steps .
(i) We use the Laurent series of 1/f(s) around each zero of f(s) to estimate th e

contributions to the left hand side of (5) of the circular parts of T . Then we let the radi i
of the disks considered tend to O .

(ii) By direct computation

(Av) (s) - 4	 1w	 ( )
( 1+ w (s)1 2 ) 2

Viewing w(s) as a map from the s-plane to the Riemann sphere lying on the w-plane w e
have

d6	 1
Ids

	

1+1w(s)1 2

2)

	

(5 )

w' (s)~•
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Thus ifARS (T is the area function (for the function w(s)) we have (with s = + it)

rS Ç

	

,(S) 2

ARS() =

	

dt

	

(1HLy(S)I2)
2 dT, .

(iii) In (5) we divide by S-R and let S-R- w through special values of S and R, such
that on the corresponding horizontal lines r+ iR, r + iS (ao < r < o) f(s) is bounded
away from 0 . Then the horizontal pieces of the boundary Fin (5) give no contribution t o
the limit . The normal derivatives in (5) can be pulled outside the integral as &à6.

(iv) Now let °o --> - w in (5) and then integrate with respect to a from - oo to a.
Considering the behaviour of w(s) as 6-' - w we obtain after some manipulation th e
formula

../G (log d1+ w(Q+it) 1 2 ) + N(a,0) =
(6 )

2 a

S-R~ ARs (T)dr+ log V1+1w(-Go )1 2 .

The last term should be replaced by log(l/ Ao l) in case w(-00) = Go
(v) Consider a fixed a E C and the function

1 +df(s)

w
i (s ) _ f(s) a = d +

(f (s)-a) ( 1 + l a l 2)-i
.

The values of wi (s) are obtained from the values off(s) by rotation of the sphere so ARS i s
the same for wi and forf. Als o

(1 + I wi (s)I 2 ) 1 = k ( w1 (s), w) = k(./ (s),a)

so when (6) is used on to] we do obtain Theorem 4 .1 .

5. The Second Fundamental Theorem . Applications
While the first fundamental theorem expresses the constancy of the total affinity M(ai,a)
+ N(o,a) off(s) to the value a the second fundamental theorem will show that for most a

Ø
N(a,a) is the principal component . This is based on an estimate of the sum Fj M(qa)-

	

L'

for arbitrary distinct a1 , . . . a .

lim
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Motivated by the classical (periodic) theory we consider the number ni (a,a ;R,S) of

multiple roots in the equationf(s) - a = 0 in -co < r < a, R < t < S, such that a k-fol d
root is only counted (k-1) times . We also put n1 (- oo , a ; -oo, œ) = Max (A:, 0), where A;
is the smallest exponent in the expansion off' (s) - a . Clearly nl (a, a ; R, S) is the
number of zeros forf' (s) in the rectangle indicated . Then we put

2gN (ß,a) = lim
S-R~-~

ni (z a; R,S)dz+ nl (- oc a ;-c°>°° ) 6 ,

	

(7 )s-x- ~

and by the remark above, INi (o,a) is bounded by the function N(0-, O)taken for th e
derivative f' . In the next theorem (the analog of Nevanlinna ' s second fundamental
theorem) we distinguish between the two cases : /3 finite and /3 = Do .

THEOREM 5 .1 . I . Letf(s) be normal almost periodic in {- oo ,oo} and al , . . . ,1 arbitrary distinct
complex numbers . The inequality

a

p
E M(ß,a) +~Ni

v=1
Q,a) T(o) + 0(log T(o)) + 0(log a (8 )

holds for all a except on a set of o offinite measure .

II . Let f(s) be normal almost periodic in {-00, 0) and a l , . . . ,ap any distinct complex numbers . The n

inequality (8) holds with log(al replaced by log(1/(1-e°)) and the inequality holds for all a < 0

except for at set of a over which the integral of e°(1-e°) -l is finite .
In the proof of this theorem the passage from periodic functions to almost periodi c

functions gives rise to certain technical difficulties . The proof is therefore too complicat -
ed to describe here in detail . Instead, I will show how the theorem implies the analog o f
Nevanlinna's defect relation .

Application . Letfbe normal almost periodic in {-co, /3} . For each a EC we define the
defect by

å(a) = 1 limß
N(aa)
T(a)

and the ramification index

v(a) = lim
N

t 	 (a,a)

aßß T(a)

In the case whenfis a nonconstant normal almost periodic function in {-Do, œ} it i s
easily deduced from Theorem 4 .1 that lim T(a)/a > 0. From Theorem 5 .1 we ca n

therefore deduce the following result .
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THEOREM 5 .2 . Let f(s) be nonconstant and normal almost periodic in {- a), co} . Then the defec t

6(a) and the ramification index v(a) are strictly positive for at most countably many a an d

IS(a) + Iv(a) 5 1 .

The defect 8(a) is a measure for how rarelyf takes the value a . If a is omitted by f(s)

altogether in -cc 5 Re s < then 8(a) =1 so we deduce from ,6(a) 5 1 that there can b e
at most one such value a .

For the case 13 = 0 we obtain similarly the following result .

THEOREM 5 .3 . Let f(s) be normal almost periodic in {-co, 0} and assume

lim logcle°
= 0 .

u- °

	

T(o)

~S(a) 5 1 .

Again this implies that f omits at most one value in the strip - co 5 Re s < 0 .

Then
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Around Bohr's thesis

By JEAN-PIERRE KAHAN E

Bohr's thesis [2] deals with ordinary Dirichlet series

00

1 a n s .
~ n

I shall try to describe the mathematical context at the time when he wrote the thesis ,
1909, then - very shortly - his main results (from 1909 to 1951) and the problems he left
open, then the role of series

(1 )

E + n s
( 2 )

and the present state of Bohr's problems . Short proofs of classical things are given at the
end .

1 . Before 1909
One century ago, three days after Harald Bohr was born, J . L . W. V. Jensen, a telephone ,
engineer from Copenhagen, presented a paper at the French Academy of Sciences ,
entitled "Sur la fonction c(s) de Riemann" [14] . H. Bohr quotes it in his first paper, i n
his thesis, and a number of times : obviously it has been a source of inspiration for him .
When he evokes Jensen, he says he was "one of the most gifted mathematicians ou r
country has ever produced " .

Jensen was interested i Dirichlet series . He introduced the basis formula

s l
I
Qle

1„s - e ~ „. s

which allowed him to prove that, if a Dirichlet series 1 a e -Â"s converges at a point (say ,
n

0), it converges uniformly on every compact set which lies strictly at the right [13] . Hi s
paper on 4(s) was motivated by two reasons : first, give a simple proof, not using the
functional equation of Riemann, that (1- .s) (s) is an entire function; then, taking fo r
granted what Stieltjes had claimed two years before [27] - namely that he had a proof o f
the Riemann hypothesis - investigate the location of the first zeros on the critical line .

Stieltjes was also interested in Dirichlet series . In order to derive from the Riemann
hypothesis - which he thought he had proved - results on prime numbers he needed
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multiplication of Dirichlet series . And he stated a curious result : that the product of tw o
Dirichlet series

Ean s , Ebn s ,
n

(namely E c n ' with c = E a~ b) converges for a> 2 if the two first converge for
fi

n

a> 1 [28] .
In the last decade of the 19th century, Dirichlet series was an interesting topic . Th e

main work was Cahen's thesis, in France, with a number of formulas for the coeffi-
cients, the abscissa of convergence, etc . [8] . Also, with a wrong statement, namel y
that the theorem of Stieltjes on multiplication of Dirichlet series could b e

improved, replacing a> 2 by a> 0 in the conclusion . Hadamard [9] and de la

Vallée Poussin [29] proved that 4s) has no zero on a= 1 and derived the prime numbe r
theorem .

However, around 1900, there was a decline of interest for Dirichlet series, togethe r
with a renewal of interest for Fourier series, mainly because of the Lebesgue integral an d
the Fejér summation theorem.

Then, suddenly, at the time Harald Bohr began to work, a number of first clas s
mathematicians turned again to Dirichlet series . In 1907 and 1908, there were several
papers of Landau [17], [18], a short article by Hadamard [10], an extensive study by O .
Perron [20], and the important thesis of Schnee [25] . Landau published the first proo f
of Stieltje s 's statement and observed that Cahen had been wrong on multiplication o f
Dirichlet series . Schnee, among other results, proved that a Dirichlet series converges

for Re s > Qo whenever the function f(s) = E a , e S exists for Re s large and can b e
0

extended as a function of order 0 in Re s > 60 , that is

f(a+it) = 0( tr) (Q> a0 , tl

	

co )

for each E > 0 [25] [26] .
In 1908 again, Lindelöf proved his famous convexity theorem about the order of a

function . With Bohr's notations, if we write

,u(6) = inf{a ~ f (o+it)= O( O} (t

	

Go )

when f (s) is holomorphic in the strip a < a< b (s = a+ it), then ,u(a) is a convex function
[19] .

