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Foreword

On the occasion of the centenary of the birth of Niels Bohr, the Roya l
Danish Academy of Sciences and Letters herewith publishes 16 treatises ,
where the »Niels Bohr Stipendiater« of the Academy give accounts of
the main themes and progress of their work . The papers are presented i n
two separate volumes, of which Part One concerns the exact science s

and geology, while Part Two comprises the biological sciences .
This introduction to the two volumes is intended to describe both th e

background for the creation of the Niels Bohr Fellowships and the man-
ner in which the Academy has supported the work of the Niels Boh r
Fellows .

The general background is connected with the economic recession in
Denmark during the last decade. As a consequence of the recession ,

Danish universities were subjected to annual reductions in their budgets ,
which has led to an increasingly difficult situation for basic research.
Numerous temporary or part-time positions have been abolished as hav e
new positions. Vacancies due to retirement have not been filled, and it
became hard to obtain support for new equipment . The outstanding

feature of the mounting crisis has been the lack of renewal in the scien-
tific community, within both the natural sciences and the humanities .
Many of the young, talented researchers have had to give up their scien-

tific career, or to leave Denmark, because no university positions were
available .

In 1981 early preparations for the Niels Bohr Centenary were starte d
at the Niels Bohr Institute . It seemed natural to hope for some economi c
support from wide circles within Danish society . The industrial leade r
Dr . Haldor Topsøe was one of the first prospective donors to be con-
tacted by Aage Winther from the Institute . Dr . Haldor Topsøe asked
which problem at the Niels Bohr Institute was the most urgent one .
When it was realized that the need was primarily the recruitment o f
young, talented physicists, the idea of research fellowships came int o
focus. Since the problem was a general one, not limited merely to phys-

ics, and since it would be in the spirit of Niels Bohr's conception of th e
Unity of Knowledge to regard all sciences as one common venture, i t
became clear that the fellows, Niels Bohr Fellows, ought to belong to all
fields of basic science . Moreover, because of the urgency of the problem,
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it was deemed necessary to establish the fellowships as soon as possible .

Finally, the funds collected from private sources and the resulting fel-

lowships could hardly be given directly to the government and channel-

led through the ministries to universities and research institutes . Being

an independent institution, the Royal Danish Academy of Sciences an d

Letters became a natural choice for the guardian of the fellowships. In

this way one also hoped to encourage the Danish government to recon-

sider seriously the problem of recruitment and renewal in the sciences .

In the winter 1981/82 the Niels Bohr Stipend Committee was set up ,

comprising three prominent citizens, Mr . NIELS ARNTHJENSEN, Directo r

of F. L . Smidth & Co ., Ltd., Dr. ERIK HOFFMEYER, Director of the Dan-

ish National Bank, and Dr . HALDOR TOPSØE, Director of Haldor Topsøe,

Ltd., as well as two scientists of renown, BENGT STRÖMGREN and H . H .

USSING . Aage Winther acts as Secretary to the Committee, while Chris-

tian Crone and Ben Mottelson were advisors during its initial work .

The five Committee Members made contact with a number of com-

panies, banks, and private foundations, and within a few months a total

sum of some 12 mill . D . kr . was raised by a concerted effort . This re-

markable result was due to the immediate and positive response from the

following donors :

THE AUGUSTINUS FOUNDATION

BIKUBENFONDEN

DANFOSS, LTD .

DEN DANSKE BANK

THE DANISH SUGAR CORPORATIO N

THE EGMONT H . PETERSEN FOUNDATIO N

THE F. L . SMIDTH & CO . DONATION FOUNDATIO N

HAFNIA HAAND I HAAND

HALDOR TOPSØE, LTD .

THE KNUD HØJGAARD FOUNDATION

COPENHAGEN HANDELSBAN K

THE Novo FOUNDATIO N

PRIVATBANKEN

THE ROCKWOOL FOUNDATION

FOUNDATION OF SCANDINAVIAN TOBACCO COMP .

SPAREKASSEN SD S

THE THOMAS B . THRIGE FOUNDATIO N

THE TJÆREBORG FOUNDATIO N

THE TUBORG FOUNDATION
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It was assumed that fellowships should be for a period of about thre e
years . Therefore, the amount of 12 mill . D .kr ., paid by the donors in

three yearly instalments, would suffice for the payment, including over-
heads, of more than a dozen fellows . However, the number of fellow s
could not be immediately fixed, due to uncertainty with regard to infla-

tion and salary changes .

The Niels Bohr Stipend Committee asked the Academy to take ove r

the responsibility for the funds as well as for the selection and care of th e

Niels Bohr Fellows, stipulated to all be within the natural sciences . The

Academy accepted this responsibility at its meeting on April 15, 1982 ,
where a Steering Committee was elected . The Committee has the fol -
lowing members :

Erik Dal, edito r

Jes Forchhammer, secretary

Jens Lindhard, chairman

Ove Sten-Knudsen
Henning Sørensen

Aage Winther .
Mr. Hans Kloch, Head of Department, The Danish National Bank, act s

as associated member of the Steering Committee and accountant of th e
funds . His assistance, foresight, and the apparently effortless way in

which he has taken care of the funds, are highly appreciated by all .
The fellowships were proclaimed open for applications within th e

natural sciences, by younger scientists who, although suitably qualified,

had not yet acquired a permanent position at a university or research
institute. In response, and to our surprise, as many as 130 application s
for fellowships were received . It turned out that most of the applicants
were well qualified for the fellowships . This large number of candidate s
clearly showed the need for further openings for promising scientists .

The Academy had already selected a group of members who were t o
evaluate the applicants : Svend Olav Andersen, Hans Jørgen Hansen ,
Kjeld Marcker, C . Overgaard Nielsen, Morten Simonsen, Ove Sten-
Knudsen, Diter von Wettstein, Thor A. Bak, Ove Nathan, Gert Kjær-
gård Petersen, Henning Sørensen, and Poul Erik Nissen .

In consequence of the careful and rapid work of the evaluation group ,
the Steering Committee could finally propose 16 candidates for Niel s
Bohr Fellowships . This number of fellows is somewhat larger than orig-

inally expected, the reason for the increase being that, in Denmark, th e
rate of inflation was gradually becoming less serious . The Niels Bohr
Fellows are :
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Lars Døvling Andersen

Torben Dabelsteen

Thomas Dossing

Else Marie Frii s

Jørgen Frøkjær-Jensen
Preben Bach Holm

Claus Schelde Jacobsen

Hans Plesner Jakobsen

Jens Kirkeskov Knude
Jens Konnerup-Madsen

Birger Lindberg Møller

Peter Eigil Nielsen
Hans Uffe Petersen

Jon Steen Petersen

Irene Shim

Hans Lomholt Skriver .
The candidates commenced their fellowship at the earliest opportunity ,

most of them in the beginning of 1983 . Since that time, the Niels Bohr

Fellows and the Steering Committee have met regularly in the Academ y
and in various research institutes, at which meetings the fellows hav e

given accounts of their work in colloquia, and practical problems hav e

been discussed. In particular, subject to approval by the Steering Com-

mittee, each fellow has at his disposal an overhead of some 25 .000 D .kr .
per year, for purchase of scientific equipment, for travels, for guests, etc .

Several of the Niels Bohr Fellows have used a considerable part of thei r

fellowship abroad, mainly at research institutions in the US .
Since the Steering Committee has to take care of the fellows in man y

ways, economic as well as scientific, there has been a close contact wit h

all fellows . Here, Jes Forchhammer, as secretary of the Steering Com-

mittee, and Erik Dal, as editor, have been responsible for a sustained and
impressive effort .

During the last year, a number of fellows have acquired tenure posi-

tions . Although they no longer receive a salary from the Academy, they

still continue as Niels Bohr Fellows in all other respects . Partly becaus e

of the consequent savings of salaries, the remaining fellowships can b e

prolonged somewhat beyond the stipulated three years .
All who have taken part in it, have felt the success of the small scien-

tific community formed by the Niels Bohr Fellows . The external mar k

of the efforts of this community is to be found in the present tw o

volumes, published on the centenary of the birth of Niels Bohr, and
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containing accounts of their scientific work by all of the fellows . The

publication of the two volumes is one proper way of expressing ou r

gratitude, primarily to all donors and to the Niels Bohr Stipend Com-
mittee, but also to all others who have contributed to the success of th e

Niels Bohr Fellowships . At the same time it is hoped that the tw o

volumes show that scientific work and collaboration in the spirit of Niel s

Bohr still continues .

JENS LINDHARD .

President of the Academy .
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Hans PlesnerJakobse n

was born in 1949 and studied at the University of Aarhus, obtaining th e

degree of cand.scient . in mathematics in 1974 . In 1976 he acquired th e

Ph.D . from Massachusetts Institute of Technology, Cambridge, Mass . ,

on a thesis with the title : Conformal Harmonic Analysis and Intertwining

Differential Operators . His Ph.D. advisor was I . E . Segal. He was then

employed 1976-79 as an Assistant Professor at Brandeis University ,

Waltham, Mass., and returned to Denmark 1979, where, during th e
period 1979-1982, he held various Danish University fellowships . In

1983 he became a Niels Bohr Fellow, but already in 1984 he obtained a n

associate professorship at the Mathematical Institute at the University o f

Copenhagen .
Through his thesis Plesner Jakobsen has initiated an investigation o f

the unitarizability of highest weight modules, of covariant differentia l

operators, and of applications of these concepts into mathematical phys-

ics . Major results include a full description of the set of unitary holo-
morphic (positive energy) representations on hermitian symmetri c

spaces as well as a description of all homomorphisms between gen-

eralized Verma modules originating or terminating in scalar modules .
Specific results about wave and Dirac operators in relation to th e

conformal group have been obtained in joint work with M . Vergne .
Further results for this group as well as applications towards modular

forms have been reached in collaboration with M . Harris . In recent work

with K. Kac, results concerning the unitarizability of modules over Kac -

Moody algebras have also been established .

He has given invited talks at international meetings and is a referee fo r

scientific journals and for the National Science Foundation (USA) .

Lars Døvling Anderse n

was born in 1950 and studied at the University of Aarhus, obtaining his
degree of cand. scient . in 1975 . He pursued his studies in England at th e

University of Reading and got his Ph.D. in 1.979; his thesis was entitled

Latin Squares and Their Generalizations ; later, he spent a period at the
Department of Mathematics at the University of Toronto .
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In periods, Andersen has been teaching at Aarhus University and th e
Technical University of Denmark (Danmarks tekniske Højskole, DTH) ;
as a Niels Bohr Fellow he was in 1984 affiliated to Aalborg Universit y
Centre, where he has now been appointed Assistant Professor as from
February, 1986 .

Andersen 's main mathematical interests are graph theory and corn-
binatorics, and he has been particularly interested in various ways o f
colouring the edges of a graph and in completing and embedding partial
latin squares and partial Steiner triple systems, as well as in the interrela -
tion between these topics . His thesis contains contributions to all of thes e
areas . Earlier papers on edge-colourings of graphs include new bound s
on the chromatic index and on the cover-index of a graph .

More recently, in collaboration with A. J . W. Hilton and C. A .
Rodger, he has solved the embedding problem for partial latin squares
with prescribed diagonal, and with A.J . W. Hilton he has proved a
strengthening of the famous Evans conjecture characterizing all non-
completable partial latin squares of side n with at most n cells occupied
(this result is improved further in the present volume) . With E . Mendel-
sohn, Andersen has given a construction for latin squares of side n with -
out proper subsquares for all n not of the form 2 a3b .

He has been active as lecturer and organizer of international meeting s
within his field of research .

Jens Kirkeskov Knud e

was born in 1946 and studied at the University of Copenhagen, where h e
obtained his cand.scient . degree in 1975. After his degree he continued as
a stipendiate at the University Observatory until 1981 . In 1980 he ob-
tained the Dr . of Science degree from the University of Copenhagen on
a thesis with the title Properties of the Local Interstellar Medium as Deducte d
from uvbyf3 Photometry of A and F Stars in 84 Small Volumes . After a shor t
employment at the University of Aarhus he became a Research Fellow o f
the Danish Space Board until 1983, when he obtained a Niels Boh r
Fellowship . In 1985 he became Assistant Professor at the University o f
Copenhagen .

Jens Knude's field of research is observational astronomy and he has
spent long periods at the astronomical observatories at la Silla in Chile ,
Kitt Peak in Arizona, Mitzpeh Ramon in Israel, la Palma on the Canary
Islands, and most lately as a Niels Bohr Fellow at San Pedro Martir in
Mexico. Through these observations he has obtained data for the study
of the existence, distribution, and physical properties of local interstellar
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material . Among the objectives are the search for dust features wit h

linear dimensions smaller than 1 pc and particularly the dust distributio n

in the obvious windows to the universe, the galactic poles .

The dust structures are discovered by means of coherent color excesse s

resulting from observations of stars in fine networks . Any clear under -

standing of the spatial distribution of the local matter has not been ob-

tained so far . On the contrary new data, for about 9000 lines of sight ,

indicate that the local material is dispersed in a more complex manner

than anticipated .

Thomas Dossing

was born in 1947, and studied at the University of Copenhagen, where he

obtained the cand . scient . degree in 1974 . From 1975 he held a candidat e

stipendium at the Niels Bohr Institute until he (1977-78) obtained a Max -

Planck-Institute stipendium to work at the Max-Planck-Institut für
Kernphysik in Heidelberg . After his lic . scient . (Ph .D.) thesis from 1978 ,

which dealt with angular distributions and correlations in statistical nu -

clear gamma-decay, he was employed as a Nordita fellow 1979-82 and a s

a Staff Scientist at Lawrence Berkeley Laboratory, University of Califor-
nia 1982-83 . He became a Niels Bohr Fellow from September 1983, bu t

stayed at Lawrence Berkeley Laboratory until August 1984 .

The main theme of Dossing's scientific work has been the study o f
rapidly rotating nuclei, and especially nuclear states for which the angu-

lar momentum is aligned with the symmetry axis of the density distribu-

tion. The cascades of particles emitted from rotating nuclei was th e

subject of his thesis from 1978 and this subject was followed up in 198 1
by a general formulation of angular correlations in direct nuclear reac-

tions .

One of the ways in which nuclei attain a high angular momentum i s
through strongly damped nuclear reactions . In 1978 Dossing showed in

collaboration with Carlos Dasso and Hans Christian Pauli that the Har-
tree-Fock approximation to this problem was inadequate to describe th e

observed spread in mass distribution in such reactions. In a fruitful col-
laboration with Jørgen Randrup in Berkeley he very successfully used a

nucleon transfer transport theory to account for the dynamical evolutio n

of the angular momentum in damped nuclear reactions which has lead t o

new insight in the relaxation phenomena in these reactions .

During the ten years from 1975-1985 he has been invited speaker a t
more than ten international conferences and summer schools, and ha s

published seven scientific papers during his time as a Niels Bohr Fellow .
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Irene Shi m

was born in 1945 and studied at the University of Copenhagen and late r

at the Technical University of Denmark (Danmarks tekniske Højskole ,
DTH), obtaining the degree lic .techn. (Ph.D .) in 1977. The title of her
dissertation was The Electronic Interaction between Two Nickel Atoms an d
the Underlying Theory, and her superviser was Professor Jens Peder Dahl .
Her work has mainly been concentrated on employing the most sophis-

ticated quantum chemistry methods presently available to elucidate th e
electronic structure and the nature of bonding in coordinatively unsatu-
rated molecules containing transition metal . The work performed on the
transition metal dimers has revealed unusual chemical bonds that canno t
be described appropriately in the molecular orbital picture . The bonding
in such molecules is mostly due to a delocalized molecular orbital formed
by the outermost s orbitals . The d orbitals split in energy due to th e
lowering of symmetry . The split d orbitals give rise to a large number o f
low-lying electronic states . Recently, the basic results obtained by Iren e
Shim have been confirmed by experimental work of other scientists .

After she had obtained the degree Dr . Shim worked for two years as a
post-doctoral fellow on a grant from the Danish National Scienc e
Council .

After a short employment at the Royal Danish School of Pharmac y

she went to Texas A & M University as a post-doctoral research associ-
ate, and from 1983 she has been visiting Associate Professor at the uni-
versity. In september 1983 she was given a Niels Bohr Fellowship an d
she has since been working at Chemical Laboratory B, Technical Uni-

versity of Denmark, and at Texas A & M University .
During her recent work she has utilized the results obtained earlier fo r

the transition metal dimers to gain deeper understanding of the nature o f
magnetism. In addition the calculational work performed on the coor-
dinatively unsaturated transition metal carbides and nitrides provid e
basic results that are important for the understanding of catalysis . Thus ,
the investigations performed have led to detailed descriptions of chemi-

cal bonds that are formed or broken in the course of catalytic processes .
Dr. Shim has presented her results at numerous international meeting s

in the field of theoretical chemistry .

Hans Lomholt Skriver
was born in 1944, studied af the Technical University of Denmark (Dan-
marks tekniske Højskole, DTH) and obtained the degree of cand. polyt .
in physics in 1970 . In 1973 he acquired the lic .techn. (Ph.D .) at the DTH
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based on the thesis The Electronic Structure of the Ordered Brass Alloys ß' -

CuZn and /3'-AgZn as Determined by the APW Method, and in 1985 he

defended a doctoral thesis One-electron Theory of Metals to the Universi-

ty of Copenhagen . He has been employed at Physics Laboratory I ,

DTH, from 1970-1964. In 1974-75 he worked at Division of Physics ,

National Research Council of Canada, Ottawa . He was guest scientist a t

Kamerlingh Onnes Laboratory, Leiden, Holland during the years 1975-

1976. Since then he has worked at the Physics Department, Risø Nati-

onal Laborarory, Roskilde - interrupted by longer visits to the Max -

Planck-Institut für Festkörperforschung . During a period his work was

supported by NORDITA, and since 1983 he has been a Niels Bohr

Fellow .
Skriver's theoretical work on solid state physics has always bee n

centred on the application of one-electron theory to metals and alloy s

based on coded computations. In this study he has made much progres s

during the past fifteen years, and his work is highly appreciated interna-

tionally .

His collaboration with the experimentalist J.-P . Jan led to successful
calculations of band structures and interpretations of dHvA measure-

ments for many metals and ordered alloys .

Since his return to Risø he has worked in close collaboration with

O. K. Andersen, at the DTH., now in Stuttgart, as well as with

B . Johansson, Aarhus and Uppsala. He has studied the properties of the

actinides in great detail, as well as the rare earths . He has calculated the

structural energy differences for about forty metals and has been able t o

determine theoretically which crystal structure a given metal will take o n

at normal conditions .

In recent years he has given some twenty invited talks at internationa l

conferences .

Claus Schelde Jacobsen

was born in 1949, and studied at the Technical University of Denmar k

(Danmarks Tekniske Højskole, DTH), obtaining the degree of cand .

polyt . in electrical engineering in 1973 . Since that time he has been

employed as assistant at Physics Laboratory III, DTH . until he became a

Niels Bohr Fellow in 1983 . He worked at the Department of Physics ,
University of Pennsylvania, on leave of absence from DTH during th e

years 1973-1974. In 1976 he acquired the degree of Ph.D. (lic .techn .) ; hi s

thesis was Infrared Properties of the Organic Conductor TTF-TCNQ .
Jacobsen has made many valuable contributions to the pioneering



THE AUTHORS

	

XVII

work on the development of new synthetic metals and superconductor s
commenced during his stay in Pennsylvania . In order to study the basi c
electronic structure of organic solids he has in particular applied infrared
and optical spectroscopy, and investigated transport properties . This
work was performed with support from the Danish Natural Science
Research Council and the NATO Research Grants Programme .

He has given elementary courses in atomic and nuclear physics an d
statistical mechanics, and has taken part in organisation of scientific col-
laboration within solid state physics . He was awarded Fabrikant Gorm-
Petersens Mindelegat in 1981 and the ESSO-Prize in 1985 .

Hans Uffe Petersen

was born in 1948 . He obtained his degree of cand.polyt . in chemical
engineering at the Technical University of Denmark (Danmarks tekniske
Højskole, DTH) in 1972 . He then moved to the Institut de Biologie
Physico-Chimique, Paris, 1973-1978, where he worked in the Depart -
ment of Biochemistry under the supervision of Dr . Marianne Grunberg-
Manago . He became doctor of natural sciences (Docteur ès-Sciences
d'Êtat) from the University of Paris in 1980 .

He returned to Denmark in 1979 to work as a research biochemist in
the Institute of Chemistry, Department ofBiostructural Chemistry, Uni-

versity of Aarhus, headed by professor Brian F . C. Clark. His scientific
work has concentrated on the molecular mechanism of protein biosyn-
thesis and especially the function of tRNA and translation factors in th e
initiating steps . In prokaryotic, but not in eukaryotic cell cytoplasma ,
the initiator methionyl-tRNA is formylated . He has proposed a specifi c
role for this modification in the translation of polycistronic messenger
RNAs. This is part of the work for which he received the French degre e
of Doctor of Sciences at the University of Paris in 1980 . The title of th e
thesis is Contribution à l'etude du rôle du met-tRNAfet initiateur et sa formyla-
tion dans l'initiation de la traduction chez E. coli . Most recently Petersen has
studied the structural regions within the initiator tRNA which are in-

volved in interactions with proteins during the initiation of translation .
The results reveal specificities in the interactions of fMet-tRNAMet as com-
pared to elongator tRNAs and also suggest which parts of the initiato r
tRNA molecule are binding to the proteins in each of the reactions prio r
to the formation of the first peptide bond .

Hans Uffe Petersen has been working as visiting scientist in many
different laboratories, some of which are : Max-Planck-Institut für Mole-
kulare Genetik, Berlin (prof. Olaf Pongs), 1975, Institut Laue-Langevin,
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Grenoble (prof. Bernard Jacrot), 1976 and 1980, Institut de Biologie

Moleculaire et Cellulaire, Strasbourg (prof. Jean Pierre Ebel), 1980, De-

partment of Biological Chemistry, Medical School, University o f

California, Davis (prof. John W . B . Hershey), 1981, and 1982, Depart-

ment of Biochemistry, Institut de Biologie Physico-Chimique, Paris (dr .

Marianne Grunberg-Manago), 1984-85 . He has organized several inter-

national meetings .

Jon Steen Petersen

was born in 1947 . He obtained his cand.scient . degree in 1973 at the

University of Aarhus .

He worked 1973-78 in the Geology Department of the University o f

Aarhus as a university stipendiate and assistant teacher, 1978-1981 h e

was a Research Council stipendiate, 1981-1983 Assistant Professor at th e

University of Oslo, and since 1983 he has been a Niels Bohr Fellow .

1975-1976 was spent at Université de Paris VII, Institut de Physique d e

Globe, and at Centre d 'Etudes Atomique, Lab. P. Sue, Saclay, 1976-77

at the Mineralogical Museums, the University of Oslo, and 1984-85 a t

the NASA Johnson Space Center, Solar System Exploration Division &

Experimental Planetology Branch, Houston, Texas . He has worked for

Norsk Hydro A/S and B. P. Minerals Exp . in mineral exploration i n

Norway (phosphates, nepheline, molybdenum, gold) and for Dansk
Geoteknik with engineering geological problems involved in dam con-

struction at Jos, Nigeria .

Jon Steen Petersen's research work has covered various aspects of th e

petrology of igneous and metamorphic rocks . The main themes have

been: structural geology and metamorphic petrology of high-grad e

gneiss complexes ; rift zone magmatism and tectonics ; geochemistry and

petrology of magmatic differentiation processes ; and crystalization ki-

netics and experimental petrology. Most of the field studies have been

carried out in the Precambrian basement of Southern Norway and in th e

igneous rocks of the Permian Oslo Province . His research has provided

new information on the mise en place of the plutonic rocks of the Oslo
Province which has been of fundamental importance for all subsequen t

studies in this Province . He has for instance demonstrated that the large

masses of larvikite are composite multiphase intrusions . The petrogenet-

ic studies in zoned plutonic rock complexes, especially in the Osl o
Province, by means of whole-rock, major and trace element geochemis-

try as well as mineralogical studies by NAA and microprobe analysis of

individual minerals have resulted in a better understanding of the chem-
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ical segregation during crystalization . These results suggest that element

distribution is governed by dynamic magma processes rather than by

equilibrium phase-relations, and have promoted the experimental

studies of such processes in relevant synthetic and natural systems . The

concept of macrosegregation is a result of these studies and has initiate d

experimental studies that emphasize its potential to important petro-

genetic problems .

Petersen has participated in many international conferences, in part a s

invited speaker, in the Nordic countries and other European countries ,

and USA.

Jens Konnerup-Madse n

was born in 1948 . He obtained his cand. scient . degree in geology at the

University of Aarhus in 1976 and his lic . scient . (Ph.D .) at the Universit y
of Copenhagen in 1980 .

1973-74 was spent at Université de Nancy I, France, supported by a

grant from the French government . During this period Madsen wa s

introduced to the study of fluid inclusions in minerals by Drs . Bernard

Poty and Jacques Touret .
1977-1983 he was a Research Council stipendiate at the Institute o f

Petrology, University of Copenhagen . 1977-80 he studied fluid inclu-

sions in certain minerals from the Gardar Province in Greenland, a sub-

ject which was treated in his lic .scient . thesis, entitled Fluid Inclusions in

Minerals from Igneous Rocks Belonging to the Precambrian Continental Garda r

Rift Province, South Greenland : the Alkaline Ilimaussaq Intrusion and th e

Alkali Acidic Igneous Complexes . This line of studies was 1981-83

expanded to cover volatile components of deep crustal and upper mantl e
origin as revealed by fluid inclusions and stable isotopes, and since 198 4

as a Niels Bohr Fellow especially the hydrocarbons in the Earth's crus t

and upper mantle as revealed by fluid inclusions in minerals . In shorte r

periods he has studied the fluid phase involved in the formations o f

porphyry Mo-deposits and he has supervised a study of fluid inclusions

in sediments in an attempt to use such inclusions in the evaluation o f

source rocks for oil and natural gas .
The main part of Madsen's research work has been focused on vol-

atiles in deep crustal and upper mantle rocks, as inferred from studies of

fluid inclusions trapped during growth of the minerals, and starting with

work on deep-seated granitic intrusions and high-grade metamorphi c
rocks from South Norway. Subsequent work has dealt with igneou s

rocks from South Greenland and nodules of upper mantle materials in
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order to elucidate the role of CO 2 and CH4, and other hydrocarbons, i n
lower crustal and upper mantle magmatic processes, the carbon-bearin g
gases being of non-biogenic origin .

One of the results of these studies is, that although hydrocarbons ar e
often observed also in mantle derived rocks, the hydrocarbons are gener -
ally though not always of a relatively late origin and owe their existenc e
to reactions between CO2 and H 2O, both of which species appear to b e
the dominant gases in the upper mantle . Hence the studies do not sup-
port the idea of any major degassing of the methane from deep levels .

Jens Konnerup-Madsen has been responsible for graduate and post -
graduate teaching in petrology, fluid inclusion analyses, etc . at the Insti-
tute of Petrology. - He has participated in a number of internationa l
conferences, in part as invited speaker .
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Subspace Structures ofHolomorphi c
Representations

ABSTRACT . A set of basic covariant differential operators between holomorphic (»positive energy« )

representations on hermitian symmetric spaces is described . The set is in a bijective correspondence

with a collection of particularly fundamental homomorphisms between highest weight modules . A

method, by which one may approach the general situation from this, is presented . A symmetry
principles is also introduced .

Secondly, two different natural ways of producing irreducible mixtures of unitarizable highes t

weight modules are exemplified . One is by means of restriction to a maximal parabolic subgroup ,
the other is through the imbedding of one hermitian symmetric space into another .

Mathematics Institute, Universitetsparken 5 ,

DK-2100 Copenhagen Ø, Denmark

Introduction

In the perhaps vain hope that the following may be read, at least in part ,

by somebody from outside the mathematical community, we begin b y

making a few general remarks about mathematics, and after that, abou t

the area of mathematics to which the following belongs . Only then, and
with somewhat less pathos, do we become specific and turn to the

content of the present paper .

Let us then assert, with a slight reformulation of a definition in the

fascinating book »The Mathematical Experiences by Davis and Hers h

([D&H]) that mathematics is the science of spaces and numbers . In rather

simple terms, and in analogy with everyday life, one defines objects, and

lays down rules according to which one may manipulate with, or oper-

ate upon, these . (Or, the analogy is to a property of an object which was

defined in analogy with everyday life . Etc .) . Through logical deduction

one then tries to reveal deep and non-obvious properties of these crea-

tions . One develops tools for the investigation, one invents (or, as many

are inclined to say, discovers) new models, and one classifies, calculates
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on, solves problems on, dissects, welds together, and even sometime s
performs experiments on, these structures . Led by an intuition founded

on logic, and in the firm belief that abstraction goes in the direction of

simplicity, clarity, and verity, theories of great intricacy and beauty ar e
created. Included among the objects of mathematical interest have al-

ways been those which at a given time have been considered to corre-

spond to »reality«, but mathematics is much richer . At the same time it

should be mentioned that to many mathematicians, their objects are rea l

and have as much right to be called such, as more down to earth funda-

mentals .

The area of mathematics to which the following belongs is the repre-
sentation theory of semi-simple Lie groups .

A typical way in which a Lie group emerges is if one has a set M

carrying, or equipped with, a certain structure (e .g. a differential equa-

tion on R') . The group of maps of M onto M that preserve this structur e
is then often a Lie group . Closely related to this is the occurrence o f

symmetry groups in physics . The Poincaré group is, for instance, th e

group of causality (and scale) preserving transformations of Minkowsk i
space. Another interesting example is the conformal group SU(2,2) . In
fact, the investigations of Segal into the notions of time and causality tha t

led him to propose the conformal group as a possible fundamental sym-

metry group ([S], see also [S,J,Ø,P,&S] and references cited therein) wa s
what motivated us to persue the kind of representation theory presente d

below .

Specifically, we are concerned with representations living in spaces o f

vector valued holomorphic functions on a hermitian symmetric space g
of the non-compact type . The property of holomorphy is closely relate d

to the physical concept of positivity of the energy . For simplicity assum e

that g is a tube domain ; g = IR" + iC+ , where C+ is an open proper

convex cone in R' . Then R' is the Shilov boundary of g and in the
regular (generic) case the spaces of holomorphic functions that carry th e
unitary representations of the group G of holomorphic transformation s

of g , are Fourier-Laplace transforms of spaces of functions living o n
C+

The current article deals with the subspace structure of such represen-

tations, also outside the realm of unitarity . Chapter 1 is mainly con-

cerned with invariant subspaces defined by covariant differentia l

operators . Let us take time here to stress that even though the formula-

tion is infinitesimal, one can always quite easily integrate to an appropri-

ate covering group of G .
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We describe in Section 1 .2 what we call the basic covariant differentia l
operators on 0, namely those which originate or terminate in scala r
modules . In Section 1 .3 we indicate how one can approach the general
situation by means of these results, and finally Section 1 .4 is concerned
with the conformal group, where the analysis can be brought to a ful l
conclusion . At the same time a principle, which we believe will b e
fundamental for the further investigations, is introduced .

Chapter 2 deals with irreducible mixtures of unitarizable modules .
Through some simple examples, two different situations are presente d
where one, in a natural way, encounters such a phenomenon . The first
circumstance is with representations which, when restricted to a maxi -
mal parabolic subgroup, decompose into a finite sum of irreducibles, an d
the other occurs when a hermitian symmetric space is embedded com-
patibly into a bigger one . It is remarkable how rich the structures are that
result from such simple phenomena .

1 . Covariant differential operator s

1 .1 . Fundamentals

Let g denote the Lie algebra of the group of holomorphic transformation s
of an irreducible hermitian symmetric space . It is well-known that g i s
a simple Lie algebra over IR and that there are compact Cartan subalge-
bras . Specifically, let g = k + p be a Cartan decomposition of g . Then k

has a one-dimensional center rl . Let ho denote one of the two elements o f
whose eigenvalues on pC are ± i, and let p + and p- denote the +i and - i

eigenspace, respectively, for this fixed element . Let k1 = [k,k] denote the
semi-simple part ofk and let lj be a maximal abelian subalgebra ofk . Then
k = k l +C IR - h0 , ij = (tjflk l) C+ IR ho, (iflk l ) 0 is a Cartan subalgebra o f
kF, and he is a Cartan sub algebra of g0 .

The sets of compact and non-compact roots of g 0 relative to lj c are
denoted A c and An, respectively; A = A, U An. We choose an ordering
of A such that p + corresponds to A +n . Throughout [3 denotes the uniqu e
simple root in A +n and g denotes one half of the sum of the positive roots .
For y E A let Hy denote the unique element of iii fl [(g 1 ) Y , (g C) -Y ] for
which y(Hy) = 2. Finally, following [R&V] we let yr denote the highes t
root. Then yr E An and H ?

	

[Ijflk l ] 0 .
IfA0 is a dominant integral weight of k1 and if X E IR we denote by A =

(A 0,k) the linear functional on ti given b y

Al(rjnt,,)C = A0, A(Hyr) = X .

	

(1 .1 .1)
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Such a A determines an irreducible finite-dimensional W(K C)-module
which we, for convenience, denote by Vt . Here i = TA denotes the repre-
sentation corresponding to A of the connected simply connected Li e
group K with Lie algebra k . Further, let

M(Vt) = 2/(gc)

	

O

	

VT

	

(1 .1 .2)
2/(k c p+ )

denote the generalized Verma module of highest weight A, and let M A
denote the Verma module of which M(VT) is a quotient .

In what follows, we choose to represent our Hermitian symmetri c
space i as a bounded domain in p- . Consider an (irreducible) finite-
dimensional 2/(kC)-module Vt. Through the process of holomorphic in-
duction, the space g(VT) of Vt-valued polynomials on p- becomes a
W(gc)-module consisting of k- (or K-) finite vectors . We maintain th e
notation 7 (Vz) for this module and let dUT denote the corresponding
representation of g c . Explicitly, le t

(S ( z o)f) (z) = dt

d
t=o f(z+tzo )

for zo,z E p- , and f E C'(p- ) . Then, for p E Œ (V.t ) we have ([J&V; II]) :

(dUT(x)f) (z) = - (ö(x)f) (z)

	

for x E p- , (1 .1 .3)

(dUT(x)f) (z) = di(x)f(z) - (S([x,z])f) (z)

	

for x E k C , and
(dU T(x)f) (z) = dt([x,z])f(z) - 1/2(b([[x,z],z])f) (z) for x E p + .

It follows from these formulas (especially the first) that the spac e

W(T) = Span{dUT (u) ~ v v E VT, u E 2/(gc)}

	

(1 .1 .4)

is contained in any invariant subspace . In particular, W(t) is irreducible .
Let VT and VT be finite-dimensional (irreducible) q/(k )-modules, and

let D be a constant coefficient holomorphic differential operator on p-
with values in Hom(VT , VT ) .

Definition 1 .1 .5 . D: . (VT ) -~ J Vti,) is covariant iff

Vx E

	

DdUti(x) = dUT, (x)D .

Along with GJ'(V. t) we consider the space e(VT .) of holomorphic constan t
coefficient differential operators on p with values in the contragredient
module, VT ' = VT . , to VT . For p E g(VT) and q E G (VT .) le t

(q , p ) _ (q( z
a

), p (')) (o) .

	

(1 .1 .6)
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This bilinear pairing clearly places 7 (VT.) and f(VV .) in duality and as a
result, f(VV .) becomes a G '/(gc)-module. The following result is straight-
forward . See [H&J] .

Proposition 1 .1 .7 . As 0?/(g c)-modules ,

7(Vt)' = e(Vi) = M(V T .) .

The following is proved in [IV] .

Proposition 1 .1 .8 . A homomorphism cp : M(VTl .) -~ M(VT . ) gives rise, by

duality, to a covariant differential operator Dq, : g(VT) 7(V21), and con-

versely .

Through the results of Bernstein, Gelfand, and Gelfand [B,G,&G] this
proposition yields a condition (»condition (A) «) which must be satisfie d
in order that there may be a covariant differential operator . This obser-
vation was crucial in the determination of the full set of unitarizabl e
highest weight modules [JIV] (see also [JII] and [JIII]) :

For A° fixed it is known through the results of Harish-Chandra [H-C ]
that the modules W(t) = W(t) (X) are unitarizable for k sufficiently nega-
tive. Due to the polynomial behavior, as a function of k, of the restrictio n
of the hermitian form to finite-dimensional subspaces of 7(-r) (wher e
Vt, as a vector space, is independent of k), it follows that the first X. = X 1
where the hermitian form becomes degenerate (»the first possible plac e
of non-unitarity« - though of course a place at which there is unitarity) i s
a place where W(t) (X 1) M(Vti) . It follows that the annihilator W° (t) o f
W(t) is non-trivial . Hence, there is a covariant differential operator or ,
equivalently, »condition (A)« must be satisfied. The point X1 is then
easily determined through a diagrammatic presentation of An ; described
in [JIV] . Furthermore, by looking at the first X _ X ° where there is a firs t
order covariant differential operator (»the last possible place of unitari-
ty«; [JIII]) and by paying attention to the exact forms of th e
homomorphisms at X° and X 1 , one may in fact determine the full set o f
points above X 1 at which there is unitarity . In particular, X° is a such . The
complete proof also relies on the results in [K&V], [R&V], and [W] . (A
different proof has been given in [E, H, & W]) .

Let I be an invariant subspace ; W(t) C I C M(t), and assume that al l
inclusions are proper . The annihilator I° is then non-trivial, and it make s
sense to talk about the lowest order elements in I ° . These elements mus t
be annihilated by p + and it follows that there is at least one homomor-
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phism into whose image is contained in I 0 . In case Io is a union of

such images of homomorphisms, the description by covariant differen-

tial operator is then complete. Furthermore, the k-types of I can b e
determined as those that are dual to »the k-types not contained in I 0 «, and
the k-types of I0 can be computed essentially just from the knowledge o f

the k-types of modules of the form -.T(Vr ) . One must examine, though ,

exactly how the images overlap .
However, it may happen that I o is not completely covered by th e

images of homomorphisms. An example of this phenomenon is given i n

[B&C], and there an example of a reducible socle is also furnished . Some
other peculiarities are exemplified in [JV] . All the same, it is clear that i t

is of importance to know as much about covariant differential operator s
as possible .

1 .2 . Basic covariant differential operators
By a scalar module we mean a module M(VV) for which dim V., = 1 or ,

equivalently ; t = t(0,X) . In this section we quote the results of [JV ]

concerning the set of homomorphisms originating from, or terminatin g
in, scalar modules .

Let y 1 = (3, y2, . . .,yr be a maximal set of orthogonal roots in A ,

constructed so that y i is the element in A n {y1, . . .,yi_1}1 with the smallest

height ; i = 2, . . .,r . Let S i = yi + . . . +y i ; i = 1, . . . , r .

Proposition 1 .2.1. ([Smd]) . The set of highest weights of the irreducibl e
submodules of the kc-module 2i(p -) are

f
-1 1 5 1 - .-irsr (i1, .,lr) E (Z+ }

There are no multiplicities .

Let p denote the dimension of an »off-diagonal« root space in g for a
maximal abelian subalgebra a of p (cf. [R&V; (2.2.2)]), and let X s =

-(s-1) • p/2 ; s=1, . . .,r .

Proposition 1.2.2.
a) If there is a non-trivial homomorphis m

M(Vto,x)-E-, i,s s ) -> M(V(o,x.) )
then at most one i, is different from 0 .

b) There is a non-zero homomorphism

M(V(o,x) -flos) - M(V (o,X))
exactly when X _ X s + (n-1) where Xs is given as above and n E N .
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Let w l be the Weyl group element that satisfie s

wl(I~) =

	

; w1 (Al) = Ac-

	

(1 .2 .3)

Let

?i = w1(Yi) ;

	

i= 1, . . .,r . (1 .2 .4)

Proposition 1 .2.5 . There exists a non-zero homomorphism M(V ( oA ) -
M(Vti ) exactly when t

	

(0,X) + nwl(8 i) for some n E IN, i E {1, . . .r}
and X = X, - n - ((ÿl) . The homomorphism is unique .

1 .3 . The general case on ; an approach

Whereas the Jantzen-Zuckerman translation functor itself, when applie d
to the results of the previous chapter, does not quite yield the detaile d
information that we are seeking about general M(VV )'s, it is still natura l
to apply the idea of tensoring with finite-dimensional representations
along the lines of ([V ; Lemma 4 .5 .9]) to the present situation. As we shal l
see, it is in fact possible, by applying such ideas to the dual modules, to
obtain a tool which, in particular for some of the classical groups, i s
remarkably powerful .

Let T = T(Ao,X) be fixed, let X3 be determined by (Ao ' ,X3) (Hp) = 0, and
choose X4 ? X3 such that X4-X3 is an integer . Then (Ao ' , X4) is the highes t
weight of an irreducible finite-dimensional representation F(Ao', X4) of g C .

Observe the following simple facts :

Lemma 1 .3 .1 . a) For the dual module F ' (% 0 ',7 4) we have

F' (Ao ' , X4) = W(T 1 ),

	

(1 .3 .2 )

where T 1 = t(Ao4,4) and W(t 1 ) is given by (1 .1 .4) .
b) The K-type t2 = tA2 which is annihilated by p + in W(T 1 ) satisfies

A2 = (Ap ' ,X 4) = -w(A0 ' , X4)

	

(1 .3 .3 )

where w is the Weyl group element which maps the negative Weyl chamber ont o
the positive, and Aô is a dominant integral weight of h 1 .
c) T' is of highest weight (Ao',X') wit h

7v' = -(A0,X)(HR) .

	

(1 .3 .4 )

Proof a) It is obvious that F(Ao',X4) is the irreducible quotient of
M(V(Ao .),4)) and hence it follows by Proposition 1 .1 .7 and (1 .1 .4) that
(1 .3.2) holds with a t l of the form T1=t(A )-,') for some X . Let w 1 be the
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Weyl group element that satisfies (1 .2 .3) . Then clearly (Ao,Å,) _

-wi(AO',X4) . Hence X = (AO ,Å,) (HY ,.) = -(A0',X4) (Hp) = -(X4-Å,3) .

b) It is obvious that A2 = - w(Ao',X4), and this equals (A ('7',X) for some X .

What needs to be proved is that X. = X4 . This, however, follows b y
observing that w(y r) = -y r since yr is the highest root .
c) This follows as in a) . Q.E.D .

As 9/(k 1 C)-modules, V (A,, ),) = V(A00) . Hence, by Lemma 1 .3.1, the element s
of W(t1) may be considered as taking values in Vt .' . We denote th e
duality by ( ., .) and observe that we thereby may associate, to any p E

(V~) and q E W(î 1), a C-valued polynomia l

(p,q) (z) _ (p(z),q(z)) (pointwise)

	

(1 .3 .5 )

Proposition 1 .3.6 . Let p E-(Vt .), q E W(t i), and let x E gc .
Then

(dUt.(x)p,q) + (p , dUt1 (x)q) = dU(o,A-x,+x.3) (x)(p , q ) .

Proof. Let ho denote the element of the center of k as in section 1 .1 . Since
w 1 preserves the set of positive non-compact roots, w1 (ho) = ho . Equation
(1 .3 .7) now follows from (1 .1 .3) together with the observation tha t
di' (ho) on Vti is given by - V-1 w i (A0,X) (ho) _ - V-1 (A0, X ) ( ho) ,
whereas dt 1 (ho) on VT1 is given by V-1 (Ao,Å.3-X4) (ho) . Q.E.D .

Let V, , denote the k--type in W(t 1) which is annihilated by p + .

Corollary 1 .3 .8 . Let p E W(î ' ) and let q E V12 . Then

(p,q) =

	

d U(o,4-x,+x3)(ui) (v ,qi)
= i

for some elements

	

E W(p+), v1 , . . .,vn E vt . , and g 1 , . . .,gn E V12 .

Proof By (1 .1 .4), it suffices to take p of the form dU ti . (u)•v for u E 9/(gC )

and v E VT , . Since W(gC) = 2l(p+)W(p-)W(kC) by Poincaré-Birkhoff-Witt ,
we may assume that u E W(p+ ) . Thus, the statement follows directl y
from Proposition 1 .3 .6. Q.E .D .

To apply this, observe that by Proposition 1 .2.2 and Proposition 1 .1 . 7
there are certain values of Xo at which there is a finite number of invariant
subspaces Ig o ; i = 1, . . . , of GJ'(V(o3,0)) . These are given as the kernels of
covariant differential operators . Moreover, since there are no multi-
plicities at this level, for each I there is an n and a 8 0 such that, in the
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terminology of Proposition 1 .2.1, the k-types of IL exactly are thos e
whose contragredient representation does not contain -n&,o . That is, if
the contragredient k-type is of the form (0, - X0) - E1= 1 n,ö,, then El_ ônl <
n. Equivalently, the k-types are exactly those which are not in the idea l
generated by the polynomials in the k-type generated by pnss . (By choos-
ing the y; 's of Proposition 1 .2.1 differently we could of course avoid
having to go to the dual picture . )

It follows by Proposition 1 .3 .6 that for each IL ,

{p E

	

Vq E W(z1) : (p,q) E Igo }

	

(1 .3 .9 )

is an invariant subspace 0+,0 = -X-X4+X3 ) . Further, if the space

= Span{ (v,q(z)) v E VT , q E Vz2 }

	

(1 .3 .10)

(still, X0 = -X-X4+X 3) is contained in Igo for some i, then by Corollary
1 .3 .8 .

{(p(z),q(z))pEW(i'),gEV~Z}

	

(1 .3 .11 )

is also contained in IL. Since h o as a set of k-types is equal to those that d o
not occur in a certain ideal, it is clear that W(i) cannot equal the full se t

. (V ,) since we can choose po E ;l(VT. ) with coordinate functions in the
mentioned ideal, and then (po(z),q(z))

	

I .
We shall give an example of how to use the last observation . First

observe that by Lemma 1 .3.1, for k E K,

(U(o,-a-x ;+k3) ( k ) ( v ,g('))) ( z )
= (T'(k)v,il(k)g(k-1z)) = (z'(k)v,(ti2(k)g) ( z)) ,

i .e . the K-types of40 are contained in T ' O ti2 .
We now specialize to Sp(n, FR) . Assertions about VT2 analogous to th e

one below can also be made for SU(p,q) and for »most« of the finite -
dimensional representations of SO*(2n) . Also observe that the following
remark in fact itself deals with a significant subset of the modules that ar e
the target of this chapter :

Let g = sp(n, [R) . Based on the imbedding of Sp(n, IR) into SU(n,n) w e
choose the following conventional realization of g according to whic h

k = f (gi

	

h = h* E M (n, C) } ,

p- = { (° co) ) z = `z E M(n, (PI, and

p+ = {(8 Ôv ) I w = `w E M(n, 0)} .

(1 .3 .12)
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Let t l and t2 be as in Lemma 1 .3 .1 .

Lemma 1 .3.13 . For v E Vz1 the prescriptio n

Tv . z - ti1(Z -1 ) V

defines a Vz ,-valued polynomial which belongs to Vti2 .

Proof Observe that in the present situation, ti = t 2 . Since t2 corresponds
to the highest weight of a finite dimensionalW( g1)-module, it is clear tha t
it is polynomial . For u E U(n) we hav e

t1(u )t1(( tuZU)-1 ) V = t1(Z-1 )t l( tu-1 ) V ,

hence it is clear that cp s transforms according to t2 . Finally observe that fo r
x = (ô ô) E p+ ,

[x z] = (oz h) and [[x,z],z] _ [- åZXZ 81 .

Hence, by (1 .1 .3)

(dUr (x)cpv) (z) = dt 1 (xz)t 1 (z-1)v - 1/2 dt 1 (2xz)t1 (z-1)v = 0. Q.E.D .

Let e1 , . . .,en denote the standard orthonormal basis of IRn .
Then

= {ei -ej I 1 < i < j <n}, and
On= {e i+ej I 1 5 i5 j 5 n} .

A = (X1, X2, . . . , X,) is h1-dominant and integral if and only if X 1 ? . . . ? X n and
7,,i-%j E Z. Q = (n,n-1, . . .,1), and k = X 1 .

Example . Consider Sp(4, IR) and let A = (X,X,X-1,X-2) . We put X3 = X4 and
observe that

Ti = (0,0,-1,-2), and T2 = (2,1,0,0) .

Tensor products are computed by means of the Littlewood-Richardson
rule (see e .g . [Jms]) which also gives the full solution to T a x0 (?) = Tb . To
begin with, then, we observe that according to (1 .3.12) and Propositio n
1 .2.1, the possible k-types of._x are (-X,-X,-X,-X) OO (4,2,0,0) and
(-X, -X, -X, -X) 0 (3,3,0,0) . Since, if e denotes the highest weight vector
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for T2 , (e,ti1 (z-1)e) _ (e,t 2(z)e) is a highest weight vector as a cE-value d

polynomial, it follows that the first of these does occur . Further, it i s

easy to see that the corresponding set of polynomials does not exhaus t

J . Hence both of these types occur .

Now, the smallest k at which a sequence of elements from A ±,, can

satisfy condition (A) for any pair (•,A+Q) is evidently k = -3, corre-

sponding to {e3 +e4 } . However, this does not correspond to a highes t

weight of p- O VT (cf. the proof of Proposition 7.3 in [JIII]) . It is also

straightforward to see that at X = -5/2 there can be no sequence satisfyin g

condition (A) for a pair (A 1 +O,A+e) with Al 11-dominant. We will in this

example study the values X _ -2,- 3/2,-1, - 1/2, and 0. Note that the

value of p in Proposition 2 .2 is 1 for sp(n, IR) .

= -2: Consider the imbedding of sp(4, IR) into sp(5, IR) for which, if

e 1 , . . .,e5 is a basis of IR5 as above, the space p+ for sp(4, IR) is contained in

the p + for sp(5, IR), and corresponds to the roots e; +ee with 2 ij . Let A

= (X = -2) and proceed with sp(5, IR) : It follows from

Proposition 1 .2 .2 and the remarks following (1 .3 .11) that Ø(t ') cannot

equal the full set ~(VT ,) . The invariant subspace IL, to be used for this
argument is, as a space of polynomials, a complement to the ideal gen-

erated by the polynomial representation contragredient t o

(-2,-2,-2,-2,-2) . ((-2,-2,-2,-2,-2) is, in the language of Pro-

position 1 .2.1, equal to -85 and corresponds to the one-dimensiona l
representation space C det z . -84 = (0,-2,-2,-2,-2) corresponds t o
4x4 minors of z, etc .) We have that (2,1,0,0,0) O (2,2,2,1,0) contain s

(2,2,2,2,2) and it is, anyway, straightforward to see that the only pos-

sible choice of a sequence of elements of A+,, satisfying condition (A) for a

pair (A 1 +QQ,A+QO) has Al = (-2,-2,-2,-2,-2) OO (0,-1,-2,-2,-2) .

Finally, since the highest weight vector in p- OO p- OO Vi corresponding to

this Al actually only lives on the sp(4, IR) above, it follows that we do have

a non-zero homomorphis m

M (V(- 3, -4,- 4,-4)) --)' M(VI) ,

and there can only be one such since Al has multiplicity one in W(p- ) OO

Vt .
= - 3/2 : This may be treated analogously by using the ideal generate d

by the polynomial representation contragredient to (0,-2,-2,-2,-2)

(4X4 minors) . But there is no need to pass to sp(5, IR) ; (-2,-2,-2,-2 )

for sp(4, IR) can also be used (then it is just the determinant) . However ,

this is also a point at which a first order differential operator exists by
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Proposition 1 .6 in [JV] . Specifically, k = e2 + e3. Moreover, it is easy t o
see that the corresponding homomorphism is the only possible .

A = -1 : It follows from Proposition 1 .5 in [JV] (or [B,G,&GI), by trial
and error, that there can be no homomorphisms for this value .

A = - 1/2 : By looking at the ideal generated by the polynomials in the It -
type whose contragredient is (-4,-4,-4,-4) (= -254) it follows tha t
W(t') * J'(Vti ) . Moreover, one can see that the k-type Al = (½,V2.,½,1/2 )

O (4,4,3,2) does not belong to W(t') and one can find a sequence o f
elements of A +,, satisfying condition (A) for the pair (Al'+QQ,A+Q) . How-
ever, there are other sequences also satisfying this condition but corre-
sponding to lower order differential operators . In fact, there is a firs t
order differential operator corresponding to k = e l +e3. This phenome-
non seems to be quite typical : When the method fails to give more
information than W(-t) + :(Vti ') (which just implies the existence o f
some covariant differential operator) one can usually quite easily establis h
the existence of the lowest order operator and, more generally, obtain a
sequence of differential operators of lowest possible degree . The presen t
situation furnishes an example of this : There is a system of non-zero
homomorphism s

M (V( '/z 3,-1/z-4,-1/z 4, Yz 4)) ~1 M(V(-'/z-2,-1/z-3,-'h-4,-Y-4) )

M(V(-1/z-1,-1/z-3,-1/z-3,-1/z-4)) - M(V(--1,-1/z-1,-1/2-4)) C14-
€j?;M

	

M(V(-1/2,-1/2,-1/2 -1,-1/2-2)) •

Of these, all but CP3 correspond to first order . The existence of cp3 follows
along the lines of the cases k = -3/2 and k _ -2. Finally, by looking at th e
images of the various homomorphisms and observing that everywher e
there is multiplicity one, it is easy to conclude that cps o CP4 , cps o cp4 O cp 3 ,
CP5 O CP 4 O CP3 O CQ2 , and CP5 O C4 o cP 3 o CP2 o cp l all are non-zero and that
they, along with CP5, constitute the full set of homomorphisms int o
M(V~) .

A = 0: There is a sequence of non-zero homomorphism s

M(V(-3, - 4,-5,-5)4)94'5))
1

M(V(- 1,- 2, -3,-5)) 13
M(V(0,- 2, -3,-4)) ~ M(V(0,0,- 1,- 2)) •

The existence of epl and cp 3 follows as above, and CP2 corresponds to a firs t
order operator . It might seem that there could be two distinc t
homomorphisms at the level of cp 1 , but it follows easily from Proposition
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1 .5 in [JV] that M(V(_3,_4,_s,_s)) is irreducible, and the existence of tw o
distinct homomorphisms would contradict this . By looking at multi-
plicities it follows that T3 0 cp 2 is non-zero and, moreover, is the uniqu e
such. However, T3 0 (Q 2 0 (PI is zero . To wit, V(_3,_4,_s,_5) does not occur
in 2l(p - ) OO V(o,0,_1,_2), and thus there can be no non-zero homomor-
phism at this level .

1 .4 . Conformal covariance

Given a generalized highest weight module M(VT), Bernstein, Gelfand ,
and Gelfand [B,G,&G] gives the highest weights of the k-types that may
possibly be annihilated by p + and thus define homomorphisms int o
M(VT). As described in the previous section, the results of [JV] are quit e
useful in the description of the set of homomorphisms ; indeed, in many
cases it yields directly the full set . However, there are some complicate d
situations, e .g. those in which one (or several) of the »BGG it-types o
occurs with multiplicity greater than one . We believe that there is a
principle which can handle those situations, and whose applicability goe s
even further . It should be noted that there are no examples of multiplici-
ty greater than one in the sets of homomorphisms as above . The princi-
ple in its mildest formulation states (tube domain case) that only for ver y
special Ao 's can it happen that a k-type p E M(VT) of the form p = u• q
with q E M(Vti) and u E W(p-)' is annihilated by p +. Actually, this princi-
ple was the main motivation behind the results in [JV] .

We will now furnish an example based on the Lie algebra su(2,2) of the
conformal group . Here the formulation is quite precise and may in fac t
be proved to be sufficient to determine the full set of conformall y
covariant differential operators . Let

a2

	

a 2

	

a 2

	

a2
q =

	

-

	

-	 -	
at2

	

ax2
	 	 aye	 az2 .

Consider those covariants that operate on spin (2, ±) :

Proposition 1.4.1 . The only covariant differential operators that contain q

(to some power) as a factor are those that intertwine spin (z, ±) with spin (z, ±) ;
n=0,1,2, . . . .

The proof of this proposition will appear elsewhere. The situations cor -
responding to n=0 and n=1 are described in [J&V;I] .

Let e 1 ,e2, and e3 denote the standard orthonormal basis of IR' . Then
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A c = {(e2-ee3), (e2+e3) } , and
An = {13 = (e1-e2), a l = (e1-e3), a2 = ( e 1 +e3), Yr = ( e 1 +e2) }

(su(2,2) is of type A3) . A = (X1,X2,k3) is k1-dominant and integral if and
only if X2 ± X3 E {0,1, . . .}, and @ = (2,1, 0) . For a E A we denote th e
reflexion corresponding to a by S . We label, for convenience, the
homomorphisms by a sequence of reflexions involved in the corre-
sponding » condition (A) « .

Example . A = (X,1,1)

	

(X E IR) .

At A = -3, S1,z satisfies »condition (A)« but Syr (A+0)-e does not
correspond to an element of A- O V T .

At A, = -2, S .yr and S Y Sae are ruled out for the same reason, but S az
defines a first order covariant differential operator .

At A = -1, the situation is similar to X = -2 ; the only difference is tha t
S ae here gives an operator of order 2 .

At A = 0, S a1 S a2 corresponds to the situation in Proposition 1 .4.1 and is ,
moreover, the only sequence which corresponds to an element of th e
module.

AT A E N, Sp, Sa S a2 , and Sa,Sa,Sp correspond to elements of the module ,
However, due to the principle, only Sß and Sa1 Sa , survive .

2 . Irreducible mixtures of unitarizable module s

Consider the following very general situation : One is given two groups ,
G 1 and G2 , a family (Ha, Va),,EA of representations Ha of G 1 on spaces Va,

and a representation 7t,n of G2 on V = Va. Let us insist that A contains
aE A

more than one element and assume that it makes sense to inquire abou t
irreducibility or indecomposability . One may then talk about V havin g
one of these properties with respect to either G 2 or G 1 XG2i and one may
say that G2 makes V into an irreducible or indecomposable module o f
G1-representations, respectively . Naturally, additional assumption s
about the representations may be inserted, e .g . unitarity .

Let us from now on restrict ourselves to the case in which G .1 is
isomorphic to a subgroup G 1 of G 2 and assume that the representations
of G 1 are irreducible . Those representations of Chapter 1 that have in -
variant subspaces defined by covariant differential operators, furnish
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examples for which G7 = G 2 and A is finite . In these cases, the represen-

tation of G2 is never unitary . On the other hand one may take a unitar y

irreducible representation of G 2 and restrict it to G1, but this, especially

when G 1 is non-compact, tends to give sets A which are uncountable .

Below we present, through some simple examples, two different cir-

cumstances under which one in a natural way gets irreducible mixture s
of unitary representations, and where A is countable . In both examples

G 1 may be taken to be equal to G2 and in the first example, A is in fact

finite .

2 .1 . Representations which do not remain irreducible when restricted to th e

extended Poincaré group .

The general situation is the following : G2 is (a covering group of) a
group of holomorphic transformations of an irreducible hermitian sym-
metric space g of the non-compact type . Assume for simplicity that g

is of tube type; ? = IR" + iV for an open convex cone V E IR 11 . Let P

be the maximal parabolic subgroup of G 2 which contains the translation s

L XO (x+iv) = x + xo + iv of g, for all xo E IR11 . Consider an irreducible
unitary representation a n, of

G2N
n a space of vector valued holomorphic

functions on g . Then atm ~ P = . +O ati m,P for some N E N, with ati1,m,P ir-

reducible and unitary for all i=11,. . .,N . In some special cases, N=1, and

for some of the most singular of these, the representation remains ir -

reducible when restricted to a normal subgroup Po of P for which P/Po is
isomorphic to the one-dimensional center of the reductive (linear) part of
P. (Cf. below . )

The decomposition of the restriction of azm to P is handled by im -

bedding at m into a degenerate principal series representation, and this i s
accomplished by taking boundary values on the Shilov boundary o f

lim f(x+iv) (which exists at least on a dense set of functions) . See
v-->o

[JV;I] for an example . Furthermore, each representation at i,m,P is recog-

nized as the restriction of an irreducible unitary holomorphic representa-
tion of G2 to P. We denote the last group by G 1 since is should really b e

thought of as distinct (in fact, G 1 (1 G2 = P); and thus get the promised

phenomenon . One interesting question to which we do not know th e
answer is : How big is the group generated by G1 and G2; does it have a

geometric interpretation ?

Let us now be specific: In the following formulas, the letters

a, b, c, d, x, y, z, and w denote 2X2 complex matrices . Moreover, in the
following definitions, 0 is the trivial 2 X2 matrix, and 1 is the identity .
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G2 = SU(2,2) = {g =

	

a)

	

det g = 1 and g*(_° o)g = (_° ô)} .
P

	

={g=(ôa-1)

	

det aE IR \{0},andx=x*} .
(2 .1 .1 )= {z

	

(z-z*)/2i is strictly positive definete}
= IR

	

+ iC+ ,
where C+ = {y'y=y*, tr y > 0 , and det y > 0} .

P is isomorphic to a 2-fold covering of the extended Poincaré group. The
title of this section is motivated by [M&T], this investigation being
complementary to that .

On the space ofholomorphic functions on 11 with values in C2 x C2 we
consider the one-parameter family of representations Uj of G2 given by

(Uj (g)f) (z) = det (cz+d)-j(cz+d)-1 O (zc*+d*)f(g-1z)

	

(2 .1 .2)

for g-1 = å) E SU(2,2), g -1z = (az+b) (cz+d) -1 , and j E Z . It follows
from UI, p. 324] that there exists a K > 0, independent of j, such that th e
reproducing kernel Kj (z,w), which is given b y

Kj(z,w) = det (z-w*)/2i)-j ((z-w*)/i)-1 O ((z-w*)/i), (2 .1 .3 )

may be written, for j ? 3, a s

Kj(z,w) = K So, eit ( ) Fj (y) dy

	

(2 .1 .4)

with Fj (y) = det y' -3 [y0ÿ +(j-2) -1 detyT] ; ÿ being the matrix fo r
which yÿ = det y and T being the matrix which, in a basis f1 , f2 , f3i f4 of C 4

C2
0 C2 satisfying that f1 ,f2,f3 corresponds to the symmetric subspace and
f4 to the antisymmetric, is the diagonal matrix T = d(1,1,1,-1) . T then
satisfies that T(a©b) = (b®O a)T for all a and b . For details about reproduc-
ing kernels we refer to [J&V;I] . It is the positive - definiteness of Pi forj
3 (for j = 3 only semi-definiteness) that implies the unitarity of th e
representations Uj for j ? 3 . Let us from now on assume that j > 4 . The
Hilbert space then consists of functions of the form

Ff(z) = f

	

elt"Y f( y) dy

	

(2 .1 .5)

and the inner product is given b y

<Ff, ,F f,> = f c+<FT 1 (y)ft(y),f2(y) > dy .

	

(2 .1 .6 )
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The subgroup of SU(2,2) whose elements are of the for m

g = °*-) (the linear part of P) acts a s

(Uj(g)Ff) (z) = f c,
eikizy (a*-1 OOa)deta4-~ f(a*ya)dy.

	

(2 .1 .7 )

To make the decomposition under P straightforward, we would like th e
action on functions on C + to be det a2-' (a0O a)f(a*ya), which is unitary in
the inner product

<f1,f2> = fc+ <G(Y)f1(Y),f2(Y) > dY, (2 .1 .8 )

with G(y) = (y 0y) (det y) -3 . Thus, we seek an intertwining operator of
the form: multiplication by a matrix MM (y) which satisfies that Mj (a*ya)
= (a0O a) -1Mj (y) (a*-1 OOa) for all a and all y E C + . This property is
satisfied by any Mß (y) = (1 +(3T) (Y-®1), and it is sufficient to consider
this family . To wit, the additional requirement of unitarity ; that Mp(y )
G(y) Mp(y) = c•F'(y) for some c > 0, is satisfied provided that
(3 2+(3(j-2)+1 = 0 and ((32+1) (j-2)+(3 > 0, and this has a solution whe n
j?4.

We observe that the representations of G I which we obtain are

(Ul,j (g)f) (z) = det(cz+d)-'-2(zc*+d*)OO S(zc*+d*)f(g-1z) (2 .1 .9)

and
(U2,j (g)f) (z) = det(cz+d)

	

1 f(g-l z), (2 .1 .10 )

for g-1 = ( 3), and functions with values in C 2 Os C2 and C2 Oa C2 ,
respectively .

Transformed back to the space of C2 O C2 -valued holomorphic func-
tions on 1) the intertwining operator i s

(1+(3T) (c( tD) 0 1),

	

(2 .1 .11)

c (tD) being »one-half« of the Dirac operator as in [I I] . Since any function
f: - C4 can be written as a sum of functions of the form f; OO vi, with fi :

- C2 and vi E C2 (i 2), we may apply the covariance property of

c ( tD ) Ol]) :
Let dVo denote the representation of su(2,2) corresponding to the ac-

tion (g•f) (z) = f(g'z), let dU be the representation corresponding to U, ,
and consider e .g . x = (° -o) in su(2,2) (x = x*) . Then

dUU (x) = j tr xz + xzOO 1 - 100 zx + dVo(x)

	

(2 .1 .12)
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and

(c( tD) X01) (dUj (x)) =

	

(2 .1 .13 )
(c(tD)OX 1) (tr xz + xzOX 1 + dVo (x) + (j-1) tr xz - 10zx) =
((j+2) tr xz - zx®X 1 - 1 XOzx + dVo 5)) (c( t D) X01) +
(c(tD) x01) [ (j-1) tr xz - 10zx] ,

where the last term means c( tD)OX 1 acting on [ . . .] . We recognize here
((j+2) tr xz - zx ®X 1 - 10zx + dVo (x)) as the infinitesimal action
corresponding to the representation (U(g)f)(z) = det(cz+d) -i 2(zc*+d* )
OX (zc*+d*)f(g-1z) . To make the computation complete we should o f
course introduce the inverse to c( tD)01, and this can only be done by
returning by the Fourier-Laplace transform to the space of functions on
C+ on which this makes sense . Let us also remark that instead of using a
decomposition based on a O a we might as well have used one based o n
a*-1 O a*-1 . Then we would have obtained representations involving
(cz+d) -1 OX (cz+d)- 1 .

We conclude this section by a brief description of the situation when j
= 3. Let V4 denote the representation on C-valued functions given b y

(V4(g)f) (z) = (cz+d)-4f(g-1z) .

	

(2 .1 .14)

Then there exists a first order constant coefficient differential operator D
such that for all g E SU(2,2) :

V4(g)D = DU 3 (g) .

	

(2 .1 .15)

U3 is unitary and irreducible on the kernel of D (inside the space o f
holomorphic functions) and so is the restriction to P . V4 is unitary an d
irreducible on SU(2,2) as well as on P .

We finally mention that there is a non-linear equation left invariant b y
U3. Unlike a similar construction for spin 1/2 given by B . Ørsted and the
author, independently, this equation may be taken to be holomorphic :

Let < ., .> be a complex bilinear form on C 2 OX C2 . Consider the 2x 2

complex matrix m = o) . Then for all 2X2 complex matrices a ,
mam-1 = tå

. For any c E C the equation

Df = c((mOO m)f,f) 2/3

	

(2 .1 .16 )

is then invariant, as is straightforward to see (det(cz+d) = det(zc*+d*)) .
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2.2 . Mixings resulting from compatible imbeddings .

Let q be a bounded homogeneous domain in C' containing the origin 0 ,
let G be a group of holomorphic transformations of G, K the subgroup
of G that fixes 0, and assume that q is homogeneous with respect to G
(Y G/K). We will say that we have a compatible imbedding of a
hermitian symmetric space 111, (of the non-compact type) into g if there
is a complex submanifold i 1, , of containing (for convenience) 0 such
that g and ql,s are bi-holomorphically equivalent and such that 1s 1,s i s
homogeneous with respect to the subgroup Gl of G that leaves q 1, s

invariant . We let K 1 = K fl G 1 .
Let t be a unitary representation of K on a finite dimensional vecto r

space VT and assume that the representation U T of G, obtained from t

through holomorphic induction, is unitary in a Hilbert space H T of VT-
valued holomorphic functions on q . As described in [J&V ;II], the de-
composition of the restriction of U T to G 1 can be obtained from the
filtration of HT defined by the order of vanishing on q l,s . As a result on e
gets

HT = O HT,
i= 1

.

UT = O UT,
i= 1

where the UT,'s are unitary representations of G 1 obtained throug h
holomorphic induction of finite-dimensional unitary representations t; of
K1 . There may be multiplicities (always finite) and the sum is always a t
most countable. Evidently, the elements of G outside of G1 will mix up ,
through the representation UT, the spaces HT, . Thus, it is natural to look
for another copy of G 1 inside G. This copy does not necessarily have t o
be of the same nature, i .e . the direct inclusion of SO(4,2) into SU(4,2 )
does not correspond to a compatible imbedding, but for now we wil l
assume that it is . Even then, the two copies do not have to be conjugat e
inside G. For instance, if 9Z = !% 3 X 3 then there are at least three
interesting and isomorphic submanifolds, namely q 3 x {0} , {0} xq 3

and the diagonal in 5 , and the corresponding groups are not conjugate .
We shall not discuss questions concerning irreducibility here since it i s
quite clear how such questions should be approached . Rather, we con-
clude this general discussion with the remark that a K 1-type in a fixe d
HT , under the action of K, will only travel into a finite number of othe r
H T, 's . This is clear from the decomposition .

and
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Let us give a simple example : Let { e 1 , e 2 , e3i e4 , e5} be a standard basis o f
C5 and let SU(2,3) be the group of linear transformations of C5 that leave s
invariant the sesquilinear form which, in the given basis, is defined by
the diagonal matrix d(1,1,-1,-1,-l) . We have that K = { (u,v) E
U(2)xU(3) detu•dety=l} . As G 1 we take SU(2,2) . Copy no. 1 is taken
to be the subgroup defined by (e1i e 2 ,e3 ,e 4) and copy no . 2 to be the one
defined by (e1 ,e 2 ,e4 ,e 5), though for some purposes it might be mor e
natural to take a more twisted version as copy no . 2 . We shall here b e
content to give the decomposition of some representations of SU(2,3)
under copy no . 1 . We let z denote a complex matrix with 2 rows and 3
columns ; the space corresponding to SU(2,3) may be taken to be a
bounded subset containing the origin, of the vector space of all suc h
matrices .

Our first example is with t(u,v) = detu -n. The corresponding repre-
sentation is denoted by Un . Restricted to K it has the for m

(Un (u,v)f) (z) = detu -nf(u-lzv) .

	

(2 .2.1)

For n E IN, Un is unitary . The decomposition is obtained by expandin g
functions in the variables corresponding to the 3rd column. The set of
T i 's is then equal to {detu -n10O u j=0,9,2, . . .} . This is the case even fo r
n = 1, where the representation space is annihilated by a second orde r
differential operator . The reason is that this operator does not contain a
summand which is purely a differential operator in the variables corre-
sponding to the 3rd column .

Our second, and final, example is with T = u(detu) -n; the correspond-
ing representation U T is denoted by Vn. Restricted to K, Vn has the form

(Vn(u,v)f) (z) = u detu -nf(u-1zv),

	

(2 .2 .2 )

where now f takes values in C2. For n � 2, Vn is unitary. For n > 2 the set
of ti ' s is {detu-n'O u j = 1,2, . . .} U {detu -n+1

	

u

	

j=0,1,2, . . .} ,
s

	

s
but for n = 2, where the representation space is annihilated by a firs t
order (matrix valued) differential operator, we only get {detu' 'OO u
j=1,2, . . .} .
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Completing Partial Latin Squares

ABSTRACT . The paper gives a survey of completion results for symmetric and unsymmetric partia l

latin squares . Several embedding results are mentioned, but the emphasis is on proper completio n
where, given a partial latin square of side n, one looks for a completion to a latin square of the sam e

side .

For latin squares with no symmetry required we prove a strengthening of the known result s
concerning the Evans conjecture, which was proved to be true in 1981 .

We then state some new results about the corresponding problem for symmetric latin squares an d

describe their proofs briefly ; complete proofs will be given elsewhere .

Institute of Electronic Systems, Aalborg University Centre ,
Strandvejen 19, DK-9000 Aalborg, Denmar k

1 . Introduction

The subject of this paper belongs to the branch of mathematics calle d
combinatorics . This area is concerned with arranging, counting, an d
choosing from a number of objects . Very often only a finite number o f
objects are considered at a time, and the discrete nature of the subject
gives it a striking feature not so common in other parts of mathematics :
frequently a deep mathematical problem can be explained in very simple
terms, easy to understand for anybody who cares to listen .

Probably the most famous problem sharing this particular beauty o f
combinatorics is the so-called four colour problem : Is it true that any map
in the plane or on a sphere can be coloured so that any pair of countrie s
with a common boundary always get different colours, using altogethe r
at most four colours? (It must be required that each country consists o f
just one connected region) . The four colour problem was unsolved fo r
more than a century, though many skilled mathematicians have worked
very hard on it (and so have many amateur mathematicians!) It has no w
been established that four colours do suffice to colour any map ; a proof
was announced in 1976 and published in 1977 (Appel & Haken 1976 and
1977, Appel, Haken & Koch 1977) . But the proof depends heavily on the
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use of a computer, and so the `simple' four colour problem still puzzle s
the minds of combinatorialists hoping to find a more direct proof.

This article is about a concept in combinatorics called latin squares

(completely unrelated to the four colour problem), a topic which in the
course of time also has contained some simply stated problems tha t
turned out to be extremely difficult . Consider the following example .

Let n be a positive integer . Given an nXn array (chessboard) in which
n-1 of the cells (squares) are filled with one of the integers 1, . . .,n, so that
no integer occurs twice in any row or column, is it always possible to fil l
all the remaining cells to obtain an nXn array in which each of the
numbers 1, . . .,n occurs exactly once in each row and column ?

This question was first posed by T. Evans (Evans 1960), and th e
assumption of an affirmative answer became known as the Evans Conjec-

ture . Despite the fact that the problem received much attention, an d
many partial solutions were published, no complete solution was give n
until 1981, when B . Smetaniuk proved that the Evans Conjecture is true ,
and so the answer to the above question is indeed yes (Smetaniuk 1981) .

The present paper is closely related to the Evans Conjecture, but
before continuing the discussion we have better put the topic in it s
proper context of latin squares .

A partial latin square of side n on the symbols s 1 , . . .,sn is an nXn matrix
of cells in which each cell either is empty or contains one of the symbols
s 1 , . . .,sn and, furthermore, no symbol occurs twice in any row or twic e
in any column. It is a latin square if there are no empty cells . Thus in a
latin square each symbol must occur exactly once in each row and col-
umn. We shall almost always assume that the set of symbols is {1, . . .,n} .
Figure 1 shows two latin squares and two further partial latin squares, al l
of side 6 .

With the above definitions, the Evans Conjecture can be formulated lik e
this : Any partial latin square of side n with at most n-1 non-empty cells

Figure 1

1 3 4 6 2 5
3 6 5 1 4 2
4 5 ]. 2 3 6
6 1 2 3 5 4
2 4 . 3 5 6 1
5 2 6 4 1 3

1 2 4 5 6 3
5 4 6 3 2 1
2 1 5 6 3 4
6 3 2 4 1 5
4 6 3 1 5 2
3 5 1 2 4 6

1 2 4
5 4 6
2 1 5

4
5

6

4321

5
6

a

	

c

	

d
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can be completed to a latin square of side n . The same conjecture ha s
been stated on at least two other occasions (Klarner 1970; Dénes 1974) .

After B. Smetaniuk's proof, an independent proof was published b y
A. J . W. Hilton and the present author proving, however, a stronge r
result (Andersen & Hilton 1983) . T. Evans arrived at his conjecture part -
ly because he could find no counterexamples, and partly because it i s
easy to find examples of a partial latin square of side n with n non-empty
cells which cannot be completed to a latin square of side n (Figure 1d is
such an example) . The paper by Andersen and Hilton actually containe d
a complete characterization of those partial latin squares of side n with n
non-empty cells that cannot be completed to a latin square of side n .

In Section 5 of this paper we extend the characterization to include al l
those partial latin squares of side n with n+1 nonempty cells which
cannot be completed to a latin square of side n .

It may be asked where the importance of determining such a further
class of non-completable partial latin squares lies . The author believes
that throughout mathematics determining extreme cases is very valuabl e
and so, in particular, there is a large difference between knowing tha t
squares with n non-empty cells can be completed except in a well-de-
fined, non-empty class of situations and just knowing that squares wit h
n-1 non-empty cells can be completed . Furthermore, by characterizin g
exceptions `one step beyond' the extreme cases, a good deal more insigh t
in the structure of the problem is gained (accordingly, we believe that the
exceptions presented in Section 5 give a good idea about how non-
completable squares can be obtained if yet more non-empty cells ar e
introduced) . In the present case it is also useful for the proof of one of th e
main results of Section 6 .

Another possible question could be whether a `nice' characterization o f
non-completable squares with any number of non-empty cells is obtain -
able . The answer is almost certainly no, as the problem of completing
partial latin squares is known to be NP-complete and so belongs to a clas s
of problems that are not expected to have `easy solutions' . We discuss thi s
in more detail in the next section .

While on the subject of questions, a simple, but natural one is : What i s
the purpose of latin squares in general and of completing partial latin
squares in particular? It is beyond the scope of this paper to discus s
applications of latin squares at any great length, but we can single out th e
subject of design of experiments as probably the main field concerned wit h
practical applications of latin squares . They are used in some situation s
where one wants to gather data for statistical analysis, and the purpose of
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the latin squares is to eliminate the effect of certain systematic difference s

from the data . We mention briefly two examples of slightly differing

nature :

1. Sheer planning purposes :
Suppose that we want to test the effect of n different diets on the mil k

yield of cattle. We select n cows and n time periods and use a latin
square of side n with a row for each cow and a column for each tim e

period. Then, if, say, the cell common to the row of cow 1 and th e

column of period 2 contains the symbol 3 it means that cow 1 is give n

diet 3 in period 2, etc . With proper handling of the data, this woul d

eliminate differences between cows and time periods, as each diet i s

tested on each cow and in each time period .

2. As a `physical' latin square :

If n varieties of a crop are to be tested on a rectangular field, it will

often be advantageous to superimpose an nXn latin square on the

field, thus dividing it into n2 smaller rectangular plots all having th e

same size, and growing crop 1 in the n plots corresponding to th e

occurrences of 1 in the latin square, etc . There is a good chance tha t

this will eliminate yield differences due to fertility differences of th e

plots .

In both of the above examples, further properties of the latin squares

(such as row completeness) would be desirable, so the description here is

much simplified . We must omit further discussion and refer the reader t o

some of the many books on the subject (Dénes & Keedwell 1974 ; Fisher

1935 ; Cochran & Cox 1950 ; Cox 1958; The Open University 1981) . It i s

not hard to imagine situations like the examples above, where it woul d

be convenient to have certain entries of the latin squares fixed a priori ;

this is where completion of partial latin squares comes in .

An even simpler example of this is obtained when considering the

completion of a partial latin square as a time-tabling problem in the fol -

lowing way . We have two sets S 1 and S 2, each consisting of n persons ,

and we must schedule one meeting between each person from S 1 and

each person from S2, all meetings taking place within n time periods .

The set S 2 could consist of participants of a course and Si be the teacher s

of the course with the meetings corresponding to examinations . Such a

schedule is readily provided by a latin square of side n with the row s

corresponding to S 1 , the columns to S 2 and the entries 1, . . .,n to the time
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periods . If some of the meetings have to take place at prescribed times ,
we have our completion problem . It may be argued that in a situation
such as the above, it is unlikely that the number of teachers is equal to th e
number of participants ; it follows, however, from one of the simplest
completion results of Section 3 that our results will cover the case o f
IS1I$ S 2 I also (for any set A, IAI denotes the number of elements of A) .

If we have just one set S of persons and we want to schedule on e
meeting between each pair of persons we can use a symmetric latin square .
We have defined latin squares as matrices, and so it is customary t o
enumerate the rows from the top and the columns from the left, so tha t
cell (i,j) is the cell common to the ith row from the top and the jt h
column from the left . We say that a partial latin square of side n is
symmetric if, whenever one of the cells (i,j) and (j,i) is non-empty then s o
is the other, and they have the same entry

	

Figure la shows a
symmetric latin square . The diagonal is the set of cells {(i,i) 11 In a
symmetric latin square of odd side each symbol occurs exactly once o n
the diagonal, and in a symmetric latin square of even side each symbo l
occurs an even number of times on the diagonal .

We can use a symmetric latin square for scheduling meetings between
each pair from a group of n persons (for example as required for a round-
robin tournament) by letting persons i and j meet in time period k ,
where k is the entry of cells (i,j) and (j,i) . This will require n time periods
although each person has just n-1 meetings ; in each time period occur-
ring on the diagonal one or more persons have no meetings, person i
having time period k off where k is the entry of cell (i,i) . When schedul-
ing pairwise meetings for an odd number of persons, clearly one perso n
has to be unpaired in each period, and so n time periods are indeed
needed altogether . If n is even, however, the symmetric latin square
again brings n time periods into the schedule, where only n-1 are needed ,
as we shall see . One way of getting round this is to require that all cell s
on the diagonal of the symmetric latin square contain the entry n; then
no meeting will be scheduled for period n, so only n-1 . periods are used .
But perhaps a more natural way of looking at round-robin tournament s
with an even number of participants is from the point of view of complete
graphs .

A graph G = (V,E) consists of a set V called vertices and a set E of edges ,
which are pairs of distinct vertices. An edge e = {V1 ,V2} is said to join
vertices V1 and V2, and to be incident with V1 and V2, and we write e =
V1 V2. We also say that V1 and V2 are neighbours . A complete graph is a
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graph in which each pair of vertices are joined by an edge, and th e
complete graph with n vertices is denoted by Kn. Figure 2 shows draw-
ings of K5 and K6 . The numbers on the edges are explained below .

An edge-colouring of a graph G with k colours is an assignment of one of
k colours to each edge of G such that edges incident with the same verte x
always have different colours . We shall always use the set of `colours '
{1, . . .,k}. Each of the graphs K 5 and K 6 of Figure 2 has been given an
edge-colouring with 5 colours . The chromatic index q(G) of G is the leas t
k for which G has an edge-colouring with k colours . A famous theorem
states that if d(G) is the maximum degree of G (the largest number of edges
incident with any one vertex), then q(G) is either d(G) or d(G)+ 1
(Vizing 1964) . It is wellknown that

n-1 if n is even,
q(K11) _ n

	

if n is odd .

Thus the edge-colourings given to K5 and K6 in Figure 2 are minimal ,
i .e . with as few colours as possible .

If the vertices of a graph G correspond to persons, then clearly a n
edge-colouring of G provides a schedule for meetings between all pair s
joined by an edge : each meeting between a pair takes place in the time
period designated by the colour of the edge joining the pair . If only q(G)
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colours are used for the edge-colouring, then as few time periods as
possible are used.

The round-robin tournament problem then corresponds to construct -
ing an edge-colouring of K„ with q(Kn) colours, possibly with the colour
of some edges prescribed . We consider this problem, as well as that o f
completing partial symmetric latin squares, in Section 6, where we pre-
sent two new results and some corollaries that we have recently obtaine d
with A . J . W. Hilton and E. Mendelsohn, respectively . We only sketch
the proofs ; they are too complicated to be included here and will appear
elsewhere .

Given an edge-colouring of Kn with q(Kn) colours it is easy to con-
struct a symmetric latin square of side n . Let the vertices be V1 , . . .,V, and
place the colour of the edge ViVj in cells (i,j) and (j,i), 1Ifn is
odd, place the colour not occurring at the vertex Vi in cell (i,i) and if n is
even, place the colour n in all cells (i,i), This is easily seen to be a
symmetric latin square of side n. Actually, if n is even we can obtain a
symmetric latin square of side n-1 also by deleting the last row an d
column and placing the entry of cell (n,i) in cell (i,i) instead, 1

We close this introductory section by noting that also the problem o f
completing partial latin squares with no symmetry required has a graph
analogue . A graph G = (V,E) is called bipartite if V can be partitione d
into two disjoint sets L and R such that each edge joins a vertex of L to a
vertex of R. If each vertex from L is joined to each vertex from R then G
is a complete bipartite graph, and it is denoted by Kin,n where m = ILI and
n = RI . For any bipartite graph G, q(G) = d(G) (König 1936) . A latin
square of side n is equivalent to an edge-colouring of Kn,n with n colours
simply by considering cell (i,j) to be an edge joining vertices Ci and rJ
where L = {/i, . . .,4} and R = {r1, . . .,rn}, and

	

So com-
pleting a partial latin square of side n to a latin square of side n i s
equivalent to finding an edge-colouring of K n,n with n colours, with the
colour of some edges being prescribed .

The author is aware that this introduction has been much more diffus e
(and longer!) than is usual for a mathematical research paper, even for a
survey paper. This is due to the context in which this paper appears, a
context enhancing the possibility that non-mathematicians may stumbl e
upon the paper . It has been the purpose of the introduction to give suc h
non-professionals an opportunity of getting an impression of the subjec t
and of getting some idea of the contents of the paper . We shall not keep
up this style in the remainder of the paper . We intend to survey part o f
the enormous amount of material on completions of partial latin squares,
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with emphasis on the results already mentioned in this introduction, an d
from now on we shall use standard terminology without defining all the
concepts used . Quite often the definitions can be found in the reference s
that we give .

2. The complexity of completing partial Latin Square s

For the theory of NP-completeness we refer the reader to one of the
excellent books on the subject (Garey & Johnson 1979) . Here we remark
that the class of decision problems which can be solved by polynomia l
time algorithms is called P, and that P e NP, where NP is a class of
problems containing several apparently very difficult problems unlikel y
to be solvable in polynomial time (here, a polynomial time algorithm i s
considered `good', problems which cannot be solved in polynomial tim e
are considered `hard', and a `problem' should not be confused with an
`instance' of a problem) . It is not known whether P = NP, but it i s
considered extremely improbable .

A subclass of NP consists of the NP-complete problems. Any NP-
complete problem has the property that if it can be solved in polynomia l
time then P = NP. So no NP-complete problem is expected to b e
solvable by a polynomial time algorithm .

C.J . Colbourn has been interested in the complexity of completin g
partial latin squares. He first proved that completing partial symmetri c

latin squares is NP-complete (and used this to prove that embedding
partial Steiner triple systems is NP-complete as well) (Colbourn 1983) .
Shortly afterwards, Colbourn proved that also completing partial latin
squares is NP-complete (Colbourn 1984) . We sketch his proof for partial
latin squares and use that result to present a new, simpler proof for the
symmetric case .

The investigation of the complexity of completing partial latin square s
makes use of another link between latin squares and graph theory, differ-
ent from the connection described in Section 1 .

A graph G = (V,E) is called tripartite if V can be partitioned into thre e
mutually disjoint sets V 1 , V2 and V3 such that the end-vertices of eac h
edge of E are in distinct sets . If each pair of vertices from distinct sets ar e
joined by an edge, G is said to be a complete tripartite graph, and it i s
denoted by K/,,.,.1,,, where C = 1V1I, m = 1V21 and n = 1V31 . It is easy to see
that a latin square of side n is equivalent to a decomposition of Kn,n,n into
mutually edge-disjoint K 3 's ; just let V1, V2 and V3 be the set of rows,
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columns and symbols respectively, and identify an occurrence of th e
symbol k in cell (i,j) with the K3 with vertices corresponding to row i ,
column j and symbol k. This idea is exploited in the following .