In 1909, Marcel Riesz published three important notes in Comptes-Rendus, all o f
them on Dirichlet series [22], [23], [24] .
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2 . Bohr's results and problems (1909-1950)
1909 is the year Harald Bohr writes his thesis . It begins with a note aux Comptes-
Rendus, his first paper, 11th ofJanuary, 1909, "Sur la série de Dirichlet " [1] . And the yea r
ends with the approval of the thesis, signed by the dean on December 31, 1909 . In between ,
he writes also a paper for the Göttinger Nachrichten, on the summability of Dirichle t
series, the topic of his first note [3] . His starting point is like this : the series 1 (-1) n n',

which represents (s) (1-2 1-5), is summable by the Cesàro process of order r when a

-r, therefore represents an entire function (a still shorter proof than Jensen ' s) .
Actually, after 1909, his main interest shifted to the c-function, then, after 1920, t o

the theory of almost periodic functions . Nevertheless, his last papers, around 1950, all
deal with the problems he considered in his thesis [4], [5], [6], [7] .

I shall review at the same time what he did in his thesis and the improvements h e
gave in the 1950' s .

A: The convergence problem

Let a be the abscissa of absolute convergence and a the abscissa of convergence of a n
ordinary Dirichlet series . Then

a
ß
a Q+ l and u(

Q
) = 0(obvious )

y(ac)

	

1 (Jensen )

u(a) = 0

	

a (Schnee )

Is it possible to improve, that is, to obtain more information on a from the orde r
function u( .) or more information on u( .) from the abscissa of convergence a? The
answer is negative and it is provided by two examples : a lacunary series of the form

(rn
+ 1 ) -5 )

gives figure 1, and a more complicated example figure 2 .

(3 )

0

	

1
a

	

ac

	

a
Fig . 2
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Figure 2 answers the Stieltjes-Cahen-Landau multiplication problems, becaus e

tt (a ; .h) = 2y(a ;ff)

therefore, with f as in figure 2 ,

by Jensen . Bohr was very happy of this discovery and came back to the multiplicatio n
problem later [5] [6] . Let me remark that

(fk) ? 1-k, k=2,3, . . . ,

a converse of an extended Stieltjes theorem (see appendix) .
The conclusion of Bohr is that a is not very well connected with intrinsic properties of

f (s), at least not with the order function ,u(a) . Henry Helson reconsidered the question
in 1962 and gave a very elegant fomula for a, using Fourier properties of f(s)/ s

considered as a function oft (s = a+ it) [11] .

B: The summability theor y

Given an ordinary Dirichlet series (1), let us write no w

= abscissa of C'-summability of (1 )

where C r is the Cesàro process of summation of order r. In 1909, Bohr considers only
integral values ofr ; in the 195 0's, following M . Riesz, general r> O . The "summability
function" is îp(a) defined by

'Iv(
)..
,) = r,

that is, (1) is C '-summable at s = a+ it if r < tp(a) and is not C ' -summable at any s =
a+ it such that r > iß(a) . Bohr ' s theory leads to

tV(a),u(a) 'Wa) +

	

(4 )

together with

convex and 1p(a) = 0 for large a
t/'(a-0) -1 or else 'tp(a) = 0

(5)
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(figure 3) . As a consequence, the half plane where (1) is C ' -summable for some r> 0 and
the maximal half plane where the functionf(s) represented by (1) is holomorphic and o f
bounded order are the same (up to the boundary), a striking and final result - actually ,
the best result of his thesis - .

~ o -w

	

wµ

Fig . 3

However, Bohr was not satisfied . Given two functions J( .) and y( .) as in figure 3, is i t
possible to construct an ordinary Dirichlet series having them as summability and
order function respectively? In his last paper [7] Bohr solves the question completely a s
far as ip( .) is concerned: (5) is necessary and sufficient for 4»( .) to be a summability

function . What about y( .)? Assuming (4) and the analogue of (5) for fit( .), that is p( .) i s
convex and

((o- 0)

	

-1

	

(6 )

(where co = inf {a ; µ(a) = 0}), then Bohr shows that {iß( .), ,u( .)) is actually a coupl e
{summability function, order function} .

Now, is (6) a necessary condition (when the first member exists)? This is the las t
problem of Harald Bohr [7] .

Here is a previous problem [4] . Does there exist a Dirichlet series (1) with a = 0, a =

1, ,u(a) = sup(0, 2 - a) (figure 4)?

`a)

0

	

1
a

	

a
c

	

a
Fig . 4
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Both questions are inspired by the Riemann ,-function . If (6) were a necessar y
condition, it would prove the Lindelöf hypothesis for (s), that i s

E) (1-4 co )

for all E > O . If the Lindelöf hypothesis is true,l (-1) n n' provides a positive answer to
the second question .

3 . After 1951 (a personal selection)
I already mentioned Helson's formula for o . Following the same idea - Fourie r

methods in Dirichlet series - Helson gave a very elegant proof of the prime number
theorem [12] .

Playing with T in series (2) gives interesting problems and results . I introduced th e
game in 1974 and it was developed by H . Queffelec [15] [21] . The first interesting
example is

E n ((2n-1)s- (2n) s )

with e = ( El , 2, 1} `° = Q. If we consider Q as a probability space with th e
natural probability, figure 4 holds almost surely, which solves the second-mentione d
Bohr problem . If we consider Q as a topological space, then figure 2 holds quasi-surel y
(meaning : on a dense GS-set), which replaces a rather technical construction in Bohr ' s
thesis .

Instead of differences of the first order in (7) it is possible to consider differences o f

higher and higher order, and get Dirichlet series for which ,cc(o) = sup (0, 2 - a) on
(-co , co ) (almost surely) or,u(a) = sup(0, 1-0) on (-00,00) (quasi-surely) . That helps i n
constructing the "building block s " from which Bohr's theorem on {2jß( .), t( .)} derives
(see [21] and [16]) .

Quite different results are obtained by Queffelec [21] for almost sure and quasi sure
properties of Euler products

II (1+E ns )

General random Dirichlet series

I a (a)) éA„s

and their growth properties are considered by Yu Jia-rong [30] .

"(2 +it)= 0(t

( 7 )
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The Harald Bohr centenary was a good opportunity to investigate the last problem ,
on the order functions ,u(o) of ordinary Dirichlet series . Here are the results I obtained :

1) a necessary condition is ,u(a+ ,u(o) + 2) = O . 1
2) (6) is not necessary. It is possible to have 1.t (uo - 0) as near

2
as one wants [16] .

Therefore, the last problem splits into two parts :
1) find another approach to the Lindelöf hypothesis ,
2) characterize the order functions of ordinary Dirichlet series . For example, for

which a ? 0 can one have

,u(6) =sup(0,-Q,a(1 -o)) ?

(a
2

is necessary, a= 0 is sufficient) .

4. Appendix
1 . Here is the proof of Stieltjes 's theorem on mulitplication of Dirichlet series . We
consider E a ns, b ns and their product E c n' . Assume that E a and E b converge .

n

	

n

	

n

Given N,

N
Ec =

	

a b
1

n

	

(m,p) : mp N na P

=

	

(a

	

E b ) + E (b

	

E am )
na

1 ~m~vN

	

i ~p~N1m

	

1 ~pS~iN

	

,N<m,s.A%lfi

= 0 (JN) ,

hence E c n ° converges for a > 2, QED .

In the same way, given k series E aG~ns
(j = 1, 2, . . . k) which converge for s = 0, thei r

product is a Dirichlet series which converges for a > 1 - k .

2 . I mentioned the beautiful arguments of Jensen and Bohr proving that (1-s) "(s) i s
an entire function . However the classical proof is the Rieman functional equation . Her e
is a simple way to express the proof of the functional equation . Let E(x) = integral par t
of x for x > 0, E(-x) = E(x) . Then

~(s) = Jo x sd(E(x)-x)

for0<Res<land

d(E(x) - x) = fo (e2n~ar + e ?nir .z) d(E(t) - t)
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in the sense of Schwartz . Through a simple regularisation (multiplying xs by a
C`°-function with compact support in ]0, 00 [) we have

~(S) = f0 (JO x' (82'x + e-2 citx)dx)d(E(t)-t)

= C(s) fo is d(E(t)-t) = C(s) ~(1-s)

with C(s)=2Ç xs cos2 .7rxdx .
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Bohr Almost Periodicity and Function s
of Dynamical Type

By PAUL MILNE S

Research supported in part by NSERC grant A7857 .

In this note we define the space BAP(G) of Bohr almost periodic functions on a locally
compact group G and, after reviewing the basic implications of the definition, discus s
examples of functions that are Bohr almost periodic, but not almost periodic in th e
sense of Bochner . These examples are either due to or inspired by T .-S . Wu . We then
consider dynamical properties of BAP(G), showing among other things that BAP(G)
C MIN(G), the space of minimal functions on G . We also mention some pathologies ;
for example, BAP(G) need not be a linear space . A concluding result, which we quote, i s
due to A. L . T. Paterson and may be thought of as a regularity property of BAP(G) . I t
asserts that BAP(G) consists of left almost convergent functions .

A way to view one aspect of Harald Bohr ' s achievement with his theory of almos t
periodic functions is that he provided a characterization of the norm closed, linear spa n
of the continuous periodic functions on R . It is clear that any attempt to characteriz e
this space must overcome the apparent problem that even the sum of two periodi c
functions is usually not periodic, e .g ., x - sin x + sin (,2-x) . Earlier attempts at some
aspects of such a characterization had been made by Bohl [3] and Esclangon [6] .