It is known that the problem of determining whether a graph can b e
decomposed into mutually edge-disjoint K3's is NP-complete (Holyer
1981a) . Modifying the proof of this, Colbourn obtained :

Theorem 2 .1 . Deciding whether a tripartite graph can be decompose d
into mutually edge-disjoint K3's is NP-complete.

A tripartite graph is uniform if each vertex has the same number of
neighbours in each of the vertex classes not containing it . If a tripartit e
graph is not uniform, then it is obvious that it cannot be decompose d
into mutually edge-disjoint K3's . So we have

Corollary 2.2 . Deciding whether a uniform tripartite graph can be de-
composed into mutually edge-disjoint K3 's is NP-complete .

Now let G = (V, E) be a tripartite graph with vertex classes {r 1i . . . , rx } ,
{c1i . . .,cv} and {s1, . . .,sZ} . A latin framework LF(G;s) for G, s max
{x,y,z}, is a partial latin square of side s on symbols 1, . . .,s with the
following properties :

(i) Cell (i,j) of LF(G;s) is empty if and only if r ich E E .
(ii) If r isk E E then k does not occur in row i of LF(G;s) .
(iii) If cask E E then k does not occur in column j of LF(G;s) .

Colbourn proved that G always has a latin framework with s = 2114

Theorem 2.3 . Given a uniform tripartite graph G with n vertices, a latin
framework LF(G ;2n) can be produced in polynomial time .

With this, it is an easy matter to prove the main result of this section .

Theorem 2 .4 . Deciding whether a partial latin square of side n can be
completed to a latin square of side n is NP-complete .

Proof. The problem is clearly in NP . To prove that it is NP-complete ,
by Corollary 2 .2 it suffices to reduce the problem of decomposing a
uniform tripartite graph into mutually edge-disjoint K 3 's to the problem
of completing a partial latin square, the reduction taking place in polyno-
mial time. But this can be done by Theorem 2 .3 and the observation that
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Figure 3

S(P) :

PSn

S npT

G can be decomposed into mutually edge-disjoint K 3's if and only i f
LF(G;2n) can be completed to a latin square of side 2n . We leave this
argument to the reader (note that (i) and the uniformity of G imply tha t
the converse of (ii) also holds : ifk does not occur in row i, then ri sk E E) .

From Theorem 2 .4 we get a new proof of the next theorem .

Theorem 2 .5 . Deciding whether a partial symmetric latin square of side n
can be completed to a symmetric latin square of side n is NP-complete .

Proof. Obviously the problem belongs to NP . For any n, let S„ be any
symmetric latin square of side n on symbols n+1, . . .,2n. If P is any
partial latin square of side n on symbols 1, . . .,n, let S(P) be the partial
symmetric latin square of side 2n on symbols 1, . . .,2n indicated in Figure
3 .

Clearly S(P) can be constructed in polynomial time, and clearly S(P) ca n
be completed to a symmetric latin square of side 2n if and only if P can b e
completed to a latin square of side n . Thus we have obtained a polyno-
mial time reduction from completion with no symmetry to completio n
with symmetry, and Theorem 2 .5 follows from Theorem 2 .4 .

It follows from the proof of Theorem 2 .5 that completing partial sym-
metric latin squares is NP-complete even when restricted to the class o f
squares which are as in Figure 3, a class which at first sight might loo k
rather limited .

Colbourn's original proof of Theorem 2 .5 made use of the following
result, which we include for completeness (Holyer 1981b) :

Theorem 2 .6 . It is NP-complete to determine the chromatic index of a
graph G. In fact, it is NP-complete even to determine the chromati c
index of a graph which is regular of degree 3 .
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The moral of this section is that it is probably a desperate undertaking t o

try giving a simple characterization of those partial latin squares of side n

that can be completed to a latin square of side n. So it seems reasonabl e
that most of the research in the area has concentrated on determinin g

families of partial latin squares that can be completed . The next sections

contain many examples of such families . Let us make it clear, however ,

that when we prove, or state without proof, that a partial latin square of

a certain type can be completed, we do not present an algorithm fo r

actually doing so . As a general rule, our existence proofs are not ver y

constructive .

3 . Embedding result s

We have seen that not all partial latin squares can be completed, in the

sense that not all partial latin squares of side n can be completed to a latin
square of side n . A natural question to ask then is whether a partial latin
square of side n can always be completed to a latin square of side t fo r

some t > n? In the same paper as where the Evans Conjecture was posed ,

Evans proved that the answer is affirmative, and that any t,?-2n will d o

(and for each n.4 he gave examples where no t<2n-1 works) (Evans
1960) .

When we have a completion as above, we say that the partial latin
square P can be embedded in the larger latin square S . Usually we think of

P as being situated in the top left hand corner of S, as in Figure 4 .

There are two ways of looking at the situation of Figure 4 . One is as

described above, a straightforward embedding of a partial latin square P

of side n in a latin square S of side t . The other sees it as a completion of a

partial latin square of side t, where all non-empty cells just happen t o

P
1 2 4 6 5 3
5 4 3 2 6 1
2 1 5 3 4 6
3 6 2 5 1 4

4 3 6 1 2 5
6 5 1 4 3 . 2

3example :
12

P

S Figure 4 S
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occur inside an nXn subarray . The former seems the more appropriate ,
but allows only n distinct symbols to occur in P, whereas the latter
would allow all t symbols to do so . We compromise and choose embed-
ding terminology, but allow t symbols to occur in P . Hence we shall
speak of a partial latin square of side n on t symbols .

As mentioned in the introduction, our main interest will be some
completion theorems in the vein of the Evans Conjecture, and our sur-
vey of embedding results will be brief . The reader will be able to find
more on this topic in the recent survey paper by C . C . Lindner (Lindner
1984) .

Before we begin listing results, we need one more definition . Follow-
ing Lindner, an rxs latin rectangle on symbols 1, . .,,n is an rxs array in
which each cell contains an element of {1, . . .,n}, such that each symbol
occurs at most once in each row and column . Note that this also applie s
to the case r=s, so that an rXr latin rectangle has no empty cells, and ye t
it need not be a latin square !

If R is a latin rectangle on symbols 1, . . .,n we let R(i) denote the
number of occurrences of the symbol i in R, l inn. We first prove a
lemma which contains a necessary condition for embedding that appear s
in a variety of situations .

Lemma 3 .1 . Let R be an rxs latin rectangle which is embedded in a latin
square S of side n on symbols 1, . . .,n, and let D be as in Figure 5 . Then
R(i) = r+s-n+D(i) for all i, lien .

Proof. Follows from the facts that for all i, R(i)+B(i)=s and B(i)+D(i )
= n-r .

If an nXn array S is partitioned as in Figure 5, and if R is rxs, then th e
diagonal outside R is the set of cells (r+1,s+1), (r+2,s+2), . . .,(r+n-s,n) if
rxs, and the set of cells (r+1,s+1),(r+2,s+2), . . .,(n,s+n-r) if r ..�--s . They
all lie in D .

The strongest embedding result we have when no symmetry is re-
quired is the following (Andersen & Hilton 1983) . It is concerned with
embedding of a latin rectangle with the additional requirement that th e
diagonal outside R is prescribed (each symbol i must occur f(i) times on
it). The Figures Ic and 1b give an example of such an embedding.
However, if r = s then for Theorem 3 .2 to work at least one cell on th e
diagonal must be left unprescribed (Andersen, Häggkvist, Hilton &
Poucher 1980) .
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R A
Figure 5

B

	

D

Theorem 3 .2 . Let R be an rxs latin rectangle on symbols 1, . . .,n, and fo r
each i,

	

let f(i) be a non-negative integer such that E f(i)i= i
min{n-r,n-s} with strict inequality if r=s . Then R can be embedded i n
a latin square of side n with symbol i occurring at least f(i) times on th e
diagonal outside R for all i,

	

if and only if

R(i)

	

r+s-n+f(i) for all i, 1 inn.

From Theorem 3 .2 it is easy to deduce some wellknown results .

Corollary 3 .3 . (Ryser 1951) . An rXs latin rectangle R on symbols 1, . . ., n
can be embedded in a latin square of side n if and only if

R(i)

	

r+s-n for all i ,

Proof. Put all f(i) equal to zero in Theorem 3 .2 .

Corollary 3 .4 . (Evans 1960) . A partial latin square of side n on t symbols
can be embedded in a latin square of side t for all t ? 2n .

Proof. All empty cells of the partial latin square can be filled with on e
of the t symbols, as at most 2(n-1) symbols can be forbidden for a given
cell . Now apply Corollary 3 .3, where the condition is satisfied becaus e
R(i) r 0

	

2n-t .

The condition t

	

2n is best possible, as we remarked earlier .

Corollary 3 .5 . (Hall 1945) . An rXn latin rectangle on n symbols can
always be completed to a latin square of side n .

A time-table for all meetings between pairs of persons, one belonging t o
a set of r persons and the other to a set of n>r persons disjoint fro m
the first set, in as few time periods as possible, corresponds to an rX n
latin rectangle on n symbols (and to an edge-colouring of Kr,1. with n
colours) . Corollary 3 .5 shows that trying to complete such a time-tabl e

S :
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with some preassigned entries is equivalent to trying to complete to a
latin square of side n .

Theorem 3.2 does not hold with r=s and E f(i) = n-r, i .e . with com-
pletely prescribed diagonal. This is unfortunate, because a frequent re-
quirement on a latin square is that it is idempotent, meaning that cell (i,i )
contains the symbol i for all i . No necessary and sufficient condition for a
latin rectangle to be embeddable in an idempotent latin square is known,
which is valid in all cases . Problems concerning this have been extensive -
ly studied (Lindner 1971 ; Hilton 1973 ; Andersen 1982; Hilton & Rodger
1982; Rodger 1983; Andersen, Hilton & Rodger 1983 ; Bryant 1984) . We
state only two results, the first very important theorem due t o
C. A . Rodger giving a necessary and sufficient condition for the case r= s
and n 2r+1 (and r, 10) .

Theorem 3 .6 . (Rodger 1984) . Let R be an rXr latin rectangle on symbol s
1, . . .,n where r 10 and n 2r+1 . For each i, let f(i) be a non-
negative integer such that 1 f(i)=n-r . Then R can be embedded in a
latin square of side n with each symbol i occurring f(i) times on the
diagonal outside R for all i,

	

if and only if (i)-(iii) are satisfied .

(i) R(i)

	

2r-n+f(i) for all i ,
(ii) For all i,

	

if R(i)=r then f(i)+n-r-1 .
(iii) If R is a latin square and n=2r+1 then E f(i)+1 .

R(i)>O

For n 10, the next theorem is a corollary of Theorem 3 .6 .

Theorem 3 .7 . (Andersen, Hilton & Rodger 1982) . A partial idempotent
latin square of side n can be embedded in an idempotent latin square of
side t for all t

	

2n+1 .

When Theorem 3 .7 first appeared it settled a long standing conjecture in
the affirmative . The inequality t

	

2n+1 is the best possible .
Turning now to embedding theorems for partial symmetric latin

squares we first present a new result due to A . J . W. Hilton and the
author . It is used in the proof of one of the main results of Section 6 ; in
this paper we state both theorems without proofs . Because of the clos e
connection between symmetric latin squares and edge-colourings o f
complete graphs, it is useful to consider embedding of a symmetric latin
rectangle R in a symmetric latin square S where both entries of S on th e
diagonal outside R and entries of S corresponding to independent edges
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Figure 6

outside the complete subgraph determined by R are prescribed . This can
be pictured as in Figure 6 .

Theorem 3 .8 . Let P be a partial symmetric latin square of side n on
symbols 1, . . .,n, and let P be of the form of Figure 6 with the non-empt y
cells being exactly all cells of R, the back diagonal of B and the diagona l
of D. Here R is an rxr symmetric latin rectangle and B has even side .
Some of R, B, D, and E may have side zero, but if B has positive side,
then so has E. For all i, 1 inn, let f(i) be the number of times the symbol
i occurs in B U D .

Then P can be completed to a symmetric latin square of side n if and
only if (i) and (ii) hold .

(i) R(i) _ 2r-n+f(i) for all i, 1 inn.
(ii) R(i) + f(i)°n (mod 2) for at least r+d differen t
i E {1, . . .,n}, where d is the side of D .

If n is odd, condition (ii) reduces to requiring that all symbols on the
diagonal of P are distinct .

Theorem 3.8 extends a known result with B and E not appearin g
(Hoffman 1983 ; Andersen 1982) . This in turn generalized a wellknown
theorem due to A . B. Cruse .

XX • • • XX
XX • • • XX

R

xx • • • xx
xx • - • xx

x D

X

E

P
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Corollary 3 .9 . (Cruse 1974) . Let R be an rxr symmetric latin rectangle on
1, . . .,n. Then R can be embedded in a symmetric latin square of side n if
and only if

R(i)

	

2r-n for all i,

	

and
R(i) = n (mod 2) for at least r different i E

Proof. Put f(i) = 0 for all i, 1 inn, in Theorem 3 .8 .

Cruse also obtained the following results . They are easy consequences o f
Corollary 3 .9. All inequalities are best possible .

Corollary 3 .10 . A partial symmetric latin square of side n on t symbol s
can be embedded in a symmetric latin square of side t for all even t 2n .

Corollary 3 .11 . A partial symmetric latin square of side n on t symbols, in
which each symbol occurs at most once on the diagonal, can be em -
bedded in a symmetric latin square of side t for all t . 2n.

Corollary 3 .12 . A partial symmetric idempotent latin square of side n on t
symbols can be embedded in a symmetric idempotent latin square for all
odd t 2n+1 .

4. Outline of the proofs of the next sections ,

and some lemmas

In the next section we shall characterize all partial latin squares of side n
with at most n+1 non-empty cells that cannot be completed to a latin
square . In Section 6 we do the same for partial symmetric latin squares .
We only give a complete proof in the non-symmetric case, but the
course of proof is fairly similar for both results . We now give a ver y
broad outline of these proofs, and the remainder of this section will be
devoted to some rather technical lemmas to be used .

Both proofs are by induction on n, and the general induction step is a s
follows . We take the partial square P which is to be completed, delete the
entry of one or two cells to obtain a partial latin square P' of smaller side ,
satisfying our conditions . Then we complete P' by the induction hy-
pothesis. We now partition the completion as in Figure 5 or Figure 6 s o
that all non-empty cells of P are in R, on the diagonal outside R or, in the
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symmetric case, on the back diagonal of B of Figure 6 . We then intro -
duce the missing symbol or symbols in R in such a way so as to be abl e
to apply Theorem 3 .2 or Theorem 3 .8 to embed R in a latin square of
side n, which will then be a completion of P .

This is a very brief description of the proofs, leaving out a larg e
number of details and of cases not fitting into the general pattern, bu t
hopefully it gives the reader some motivation to try understanding th e
lemmas of this section .

The first lemma (Andersen and Hilton 1983) will be used in obtainin g
bounds on the latin rectangle R . A cell of a partial latin square (or of any
array) is called diagonal if it is the sole non-empty cell in its row and it s
column. In Figure 6, all cells of B U D are diagonal.

Lemma 4 .1 . Let R be an rXs array containing exactly q non-empty cell s
of which none are diagonal, and having no empty row or column . Then

3
r+s	 	 2j .

Proof. Let r2 be the number of rows with at least 2 non-empty cells .
Then 2r2 + (r-r2) q, implying r q - r2. Each column of R contain -
ing no cell from these r2 rows must contain at least 2 of the remaining r
-r2 cells, and so s 1/2(r-r2 ) + q - (r-r2) = q - 1/2(r-r 2), implying 2s
+ r 2q + r2. Therefore 2(r+s) q - r2 + 2q + r2 = 3q, as required .

If the non-empty cells are symmetrically placed, and if d of them occur o n
the diagonal of R, Lemma 4 .1 can be strengthened to 2r

	

L 	 3q-d
2

J

The next lemmas will be applied in finding the cells of R whose entrie s
should be changed into a new symbol used in the completion of P, bu t
not in that of P' . In the non-symmetric case, all cells changed in this wa y
must have distinct symbols, and they must not be preassigned in P' . A
partial transversal of a latin rectangle is a set of cells in distinct rows, in
distinct columns, and containing distinct symbols . The length of a partia l
transversal is the number of cells .

Lemma 4 .2 . Let R be an xxy latin rectangle and assume that R contains p

forbidden cells with at least one in each column, and tha t

(p+1-x) (p-y) p > 0

Let s be one of the symbols of R .
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Then R has a partial transversal of length t

	

x+y-p avoiding all
forbidden cells and all cells containing the symbol s .

Proof Let R be on the symbols 1, . . ., n. From the assumptions p y ,
so the inequality gives p > y and p x . Now p = x would imply p-y
p which is impossible . So we have x < p and y < p . Let t be the length o f
a maximum partial transversal avoiding the forbidden cells and the sym-
bol s . The result is true if t x - 1 or t y - 1, so we now assume that t

x-2andty-2. Then tp-3.
We consider a partial transversal of length t with the required proper -

ties . We can assume that it consists of cells (1,1), . . ., (t,t) with entry i in
cell (i,i), 1 t (so that s > t) . By the maximality, no symbol from
{t+l, . . ., n} \{s} can occur in rows t + 1, . . ., x of columns t+l, . . ., y
except in forbidden cells .

Let

Ao = Ø
Ai = { i E {1, . . ., x}cell (i, t+j) is not forbidden and its entry( E ( Ai_1 U

{t+l, . . ., n})\ {s}} ,

Define an oriented graph G on vertices

yU (Ai x {t+j } )
j= 1

(corresponding to some cells in the last y-t columns) and edge s

{((a,t+j), (b,t+k)) j < k and cell (b,t+k) contains the symbol a} .
We claim :

(*) Forallj,1

	

jy-t :{t+1, . . ., x} f1AA =Ø.

Proof of (*) : Suppose that (*) fails . Then G contains a vertex (aa, t+j )
with a. E {t+1, . . ., x} and 1 j y - t . It follows from the definition s
that G contains a directed path ending in (ai , t+j) and starting in a vertex
(ak, t+k) with k < j, where cell (a k , t+k) has an entry from {t+l, . . ., n}
\ {s} .

Let (go, t+io), (g i , t+i 1 ), . . ., (g,, t+i1) be a shortest directed path of G
with the property that the entry of cell (go, t+io) is in {t+1, . . ., n}\{s}
and gi E {t+1,	 x} . Sogk tfor0k-1 .

Then the cell s

(gk , t +ik), 0

	

k

	

an.d

(j , j), 1

	

j ~ t, j * gk forOk C-1, .
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form a partial transversal of length t+1, contradicting the maximality o f
t . We prove that these t+1 cells do indeed form a partial transversa l
satisfying the requirements :
(i) By definition, the cells are in R, they are not forbidden and thei r

entries are different from s .
(ii) The cells are in distinct rows, because otherwise we would have g h

= gk for some h < k, where k +/ as g h t < g, , and then the entr y
of cell (gk+1, t+ik+1) would be gk = gh, so that (go, t+io), . . ., (gh ,
t+ih), (gk+I, t+ik+1), . . ., (ge, t+i() would be a shorter path .

(iii) The cells are obviously in distinct columns .
(iv) The entries are distinct, namely {1, . . ., t} and the entry of (go ,

t+io) . This completes the proof of (*) .
Let pi be the number of forbidden cells and 8; the number of occur-

rences of the symbol s in the column j, for 1 j y. Then pj 1 by
assumption, and 8j E {O,1} .

From the definition of Aj and from (*) we ge t

!Ai l

	

x - (t-IAj_1I + bt+;+pt+; )

giving

y- t

	

t
IAy-tI

	

(y-t)(x-t) - E 1 8 t+j

y- t
By (*), IAy-tI~ t, and as

jE=1pt+j = p - JE 1
p;p - t

t
and ~ 8t+j y-t we get

.1 = 1

t

	

(y-t) (x-t) - (y-t) - (p-t)

and, introducing the condition of the lemma,

0 p - (y-t) (x-t-1 )
(p+1-x) (p-y) - (y-t) (x-t-1 )

= (t-x-y+p+1) (p-t) .

If we have strict inequality somewhere in these calculations, we get
t-x-y+p+1 > 0 (as p-t-3) implying t x+y-p as required. S o
assume that t = x+y-p-1 and that we have equality ; in particular pi = 1
for 1 j t, (y-t) (x-t-1) = p and IA y_t I = t, from which we deduce
that column y has no forbidden cell and no cell containing s among the
first t cells . By the maximality of t, this must be true with any orderin g
of the last y-t columns, so in fact it holds for each of columns t+1, . . ., y .
We now prove
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(**) Each entry in any of the first t cells of any of the last y-t column s
belongs to {1, . . ., t} .

Proof of (**) :

As p > y we may assume that p k 2 for some k, t + 1 k y . If som e
cell (i,k), 1 i t, contains a symbol u > t, we can replace (i,i) of ou r
partial transversal with (i,k), and we no longer have pj = 1 for all col-
umns j containing a cell from the transversal . Assume next that some cel l
(i,C) contains a symbol u > t, where 1

	

t and t + 1 , C . y, C + k .
Some cell of column k contains the symbol i, say cell (j,k) . Then 1 ' j
t, j # i, and replacing cells (i,i) and (j,j) by (LC) and (j,k) we obtain the
same contradiction as before. This proves (**) .

It follows from (**) that the cells common to the last x - t rows and
the last y - t columns contain symbols greater than t . Any such cell can
be added to the partial transversal unless it is forbidden or contains s . So
we get

(x-t) (y-t)

	

(p-t) + (y-t)

contradicting (y-t) (x-t-1) = p, and so Lemma 4 .2 has been proved .

Lemma 4.2 strengthens a result due to A . J . W . Hilton and the author
(Andersen & Hilton 1983) . The similar lemma for the symmetric case i s
most easily stated in graph terminology . A path system of a graph is a
subgraph consisting of disjoint paths . As we only aim at sketching th e
proof in the symmetric case we state the lemma in a form less complicat-
ed than what is needed in the proof .

Lemma 4 .3 . Let 4 r 3n46and let K r have an edge-colouring with
any number of colours . Let F be a set of at most n21 forbidden edge s
ofKr such that each vertex is incident with an edge of F. Let M be a set of
at most 2 mandatory edges of Kr, disjoint from F and not containing 2
edges of the same colour .

Then Kr contains a path system containing all edges from M and no
edge from F, with all edges having distinct colours, and with at least 2r- n
edges .

The proofs of Lemmas 4 .2 and 4 .3 have been inspired by work on the
existence of long partial transversals in latin squares (Drake 1977 ; Brou-
wer, de Vries & Wieringa 1978 ; Woolbright 1978) . It can be proved that
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an edge-coloured Kn has a path system with all edges having distinc t
colours with at least n - \na edges (Andersen 1985) .

5 . Completion of partial Latin Square s

This section is primarily devoted to characterizing those partial latin
squares of side n with at most n+1 non-empty cells which cannot b e
completed to a latin square of side n, thus extending the knowledge
gained from previous proofs of the Evans Conjecture.

A forerunner for the complete proofs was a paper by R . Häggkvist ,
where he proved that the conjecture is true for n > 1111 (Häggkvis t
1978) ; we shall use one of Häggkvist's lemmas in our proof . The proof
of B. Smetaniuk was based on a remarkable completion theorem, which
we state below (although we shall not apply the result here) .

Theorem 5 .1 . (Smetaniuk 1981) . Let A be any latin square of side n on
symbols 1, . . .,n, and let P(A) be the partial latin square of side n+1 o n
symbols 1, . . .,n+1 in which, for all i,j, l~j .n+1, cell (i,j )
contains the entry of cell (i,j) of A if (i,j) is above the back diagonal of
P(A) (so that 1~j<n+ 2-i), cell (i,j) contains the symbol n+1 if (i,j) is o n
the back diagonal of P(A) (j=n+2-i), and otherwise cell (i,j) is empty .

Then P(A) can be completed to a latin square of side n+1 .

Smetaniuk actually gave a specific algorithm for completing P(A), an d
he showed that if AFB, then the completions of P(A) and P(B) obtaine d
in this way are also different . It follows that the number of latin square s
of side n is a strictly increasing function of n (Smetaniuk 1982) .

The proof of the Evans Conjecture by A . J . W. Hilton and the author
also proved that a partial latin square of side n with exactly n non-empty
cells can be completed unless it is of the form of one of the partial square s
of Figure 7, (i .e., by permuting the rows, permuting the
columns and renaming the symbols it can be transformed into one o f
these squares) . This was actually conjectured to be true by D . Klarner in
1970 in a conversation with Hilton . In 1983 R. M. Damerell showed tha t
it can be proved using Theorem 5 .1 (Damerell 1983) .

The theorem that we shall prove in this section states that if a partia l
latin square of side n with n+1 non-empty cells cannot be complete d
then it is of the form of one of the squares of Figure 8, or n=4 and it is a s
in Figure 9, or it contains one of the squares of Figure 7 .



44

	

LARS DØVLING ANDERSE N

y+ 1

y+ 2

n Iy+1

	k 1 I

Type 1 (n>2)

	

Type 2 (n>2)

	

Type 3 (n>2 )

Fig . 7

We call a partial latin square of side n with at most n+1 non-empty
cells bad if it has n or n+1 non-empty cells of which n cells form a square
of the type of one of the squares of Figure 7, or it has n+ 1
non-empty cells forming a square of the type of one of the squares o f
Figure 8 or Figure 9 ; otherwise we call it good . If a good partial latin
square of side n,2 has less than n+1 non-empty cells, we can fill furthe r
cells so as to obtain a good square with exactly n+1 non-empty cells .

It is easy to see that a bad partial latin square of side n cannot be
completed to a latin square of side n ; we leave this little exercise to the
reader .

In section 2, it was explained how a latin square of side n correspond s
to a decomposition of Kr,,n,n into mutually edge-disjoint K3 's . It follow s
from this that there is symmetry among rows, columns and symbols .
For example, if S is a latin square of side n and S' is obtained from S b y
placing the symbol j in cell (i,k) whenever S contains the symbol k in cel l
(i,j), 1LÇ_.k--5n, then S' is also a latin square of side n. We
say that S' is obtained from S by interchanging columns and symbols . Simi-
larly, other permutations of (rows, columns, symbols) give rise to latin
squares . We call these conjugates of S . Conjugates of partial latin square s
are defined in the same way .

Clearly, a partial latin square of side n can be completed to a latin
square of side n if and only if any one of its conjugates can .

In Figures 7 and 8, partial latin squares in the same row are conjugate s
of each other . All conjugates of the square of Figure 9 are of the same
form .

The proof in this section is very similar to that of A . J . W. Hilton and
the author for the case of n non-empty cells . Some proofs are almost
identical, others are a bit more complicated in this paper .
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We first verify the result in a particular case where the general proo f
does not work .

Fig . 9

Fig . 8

Type 4 (n>3 )

Type 7 (n>4)

1 2
1

Type 5 (n>3 )

Type 8 (n>4)

Type 6 (n>3 )

Type 9 (n>4 )
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Lemma 5.2 . If P is a good partial latin square of side n with n+1 non-
empty cells such that each row and each column contains a non-empty
cell, and each of symbols 1, . . .,n occurs in P, then P can be completed t o
a latin square of side n .

Proof If we pick n non-empty cells of P belonging to distinct rows ,
then at most 2 of them can belong to the same column . It follows that P
contains at least n-1 non-empty cells belonging to distinct rows an d
distinct columns . We can distinguish between two cases, according to
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whether n such cells exist or not . Considering the different positions fo r
the unique symbol occurring twice, we see that P must be of the form of
one of the partial latin squares of Figure 10 .

We prove cases la, lb and 2a simultaneously . First for n .?-11 . By
Theorem 3.7 there is an idempotent latin square S 5 of side 5 with diago-
nal 1,2,3,4,5, and by the same theorem there is an idempotent latin square
of side n on symbols 1,2, . . .,n with S 5 in the top left hand corner . If we
replace this S 5 by the latin square of side 5 in Figure 11, we still have a
latin square, and it clearly is a completion of the squares of cases la, lb ,
and 2a . For 5~n~1O completions of all 3 cases are shown in Figure 11 .
For n=4 case la gives a bad square, and cases lb and 2a are easil y
completed. For n=3 all three cases give bad squares (and for n=2 only
case la applies and is trivial) .

Case 1c also follows from the above constructions (for all th e
symbol 2 not on the diagonal can be found in the row of the diagonal 4 ,
in column 5 or 6) . For n=4, case lc gives a bad square .

Case 1d is obvious, it follows from the existence of idempotent latin
squares of side n for all n.3 .

Case 2b yet again follows from Figure 11 and the construction relate d
to it (for 6~n~10, one of symbols 5 and 6 is repeated rather than th e
symbol 4) . For n=4, case 2b gives a bad square .

Case 2c only applies for n.5, and here we copy the argument for th e
first three cases, but with the latin squares of Figure 12 .

12534 126543 125743 6
51423 315624 316574 2
24351 243165 243167 5
35142 561432 567432 1
43215 634251 674251 3

452316 752316 4
431625 7

Figure 1 1

1 2 5 7 8 9 6 4 0 3 125789643 1257836 4
3 1 6 8 7 4 9 0 2 5 316874952 3168742 5
2 4 3 1 6 0 5 9 7 8 243168597 2431685 7
9 6 0 4 3 2 8 1 5 7 967432815 5674328 1
8 7 9 0 5 1 3 6 4 2 879251364 8742513 6
7 5 8 3 9 6 0 2 1 4 758396421 7583164 2
4 0 2 6 1 5 7 3 8 9 492615738 4 8 1 6 2 5 7 3
6 9 4 5 0 7 2 8 3 1 5 3 4 9 2 7 1 8 6 6325471 8
0 8 7 2 4 3 1 5 9 6 6 8 1 5 4 3 2 7 9
5 3 1 9 2 8 4 7 6 0
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53412 264315 264375 1
12543 125643 127643 5
45321 513264 513267 4
31254 346521 746521 3
24135 631452 372154 6

4 5 2 1 3 6 435716 2
651432 7

2643758 12 6 4 9 7 5 8 1 32 6 4 9 0 5 8 1 3 7
1 2 7 6 9 0 5 3 4 8 1 2 7 6 9 8 5 3 4 1276485 3
5 1 3 2 8 7 0 9 6 4 513287496 5132874 6
7 8 6 5 2 9 3 4 0 1 786529341 7865213 4
3 9 8 1 5 4 6 0 7 2 3 9 8 1 5 4 6 2 7 3781546 2
4 5 0 8 3 6 1 7 2 9 459836172 4 5 2 8 3 6 1 7
9 0 1 4 6 2 7 5 8 3 931462758 8314627 5
6 4 2 0 7 3 9 8 1 5 6 7 2 3 4 1 9 8 5 6457132 8
0 3 5 7 1 8 4 2 9 6 8 4 5 7 1 3 2 6 9
8 7 9 3 4 1 2 6 5 0 Figure 12

This completes the proof of Lemma 5 .2 .

Lemma 5 .4 below is a strengthening of a very useful result due t o
C . C. Lindner, which was used also by Smetaniuk and by Damerel l
(Lindner 1970) . We first state another lemma ; a 1 -factor of a graph G is the
edge-set of a subgraph F with the same vertex set as G and with eac h
vertex having degree 1 (sometimes the term 1-factor is used for th e
subgraph itself and not just the edge-set) .

Lemma 5 .3 . (Häggkvist 1978) . Let G be a regular bipartite graph of
degree m with 2n vertices . Let B1 be a set of b 1 independent edges, and
let B2 be a set of b2 edges disjoint from B 1 . If m-b1, 1/z(n-1) and
b 1 +b2�-m-1, then G contains a 1-factor F such that B 1 cF and Ff1B 2=0 .

Lemma 5 .4 . Let P be a good partial latin square of side n with exactly n+ 1
non-empty cells . Let the number of non-empty cells in row i be r i ,

and assume that r1_r2 �-. . . .~r„=0. Then the first L 1/2(n+1)i row s
of P can be completed .

Proof. The particular case where n=4, r 1 =r2=2 and r3=1 turns out to
be an exception in several arguments . Rather than go through all the
details every time the exception is encountered, we ask the reader to
verify the lemma in this case . So we shall assume that if n=4 then r 1 +2.
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With P we associate a bipartite graph Kn,n with vertex classes C and S
corresponding to columns and symbols respectively. For let Bi

be the set of ri independent edges of Kn,n corresponding to the non-
empty cells of row i, i .e . the edge joining column j and symbol k is in Bi

if and only if k is in cell (i,j) of P

	

1-k-n) . Extending B ; to a 1-
factor corresponds to assigning a symbol to each cell of row i .

We first prove that we can complete the first row of P . Let
G=Kn_rl,n_r, be obtained from Kn,n by deleting all end-vertices of edge s
of B1 . We must find a 1-factor of G, disjoint from the set
B=(B2UB 3 U . . .UB„) f1E(G) of at most n+1-r 1 edges . By a wellknown
theorem (Hall 1935), it suffices to show that in G-B any k vertices from
C have at least k neighbours in S altogether, 1~k~n- r 1 . This is true for
k=n-r 1 because otherwise B would contain n-r1 edges of G inciden t
with the same vertex of S, and so P would be a bad square, containing a
Type 2 square. If it fails for k=n-r1-1, then B must contain all edge s
between 2 vertices of S and the k vertices of C, and so
2(n-ri -1)ßn+1-r1 implying n-r1 - .3 ; if n-r1 =3 it implies that Pis of
Type 4, 7 or 10, and if n- r 1 =2 it implies that P contains a Type 1 square
with y=n-2, both cases contradicting that P is good. Hall's condition
cannot fail for a k with 3~k~n- r1 -2, because then B would contain a t
least k(n-ri -k+1) > n-ri +1 edges. If it fails for k=2 we would ge t
n-r1 ~3 as above, and so k=n-r1 or k=n-r1 -1, both cases covered
above. Finally, if it fails for k=1 then P contains a Type 1 square, whic h
is a contradiction . Thus we have proved that the first row can be com-
pleted .

Now suppose that we have a sequence of graphs G0,G1, . . .,Gp, where
Go =K1,n and, for Gr=Gr _ i -Fr, where Fr is a 1-factor of Gr_ i
containing B r and disjoint from Br+i, . . .,Bn. This corresponds to p rows
having been completed . The sequence exists for p=1 . We assume that
p< [i/2(n+1) j and want to extend the sequence by finding a 1-factor Fp+ 1
of Gp containing Bp+i and disjoint from Bp+2, . . .,Bn. In most cases, thi s
can be done by applying Lemma 5 .3; some cases are done separately .

Let G=Gp, bi =rp+i , b 2 = _ E r i and m=n-p. We examine the tw o
inequalities of Lemma 5 .3 one by one .

We must have r 1,2 and so
n

b 1 +b2 = i-P+1 r i = n+1- i i r i n+1-(p+1) = n-p = m

so b1 +b,-m-1 if we have strict inequality . If p,2 then there is stric t
inequality, because r 1 +r2.4 as rn=0 . If r 1 ~3 the strict inequality is als o
satisfied, so we now consider the case p=1, r 1 =2 separately . Then r2=2,
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and, by assumption, n+4 . We use the same method as we did when
completing the first row . Let G' be obtained from G by deleting the end-
vertices of the edges of B 2, and all edges of B=(B3U . . .UBn) . Then G' i s
Kn_2,n_2 with a set of at most n-2 independent edges (from F 1 ) and a set
of at most n-3 further edges deleted . We use Hall's condition to find a 1 -
factor of G', considering k vertices of C, If it fails fo r
k=n-2, then all edges incident with some vertex of S have been deleted ,
corresponding to having a partial latin square as in Figure 13 . But the n
the symbol 3 in the first row is not preassigned, because if it were, P
would contain a Type 2 square with y=2 . It follows that we can change
the first row so as to place 3 elsewhere, as P is not of Type 6, 9 or 12 . If
the Hall condition fails for k=n-3 then at least 2(n-3) edges incident
with 2 particular vertices have been deleted, and as at most 2 of these ca n
be in the set of independent edges we get 2(n-3) .2+(n-3) implying
n-2S3 . It follows that we have one of the situations of Figure 14. Then
we can change the first row so as to have the condition satisfied for k=2 ,
as P is not of Type 4 or 7 (and it will still be satisfied for k=3=n-2, a s
Figure 13 does not apply) . If 3 .k.n-4 the Hall condition cannot fail ,
because then n,7 and at least k(n-1-k) -min{k,n-1-k} edges no t
among the independent edges have been deleted, which implies n.6. If
the condition fails for k=2 we can deduce n.5 and so k=n-3. If it fails
for k=1 then n~5 as the case n=3 and k=n-2 is covered above, and we
have the situation of Figure 15 . Unless the symbol 3 is prescribed in it s
cell, or both symbols 1 and 2 are prescribed somewhere in row 1, we ca n
interchange occurrences of 3 and either 1 or 2 to avoid the situation ; but
in these cases P is bad (Type 1 with y=2, Type 5, 8 or 11) .

So henceforth, when trying to find the 1-factor F p+l , we can assum e
that the inequality b 1 +b2 m-1 holds .

We now consider the other inequality of Lemma 5 .3, which in our cas e
is rp+ 1 1/2(n+l)-p . As p< [ 1h(n+1)] this is true if r p + 1 =1 . So assum e
that rp+1_2 . If rp_rp+1 +1 then r 1-3 and we get, for p-2,

Fig . 13
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n
rp+ 1 =r2.1/z(r, 13 r i)2= 1/2(n+1)-p+ 1/2

and for p=1 :
n

rp+1= r2nY2(r1+r2- 1) 1±3 ri)~2n=1/2(n+1)-p+ i/z

so the inequality is true unless r3=r4= . . .=rn=O and n is even, r 1 =2+ 1
and r2= #. But in that case we can find a 1-factor directly : delete all end-
vertices of edges of B2 from G1; we must find a 1-factor in the remainin g
graph, which is just KZ with some or all edges of a 1-factor deleted, an d
this can be done by Hall's condition, because if k:2 then all vertices i n
the other class is joined to one of the k vertices, and a single vertex (k=1 )
has a neighbour, because 2>1 .

n
and the inequality

p
is satisfied. Now assume that i-p+2ri=1 . Then the in-

equality is true if E r i > 2(p-1), and if this is not the case, then eithe ri= l
p=1 and so r p= rp+1=2, or ri=r2= . . .=rp+1=2 implying p=2-1 . In both
cases n is even and, by assumption, n,6. In the former case the usual
method works without problems ; we now consider the latter case . In
Gp, each vertex has degree ;+1 . Let G' be obtained from G by deletin g
the end-vertices of the two edges of B p+1 and, if neither of its end-
vertices have been deleted, the single edge e of Bp+2 . Then each vertex
has degree at least ;-1 in G' except possibly the end-vertices of e whic h
may have degree 2-2. Hence Hall's condition is certainly satisfied fo r
k~2-2 and also for k=2-1 because i-1>1 so there is a vertex not
incident with e in any set of k vertices . If k:z then any vertex in the
other class will be joined to at least one of the k vertices (except possibl y
an end-vertex of e), and the condition holds .

n
So we, now assume that r p =rp+1 . If I ri,2 theni=p+ 2

rp+ 1 =1/2(r p +rp+1 ) . 1/z(n+1- p ri-
n

ri),51/2(n+1-2(p-1)-2)
i=1

	

i=p+2



52

	

LARS DØVLING ANDERSE N

The only case left to consider in trying to establish the inequalit y
rp+i �_1/a(n+1)-p is when rp+2=rp±3= . . .=rn=0 . From before we hav e
that rp =rp+i.2. We show that the inequality can fail in four ways. (i) If
p=1 then n is odd and r1=r2=1/2(n+1),r3=r4= . . .=rn=0. If p,2 the ine-
quality is true for r 1 .4, as

rp+ i =1/a(rp+rp + 1 ) = 1(n+1-
=i

ri)

	

1/2(n+1-r1-2(p-2))

	

1 (n+1)-p,

so we can assume that r 1 -ç..3 . If r 1 =r2=3 then it is satisfied for but
we get the exception (ii) p=2, n=8, r 1 =r2=r3=3, r4=r5= . . .=r8=0. Fi-
nally, we have exceptions (iii) r 1 =3, r2=r3= . . .=rp+i=2, rp+2=rp+s= . .• =
rn=0, n even and n.6, and (iv) r 1 =r2= . . . = rp+1 = 2, rp+2=rp+3 =
. . . = rn= 0, p=1/2(n-l), n odd and n .5. In each exceptional case we appl y
Hall's condition on the usual subgraph of K n_ rp+l n _ rp+i to try to find a 1 -
factor .

In case (i) we have K1 (n_1),' (n_i) with some independent edges de -
leted. Hall's condition cannot fail unless 1(n-1)=1, so that n=3, and i f
it does then P is easily seen to be bad . In case (ii), we have a subgraph o f
K55 5 in which each vertex has degree at least 3, and Hall's condition i s
easily seen to be satisfied . Case (iii) gives us a subgraph of K n_2,r_2 in
which each vertex has degree at least n-2-(2-1)=z-1 ; but then Hall' s
condition is obviously true for k, 1, and for k. it is true because any
vertex in the other class must be joined to one of the k vertices .

Finally, in case (iv) we are looking at a subgraph of Kn_2,n_2 in which
each vertex has degree at least n-2-1(n-1)=1/2(n-1)-1 . So Hall' s
condition is true for k~1/2(n-l)-1 . It is also true for k.1/2(n-l)+1 ,
because in that case each vertex in the other class is joined to one of the k
vertices . However, the condition may fail for k=1/2(n-1) . If it does, we
can describe the graph G p (in which every vertex has degree 1/2(n+1) )
very accurately : Let the edges of Bp+1 have end-vertices c 1 and c2 in C, s 1
and s 2 in S . Then C={c 1,c2}UAUB and S={si,s2}UTUU, where IAI=IU I
=½(n-1), IBI=ITI= 1/2(n-1)-1, every vertex of A is joined to every
vertex of TU{s i ,s2}, every vertex of U is joined to every vertex of
BU{c 1,c2} and apart from these edges, G p contains cls1 i c2s2 and
1/2(n-l)-1 independent edges each joining a vertex from B to a verte x
from T. Figure 16 illustrates the graph Gp and the corresponding partial
latin square .

It follows from the structure of the graph that the p rows completed s o
far actually have p of the columns forming a latin square . The remainin g
columns form a latin square with one row missing . We can then simpl y
find a row which contains a non-preassigned entry from each latin
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Latin square o n

the 1(n-1 )
symbols of u

/(n-1) rows

square and interchange the two entries . Then we no longer have the
situation of Figure 16, and hence we can complete the (p+1)st row . If no
row contains two such non-preassigned entries, then 1/2(n-1)=2 imply -
ing n=5, and all cells in the 2X2 latin square are preassigned ; but then P
is of type 4, which is a contradiction .

We have now shown how to complete row p+1 in all cases not satisfy -
ing the conditions of Lemma 5 .3. If those conditions are satisfied, the
lemma provides us with the required 1-factor, thus enabling us to fil l
row p+1 . This completes the proof of Lemma 5 .4 .

Corollary 5 .5 . If P is a good partial latin square of side n with n+1 non-
empty cells, and if P has an empty row and all non-empty cells outside a
given column lie in L 1 (n+1)] rows, then P can be completed to a latin
square of side n .

Proof. By Lemma 5 .4, the rows containing the non-empty cells outsid e
the given column can be completed, and by Corollary 3 .5 the partial
latin square containing these rows can be completed; but then it is just a
matter of permuting the remaining rows to get the column right .

Corollary 5 .6 . A good partial latin square of side n with n+1 non-empty
cells, all lying in L 1/2(n+3)] rows, can be completed to a latin square of
side n .

Lemma 5.7 . Let P be a good partial latin square of side n with n+1 non -
empty cells all lying in the top left rxs subarray R or on the diagonal
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outside R, and assume that s- ...[1/2(n+1)], and that P has an empt y
column .

Then P can be completed to a latin square of side n .
Proof. Figure 5 shows the partition of P . We can assume that R has n o

empty columns . By Lemma 5 .4 with rows replaced by columns, the firs t
s columns can be completed. By the same argument as in the proof o f
Lemma 3 .1 this implies that R(i) .r+s-n+f(i) for all i, 1-%Ç.in, where P
is supposed to be on symbols 1,2, . . .,n and f(i) is the number of times tha t
symbol i occurs on the diagonal outside R, But then R can be
completed by Theorem 3 .2 .

Lemma 5.8 . Let P be a good partial latin square of side n with n+1 non -
empty cells . If each row contains a non-empty cell, then P can be com-
pleted to a latin square of side n .

Proof. By Lemma 5 .2, it suffices to consider the case where either P ha s
an empty column, or some symbol does not occur in P . We can inter-
change columns and symbols if necessary, so assume that P has an empt y
column. Let t be the number of non-empty columns of P, and let v b e
the number of columns with exactly one non-empty cell . By Corollary
5 .6, we can complete P if t~ L1/2(n+3) j , so we suppose that
t_�-[1/2(n+3)] +1 . Then

t-v=(2(t-v)+v)-tin+l-L1/2(n+3)j = [1(n-2)] .

All the non-empty cells outside the t-v columns are in distinct columns ,
and they are also in distinct rows except that one row may contain tw o
of them. So all non-empty cells outside s columns are diagonal, where

sit-v+2. [ 1/2(n-2)] +2= L 1/2(n+2) j .

So s~ L 1/2(n+l) j unless n is even and we have equality everywhere . But
in that particular case t= L1h(n+3) j +1=1/2(n+4) and 2(t-v)+v=n+1 ,
implying v=2t-n-1=3, and two of the three non-empty cells outside
the t-v columns are in the same row; therefore all non-empty cells not i n
this row are in 1(n+4)-2=2 columns, and so P can be completed by
Corollary 5 .5 .

Hence we can assume that s- L 1/a(n+1)i . And then P can be completed
by Lemma 5 .7, and Lemma 5 .8 has been proved .

Lemma 5.8 implies that P can be completed if any of its conjugate s
satisfy the condition. So if P is good and all rows are used, all column s
are used, or all symbols are used, then P can be completed .
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Corollary 5 .9 . If P is a good partial latin square of side n,5 with n+ 1
non-empty cells, then P can be completed .

Proof For n-.Ç_5, l1h(n+3)] .n-1 .

We need just one more lemma, before we can prove our main result .

Lemma 5.10 . Let P be a partial latin square of side n with q non-empt y
cells, and with the property that neither P nor any of its conjugates hav e
any diagonal non-empty cells . Let r and s be the number of non-empt y
rows and columns respectively, and let t be the number of distinct sym -
bols occurring in P . Then

min{r+s, s+t, t+r}q .

Proof Let R and S be the set of cells in rows with at least two non-
empty cells and the set of cells in columns with at least two non-empt y
cells respectively, and let T be the set of cells containing symbols occur-
ring at least twice in P .

Put x=I(Rf1T)\SI, y=IRf1S)\TI, z=I(TfS)\R and
w=IRf1Sf1Tl .

Then q=x+y+z+w, IRl =x + y+w and so
r-.5z+1/2IRI- . 1/2(q+z )
Similarly, s-� 1h(q+x) and t~1/2(q+y) . So we hav e
(r+s) + (s+t) + (t+r) =2r+2s+2t;3q+x+y+z- .4q

as required .

We can now state and prove our main theorem .

Theorem 5.11 . For any

	

a good partial latin square of side n with a t
most n+1 non-empty cells can be completed to a latin square of side n .

Proof. We proceed by induction on n, along the lines explained at th e
beginning of Section 4 . We can assume that exactly n+1 cells are non-
empty (n=1 is trivial!) . By Corollary 5.9, the theorem is true fo r

Let P be a good partial latin square of side n.6 with n+1 non-empt y
cells and assume that the theorem holds for partial latin squares of smal-
ler side. Let P be on symbols 1, . . .,n. We must show that P can be
completed to a latin square of side n .
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Case 1 . P, or a conjugate of P, contains a diagonal non-empty cell . We assum e
that P is chosen among its conjugates so as to have as many diagonal
preassignments as possible. Let R be an rXs subarray, containing all non-
diagonal non-empty cells of P, chosen as small as possible (and placed in
the top left hand corner) . We can assume that and that all non -
empty cells of P occur in R or on the diagonal outside R . By Lemma 5 .8 ,
we can assume that the last row and column are empty, and that th e
symbol n does not occur in P . We also assume that s > [1/2(n+1)], b y
Lemma 5 .7 .

For all i, let f(i) be the number of times the symbol i occurs on
the diagonal outside R. Let C be a symbol with f(C)_1 . Let P' be obtained
from P by deleting the last row and column, and a diagonal preassign -
ment of the symbol C . Then P' is a partial latin square of side n-1 on
symbols 1,2, . . .,n-1 with n non-empty cells . As n;6, [1/2(n+1)] ..?-3, and
if P' is bad then Corollary 5 .5 applies to P or one of its conjugates . So we
assume that P' is good, and, by the induction hypothesis, we can com-
plete P ' to a latin square L ' of side n-1 . By Lemma 3 .1 we have, in L ' :

R(i)_r+s-n+1+f(i) for all i+C,

For the symbole we have R(7)_�r+s-n+1+f(C)-1=r+s-n+f(() .
We now disregard what is outside R, except the diagonal preassign-

ments of P . We want to apply Theorem 3 .2 to embed a modified version
R 1,1 of R in a latin square L which is a completion of P . To do that we
must have

Ru,(i) .-r+s-n+f(i) for all i ,

This holds for the symbol ( with Rm(C)=R(e) . It will hold for any symbo l
i+e, with if R,n(i) -R(i) -1 . We must make the symbol n no t
occurring in R occur r+s-n times in Rm .

Suppose that we can find a partial transversal of length r+s-n in R ,
avoiding all preassigned cells and the symbol C . Then we can place th e
symbol n in all cells of the partial transversal to obtain R 1 . It will then
satisfy the inequality for all i, and we can complete by Theorem 3 .2 .

To find the required partial transversal we apply Lemma 4 .2 with th e
non-empty cells of P in R as forbidden cells and e as the forbidden
symbol. There are at most n non-empty cells of P in R; by adding cells
arbitrarily we can assume that we have exactly n forbidden cells (ther e
are enough cells to add) . Lemma 4 .2 then gives the partial transversa l
we need, if (n+1-r) (n-s)-n. By Lemma 4 .1, r+s- .L 32j and so, if
n-r,3 then s-1/2(r+s) s , implying
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(n+l-r)

and if r=n-2 then s~ [ ] - (n-2) = Li] +2, giving

(n+1-r) (n-s) .3(L n; 11 ] -2)

for n~11 . Close inspection shows that the condition is satisfied except i n
the following three cases : (i) n=10, r=8, s=7 . (ii) n=8, r=s=6 . (iii) n=7,
r=s=5 . In all cases, r.+s>3i2-1>, so P can contain only one diagonal
preassignment . It follows that in case (iii) P contains a row with at least 2
non-empty cells such that all other non-empty cells are in at mos t
[ 1h(n+l)] =4 columns, and so P can be completed by Corollary 5 .5 .
Consider cases (i) and (ii) . Here r+s=2n , and it follows from the proof
of Lemma 4 .1 that each non-empty cell of P is either alone in its row o r
alone in its column . But as all conjugates of P have at most one diagonal
preassignment, at most one of the non-empty cells alone in their row s
can have an entry which occurs just once in P, and similarly for the cell s
alone in their columns . So at most 2+½(n+1-2) distinct symbols occur
in P . This is ½(n+3), so P can be completed by Corollary 5 .6 .

Case 2 . Neither P nor any ofits conjugates contains a diagonal non-empty cell .
We suppose that P is chosen among its conjugates so as to have r.s and
r+sue	 4( '31) (Lemma 5 .10), where all non-empty cells are inside the rx s
subarray R having no empty rows or columns . By Corollary 5 .6, we can
assume s. L1/a(n+3)j +1 . By the same corollary, we can assume tha t
there is a symbol which is preassigned exactly once in P ; by symmetry
let it be the symbol 1 in cell (1,1) . Let P' be obtained from P by deletin g
the last row and column and removing the symbol 1 from cell (1,1) .
Then P' is partial latin square of side n-l on symbols 2, . . .,n with n non-
empty cells . As in Case 1, we see that we can assume that P' is good . By
the induction hypothesis, we can complete P' to a latin square L' of side
n-1, and we have, in L' ,

R(i)cer+s-n+1 for all i ,

and we need to modify R to Rn1 with

Rnl(i) �--r+s-n for all i ,

Having obtained Rm , we can complete by Theorem 3 .2. So what we
have to do is make the symbol 1 occur r+s-n times, and we can delet e
any other symbol once .

Let k be the symbol placed in cell (1,1) of L' . We replace this occur-
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rence of k by the symbol 1 . Then we cannot delete any further occur-
rences of k, and we need r+s-n-1 additional occurrences of 1 .

We look for a partial transversal of length r+s-n-1 in the
(r-1)X(s-1) latin rectangle R' obtained from R by deleting the first ro w
and column. We let the preassigned cells of R' be forbidden cells, and i n
each column of R' with no preassigned cell we choose an arbitrary cell a s
a forbidden cell (then the cell of that column which is in R but not in R '
must be preassigned in P) . Of the n+1 non-empty cells of P, at least 2 d o
not correspond to forbidden cells in R', namely cell (1,1) and some othe r
cell in the first column of R, because if (1,1) were the sole prescribed cel l
in its column, a conjugate of P would have a diagonal cell (as the symbo l
1 was not prescribed anywhere else) . So at most n-1 cells are forbidden
in R ' . We may add cells so as to have exactly n-1 . By Lemma 4 .2, we
can find the required partial transversal of length r+s-n-1 =
(r-1)+(s-1)-(n-1) in R', avoiding all forbidden cells and the symbol
k, if

((n-1)+1-(r-1))

which i s

(n+1-r) (n-s) .�n-1 .

If n-r_-3 then s .1/2(r+s)_	 2("31) and so (n+1-r) (n-s) 4(3-2)

	

n- 1
as n.6.
If n-r~2 then s. [4(" 3+')-j -(n-2)= L

n+3oj
5 [ 1/2(n+3)] unless n=8 o r

n=6 . In the latter case we must have r=5 but then we get
s.4= [½(n+3)] . In the former case we get r=s=6, and each of the 7
symbols occurs at least 5 times in R (before k is replaced by 1) ; it follow s
that exactly one symbol occurs 6 times, say the symbol b . Then b occurs
at least 4 times in the 5x 5 subsquare (with at most 6 prescribed cells) that
we consider for our transversal, and at most 2 of the occurrences can b e
in prescribed cells (this follows from the proof of Lemma 5 .10) . Thus we
can let b occur twice in our `transversal' (if b=k, b occurs 5 times in th e
5X5 subsquare, and we can let the transversal include k) . Then it is easy
to see that we can find the required `transversal' .

So in all cases, we can add r+s-n-1 occurrences of the symbol 1 and
then embed Rm to obtain a completion of P .

This finishes the proof of Theorem 5 .11 .
We finally mention some recent results and conjectures on completing

partial latin squares with no symmetry required, all of which are con-
tained in work at least partly due to R . Häggkvist .
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Theorem 5.12 . (Chetwynd & Häggkvist 1984) . There is a constant
c>10-5 such that every partial latin square of even side n>107 in which
every row, column and symbol is used at most cn times can be com-
pleted to a latin square of side n .

For large n, this improves a previous result stating that completion i s
possible if n=0 modulo 16 and each row, column and symbol is used a t
most 2-7 \/ n times (Daykin & Häggkvist 1984) . Theorem 5 .12 is prob-
ably far from best possible :

Conjecture A . (Daykin & Häggkvist 1984) . A partial latin square of side n
in which every row, column and symbol is used at most & times can b e
completed to a latin square of side n .

A related problem is expressed in the following conjecture .

Conjecture B . (Häggkvist 1984a) . Let P be a partial latin square of side n in
which all non-empty cells lie in an rXs subarray, and assume that eac h
row is used at most n-r times and that each column is used at most n- s
times. Then P can be completed to a latin square of side n .

Häggkvist also prove d

Theorem 5.13 . (Häggkvist 1984b) . If P is a partial latin square of side n in
which the non-empty cells are precisely all cells in the first q rows and al l
cells in the first q columns, and in which the cells common to the first q
rows and the first q columns form a latin square of side q, then P can b e
completed to a latin square of side n .

Theorem 5.12 gives a partial solution to a problem of L . Fuchs, which
can be formulated:

Let n=n1+n2+ . . .+nk be a partition of n . When does there exist a latin
square of side n with latin subsquares of sides n1,n2, . . .,nk on mutually
disjoint sets of rows, mutually disjoint sets of columns and mutuall y
disjoint sets of symbols? By Theorem 5 .12, such a latin square exists i f
n;cn for all i, 1 irk, and n is large enough. We refer to the literatur e
for further results on Fuchs' problem (Dénes & Påsztor 1963 ; Dénes &
Keedwell 1974; Heinrich 1984) .
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6 . Completion of partial symmetric Latin Square s

The purpose of this section is mainly to state two results on completio n
of partial symmetric latin squares which are analogous to the Evan s
Conjecture . Both results are very recent .

The diagonal of a partial symmetric latin square of side n is called
admissible if the number of symbols occurring with parity different fro m
n does not exceed the number of empty cells . If n is odd, the diagonal i s
admissible if and only if all its entries are distinct . If the diagonal is no t
admissible, then the square cannot be completed to a symmetric latin
square of side n. The parity condition of Theorem 3 .8 and Corollary 3 . 9
simply ensures that the diagonal is admissible .

Figure 17 shows some partial symmetric latin squares with admissibl e
diagonal, which cannot be completed to symmetric latin squares of th e
same side .

Theorem 6 .1 . (Andersen & Hilton 1985) . Let n 3, and let P be a partia l
symmetric latin square of side n with admissible diagonal .

If P has less than n non-empty cells, then P can be completed to a
symmetric latin square of side n .

If P has exactly n non-empty cells then P can be completed if and onl y
if P is not of the form of any of the squares E1, 01, or 02.

If P has exactly n + 1 non-empty cells then P can be completed if an d
only if P is neither of the form of any of the squares E1, 01 or 02 with a
further cell filled nor of the form of any of E2, E3, 03, 5A or 5B .

The proof of Theorem 6.1 is very long . The general idea is very simila r
to that of the proof of the main theorem of the last section and so
is by induction on n, but there are more complications . In particular, th e
case where all or all but one of the rows are used is very elaborate . When
that is done, it is possible to delete a symmetric pair of entries from th e
square of side n to be completed so as to obtain a partial symmetric latin
square of side n - 2 (with the same parity as n) . We complete by the
induction hypothesis and focus on the latin rectangle R of Figure 6 . By
Lemma 4 .1, we know something about the side of R . We add occur-
rences of two new symbols by applying Lemma 4.3, and we embed b y
Theorem 3 .8 to obtain the required completion .

Theorem 6.1 can be used to give results on completions of edge-
colourings of Kn with the colours of some edges prescribed . Below we
state two such results, one for even n and one for odd n . The odd case is
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n c .

even lengt h

E 1

n non-empty cells

E 2

n+1 non-empty cell s

n odd

2

2

2

2 4

0 1

n non-empty cells

0 2

n non-empty cells

0 3

n+1 non empty cell s

2

2

2

2

4

5 E

n+1=6 non-emp Ly cells n+1=6 non-empty cells Fig . 1 7
5 B

an easy consequence of the even case, and the even case follows from
Theorem 6 .1 for odd n alone . The two results are not the stronges t
possible corollaries of Theorem 6 .1 in this direction .

Corollary 6 .2 . Let C be a set of edges of K2n1, m _ 3, and assume that the
subgraph spanned by the edges of C has an edge-colouring . Then :

a) If ICI

	

m-1, then the edge-colouring can be extended to an edge -
colouring of K2rn with 2m-1 colours .

b) If ICI = m then the edge-colouring can be extended to an edge -
colouring of K2m with 2m-1 colours if and only if the edge-coloure d
subgraph is not of Type 1 of Figure 18 .

c) If C = m+1 then the edge-colouring can be extended to an edge-
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Type1 11 11 • • •1I it 21 m edge s

Type 2 11 11 • • • 11 2 0) m+1 edges

4

Type3
11 1I

• • •1I 2" m+1 edge s

2

	

0

Type 6i 1I
	 I1 0

	

m +1= 4 edge s

2

Type 6i i 0	 0	 20

	

3 0 4	 .0 m+1 = 4 edge s

Figure 18

colouring of K2,,1 with 2m-1 colours if and only if the edge-coloure d
subgraph is neither of Type 1 with an edge added nor of Type 2, 3, 6i o r
6ii of Figure 18.

Corollary 6 .3 . Let C be a set of edges of KZIIl_1, m 3, and assume tha t
the subgraph spanned by the edges of C has an edge-colouring . Then :

a) If ICI

	

m then the edge-colouring can be extended to an edge-
colouring of K2m_ 1 with 2m-1 colours .

b) If ICI = m+1 then the edge-colouring can be extended to an edge -
colouring of K2rn_1 with 2m-1 colours if and only if the edge-coloured
subgraph is not of Type 4 or 5 of Figure 19 .

The next result that we state is more related to Corollaries 6 .2 and 6 . 3
than to Theorem 6.1, as it is concerned with edge-colourings of com-
plete graphs, where each colour is prescribed at most once . The theorem
was obtained by E . Mendelsohn and the author, and a formulation com-
patible with the statements above is the following .
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Theorem 6 .4 . (Andersen & Mendelsohn 1985) . Let D be a set of edges o f
K,, with at most q(K„)-1 edges . Then K„ has an edge-colouring with
q(K„) colours so that all edges of D have distinct colours, except if n i s
even and D is the edge-set of the graph H2 1,, of Figure 20, or if n=6 and D
is the edge-set of HS or H , , or if n = 5 and D is the edge-set of K .

Theorem 6.4 for odd n follows from the result for even n . We also state a
reformulation of the even case which stresses that it is a result about 1 -
factorizations of the complete graph . A 1 -factorization of a graph G =
(V,E) is a decomposition of E into mutually disjoint 1-factors . Especially
1-factorizations of the complete graph K2,n of even order have been
studied extensively (Mendelsohn & Rosa 1984) .

Corollary 6 .5 . Let D be a set of edges of K,,,,, and let ID 2m-2. Then
Kg m has a 1-factorization with all edges of D in distinct 1-factors if and
only if D is not the edge-set of the graph H2xni or, if m = 3, of HS or

If most edges of D are concentrated in a `small' subgraph K,, of K 2,,
corresponding to R of Figure 6 not being too large, then Corollary 6 .5 is
proved in the saine way as Theorem 6 .1 .

If not, the proof is completely different (although both cases are treat -
ed within the same induction proof) ; if R is large, the proof relies on a
lemma saying that then the vertices of K2m can be split into two sets of m
vertices each, so that exactly m or m+1 edges of D join a vertex from
one class to a vertex of the other . Then Theorem 5.11 is used on the
Krn, ,,, formed in this way .

Figure 19
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Figure 20

Conjecture C . Let m 5, and let D be a set of edges of Kgm with ID 1

2m-1 . Then K2n1 has a 1-factorization with all edges of D in distinct 1 -
factors, if and only i f

(i) D does not contain the edge-set of H2,,,, and
(ii) K2 ,,, does not have two distinct vertices U and V for which U V

D but each edge of D is incident with either U or V, IDS = 2m-1 .

For m 4, there are several exceptions to Conjecture C .
The work on Theorem 6 .4 was to a large extent initiated by a paper b y

A. Hartman on partial triple systems and edge-colourings (Hartma n
1984) . It has some consequences for completions of partial symmetri c
latin squares, supplementing Theorem 6 .1 .

If we define an appearance of a symbol in a partial symmetric latin
square as either an occurrence in a diagonal cell or two occurrences in a
symmetric pair of cells, then n non-empty cells may correspond to as
little as 2 appearances . In the case where no symbol appears more than
once, we can strengthen Theorem 6 .1 by applying Corollary 6 .5 .

Corollary 6.6. Let P be a partial symmetric latin square of odd side 2m- 1
in which one symbol does not appear and each of the remaining 2m-2
symbols has at most one appearance . _Then P can be completed to a
symmetric latin square of side 2m-1 if and only if P is not of the form o f
any of the squares of Figure 21 .

Corollary 6.7 . Let P be a partial symmetric latin square of even side 2m in
which one symbol does not appear and each of the remaining 2m- 1
symbols has at most one appearance, one of them not appearing outside
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2m-2

2m-'I

Figure 22

the diagonal . Then P can be completed to a symmetric latin square of
side 2m if and only if P is not of the form of the square in Figure 22, and
at most m symbols occur on the diagonal .

7 . Final remark s

Many topics and results that would fit in well with the title of this pape r
have not been included . And we do not even claim to have covered th e
most important subjects. The choice of material has been as much affecte d
by the author's personal preferences as by any assignment of differen t
levels of importance to the topics . It has also been a wish to make th e
contents coherent rather than desultory .
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For example, we have not mentioned the word quasigroup at all, and
yet it a concept almost identical to that of a latin square .

A quasigroup (Q,*) is a set Q with an operation ,*, such that for all a
and b in Q, each of the equations a*x = b and x*a = b is uniquel y
solvable in x. A latin square is the same as a multiplication table for a
quasigroup . We have imposed very little extra structure on our latin
squares in this paper, basically only symmetry (x*y = y*x) and idempo-
tency (x*x = x) . If the quasigroup is required to satisfy other simple
identities, further interesting completion problems arise (one of the more
famous problems among these is that of completing partial Steiner tripl e
systems) . We refer the reader to the literature (Lindner 1984) .

The book which is the standard reference on latin squares is that b y
J. Dénes and A . D . Keedwell . It emphasizes the quasigroup point of view
and contains many references (Dénes & Keedwell 1974) . At the time of
writing, Dénes and Keedwell are editing a new, comprehensive volum e
on latin squares (two of the references that we have given are to manu-
scripts written for this volume) (Dénes and Keedwell 1986?) .

The present paper is meant to have two purposes : Partly to survey th e
area of completing partial latin squares, and partly to announce some
new results in that area, carrying out the details of proof for one of these .
We hope that the reader has realized that such completion problems ,
even though they are often very easy to formulate, can be quite intricate .
So it appears to be a fitting end to this paper to ask : Just how intricate is
the problem of completing partial latin squares?

We can define the intricacy of completing partial latin squares as th e
least integer k satisfying the following :

For any integer n, any partial latin square of side n can be partitioned
into k partial latin squares of side n each of which can be completed to a
latin square of side n .

Partitioning a partial latin square P into P 1i . . ., Pk means filling som e
cells of the Pt's such that if cell (i,j) of P is non-empty, then its entry
occurs in cell (i,j) of one of the Pr 's, and all non-empty cells of the Pt 's are
obtained in this way .

D. E . Daykin and R. Häggkvist posed the problem of showing tha t
the intricacy of completing partial latin squares is 2 . The concept of
intricacy was later generalized to a large class of combinatorial construc-
tion problems (Daykin and Häggkvist 1981 ; Daykin and Häggkvis t
1984; W. E. Opencomb 1984) .

It follows from Corollary 3.3 (Corollary 3 .4 is enough if n is even )
that there exists a finite k satisfying the condition of the definition of
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intricacy, because k=4 will do . So the question is whether the intricacy i s
2, 3 or 4 .

Conjecture D . The intricacy of completing partial latin squares is 2 .

ACKNOWLEDGEMENTS . Thanks are due to A .J . W. Hilton and E . Mendelsohn for their permis-

sion to include unpublished results ofjoint work in this paper.
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JENS KNUD E

The Reddening
at the North Galactic Pole

ABSTRACT . Results from a recently completed photometric survey are presented . A complete sampl e
of A5-GO stars brighter than V -j 11 .2 mag and at latitudes above b = + 70° has been observed i n
the uvby13 system .

With an average of 4 stars deg - these data allow detailed studies of the local interstellar dust
distribution at high latitudes .

The data obtained agree consistently with a previous uvby(3 investigation ofpolar A and F stars ,
Hill, Barnes and Hilditch . The mean E(b-y) difference, HBH-K, is only -0.005±0 .018 magfo r
650 stars in common .

Substantial fractions of the north pole region are found to have color excesses larger than E(b-y )
= 0 .050 mag . The most reddened areas seem to be organized in longish features a few degrees wid e
and ten or more degrees long . The dust strings are parallel to the direction 1 : 37-217 . Dust filaments
are most frequent in the section 37 < 1 < 217 but prominent structures also exist in the region 21 7
<1<37.

An irregular distribution of absorbing matter will influence counts of galaxies and clusters o f
galaxies and thus the angular distribution of these objects . As a first approximation to the effects
caused by the presence of high latitude dust, the dust distributions angular autocorrelation function i s
computed for separations between adjacent lines of sight in the range from 10' to 3 deg .

The dust is found to he uncorrelated in this sense . The autocorrelation function equals zero fo r
the whole range of separations . Quite a surprising result because the autocorrelation of the ga s
column density distribution is a very clean exponential for b > 40 deg .

Assuming a constant ratio between gas and dust, which may not be a proper assumption, th e
clumping of the dust is studied in the context of a two component emission model for the diffuse soft.
X-ray background . The two component model is particularly interesting for high latitudes, wher e
the proposed remote contribution originates in the halo . The effective absorption cross section s
obtained from the best fits to the observed background in the B and C bands, Burrows et al ., show a
perfect agreement to the cross sections computed from the dust observations but deviates a factor tw o
from those computed from the radio observations of the same regions . The radio and dust results lea d
to disagreeing conclusions on the existence of a hot halo . The dust distribution reconciles the soft
background observations and the existence of a hot galactic halo .

Copenhagen University Observatory ,
Øster Voldgade 3, DK-1350 Copenhagen K .
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Introduction

Most fields of astronomy study physical processes where the radiation i s
influenced by the presence of solid material - dust. A particularly inter-
esting part of the sky is the Galactic Poles, being the windows for extr a
galactic research, and because here the short lines of sight facilitate th e
study of individual interstellar structures .

The density structure of the interstellar matter with varying distanc e
from the Galactic plane is important for understanding how it evolve d
and how it is energized . It is consequently a very serious problem that n o
consensus on the mere existence of high latitude dust has been reached .
This disagreement implies several problems . As the distribution of dus t
is known only very fragmentary models are often adopted to correct fo r
the reddening assumed to be present . This is the case in some extragalac-
tic studies, where two models have been suggested . The most obviou s
model is a coherent plane parallel layer which results in a cosecant de-
pendence of the estimated dust column on latitude ; de Vaucouleur an d
Buta (1983) have reviewed the evidence for the plane layer concept . The
sun may also be located in a sort of cavity in a plane layer of dust with a
finite extent from the plane, Sandage (1973) . The latter suggestion is a
very attractive one because several bubble-like structures have recentl y
been observed in the Galaxy . If such structures are frequent it is no t
unresonable that the sun could be inside one . If so should be the cas e
many problems will find easier solutions because reddening correction s
would only be required for low latitude objects beyond a few hundre d
parsecs and many calibrations would be facilitated and more accurate . A
testing ground for the two concepts is the North Galactic Pole, NGP ,
where they disagree on the amount of matter present . The first model
predicts substantial amounts of reddening, E(B-V) - 0 .05 mag, whereas
the second model estimates that no solid dust is present above latitud e
50°

In the search for high latitude dust some sort of a continuous back -
ground source is required . Variations in such a background could b e
interpreted as caused by absorbing matter . If faint galaxies have a
homogeneous distribution the variation of their surface density wit h
latitude may indicate whether matter is present or not. With a local
cavity in a finite dust layer the surface density will level off at a certain
latitude whereas the surface density will increase all the way to the pol e
in the first model . Counts of galaxies/clusters of galaxies are not able t o
set the zero point of the extinction but variations in the counts may
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indicate the existence of matter at the poles . However, the counts ar e
based on the assumption that the large scale distribution of luminou s
matter in the universe is homogeneous and isotropic - the fair sampl e
hypothesis . There is also a disagreement on whether the counts of galax-
ies are too noisy, Burstein and Heiles (1978), to discriminate between a
steadily increasing or a constant surface density above latitude 50° . The
noise may depend on the reseau size used for the counts but may als o
contain some information on a variable absorption .

The problems mentioned lead naturally to ask how an irregular dis-
tribution of absorbing dust may influence the intrinsic distribution o f
galaxies . A recent study, using the Hat Creek 21 cm intensity, Seidne r
and Uson (1983), as an indicator for the dust, implies that if the dust i s
distributed analogous with the gas it may modify the intrinsic galaxy
distribution significantly . The gas column densities have a correlate d
distribution and their autocorrelation obeys an exponential law . A corre-
lated dust distribution may change the amplitude of the intrinsic powe r
law distribution of galaxies and also reproduce the observed change o f
slope in the power law at separations -3° . A mapping of the hig h
latitude dust will naturally bear on this important problem .

The structure of the Galactic halo is most important in several re-
spects . Here is only considered some aspects of the interstellar mediu m
at the halo . Studies of ultraviolet absorption lines in LMC OB super-
giants have revealed that the Galaxy has a hot ----10 5 K, high latitude
plasma, Savage and de Boer (1981) . Speculations on how interstella r
clouds with high z-distances maintain pressure equilibrium suggest tha t
a low density gas with even higher temperatures may confine such
clouds, Spitzer (1956) . The halo could contain substantial amounts of a
106 K gas which might be an important source of diffuse soft X-rays .
With a soft X-ray halo and intervening neutral gas, intensity variations
due to simple photoelectric absorption are to be expected in the back -
ground observations. On small angular scales the observations of th e
diffuse background are extremely smooth only showing variations o n
the 10% level . A global fit of soft X-ray count rates does however
anticorrelate with the distribution of neutral hydrogen, McCammon e t
al . (1983) . There is no straight forward explanation on this complex
picture . Several models of the solar X-ray surroundings suggest that th e
dominating part of the X-ray emission originates within the nearest fe w
10 19cm-2 of neutral hydrogen gas, Fried et al . (1980) . In these models th e
background is virtually unabsorbed . Smooth intensity variations as ob-
served are however also compatible with an extremely clumped spatial
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distribution of an absorbing gas . It is possible to fit a two componen t
emission model to the data : a local unabsorbed source and a remote
absorbed . But an extreme clumping of the matter is required in order t o
reduce the efficiency of the absorption . In the modelling the effectiv e
absorption cross sections were taken as free parameters and the best fi t
values were found to be a factor of two lower than the computed atomi c
cross sections, McCammon et al . (1983) . Continuum absorption of stel-
lar light do not give any direct information on the gas clumping, only o n
the distribution of the solid component of the interstellar medium . Opti-
cal observations have however two advantages compared to most radi o
observations : an upper limit to the length of the dust column is given b y
the stellar distance and the optical beam is infinitely narrow without an y
side lobes . In principle the three dimensional distribution of the dust ma y
result from the optical observations . If there is a constant - or known -
ratio of gas to dust, the dust results may be applied to the gas distribu-
tion. But except, perhaps, for the cold gas, one still have to assume a
constant ratio .

The influence of the diffusely dispersed dust on radiation has so far
mostly been studied by its dimming and polarising effects on starlight .
With the advent of the IRAS satellite more stringent investigations ma y
be performed of the physical properties of the diffuse dust concentra-
tions, because grain temperatures and compositions now may b e
brought into the discussion on an empiric basis . A promising field of
research will be a combination of the dust observations as in the present
study and the IRAS maps at 1O011 . As the following discussion show s
there is no unique spatial relationship between the amount of gas an d
dust but since significant patches of the NGP are much reddened one
might expect fairly strong 1O0µ emission even though only mino r
amounts of neutral hydrogen is reported. The 1O01i maps will probably
have a streaked appearence as that displayed by the color excess distrib-
ution .

An observing programme

One of the exciting issues raised in interstellar studies is the structure of
the interstellar medium (ISM) at the Galactic poles . Regarding the solid
component of the interstellar matter (ism), it has long been questione d
whether the optical data actually were related to the effects of interven-
ing dust on radiation . Several photometric programmes have howeve r
indicated that matter is present but unfortunately about as many that it is
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not . Some of the color excess catalogues were planned in a systemati c
way but often this has not been the case and the lines of sight were
selected on a rather casual basis . It was therefore considered to be o f
some value to have a survey based on all stars of a given spectral rang e
down to a rather faint limiting magnitude . The data forming the basi s
for the present study approximate the fulfilment of these requirements .
Color excesses, E(b-y), for about 5000 lines of sight with b > 70° were
obtained.

E(b-y) measures the integrated dust column out to the star used as a
background source . The whole idea to study the ism this way is based o n
a complete knowledge of the background sources' intrinsic continuum
spectrum. Interstellar grains have a scattering cross section showing a X- 1

wavelength dependence in the optical, and is thus scattering the blu e
light more efficiently than the red . The continuum absorption results in
apparent stellar colors redder than their intrinsic colors .

Accurate photometry is a must in interstellar studies . The gas density
in the ISM is expected to be rather low: 10-2-10+2 atoms cm-3 is the
range anticipated in the diffuse medium. As the part of the interstella r
space studied is within a few hundred pc, the expected gas columns ar e
ranging from 6 10 18 to 1021 atoms cm-2. If the ism has a constan t
gas/dust ratio 7 .5 10 21 atoms mag-1, Knude (1978), these columns trans -
late to color excesses in the range from 0 .001 to 0.13 mag. If columns
with the smallest value are frequent the demands to the photometri c
accuracy are extreme . For fainter objects they can not be met presently .
The best obtainable color excesses have a mean error o(E(b-y)) < 0.0 1
mag . It has been proposed that the ism in the solar neighbourhood migh t
be concentrated in small, still diffuse, clouds ; if so, detailed observation s
are required for the detection of these features . If the ism on the other
hand has a continuous distribution information on the dust distributio n
is obtainable from observations along a limited number of lines of sight .
A principal objective of interstellar studies must be to find the charac-
teristic linear scales of the mass concentrations . As a consequence obser-
vations must be performed in fine networks to ascertain a high detectio n
probability even of the smaller features . Data samples representative o f
the ism consequently involve observations of several thousand stars .

The photometric system used by the author is the uvby[3 system b y
Strömgren (1966) and Crawford and Mander (1966) . For interstellar
purposes this system is presently calibrated for not too evolved popula-
tion I stars of spectral type late A and for the whole F star range, Craw -
ford (1975, 1978, 1979) .
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Fig . 1 . Surface densi-

ty of lines of sigh t

where the color excess
E(b-y) was mea -

sured . The smooth
distribution is a con-

tributory cause to as-
sure an equal proba-

bility to observe iden-

tical dust features all

over the polar cap, b
> 70° .

O
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For statistical computations an ideal network should have equal - an d
adjustable - spacings . The stellar distribution does of course not mee t
this demand, but as seen on Figure 1 the present sample has a fairly
homogeneous distribution across the polar area .

When photometric surveys are planned the main obstacle is the scarci-
ty of spectral cataloques from which candidate stars in the proper spec -
tral range may be drawn . Candidate catalogues must further be complet e
in some respect either to a given limiting magnitude or to a limite d
distance range for subsequent evaluation of the completeness of the re -
sults obtained .

Spectral surveys of large areas are not abundant in the literature . It was
therefore most fortunate that we learned that a rather deep, V -~ 11-11 . 5
mag, survey of the NGP was nearing completion, when the NGP pro -
gramme was considered . The survey has been done by T. Oja, Uppsala ,
and was kindly put at the disposal of Professor B . Strömgren in the for m
of a handwritten catalogue containing 5458 entries .

Three problems remained before a photometric mapping of the dus t
distribution at the NGP could be attempted : accurate coordinates of the
candidate stars which were identified either by a DM number or by
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indicating the number of the nearest DM star, a suitable, efficient photo -
meter and finally sufficient blocks of observing time on moderate sized
telescope(s) .

Coordinates were procured in collaboration with M . Winther, Insti-
tute of Astronomy, Aarhus University by using the Carte du Ciel Cata-
logues . The photometer, which was to become the prototype of a new
generation six channel combination of the formerly used 4 and 2 channe l
uvby and H(3 photometers, was designed and built in the Brorfelde
workshops of the Copenhagen University Observatory on a grant from
the Carlsberg Foundation to B . Strömgren and P. E. Nissen. Generous
amounts of observing time was granted on La Silla, Kitt Peak, Roque de
los Muchachos and San Pedro Martir .

Finally the author had the pleasure of spending more than 180 observ-
ing nights on this particular programme between March 1, 1982 an d
May 15, 1984 .

Heavy reddening at latitudes above +70°

As emphasized by Burstein and Heiles (1978), in the paper where the
HI/GC method for reddening estimates is evaluated, only photometry of
high latitude distant objects with well known intrinsic color may settl e
the dispute on the distribution and amplitude of the galactic pole redden-
ing. The HI/GC method was calibrated on RR Lyrae stars and individual
stars in globular clusters . Anyway the HI/GC reddening estimates ar e
claimed to have an accuracy 0 .010 mag in E(B-V) or 0.007 mag in
E(b-y), comparable to the best obtainable intermediate band photo-
metry, calibrated on local unreddened population I stars, with known
metalictiy and evolutionary stage .

During the last few years new conclusions on the NGP reddenin g
have been published . Hill, Hilditch and Barnes (1983) have presented a
segmented reddening map of the NGP above b = 75° . Half of thi s
region, 1: 270-0-90, was found to have an average reddening E(b-y) =-
0.008 mag, furthermore a small dust feature with E(b-y) = 0 .024 mag
was identified and found to coincide with a confined 21 cm feature on th e
maps by Heiles (1975) . The stellar sample observed by HHB was drawn
from the literature Hill, Barnes and Hilditch (1982) . A list of common
stars with DM numbers has been prepared and 650 stars from this sam-
ple have E(b-y) observations both by HHB and the present author . The
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Fig . 2 . Local heavily

obscured regions i n
the polar direction .
Lines of sight with

color excesses mea-
sured to be abov e

E(b-y) = 0 .050

mag . The stella r

background source s

have photometric dis -
tances smaller tha n
100 pc . The dus t

seems to be confined
to a filamentous struc-

ture . See also Fig . 3 -
8 .
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comparison of the photometry will be presented elsewhere . The mean
difference of the color excesses (E(b-y) HHB - E(b-y)K) _ -0.005 mag
with a standard deviation in the distribution of the residuals of onl y
0.018 mag . The common sample is made up mainly of F stars, for whic h
Crawford (1975) quotes a standard deviation 0 .012 mag of the color
residuals for the basic calibrators assumed unreddened .

The programme has 75 stars in common with the Perry and Johnsto n
(1982) reddening survey of the northern part of the volume within 30 0
pc. (E(b-y)PJ - E(b-y)K ) = - 0.014 ± 0 .014. Perry and Johnston's sam -
ple is primarily A stars and their reddenings were reduced by Perry an d
Johnston by 0 .009 mag in order to have identical mean reddenings fo r
the F and for the A stars . If this reduction is not performed the mean
difference will change to about -0 .007 mag . There are hardly any sig-
nificant zero point differences in the three samples . One might add - as
was to be expected. Without the zero point amendment of the PJ sampl e
the mean difference of the HHB and PJ sample becomes (E(b-y) HHB -
E(b-y)pj ) = -0.003 ± 0 .015 mag for 41 stars . Without the A star correc-
tion the reddening of the 90 Perry and Johnston stars above b = 70° is
0.007 mag, or E(B-V) = 0.010 mag . If it is permissible to use Burstein
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and Heiles calibration formula in the reverse sense and further ignore th e
variable gas/dust ratio controlled by the galaxy counts, their equatio n
four in the 1978 paper estimates an average HI column 2 .9 1020 cm-2
from E(B-V) = 0.010, which is much larger than observed . Whether the
amendment of Perry and Johnston's A star reddenings is a requisite o r
not is not evident .

From the NGP programme uvby(3 data for about 4800 stars are avail -
able for immediate computation of color excesses . Figure 1 shows th e
resulting distribution of lines of sight . The coverage is seen to be fairl y
homogeneous across the entire cap . Thus there is an identical probabilit y
to detect the effects of `large scale' extinction features over the whole
region. With four stars per square degree the average separation betwee n
adjacent lines of sight is 30' so quite small features may also be studie d
using this sample . A detailed discussion of absorbing material at th e
NGP is not attempted here, but some new discoveries are presente d
mostly as a picture gallery . As one of the most disputed questions ha s
been the existence of substantial amounts of nearby absorbing material i n
the pole directions, Perry, Johnston and Crawford (1982), Figure 2
shows what may be termed as obscured local polar regions . Nearby is

Fig . 3 . Caption as to
Fig . 2 except that this
diagram has a lower
reddening limi t
E(h-y) = 0 .03 0
mag . The distance
range is 0-100 pc .
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Fig . 4 Caption as to
Figure 2 but for th e
distance range from
100 to 150 pc.
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defined as within 100 pc, substantial reddening as a color excess beyon d
0.050 mag . With almost any photometric accuray 0 .050 mag is more
than three sigmas above zero reddening . Most of the cap is free fro m
such large local reddening . But even with these few points a clustering of
the reddened directions is noticed . The high local excesses tend to con-
centrate in the quadrants 1: 270°-360° and 1 : 90°-180°. Most local redden -
ing is found at 1-90° and b in the range from 70° to 80° . The distribution
on Figure 2 may just indicate what is to become apparent for the more
distant intervals, that the most reddened parts of the NGP is confined t o
filaments which stretch across the pole region . The dust filaments may
be made up by smaller discrete features . In the galactic plane individual
`coherent' clouds with reddenings as small as 0 .015 mag were found ,
Knude (1979) . For comparison Figure 3 is a polar diagram of all direc-
tions with E(b-y) > 0.030 mag for the same distance interval as Figure 2 .
Note that all excesses > 0 .050 are located in well confined 0 .030 mag
features. Two stars with E(b-y) > 0 .030 mag and within 100 pc are
located inside the 0 .024 mag feature noted by Hill, Barnes and Hilditc h
(1983) . The remaining dust structures on Figure 2 and 3 have not bee n
seen previously . The appearence of the dust distribution is filamentous .
The orientation of the threads on Figure 3 is not unambiguous . There are
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Fig . 5 . Caption as t o
Figure 2 but for th e
distance range fro m
150 to 200 pc . Th e
line of sight crossing
Burstein and Heiles
(1982) intensity
maximum abov e
latitude + 70° is
marked . Note th e
thready character of
the distribution.

two clear, dust free lanes parallel to 1: 55-235 but only in the 1 : 235-360-55
part of the cap. In the range 1: 55-235 the preferred direction of th e
filaments is almost perpendicular to the direction 55-235 . Figure 4 to 7 i s
a sequence of 50 pc wide distance segments - note not z-distances .