Bohr defined a continuous complex-valued functionfon R to be almost periodic if:
for any E > 0, there is a real number L (E) > 0 such that every interval of length L (E)

contains at least one translation number off corresponding to E. (See Bohr [4 ; pp . 31-2] ,
for example . [5] has an extensive bibliography .) We write this in symbols :

for any E > O, there is a real number LE > O such that [r, r + LE ] n {s 1 f (t + s) -f(t)) I < E

for all t E R }*ø (rER) . The rationale for the term "almost periodi c" is obvious ; if th e
real number LE > 0 exists for E = 0, then f is periodic . Also obvious is how to generaliz e
the setting .

Definition 1 . A continuous complex-valued function f on a locally compact group G i s
called Bohr almost periodic if:

for any E > 0 there is a compact KE

	

G such that

(rK) n {s EG f(ts) - f(t) l < E for all t E G} ~ Ø (r E G) . (1)
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Let BAP(G) denote the class of Bohr almost periodic functions on G .
Although the definition does not require f E BAP(G) to be bounded, it does requir e

IIR fI : = sup I (Rif) (t)l = sup f(ts)-f(t) <

for many s E G . Also, since {s I II R,f-fl < E} is a symmetric set, (1) is equivalent t o

K{sEGIIIR,f-fI < E}=G,

	

(l ' )

and to

for each t E G, there is a k EKE such that IRf- Rkfll < E.

Since a function in BAP (S) must in fact be bounded, the formulation ( 1 " ) shows tha t
the compact sets K can always be chosen finite if and only if the orbit Ref:_ {R,f I s E G)
is totally bounded, i .e ., f is almost periodic in the sense of Bochner [2] . Thus, denoting
byAP (G) the class of Bochner almost periodic functions, we note that BAP (G) =AP(G)

if G is discrete .

2 . Here are some facts about BAP(G) . Their demonstration can usually be modelled o n
proofs in Bohr [4] ; see also [8, 1] . ([10] is a standard reference for topological groups . )
(a) The functions in BAP(G) are bounded (as mentioned above) and right uniforml y

continuous . (We write BAP(G)

	

l6r (G) ; a functionf.. G ---> C is right uniformly
continuous if; for all E > 0, there is a neighbourhood Vof the identity e E G such tha t
f(s) -f(t) < E whenever st 1 E V)

(b) BAP(G) is norm closed in &r(G) and translation invariant (i .e ., f EBAP(G) and s E G
imply Rf, L f E BAP(G), where L,f(t) = f(st)) .

(c) BAP(G) n &i(G) = AP(G) . (Here 16I (G) is the analogously defined space of
bounded functions that are left uniformly continuous . )

From (a) and (c) it follows that BAP(G) = AP(G) if f. (G) = 36j (G) (for example, if G is
abelian) . The converse is an open question . A group to look at in this connection is th e
affine group of the line R ® R + , for which we suspect BAP = AP, although 3G * ?Gr

The definition of BAP(G) uses right translates . We denote by LBAP(G) the spac e
defined analogously using left translates . It follows that LBAP C 26, that LBAP (1 BAP

= AP, and that the equality LBAP = BAP implies the identity of all three spaces, LBAP =

BAP = AP

Examples 3 . The examples presented here of functions in BAP\AP are due to or inspire d
by Wu [17] . A more detailed treatment of them can be found in [12, 13, 14] .
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(i) On G = C ©T, the euclidean group of the plane with multiplication (z', zø' ) (z, w) =
(z' + zø' z, zø ' zø), the functionf(z, w) = e'Re(zhw) is in BAP\ 26i , as is readily verified . (Here
Re indicates real part . )
(ii) On G =(T x T) Ox Z with multiplication (zø 1 , zø2 , n) (zø1 , w2 ,n) = (zvi' te) ,ww w2,
n ' +n), the functionf(zø1 , w2 , n) = w1 satisfies R(1

1 r„)f=f for all m E Z . Hencef E BAP (G),
since we can choose KE = T x T x {0} for all c > 0 in Definition 1 . However f E & . (Thi s
is Wu ' s method [17] and works more generally : if G = GI 0 G2 is a semidirect product
with GI compact, and if F E C(GI), then f(s, t) = F(s) defines an f E BAP(G) . )
(iii) Let G = TT ©Td, where TT is the compact group of all functions from T into T
and Td is the discrete circle group . The product in G is (h ' , zø ') (h, w) = (h' R ti h, w'w) . Let
f(h, w) = h(l) . Then f E BAP\&I . Further, define g E TT by g(-l) = -1, g(w) = 1
otherwise . Then, by 2 (b), Rg 1)fE BAP. However f + Rig 1)f E BAP.

We now want to make a connection with topological dynamics . IffE ZGr (G), then th e
closure Xf : = RGf` of the orbit RGf in the topology of pointwise convergence on G i s
compact in . (G) for that topology . The translation operators R, t E G, leave Xf
invariant and (Re, X) is a flow . f is called minimal, point distal or distal if that flow is
minimal, point distal with f as distal point, or distal, respectively . Specifically, an
fc25(G)is :

minimal if; whenever h 1 = lim R n f(pointwise on G), there is a net {tß } C G such that

f =lim R h;

point distal if; whenever h1 = lim R fand lim R h1 = h ' = lim R f, it follows necessarily
«

	

13

	

fi

that hi =f;
or

distal if; whenever h1 = lim R f h2 = lim R fand lim R Iz1 = h' = lim Rr h,2 , it follow s
«

	

(3

	

y

	

,

	

y

necessarily that h1 = h2 .

We denote the classes of minimal, point distal and distal functions on G by MYlIN(G) ,
PD (G) and D (G), respectively . Clearly distal functions are point distal, and poin t
distal functions are minimal [7, 11, 1] . The functions in Examples 3, (i) and (ii), are
distal, but the one in (iii) is in MIN(G)\PD (G) . (A functionfthat is in PD (Z)\(D(Z) U
BAP (Z)) is defined byf(n) = cos nl cos nl . )

We quote two theorems .

THEOREM 4 [7,11] . Letf E Z r (G) . Thenf E MIN(G) if and only if:
for all E > 0 and finite F C G, there is a finit e

(*)

	

K FC G such tha t

K.F{sEGI f(ts)-f(t)I <E for all t EF} = G .

THEOREM 5 [14] . BAP(G) C MIN(G) .
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The condition (*) in Theorem 4 looks similar to the ( 1 ' ) formulation of the definition of
Bohr almost periodicity ; indeed, one can show directly that a Bohr almost periodi c
function satisfies (*) . The proof of Theorem 5 given in [14] shows that, if f c BAP(G),

h c X f and E > 0, then there is a t E G such that

(**)

	

IIRr h f11 ~ E

(which provesf E MIN(G)) .

Remarks 6. (i) (* *) is equivalent to II h. - Rrf I E, from which we conclude that, for a n
f E BAP(G), Xf, which is the pointwisc closure of RR f, equals the norm closure ofRGf,
we write

R
c
f =R

G

It follows from 2(b) that X

	

BAP(G) .

(ii) Clearly an f E -?/ (GI that satisfies (1) is in MIN(G) . However, not all minima l
functions f satisfy (1) . A class of minimal functions that do not satisfy (1) is PD(G)

\D (G), hence BAP fl PD = BAP (1 D .
(iii) Suppose anfE Il, satisfies (1) . Does this always implyfE BAP? Not without som e
connectivity hypothesis . For, supposef E BAP\AP on some group G . Then some of th e
K ' s in Definition 1 cannot be chosen finite, hencef is not Bohr almost periodic on th e
discrete group Gd . But (1) still holds for ./ on Gd.

In Example 3 (iii) we pointed out that BAP(G) need not form a linear space . Here ar e
two more unusual aspects ofBAP(G) .
(a) If G satisfies BAP\AP Ø, consider the identity map z : Gd -~ G . Although z is a

continuous homomorphism, the adjoint map z *, z*(f) :=f °z, does not map BAP(G)

into BAP(Gd) . (Of course, z * (AP(G)) C AP(Gd), etc . )
(b) Let G andf be as in Example 3 (iii) . Then coo), T-valued function h on the sub -

group {1} x Td extends to a function R(1, 1)f E BAP(G) . (Note that, if HI is a
subgroup of a group H andf e AP (H), for example, then the restriction off to HI i s
in AP(HI ) . )

'We quote two more theorems .

THEOREM 7 [14] . Let z» be a continuous open homomorphism of G i onto G2 . Then
zp*(BAP(G2)) c BAP(GI ) .

THEOREM 8 (A . L. T. Paterson) . Let G be an amenable locally compact group . Then
eachf E BAP(G) is left almost convergent .

(1 )--II II
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We refer the reader to [9, 15, 16] for amenability . A function f E & (G) is left almos t
convergent if the set

{i(f) µ is left invariant mean on Zl (G)}

is a singleton . Paterson proved Theorem 8 by showing that an f c BAP(G) has a
constant function in its norm closed convex hull .

In conclusion we remark that one can consider Bohr almost periodic functions on
topological groups that are not locally compact . All the results here go through
unchanged in this more general setting. One can even extend the setting to semi -
topological groups ; in this setting an f c BAP (G) is defined to satisfy the condition of
Definition 1 and also to be in h (G).
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Almost-Periodic Solutions of Navier-Stokes Equations
and Inequalities

By GIovANNI PRODSE

Introduction

In this talk I would like to present some results, old and new, concerning almost -
periodic solutions of Navier-Stokes equations and inequalities, which govern th e
motion of viscous compressible or incompressible fluids (respectively gases or liquids) .