On Figure 4 is seen a clustering tendency in the distribution of excesse s
above 0 .050 mag as on Figure 3 for the smaller excesses, but with a
higher concentration of large excesses in the 90-180 quadrant . In the
three remaining quadrants the distribution is filamentous . The distance
range 150-200 pc is shown on Figure 5 . Again a very prominent struc-
ture is seen near the rim for 1 : 90-120 and b: 70-73. It is difficult to tel l
whether the distribution is best conceived as a coherent entity or as a
sequence of nearly parallel filaments stretching from the rim of the are a
towards the pole . As an example of the strong variations found the
longitude 143 is considered. First there is some dust along the rim. then a
5° wide void followed by a very sharp reddening ridge, then another
void and again a sharp ridge and finally a clear region up to the pole . The
reddening distribution for the stars in this distance interval is demonstr-
ably thready. Figure 6, 200-250 pc, corroborates the thready tendency ,
but here the dust is concentrated almost exclusively in the longitude
range from 37 to 217 degrees and confined to two dust bands parallel to
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Fig . 6. Caption as to
Figure 2 . Distance
range from 200 to
250 pc . The dust i s
almost exclusively
found in the longitud e
range l : 45°-225° .
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the 37-217 diagonal . Figure 7 is a very clean specimen of the filamentou s
general distribution . One has to conclude that the most reddened parts of
the NGP are confined to filaments organized in a parallel pattern .

Finally Figure 8 displays the projected distribution of all lines of sigh t
measured to have a color excess larger than E(b-y) = 0 .050 mag . The
projection is characterized by a broad, -5° wide band almost withou t
any heavy obscuration stretching across the entire cap including the pol e
itself. The distribution of the heavy reddening outside the clear path i s
indeed patchy but as suggested by the reddening distribution in the
sequence of distance bins the reddening seems mostly to be found i n
string-like structures . The general direction of the system of strings i s
more or less lined up with the clear path 1 : 37-217. The strings may b e
made up by smaller structures some of which are oriented perpendicular
to the general string direction . This `clear' picture of the reddening dis-
tribution will be smoothed when the lesser reddenings are taken into
account .

It is a surprise that the only feature in common to the HHB map is th e
curved feature delineated on Figure 8 . Burstein and Heiles (1982), Figur e
7(a), also show this feature in atomic hydrogen . Except for a few addi-
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Fig . 7 . Color excesses
larger than E(b-y) =-
0 .050 magfor stars i n
the distance rang e
from 250 to 300 pc.
Note the very narro w
dust filaments .

tional very small structures it is the only conspicuous . HI entity above
70°. The maximum reddening estimate by the HI/GC method is at (l,b )
= (270,74) and equals E(b-y) = 0 .030 mag . A single line of sight wit h
excess above 0.050 crosses this region. The distance to the dust is prob-
ably in the range from 150 to 200 pc . A most striking conclusion that
follows from a comparison of Figure 8 to Figure 7 (a) of Burstein an d
Heiles (1982) is that there are indications of a large scale anticorrelatio n

between the dust and the atomic gas distribution . Most of the heavil y
reddened regions are located in the section 1: 30-210, which is the part of
the polar cap where the lowest HI contours are located. An immediat e
qualitative result is to expect large variations in the ratio N(HI)/E(b-y) i n
this part of the sky . It is tentatively suggested that there may be extende d
regions at the NGP where dust exists without atomic gas .
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Fig . 8 . Projected dus t

distribution for stars

with E(b-y) > 0 .05 0
mag . The only NGP

dust feature reporte d
previously is delin-

eated . Burstein and
Heiles intensity max-

imum is also indi-

cated . The reddening

distribution is charac-
terized by a patch fre e

from heavy ob-
scuration stretching

across the pole in th e

direction 1 : 37-217 .

There may be a ten-

dency that the dus t
bands are oriented i n

the same direction . A
qualitative compari-

son to 21 cm intensity
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maps indicates that the most reddened part of the NGP coincides with the smallest 21 cm intensities .

The autocorrelation function of high latitude dus t

We have seen that the counts of galaxies have been used as an indicator o f
the variation of extinction with latitude at high latitudes and in the
HI/GC method galaxy counts were further used as an estimator o f
changes in the ratio between gas and dust . Conversely the observed dus t
distribution will find applications in the study of the intrinsic galaxy
clustering. Davis, Groth and Peebles (1977) conclude that the two-poin t
correlation function is not seriously effected by variable extinctio n
whereas Seldner and Uson (1983) try to explain the observed galax y
autocorrelation by a combination of an intrinsic unbroken power law
and clumped galactic obscuration represented by the HI column densit y
distribution .



THE REDDENING AT THE NORTH GALACTIC POLE

	

85

The angular autocorrelation function has been computed for severa l
cataloques of galaxy counts and is found to obey a combination of tw o
power laws where the change of power occurs at an angular separation a t
about 3°. It is an important problem whether the amplitude and th e
power is a consequence of local galactic obscuration or they represen t
properties of the intrinsic galaxy distribution . The intrinsic galaxy dis-
tribution is assumed to be a power law . The galactic extinction may b e
important because the probability, dp, to observe a galaxy with apparen t
magnitude, m, in the range m, m+dm, within a solid angle dQ in a
direction (l,b) depends on the absorption in this direction :

dp(m,l,b) = dfZdmfo~rzdr Ø(m - 5 log r - 5 - A(l,b))

Ø is the galaxy luminosity function, A(l,b) the absorption out of th e
Galaxy in the direction (l,b) . Catalogues of deep galaxy counts are often
presented as a listing of a surface density of galaxies as a function o f
position. What is counted is mostly the number of galaxies brighter tha n
certain limiting magnitudes within a given solid angle . Obscuration has
several effects on galaxy counts, either it dims a galaxy so much that i t
falls below the detector threshold or also the appearance of the galaxy i s
modified so it can not be discriminated from a stellar object . Only the
first effect is considered here : a galaxy with a certain luminosity is only
counted if its distance and the obscuration place it above the catalogues '
limiting magnitude, mo

co

	

mo_A o 0

dp = MIfo O(A,l,b)dAfoo dmfo r2 dr Ø(m - 5 log r - 5 )

where O(A)dA is the probability to encounter an obscuration in the
range A,A+dA in the direction (l,b) . O(A) is not known as a function o f
galactic coordinates . The probability to have a simultaneous sighting o f
two galaxies brighter than m o in two directions separated by an angl e
012 is similarly

dp = df2 1 dS22fofo

oo0

1z(A 1, Az, o1z)

moA 1 rmoA2
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(Ø(m 1 - 5 log r1 - 5) . (II (m2 - log r2 - 5) + cross term)
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O12(A1,A2,O12) is the joint probability to observe the absorptions Al and
A2 along two lines of sight separated by 0 12 . The frequency functio n

O12(A1, A2 .012) is also quite unknown .
However, the functions O(A) and O 12 (A 1 ,A 2 .O t2) can be estimated

for the zone above b = 70° by using the -5000 E(b-y) values . In fact
these distribution functions are not required to be known in details fo r
evaluating the influence of absorption on the clustering of galaxies . If the
amplitude of the extinction is small the luminosity function may b e
expanded in powers of the absorption. For small absorptions only th e
first and second order moments of the dust distribution are required .

The function 0 12 is the variation of the average of A 1A2 with separa-
tion O. For O = 0 the function is related to the number of clouds per uni t
length along a line of sight .

Sorting out the color excess data in preselected separation and colo r
excess intervals consumes much computing time . Before complicating
the analysis by binning in distance intervals etc . the autocorrelation was
computed for the complete sample of NGP stars . The stars are thus not
separated in distance bins before the average absorption products ar e
computed . The effect of this simplification is not quite clear, but it may
be of minor importance because a preliminary discussion of a subsampl e
of NGP stars, Knude (1984), indicated that only minor variations of th e
dust distributions average properties are to be expected within the firs t
300 pc from the plane . One might think that this problem was easil y
solved by only including stars beyond a certain distance limit to mak e
sure that the integrated column out of the plane was measured . But with
a discrete distribution of the obscuration the most distant stars in mag -
nitude limited samples, as the NGP sample, are only included becaus e
they happen to be unreddened . Exclusive use of the most distant star s
will thus bias the reddening amplitude towards lower values . In the
computation of the mean absorption products, separations from 10' to 3 °
have been considered. Rim effects are corrected for by weighting pair s
by the fraction of the annulus inside the zone b > 70°. The means are
computed for all excesses in the range from -0.030 to 0 .100 mag . It i s
tacitly assumed that there is a constant ratio of selective to absolut e
absorption .

With preselected excess values, E 1 and E 2, excesses in the interval E 1 ±

0.005 mag are combined to excesses in the range E 2 ± 0.005 mag for the
18 separations 10 ' +n 10 ' , n = 0,1,2, . . .,17. For a separation O the proper
E2 's are searched after in an annulus 0±5' . On Figure 9 the variations of
the joint probability to find two excesses with a separation O are shown
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SEPARATION OF REDDENING PAIRS
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Fig . 9 . Relative frequency of (E l ,E2) pairs as a function of separation O .
(-0.020,-0 .010)	

( 0 .010, 0.020)--- -
( 0.020. 0.030)	
( 0 .030, 0.040)	
The curves are shifted to a common origin . Note particularly the difference between the ICM curv e
(	 ) and the cloud curve (	 ) .

as a function of O . The scale is arbitrary and the curves have been shifte d
to a common origin . The curves shown are for the (E 1i E2) pairs (- 20, -
10),(10,20),(20,30),(30,40) in mmag . The two first pairs may be repre-
sentative for the clear lines of sight and the two last for obscured lines o f
sight . The probability to have two clear lines of sight is thus constant fo r
the whole range of separations considered . For the pairs (0 .020,0.030)
the joint probability shows a decreasing tendency with increasing separa-
tion . For the excess pairs (0 .030,0 .040) the decreasing tendency is con-
firmed . The decrease is however not monotonic but the joint probabilit y
indicates that these pairs are distributed on preferred angular scales . Sep-
arations below 20', between 60' and 100', and between 150' and 170' ar e
the most common.



88

	

JENS KNUD E

MEAN REDDENING PRODUCT S
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Fig . 10. Average excesses (E 1 E2 )o as a function of separation . The average cross products are

constant implying an uncorrelated dust distribution . The dust autocorrelation function, defined i n

the text, is accordingly -0 unlike the NH distribution which is a clean exponential .

Finally the products E 1 E2O(E1 ,E2,012) are integrated over the ob -
served excesses for constant 0 to obtain (E 1 E2 )e. The integral is com-
puted for the 18 values of e considered. In the light of the neat depend-
ence of the N (HI) autocorrelation on 0 the result for the dust is really
unexpected, because the mean (EI E 2 )o does not show any dependenc e
on separation whereas the HI columns follow an exp(-O) law . The
average products equal the -mean square for the complete sample . With
the definition of the autocorrelation function

wE (0) ° (E IEa)e/ (E ) 2 - 1 = 0, O 0

it its found that wE is identical to -0 for the range of separations consid-
ered. The values computed for (E 1 E2)o are shown on Figure 10 . The
conclusion seems to be that the dust is uncorrelated in the `circular sense '
at least . This may be understandable from the dust distribution found in
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the previous section . When the dust is confined to filaments with densit y
variations, e .g . Figure 2 and 3, `any' reddening may be found for `any '
small separation. Note that t0E * 0, 0=0, which implies that the numbe r
of clouds per unit length may be found from the method of moments :
k=1 kpc' compared to k = 4-8 kpc -1 in the plane .

An uncorrelated dust distribution's influence on the galaxy distribu-
tion function is not evident but dust ripples as on Figure 2-8 will certain -
ly have som effect on a homogeneous distribution of galaxies . With a
reddening distribution as observed the autocorrelation function does no t
appear to be the best statistics to describe the spatial dust correlation . As
the dust may be confined to strings a statistics sensitive to the orientatio n
of the individual features may be thought of instead . It is emphasized
that the conclusion stating that the dust is uncorrelated is preliminary ,
the reason for this proviso is that when the complete sample is used fo r
calculating the excess products at a given angular separation, excesse s
from the whole distance range 50-600 pc are included and these excesse s
may not have any physical relationship . A calculation of the excess pro -
ducts from subsamples limited to excesses from narrow stellar distanc e
intervals may give different results .

Small scale structure in the distribution of matter at hig h
latitudes and the origin of the diffuse soft X-ray background

Since the surveys of the diffuse background at soft röntgen energies wer e
completed an interesting conflict on the spatial location of the emissio n
has come about . As the computed absorption cross section of the IS M
gas, assuming a cosmic composition, only requires a few times 10 20
atoms cm-2 to have an optical depth unity, the emission volumes ar e
supposed to be within a few hundred pc . At the galactic poles this may
not be the case . Ultraviolet absorption lines indicate the existence of
plasmas with temperatures close to 10 5 K, Savage and de Boer (1981) .
Theoretical considerations on why high latitude clouds do not dispers e
on short timescales indicate that plasmas with even higher temperature s
may be in pressure equilibrium with these clouds .

The consistency of a hot halo and the background emission has been
studied within a two component emission model

I = IL + IR exp (-i)

	

(1)
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where I L signifies the intensity from a local unabsorbed emission and IR
the remote emission which will be absorbed by the intervening material
with the effective optical depth T .

ti is computed from atomic cross section, Cruddace et al . (1974), and
the observed NH columns. If the gas/dust ratio is known the optical
depth may also be computed from the dust columns E(b-y). Dust col-
umn observations may be better to use than 21 cm observations becaus e
they relate specifically to the volumes from which the soft emission may
be observed. But they introduce of course another parameter which i s
not well known either .

A plasma code at a given temperature is required to fit the thre e
parameters IL ,IR and ox to the observations I(l,b) and NH(l,b) . T = oXNH ,
where ox is the effective cross section which may differ from the com-
puted atomic cross sections because of a variable distribution of matte r
inside the beam of the X-ray experiment . The model values of oX in fact
disagree with the atomic cross sections indicating either that the tw o
component emission is not a proper model or that the matter obscuring
the remote emission is not located in nice homogeneous sheets covering
the complete X-ray beam .

Two obvious solutions to this problem have been proposed :
(a) There is only an insignificant if any remote soft X-ray emission .

The local emission dominates the background .
(b) The absorbing gas has a discrete distribution and is clumped on

scales much smaller than the X-ray beam .

The author may be prejudiced from his optical experiences but has a feel -
ing that the (b) suggestion is to be preferred .

Recently a series of papers discussing inter alia the point (b) has ap-
peared, Fried et al . (1980), McCammon et al . (1983), Jahoda et al . (1985) .
Jahoda et al . have performed new 21 cm observations to address specifi-
cally the problem of clumping on scales comparable to the X-ray beams .
They have completed detailed mapping of the HI column density dis-
tribution in 20 randomly selected areas with a size 4°X5° . The X-ray
beams have typically a FWHM of 7°, and are circular with a triangula r
response function .

The fit of the global observations to equation (1) requires that th e
effective absorption cross sections are reduced with approximately a
factor of two. If the combined X-ray counts and column density data ar e
to be reproduced the diminished absorption efficiency requires an ex-
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treme degree of clumping, hence observations of the small scale distribu-
tion of matter is important . Twenty regions are mapped by Jahoda et al .
with a spacing of only 10' between the observations . The 140 foot tele -
scope observations were corrected for side lobe effects by comparing a
synthesized beam to the Crawford Hill beam for identical regions . The
Crawford Hill survey, Stark et al . (1984) is supposed to be free from sid e
lobe effects ; conversely the telescope has a large beam : 90% of the inten-
sity within 2° . Such a large beam may cause problems . Figure 9 showed
that preferred separations of reddening pairs relating to lines of sigh t
penetrating clouds are smaller than 30' . The cross section reduction i s
due to the difference of the average transmission over the beam, wher e
the amount of matter may vary, from the transmission corresponding t o
the column density averaged over the bea m

a -	 °eff	 =	 - In { E exp(-°atomicNH) }
( 2 )

°atomic

	

°atomic E NH

n is the numbeer of lines of sight observed in one of the 20 regions or in
an area of comparable size .

The atomic cross section for the B-band (0.13-0.188 keV) and for th e
C-band (0 .16-0 .288 keV) is 1 .75 10-20 cm 2/atom and 0.8 10-20 cm2/atom
respectively, McCammon et al . (1983) . The effective cross sections re-
sulting from the model fits are 0 .65 10-2° and 0 .52 10-20 cm2/atom for th e
B and the C band respectively, Burrows et al . (1984) . McCammon et al .
op .cit . quote 0 .37 10 -20 and 0.40 10-20 cm2/atom respectively .

Using the numbers by Burrows et al . requires reduction factor s
aB =0.37 and ac=0.65 . The detailed mapping of the 20 regions resulte d
in reduction factors larger than 0.8 for the B-band as well as for the C -
band, Jahoda et al . op.cit ., Table 1 . Obviously there is no evidence fo r
the extreme gas clumping in the 140 foot observations and consequentl y
little support for soft X-ray emission from a hot halo .

Two of the regions, 5 and 19, mapped by Jahoda et al . fall within the
zone b > 70°. When the averages of the excess products were compute d
for various separations the polar cap was divided in 51 cells . The centers
of the regions 5 and 19 are located in cell 42 and cell 15 respectively . The
areas of cell 42 and 15 are 23 .5 and 27 .5 square degrees respectively and
contain 95 and 103 lines of sight where the color excess E(b-y) was meas-
ured. Both area size and number of observing points are then compa-
rable to the values from the radio survey . The reduction factor a for
these two cells may be computed from the dust observations if the
relationship between dust and gas was known, which it really is not . A
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CELL 1 5
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Fig . 11 . Dust column distribution in cell 15, see Tabel 1 . The histogram is assumed to be made u p

by observations of two components of the ISM . A truly diffuse part with (E(b-y)) = 0 and o (Po_

y» = 0.010 and a cloud part with E(b-y) > O . See text for details .

constant ratio is anyway assumed : NH/E(b-y) = 7 .5 1021 cm-2 mag -1 ,
Knude (1978) .

Burstein and Heiles (1982) suggest a constant ratio above latitud e
+60°. Figure 11 is a histogram of the dust column distribution in cell 15 .
There is evidently a preponderance of positive excesses but also a wel l
populated negative tail . For comparison Figure 12 shows a similar his -
togram for cell 5 which has the same latitude as cell 15 but 15 =1 15 +180° .
The distribution of dust columns in cell 5 is a beautiful specimen of th e
distribution of dust within a small area. Cell 5 has a slightly large r
average excess than cell 15 but otherwise the two histograms are very
similar . When computing the transmissions the negative excesses pose a
problem . Negative excesses result from imperfect photometry . They ar e
thought to result from observations of directions with very low dus t

0
-50
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Fig . 12 . Caption as to Figure 11, but for cell 5 .

columns; the error distribution will then scatter about half of the actuall y
zero reddenings below zero . Following this picture it is suggested that
the interstellar dust is distributed on two basic components in the ISM : a
truly diffuse part, the inter cloud medium (ICM), and a higher densit y
part, the clouds . The transmission of the ICM is taken to be unity . In
order to discriminate between the two components of the ISM in the
computation of the reduction factors it is postulated that the ICM red-
denings follow a gaussian with average excess --0 and with a standar d
deviation 0 .010 mag. The number of stars with excesses in the rang e
from -0.01 to -0.020 equals accordingly the number of lines of sigh t
scattered between one and two sigma below zero reddening . The total
number of ICM lines of sight is then estimated from the number of star s
in this excess interval. For the 99 lines of sight used in cell 5,43 i s
estimated to run exclusively in the transparent ICM . For the remainin g
56 lines of sight individual transmissions are computed . An excess in th e
range from 0 to 0 .030 may either be an ICM or a cloud line of sight . The

0
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ICM lines are selected in sequence following the raster scan of the origi-
nal observations .

For cell 5 the ratio of average transmission to the transmission for th e
average column is 0 .3343 and 0 .5581 for the B- and C-band respectively .
The reduction factors computed for four cells are listed in Table 1 . The
factors depend naturally on the constancy of the gas/dust ratio . As brief-
ly discussed previously this ratio seems to vary inside the pole region .
The average NH column estimated from the average dust column is a
factor of two smaller than the average observed for region 5 and 19 . The
ratio (NH )/ (E(b-y) ) for these two regions are 1 .48 10 22 cm-2 mag -1 and
1 .87 10 22 cm-2 mag -1 . If the mean of these ratios replaces the gas/dus t
ratio used for cell 15 aB,ac drops to 0 .167 and 0.332 respectively . The
difference of the gas/dust ratio may be due to different distribution of ga s
with different temperatures relative to the dust distribution. The rati o

Cell 15. Distances
25

20

E

Z 10

	 I	 i	 I	 a	 I	 1
100 200 300 400 500

Distance (pc)

Fig . 13 . Distribution of distances for the stars in cell 15 . Note that the major part, -75%, of th e
stars are beyond most estimates of the gas scale height .
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Table 1 . Reduction factors aB,ac for the B(0 .13-0.188 keV) and C(0 .16-
0.288 keV) band absorption cross sections computed frem color excesse s
assuming a constant gas/dust ratio .

Cell 1 b aB ac (E (b-y) ) N

(O) ( O) mag

42 36- 72 80-85 0.3456 0.5985 0.0066 95
5 72- 90 70-75 0.3343 0.5581 0.0166 101

15 252-270 70-75 0.3280 0 .5315 0.0106 103
47 216-252 80-85 0.3593 0 .5706 0.0117 123

Table 2. Reduction factors of the B and C band absorption cross section s
from the observed gas column densities . The last column is the expecte d
neutral hydrogen column density calculated from the observed dust co-
lumns assuming the standard gas/dust ratio .

Cell

	

Region 1

	

b

	

aB

	

ac (NH)

	

(EH )

( 0)

	

(O)

	

1020

42

	

5

	

59 84 0.934 0 .970 0 .98

	

0 .495
15

	

19

	

264 71 0.959 0.981

	

1 .98

	

0 .795

7.5 1021 cm-2 mag -1 was estimated from observations in direction s
where HI was observed in absorption .

Table 1 contains the computed reduction factors for four high latitude
cells . The radio results for the factors in region 5 and 19 (cell 42 and 15 )
are presented in Table 2 . The dust data indicate extreme clumping bu t
the radio data do not . For the four regions the average reductions are aB
= 0.34±0.01 and ac = 0.56±0.03 in reasonable agreement with the
requirements aB = 0.37 and ac = 0 .65 required by the two componen t
models . The dust data thus lend some support to the possibility of a
diffuse contribution from a hot halo whereas the radio data do not . The
reason for this discrepancy is not obvious . The computed average H I
columns for region 5 and 19 in Table 2 are however lower than the
average of the observed column densities by the factor of two as men-
tioned. This deviation is not caused by the limited distance range probe d
by the optical observations . Figure 13 shows the distribution of stella r

cm-2
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distances or the length of the lines of sight along which the dust i s
accumulated for cell 15 . More than 75% of the stars are beyond 150 p c
and then well above one scale height from the plane . If the four cells ar e
compared to the same regions on the Hat Creek maps the E(b-y) predic-
tions of the column densities are low with a factor 3-4 except for cell 5
where the agreement is better . Cell 5 contains the 21 cm maximum of
the NGP zone .

As the computation of the E(b-y) values was completed very recentl y
and none of them have been published so far it is thought appropriate t o
present a table with some of the data . Table 3 contains E(b-y) an d
distances of the stars in cell 15 where the center of region 19 is located .

As in the previous section it is a difficult matter to state a clear defini-
tive conclusion concerning the small scale structure in the matter at high
latitudes . The picture appears more complex than ever . But: part of the
ism does clump on the scales required by the two component emis-
sion/absortion model for the diffuse soft X-ray background indicatin g
that a significant fraction of the high latitude emission may originate in a
hot halo . This conclusion is strongly depending on the assumed gas/dus t
ratio . To complicate matters further this ratio seems to differ from a
previous derivation when formed from gas only seen in emission .

Table 3 . Stars in the cell 15 (1 : 252°-270°, b : 70°-75°) . A star labelled with
a DM number followed by a capital letter indicates that it is not in the
Bonner Durchmusterung and that the nearest DM star is as indicated .

DM I II b II E(b-y) D

DEG DEG MAG PC

10 2380 269.5687 69.7660 0.011 258 . 8
11 2422 266.7675 70.3590 0 .028 174 . 2
11 2423 267.4446 70.2027 0 .044 190 . 7
11 2424 266.9501 70.5486 0.010 81 . 0
11 2424 A 267.2786 70.4969 0.028 283 . 3
11 2426 268 .0995 70 .2245 0.009 142 . 8
11 2426 A 267 .4739 70 .6108 0.016 245 . 1
11 2427 267 .4739 70 .6108 0.053 207 . 9
11 2431 269.1553 70 .6877 0.007 133 . 1
12 2403 262.3851 69 .7749 0.006 372 . 4
12 2408 262.1716 70.5662 -0.024 144 .1
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DM lII bII E(b-y) D

DEG DEG MAG PC

12 2409 262.0745 70.8151 0.048 119 . 5
12 2410 263.0046 70.4566 -0.022 291 . 3
12 2411 262.2965 70.7903 -0 .001 158 . 9
12 2413 263. 8512 70.2970 -0 .020 214 . 6
12 2417 264.5242 71 .0918 -0 .024 191 . 2
12 2418 265.1323 71 .0754 0 .009 280 . 4
12 2421 266.0522 70.8070 -0 .023 84 . 8
12 2423 267. 0181 71 .2336 -0 .029 423.3
12 2425 267.4096 71 .5542 0.018 261 .7
12 2426 267.5265 71 .6416 0.014 339.2
12 2427 267 .6868 71 .6855 0.009 138. 1
12 2428 268 .8782 71 .3211 -0.008 102.5
12 2430 268 .1942 71 .8948 0.049 139. 9
13 2464 254.7128 69.8715 -0.004 357 . 5
13 2470 257 .5502 70.2124 -0.001 279 . 3
13 2472 257 .5490 70.8621 -0.004 242 . 6
13 2476 A 258 .3956 70.8920 0.007 238 . 7
13 2476 258 .4571 70 .9756 0.013 185 . 8
13 2478 259.4741. 71 .1262 0.053 165 . 4
13 2481 260.6036 71 .6086 0.013 173 . 6
13 2482 261 .9072 71 .1325 0.006 128 . 3
13 2484 261 .9296 71 .7696 0.035 158 . 0
13 2485 A 262.1574 71 .8126 0.010 263 . 5
13 2485 262.1237 71 .7200 0.019 91 . 5
13 2487 263.5303 72.4348 0.030 210 . 5
13 2490 265.1486 71 .9236 -0.006 249.5
13 2492 265.3295 72.2481 0.016 161 .2
13 2494 265.4537 72.2514 0.012 176.4
13 2495 A 266.5759 72.1208 0.007 456.9
13 2495 265.9141 72.3075 -0.011 273.2
13 2498 266.3042 72.4669 -0.008 193.5
13 2500 267.4013 72.5564 0.001 277.2
13 2502 268.1752 72.5650 -0.003 127.3
13 2503 267.8181 73.1204 -0.004 116. 8
13 2504 268.3594 73.0410 0.008 291 . 3
13 2505 268.6227 73.1537 0.041 170.7
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DM lII bII E(b-y) D

DEG DEG MAG PC

13 2507 A 268 .8483 73.3887 -0.003 267. 8
13 2511 269.9527 73.6486 0.067 170. 8
14 2438 252.4147 69.8136 0.020 112 . 6
14 2440 253 .5935 70.0971 0.011 265 . 0
14 2441 253.6926 70.4236 0.023 150 . 4
14 2442 254.4439 70.1688 0.022 171 . 2

14 2447 254.3482 71 .2410 0 .025 106 . 4
14 2448 254.4727 71 .4473 0 .020 74 . 6

14 2448 A 254.1811 71 .4062 0 .011 297.4
14 2449 255.5264 71 .2346 0 .009 219.5
14 2451 256 .0976 71 .1995 0 .022 127. 1
14 2454 256.9979 71 .4241 0.009 151 . 1
14 2455 257.8257 71 .1506 0.001 277. 6
14 2457 256 .6912 71 .9274 0.037 74 . 9
14 2458 256 .9754 72 .1582 0.037 142 . 3
14 2461 258 .5009 72 .1640 -0.011 694 . 0
14 2462 259.8231 71 .7770 0.015 158 . 5
14 2465 259.2378 72.1510 0.016 215 . 5

14 2466 258.7192 72.4401 0.017 195 . 9
14 2469 261 .0262 72.5113 0 .009 231 .2
14 2470 261 .6546 72.2748 -0 .011 441 .8
14 2472 261 .5299 73.0822 -0 .002 219.8
14 2473 262.9986 72.9610 -0.001 150.8
14 2476 F 263.2831 73.5220 -0.007 303.7
14 2477 266.2775 73.4953 -0.007 201 . 7
14 2478 266 .6203 73.5812 0.004 133 . 6
14 2481 267.3817 73 .3631 0.001 104 . 3
14 2482 267.0350 73 .6792 -0.003 266 . 9
15 2386 A 252.7008 70.9734 0.002 242 . 6
15 2394 A 254.0706 71 .9882 -0.033 363 . 5
15 2394 253.6795 71 .9275 0.020 393 . 1
15 2396 253.1113 72.3000 0.029 287 . 3
15 2398 254.5440 72.0121 0 .049 145 . 4
15 2399 253.5880 72.6166 0 .042 134 . 5
15 2400 A 255.6022 72.9178 -0 .031 556.5
15 2401 256.3252 73.1577 -0 .004 337.1
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DM lII b II E(b-y) D

DEG DEG MAG PC

15 2403 257.0716 73.2121 -0 .010 210 . 1
15 2405 257.9796 73 .2490 0.007 155 . 2
15 2409 261 .0343 73 .3126 -0.023 201 . 9
15 2417 Q 261 .4269 74 .5105 0.018 282 . 4
15 2418 262 .2001 74.2626 0.010 74 . 2
15 2419 262 .5046 74.3499 0.015 195 . 7
15 2420 263 .5779 74.1609 -0.009 217 . 1
15 2426 263 .8356 74.9707 0.004 321 . 4
15 2427 A 265 .8161 74.4124 0,01.8 262 . 3
15 2430 A 266.3453 74.8605 0 .015 266 . 0
15 2430 266.6207 74.8690 0 .010 215 . 0
15 2433 267.3352 74 .8646 0.005 203 . 0
16 2325 254.4840 73 .8025 0.021 238 . 7
16 2330 256 .9201 73 .7845 0.071 169 . 0
16 2331 257 .1060 73 .9820 0.024 259 . 4
16 2335 258 .4148 74.0928 0.024 248 . 5
17 2423 252.6768 73.9673 0.043 247 . 4
17 2430 255 .6209 74.6649 0.007 118 .1

Concluding remark s

The incursion into the field of high latitude dust suggests a revision o f
three major points :

on the existence of high latitude dust : substantial amounts are present. The
most reddened lines of sight are organized in a filamentous pattern .

on the autocorrelation of the dust distribution : apparently the dust is uncor-
related with the usual definition of the autocorrelation function . The
variable obscuration may have other effects on the galaxy distributio n
than changing its amplitude and power. One could imagine that the
galaxy distribution somehow was complementary to the dust dis-
tribution . A statistics sensitive to the orientation of the dust strings i s
required for such an investigation .



100

	

JENS KNUD E

on the small scale dust distribution : the dust distribution in areas compar-
able in size to the beams applied in the soft X-ray surveys is found t o
show extreme clumping of a degree required to explain the reduce d
absorption cross section. If the dust and gas correlates spatially this
result indicates that a fraction of the high latitude background ma y
originate in the halo. It is however a serious question whether a gener-
al constant gas/dust ratio can be maintained . The NGP data indicate s
that rather large variations may be anticipated .

The dust investigations make up only part of the studies for which th e
NGP data were obtained . An immediate application will be the first
estimates of density variations perpendicular to the galactic plane fo r
various stellar subgroups .
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THOMAS DØSSIN G

General Survey of Heavy Ion Reactions and
Specific Problems in Damped Nuclear Reaction s

ABSTRACT . A general introduction to heavy ion reactions is given, consisting of a brief survey of
the whole bombarding energy spectrum, from damped nuclear reactions to ultrarelativistic collisions ,
followed by a short review of theories of damped nuclear reactions . A more specialized discussion is
made for the angular momentum dynamics in damped nuclear reactions, studied with the nucleo n
exchange transport theory . The theory is applied to study the polarisation of y rays emitted in th e
sequential decay of the reaction products, and to Wilszinsky plots . The results for these quantities
compare well to data for energy losses less than half of the maximal energy loss, but the predicte d
fluctuations in energy loss and scattering angle are too small to account for the data at larger energ y
losses .

The Niels Bohr Institute, Blegdamsvej 17 ,
DK-2100 København Ø, Denmark

1 . Introduction

Deep inelastic collisions between atomic nuclei, or, as we shall prefer t o
call them, damped nuclear reactions, were first observed in 1961 . Since
the application of more powerful accelerators and more refined detectors
around 1975, a more intense study of these reactions has been carried
out, both experimentally and theoretically .

A damped nuclear reaction typically proceeds as follows . A heavy
projectile nucleus with a kinetic energy of several MeV per nucleon is
bombarded onto a heavy target nucleus . The two nuclei engage in a
reaction during which a substantial part of the available energy is los t
from the relative motion. Still, the emerging nuclei after the reactio n
resemble the original ones with respect to their mass and charge num -
bers . This approximate preservation of the size of the original nucle i
implies that the system must have maintained its binary characte r
throughout the reaction phase . The energy lost from the relative motion
appears as excitation energy in the two reaction products, which after th e
reaction dispose of this excitation by various processes, typically neutro n
evaporation followed by emission of y rays .
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On the one side, damped nuclear reactions are distinguished from th e
gentler quasi-elastic reactions by their large energy loss, while, on th e
other side, their binary character distinguishes them from reactions in
which a mononucleus is formed, such as fast fission or compound nu -
clear reactions.

Apart from this distinction, the damped nuclear reactions are als o
distinguished from the more violent reactions which take place when th e
bombarding energy is increased . To give the reader an impression of the
richness of nuclear reactions, a brief overview of the physical phenomen a
encountered in damped nuclear reactions as well as in the more violen t
reactions is given in section 2 of the present paper .

Atomic nuclei exhibit a variety of excitations, and different theoretical
descriptions of damped nuclear reactions ascribe the energy loss to th e
excitation of different types of excitations . In section 3 an overview i s
given of the most important theories, with special emphasis on nucleo n
exchange transport .

Nucleon exchange transport has recently been applied to the study of
the dynamics of angular momentum during damped nuclear reactions ,
Dossing 1985a, and it was found that the angular momentum carrie s
.characteristic and important information about the reaction process .
This development is briefly reviewed in section 4, and section 5 discusse s
variances in energy loss and scattering angle, which are relevant fo r
differential cross sections. In section 6 theoretical differential cross sec-
tions and results for the polarisation of y rays emitted by the reactio n
products after the reaction are compared to experiment, thereby widen-
ing the confrontation of the theory with data . Section 7 gives a conclu-
sion, and the appendix gives the technical details of the y ray polarisatio n
calculation and discusses the quality of the information contained in y ra y
polarisation observations as compared to the observation of angular dis-
tributions of continuum y rays .

Most of section 2 of the present paper is meant to be accessible fo r
readers without pre-knowledge of nuclear physics . Section 3 is also quite
general, but enters into more special topics . The remaining sections as
well as the appendix deal with specialized problems . They are centered
around the presentation of new results in section 6, and the conclusio n
drawn from them in section 7 .
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2. Survey of reactions between heavy ions

Figure 1 illustrates nuclear reactions between heavy nuclei for differen t
bombarding energies, starting with the smallest in the top row and
ending with the largest in the bottom row . The left hand column show s
the two nuclei approaching each other, and the length of the arro w
indicates the velocity in the center of mass frame . The middle column
shows schematically the nuclei in a characteristic moment of their inter -
action. Understanding the physical processes at that moment is the ai m
of nuclear reaction studies, but in experiments information can only b e
obtained through careful observation of nuclei, y rays or other reactio n
products . The end of the reaction phase is illustrated in the right han d
column. The reaction products are still close together, but they mov e
with high speed, about to start their journey out to the detectors, where
their type, energy etc. may be determined .

The length scale of the illustration is given by the nuclear radii, whic h
are around 5 to 8 fm (1 fm = 10-15 m), and the reaction times are of th e
order of 10-21 to 10-23 sec .

For the lowest row, labelled by the name ultrarelativistic collisions ,
the bombarding energy is so large that the velocities of the nuclei are
only slightly smaller than the velocity of light . The nuclei approaching
each other in the lower left hand corner are really the saine as the ones
illustrated in the rows above, but,because of their high velocity they ar e
contracted along their direction of motion .

A general reference to reactions between heavy nuclei with emphasi s
on theoretical questions may be found in the proceedings of a conferenc e
held in Paris in May 1984, Martinot 1984 .

2 .1 . Basic properties of stable nucle i

By letting heavy nuclei react with each other, one can study the matte r
inside nuclei under conditions which are fundamentally different fro m
those present in stable nuclei. Stable nuclei consist of protons and neu-
trons, or with their common name, nucleons (and of virtual particle s
associated with the mutual interaction of the nucleons) . Stable nuclei
have an interior of almost constant density of nucleons, and a thin sur -
face region over which the density falls from the value in the interio r
down to values close to zero . The interior density is practically indepen -
dent of the size of the nucleus . The thickness of the surface region i s
approximately 1 fm, which is small compared to the radius of around 6
fm, so for an illustration it is quite realistic to draw the nuclei as having
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Fig . I . Schematic illustration of heavy ion reactions . The 4 rows show the time evolution fo r
different sizes of the bombarding energy . The left hand picture shows the nuclei approaching eac h

other, the middle one shows a characteristic moment of the reaction, and finally the right hand
picture shows the end of the reaction phase . Open circles or ellipsoids denote nuclei or nucleons, an d
filled dots denote pions or other particles produced during the reactions .

sharp surfaces. The interaction between nucleons contains both attrac-
tion and repulsion, depending on their state of relative motion . The siz e
of stable nuclei balances the attraction and repulsion .

Each nucleon moves in the common attractive potential generated by
the interaction with the others . In the simplest picture of nuclei, th e
lowest nucleon eigenstates in the potential are filled up according to th e
Pauli principle .

2.2 . Energy scales for elastic and inelastic nucleon collision s

The energy unit commonly used in nuclear physics is MeV . (For exam-
ple the energy released in the fission of one Uranium nucleus is approxi-
mately 150 MeV) .
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Due to the Pauli principle two nucleons in a stable nucleus can no t
collide and scatter to two new levels . In a reaction between heavy nuclei ,
all nucleons can move in the common time dependent potential gener-
ated by the nucleon distribution . To assess the relative importance of the
motion in the potential versus collisions between individual nucleons ,
the energy per nucleon in the relative motion of the nuclei should be
compared to the depth of the potential of approximately 45 MeV, and to
the kinetic energy of around 35 MeV of the nucleon occupying the
highest level .

For slowly moving nuclei most of the collisions possible for free nu-
cleons will be hindered by the Pauli principle, since there will generall y
not be energy enough in the relative motion of most pairs of nucleon s
from the two nuclei to scatter into unoccupied levels . The nucleons will
then move with relatively long mean free path between collisions . This
applies to the damped reactions where the energy per nucleon is around 4
MeV, and also to some extent to the fragmentation reactions .

For rapidly moving nuclei, the energies of the nucleons are so hig h
that a potential of the order of 45 MeV only will deflect their direction o f
motion very little, and only few collisions between pairs of nucleons
taken from the two different nuclei will be hindered by the Pauli princi-
ple . This applies to the relativistic and ultrarelativistic collisions .

Other energy scales are set by the threshold energies for inelasti c
collisions between nucleons in which other particles are created, or the
nucleons themselves are excited or changed . Each nucleon is believed to
consist of three smaller particles, quarks . During violent collisions, two
quarks can interact and change their nature, and pairs of quarks and
antiquarks can be created . For example, a neutron and a proton can
collide, forming two protons and a pion, which consists of a quark an d
an antiquark bound together . The threshold energy for such processes i s
given by the rest mass energy of the lightest particles which can b e
created, the pions, 140 MeV .

2.3 Damped reaction s

In damped nuclear reactions the nuclei approach each other with a rela-
tive energy of the order of 4 MeV per nucleon. During the reaction th e
nuclear surfaces attract each other and start to overlap, but they do no t
have energy to penetrate each other because this would lead to a hig h
density and a repulsive potential in the region of overlap . Instead, the
density between the two nuclei forms a smooth continuation of their
interior densities during most of the reaction . Due to the relative motion
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of the nuclei, nucleons can move from an occupied level in one nucleus
to an unoccupied one in the other . Quite many nucleons may be
exchanged this way, and through collisions with nucleons in the nucleus
receiving them, they will heat the nuclei up . Still their energy in the
receiving nucleus will not be very high, so most collisions are hindere d
by the Pauli principle, and the nucleons will have an average mean fre e
path of the order of the nuclear radius before colliding .

The exchange of many nucleons between the two nuclei in motion and
the simultaneous heating pose many intriguing problems, which we
shall touch upon in the next section . Also other excitations than nucleo n
exchange will occur, such as substantial deformations of the surfaces o f
the nuclei . On the other hand, the heat per nucleon produced is small
compared to the binding energy of the nucleons in the nuclei, and such
quantities as the density inside the nuclei are practically not change d
during the reaction .

Some theories of nuclear reactions yield quite definite results for the
time evolution of charateristic variables . This is for example shown i n
section 4 of the present paper, which deals with the application of nu-
cleon exchange transport theory to describe the dynamics of the rotatio n
of the nuclei during the reaction .

2 .4 . Fragmentation reaction s

Increasing the energy to around 75 MeV per nucleon, a large excitation
energy may be developed, caused by the more frequent collisions pos-
sible between the nucleons . Many collisions will tend to thermalize th e
velocity distribution over the volume of the reacting nuclei . Above a
certain temperature, the nuclear matter will not be stable any longer, and
it will expand and crack, leading to a fragmentation of the two collidin g
nuclei . These cirumstances are reminiscent of the situation in the ho t
matter in supernovae as it expands again after a strong compression . The
important questions are the evaluation of the critical temperature fo r
fragmentation and of the distribution of the sizes of the smaller nucle i
produced in the fragmentation .

2 .5 . Relativistic collisions

Increasing the energy per nucleon still further, up to around 500 MeV
per nucleon, the velocities of the nuclei before colliding are of the order
of 60% of the speed of light, hence the name relativistic collisions . As we
have argued, at these energies the reaction will be dominated by colli-
sions between the nucleons . When the nuclei jam into each other, the
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nucleons on the sides of the nuclei facing each other will collide first ,
acquiring sidewards motion at the expense of their velocity along thei r
original direction of motion . Some of the collisions will be inelastic . The
nucleons are then not able to leave the interaction zone as quickly as the y
entered, while nucleons which have not yet collided are still streaming i n
from the back sides of the nuclei . This results in a substantial buildup o f
the density, pictured as the hatched area in the center of the nuclei in th e
reaction phase shown in fig . 1 . The density may reach 4 times the norma l
density inside nuclei . According to most theories of nucleon interaction s
and nuclear matter, this will result in a strongly repulsive potential in the
region of high density, which for the geometry of the collision depicted
in fig. 1 will deflect the nucleons moving in from the left downwards ,
and upwards for the nucleons moving in from the right. The repulsive
potential will also tie up a substantial fraction of the kinetic energy of th e
nucleons into potential energy . Collisions between these nucleons wil l
then be less energetic and result in the production of fewer pions tha n
would be produced if the repulsion was not there .

Towards the end of the reaction, parts of the original nuclei have not
suffered collisions, and they move on as smaller heated nuclei . The
nucleons which have collided form a gas of nucleons, reminiscent of th e
situation in the early universe . The gas will expand, and some nucleons
may combine to form light nuclei, like 2H, 4He etc. The velocity dis-
tribution will still carry memory of the deflection by the repulsio n
caused by the high density, and the pions will be fewer also beause of thi s
repulsion .

Both the number of pions and the velocity distributions have recentl y
been observed and related to the repulsion associated with the hot dens e
nuclear matter .