Of the various problems which can be associated with this motion I shall, in what
follows, for the sake of simplicity, consider only the one corresponding to a fluid in a
bounded 2- or 3-dimensional domain Q, which boundary F constituted by a materia l
surface . Denoting by it (x,t) (x={x1 , x2 , x3} E 0) the velocity of the fluid, the proble m
indicated above corresponds, by the limit layer theory, to the homogeneous Dirichle t
boundary condition

û(x, t) = 0

	

(x E I') .

The following notations will be used in the sequel .
f(x,t) external force acting on the fluid ;
p(x,t) pressure ;
o(x,t) density ; in the incompressible case (o = const) I shall assume, for simplicity ,

0 =1 ;
viscosity coefficients (resp . shear and bulk viscosity) ;

g-

	

space of functions (or vectors) E C'°(S2) and with compact support in Q;
~ .

. space of vectors i e LXand such that div i = 0 ;
If

	

(s integer 0) space of functions (or vectors) square summable in Q, togethe r
with their derivatives (in the sense of distributions) of order s;

Ns

	

closure of .t1%-in H s .

The most common mathematical model associated to the motion of a viscous fluid i s
constituted by the Navier-Stokes equations which, in the case of incompressible fluids, tak e
the form

au -
µ4û + (- .grad) it + grad p =f

while, if the fluid is compressible, are expressed by
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àû

	

1
o

at +
( + u) grad div ù - ,u4ù + o (Ft . grad) ù + grad p = P

a
at + div (où) = 0

P =p (P) .

The third equation of (1 .3) is an equation of state which, in most practical cases, is give n
byp=ko Y (k,y>0) .

It should be noted that (1 .2) cannot be considered as a special case of (1 .3), since th e
two systems are essentially different .

Another model associated to viscous incompressible flow corresponds to the Naoier-
Stokes inequalities which are introduced as follows . Observing that the Navier-Stoke s
equations are non-relativistic and, consequently, do not have any physical meanin g
when ùf approaches the velocity of light, the model (1 .2) is equivalent, from a physical
point of view, to the one corresponding to the relationship s

aù

at
u4û + (ù.grad) ù + grad p = I where lù < c

divü = 0 , û

	

c
û continuous at the "interfaces" of the two sets in which resp . û

It is well known, on the other hand, from the theory of differential inequalities (see, fo r
instance, Lions [1]) that (1 .4) is equivalent to the system

~r L (: - ,u.4û + (ù .grad) + grad p -

	

- cp) dt dS2 0 .

div ù = 0

	

(1 .5 )

V cp such that l cpl

	

c and V ç, t2 € (-oc, + cc ) .
System (1 .5) therefore constitutes an inequality model for the problem considered, in

the incompressible case . An analogous model could obviously be given for compres-
sible fluids, but it will not be considered here .

In the next section I shall recall some results concerning the almost-periodic solu-
tions of the three models presented ; it is however useful to first briefly summarize the
main existence and uniqueness theorems of a solution of (1 .2), (1 .3), (1 .5) satisfying (1 .1 )
and the initial conditions

ù(x, 0) = û0 (x)

	

(incompressible case )
ù(x, 0) = û0 (x) , o(x, 0) = o0 (x)

	

(compressible case )

ùl =c .<cand

û c
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These theorems represent, in fact, the first step in the study of the almost-periodi c
solutions .

The solutions will always be intended in the sense of distributions, while I shall not ,
for the sake of simplicity, indicated explicitly the functional spaces in which th e
solutions are found, or the assumptions on the data .

Considering system (1 .2), Hopf [2] proved the global (in time) existence of a solution
in any space dimension ; the uniqueness of such a solution can however be guarantee d
only in 2 dimensions (Lions and Prodi [3] ) . An existence and uniqueness theorem in Q
x (0, T), Q 3-dimensional, holds provided f is "sufficiently small" (Kieselev an d
Ladyzenskaja [4J) .

One can, on the other hand, prove a global existence and uniqueness theorem for th e
solution in Q x (0, T) of (1 .5) (Prouse [5]) .

In the compressible case, only a local existence and uniqueness theorem holds (Vall i
[6]) ; in order to obtain global existence and uniqueness, one must assume that f i s
"sufficiently small" (Marcati and Valli [7]) .

Almost periodicity theorems
The models introduced in the preceding section all correspond to dissipative problems ,
and the study of their almost-periodic solutions follows therefore from the guideline s
given, for ordinary dissipative differential equations, by Favard [8] and Amerio [9 ]
respectively in the linear and non linear case .

In the theory of almost-periodic solutions of partial differential equations, vecto r
valued functions play an essential role, together with the concepts of weakly almost-
periodic and SP-Stepanov almost-periodic functions . For these concepts and for the
basic definitions and properties of functions with values in a Banach space, I refer to th e
note by L . Amerio which appears in the present volume (see also Amerio, Prouse [10] ) .

While the details of the proofs of the existence and uniqueness of an almost-periodic
solution, under the assumption that f(t) is almost-periodic, are obviously different for
the three models considered, the basic scheme is similar and consists essentially of th e
following steps :
a) A global existence theorem in [to, +cc) ;
b) An existence and uniqueness theorem ofa solution û(t) (or {ii(t), ô(t)}) bounde d

on J = (- cc, + oc ) (assuming f(t) bounded on J) ;
c) The proof that 11(t) ({û(t), ô (t)}) is weakly almost-periodic if f(t) is weakly

almost-periodic ;
d) The proof that the range of 11(t,) ({û(t),

	

(t)} ) is relatively compact if f(t) is
almost-periodic .

Observe that point a) corresponds essentially to the results recalled in the precedin g
section, setting T = + a) .

Assuming that f(t) is S2 -Stepanov almost periodic, the following theorems then hold .
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THEOREM I (Prouse [11]) : If Q is 2-dimensional, f(t)EL°'(J;L2) and is "sufficiently small",
(1 .1), (1 .2) admit a unique solution ii(t) which is N° -Bohr and N I -S2 -Stepanov almost-periodic .

THEOREM II (Foias [12], Heywood [13]) : If Q is 3-dimensional and of class C 3 , f(t) E

1o, (J, NI ) fl Ho, (J, (NI) *) and is "sufficiently small ", then (1 .1), (1 .2) admit a unique solution
û (t) which is N°-Bohr and NI -S2 -Stepanov almost-periodic.

THEOREM I I I (Marcati and Valli [7]) : If Q is 3-dimensional and of class C 4 , p E C 3 , p ' > 0 ,
f(t) E Li ,, (J; HI ) f1 Hl o~ (J; H-I ) and is "sufficiently small", then (1 .1), (1 .3) admit a unique
solution { ?7(t), (t)} with i(t) HI -Bohr and H2 -S2 -Stepanov almostperiodic, j(t) L2 -Bohr and
H2 -S2 -Stepanov almost periodic .

THEOREM IV (Prouse [14]) :IfQis3-dimensional, f(t) L°' (J;L 2) and is "sufficiently small",
then (1 .1), (1 .4) admit a unique solution TIN which is N°-Bohr and NI -S2 -Stepanov almost-periodic.
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On the Zeros of Entire Almost Periodic Functions

By HANS TORNEHAV E

We shal prove in this paper that a lattice Q C which is the set of zeros of an entir e
almost periodic functionf.- C -~ C is periodic in the direction of almost periodicity .

A method for construction of holomorphic almost periodic functions was introduce d
in [4] and was applied more extensively in [6] . During the work on [6] the authors
noticed that the method failed if the set of zeros was a lattice and not periodic in th e
direction of almost periodicity. The authors discussed it only briefly and it was no t
mentioned in the paper .

A rotation of both the lattice and the direction of almost periodicity around the poin t
0 and by the same angle will have no influence on the existence of almost periodic entir e
functions with the given lattice as set of zeros .

Accordingly, we shall assume that the given direction of almost periodicity is th e
direction of the real axis and that the lattice Q is not periodic in this direction, i .e . that 0
is the only real number in Q. We shall study a hypothetical entire almost periodi c
functionf.- C C withf-1 (0) = Q. We are going to prove the non existence of such a
function by deducing that some function derived from f will have properties which
contradict each other.

The 8 lemmas of this paper are statements directly or indirectly dealing with the non
existing functionf. Hence, they have no applications whatever beyond the scope of thi s
paper . The 7 propositions are genuine statements about rather general classes o f
functions, but most of them are reformulations of known results adopted for our
particular purpose .

The first section states the problem, introduces some notions and does some prelimi -
nary work . It ends with the key lemmas 2 and 3, which state that fand some relate d
functions cannot assume very small values except near the zeros .

The second section investigates the Fourier series off. It turns out that the 2 -
dimensionality of the lattice of zeros is reflected in the set of Fourier exponents . In fact
the subspace of the Q-vector space R generated by the set of Fourier exponents has a
`compulsory' 2-dimensional subspace determined by Q .