2.6. Ultrarelativistic collision s
Increasing the energy of relative motion considerably further, up t o
around 20000 MeV per nucleon, the reaction is believed to change it s
nature completely . At these energies the nuclei are contracted to flat
discs . As the two discs pass each other the more violent of the nucleo n
collisions may first produce an interaction quantum, a gluon string ,
between the quarks which have interacted . The other two quarks in each
of the nucleons do not feel the interaction immediately . The gluon
strings later break up, producing showers of particles, and the space
between the flat discs will be filled with a highly energetic mixture o f
quarks and antiquarks and gluons . If the density and temperature in this
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region becomes high enough, the quarks and antiquarks will no longer
be confined to each other within particles like pions or nucleons, bu t
they will be able to move freely within a »superbag« whose boundaries
are indicated in the middle part of the last row of fig . 1 .

Having many quarks and antiquarks together in a hot medium withi n
the superbag may be one of the best ways one can learn about thes e
fundamental building blocks of matter and their interaction .

The situation at the boundary of the superbag poses many questions ,
how will the hot plasma inside the superbag cool off and return t o
ordinary matter where the quarks are confined within little bags in nu-
cleons or pions etc . No matter how it happens, an enormous shower o f
particles will be produced in the final phase of the reaction. Until now
reactions with these high energies have only been recorded in very fe w
cases on photografic plates where nuclei from cosmic rays have hit nucle i
in the emulsion on the plates . Accelerators for the study of these reac-
tions are only proposed at the moment, and it is still not known whethe r
the conditions for producing the superbag will be achieved. Also it i s
being debated which observation among the many particles formed wil l
give the best diagnostics whether a superbag was formed . The condi-
tions within the superbag and during the return to the final reactio n
products are reminiscent of the conditions in the very early universe .

3 . Theories of damped nuclear reaction s

As was argued in section 2, collisions between nucleons are suppressed in
damped nuclear reactions, and the dynamics will be dominated by th e
motion of nucleons in the time dependent mean field .

3.1 . Time dependent Hartree-Foc k

The time dependent Hartree-Fock theory provides an extreme descrip-
tion of damped nuclear reactions in terms of independent particle motio n
in the average potential . The wave function for the whole colliding
system is at all times a Slater determinant, and the time evolution of th e
independent particle wave functions occupied by nucleons is given b y
the Schrödinger equation. Thus collisions between nucleons, leading to
more complicated states, are not possible, entropy is not produced, an d
heating of the nuclei will not take place in the strict sense .

Nevertheless, in applications to damped nuclear reactions, time de -
pendent Hartree-Fock generally gives a good account of the energy loss,
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and of the relation between energy loss and average scattering angle .
Intuitively, one can say that the energy loss comes about because of th e
inelastic collisions of the nucleons with the time dependent potential .
This time dependence is displayed in pictures . Davies 1981, of the evolu-
tion of the calculated density distribution .

More detailed investigations, Köhler 1979, Tang 1981, of the damping
mechanism in time dependent Hartree-Fock have applied the Wigner
transformation, which transforms the one body density matrix into a
phase space distribution. From these investigations it is apparent tha t
transfer of nucleons between the two nuclei play a crucial role for th e
damping. Since the two nuclei move relative to each other, the momen-
tum distribution of nucleons in the two nuclei are shifted relative to each
other, as illustrated in the right hand side of figure 2 . This allows phase
space points to move from one nucleus to unoccupied parts of the phas e
space in the other . Also, the boundaries of the potential may mov e
relative to the momentum distribution of phase space points which ar e
close to the boundary, and in this case phase space points may be re-
flected from the boundary into previously unoccupied points of th e
phase space distribution .

Both of these kinds of inelastic interactions of nucleons with the tim e
dependent potential give rise to damping . They were first discussed b y
Swiatecki and coworkers, Blocki 1978, and named window friction and
wall friction, respectively . This was not by using time dependent Hartree -
Fock, but by more schematic and general arguments .

Attempts to explain the mass dispersion observed in damped nuclear
reactions with the Slater determinant wave function of the system after
the reaction phase failed, Davies 1978 . This is understood not to be a
failure of the mean field description, but specifically due to the restrictio n
to this type of wave function, Dasso 1979 . Generally dispersions canno t
be addressed by time dependent Hartree-Fock as applied so far, bu t
recent theoretical developments may improve this situation, Balia n
1984 .

The density distribution calculated with time dependent Hartree-Fock
displays quite substantial deformations of the nuclear surfaces, especially
when the nuclei are about to separate at the end of the reaction phase .
This enables the nuclei to separate with kinetic energies appreciabl y
below the Coloumb barrier for spherical nuclei, in accordance with
experiment . Surface vibrations of the nuclear shape are automaticall y
present in time dependent Hartree-Fock calculations .
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3.2 . Transport theories

Realistic time dependent Hartree-Fock calculations for damped nuclear
reactions were long in the making, and were preceded by theories whic h
treated the time dependent field more schematically, but which, on th e
other hand, also addressed heating of the nuclei . The first such theory
was derived by Nörenberg and coworkers, Nörenberg 1975, Ayik 1976 .
In this work the characteristic time for quantal phase correlations to di e
out was found to be considerably shorter than the time scale for change s
of a set of macroscopic variables . Generally, phase correlations may
survive for a while, but those influencing the time evolution of th e
macroscopic variables are short . This enables the use of a master equa-
tion, or transport equation, for the distribution of macroscopic variables ,
and further, a Fokker-Planck equation for the mean values an d
covariances of the macroscopic variables . A recent review of these devel-
opments with references to the earlier work is contained in referenc e
Nörenberg 1982, which also treats a novel revision of the theory fo r
rather gentle collisions, based upon considerations of the time fo r
specific correlations to die out . A review of the various early formula-
tions of irreversibility and transport theories for damped nuclear reac-
tions has been given by Weidenmüller 1980 .

In these theories, the basic excitations giving rise to transport are, in
accordance with the overall independent particle picture, taken as inelas-
tic particle-hole excitations within nuclei and nucleon transfers between
them. To obtain closed expressions for coefficients, and for the phas e
correlations to die out fast, the interaction matrix elements for thes e
excitations were taken as Gaussian distributed and with random signs .
Microscopic calculations justified this to some extent, Barrett 1978 ,
Shlomo 1979.

Transport theories have been very successful in explaining the widt h
of the mass distribution, Ayik 1976, Wolschin 1981, and later some _
features of the spin distribution, Wolschin 1978, Wolschin 1981 . Also
differential cross sections could be reproduced quite well, Agassi 1978 ,
Ko 1979 .

3.3 . Coherent surface excitation descriptio n

A somewhat different description of damped nuclear reactions treats th e
inelastic particle-hole excitations within the nuclei in a more specifi c
way. When subject to an external field, like the Coulomb and nuclea r
field from the other nucleus, the particle-hole states will not be excited in
a random way, but rather in certain superpositions, collective vibration
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states . Within the Coherent surface excitation model, Broglia 1981 ,
specific account is taken of collective surface vibrations . These vibrations
correspond to standing waves on the nuclear surface . In actual applica-
tions of the coherent surface excitation theory, a low energy and a hig h
energy vibration for each multipolarity from 2 up to around 5 are in-
cluded. The mean excitation energy and rate of damping of each vibra-
tion are taken in accordance with both theoretical estimates and experi-
mental systematics .

It is a big advantage of this description that the deformation of the
surfaces are included, being determined by the amplitudes for the vibra-
tions . As in time dependent Hartree-Fock calculations, substantial dis-
tortions of the density distribution at the end of the reaction phase lead t o
final energies below the Coulomb barrier for the exit phase of the reac-
tion, in accordance with experiment . Quantal fluctuations associated
with the excitation of the surface modes are found to yield considerable
dispersions in quantities such as the energy loss for given impact parame-
ter, Esbensen 1977. This is supported by experiments .

3.4 . Nucleon exchange transport

An essentially parameter-free description of nucleon transfers in dampe d
nuclear reactions is given by the nucleon exchange transport theory ,
Randrup 1979, Randrup 1982 .

The theory is based upon transport theory, and in the formal deriva-
tion of transport coefficients for one-body operators, the time develop -
ment of the system is followed during a small time interval . The nucleon
transfers are described to take place between eigenstates of the mea n
fields of the individual nuclei by means of the interaction one body field ,
which is localized in the region of spatial overlap between the nuclei . A
transferred nucleon will occupy an excited state in the new nucleus and
leave a hole state behind in the old, and both of these will be damped b y
collisions with nucleons and with the moving potential boundaries . This
damping is assumed to be so fast that the density operator is kept o n
diagonal form in the eigenstates of the mean fields of the nuclei, given b y
thermal excitation . This and other approximations applied in the deriva-
tion will be valid in the limit of slow reactions between very large nuclei .
Especially important is the replacement of matrix elements of the inter -
action potential by a classical flow of phase space points .

The approximations have clear physical content, but some of them ar e
difficult to justify in a strict sense . Most serious seems to be the ar-
gumentation that energy is conserved in the transfers, when referred to a
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Fig .2 Illustration of transfer coordinate space
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common reference frame . For example, this requires the transferrin g
potential to act undisturbed within a time interval of the order At ,--,-i--

1 .6x10 -22 sec to achieve energy conservation to the accuracy of 2 MeV .

This time interval is only slightly smaller than typical time scales fo r
substantial changes in mean values and variances of for example the spin
variables of the nuclei .

The transfer of phase space points is illustrated in figure 2, in whic h
the left hand part shows the geometry of the dinuclear system at a certain
moment in a. reaction . The centers of the nuclei A and B move with
velocities ÛA and UB, respectively . Due to the slowing down of th e
orbital angular momentum during the reaction, the local velocities in th e
nuclei at the window, ûA and ûB , may be smaller . The hatched are a
symbolizes the coordinate part of a phase space interval situated aroun d
the window plane, which has the possibility of being transferred from B
to A or the other way . The right hand part of the figure illustrates the
momentum space. The phase space points are filled up according to the
Pauli principle, within spheres in momentum space for given coordinat e
points . The relative motion displaces the spheres relative to each othe r
by the amount mû = m(ûA - ûB ), ni being the nucleon mass . The
hatched area symbolizes the momentum part of the phase space interval ,
being occupied in nucleus A and not in B . With increasing excitation, th e
Fermi spheres acquire a diffuse surface, the diffuseness being determine d
by the temperature t in the nuclei . Even for the case of no relative
motion, nucleon exchanges are then still possible between occupied an d
unoccupied parts of the phase space in the nuclei, the number of suc h
exchanges being proportional to the temperature . For the general cas e
with both a relative velocity and a temperature, the number of exchanges
is given by the effective temperature t*, defined a s

t* = (
1/2I û . p I coth(	 Iu 2tp I
	

))F

	

(3 .1)
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where F symbolizes an average over the Fermi sphere of the nuclei an d
over the window area. In expression (3 .1) as well as in the drawing o f
fig . 2 we have for simplicity neglected differences in the Fermi moment a
of the two nuclei .

The transport coefficients contain two types of variables : (i) basic
nuclear paramenters, such as the Fermi momentum . (ii) dynamic vari-
ables, such as the effective window area, the distance between the center s
of the nuclei, the radial momentum of the relative motion etc .

The theory has been successfully applied for studying the mass an d
charge distributions, Schröder 1981, Britt 1982, and good accordanc e
was also generally found with experiments on the spin distribution,
Dossing 1985b . The present application to Wilszinsky plots and y ra y
polarisations presents a continuation of these comparisons of the theory
with data .

3.5 . Statistical models

No matter which excitations are primarily responsible for the main part
of the energy loss in damped nuclear reactions, their clean characteristic s
get lost and cannot be observed because of the thermalisation within th e
nuclei . For example, in the hot nuclei leaving the reaction, an excite d
surface vibration will not decay by emission of a y ray of a specifi c
energy. It will instead get dissolved by coupling to the complicate d
excitations present in the hot nucleus .

Therefore, in addition to the variables describing the relative motio n
of the nuclei after the reaction, only variables which are conserved i n
each nucleus after the reaction due to general principles can be studied
experimentally . These are the mass and charge, the angular momentum ,
(and the parity, which is of little use) .

If the reaction time is long enough, the distribution in some of thes e
variables will just be given by statistical excitation, governed by the
temperature in the dinuclear system . In this case no information on th e
primary excitation mechanism survives . Fortunately, it is clear for the
mean values of both neutron number, proton number and spins tha t
statistical excitation is not generally achieved . It is only for the secon d
moments of the spin distribution that a statistical model has been formu-
lated and applied for all kinetic energy losses, Moretto 1980, Schmid t
1982. For large energy losses, statistical excitation of the mean spins ha s
also been proposed, Moretto 1984 .

The statistical model for the mean spin vector explains well the spin
sizes as function of the mass partition in a number af reactions, and also
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the model for the variances yields good agreement with quite man y
experiments, Moretto 1984. However, in our recent analysis, Døssing
1985a,b, the statistical model for the spin distribution is found to predic t
that the direction of the major in-plane spin variance is a specific functio n
of the scattering angle . The characteristic differences in relaxation time s
for the various spin modes implied by our dynamical equations, which
we shall discuss in the next section, yield a different, but also specifi c
result for this direction . Experiments on the in-plane sequential fission
fragment angular distributions, which determine this direction, agre e
with the dynamical results and disagree with the statistical model .

4 . Nucleon exchange transport for spin variable s

When applying the Fokker-Planck equation to angular momentum vari-
ables, the choice of coordinate system is important . The coordinate sys -
tem applied here follows the geometry of the dinuclear system, i . e . it is a
body-fixed coordinate system . The z-axis is along the radius vector of rela-
tive motion, and the y-axis is along the orbital angular momentum . Seen
by an external observer, this coordinate system turns because of the th e
orbital rotation and fluctuates because the direction of the orbital rota-
tion may change during the reaction .

General expressions for the transport coefficients of one bod y
operators are given in Randrup 1979, and coefficients for angular
momentum transport are presented in Randrup 1982 . Finally, the deriva-
tion of the transport equations with respect to this coordinate system a s
well as expressions for transforming the spin moments to the laborator y
system are given in Døssing 1985a .

We shall not here repeat the formal development, but rather define the
variables and discuss the transport coefficients entering the equations .
This will be followed by a discussion of the appearance of the equation s
and the characteristics of their solutions in terms of relaxation times fo r
the spin variables .

4 .1 . Spin variables and mobility tensors

We consider the time evolution of the distribution of spins in the tw o
nuclei, SA and SB , and the orbital angular momentum r . With the
coordinate system applied, r has no x and z components . From the
symmetry of the problem, mean values along the x and z axis must be
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zero, and also covariances between y components and other component s
must vanish. Thus, restricting to the first and second moments, th e
following can be different from zero :

(Sÿ) ( SB)~ ( L y )
6ÿÿ F,G = A,B,L

	

(4 .1 )
FG FG FGoxx , 0XZ , o ZZ , F,G = A, B

where, for example, oÿÿ ° ((Sÿ- (Sÿ))(Lÿ(Ly ))) .
As in reference Randrup 1982, a compact notation is achieved b y

defining the transport coefficients in terms of mobility tensors :

MAA = mN(a2?1 + C ave I )
MAB = mN(ab *l - ca mÎ) = MBA

	

(4 .2)

MBB = mN(b2T + cave I )

Here m is the nucleon mass and N is the total flow of nucleons across th e
window, being proportional to the total flux inside nuclei times th e
effective window area . The distances from the centers of the nuclei to the
window plane are given by a and b respectively, the sum a+b bein g
equal to the dinuclear separation R . cdVe is the average off-axis displace-
ment on the window . I is the identity tensor, in terms of unit vector s

H
along the coordinate axises I ° xx+ÿS+zz, and = xx+ÿÿ projects on
the plane perpendicular to the dinuclear axis . Starting with zero vari-
ances of?(t=0)=0, the time evolution of the spin variances during th e
first small time interval At is given by

åFG(At) = 2T*MFG At

	

(4 .3 )

where T* is the effective temperature (3 .1) . It is natural that the increas e
in variances are proportional to i*, which measures the part of th e
momentum space available for transfers. The mobility tensors describe
how easily the nucleon exchange can build up spin along the variou s
directions in the two nuclei . The transverse directions are clearly prefer -
red for the direction along the dinuclear axis . Figure 2 may illustrate this .
Considering the various directions of the momentum and locations o n
the window, values of r x p relative to the center of nucleus A for the
nucleons being able to transfer are seen to be generally larger along th e
transverse directions than along the dinuclear axis .

Since the total angular momentum = r++SB has to be con-
served, equation (4 .2) implies the following expressions for mobilit y
tensors involving the orbital angular momentum L :
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MAL = - MAA - MAB = - mNaRT = MLA

MBL = - MAB - M BB = - mNbRT = MLB

MLL = - M LA - MLB = mNR2T

It is convenient to discuss together with the standard spin variables ->A ,
B also the absolute and relative spins in the nuclei S + and S :

= S A +S B

	

=IA +IB

-4

	

->B
= ( IA -

IB ), I_ _
IAI B

IA + IB

where IA , IB , I+, and I_ denote moments of inertia, For I A and IB we
apply rigid body moments of inertia, which are the relevant ones fo r
heated nuclei . The kinds of rotational motion of the dinuclear system
measured by the spins -S->+ and S4-- have been given illustrative names .
The wriggling modes describe rotations of the two nuclei in the same sens e
perpendicular to the dinuclear axis, which gives non-zero values of S l o r
Sÿ. Non-zero values of SI measure the motion of the tilting mode, and S; ,
Sÿ measure the motion of the bending modes, and SZ the twisting mode .

These names were given by Nix and Swiatecki, Nix 1965, in a study o f
nuclear fission, except for the tilting mode, named by Moretto, Morett o
1980, in the formulation of the statistical model for damped nuclear
reactions . The mobility tensors in these variables are easily derived from
those in the standard variable s

M++ = MLL = mNR 2T = - M+L

M+- = mNR
(	 IAb	 IBa > T=- M-L

	

(4 .6 )

	

A
	 +	

B
Ip~b - IBa 1J2 H

	

2 H
M = mN ( I

	

I / T + mN C ave I
A + B

Since M++ only has components along the transversal directions, th e
tilting mode does not receive excitation directly by nucleon transfer . For
symmetric reactions, a=b and IA =1B , the mobility tensor M +- vanishes ,
and the time evolution in + and

	

will be decoupled .

4 .2 . Equations of motio n

The following transport equations for the spin distributions are derive d
in Dossing 1985a:
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-c*

	

sFSy =- E
G (

MFG SG + L oFxX MçL)/IG +
L

(2MFL - L MtL )
Y

	

Y

	

Y

Q
x

ix = 2T*MFH - E
(Ozx

MGH + MF G oXH)/I G - CoR(o
xx

+ozx )
-

L
(2i*MtH -

G
MtG oXH/I G ) - (2ti*MFL -

G
azX MGL/IG)L

Y

	

Y
S F

	

SH+ 2t* ~ Mt L ~
L y

	

Ly

oF
yÿ

= 2ti*MC H - ~ (oÿÿ MGH + MFG oy
H )/IG

6FH = 2z*MIFH - E (6ZZ M1GH + MnG OGH )/IG + CoR(o xz + Q zx )G

6FxzH _ _

G

/-FG MGH + MFG o x zGH )/IG - wR
(6F

Hxx - 6 F Hzz )xz

	

n

	

t

F

	

LG GH
+

	

Mt o xz /IG

Here the brackets around mean values have been omitted for notationa l
simplicity, CUR denotes the angular velocity of the orbital rotation . 0R =
Lx and MFG and MnG denote mobility tensors along the transversal an d
tfie normal direction, respectively . The sums over the index G run ove r
G = A,B,L, or over G = +, -, L. All terms containing 10 R or

L
a s

factors are due to the special choise af the body fixed coordinate system .
The orbital rotation perpendicular to the y axis causes a redefinition o f
the x and z axises, being taken into account by the terms containing co R .
The terms containing Ly in the denominator arise from the fluctuation i n
the direction of L caused by the nucleon exchange, and they are derived
under the assumption that Lÿ is large compared to all variances .

4 .3 . Stationary solution and relaxation times

For given total angular momentum J one can prove that the equation s
(4.7) have a unique stationary solution given b y

(Ly) = IRJ

	

o LL

	

T* +
IR Ÿ Ÿ

	

(4 .8 )

(S y) = Î J - ti*I+Î-oR J, o

	

T*I + Î-°R (XX + 22) + .t*I+
To ŸŸ

(Sy) = 0 ,

	

o

	

= t* I_ `T
In these expressions lo = IR+IA+IB is the total moment of inertia of th e
dinuclear system . During the reaction the moments of the spin distribu -

Ly G
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tion will at each instant evolve towards these equilibrium values, which
in turn vary in time due to the time dependence of the effective tempera-
ture T* and of the moment of inertia for the orbital rotation I .

The mean values of the stationary solution correspond to a rigid rota-
tion of the dinuclear complex .

The solutions (4.8) for the variances correspond to statistical excitatio n
of the spin modes, however with the temperature associated with the
heat, t, replaced by the effective temperature t* .

Typical time scales, relaxation times, for the approach to the stationary
values can be obtained by dividing the stationary solution (4 .8) by the
corresponding initial time derivative, as for example given in equatio n
(4.3) for the variances .

For a symmetric collision for which the motion in and S~- ar e
decoupled, this gives the following relaxation time for the wrigglin g
modes

t*I+ I+_
t++

	

-
_

2T**L

	

- 2mNR2
(4.9 )

and for the three negative mode s

T*I__

t--

	

= 2T*M-- 2mNc 2Ve (4 .10)

The time evolution of the tilting mode is more complicated, since o Zz
only receives contributions indirectly from o+,, x+ through the orbital rota-
tion. The relaxation time for the tilting mode is then determined b y
finding the eigenvalues of the linear system of equations for oXX, oXz and
o+,,±, and the main part of o ,, is found to approach equilibrium with th e
relaxation time

t+, = (4w

	

t++)-I

	

(4 .11)

The relaxation time for the mean values (Sty ) and (Ly are given by 2t+ +
This relation to the statistical model together with the expressions fo r

the relaxation times we consider to be important results of the study i n
Dossing 1985a, because these results contain some definite predictions o f
the theory, which can be confronted with data without having to per-
form detailed calculations .

Inserting typical values of the coefficients appearing in the expressions
for the relaxation times, one finds that except for the most periphera l
collisions the wriggling modes are expected to reach equilibrium . The
relaxation time for the negative modes is substantially longer, and onl y
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for quite central collisions will they come close to equilibrium . The
tilting mode receives the strongest excitation for peripheral collisions ,
due to the occurence of c0R in the denominator . For more central colli-
sions the tilting mode receives only little excitation . Examples of these
relaxation times are shown in Døssing 1985a .

Since the relaxation time for S'y is also quite small and the asymptoti c
value for this spin is large compared to the equilibrium values of th e
dispersions, the spin distribution will be dominated by the mean spin fo r
most values of the total angular momentum . For example the averag e
length of the spin vector will for most cases be given by the size of th e
mean spin vector plus a relatively small correction containing the disper-
sions .

5. Mean trajectory implementation of nucleon exchang e
transport

To obtain results for comparing with data, the transport equations (4 .7)
for the spin distribution are solved together with equivalent equation s
for the separation R between the two nuclei, the conjugate momentum P
and the scattering angle O . This is done for a grid of values of the tota l
angular momentum J, and subsequently an integration is performed over
J to obtain cross sections and spin distributions gated by energy loss and
scattering angle .

The degree of contact between the two nuclei during the reaction i s
related to the geometrical neck connecting them. The neck motion im-
plies a wall friction, and the time evolution of the neck is followed wit h
insertion of the mean values for P and R . Thus, the dynamics with
restriction to the mean trajectory determines both the rate of nucleo n
exchange and thereby the window friction, as well as the wall friction .

Expressions for the Coulomb and nuclear potentials applied can b e
found in Randrup 1982, and Fokker-Planck equations for the variance s
are given in Døssing 1985a .

The variances in the variables considered give rise to a variance in th e
final energy of the relative motion, which must be evaluated at the end of
the reaction phase .

After the reaction phase, the two nuclei recede on a Coloumb trajec-
tory, and the average scattering angle can be determined . This angle i s
inserted into the equations transforming the spin variables from the fixe d
coordinate system to the external coordinate system . The variance in
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scattering angle receives contributions both during the reaction phas e
and on the Coulomb trajectory, caused by the variances in the orbita l
angular velocity and in the other dynamical variables determining th e
angle turned on the trajectory .

For each J, this procedure permits the determination of mean value s
and covariances for the variables which are of interest experimentally ,
namely the total kinetic energy loss, the scattering angle, the neutron
and proton numbers in one of the nuclei, and the spins in the tw o
nuclei . Denoting these variables by the symbol e ° E, O, NA , NB , ZA , ZB ,
SX, SŸ, SZ, SX, SŸ, Sz, we assume that the distribution is Gaussian ,
(in accordance with the approximations applied to obtain the Fokker -
Planck equations) :

fj() _ ~cx2	
2J~I)~ exp[-/2(~

	

' (7-1 ' ( - (~))]

	

(5 .1 )

where o is the covariance matrix in the variables considered . (Capita l
letters are used for the axises of the external coordinate system to distin-
guish from the body fixed system) .

In experiments the total angular momentum cannot be determined, s o
one has to integrate the distribution (5 .1) over J, keeping the energy and
eventually also the scattering angle fixed, to obtain cross sections and
spin distributions gated by E and O . The technical details of this is given
in Dossing 1985a .

5.1 . Time evolution of variances in energy loss and scattering angl e

For discussing the Wilszinsky plots and y ray polarisations presented in
the next section, it is important to note that the mean trajectory im-
plementation of the theory implies specific results for the variances in
energy loss and scattering angle .

The energy of relative motion is given b y

z

	

z
E = 2µ + 2µR2 + e2Z 	 R	 B

	

(5 .2 )

The variance in E is determined by the variances and covariances of the
variables entering this expression . Keeping the main terms to first order
in t*, and neglecting the usually small terms due to the variation in
neutron and proton numbers, one obtains :

GEE = ER2GRR + EP2GPP + 2EREPGRP + EiYGYY

	

(5 .3)
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where ER denotes the derivative of E with respect to R, taken at th e
mean trajectory, and likewise for the other derivatives . Inserting th e
stationary solution (4 .8) for o

ÿ
ÿ and the equivalent stationary solution s

from the Fokker-Planck equations for the evolution in R and P, on e
obtains for the stationary variance in E

z
OEE =

	

(Vc +

	

+ 2Traci +2l+Tran)
tan

	

0

t*( 1/2Vc + 2 Traci + ( 1/2 + 2II+)Tian)

	

1/zt* K E )

where the three terms in equation (5 .2) have been denoted by Traci, Tan
and Vc. In the last expression we have used that the Coulomb energy Vc ,
is appreciably larger than the other contributions to the energy at the end
of the reaction phase .

Actually, it takes quite some time for ORR to relax, so GEE will usually
be smaller than the saturation value (5 .4) .

Since the scattering angle is a cyclic variable, the equation for th e
variance in scattering angle has no restoring term . The variance being
accumulated during the reaction is determined by the angular momen-
tum evolution according to the equation s

600

LF
å

	

= O YY _ OeG N1GF
ØF

	

IR

	

G 1G

which are derived in Dossing 1985a . These relations imply that 00L re-
laxes within a time scale given approximately by 2t ++ , i . e . quite fast, th e
saturation value being given by

am

	

= ~* 1R(Î+ MrL-1

	

(5 .6)
0

Thus, after a time of the order of t ++ , ooo will grow constantly with the
reaction time t :

,-- 2t*(-~2MLL 1 t~ 2tT*
+ IR , t

10

	

t

	

10 10

	

IR

8X10 -5 t*tt++ radians 2

	

0 .252*tt++ deg 2

where the units MeV and 10-22 sec are applied for t* and the times t and
t++, respectively . To obtain the numerical value, a reduced mass of 5 0

ß ØØ
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mass units has been used together with the values 2/7 and 5/7 for the ratio s
between moments of inertia, and the value 10 fm for the center separa-
tion R entering IR .

The variance accumulated along the outgoing Coulomb trajectory is
typically of the same size as the variance estimated so far, so roughly w e
obtain the following estimate of the total variance of the scattering angle

o'ee 0.5t*tt++ deg2

	

(5 .8 )

The value oft* to be inserted here should be the average value during th e
reaction phase .

Both of the above values for the rate of nucleon exchange and th e
center separation refer to the reaction of S6Kr + 139La, and generally th e
coefficient in (5 .8) will scale with the mass of the dinuclear system t o
approximately the -5/3'th power . The relaxation time t++ is of the orde r
of 2x10-22 sec. and scales with the mass roughly to the ½'rd power .

The expression (5 .4) for the stationary variance in energy loss is a
statistical limit, obtained by inserting the thermal values for the variances
in the basic variables, except for the occurence of the effective tempera -
ture t* in stead of the heat temperature T . Apart from this distinction, th e
result (5 .4) will have a general validity for all theories which predict
relaxation towards the statistical equilibrium values .

Conversely, the approximate result (5 .8) for the accumulated variance
in scattering angle is specifically related to the dynamics of the spi n
evolution, since the relaxation time t++ enters .

Feldmeier and Spangenberger, Feldmeier 1984, apply Cartesian coor-
dinates for the relative motion of the two nuclei, but otherwise also the
mean trajetory method . Their variances are several times larger than
both of the estimates (5 .4) and (5 .8) for the variances in energy loss an d
scattering angle, respectively . These estimates provide fair approxima-
tions to our calculated variances (to within a factor of 2 for most cases) .
We do not know what causes this discrepancy between the two differen t
applications of essentially the same theory, but important points may b e
(i) the slightly different definitions of the effective temperature withi n
the two schemes of calculation, (ii) the apparent lack of relaxation in 0'4
displayed in figure 6 in Feldmeier 1984 .
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6. Wilszinsky plots and y ray polarisations

6.1 . Wilszinsky plots

Figure 3 shows contour plots (Wilszinsky plots) of the differential cros s
section as function of scattering angle and energy loss, together with th e
experimental result, Vandenbosch 1978, for the reaction 710 MeV 86Kr +
139 La. Also, the mean scattering angle and energy loss is shown for ever y
20 units of total angular momentum on the calculated plots . Plots (b) and
(c) are obtained with two different prescriptions for the reduction of th e
wall friction caused by the motion of the neck connecting the two nuclei .
Plot (b) is obtained with the standard reduction in the neck damping ,
Randrup 1982, which is effective for long thin necks, and in the calcula-
tion for plot (c), full neck damping is applied . Below a total angular
momentum close to 100 units, the reactions lead to capture according t o
the calculation .

6.2 . Comparison of calculated and experimental Wilszinsky plots

The experimental Wilszinsky plot clearly displays two components o f
the cross section, one at small and one at large energy losses .

The contours for the small energy loss component form a long hil l
stretching from a scattering angle around 35° at energy loss 0 down
towards angle 0° at an energy loss of approximately 250 MeV . In the
calculated results, the ridge of the hill is defined by the curve running
through the points of mean scattering angle and energy loss for th e
largest total angular momenta . These correspond to the most peripheral ,
and thereby the most gentle reactions .

The calculated results agree very well with experiment on both th e
position of the ridge line and the width of the hill perpendicular to th e
ridge .

The large energy loss component stretches from scattering angle 0 °
out to around 80°, and is peaked around 300 MeV of energy loss with a
quite large dispersion. In the calculated results, this component is due t o
the more central and intimate reactions, which for this reaction hav e
turned through 0° and come out at negative scattering angles, as illus-
trated with one example in figure 4 . Experimentally, the information
from a Wilszinsky plot alone does not allow for determining the sign o f
the scattering angle . (The falloff of the cross section for very small angles
on the calculated plots is due to the tilting of the outgoing reaction plane
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Fig .3 . Experimental, (a )
Vandenbosch 1978, and cal-

culated, (b) and (c), Wils-
zinsky plots for the reaction
710 MeV 86Kr +139La . Plo t

(b) is obtained with the stan-
dard prescription for the re-

duction in the neck damping ,
while this reduction is re -

moved in the calculation of
plot (c) . The units for th e
contours are
mb/ (degxMeV) .

THOMAS DØSSIN G

710 MeV 86Kr + 139La
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relative to the entry reaction plane . The width of the angular range o f
this falloff is discussed in Dossing 1985e) .

The calculated differential cross sections are too much concentrated
around the mean trajectory result for the large energy loss component ,
the dispersion in energy loss for given scattering angle being a factor o f
two too small . The calculated dispersions agree to within 12% with th e
estimate (5 .4) for the asymptotic value of the variance . Thus, with the
mean trajectory implementation, the nucleon exchange transport theor y
will not be able to account for this aspect of the data .

The average energy loss for this component is around 80 MeV too
small in the calculations . This is probably because the description of th e
shape of the dinuclear system by means of only two parameters, the nec k
radius and the center separation, does not allow for the elongation of th e
dinuclear system at the end of the reaction phase, which is needed t o
loose the extra amount of energy .

The reduction in the wall damping applied in calculation (b) implie s
that the small energy loss component receives a higher proportion of th e
cross section than the large energy loss component, whereas the calcula-
tion (c) distributes the cross section more evenly on the two compo-
nents, in better agreement with the data . An intermediate neck dampin g
between the two prescriptions would yield a better agreement than bot h
(b) and (c) . The pronounced difference between the two calculation s
display a sensitivity of the results upon elements of the application of th e
theory, which have not been consistently studied yet, and this is some -
what discomforting .

6.3 y ray polarisation s

Information on the spin distribution in the two nuclei and on the sign o f
the scattering angle can be obtained from the polarisation of y ray s
emitted from the nuclei during their sequential decay .

The detailed evaluation of the y ray polarisation on the basis of calcu-
lated spin distributions and its relation to the polarisation of the spin i n
the nuclei is discussed in appendix A .

Figure 4 illustrates how positive and negative scattering angles lead t o
different senses of rotation in the nuclei . During the reaction the orbita l
rotation is slowed down, and the average spins in the nuclei after th e
reaction will point in the same direction as the total angular momentu m
vector. With the situation depicted in figure 4, the total angular momen-
tum points upwards from the plane of the figure for positive angl e
scattering and downwards for negative angle scattering . With the coor-
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Fig .4 . Calculated trajec-
tories for two values of th e

total angular momentum for

the reaction 86Kr + 139 La .
The two trajectories lead t o

the same size of the final
scattering angle, but with op-

posite sign . The circular ar-

rows on the outgoing ligh t
nuclei show the direction s

and magnitudes of their aver-
age rotation .

dinate system applied, the Y axis points upwards, so a positive scatterin g
angle corresponds to positive polarisations of the spin in both nuclei, and
vice versa for negative angles . This sign convention for the polarisation ,
which is easily remembered, is different from that employed conven-
tionally .

In recent experiments, Schandera 1984, the polarisation of the emitte d
y rays has been measured for certain intervals in scattering angle and total
kinetic energy loss. Figure 5 shows calculated and experimental polarisa-
tions as functions of energy loss for the same reaction as considered i n
figures 3 and 4 . For one interval covering small scattering angles
(laboratory scattering angle 11° <Ølab <30° corresponding to center o f
mass scattering angle 20°< °CM < 55°) three intervals in energy los s
were applied, and in addition one interval covered large energy losse s
and scattering angles (30° < O lab < 68°, corresponding to 55°< °CM <

120°) .
The thin graphs in fig. 5 include only partial waves above capture .

However, the captured nuclei may separate again, and the thick graph s
in fig . 5 include the whole captured part of the cross section, from th e
highest total angular momentum leading to capture all the way down t o
zero, assuming that it leads to a separation again of the nuclei .

The angular distribution for the captured and re-separated part is as-
sumed to be uniform, implying that the captured system must hav e
turned a couple of times before separation. As the energy loss is con-
cerned, both the average value and the variance are taken as the value s
obtained for the smallest total angular momentum not being captured ,
and the average energy loss is then increased due to the smaller centrifu-
gal energy of the relative motion for the partial waves leading to capture .

THOMAS DØSSIN G

710 MeV 86 Kr+ 139 La
J=120
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The centrifugal energies applied in this small correction are determined
by the asymptotic value (4 .8) for the orbital angular momentum, insert -
ing the relative moment of inertia for the distance where the nuclei loos e
contact for the smallest partial wave not being captured . The mean spins
in the nuclei emerging after capture and re-emission are likewise derive d
from the asymptotic values (4 .8), but with equal probability of pointing
up or down, i .e . with spin polarisation zero, leading to y ray polarisatio n
zero. For the spin variances, the variances calculated with the smalles t
partial wave not leading to capture are applied for capture and re-separa-
tion.

This is, admittedly, a crude way of including capture and re-emission .
It can be regarded as leading to maximal dilution of the polarisation ,
since the maximal possible cross section for capture and re-separation i s
included. A more consistent account of capture and re-separation would
then most probably lead to results for the polarisation which are betwee n
the thick and thin curves in fig . 5 .

Figure 6 shows the result of a calculation for the same experiment a s
shown in fig . 5 but now obtained without the reduction in neck damp-
ing, as also applied for part (c) of fig . 3 . The large peak around 240 MeV
for the cross section for the small angle interval comes from the ver y
pronounced hill in the contour plot (c) of fig . 3 .

Calculated polarisations and data for the three other reactions studied
in Schandera 1984 are shown in figures 7, 8 and 9 .

Fig . S. Calculated and experimental, Schandera 1984, y ray polarisations for the reaction 71 0
MeV 86Kr + 139La . The experimental values are denoted by horizontal lines, covering the energ y

intervals of averaging
applied in the experi-
ments, and the shade d

regions show the uncer-
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tainties reported . The
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Fig . 6 . The same as fig . 5,
but now calculated withou t

the reduction in the neck

damping, as for part (c) of

fig . 3 .
>N
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6.4 . Comparison between calculated and experimental y ray polarisations .

For all the reactions the interval of the smallest energy losses covered b y
the experiment is completely dominated by positive angle scattering ,
and the interval at small scattering angles covers most of the cross sec-
tion. Thus, the y ray polarisation for this interval gives fairly direc t
information about the spin moments, as calculated by solving the equa-
tions (4.7) and subsequently transforming to the external coordinat e
system. For the reactions with 139La as a target, the calculated polarisa-
tions are slightly too large when compared to the data for this interval .
For the 166Er data, on the other hand, significant discrepancies with the
data are apparent .

The energy loss interval in question is centered around half of the
maximally calculated energy loss . For this energy loss a generally goo d
agreement with y ray multiplicity and fission angular distribution data
was found in Dossing 1985b . To the extent one can compare the differen t
reactions, we conclude that, except for the reaction 705 MeV 86Kr +
166Er, the y ray polarisation data are in reasonably good accordance with
the other data and with the calculations for intermediate energy losses .

Going to higher energy losses, still within the interval of small scatter -
ing angles, the calculated polarisation first decreases weakly because th e
mean spin vector starts to decrease and the variances grow. However ,
this decrease is soon overtaken by a much stronger decrease, caused by

-1 .0
300
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the admixture from negative scattering angles . From a certain energy
loss, the negative scattering angles dominate . Thus, the polarisation goe s
steeply through zero, and reaches negative values which can be quite
substantial, except for the reaction of 705 MeV ß6Kr + 166Er for which
the negative scattering angles receive very little cross section accordin g
to the present calculation. The decrease in polarisation is also present in

860 MeV

	

86 Kr + 139La
,

	

~
-

12 °<Ø~ ab 22 °

~

22°<Ø ~ab <68 ° -

_~

~__
~

0 200 300 400 500
TKEL CMeV I

-1 .0
300 400 500

Fig . 7 . Same as fig . 5, bu t
for the reaction 860 Me V
86Kr + 139La .

705 MeV 86 Kr+ 166
Er

30°< O LAB < 68°

2D0

TKEL [MeV]

Fig . 8 . Same as fig . 5, bu t

86Kr + 166Er .

300
for the reaction 705 Me V



132

Fig .9. Same as fig .5, bu t

for the reaction 860 MeV
86Kr + 166Er .

THOMAS DØSSING

66 Kr + 166 Er
'
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the data, but these display a much smoother behavior than the calculate d
values . Finally, at the highest energy losses for the small angle interval ,
the calculated negative values of the y ray polarsiation are somewhat
weakened, because the average spin vector still decreases in size . With
inclusion of capture and re-separation, the negative polarisations may be
considerably reduced. In the experiments significant negative polarisa-
tions are only recorded for one of the reactions at this interval, and th e
polarisations are generally small .

The comparison to data for the small angle interval for the large r
energy losses points in the same direction as the comparison to the
Wilszinsky plots, namely that the dispersion in energy loss for given
impact parameter is too small . Larger dispersions will mix the positive
and negative scattering angles, leading to a smoother behavior of th e
calculated curves for the polarisation . Also large dispersions in scattering
angle for given impact parameter of the order of 40 0, which is twice the
lower end point of the interval, would explain the data .

The large angle interval only receives contributions from negativ e
angle scattering for the reactions calculated here, and inclusion of captur e
and re-separation dilutes the polarisation considerably . Without this di-
lution, the y ray polarisation is typically calculated to be around -0 .5 ,
which tells that the spin dispersions are of approximately the same mag -
nitude as the mean spin vector, cfr . figures Al and A3. The experimental
polarisations are numerically small for this angle interval, and of varying
sign. Since both of the two different targets and both of the two bom-
barding energies display a positive and a neative mean value for the y ray
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polarisation for this angle interval, the only systematic trend seems to b e
the small values . On the other hand, analysis of fission angular distribu-
tions show that the alignment of the spin does not seem to decrease
below values of the order of 0 .4, Dossing 1985b, even for the largest
energy losses . (This is admittedly for other reactions involving heavie r
targets than the ones discussed here, but the result for the alignment i s
not expected to be crucially dependent upon whether the target mass i s
139 or 208) .

The small values of the y ray polarisation taken together with appreci-
able spin alignments indicate that in the present reactions both positiv e
and negative scattering angles contribute almost evenly to the cross sec-
tion for the large energy losses . With the mean trajectory method used
here, this will be quite impossible to achieve . For the impact parameters
leading to negative scattering angles within this interval, an estimate for
the scattering angle dispersion yields 11°, obtained by inserting the val-
ues 50x 10 -22 for the reaction time t, 2 x 10-22 for the relaxation time t++ ,
and 2 .5 MeV for the effective temperature T* into the expression (5 .8) .
Actually a value of twice the lower end point of the interval, aroun d
100°, is needed . Alternatively, a substantial part of the cross section a t
these energy losses could correspond to reactions like the capture and re-
emission discussed here, where the nuclei turn some times before resep-
aration, thereby averaging the spin polarisation out to small values .
Since such a component will have an almost uniform cross section a s
function of angle, an examination of the Wilszinsky plots will give a n
upper limit for this component, as discussed in Vandenbosch 1978.

7. Conclusion

The main result of this paper is the application of nucleon exchang e
transport to calculate Wilszinsky plots and y ray polarisations . Also, it i s
demonstrated in the appendix that y ray polarisations can be quite exact-
ly calculated on the basis of theoretical spin distributions .

Concerning the application of the theory to obtain these results, it i s
somewhat uncomforting that the results depend so sensitively upo n
specific details of the implementation, which have not been consistentl y
derived yet. This applies to the prescription for the reduction in the nec k
damping, and the linear extrapolation of the Coloumb potential fo r
small distances, Randrup 1982 .

The comparison of the calculated quantities to data is successful as far



134

	

THOMAS DØSSIN G

as the small and medium energy losses are concerned. For the larger
energy losses, substantial discrepancies between calculated results an d
data are found . The calculations are not able to account for the larg e
variances in energy loss and scattering angle present in the data for thes e
energy losses . Furthermore, by inspecting the expressions for the va-
riances, it is concluded that variances accumulated during the motio n
along a mean trajectory will generally be small .