In the third section we introduce the spatial extension off i .e . a function F: R' x R
- C with f (z) = F(yx; y) ; z = x + iy. Here, F is limit periodic and y = (y1 , y2 , . . .) is a bas e
for the vector space generated by the Fourier exponents such that (y1 , y2 ) spans the
compulsory subspace . If M denotes the zeros ofF in the (z1 , x2 ;y)-subspace of R " x R ,
we have F -1 (0) =p -l (M) when p : R `° x R -- R 2 x R is the projection . Further, M is a
system of parallel straight lines, each connecting a point of Q placed in R'' x R byf (z )
= F(yx; y) and projected on the subspace, with a point of the unit lattice in the
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(xl , x2 )-plane . The proof of this is the tiresome part of the paper and the author hope s
that somebody will find a more elegant way of doing it .

The fourth section finishes the proof of the non existence off by a topologica l

argument . We know that f has the variation of its argument around each zero equal t o
2,n . It is possible to let small circles around the zeros off slide along the lines of M to en d
in the ( x1 , x2 )-plane and this enables us to prove that also the restriction cp(x 1 , x2 ) = F(x1,
x2, 0, 0, . . ., 0) by convenient orientation of the (x1 , x2)-plane has the variation of th e
argument around each zero equal to 2 .7r. The lemmas 2 and 3 will also carry over an d
that makes it possible to prove that the variation of the argument of F along th e
boundaries of certain big squares has to be zero and also to be a very large number an d
that is the contradiction .

In the fifth and last section we shall prove that there is a lattice 0'

	

C and a secon d
order entire almost periodic function with Q U Q ' as its set of zeros .

Almost periodic properties of the functionf

The field R of real numbers is also a Q-vector space and we shall use the notion of linea r
independence accordingly . If (x .) is a sequence of real numbers which are linearly

J
independent over Q we shall simply say that the numbers x, the sequence (x) or the se t

J

	

J
x = (xi, x2 , . . .) are independent .

We shall assume that the lattice Q is spanned by the complex numbers w1 = + i/31 ,

w2 = cet + i/32 , a, c~2 , /31 /32 E R, and that the indices are chosen such that ali /32 - a2ßi =

A > 0. We shall also assume that Q is not periodic in the direction of the real axis, an d
this is equivalent to the assumption that Q (Î R = {0} and also to the assumption that /31

and /32 are independent .
We shall call a set T C relatively dense if there exists a real number L, such tha t

every closed interval I CR of length L contains the real part of at least one element of T.

By Kronecker's theorem and the Bohl-Wennberg theorem ([6] p . 145, footnote) th e
following statement holds :

For every 6 > 0 and everyy c R the set of numbers w E Q with imaginary part in the
interval [y - (5,y + 6] is relatively dense .

We shall consistently use z with or without indices as notation for a complex number ,
and always with z = x + iy and the indices repeated on x and)). To a bounded interval
I C R corresponds a strip SJ = {z y E I} . A strip S C is a set defined in this way . We
shall write is for the interval defining S . Mostly, we have I = [- A, A] with some A > 0

and we shall then write S for S
Most of the functions considered here will be continuous functions g : C - C, but no t

always holomorphic . We define the absolute value lgl by IA (z) = g(z)l . We shall permit
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ourselves the abuse of notation of confusing a function with its value, e .g. by writing

"the function g(z)eYz " meaning "the function g: C -* C defined by g(z) = g(z)e Yz " . For
T E C we use the notation gz C -e C for the translated function gr(z) = g(z+r) . For
E> 0, A > 0 we call r EC an (E, A)-translation number ofg if lgz (z) -g(z) e for every

z ES4 . According to Bohr ' s definition g is almost periodic ifg is continuous and the set of
real (s, A) -translation numbers is relatively dense for every E> 0,A > O. This definitio n
is equivalent to Bochner's definition, according to which g : C -* C is almost periodic ifg
is continuous and every sequence (r. j EN) of real numbers has a subsequence (i .) such
that the sequence (gr ,) converges uniformly in every strip . This can be generalized i n
the following way :

PROPOSITION 1 . Let g: C -* C be almost periodic and let S be a strip . Then every sequence (T.) of
complex numbers T. E S has a subsequence (i .) such that (gr,) converges uniformly in every strip .

PROOF : We write T.= p.+ is and we can then choose the subsequence (i .) with ti . = p~ +
id . such that (g .) converges uniformly in every strip and (d) converges to a limit a.
Tilen, obviously (gp .+ia) converges uniformly in every strip, and since g is uniforml y
continuous in every strip, the sequence (g~ - gp +ia)

tends to 0 uniformly in every strip ,
and the statement follows .

We shall use the following statement, which is pure function theory and not ver y
exciting :

PROPOSITION 2 . Let .A' denote the C-vector space of entire functions bounded in every strip with the

Fréchét-space topology corresponding to uniform convergence in every strip . Let .r/ C .A'be the subset

offunctions g : C -~ C with e l (0) equal to Q or C. Then . .A is a closed subset of J9.

PROOF : We shal prove that . \ ? is open. That h E .'\ ..7e means that h: C - C is entir e
and that there is either a number w E Qwith h(co) � 0 or a number zo eC\S2 with h (zo ) =

0 . In the first case it is obvious that h is in the interior of .'\ . ; . In the second case there

is a disc D cC with center zo and positive distance from Q, and then hl has infimum k >
0 on the boundary of D and according to Rouché's theorem every entire functio n

approximating h with accuracy better than k on the boundary ofD has a zero in D and

that proves again that h is in the interior of \ .% . That finishes the proof .
We shall start in earnest on our non existence proof. From now onf.- C -~ C is an

entire function which is also almost periodic and satisfies that fI (0) = Q. Until the end
of section 4 we shall use f exclusively as notation for this particular function .

LEMMA I . To E > 0, S > 0, A > 0 corresponds e > 0 such that every (e, A + å)-translatio n

number r offhas a corresponding (e A) -translation number w E Q off with IT - col

	

S
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PROOF : Let P denote the closed parallelogram with corners ±
2 wt±

2
cot and P(r), r 0

the set of numbers z EP with lz r.With ro =2min{lcol WES2\{0}} we define K : [O,TO]

.4 [0, co [ by K(r) = inf fl (P(T) ) . We choose rl > 0 such that rl S, ri ro and f (zo ) -

f(z)

	

- 71 r Next, we choose E E]O -2 [such that E' < x(r) . For2 for zi

	

E S
A+â zz ~t

the given (e, A + 8)-translation number Toffwe choose w E Q such that r- w EP. Sinc e
f (-co) = 0, we have lf(r- w) l e' , hence r- w Ë P(i), but that implies that IT- co l
< 6. For z E S4 we have z - (r - co) E S1+s and we get the estimate

lf (z + w) -f(z) l

f(z + w)-f(z +w-r) +l.f(z- (r-w)) -.f(z)

which proves the lemma .

LEMMA 2 . For A > 0 we define SA N as the subset ofpoints of S4 with distance r from Q and we
define kA : [O,ro] - [0, oo [ by kA (r) = inf If (SA (r)) with ro as in the proof of Lemma I . Then kA i s
strictly positive on ] 0,ro ] .

PROOF : We do it indirectly assuming that k 4 (rl ) = 0 for some rl e ]O, ro ] .Then there is a
sequence (z) with z ESA (rl ) and (f (z.)) - 0 . Let P be the parallelogram from the proof of
Lemma 1 . We choose (w. ) with w. E Q such that z.- w. E. P, j E. N. By replacing (z.) by a
convenient subsequence (which we shall still denote (z)) we can according to Proposi -
tion 1 assume that (f) converges uniformly in every strip to an entire function f :
C -~ C, and by the compactness of P we can further assume that (z . - co ).---> a E F Since
(z.- (a+w.)) - 0 and f is uniformly continuous in every strip, we have also (f(a+w .) )
-> 0, but (f(a+w.)) = (f (a)) - f(a), hence f(a) = O . Butz E S1 (rl) implies that z .
- w. E P(ri ), and we have fw E , , j E N and Proposition 2 yields that fE .,A henc e

(0) = Q in contradiction to f (a) = 0 . That proves the lemma .

LEMMA 3 . With Pas in the proof ofLemma I and b = max{ 51 z EP} we define T
f

as the closure in
,Tof{f TER} . For everyfETthere isthen anaEPsuch thatf`(0)=Q.Further,forA>Oand
kA as in Lemma 2 we have l f (z)I k A+b (r) for every z E S4 with distance r from every zero off.

PROOF : There is a sequence (T.) of real numbers such that (f) -* funiformly in everyz
strip . We choose (w.) with CO E Q and T. - w E P. By replaçing (r) by a convenient

7

	

J
subsequence we can assume that (T. - CO.) - -a, and since Pis symmetric, we have a E P.

Since (T.- (co.. -a)) -4 0 and f is uniformly continuous in every strip, we have (fw_,)->f
and (f ) - f uniformly in every strip . Sincef e ,rZ, the first statement in the lemm aa

	

0J

follows from Proposition 2 . By Lemma 2 it is quite obvious that lf), (z)

	

k4 b (r) fo r
every z E SA , and the last statement follows by passage to the limit . This ends the proof.
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The Fourier exponents off
Let g : C - C be an arbitrary entire almost periodic function . The function a : R -~ C
defined by

2 cti7(x+iy)a(h) = lim
T-,o

TfoT
g(x + iy)é dx satisfies that n = {A. E R a(~) 0} is at mos t

denumerable so that we have a Fourier series ;EA a($e2n'A" . The main theorem in the
theory of almost periodic functions states that the Fourier series is summable with su m
g(z) and uniformly in every strip . In a more precise form this means that there is a
function k : A x N -* [0,1] with the following 3 properties :g

(1) The set {A E A I k(A, n)

	

0} is finite for every n E N .
(2) The sequence

	

n)) tends to 1 for every fixed A E A .
(3) The sequence (s

n

) of finite sum s
s (z)

= 1eA
k(A,n)a())e2' ` tends to g(z) uniformly in every strip .

The vector space A C R spanned by A has a base y = (y1 , y2 , . . .) . It may be a finite
base y = (y

1 , . . ., yt), but we shall formulate the following investigations as if the wors t
happens and only occasionally refer to the rather obvious changes to be made if th e
basis is finite . By the way, it is easy to sec that there is an entire almost periodic functio n
h : C -~ C such that g (z)ehi ` i has the base infinite .

It is very important for our investigations that there is a fundamental relationshi p
between the translation numbers of g and the base y. This is described in detail in [1 ]
where it is used in the proof of the approximation theorem, and the main points ar e
summarized in [6] p 144-145 and 149-150 . Unfortunately, the results are not for-
mulated in terms of the base . We shall reformulate them and add a few remarks in wa y
of proving them .

In this connection we must consider some Diophanthine inequalities of the for m
l yt- cl S ( mod n!Z) with S > 0 ; y, c ER, n c N. That r ER is solution of the inequalit y
means that there is a v E Z such that l yr- c-n!v S. In connection with the base y we
consider the following system of simultaneous Diophanthine inequalities where th e
second line gives the alternative form for y = (y	 y

lytl

	

8 (mod n!Z), j = 1, . . ., n
lytl

	

S(mod n!Z), j=1, . . .,m .

The relationship between y and the translation numbers of g is given by the pro -
position :

PROPOSITION 3 . To E > 0, A > 0 correspond S > 0, n E N such that every solution of (1) is a n
(£, A)-translation number of g.

(1)
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In fact, r E R is an (s, A)-translation number ofg if it is an (2, A)-translation number

of the finite sum sn which approximates g in SA with accuracy
4

. If q is the number of
s

terms in s , it follows that T is an (E, A)-translation number r of g, if it is an (
2q

,

A)-translation number of each term k(A, n) a (A)e2aciAz , and this will happen, if rsatisfies
a set of Diophanthine inequalities 1a r cS' (mod Z), j = 1, . . ., q . We express the A . i n
terms of the y. and choose n large enough such that the denominators in the coefficient s

J
in these expression are divisors in n! and the proposition follows easily .

There is also a reverse relationship :

PROPOSITION 4. If A E R has the property that to every A > 0, 0 > 0 exists an e > 0 such that every

(s, A) -translation number r og g satisfies the Diophanthine inequality 1 Ar I b (mod Z), then A E

A .

PROOF : If A E Ä the numbers A, y1 , y2 , . . . are independent and Kronecker's theorem tell s

us that for every d > 0, n EN some solutions of (1) also satisfies the inequality IAr-

2S (mod n!Z) . Hence, for å < 4 the condition in the proposition is not satisfied by A . This

proves the proposition .
We shall now return to the hypothetical function f, but first some formulas con-

cerning Q must be established . For co = ce+ i/3 E Q with w = n 1 col + n2 w2 , n1 , n2 E Z we hav e

a = n1 e1 +n2 a'2 , ß = n1 ß1 +n2 ß2 .

Eliminating either n2 or n1 between these, we get the 2 sets of relation s

	

ßi

	

ß

	

A ct;

	

A C02
n2=-n1

f +2'
Lr = n1 + ß; w = nl + ß

	

2

	

2

	

2

	

2

	

2

A ix]

	

A w
n = - n /~

2 +
/3

a= t~, -+ ~ ß~ w= -n, - + 1 ß.
1

	

2 f

	

f1 '

	

2

	

f1

	

2ß 1

	

ß

For the function f we shall simply use A as notation for the set of Fourier exponents an d
A for the vector space spanned by A . The following lemma tells that A is at leas t
2-dimensional and, hence, f is not limit periodic .

( 2 )

(3)
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LEMMA 4 . ~1
42

E A .

IA +1wl

such that every (E, A + 8)-translation number of 'toff has a corresponding w = a+ iß =
nlw1 +n2 w2 EQwith r-w

	

8 1 .

In particular, if z E R we get 1ß1

	

81 and (3) yields

I a)i +n2 ^ IÇô1
+

Al
ß

	

1+ ß bl
ßß s1

	

11

	

1

hence r

4

+ n2 5- S, which is exactly 4 a

	

8 ( mod Z) . Thus, it follows from

Proposition 4 that

å

E A, and that 4 E A is proved in the same way .

Since Vii,
4

are independent, we can choose the base y with y1 = 1 , y2 = 42 and fro m

now on we shall assume that y is chosen like that, and the subspace of A spanned by yl

and y2 will be called the compulsory subspace .

The spatial extension off

We shall introduce some functions defined on spaces of pairs (x ; y) of a finite or infinit e
sequence = (x1 , . . ., x. ) or x = (x1 , x2 , . . .) of real numbers, and a real numbery. We shall
denote the spaces Rm x R or R" x R accordingly and they shall always be organized
with the product topology . We shall formulate everything for R " x R only .

If I C R is a bounded interval, we shall call the set Sll = {(x; y) E R `° x R y E I} the
slice corresponding to I, and a slice shall be a set defined in this way by some bounde d
interval . IfI = [- A, A], we shall also write Sl 1 for Sly . A function G : R'' x R-* C is calle d
limit periodic if it is continuous and satisfies the following condition : To E > 0, A > 0

corresponds n E N such that G(x " ;y) - G(x ' ;y) I E if lyl A and xi - xi , . . . x ' - x 'n are
integers divisible by n! . It is easy to prove that G is limit periodic if and only if it can b e
approximated uniformly in any given slice with any given accuracy by a continuou s
function depending only on finitely many variables x1 , . . ., x , y and with an integra l
period in x, . . ., xm . However, we shall not use that .

PROPOSITION 5 . Let G : R `° x R - C be limit periodic and y = ( y1, y2 , . . .) independent . We defin e
g : C - C by g(z) = G(yx ; y) . Then g is almost periodic and

g
A is contained in the vector space

spanned by y1 , y2 , . . . .

PROOF : For b > 0 we choose 6t = 	 4	 and for A > 0 we can by Lemma 1 choose E > 0
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PROOF : Let E> 0,A > 0 be given . We choose S> 0,n EN such that G(x '

	

G x • y

	

E

if either x'' - x'I

	

S, j = 1, . . ., n ; ly

	

A or x.' - x' forj = 1, . . ., n is an integer divisible by n !

and A A. Let rbe a real solution of the inequalities (1) . We can choose integers vv . . ,
v t such that for every x E R we have ;~(x+r) (yx+n! v.)

	

b, j = 1, . . ., n . With x ' = (ylx +
n!v, . . ., ynx +n!v, yn+ x, y+2 x, . . .) we have the inequalities

C ç .
2 'Ig(z + r) - G(x' ;y) G(x' ;y) - g(z)

which prove that ris an (E, A)-translation number ofg . Since the set of real solutions of
(1) is relatively dense, this proves that g is almost periodic .

Let A be a Fourier exponent of g and r an (E, A)-translation number of g for som e
E > 0, A > 0 . Then we have

T

a(Â) (e2
.7riax

- 1) =lim
T

	

(g(x + r) -g(x))e 2jr dx ,

which yields the estimate

l a ( A ) l

e2ni~lr _ 1 Ç E .

On the other hand, if jAr-2
4

(mod Z) we obviously have

la(

)I

) I
e2

	

t

	

( Å ) I .

If A is not in the vector space spanned by yi , y2 , . . ., some solutions of (1) will by

Kronecker ' s theorem also satisfy that Ar -
2 I 4

(mod Z), so that they cannot be (E,

A)-translation numbers ofg for any A > 0 and any E < l a(y) . Thus A, is in the space
spanned by y y2 , . . ., and that ends the proof.

With G and g as in Proposition 5 we shall call g the diagonal function of G
corresponding to y and G a spatial extension ofg corresponding to the base y of A . Th e
subspace C = {(yx ; y) ;5 E R} will be called the y-diagonal in R oe X R and the affine

subspaces C = {(x+ yx ;y) x,y ER}, x ER" will be called the analytic planes in R" x R .

Pxoposiriox 6 . Let g : C -> C be entire and almost periodic, and let y = (yi , y2 , . . .) be a base fo r
gA . Then g has a uniquely determined spatial extension G : R°° X R --> C, and for every x E R `° th e

function g,, : C -* C defined by gg (z) = G(x+yx ; y) is entire and almost periodic and belongs to the
closure T of {g T E R} C .

g

	

Z
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PROOF : With Xta = R x Z n ; n E N we define 'tPn : X -> R `° b y

tfn(x ;

	

= ( yt x + n!v1 , . . ., yn x + n! n, i/n+1 x, yn+2x, . . .) .