One would expect larger final fluctuations if the fluctuations caused b y
the nucleon exchange were allowed to couple back on the potentials an d
form factors for exchange . For example, for motion on the quite fla t
potential energy surfaces encountered for total angular momenta 100 to
1406 for the present reactions, fluctuations in the center separation an d
the radial momentum may cause substantial dispersions in the reactio n
time, and thereby in scattering angle . Whether improvements in tha t
direction are enough to obtain significantly better agreement with data i s
still an open question .

Certainly y ray polarisations, as investigated in the new experiments ,
give powerful information and the results are challenging to our under -
standing of damped nuclear reactions .

It would be valuable if the experiments with the new and powerful se t
up could be extended to cover also the smallest energy losses, where the
polarisation is expected to increase with increasing kinetic energy loss .
Also the application to reactions with heavier nuclei would be of interest ,
since the mixing from negative scattering angles will be minimal, an d
therefore a more pure information about the spin distribution could b e
obtained .

Appendix A

This appendix presents a procedure for calculating the average y ray
polarisation starting from a theoretically predicted distribution of spins
in a hot nucleus produced in a damped nuclear reaction . The last par t
shows calculated polarisations for a schematic spin distribution and dis -
cusses the information contained in y ray polarisations and angular dis-
tributions of continuum y rays .

After a damped nuclear reaction the nuclei rapidly dispose of thei r
excitation energy and angular momentum by sequential decay . For light
nuclei, often protons and a particles are evaporated, and very heav y
nuclei may fission . The relatively neutron rich medium mass nuclei of
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interest here evaporate neutrons followed by the emission of y rays .
Only through observation of the decay products can one gain informa-
tion about the angular momentum .

In this appendix we shall describe the decay with the aim of calculatin g
the average polarisation of the y rays, as being observed in a polarimeter ,
Trautmann 1981, taking as a starting point the excited nucleus with a
Gaussian distribution of spin variables, as specified by the first and sec-
ond moments of the spin distribution . This program takes four steps, o f
which the three last follow the time evolution of the decay : (i) One needs
to define the moments of the directional distribution of the spin . (ii) The
distribution of the spin magnitude as well as the directional distribution
is modified due to neutron evaporation . (iii) A y ray cascade follows ,
consisting of statistical y rays, which cool the nucleus, and yrast type y
rays, which take away angular momentum, but which do not lead t o
cooling. (iv) The y rays may scatter on magnetized iron in the polarime-
ter, and then finally be detected, yielding information about the polarisa-
tion .

The average polarisation of y rays determined in step (iv) is quit e
closely connected to the average polarisation of the nuclear spin, define d
as (SY/S) . We shall in the end of this appendix see how this connectio n
between spin -and y polarisation depends upon the excitation energy i n
the nuclei, and the types of y rays emitted .

Proceeding now with step (i), we first define the moments of the
directional distribution, which are the statistical tensor components ,
Fano 1957. For a given spin distribution function f(S) in the nucleus it i s
useful to define for each spin magnitude a normalized directional dis-
tribution function, such that f(S)=fo (S) fs (S) . For spins which are larg e
compared to the rank k, the tensor component of rank k and magneti c
quantum number t is well approximated by the classical definition as
the X1'th component in an expansion on spherical harmonics :

V
	 4rr
2k+1 (Y?,) (A.1)

V

	 4n
+ ffs(S) Y?,4, (S) dS

2~,

	

1

Of special importance for the present discussion are the component s
with [t=0, which are expansion coefficients on Legendre polynomials :

( PxY(S)) ° Oxo(S) = ( Pa.)f

	

(A .2)
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Here the Y in (PAY) denotes that we use the Y axis as polar axis . Extend-
ing the average to the whole spin distribution, we can write the two
lowest in full :

( PY) = ( S)

=

	

\\ _ (
3sy2_ S2 )

( PYY) - ( P2Y{

	

2S2

(PY ) is called the polarisation, and (Pyy), or (P2y) is called the alignment

of the spin distribution .
The relations relevant for describing step (ii), the neutron evaporation ,

are given in Dossing 1985b . Starting at spin So in the original nucleus ,
the average spin magnitude (Sn ) after the evaporation of n neutrons i s
approximately given by

2

	

B.2

	

( Sn) = So exp[-n(2/3 mRn +
2I

T

	

	 - 4/9
mR

T1)J

	

(A.4)
1

	

S02

The relation between statistical tensors is given by :

(O ~n
Qx[L( Sn) = Qxµ(So) (Pk( S'onn )

Qx (So) exp[-n•K(1)(4/9 	 mRnti
+1/a	 h2) 1

So( Sn)

	

S0( Sn) J

with the relevant derivatives of the Legendre polynomials

Pi(1) = 1, P2(1)

	

3, P3(1) = 6, P4(1) = 1 0

In these relations I is the moment of inertia of the nucleus and mR 2 n is the
moment of inertia of the neutron at the effective barrier radius Rn . The
tempeature ti l in the nucleus after the evaporation of the first neutron i s
given by

S0 - B
ti =

	

2I

	

(A.7 )a
Here E0 denotes the excitation energy in the primary nucleus leaving th e
reaction, B is the average binding energy of the neutrons, and a denote s
the level density constant. The average number of neutrons n emitted i s

2

n ( E0 -
S° -

B)(B + 4/321)- 1
2I

	

2

(A.3)

(A.5 )

(A .6 )

(A .8)
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All these relations are derived and discussed in Døssing 1985b, and we
apply them together with the parameters for a, I, mRn and B given i n
that reference .

Proceeding now with step (iii), the y ray emission, we can readily
generalize the procedure, Døssing 1981, for calculating angular distribu-
tions of decay products to include also the polarisation . The polarisatio n
is the helicity of the y ray, and in Døssing 1981 the helicity representation
is applied for the state after the emission .

The probability for emission of decay products in a certain directio n
determined by polar angles ecp (relative to the Y-axis) is obtained by
applying the projection operato r

Pew = ~
h2

lh1h2 ;e cP ) ( hlh2 ; ecpl

	

(A .9 )

to the density operator after the decay . Letting h 1 denote the helicity of
the nucleus after the y decay, h 2 denotes the helicity of the y ray, and can
take on values 1 or =1 . The projection operator for the emission proba-
bility times the average polarisation of the y ray is then simpl y

p( pol) =
10-12

h2 102; Oq) 001 2 ; Owl

	

(A.10 )

Carrying through the same procedure for P4I) as for Pow , one obtain s
for the emission probability in the direction €kp

79V(Ocp) = tr{Pew Qs(after decay)}

	

(A.11 )
_	 1

V4n
E Ak(S ) exI,(S) Yilµ ( O , cP)

and for the emission probability times the average polarisatio n

= tr{Pr es(after decay)}

	

(A.12)
_	 1

	

(pol)

U4~c

	

Ax ( S ) C~u(S) Y'Xv. (04)

In these expressions Ax (S) is the angular distribution coefficient of rank X .
For y rays Ax (S) has the form :

Ah(S) = (-) sr -
s - X -1 (2/ + 1)ß/2S + 1

x 1/2((C1'-1lß,0) + (/- 1l1Ix0)) IV(CS/S ;Sfî.)

	

(A .13)

where / is the multipolarity of the radiation and Sf is the angular mo-
mentum of the final state . The sum over the two Clebs-Gordan co -
efficients in this expression comes from the summation over h 2 = 1 and
-1 in Po w . To obtain _00 (S), h2 =1 still enters with the plus sign, bu t
the sign for h2 = -1 is inverted, as in the projection operator Psi) .

'Y/r(Pol) (ecP)
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Thus Aa,P° l) (S) is obtained from Aa (S) by changing this sign:

A )(P0l)(S) = (_)S f_ s - a 1 (21 + 1)V2S + 1

	

(A.14 )
xv2((/1C-11a,o) - (C-1C1IX0)) (Cs/S ;sfX)

For all kinds of decay, Aa (S) is zero for odd X and A P°l) (S) is zero for even
X. It is an advantage to change the normalisation of the angular distribu-
tion coefficients by defining

Ba(S) = ß/2a, + 1 SSXOISS) Ak(S)

	

(A.15 )

and equivalently for B ?(,P° t) (S) .
Actually, quite few of these coefficients are needed, since only mul-

tipolarity 1 and 2 are emitted in the y ray cascades, so only coefficient s
with a, ,4 will be different from zero. For stretched transitions, Sf = S-C ,

the coefficients are independent of the size of S, and attain the following
values for dipole and quadrupole transitions :

/ = 1 :

	

Bo(/ = 1) = 1,

	

B-rt) (C = 1) = 3/2, B2(/ = 1) = 1/2

	

(A.16 )
C = 2 :

	

Bo(C = 2) = 1,

	

B1P °t) (( = 2) = 1, B2(C = 2) = - 5/7 ,

B3P ° t) (' = 2) = -1, B4(/ = 2) = - 2/7

THOMAS DØSSING

S

The yrast-type transitions, which make up the bulk of y transitions ar e
almost exclusively of stretched type . They are preceded by statistical
transitions, mainly of multipolarity 1, which are not all stretched . The
probability for final spin S f, Sf = S-1,S,S+1 is given by the relative leve l
density at Sf, which is well approximated by the expression :

,'P (Sf) a exp(- (Si~Î)S )

	

(A.17 )
f

where 'tf is a representative temperature for the excitation above the yrast
line after emission of a statistical y ray, and I is the moment of inertia . if i s
typically around 0 .5 MeV . Inserting the Ba coefficients for C =1 and fo r
the different Sf, weighted be the probability factors, one obtains for th e
average coefficients for statistical transitions :

Ba(S) = i

	

(A.18 )
3/2exp(~) +0-3/2exp(-~)

exp( ~(I ) + 1 + exp(- I )

3/2 Sinh( T() (COSh( I ) + lh) 1

BjP°t)
( S ) I stat
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B2(S) stat

1h exp( I ) - 1 + 1/2exp(- ~ )

exp((I ) + 1 + exp(~,

(cosh(I ) -1) (2 cosh(----) + 1 )
f

	

f

Here it is assumed that S and Sf are much larger than 1, otherwise som e
of the angular distribution coefficients become quite complicated func-
tions of S and Sf. For small S, the coefficients W'°l) and B2 for statistical y
rays are close to zero anyway, so it would be quite superfluous to inser t
the more exact values . As standard values for the paramenters Tf and the
number, Nstat of statistical y rays, we take the temperature 3 MeV above
the yrast line for the nucleus in question, and 3 statistical y rays pe r
nucleus i .e .

T f =

	

a

	

`AY stat = 3

	

a = 10

	

(A.19 )

where A is the mass number .
With these definitions, we can now define an effective angular dis-

tribution coefficient for the whole y ray cascade . By p i and p2 we denote
the fraction of stretched yrast type y rays of multipolarity L=1 and 2 ,
respectively . The average number of (=1 and 2 transitions and the aver -
age number of y rays as function of the spin So are then given b y

S
.11~=1(S o) = pip+2p2 , -If'/;=2(SO) = P 2 1 2 2 '

3ry(S0) = =1(s0) + =2(s0) +stat

	

(A .20)

where ( S n) is the average spin (A .4) in the nucleus after neutron emis-
sion. Including the dilution factors (A .5) for the statistical tensors, th e
effective angular distribution coefficient as function of So is given b y

x(so) = (Px(0'sosi.,"	
)) x [,Ay~=i(s0) B) (e=1)

	

(A.21 )

l+_ ~C=2( S O) BÄ(1=2) + ,irstatBx((

	

stat] L1 (s 0 )

and equivalently for ß(P0) (So) for the odd X .
The angular distribution can be written as
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4~t 7U(O,cp) = Co + C 2 P2(cos 0) + C22 sin20 cos 2cp
+ C4 P4(cos 0) + C42(7cos20-1)sin 2 O cos 2cp

	

(A .22 )
+ C44 sin40 cos 4cp

with the coefficients for t=0 given by

Ca, = J'' f() 3VY (S) . (S)P), (SY) dS

	

(A.23)

Likewise the angular distribution, mulitplied by the average polarisa-
tion, can be written a s

7

	

° 1) (O,cp) = OP°l) P 1 (cos0) + C3Po1)P3 (cos 0)
+ C3z1) cos0 sin2 O cos 2cp

with the coefficients for t=0 given by

(A .24 )

CAP °l~ = J f(S) 3fry (S)

	

å,P01)(S)P?,,M dS (A.25)

We now turn to step (iv), to calculate the y ray polarisation, as it will b e
determined by the polarimeter . The y ray polarisation is calculated b y
integrating the angular distributions (A .22) and (A .24) without and with
inclusion of the polarisation over the angular range covered by th e
polarimeter, weighted by the transmission function

d-
(0) and by the

sensitivity function A (0) :

foi o

	

°l~ 0

	

A(0)
dT (0) dcp sinOd O

(' 8z (~2n
N~'P ( ,~ )	 (	 >

oZ

	

2a
	 /

e i o 71/~(O,c)) d (0) &I) sinOd O

The functions for the forward scattering polarimeter applied in th e
experiments under discussion here are evaluated and discussed in Traut -
mann 1981, and they are quite well approximated by :

A(0) a constant

	

(A.27)

dT
(0) a sin-20

Since the polarimeter is symmetric around the reaction normal, th e
terms containing cos2cp and cos4cp in (A .22) and (A .24) integrate out t o
zero . Applying the functions (A .27) and integrating over the angular

(PO (A .26 )
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range 20° < 0 < 45° covered by the polarimeter, the following result i s
obtained in terms of the expansion coefficients (A .23) and (A .25) :

0 .850 0'0» + 0.290 Cr' )
Co + 0.591 C 2 + 0.016 C4

In this procedure, the dependence of the functions A(0) and d-ST2 (0 )
on the energy of the y ray energy has been neglected . Below 500 keV ofy
ray energy, these functions become very small, and this will hinder th e
detection of some of the yrast type y rays, especially those of multipolar-
ity =1 .

In the remainder of this appendix we shall discuss results of calculate d
polarisations, applying a distribution function of the spin with equa l
variances in all directions :

f(S) = (2no) -3/2 exp (_(S -(SY))2)

	

(A.29)
2o 2

where Ÿ is a unit vector along the reaction normal .
It is convenient to plot the results as function of the spin polarisatio n

~Py) (A.3) . The magnitudes of the mean spin vector and the dispersion
are shown as function of the polarisation in figure Al . Applying a
specific parametrisation like (A .29) the higher order statistical tensor s
become funtions of the polarisation . These functions are shown in figur e
A2. For most values of the spin polarisation, the higher order tensors ar e
substantially smaller than the polarisation .

(A.28)

Fig . Al . Sizes of the average spin vector an d
the standard deviation of the spin distribution
along all coordinates for the Gaussian paramet-

risation applied to illustrate the y ray polarisa-
tion results, shown as function of the averag e
spin polarisation .
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Fig . A2 . Sizes of higher order tensors as func-
tion of the spin polarisation for the Gaussia n

parametrisation .

Fig . A3 . y ray polarisation as function of spi n

polarisation for the three different kinds of y
rays contributing to the cascade . The average

spin size is 30 units, and the parameters ap-

plied describe the decay of a nucleus with a mas s

number around 160 and excitation energy of

200 MeV . The effects of neutron evaporatio n
are included in the thin curves and left out fo r

the thick curves .

Figure A3 shows calculated y ray polarisations as function of the spi n
polarisation . They are calculated separately for each of the three differen t
kinds of y rays contibuting to the cascade, stretched dipole, stretched
quadrupole, and statistical transitions . The parameters are determined
for a nucleus of mass number 160, excitation energy 200 MeV, and
average spin magnitude 301i.. The figure addresses the same question a s
figure 7 of Trautmann 1981, and the thick curves for the stretched transi-
tions are very similar to the results presented in that figure. They are
obtained by completely neglecting the effects of neutron evaporation .
Neutron evaporation from the quite high excitation energy of 200 MeV
is included in the results shown by the thin lines, and one can see that th e
decrease in polarisation and higher order tensors caused by the neutron s
really changes the y ray polarisation .
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Figure A4 shows the calculated y ray polarisation for an yrast compo-
sition of 90% quadrupole and 10% dipole transitions . This composition
we adopt as standard. In figure A4 neutrons are fully included, and the
average spin magnitude varies between the different curves . One can see
that the spin magnitude has quite some influence upon the results . For
the cases we shall deal with in section 6, the average spin magnitude i s
around 30, and the excitation energy is around 80 MeV . The y ray
polarisation for these cases will be typically 10% smaller than the spi n
polarisation, in qualitative agreement with the results shown on fig . A4 .

Fig . A4 . Same as fig . A3, but for different av-
erage spin sizes, and with inclusion of the ef-

fects of neutrons . The yrast part of the cascade i s

assumed to consist of 10% stretched multipolar-

ity 1 transitions and 90% stretched multipolari-
ty 2 transitions, and the number of statistica l
transitions included is 3 per cascade .

Fig . A5 . Anisotropy as function of spin align -
ment for the three different kinds of y rays con-
tributing to the cascade . The parameters are th e
same as for fig . A3 .
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The results shown in figure A4 do not depend crucially upon th e
composition of the yrast type y rays, because the most important polar-
isation angular distribution coefficient B (Ip°l) (A.16) has the same sign and
a similar magnitude for stretched dipole and quadrupole transitions . This
similarity is also apparent in figure A3 .

In contrast to this situation, we show in figure A5 for each of the thre e
kinds of y rays the anisotropy of the angular distribution, which can b e
written in terms of the coefficients for the angular distribution (A.22) :

1 f ti, .,

	

(A.30 )
Co - 1/2C2 + 3/8C4

In figure A5, the result is plotted as function of the alignment, since the
polarisation does not enter, but otherwise the parameters are identical to
those used for figure A3 . Since the anisotropy has opposite signs fo r
dipole and quadrupole y rays (due to the opposite signs of the B 2 angular
distribution coefficents (A.16)), the angular distribution of continuum y
rays is a problematic tool to study the spin alignment, because the resul t
will depend crucially upon the multipolarity composition of the yras t
type y rays .
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IRENE SHIM

Homonuclear Dimers of First and

Second Transition Metal Series

ABSTRACT . In the present work we have reviewed the experimental and the theoretical knowledg e
offirst and second series transition metal diatomics . In addition, new calculational results have bee n
included for the molecules Ni2 , Fe 2, and Rh2 . Presently, the combined experimental and theoretica l

knowledge indicates that ab initio calculations provide valuable insight into the nature of th e

chemical bonds of such molecules, and even reasonable spectroscopic data, if carried far enough . Th e
»d electron rich« transition metal dimers exhibit »hands« of low-lying electronic states . The
chemical bonds in the molecules Cu2 , Ni2, Co 2 , and Fe2 , are mainly due to the delocalized 4sß8
molecular orbitals . The 3d electrons localize around the nuclei and interact through Heisenberg
exchange couplings, giving rise to the small energy splittings between the low-lying electroni c

states . In the corresponding dimers of the second transition metal series, Ag2 , Pd2 , Rh2 , and Ru 2 the

principal bonding orbitals are the delocalized 5sax molecular orbitals . For A$ 2 and Pd 2 the 4 d
electrons are essentially localized, while they get increasingly delocalized from Rhz to Ru 2 . The d
electrons in the »d electron deficient« transition metal dimers are appreciably delocalized and thei r
combined contributions to the chemical bonds are comparable to the contributions due to the outer-
most sag molecular orbitals .

Department of Chemical Physics, Chemical Laboratory B ,
The Technical University of Denmark, DTH 301 ,

DK-2800 Lyngby, Denmark

Introduction

Conceptually, modern chemistry builds on the quantum theory that
appeared in the 1920s . The quantum theory was devised to explain a
variety of phenomena for which the classical physics did not offer an y
satisfactory explanations . These phenomena include the black-bod y
radiation, the photoelectric effect, and the line spectra of the atoms . The
black-body radiation was explained by Planck in 1901 by introduction of
energy quantization and of the Planck constant h . The photoelectri c
effect led in 1905 Einstein to suggest quantization of light, and in 191 3
Bohr proposed quantization of angular momentum in his atomic model,
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which accounted for the spectrum of the hydrogen atom in terms of an
energy-level diagram.

Based on the prior developments in physics Schrödinger in 1926 sug-
gested a general wave equation for describing the motion of atomic an d
subatomic particles and soon after, this equation was applied to chemica l
problems . Thus, already in 1927 Bohr communicated a paper by Burrau ,
who had utilized the new equation to elucidate the ground state of the H;
molecular ion . However, better known is the work by Heitler and Lon -
don 1927, in which they discuss the chemical bond in the H 2 molecule .
Heider and London invent a mathematical formulation of the covalent
bond, and attribute the energy of the electron pair bond to the resonance
energy arising from the exchange of the two electrons . The method
introduced by Heitler and London has later become known as the va-
lence bond method .

The molecular orbital method which is widely used in quantum
chemistry nowadays was introduced by Hund 1928 and also by Mulliken
1928 . This method is an extension of the Bohr theory of electroni c
configurations from atoms to molecules . Each electron is assigned to a
molecular orbital that is the quantum mechanical analogue of the elec-
tron orbit in an atom .

It is recognized that the foundation of modern quantum chemistry wa s
laid at an early stage and already in 1929 Dirac made his famous remark :
»The underlying physical laws necessary for the mathematical theory o f
a large part of physics and the whole of chemistry are thus completel y
known« . However, he did add »the difficulty is only that the exact
application of these laws leads to equations much too complicated to b e
soluble . It therefore becomes desirable that approximate practical meth -
ods of applying quantum mechanics should be developed« .

The approximate methods developed since the early days of quantu m
mechanics have made use of the fact that the Schrödinger equation is
equivalent to a variational principle . Hylleraas 1930 carried out very
accurate calculations for the He atom using this principle . His methods ,
however, were not suited for generalization to many electron systems .
Thus, the methods applied in quantum chemistry to-day have their ori-
gin in the self-consistent-field work by Hartree 1928 . After Slater 192 9
introduced the determinantal wave functions, Slater 1930 and Fock 1930
independently invented what is now commonly known as the Hartree-
Fock method .

Although the development of the quantum theory in principle opened
up the possibilities of quantitative studies of atoms and molecules, it was
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only with the technological development of the electronic computer s
that such studies also became practically feasible . Calculations of elec-
tronic states of atoms and molecules with more than one or two elec-
trons are strongly dependent on the existence of electronic computers . In
1951 and 1960 Roothaan introduced the formulations of the Hartree-
Fock equations which are especially suited for electronic computations ,
and even though much progress has been achieved since, Roothaan' s
equations are still the natural starting point for quantum chemistry calcu-
lations .

Nowadays, quantum chemical calculations can be performed b y
routine even on rather large molecules composed of atoms from the firs t
and the second row in the periodic system, such as organic molecules ,
but compounds containing transition metal atoms still constitute great
challenges .

During recent years several research groups have been devoting great
efforts to experimental or theoretical investigations striving to under -
stand and elucidate the chemistry and physics of small clusters compose d
of transition metal atoms . The current interest in the transition meta l
clusters is influenced by their relevance to surface science and hetero-
geneous catalysis . Thus, finely dispersed transition metals supported o n
high surface materials such as porous silica act as catalysts for the hy-
drogenation of carbon monoxide, and presently it appears likely that thi s
process or similar ones will be of great importance for securing th e
energy supply in future . Therefore, it is essential to aquire profound
insight into the mechanism of such reactions at the atomic and molecula r
levels .

Both experimental and theoretical investigations of transition metal
clusters are very difficult to carry out and strongly dependent on eac h
other for appropriate interpretations .

The present paper has been devoted to the smallest possible unit s
consisting of transition metal atoms, namely the diatomic molecules . In
particular, we have concentrated on the theoretical investigations of th e
molecules where the author has been most actively involved, that is, th e
homonuclear transition metal dimers composed of atoms with mor e
than half filled d shells belonging to the first and the second transitio n
metal series . These elements also include some of the most commonl y
used in catalyses .

The paper is structured as follows : The next section contains a brief
account of available experimental data concerning first and second ro w
transition metal dimers . Thereafter a few computational details are pre-
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sented followed by a detailed discussion of the results for the individua l
molecules . The conclusions of the work are found in the last section .

Experimental investigations of transition metal dimers

The first experimental data obtained for any transition metal dimers dat e
back to 1954 and 1955, when the electronic spectra of the molecules Cu 2
and Ag 2 were measured by Kleman and Lindkvist and also by Ruamp s
1954 . A little later Dowart and Honig 1956, 1957 and Schissel 195 7
determined the dissociation energies of Cu2, Ag 2, and Au, from meas-
urements of the dimer to monomer ratios in high temperature mas s
spectrometric studies .

During the 1960s all the homonuclear dimers of the first transitio n
metal series have been studied using the high temperature equilibriu m
mass spectrometric method . This has been reviewed by Gingerich 1980 ,
and the dissociation energies obtained including later corrections an d
also results of new measurements are displayed in Table I .

The high temperature mass spectrometric method has also bee n
utilized for studying the homonuclear dimers composed of atoms with
non closed d shells of the second transition metal series . The first of thes e
investigations was performed by Verhaegen et al . 1964, and dealt with
the Y2 molecule . The dimers of the most refractory metals have been
studied mainly by Gingerich and his collaborators as is seen from Table I .

In the mass spectrometric investigations the dimer to monomer ratio s
are measured, but in order to derive the dissociation energies from th e
measured data, it is necessary to evaluate the partition functions for both
the monomers and the dimers . This gives rise to inaccuracies in th e
published dissociation energies, because the spectroscopic constants ,
such as equilibrium distances, vibrational frequencies, and low-lyin g
electronic states needed for the evaluation of the partition functions ar e
only currently becoming available for the transition metal dieters com-
posed of atoms with partly filled d shells . Recently we have performed
new mass spectrometric measurements for the molecules Fe2, Shim and
Gingerich 1982, and Pd2, Shim and Gingerich 1984. The utilization of
the calculated low-lying electronic states in the evaluation of the parti-
tion function for Fe 2 resulted in a dissociation energy 0 .78 ± 0 .17 eV as
compared to the value of 1 .04 ± 0.22 eV derived by Lin and Kant 1969b .

As reviewed by Huber and Herzberg 1979, well-resolved UV-visibl e
gas phase spectra have been measured many years ago for the molecules
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Table I . Experimental spectroscopic constants of the first and second row transition metal diners .

Matrix isolatio n
Molecule

Gas phase spectroscopic

	

High temperature

	

Nearest neighbour

studies studies mass spectrometric internuclea r

studies

	

distance in bul k

metal (a .u .) 1 )

w e (cm 1 )

	

w ex e (cm 1 ) r e (a .u .)

	

w e (cm 1 )

	

øexe(em
1)

	

r e (a .u .)

	

D e CeV)

	

Då(eV )

Sc 2 238 .91 2)

	

0 .93 2) 1 .65±7 .22 3) 6 .1 5
Ti t 407 .9 4)

	

1 .08 4) 1 .41±0 .22 5) 5 .5 0

V 2 537 .5 4)

	

4 .2 4) 535 6) 3 .34 6)

	

1 .85 6)

	

2 .47±0 .22 5) 4 .9 5
Cr 2 427 .5 7)

	

15 .75 7) 470 10) 3 .17 9)10)

	

1 .550 .22 112 4 .7 1
3 .184

8)34 )

472 .7 35)

	

10 .2 35 )

493 .335)

	

2D .5 35 )

Mn 2 124 .7 2J

	

0 .24 2) 0 .43±0 .30 17) 4,2 7
Fe 2 500 .26 2)13) 1 .4 13) 3 .53±0 .25 14) 0 .78 .0 .17 16) 4 .6 9

3 .82±0 .04 15 )

16 2 290 7) 0 .95±0 .26 17)33) 4 .7 2

Ni 2 380 .9
18)

	

1 .08
18)

4 .157t .013 19)
2 .068- .0

.1 19) 2 .00±0 .22
20)21) 4 .7 1

Cu, 264 .55 22) 1 .025 22) 4 .1947 22)

	

2 .04±0 .13 12) 4 .8 2

Y 2 1 .62±0 .22 23) 6 .7 2

Zr, 5 .9 7

Nb, 5 .21±D .10 24J

	

.. 5 .4 0
Tc 2 5 .1 1

Ivlo 2 475 .7 25) 477 .1 34)

	

1 .51 34) 3 .645 34)

	

4 .12--0 .65 34) 4 .18-0 .22 27) 5 .1 4

Ru 2
3 .666!0 .017 (26)

5 .0 6

Rh 2 2,92±0 .22 28)
5 .0 8

2 .80 *-0 .13 29 )

pd 2 1 .03 *-- 0 .17 3 D ) 5 .2 0

Flg 2 194 31) 192 .4 22)

	

, .643
22)

4 .69, 32) 1 .6540 .07 12) 5 .46

1) From J . Donohue, »The Structure of the Elements«, (Krieger, Malabar, Florida 1982) .
- 2) Moskovits, DiLella, and Limm 1984 (Ar) . - 3) Drowart 1967 . - 4) Cossé, Fouassier ,
Mejean, Tranquille, Dilella, and Moskovits 1980 (Ar) . - 5) Kant and Lin 1969 . - 6 .
Langridge-Smith, Morse, Hansen, Smalley, and Merer 1984 . - 7) Ford, Huber, Klotz-
bücher, Kündig, Moskovits, and Ozin 1977 (Ar) . - 8) Efremov, Samoilova, and Gurvich
1974 . - 9) Michalopoulos, Geusic, Hansen, Powers, and Smalley 1982 . - 10) Bondybey
and English 1983 . - 11) Kant and Strauss 1966 . - 12) Kant, Lin, and Strauss 1968 . - 13 )
Moskovits and DiLella 1980 (Ar) - 14) Montano and Shenoy 1980 (EXAFS in Ar) - 15 )
Purdum, Montano, Shenoy, and Morrison 1982 (EXAFS in Ne) . - 16) Shim and Ging-
erich 1982 . - 17) Kant and Strauss 1964 . - 18) Ahmed and Nixon 1979 . - 19) Morse ,
Hansen, Langridge-Smith, Zheng, Geusic, Michalopoulos, and Smalley 1984 . - 20) Kant
1964 . - 21) Noell, Newton, Hay, Martin, and Bobrowicz 1980 . - 22) Huber and Herz -
berg 1979 . - 23) Verhaegen, Smoes, and Drowart 1964 . - 24) Gupta and Gingerich 1979 .
- 25) Pellin, Foosnaes, and Gruen 1981 . - 26) Hopkins, Langridge-Smith, Morse, an d
Smalley 1983 . - 27) Gupta, Atkins, and Gingerich 1978. - 28) Gingerich and Cocke 1972 ;
Cocke and Gingerich 1974 . - 29) Piacente, Balducci, and Bardi 1974 . - 30) Shim and ,

Gingerich 1984 . - 31) Schulze, Becker, Minkwitz, and Manzel 1978 . - 32) Srdanov an d
Peke 1981 . - 33) Shim and Gingerich 1983b . - 34) Efremov, Samoilova, Kozhukhovsky ,
and Gurvich 1978 . - 35) Riley, Parks, Pobo, and Wexler 1983 .
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Cu2 and Ag2. The spectra of Cu2 have resulted in accurate determinatio n
of both the equilibrium distance and the vibrational frequency of the
electronic ground state . Similar spectroscopic data are also known fo r
the Ag2 molecule, but in this case the equilibrium distance has bee n
derived recently from data of Srdanov and Pe g ic 1981 .

Due to experimental difficulties the knowledge of the spectroscopi c
data for the open shell transition metal dimers have been scarce unti l
recently. The first spectroscopic investigations of such molecules hav e
been carried out using the matrix isolation technique introduced b y
Whittle, Dows and Pimentel 1954 and by Becker and Pimentel 1956 . In
this method, the metal vapor is cocondensed with an inert gas at ver y
low temperatures -40K . Of course, use of the matrix isolation tech-
nique results in loss of the rotational fine structures, and therefore thi s
method is not suitable for determining the equilibrium distances of th e
molecules . In addition, it is often difficult or impossible to identify with
certainty the carriers of the electronic transitions observed . Compared t o
gas phase spectra, frequency shifts of the absorptions occur and als o
possibly splittings due to local site symmetries . Thus, not even the spec-
tra arising from atomic species can unambiguously be assigned to the ga s
phase spectra .

The first matrix isolation study of the spectroscopic transitions of a n
open shell transition metal dirrer, where an assignment of the spectru m
of the diatomic molecule was attempted, has been carried out by Gree n
and Gruen 1972 for the Nb 2 molecule . Klotzbücher and Ozin 1977 and
1980a have also investigated the Nb 2 molecule in inert gas matrices, bu t
they did not observe any absorption in the spectral region where Gree n
and Gruen found the features they attribute to Nb, .

The difficulties encountered in matrix isolation studies of transitio n
metal atoms and molecules are clearly recognized in the work done on
Ni and Ni 2 . The first investigation of Ni 2 in an inert gas matrix (Ar) was
performed by de Vore et al . 1975. They have reported a single absorptio n
system with an average vibrational spacing of 192 cm -1 and with 0-0
band at 21 786 cm -1 . Moskovits and Hulse 1977, however, observed
two discrete band systems with origins at 18 920 cm-1 and 26 500 cm -1 ,
respectively, and also a continuous band peaking at 24 000 cm-1 . Furth-
ermore, they pointed out that the matrix shifts of the atomic Ni absorp-
tions are large and not at all uniform ranging from 1270 cm -1 to 345 0
cm -1. Recently Cellucci and Nixon 1984 have performed laser-induce d
fluorescence studies of Ni atoms isolated in different inert gas matrices .
In their work they find evidence for a 3F4 (3d) 8 (4s) 2 ground term of Ni in
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a Ne matrix while the ground term of Ni isolated in an Ar or Kr matrix
probably is 3D3 (3d) 9(4s) 1 . Furthermore, they only find very small matrix
shifts .

Matrix isolation studies are presently known for all first row and a few
second row homonuclear transition metal dimers . In Table I we hav e
summarized the ground state spectroscopic data as derived in the matri x
isolation investigations .

The matrix isolation technique has also formed the basis for othe r
kinds of experimental investigations of the transition metal dimers such
as Mössbauer and ESR studies . Mössbauer studies of the Fez molecul e
have in particular been carried out by Montano and collaborators a s
described by Montano et al . 1976 and by Montano 1980 . ESR spectra of
the Sc, molecule obtained by Knight et al . 1983 have established the
ground state of Sc2 as a 51 state . ESR studies by Van Zee et al . 1981, by
Rivoal et al. 1982, and by Baumann et al . 1983 have revealed that the
Mn2 molecule has a 11g ground state arising from antiferromågneti c
coupling of the atoms . This is in agreement with the early theoretica l
work by Nesbet 1964 .

Gas phase spectroscopic investigations of transition metal dimers are
still rather scarce . Due to the refractory nature of the transition metals ,
special techniques such as laser vaporization or hot ovens are required t o
produce the metal vapors . Thereafter the clusters can be created in a col d
gas bath and finally effused into a vacuum, where the spectra are meas-
ured, Powers et al . 1983 .

The first gas phase studies of open shell transition metal dimers hav e
been carried out by Efremov et al . They obtained absorption and emis-
sion spectra of the molecules Cr 2 , 1974 and Moe, 1978 in flash photolysis
of the molecules Cr(CO) 6 and Mo(CO) 6 , respectively . From the spectr a
of the Cr2 molecule they derived an equilibrium distance of only 3 .184
a.u. This distance seemed so incredibly short that they suggested other
carriers of the observed spectral bands, such as CrO 2 or CrC2. However ,
the recent spectroscopic investigations by Michalopoulos et al . 1982, by
Bondybey et al . 1983, and by Riley et al . 1983 all confirm the short bond
distance in the Cr2 molecule .

From Table I it is noted that besides the molecules Cr 2 and Moe also V2
and Ni2 have been studied in the gas phase . In the work by Morse et al .
1984 of the Ni 2 molecule no spectroscopic transitions were observed
over the entire range 570-350 nm, which covers all known matrix ab -
sorption systems of Ni2. They attribute this to predissociation of the
excited state . From 600 to 900 nm they found an exceptionally high
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density of spectroscopic transitions for a diatomic molecule, and they
consider this as a proof of the theoretical predictions by Upton et al .
1978, by Shim et al . 1979, and by Noell et al . 1980 of the many low-
lying electronic states .

Computational details

The electronic structures of the molecules Fee, Co2, Ni2, Cue, Ru2, Rh2 ,
Pd2, Age, and Nb 2 have been investigated by the author using all electron
ab initio Hartree-Fock (HF) and configuration interaction (CI) calcula-
tions . The computations have been carried out in the Hartree-Fock-
Roothaan formalism, Roothaan 1951 and 1960, folllowed by configura-
tion interaction treatments . The integrals have been calculated using th e
program MOLECULE* . For the HF calculations we have utilized the
ALCHEMY program system**, and finally the CI calculations hav e
been performed using ALCHEMY in conjunction with the progra m
ENERGY*** for generating the symbolic energy expressions .

The basis sets used consisted of Gaussian type functions . For the firs t
row transition metal atoms we have utilized modified versions of th e
basis sets optimized for the atomic ground terms by Wachters 1970 .
Relative to Wachters' our basis sets have been extended by addition o f
two p functions and also a diffuse d function . The exponents of the tw o
most diffuse s functions have been altered to contract the radial charg e
densities resulting in improved description of the valence regions in th e
molecules . For the first row transition metal dimers the primitive base s
(14s, 11p, 6d) have been contracted to (8s, 6p, 3d) . The coefficients of the
contracted functions have been derived in HF calculations on the ground
terms of the respective atoms. In the contracted bases the 3d orbitals are
represented by triple zeta functions, and all the occupied s and p orbital s

*MOLECULE has been written by J . Almlöf, and has been described in »Proceeding s
of the Second Seminar on Computational Problems in Quantum Chemistry« (Max-
Planck Institut, München, 1973), p . 14 .

**The ALCHEMY program system is written at IBM Research Laboratory in San Jose,
Ca. by P . S . Bagus, B . Liu, M. Yoshimine, and A . D. McLean .

***The program ENERGY has been written by S . Rettrup, and is described in
C. R . Sarma and S . Rettrup, Theor . Chim . Acta (Berlin) 46, 63 (1977) ; S . Rettrup and
C. R . Sarma, ibid . 46, 73 (1977) .
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as well as the empty 4p orbitals are represented by double zeta functions .
For the second row transition metal dimers Rue, Rh 2, Ag2, and Nb2

the basis sets used are essentially Huzinaga's 1977, but extended b y
addition of two p functions . The additional p functions are needed t o
describe the 5p orbitals, and their exponents have been determined usin g
the even tempered method described by Raffenetti 1973 . Equivalent t o
the first row transition metal atoms the exponents of the most diffuse s
functions have been altered to contract the radial charge densities . The
primitive basis sets (17s, 13p, 8d) were contracted to (10s, 8p, 5d) b y
using segmented contraction schemes . The coefficients of the contracte d
functions have been determined in HF calculations on the ground term s
of the atoms . In the contracted basis sets all the occupied s and p orbital s
and the empty 5p orbitals have been represented by double zeta func-
tions . The 3d orbitals are represented by double zeta functions while th e
4d orbitals by triple zeta functions .

The basis set utilized for the Pd atom is similar to Huzinaga's 1977 ,
and it has been described in detail by Shim and Gingerich 1984.

In Table II we compare the relative energies of the lowest lying term s
originating from different orbital configurations with the correspondin g
experimental values, and also with those derived in the numerical HF
calculations performed by Martin and Hay 1981 . It is observed that we
obtain the right ordering of the terms except in the case of the Ni ato m
for which the 3F(3d) 8 (4s) 2 term is found 1 .28 eV below the 3D(3d)9 (4s) 1
term whereas it should be 0 .03 eV above . The calculated splittings be-
tween terms originating from the different orbital configurations diffe r
to some extent from the experimental values . This is a well-known
deficiency of HF calculations and it has been discussed in considerabl e
detail for the first row transition metal atoms by Claydon and Carlso n
1968 .

It is noted that our calculated splittings are in reasonable agreemen t
with those derived in the numerical HF calculations both for the first and
the second row transition metal atoms . This indicates that our basis sets
are of good qualities .

In all calculations of electronic structures of molecules containin g
transition metal atoms, the partly filled inner shells, that is the 3d and th e
4d shells for the first and the second row transition metal atoms, respec-
tively, give rise to severe complications . Thus, for the diatomic mole-
cules their presence causes great uncertainties as to electronic ground
state assignments, because a considerable number of Slater determinant s
will have comparable energies . This number increases rapidly as the
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Table II . Relative energies (eV) of the low-lying terms for th e

"d electron rich" transition metal atoms of the first and the secon d

transition metal series .

Atom Term Calculated Experimental a )

HF b) NHF c )

Cu 2S(3d) 10 (4s) 1 0 .00 0 .00 0 .0 0

2D(3d) 9 (4s) 2 0 .38 0 .37 1 .4 9

2P(3d) 10 (4p) 1 4 .33 3 .8 1

Ni 3D(3d) 9 (4s) 1 0 .00 0 .00 0 .0 0

3F(3d) 8 (4s) 2 -1 .28 -1 .27 0 .0 3

l S(3d) 10 4 .14 4 .20 1 .7 4

Co 4F(3d) 7 (4s) 2 0 .00 0 .00 0 .0 0

4F(3d) 8 (4s) 1 1 .52 1 .53 0 .4 2

2D(3d) 9 6 .98 7 .04 3 .3 6

Fe 5D(3d) 6 (4s) 2 0 .00 0 .00 0 .0 0

5F(3d) 7 (4s) 1 1 .85 1 .80 0 .8 7

3F(3d) 8 7 .59 7 .46 4 .0 7

Ag 2 S(4d) 10 (Ss) 1 0 .00 0 .00 0 .0 0

2 D(4d) 9 (5s) 2 4 .77 4 .91 3 .9 7

2 P(4d) 10 (5p) 1 3 .82 3 .7 4

Pd 1 S(4d) 10 0 .00 0 .00 0 .0 0

3D(4d)
9
(5s) 1 0 .23 0 .75 0 .9 5

1 D(4d) 9 (Ss) 1 0 .62 1 .4 5

3F(4d) 8 (5s) 2 3 .08 3 .76 3 .3 8

Rh 4F(4d) 8 (Ss) 1 0 .00 0 .00 0 .0 0

2D(4d) 9
1 .49 0 .95 0 .3 4

4F(4d) 7 (5s) 2 2 .03 2 .19 1 .6 3

Ru 5F(4d) 7 (5s) 1 0 .00 0 .00 0 .0 0

5 D(4d) 6 (Ss) 2 1 .25 1 .42 0 .8 7

3 F(4d) 8 2 .26 1 .69 1 .09
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number of holes in the d shell increases, and it reaches a maximum valu e
of 184 756, when the d shell is half full .

As has been studied in detail by Shim, Johansen and Dahl 1979 th e
chemical bond between two Ni atoms is formed when the atoms interact
in the (3d)9(4s) 1 configuration . Thus, in the cases of the molecules Ni 2
and Pd2 the holes in the d shells give rise to (18) = 190 Slater determi-
nants . For the molecules Coe and Rh2 this number increases to (10) =

4845, and for Fee and Rue to (1°) = 38 760. For the Nb 2 molecule the
number is (28) = 125 970 .

It is of course not only practically impossible but also undesirable to
perform HF calculations on all the states arising from the large number s
of Slater determinants . Since our goal is determination of all the low-
lying electronic states of the molecules investigated, we have chosen to
perform HF or hyper-HF (HHF) calculations as introduced by Slater et
al . 1969 to derive unique sets of molecular orbitals suitable for utilizatio n
in CI calculations to describe all the low-lying states . This procedure, of
course, does not provide the optimum description of each state individu-
ally, but we believe it results in balanced descriptions of the many low -
lying states .