For each n EN the set M = t~ln (X) x RC

	

x Ris a system of analytic planes . Since 1Pn i s
injective, we can define Cr, : Mn ---> C by

G (V.! (x ; v,

	

v ) ;y) = g (x + iy) = g (z) .

For every x E 4n (X) we have x + yx E tvn (X) for every x E R so that we can define gn
x

:

C -* C by gn x (z) = C (x + yx;y) . Further, there is a TER and v1 , . . ., v E Z such that x =
yn(T; v1 , . . ., n), hence x + yx = 1pn(x + z; v1 , . . ., v) and gn

x
= gr . We have thus gn x E TT .

Let us consider an arbitrary x° E R°° with its corresponding analytic plane C o . For
n E N we define

Ln(x_°° ) = {x E R`°
1

- 2n ,j = , . . ., n} ,x.

and the U (x°) constitute a base for the neighbourhoods of x° in R . For q, n EN we hav e
tp (X) [1 U (_x°) * ø if the Diophanthine inequalitie sn n

	

g

iyx

	

2q
(mod n!Z), j= 1, . . ., q

are satisfied by some x E R . By Kronecker's theorem this is always the case . We have
thus proved that the sets z Qn (X ), n E N are dense in R te . We arc interested in the analytic
plane Go , and by its nth set of neighbour planes we mean the set V ( x_°°) of planes C with x
E 't/n(X) (1 U(°) . Similarly the set W (x°) of corresponding entire functions gr,

,
is called

the nth set of neighbour functions of C, .
x

For cp E and A > 0 we define the norm llcpllA = sup cpl (S A ), and the system of norm s
I A , A E]0, cC [ will then induce the Fréchét space topology on . . For a set .Æ Ç .ewe

can define a generalized diameter by diamA ..!7h = sup {llp-99llA cp, ; E . CG} . It is an
increasing function ofA and it may of course be infinite . For x, x ' E lpn (X) fl U ( x_°°) we
have x,ZERand = (v1 , . . ., n), = (vl, . . ., nI),v,v'EZ,j=l, . . .,nandx=tpn(x,v),x'='i»( x
+

	

) . The corresponding functions of W (_q are , i x = gx and gt
x ' = `g+~ But x and x+ T

satisfy (4) with q = n, hence, T satisfies (1) with S = i, and Proposition 3 implies tha t
n

diamA W (x_°) - 0 for n --~ co and fixed A, and uniformly for x_° E R°° .
For n, q EN we observe that those x = 'tln(x,-v) which have v, . . ., n divisible by (n + 1) . . .

(n + q) are also in iJin+? (X) and it follows that some functions of W ( x_°°) are also in

W+q (x°) . With W (xx°) = U? o W + (x°) we can thus conclude tha te-

(4)
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diam~

	

(x°)

	

2 diam l 14/°) .

It follows from this that every function of W (x°°) for n - 00 converges uniformly to th e
same limit function g o : C - C, and it obviously is in T . The totality of functions g i n

every C constitutes a function G : R° x R --> C . It follows immediately from th e
construction that G is continuous and that G(yx,y) = g(z) . The limit periodicity of G
follows easily from the periodicity of Go since ip, (X) is everywhere dense . This also
implies that G is unique and that finishes the proof.

We could have derived it more easily from the approximation theorem, but the proof
above underlines certain structural details, which are useful in our investigations .

The hypothetical function f : C - C with the basis y = (y, y, . . .) where y = 1, )2 = Q2

has a spatial extension F : R' x R -~ C . We shall compute the zeros of F.

LEMMA 5 .
F-1 (0) is the set E given by

E = { (ci t + q1 , ce2 t + q2 , x3 , x4 , . . . ; At) t, x3 , x4, . . . E R, ql, q2 EZ) .

PROOF : We shall consider the set E defined in the lemma and we shall prove that it i s
identical to F-1 (0) . First, we determine E n C when C,. = {(I° + yx;y) x,y ER} is an
analytic plane. To do that we must determine the sets (x, y, t; x3 , xi , . . .) satisfying th e
equations

cit +gl = x2+y1x,a2 t+g,Z =x2+y2x,4t =y
~.= x.°+yx, j=3,4, . . . .

With yi = ~, y2 = 4 the equations in the top row yield

x = x1°22 -x221 +q2 -qn;y-dt = xl/32 -x2/31 +q2ß1 -g1 32 ,

and x3 , x4, . . . are determined by the equations in the second row. We are not really
interested in these additional unknowns. We ge t

z = x +iy =
x1(02

x2co1 +g2 co1 -g1 co2 .

We have thus proved that E intersects each analytic plane in R `° x R in a translate d
lattice spanned by a and w2 .
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It follows from Propositions 2 and 6 that also F-1 (0) intersects each analytic plane i n
R' --> R in a translated lattice spanned by w and w2 . To prove the theorem we nee d
only that the two lattices in each analytic plane are identical, and that will follow whe n
we have proved that

F(at,a2 t, x3 , x4 , . . ., At) = 0 for t, x3 , x4 , . . . E R .

By the limit periodicity ofFit is enough to prove for every 6 > 0, n N that we can find
W E Q, w = a+ i/3, such tha t

Iya- ;I

	

(mod n!Z),j = 1, . . ., n ; x1 = ce1 t, x2 = a2 t, 1g- 4tl

	

6 .

We write w = n1 w1 + n2 wz, nl , n2 E Z, and (2) and (3) yield

A 4
ya- x . =y

i
+ - y 	

n2 J
+

2

(5)

with

P =
2

x'=x.-y

	

At,
J

	

i iz
a1

x: ' = x . - y. /-D t,
J

	

J

	

J
l~l

(13- At) ,

= y - (ß - At),

(6 )

We introduce y = max(y
ßA

j = 1, . . ., n ; k = 1, 2) and b' =	
1 S
	 . Then w = a + i/3 =

Y

n1 w1 +n2 w2 will satisfy (5) if n1 , n2 satisfy first that I n1 ß1 +n2 ß2 - Atl

	

S' and second for eac h
j E N one of the following Diophanthine inequalities

~ S' (mod n!Z) o r
A

y. - n - x'
J p

	

J
2

A-y
J

ß n2 _ xt

S' (mod n!Z) .

For j = 1, 2 we insert y = ß' and x', x ' from (6) and we get the inequalities

ß1

	

A
n- t

ß2

	

ß2

8' (mod n!Z) or - n2 l S' (mod n!Z )

7a1 I ~ S ' (mod n!Z) or
4_ _132 n

2
+_ t

'"1

	

ßl

c5 ' (mod n!Z) .

( 7 )
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The second and third of these are satisfied by n . = n!v
f

V. E

nî/31 + n2/32 - Atl

	

8' becomes

n!/31 v1 + n!/32 v2 - dt~ ~ d' .

We observe that the first and the fourth of the inequalities (7) follow from this las t
inequality and, further, that the last inequality is satisfied by some v9 E Z, if v1 satisfie s

that In!
ß2vß

tl

	

Iß (mod n!Z) . Hence, (5) will be satisfied, if v1 EZ can be chosen as a

solution to the following system of Diophanthine inequalities :

= 1, 2 . The inequalit y

	

/3

	

A
n!-1 v1 --t

	

ß2

	

fJ2

A
y.-n!v -x '

	

J ß2

	

1

	

7

ß
	 (mod n2) ;

2

6 ' (mod n!Z), j = 3, 4, . . ., n .

By a slightly advanced form of Kronecker ' s theorem we have that this system has
integral solutions for all t, x, j = 3, 4, . . ., if and only if no linear combination of the

coefficients n! , n! y ß ,j = 3, 4, . . . with integral coefficients has an integral value differen t
/32

from O . In other words, solutions exist, if

4

	

A
q2+

iq1ß +q3 y3ß + . . .

+ gv i

=0, g1 , . . .,gn E Z

2

	

2

	

2

implies that q1 = = qn = 0 . However, the equation can be writte n

g1 41 +q2 4+g3 y3 + + gn yn =0 ,

and 2, , a2 y3 , y4, . . . are independent . That proves the lemma .

LEMMA 6 . Let R2 x R C R°° x R be the (x 1 , x2 ; y)-subspace, and p : R" x R - R 2 x R th e
projection. Then E0 = E (1 (R 2 x R) is a system of parallel straight lines and F -1 (0) = E =

1 (Ea ) . Further Eo contain s ains exactly one straight line L q through each point (q 1 , q2 , 0) of the uni t
lattice in R 2 . The sets, (L g ) are the components of E and Ly y intersects the analytic plane C in th e

point corresponding to z = g2 wi - q1 w2 .

This is nothing more than a reformulation of Lemma 5 supplemented by very fe w
and very elementary computations .
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The non existence off
The spatial extension Foffhas a restriction cp : R 2 -* C defined by cp( x1 , x2 ) = F(x1 , x2 , 0 ,
0, . . ., 0) . We know that cp-1 (0) is the unit lattice in R 2 . The midway net M C R2

is defined as the set of all points (x1 , x2 ) with either x1 or x2 equal to 2 + some integer . I t

divides R 2 in unit squares such that cp has one zero in the center of each square .

LEMMA 7 . inf 1cpl(M) = k > 0 .

PROOF : In each analytic plane C, = { (x + yx ; y) Ix,y E R} we place discs defined by x =
a+ p cos Ø, y = p sin Ø ; 8 E R, g E]0,r[ for some r E]0, ro [ (Lemma 2) and for each w =
a+ i/3 e 52. The union of all these discs is by Lemma 5 the set of all points of R°° x R
given by

(~t+ql + yl pcos Ø, a2 t + q2 + y2p cos B,
x3 + y3 p cos 8, x4 + y4p cos Ø, . . . ; At + p sin 8 )
Ø t, x3, x4 . . . E R, p E [O,r], q1 , q2 E Z .

Let us denote this set E . and its intersection with R 2 xR by E-° . It follows immediately
from the expression or from Lemma 6 that E, = 1 (E°) and we hav e

at+q, + ßAcos 8, ae t+q2 + ßAcos B; At+psin O

The intersection of E° with the (xi , x2 )-plane is

= {(q, +	 (ß, cos B- a1 sin 0),

t,ØER,pE[0,r],g1 ,g2 EZ~ .

q2 + Q(132 cos O - cee sin 8)) 0 E R, pE[0,r],q1 ,q2 EZ } .

This set consists of elliptic discs with centers in each point of the unit lattice and they
are exactly alike and oriented in the same manner . We choose a fixed value of r such that
É nM=Ø.

We know from Proposition 6 that the restriction ofF to an arbitrary analytic plane i s
a function of Tf. Hence, the lemma follows from Lemma 3 with A > 0 chosen arbitrarily .
This ends the proof.

LEMMA 8 . There is an orientation of the (x,, x2 ) plane such that the variation of the argument of cp

along a small circle around a lattice point and in the direction given by the orientation of the plane i s
equal to 2 .rr for every point of the unit lattice.
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PROOF : For u E [0,1] and y = (y1 , y2 , uy3 , uy4 , . . .) we have the family of planes Ç = { y, x ;y )

x,y E R} in R" x R and for each co = ce+ iß E Q and r E] 0, ro [ we get a family of circle s

F = {(y(cr+rcos B) ; ß+rsin B) BER} .

From Lemma 6 follows that T is a continuous family of circles in R`° X R \ F-1 (0) . We
choose the orientation of each plane C such that the angle from the x-axis to they-axis is

+ 2 Then, the variation of the argument of Falong T has its value independent of u, and

since the restriction ofF to Cl is an entire function we conclude that Fhas its variation o f
argument equal to 2,7r along To

	

Co for every w E Q .
From now on we shall consider only the restriction F : R 2 X R - C of F defined by

F(xi , x2 ;y) = F(x1 , x2 , 0, 0, . . . ;y) . We have Co C R2 X R . It will be convenient to think o f
R2 X R as our physical space with they-axis vertical, and Co is then raised as a vertica l
wall, which divides R 2 X R in two half spaces Vd and V such that the lines L slan t
downwards in V and upwards in V . The set E° from the proof of Lemma 7 is the unio n
of disjoint elliptic cylinders such that each L 2 is the axis of symmetry of one of them .
The circles Fo induce an orientation of each cylinder and we know that the variation of
the argument ofF along a curve encircling a cylinder once is 2 .n . In particular this hold s
for the ellipses, in which E° intersects the (x, x2 )-plane . The orientation of the (x i ,
x2 )-plane corresponding to this can be determined in the following way : Start with a
circle F C Q with a diameter in the (x1 , x2 ) -plane and oriented according to C o . Rotate i t

an angle
2

about the horizontal diameter such that its upper half goes into Vd, and i t

yields the orientation . This finishes the proof.

It must be obvious to everybody that the lemmas 7 and 8 contradict each other, bu t
we must go through the details anyway such that our proof is not left unfinished .

THEOREM 1 . Let Q C be a lattice with no real period. Then no entire ,function f : C -~ C almos t

periodic in the direction of the real axis will satisfy that J-1 (0) = Q.

PROOF : If the theorem was false, our hypothetical functionfwould exist and the lemmas
7 and 8 would hold for some limit periodic function cp : R 2 . C. Let Fbe the oriente d
boundary of a square on the midway net M and the length of the sides n! for some larg e
n E N . Let v E R be the variation of the argument of cp along F.

By Lemma 8 and the ordinary routine we get v = 2g (n!) 2 .

We choose n large enough such that for every (x1 , x2 ) E R 2

kp(x1,
x'2

+ n!) - cp(x1 , x2 ) (~ 2
k, 1 cp(x1 + n!, x2 ) - cp(x1 , x2)

	

2
k .
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Then the variations of the argument of p along the sides ofTparallel to the xt -axis taken
cp(x,, x, + n! )

together amounts to the variation of the argument of 	
'A'c x2) ,

but this quotient i s

contained in the angle defined by larg zl 6 hence the variation of the argument along

these sides amount to at most 3 The same holds for the two other sides, and since th e

variation of the argument along Tis an integer multiplied by 2 .7r, we can conclude tha t

v=0 .
This proves the theorem .

Application of Weierstrass' a-function

We shall use the notations Q, cut , w2 , cri , ßt , 132 , A as before . With Q' = Q \ {0}
Weierstrass' a-function is defined by

'
z ew + 2~a6(z) = znu~Esz~ ( 1 -

I t It is an entire function of order 2 with a (0) = Q, and though it is not periodic, there ar e
constants rit , 772 E C satisfying

,1tw2 - rl2cut = 2Tti

	

(8 )

such that a has the periodicity property

d(z + co) = en'(+2`~,>~(z)~ J = 1, 2

and for co = ntwt + n2 w2 with 71 = nt 771
+ n2n2

we have generall y

a(z + w) = (-1)
n,n

2
+n,+n

2o
(z2w )6(z) .

From this follows that the function fw : C -- C defined by

zf(z) = e 2w 6(z )

has period 2w and even w if nt and n2 are even . We remark thatfw depends only on th e
direction of w not on w itself. We supply (3) with a corresponding formula for 77 so that
we have

4 wt
w = -n2 +	 ß, 77 = -

17 t'"2 -17 2 13t +

	

!J'

'Jt

	

'Jtßt ßi
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and if we let w -> 00 while ß ---> 0, the ratio 77 will tend t o
w

17 1 02 	 172 01
y =

4

andf (z) tends to the limit

f(z) = e 2
z2 0(z) ,

an entire function with f -l (0) = Q and obviously satisfying

f(z + w) = ± e(r)-v0)) (z+2w)
.Î(2) •

We do some computatio n

yw = At3 (-a(n,R2-R,) +a~lß-(~,ß2-~2ß1)(-n2a+w,R) )
1

1
= 4ß ((0i02(Y2 R1 ) t7,R-(n 1 ß2 - t7 2 ß) 0)1 0)

but since

	

a1 ß2 -a201 = (0)1 -iß1 )ß2 -(w2 -iß2)ß1 =w1 ß2 -w2 01

it reduces to

	

11- y0) = A(-2]10)2+112w1)ß = -
270' d

by (8) . Thus we have

f(z + (0) = ± e2zå (z+co)
f(z )

and with co = cr + iß, z = ÿ this implie s

f(z + (0)I = e 2nå

	

f') f(z) •

We know from Theorem 1 that f : C -~ C is not almost periodic . Nevertheless, we hav e
the followin g

THEOREM 2 . The function f : C --> R is almost periodic .
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PROOF : We shall first prove that f is bounded in every strip, hence, we consider SA , A >
0. We choose L > 0 such that every interval on R of length L contains a number a fo r
which there is a fi E [-l, 1] with a+ iß = w E Q. We define K = maxifl( [0, L] x [-A- 1 ,
A + I]) and for an arbitrary z E S4 we can then find w= a+ i/3 E Q with ßl 1 and
x - a E [0, L], hence z - w E [0, L] x [-A - 1, A + 1] . It follows tha t

.f (z)

	

K e 27`
(a+1 )

and this proves that f is bounded in S 1 , i .e . in every strip . Since f is entire, this implies
thatf is uniformly continuous in every strip .

Let s> 0 be given . We choose 81 E]0, 1] such that for every z c S 1 and every w = a+ i/3
with ßl 0, we have

I .f(z+w)-f(z+a)I 2 s.

With the K introduced above we choose b2 > 0 such that for I ß

e2~~
(2-;2 IA) - 1 C £ 2~2 (A+ 3 )

= 2K é

/31 å we hav e

~ e2n å (~+21 ß1) -1 f (z)

and together with the preceding inequality this proves that ais an (s, A)-translation
number of f , and that proves the theorem .

THEOREM 3 . With Q = {w c C To E Q} there is an entire almost periodic function g : C -4 C of
order 2 and with g1 (0) = Q U Q such that the elements of Q U Q are simple zeros, except 0 which is
double .

PROOF : We define g by g(z) = f (z) f (ti) and g : C - C is entire of order 2 and g-1 (0) is a s
claimed in the theorem . By the multiplication theorem g : C --> R is almost periodic ,
hence g is bounded in every strip . For z = x ER we have g(x) = g (x), hence, g is almos t
periodic on the real axis . But this implies that g is almost periodic in every strip ([2], p .
253) . This proves the theorem .

A more general entire almost periodic function with g 1 (0)

	

Q could be defined b y
gg (z) = f (z + a) f ( + d) for some a E C .

and with å = min( b1 , S2 ) fo r

If(z + (0) I - .f(z) I

< 02

C 12 £
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