For all the open shell molecules we have performed HF or HHF calcu-
lations in search for wave functions that could describe bound molecules ,
that is, the total energies of the molecules at reasonable internuclea r
distances should be lower than the sum of the energies of the free atom s
in their ground terms . As a starting point we have chosen to doubly
occupy the sog molecular orbital originating from the combination of th e
outermost s orbitals of the two atoms . Of the many possible configura-
tions arising because of the d orbital part of the wave functions, there ar e
two fundamentally different types . In one type the bonding molecular
orbitals are first fully occupied, and the remaining electrons are the n
distributed in the antibonding orbitals . In the second type the electron s
are distributed evenly in the bonding and in the antibonding orbitals ;
such an arrangement is required for a correct description of th e
molecules in the dissociation limit, and it also allows the electrons t o
localize around the nuclei . For all the open shell transition metal dimers
investigated, it turned out that only wave functions with equal number s

a) Center of gravity of each multiplet has been derived from data of C . E . Moore, Nat .
Bur . Stand . Circ . No. 467 (U.S . GPO, Washington, D . C . 1952, 1958) vols . 2 and 3 . - b )
Preset work. - c) Results of Numerical HF calculations by Martin and Hay 1981 .
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of electrons in bonding and antibonding molecular orbitals could de -
scribe bound molecules . All the wave functions considered with exces s
of electrons in bonding orbitals relative to the antibonding orbitals hav e
energies far above the dissociation limits of the molecules .

A variety of HF or HHF calculations have been performed for th e
transition metal dieters at internuclear distances app . equal to the dis -
tance between nearest neighbours in the bulk metals . The resulting
molecular orbitals have been utilized in CI calculations to describe all th e
low-lying electronic states of the molecules . The calculations allowed a t
least full reorganization within the valence d shells, ensuring that the d
orbital part of the wave functions is described correctly in the dissocia-
tion limit . The calculations have been performed in the subgroup D21, of
the full symmetry group D ooh of the transition metal dimers .

Theoretical investigations of transition metal dimer s

In the following we present results of ab initio studies of the homonu-
clear dimers consisting of atoms from the first and second transitio n
metal series . The homonuclear dimers of the first transition metal serie s
have all been investigated by Harris and Jones 1979 using a local spi n
density method, and by Wolf and Schmidtke 1980 using the restricte d
HF method. Only occasionally we discuss the results of these investiga-
tions, because both methods are essentially single determinant methods ,
and thus unable to describe the physics of the open shell molecules .

»d electron rich« transition metal dimers

Cu2 . The Cu atom has a completely filled 3d shell in its 1 S(3d) 10 (4s) 1
ground term, and therefore the Cu2 molecule represents the simples t
possible transition metal dimer . Unlike other transition metal dimer s
there is no ambiguity regarding the electronic ground state which is a 'E +g
state. Furthermore, at internuclear distances reasonably close to th e
equilibrium distance of the molecule the 1Eg ground state is well de -
scribed in the HF approximation by a single Slater determinant .

As reviewed by Huber and Herzberg 1979, the Cu 2 molecule is th e
transition metal dimer for which the equilibrium distance and the vibra-
tional frequency of the electronic ground state have been accurately de-
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termined earliest . For this reason and because no low-lying electronic
states contribute to the partition function of the Cu, molecule the dis-
sociation energy derived from high temperature mass spectrometric dat a
is more reliable for this molecule than for other transition metal dimers .

The Cu2 molecule has been the subject of many theoretical investiga-
tions, and Table III summarizes the spectroscopic data of the molecule a s
obtained in various calculations with a brief description of the method s
used .

The early all-electron ab initio calculations mentioned in Table II I
employed either minimal basis sets or minimal basis sets with split va-
lence orbitals . The apparent better agreement between the calculated an d
the experimental spectroscopic data obtained in these investigations rela-
tive to those obtained in the more elaborate calculations is fortuitous an d
stems from basis set superposition errors . However, the calculations b y
Bachmann et al . 1978, 1980 and by Tatewaki et al . 1980, 1981 were no t
primarily aimed at studying the Cu 2 molecule, but rather at obtaining
basis sets manageable in calculations involving larger clusters .

Some of the difficulties associated with theoretical investigations o f
transition metal dimers are apparent in Table III, where it is observe d
that the calculated spectroscopic data vary considerably . Even the most
elaborate calculations, which include those of Bauschlicher 1983 involv-
ing CI calculations with app . 225 000 functions and also those of Pelissie r
1981 involving perturbational CI with contributions from app . 400 000
determinants do not lead to accurate spectroscopic data for the Cu 2
molecule .

The less sophisticated Xa type calculations are more successful in de -
riving spectroscopic constants for the Cu 2 molecule, but these methods
are in general only applicable to systems, where the wave functions ca n
be represented by a single Slater determinant as shown by Ziegler 1984 .
Thus, the Xa methods are not suitable for accurate descriptions of th e
electronic structures of the open shell transition metal dimers that hav e
been the main emphases of our investigations .

The description of the chemical bond in the Cu 2 molecule also differs
in the Xa and in the HF-CI methods . In the Xa methods substantial
mixing or hybridization occurs between the 3d and the 4s orbitals . In the
HF-CI calculations no such mixing occurs as is illustrated in Table IV ,
which shows the Mulliken population analyses for the Cu2 molecule a t
the experimental internuclear distance . The bond between the two C u
atoms is primarily due to the delocalized doubly occupied 4sa g molecula r
orbital, and the largest contributions in the CI expansion, apart from the
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HF function, arise from angular and left-right correlation of the bondin g
electrons as discussed in detail by Shim et al . 1983a . The deformatio n
density map in Fig . 1 reveals that the bonding between the two atom s
results in a build up of charge in the internuclear region .

Table III . Experimental and calculated spectroscopic constants for the Cu, molecule .

Method

	

Basis set

	

Spectroscopic constant s

Type ; primitive-contracte d

Experimental 4 .1947 1) 264 .55 1) 2 .04*-0 .1 32 )

3)

Alielectron ab

	

initio calculations

4 .24 1 .7 5CI(2x2) STO ; minimal + 4d and 4p

4) HF GTO ;(12s,7p,5d)-(5s,3p,2d) 4 .43 248 0 .8 4

5) HF GTO ;(12s,6p,3d)-(4s,2p,1d)

	

optimi

	

ed 4 .48 194 0 .4 2

HF GTO ;(13s,7p,4d)-(Ss,3p,2d) 4 .55 220 0 .3 7

6) MCSCF(4sog

	

,4saû) GTO ;(12s,7p,Sd)-(Ss,3p,2d) 4 .61 338 1 .1 6

7) HF GTO ;C14s,11p,5d)-(8s,6p,2d) 4 .54 19 0

HF GTO ;(14s,13p,Sd)-C8s,8p,2d) 4 .38 21 0

8) HF GTO ;(12s,7p,4d)-CSs,4p,Zd) 4 .39 252 1 .0 9

HF GTO ;(14s,10p, 7d)-(8s,6p,4d) 4 .62 201 0 .5 2

9) Cl GTO ; (12s,9p,4d)-C5s,6p,Zd) 4 .19 263 1 .7 5

10) HF GFO ;(14s,11p,6d)-(Ss,6p,4d) 4 .5 9

HF GTO ;(14s,11p,6d,3f)-(8s,6p,4d .lf) 4 .5 3

CI GTO ; (14s,11p,6d)-(8s,6p,4d) 4 .4 2

CI GTO ; C 14s,11p, 6d, 3f)-(8s,6p,44,10) 4 .3 9

li) MCSCF(4sag,4sou,4p~rÛ,4po
g

) GTO ;(14s,11p,6d,3f)-(8s,6p,4d,lf) 4 .62 184 1 .2 5

CI (SI)) as above 4 .42 220 1 .5 1

CI as above 4 .45 227 1 .9 9

12) HF GTO;(14s,11p,6d)-66s,5p,3d) 4 .57 191 0 .5 4

M17CSCF(4so 2g ,4soû) as above 4 .68 162 0 .8 3

HF + rel .perturbations as above 4 .48 206 0 .6 1

MCSCF +

	

rel .

	

perturbations as above 4 .58 176 0 .9 0

13) HF GTO ; C14s,11p,6d)-(8s,6p,3d) 4 .56 197 0 .6 8

CI(18x18) as above 4 .62 179 0 .8 3

CI(378x378) as above 4 .60 186 1 .2 7

CI(2926x2928) as above 4 .54 200 2 .0 7

14) HF GTO ;(13s,7p,5d)-(4s,2p,1d) 4 .74 15 5

HF GTO ; C13s,7p,5d)-(5s,3p,2d) 4 .60 17 0

15)

Pseudopotential calculation s

CI GTO ;(is,3d)-C2s,2d) 4 .20 .1 .8 4

16) MCSCF GTO;(3s,1p,Sd)-(2s,lp,2d) 4 .71 282 0 .7 6

CI as above 4 .40 340 1 .3 0

17) HF GTO;(4s,3p,6d)-(3s,2p,3d) 4 .54 19 0

CI as above 4 .38 21 0

18)

Xa type calculation s

Xa-SW 4 .10 272 2 .8 6

19) Local spin density 4 .30 280 2 .3 0

20) Xa-LCAO STO ; valence triple zeta 4 .23 274 2 .3 0

Xa-LCAO,

	

relativistic as above 4 .27 268 2 .21
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Fig . 1 . Deformation density map of the Cu2

molecule at the internuclear distance 4 .1947
3 .6

a .u . The superpositioned atomic charge densi -

	

2 .4

	

ties have been subtracted from the molecula r
charge density as derived in CI calculation s

1 .2 with 18 functions . Solid contours show enhanc-

	

- .6

	

ed electron charge relative to the superpositioned
atoms, dashed contours show diminished char-

' 2 ge . The smallest contour value is 0 .000625
e/a .u . 3 . Adjacent contours differ by a factor of
2 .

The main purpose of our investigation of the Cu 2 molecule was not to
derive spectroscopic constants of high accuracy which in any case see m
fortuitous, but rather to study the nature of the chemical bond of the
molecule . We have carried out CI calculations of various accuracies . The
CI calculation with 18 functions allowed full reorganization within th e
3d and 4s shells and therefore leads to a correct description of the
molecule in the dissociation limit . All other CI calculations performe d
included additional excitations on top of the full reorganization withi n
the 3d and 4s shells . Thus, the calculation with 378 functions represent s
complete correlation of the bonding 4sO g electrons within the space span -
ned by the basis set . Our largest calculation with 2928 functions include d
selected single and double excitations from the 4so g and the 3d orbitals .

The calculated spectroscopic constants as derived from the various C I
calculations for this simple transition metal dieter have been utilized t o
estimate the accuracy of the calculated spectroscopic data of the muc h
more complicated open shell transition metal dimers for which experi-
mental data are more scarce .

1) Huber and Herzberg 1979 . - 2) Dô, Gingerich 1980 . - 3) Joyes and Leleyter 1973 . - 4)
Bachmann, Demuynck, and Veillard 1978 . - 5) Tatewaki and Huzinaga 1980 ; Tatewaki ,
Sakai, and Huzinaga 1981a . - 6) Basch 1980a - 7) Wolf and Schmidtke 1980 . - 8)
Tatewaki, Sakai, and Huzinaga 1981b . - 9) Witko and Beckmann 1982 . - 10) Baus-
chlicher, Walch, and Siegbahn 1982 . - 11) Bauschlicher 1983 . - 12) Martin 1983 . - 13)
Shim and Gingerich 1983a . - 14) Cingi, Clemente, and Foglia 1984 . - 15) Dixon and
Robertson 1978 . - 16) Basch 1980a . - 17) Pelissier 1981 . - 18) Ozin, Huber, McIntosh ,
Mitchell, Norman Jr ., and Noodleman 1979 . - 19) Harris and Jones 1979 . - 20) Ziegler ,
Snijders, and Baerends 1981 .

1 .2 3 . 62 . 4

1 .2 2.4 3.6



162

	

IRENE SHI M

Table IV . Mulliken population analyses of the valence orbital s

of the Cu 2 molecule as derived in CI calculations with 1 8

functions at the internuclear distance 4 .1947 a .u .

Overlap Orbital analyses Occupation
Orbital

population
s p d numbe r

4so g 0 .75 0 .94 0 .04 0 .00 1 .9 7

3d0 0 .09 0 .00 0 .00 1 .00 2 .0 0
g

3du 0 .14 0 .00 0 .00 2 .00 4 .0 0u

3d6 g 0 .03 0 .00 0 .00 2 .00 4 .0 0

3do -0 .03 0 .00 0 .00 2 .00 4 .0 0
u

3dir -0 .12 0 .00 0 .00 2 .00 4 .0 0
g

3do -0 .08 0 .01 0 .00 0 .99 2 .0 0
u

4sa -0 .04 0 .01 0 .00 0 .00 0 .03u

Ag2. The Ag atom has a 1 S(4d) 1"(5s) 1 ground term that is well separate d
from the higher lying terms . Two Ag atoms interact by forming a stable
Ag2 molecule with a closed shell 1Eg ground state . The ground state i s
well described in the HF approximation by a single Slater determinant a t
the equilibrium internuclear distance .

Just as for the Cu 2 molecule, the ground state of the Ag2 molecule i s
well characterized experimentally . In Table V we have listed the spec-
troscopic constants for the Ag 2 molecule together with a summary of th e
calculated values as derived in the various theoretical investigations . It is
noted that the calculated spectroscopic constants differ considerabl y
from the experimental values . Thus, all the calculated equilibrium dis -
tances are too long even those derived from the calculations that tak e
relativistic effects into account . It appears that the spectroscopic con-
stants derived from electronic structure calculations of transition meta l
compounds with the presently known computational techniques are
questionable in an absolute sense . It is, however, apparent from Table I
that only very little experimental information is available for the second
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row transition metal dimers, and therefore we have utilized our calcu-
lated spectroscopic constants for the Ag 2 molecule to judge the spectros-
copic constants derived in equivalent calculations for the other transitio n
metal dimers of the second transition metal series .

For the Ag 2 molecule we have carried out two sets of CI calculations ,
Shim and Gingerich 1983a . One set is completely equivalent to some of
the calculations performed for the Cue molecule . In these calculations we
have included the 18 functions arising from all rearangements of the
electrons within the 4d and the 5s shells . Such wave functions allow
correct description of the molecule in the dissociation limit . In the sec-
ond set of CI calculations with 684 functions we also included all singl e
and double excitations from the 4d and the 5s shells into the lowest lying
virtual o and t orbitals .

Table V . Experimental and calculated spectroscopic constantsforthe Ag t molecule .

Basis set

	

Spectroscopic constant s

Type ; primitive-contracted

	

r e (e .u .) w e (cm 1 ) D e (eV)
Metho d

Experimenta l

All electron ab initio calculations

4 .69 1)

	

192 .4 2)

	

1 .65±0 .5 3 )

4)

	

MCSCF(5soô,Ssaii )

5)

	

H F

CI(18918 )

CI(684968q )

6)

	

H F

MCSC F

CI(6091x6091 )

7)

	

H t

Pseudopotential calculation s

8)

	

MCSCF(5sag,5scû )
C I
MCSCF(5sn2,Sso ), relativisti c
Cl, relativisti c

9)

	

MCSCF(leo2,5saû )
10)

	

H F

HF, relativistic

GTO ;(19s,11p,8d)-(6s,4p,3d )
GTO ;(17s,13p,8d)-(10s,8p,5d )

as abov e

as abov e

SIG ; (ils, 9p, 5d )

as abov e

as abov e

GTO ;(14s,8p,7d)-(Ss,3p,2d )

GTO ;(3s,1p,5d)-(2s,lp,2d )
as abov e

as abov e

as abov e

(3s, lp,5d)-(Ss,2p,1d )

GTO ;(8s,4p, bd)-(4s,4p,3d )
as above

	

5 .37

	

21 8

	

5 .24

	

13 4

	

5 .32

	

12 0

	

5 .21

	

13 4

	

5 .27

	

12 9

	

5 .41

	

10 8

5 .1 5

	

5 .2

	

12 0

	

5 .46

	

16 4

	

5 .12

	

22 6

	

5 .22

	

22 2

	

4 .95

	

24 2

	

5 .07

	

13 1

	

5 .29

	

13 0

	

5 .16

	

14 5

GTO

0 .7 6

0 .8 9

1 .0 5

0 .3 8
0 .6 7

1 .1 3

0 .5 1
0 .9 5

0 .6 1
1 .1 2
0 .9 4

la type calculation s
11)

	

Xa-5W

	

5 .37

	

18 7
12)

	

Xa-LCAO

	

STO ; valence triple zeta

	

5 .05

	

18 4
Xa-LCAO, relativistic

	

as above

	

4 .76

	

20 3

1) Srdanov and Pesie 1981 . - 2) Huber and Herzberg 1979 . - 3) Do, Gingerich 1980 . - 4 )
Basch 1980a . - 5) Shim and Gingerich 1983 . - 6) McLean 1983 . - 7) Cingi, Clemente, an d
Foglia 1984 . - 8) Basch 1980a . - 9) Basch 1981 . - 10) Klobukowski 1983 . - 11) Ozin ,
Huber, McIntosh, Mitchell, Norman Jr ., and Noodleman 1979 . - 12) Ziegler, Snijders ,
and Baerends 1981 .

1 .5 6
1 .7 3

2 .04
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3. 6

2. 4

1 . 2

Fig . 2 . Deformation density map of the A$2
molecule at the internuclear distance 5 .20 a .u .
The superpositioned atomic charge densities ha -

ve been subtracted from the molecular charge
density as derived in CI calculations with 1 8
functions . Solid contours show enhanced elec-

tron charge relative to the superpositione d
atoms, dashed contours show diminished char-

ge . The smallest contour value is 0 .000625

e/a .u . 3 . Adjacent contours differ by a factor of
2 .

The chemical bond in the Ag 2 molecule resembles that of the Cu 2
molecule considerably . The 4d electrons tend to localize around th e
individual nuclei and only participate slightly in the formation of the
bond . The bond is primarily due to the doubly occupied delocalized 5so g
molecular orbital . This is reflected in the Mulliken population analyses
presented in Table VI . It is noted that the overlap population is chiefly
due to the 5sog molecular orbital and, as is the case for the Cu2 molecule ,
hardly any hybridization occurs between the s and the d orbitals .

The CI calculations with 684 functions reveal that the major config-
urations, apart from the HF configuration, originate from double excita-
tions from the 5sog orbital into the 5prr and 5so„ orbitals . Such config-
urations are attributed to angular and left-right correlation, respectively ,
of the bonding 5sog electrons .

Fig . 2 shows a deformation density map for the Ag 2 molecule at the
internuclear distance 5 .20 a.u. It is noted that the chemical bond mani-
fests itself through a build up of charge in the region between the tw o
nuclei .

Ni2 . The element just prior to Cu in the periodic system is Ni that has a
ground term arising from a non-closed 3d shell . This causes considerabl e
complications in the theoretical investigations of the dimer because it
gives rise to many different possibilities for assigning symmetry an d
configuration of the electronic ground state of Ni2. As a consequence
fewer theoretical investigations have appeared for Ni 2 than for Cu 2 as i s
evident from Table VII, where we have summarized the spectroscopi c
constants of the Ni2 molecule derived in the various calculations .
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According to Moore's Tables 1952 the lowest lying level of the Ni
atom is 3 F4 (3d) 8 (4s) 2 , but after averaging over the spin-orbit component s
of the lowest lying terms it turns out that the average energy of th e
3D(3d)9(4s) 1 term is slightly below that of the 3 F(3d) 8 (4s) 2 term. In our
previous work, Shim et al . 1979, we have shown that interaction be-
tween two Ni atoms in the 3F(3d)8(4s) 2 term is repulsive, while two Ni
atoms interacting in the 3D(3d) 9 (4s) 1 term results in formation of a stabl e
molecule . The chemical bond in Ni2 proved to be primarily due to th e
delocalized doubly occupied 4sog molecular orbital . The 3d electrons
localize around the individual nuclei giving rise to a hole in the 3d shell of
each atom. The hole can be in an orbital of either o, n, or 8 symmetry ,
and the low-lying electronic states of Ni2 can be characterized by th e
symmetry of the holes .

The results presented below have been derived in a new investigatio n
of the Ni2 molecule . The new results confirm our earlier work as to th e
description of the chemical bond and also regarding the existence of a

Table VI . Mulliken population analyses of the valence orbital s

of the Ag 2 molecule as derived in CI calculations with 1 8

functions at the internuclear distance 5 .20 a .u .

Overlap Orbital analyses Occupation
Orbital

population

s p d number

5sog 0 .66 0 .93 0 .04 0 .00 1 .9 5

4dog 0 .10 0 .00 0 .00 1 .00 2 .0 0

4dïru 0 .09 0 .00 0 .00 2 .00 4 .0 0

4ddg 0 .01 0 .00 0 .00 2 .00 4 .0 0

4ddu -0 .01 0 .00 0 .00 2 .00 4 .0 0

4d7g -0 .07 0 .00 0 .01 1 .99 4 .0 0

4dau -0 .08 0 .01 0 .01 0 .98 2 .0 0

5sou -0 .05 0 .02 0 .00 0 .00 0 .05
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Table VII . Experimental and calculated spectroscopic constants of the Ni, molecul e

Method

	

Basis set Spectroscopic constant s

Type ; primitive-contracted
State

r e (a .u .) m e ( cm 1 ) D 0 (eV)

Experimental 4 .16 3) 380 .9 2) 2 .38 1 )

4)

All electron ab

	

initio calculations

Tg (99) 4 .15 289 1 .7 6CI(252x252)

	

GTO ;

	

(14s,11p,5d)-(8s,6p,3d )

5) CI

	

GTO ;(12s,6p,4d)-(5s,2p,1d) 1 P g (88) 4 .16 0 .5 2

6) Restricted HF

	

GTO ;C14s,llp, Sd)-(B s,Gp, 2d) 1 1 ; 4 .31 24 0

7) CI

	

(252x252)

	

GTO ;(14s,11p,6d)-(8s,6p,3d) 1 1 ;(86) 4 .68 185 0 .9 5

Cl (3219x3219)

	

as

	

above 1 4(83) 4 .67 18 6

8)

Pseudopotential calculations

1 P g (99) 3 .86 344 2 .9 3CI (GVB)

	

GTO ;(4s,4p,5d)-(3s,2p,2d )

9) CI

	

GTO ;(4s,2p,5d)-(4s,2p,24) 4 .27 1 .8 8

10)

Xa type calculation s

Local spin density 3 1- 4 .12 320 2 .7 0

11)
g

3 n 3 .84 356 2 .9 1Xa-LCAO

	

GTO ;(14s,10p,6d,lf) u

1) Do from Kant 1964. - 2) Ahmed and Nixon 1979 . - 3) Morse, Hansen, Langridge -
Smith, Zheng, Geusic, Michalopoulos, and Smalley 1984 . - 4) Shim, Dahl, and Johansen
1979 . - 5) Wood, Doran, Hillier, and Guest 1980. - 6) Wolf and Smidtke 1980 . - 7)

Present work . - 8) Upton and Goddard 1978 . - 9) Noell, Newton, Hay, Martin, and
Bobrowicz 1980 . - 10) Harris and Jones 1979 . - 11) Dunlap and Yu 1980 .

»band« consisting of 30 low-lying electronic states, but some of the
states in the middle of the »band« have been reversed . The calculated
spectroscopic constants deviate from those of our previous work . This is
not surprising since the spectroscopic constants are very sensitive to th e
calculational details as has been noted for Cue .

In connection with the present work we have added a diffuse d func-
tion to the basis set of the Ni atom, and we have also carried out a
counterpoise correction analysis as suggested by Kolos 1979. This has
shown that basis set superposition errors are negligible in the present
investigation .

HF calculations on Ni 2 at the internuclear distance 4 .709 a.u. showed
that states with holes in localized o, n, or 8 orbitals of each of the tw o
atoms all have energies below the sum of the separated atoms . In the
molecular orbital picture these states are arising from holes in the orbital



HOMONUCLEAR DIMERS

	

167

pairs 3d o g ,3dO u or 3dat,,,3dng or 3dbg ,3dbu , respectively. We have utilized
the molecular orbitals from the three above-mentioned configurations i n
CI calculations to describe all the low-lying electronic states of the Ni 2

molecule . It turned out that the inclusion of the diffuse d function in the
basis set caused the sequence of the low-lying electronic states resultin g
from the CI calculations to be dependent on the state chosen for optimi-
zation of the molecular orbitals . However, the CI calculations based o n
the molecular orbitals optimized for the (M) hole state gave rise to the
lowest total energies, and therefore we report only the results of thes e
calculations .

Figs . 3 and 4 show results of CI calculations allowing full reorganiza-
tion within the 3d and 4s shells . In Fig. 3 the 30 low-lying electroni c
states of the Ni2 molecule are depicted at the nearest neighbour internu-
clear distance in bulk Ni, 4.709 a .u. Table VIII reveals the 3d shell con-
figurations of the low-lying states . It is noted that the 6 lowest lying
states all have a hole in the 3db subshell of each of the two atoms . After
that follows 8 states with a hole in the 3dô orbital of one atom and in th e
3dat orbital of the other atom . Thereafter 4 states with holes in the adb
and in 3dß orbitals of the two atoms, respectively . Then 6 (am) hole state s
followed by 4 (no) hole states, and finally at the highest energies the 2 (Go)

hole states . From Table VIII it is also seen that mixing of states originat-
ing from holes with different symmetries is negligible . Fig. 4 shows the
potential energy curves obtained by fitting the calculated points of th e

Table VIII . Energy ranges and the d shell configuration for low -

lying states of Ni 2 at the internuclear distance 4 .709 a .u .

Energy range (eV)

	

States d shell populatio n
o

	

Tr

	

S

0 .000

	

- 0 .012 lEg,lrg

	

1 Eü

	

3Eg,3u,3ru

	

4 .00 8 .00 6 .0 0

0 .176

	

- 0 .203 3Øu,lEu,1Øg,3Eu,1Eg,1Øu,3
Kg,3Øg

	

4 .00 7 .00 7 .0 0

0 .241

	

- 0 .261 14g, 3Ag, 1 Au, 3 Au

	

3 .00 8 .00 7 .0 0

0 .350

	

- 0 .418 3Eg,1
A
g,1Eg,1Eu,3

A
u,3Eû

	

4 .00 6 .00 8 .0 0

0 .424

	

- 0 .492 3 IIu , l IIu , l II g , 3 li g

	

3 .00 7 .00 8 .0 0

0 .513 0 .576 lEg,3Eu

	

2 .00 8 .00 6 .00
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Fig . 3 . Relative energies in eV of the 30 low-

	

E (eV )

lying states of the Ni 2 molecule at the internuc-

	

0 .6 _

Lear distance 4 .709 a .u . States are listed in or-
der of increasing energy .

0 .5 _

0 . 4

0.3 _

'A,3 3Ag , Q u

0 .2

	

3 fQ 3 9
34,u

1n u ' 0g 3n u 1n 9

0 . 1

0 .0
1~9 ,rq lc~ 3E9 3Fû Jr- u

potential energies to Morse curves . It is noted that the shapes of th e
potential energy curves are very similar although the equilibrium dis -
tances increase slightly and the vibrational frequencies decrease for th e
higher lying states .

In Table IX we present the Mulliken population analyses of the valenc e
orbitals of Ni2 . The total overlap population is almost entirely due to th e
4sOg molecular orbital . The 3d electrons are practically non bonding, an d
analogous with the Cue molecule hardly any mixing of the 3d and the 4 s
orbitals occurs .
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Table IX . Mulliken population analyses of the valence orbital s

for the l E ground state of the Ni 2 molecule resulting from C I

calculations with 252 functions at the internuclear distanc e

4 .709

	

a .u .

Overlap

	

Orbital analyses

	

Occupation
Orbital

population numbers

	

p

	

d

4sog 0 .70 0 .93 0 .04 0 .00 1 .9 4

3dag 0 .06 0 .00 0 .00 1 .00 2 .00

3d7u 0 .12 0 .00 0 .00 2 .00 4 .00

3d6g 0 .02 0 .00 0 .00 1 .51 3 .0 1

3d3u -0 .02 0 .00 0 .00 1 .49 2 .98

3d7
g

-0 .11 0 .00 0 .00 2 .00 4 .0 0

3da
u -0 .05 0 .01 0 .00 0 .99 2 .0 0

4sau -0 .04 0 .02 0 .00 0 .00 0 .0 6

Total 0 .68 6 .96 12 .05 8 .98

A picture of the bonding interaction between two Ni atoms emerges
from the calculational results : As the two atoms approach each other a n
axial symmetry is introduced, and this causes the 3d orbitals to split int o
6, n, and ö orbitals associated with different energies . One should expect
that the holes in the 3d shells of the Ni atoms would reside in the 3d 6
subshells, because this should give rise to the formation of a 3dß bond at
closer approach . However, it turns out that the system is more stabl e
when the holes are localized in the 3d6 subshells . This indicates that each
atom experiences the other as a positive unit, and therefore the Ni 2

molecule can be regarded as two Ni' ions kept together by the de-
localized charge cloud originating from the 4s electrons . The 3d elec-
trons localize around the nuclei, and their interaction can be interprete d
as a Heisenberg exchange coupling as discussed by Shim 1980a . The
interaction between the 3d electrons gives rise to the small energy split -
tings between the many low lying potential energy curves . The I E g



170

Fig . 4 . Potential energy
curves of the low-lying
electronic states of the Ni2
molecule as derived in CI
calculations .

IRENE SHI M

ground state of the Ni2 molecule has the natural orbital configuratio n
(3d(ju ) 2.00 (3dTt u ) 4 . °0(3d8g) 3 .o1 (3d8u) 2 .9s (3dIrg ) 4 .oo (3dou ) 2 .oo (4sß g ) 1 .9 4

(4sß,,)° .06 at the internuclear distance 4 .709 a .u .
The IEg ground state of the Ni2 molecule has been investigated further

by performing CI calculations which included all single and double exci-
tations into the 4pos , 5s0g and 4patu orbitals from the 4sßg orbital and
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Table X . Major configurations of the wave functions decribing the 1 %g ground state of th e

Ni 2 molecule at the internuclear distance 4 .709 a .u .

Configuration
Contribution

	

(%)

	

in

	

CI wit h

252 321 9

4sa g 4so u 3do g 3dr u 3dß g 3dd u 3dnr g 3da u 4po g 4pm u 5sa g
configurations

2 0 2 4 4 2 4 2 0 0 0 49 .19 47 .9 2

2 0 2 4 2 4 4 2 0 0 0 47 .43 46 .0 7

0 2 4 4 2 4 2 0 0 0 1 .16 0 . 7 2

0 2 2 4 2 4 4 2 0 0 0 1 .13 0 .7 0

1 1 2 4 3 3 4 2 0 0 0 0 .95 0 .5 9

0 0 2 4 4 2 4 2 0 2 0 - 1 .3 6

0 0 2 4 2 4 4 2 0 0 - 1 .31

from the 3d shells of the 12 functions having the 4sog orbital doubly
occupied and allowing all rearangements within the 3d shells . This re-
sulted in a CI matrix of dimension 3219 .

In Table X we present the major configurations of the wave function s
for the 1 Eg ground state of Ni 2 as derived in CI calculations at the inter -
nuclear distance 4 .709 a .u. The two dominating configurations in bot h
calculations account for the localization of the holes in the 3dö subshell s
of each atom. This is evident when noting that the two configuration s
have approximately equal weight and in one configuration the 3db g

orbitals are fully occupied while the 3dö„ orbitals are fully occupied i n
the other. The two configurations contributing slightly more than 1% i n
the smaller calculation introduces left-right correlation of the bondin g
4so g electrons . In the larger calculation the angular correlation of the 4sOg

electrons is introduced through the configurations derived from double
excitations from the 4s0g to the 4pat„ orbitals . It is noted that the config-
urations accounting for the angular correlation of the 4so g electrons con-
tribute more to the wave function than those accounting for the left -
right correlation . This is analogous with our findings for the molecules
Cue and Age .

Since the electronic states of the Ni2 molecule are very closely spaced i t
is evident that spin-orbit coupling might cause considerable mixing o f
the states. Consequently we have undertaken a study of this effect base d
on the perturbational Hamiltonian H 1 = E (r i) The method employ-
ed for treating the spin-orbit coupling in' the Ni2 molecule is analogou s
to that used in our previous work concerning the NiCu molecule, Shi m
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1980b . We have applied the following approximations : The overlap inte-
grals between 3d orbitals centered at different nuclei have been neglec-
ted, since the 3d orbitals are well localized . We have also utilized that
hybridization between the 3d, 4s, and 4p orbitals is negligible . Finally ,
we have assumed that the radial integrals (r) arising when evaluating th e
matrix elements of the spin-orbit coupling operator are all equal, and th e
value of 603 cm-I for the appropriate radial integral has been taken from
work by Laporte and Inglis 1930 .

The energies of the LS states have been added to the appropriat e
diagonal elements of the matrices representing the spin-orbit couplin g
for each value of Q, and the spin-orbit coupled states have been derive d
by diagonalization of the matrices .

As anticipated the spin-orbit coupling causes the low-lying electroni c
states to mix considerably resulting in a spreading of the »band« of low -
lying electronic states . At the internuclear distance 4 .709 a.u. all the low-
lying states without considering spin-orbit coupling are found in an
energy range of app . 0 .58 eV. When spin-orbit coupling is taken into
account the states cover an energy range of app . 0.84 eV.

Fig . 5 shows the potential energy curves for the spin-orbit couple d
states derived by fitting the calculated points of the potential energies t o
Morse curves . The three lowest lying states in order of increasing energ y
are 0+g, 0ll and 5u. These states are all characterized as having holes in th e
3dö subshells of the two atoms . The higher lying states gradually mix i n
states originating from different hole symmetries and they can, therefo-
re, not be described by the symmetries of the holes in a simple manner .
The spin-orbit coupling does not change the description of the chemica l
bond in Ni2. This is not surprising since the effect as treated in the
present investigation is basicly atomic .

Table VII reveals that the spectroscopic constants of the Ni 2 molecule
derived in our work from 1979 are considerably closer to the experimen-
tal values than those derived in our present investigation . This is at leas t
partly due to the basis set superposition errors, which apparently com-
pensate for other deficiencies in our ealier work . The general trends in
the calculated spectroscopic constants of the Ni 2 molecule coincide with
those of the Cue molecule, that is, the agreement between the calculate d
and the experimental spectroscopic constants becomes worse as the cal-
culations get more elaborate . The calculated equilibrium distances be -
come too long and the vibrational frequencies too low . Furthermore ,
only a fraction of the dissociation energy is accounted for .

More important, however, Morse et al . 1984 have recently found the
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first experimental evidence in support of the characteristic features of th e
electronic structures of the transition metal dimers, namely the existenc e
of the many low-lying electronic states . In their spectroscopic studies o f
the Ni2 molecule they have found a much higher density of spectroscopi c
transitions than is usual in a diatomic molecule, and this is considered a s
confirmation of the large number of low-lying electronic states .

Pd2 . Both experimental and theoretical investigations are very scarce fo r
the Pd 2 molecule . Besides the high temperature mass spectrometric in-
vestigations by Gingerich 1967, by Lin et al . 1969a, and by Shim an d
Gingerich 1984, only matrix isolation study has been reported by Klotz-
biicher et al . 1980b . These authors claim to have observed the Pd2 mole -
cule in an Ar matrix, but no spectral assignment whatsoever could b e
derived from their observations . Previous ab initio studies concerning
the Pd2 molecule are limited to two pseudopotential calculations . Garcia
- Prieto et al . 1980 dealt especially with the basis set superposition errors ,
while Basch et al . 1980b have performed MCSCF calculations for a fe w
of the low-lying states .

The ground term of the Pd atom is the closed shell 1 S(4d) 10 term. In
accordance with our expectations the interaction between two Pd atom s
in their ground term does not lead to the formation of a stable molecule .
However, it has been necessary to carry out a counterpoise correctio n
analysis of our HF results to verify this, Shim and Gingerich 1984 .

Formation of a chemical bond between two Pd atoms occurs, when
the atoms interact in the 3D(4d)9(5s) 1 term. The interaction between the
Pd atoms is very similar to that of the Ni atoms . When the Pd atoms
approach each other the 4d orbitals split into o, a, and 8 orbitals with
different energies . The split orbitals exchange couple, and this gives rise
to the small splittings between the 30 low-lying potential energy curves .
At the internuclear distance 5 .19788 a .u. which is the nearest neighbour
internuclear distance in bulk Pd, the 30 low-lying electronic states cove r
an energy range of only 0.37 eV as shown in Fig . 6 . The 4d electrons
localize around the nuclei, and the chemical bond in the Pd 2 molecule i s
primarily due to the delocalized 5sO g molecular orbital .

Analogous to the electronic structure ,of Ni2, the 6 lowest lying state s
of Pd2 all have a hole in the 4d8 subshell of each atom. States arisin g
from holes in the 4dat subshells are found at higher energies, and th e
highest lying states originate from holes in the 4dß subshells . The ground
state of the Pd 2 molecule is a 1Eg state, and it has the natural orbital
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configuration (4dog ) 2 .00 (4dat„ ) 4 .00 (4db g) 3 .03 (4d8u)2 .98 (4djtg) 3 .99 (4dou) 2 .00

(5sßg) 1 .93 (5sou)° 07 at the internuclear distance 5 .19788 a .u .
The calculated equilibrium distance and vibrational frequency for th e

Pd2 molecule in its 11g ground state is 5 .30 a .u. and 132 cm-' , respective-
ly . Correction for basis set superposition errors causes the equilibriu m
distance to increase to 5 .49 a .u. and the vibrational frequency to decrease
to 104 cm-1.

The calculated equilibrium distance is too long, and on basis of ou r
results for the transition metal dimers Cu 2, Ni2, and Ag 2 we estimate the
true equilibrium distance of Pd2 to be app . 4.7 a .u. Half of the bond
contraction, that is app. 0.3 a.u., will presumably arise from relativisti c
effects while the other half is attributable to correlation. The magnitude
of the relativistic bond contraction is estimated on basis of the relativisti c
contractions of the 5s orbitals in the second row transition metal series a s
determined by Desclaux 1973 . Ziegler et al . 1981 and Pyykkö et al . 198 1
have shown that the relativistic bond contraction is a first order effec t
and consequently not a result of the orbital contraction . However, th e
calculational works by Ziegler 1981 on Ag 2 and by McLean 1983 o n
AgH indicate that the known orbital contractions offer a reasonabl e
measure of the bond contractions .

It is not possible to give a reliable estimate of the true vibrationa l
frequency of the Pd2 molecule from our calculated value . This is due to
the fact that counteracting effects have to be considered . Thus, our calcu-
lated vibrational frequency is too low for a Pd 2 molecule dissociating
into two Pd atoms in the 3D(4d)9 (5s) 1 term, but a real Pd2 molecule will
dissociate into two atoms in the 1 S(4d) 10 ground term, and this will
lower the vibrational frequency .

The calculated dissociation energy of Pd 2 is 1 .18 eV relative to two P d
atoms in the 3D(4d)9(5s)' term, and this value is reduced to 0 .93 eV when
the basis set superposition errors are taken into account . When the exper-
imental energy splitting between the 3D(4d)9 (5s) 1 term and the 1 S(4d) 1 °

ground term is considered, it turns out that the Pd2 molecule in ou r
description is unbound by 0.72 eV or 0 .97 eV excluding and including
corrections for basis set superposition errors, respectively . However, in
view of our results for the molecules Cu 2 and Ag 2 we can only expect to
account for about half of the dissociation energy of Pd2 relative to two
Pd atoms in the 3D(4d) 9 (5s) 1 term in our present work. Therefore, i t
seems likely that more extensive CI calculations based on our sets o f
molecular orbitals would cause the Pd2 molecule to be bound relative t o
two Pd atoms in their 1 S(4d) 10 ground term.
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In the light of the fact that the more elaborate calculations for th e
molecules Cue and Age have not changed the qualitative description of
the bonding in these molecules, we believe that our calculations on Pd 2
in general offer an appropriate description of the electronic structure and
of the chemical bond in this molecule .

Finally, we have considered the effect of spin-orbit coupling on th e
low-lying electronic states by applying the same approximations as thos e
described above for the Ni2 molecule . The »band« of low-lying states is ,
however, more narrow for Pd 2 than for Ni 2, and the atomic spin-orbit
coupling constant is 1412 cm -I for Pd, Laporte and Inglis 1930, relativ e
to 603 cm-I for Ni. Therefore the spin-orbit coupling causes consider -
able more spreading of the low-lying electronic states for Pd 2 than for
Ni2. At the internuclear distance 5 .19788 a . u . the energy range of th e
»band« of low-lying states changes from app . 0 .37 eV to app . 1 .17 eV due
to spin-orbit coupling . The three lowest lying states in order of increas-
ing energy are 0+g , 5 t„ 0,u, and these states are all characterized by a hole in
the 3db subshell of each of the Pd atoms . The 0g and the 0t, states consis t
both of app. equal amounts of the 1lg and the 3E (M) hole states, while
the 5 t, state is a pure 3F,5 state . The higher lying states mix considerabl y
and cannot be described by the symmetry of the holes in a simple man-
ner. The spin-orbit coupling as treated in our work is of atomic nature ,
and it therefore does not change the description of the chemical bond i n
the Pd, molecule .

Co 2 . The Co, molecule has been observed by Kant and Strauss 1964 i n
their high temperature mass spectrometric studies . The only experimen-
tal data available for Co, are the dissociation energy derived by Kant an d
Strauss 1964 and a vibrational frequency that has been determined in a
matrix isolation investigation as quoted by DiLella et al . 1982 .

Prior to our theoretical work, Shim and Gingerich 1983b, Harris an d
Jones 1979 have investigated the Co 2 molecule using a local spin densit y
method. They predicted a 5Ag ground state with the configuration
(3dag)2(3drtu)4(3d8 g ) 4(3d6u) 3 (3dQ g ) 2(3da„) 1 (4sa g ) 2 . They derived the equi-
librium distance of the 5Ag state as 3 .92 a . u ., the vibrational frequency a s
360 cm-1 , and the dissociation energy as 3 .35 eV .

According to Moore's Tables 1952 the ground term of the Co atom i s
4F(3d) 7 (4s) 2 . In light of the repulsive interaction between two Ni atoms
in the 3F(3d)«(4s) 2 term we presumed that two Co atoms in their groun d
term also will interact repulsively . However, the Co atom has a
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4F(3d) 8 (4s) 1 term 0 .42 eV above the ground term, and this gives rise t o
the bonding interaction between the two Co atoms .

Due to the additional hole in the 3d shell of atomic Co relative to Ni i t
is considerably more difficult to determine the electronic ground state o f
the Co 2 molecule than of the Ni 2 molecule . As a first attempt we perfor-
med HF calculations on the 3 Ag state which Harris and Jones have predic-
ted to be the ground state of the Co 2 molecule . Our results have reveale d
that this state is unbound by app . 0 .5 a.u. in the HF approximation .

Of all the configurations we tried out in HF calculations only two ha d
energies below the sum of the energies of the separated atoms . These are
(3dog) 1 (3dttu ) 4 (3dßg) 3 (3d8„)3 (3dng)4 (3dß,)1 (4sog)2 and (3do g ) 2 (3datu) 3
(3dßg ) 3 (3dßu)3 (3datg ) 3 (3dou ) 2 (4sog)2 , respectively . Orbitals from both of
these configurations have been utilized in CI calculations to describe al l
low-lying electronic states, but the latter configuration gave rise to th e
lowest total energies, and only the results based on this configuration ar e
reported .

The molecular orbitals have been utilized in CI calculations that allow-
ed full reorganization within the 3d shells . This insures that the d orbita l
part of the wave function is described correctly in the dissociation limit .
The 4sog orbital was kept doubly occupied and therefore the total wav e
functions do not behave correctly in the dissociation limit . This should ,
however, be of minor importance for the relative energies of the low -
lying states at internuclear distances close to the equilibrium distance o f
the molecule .

Fig. 7 shows all the 84 low-lying electronic states resulting from CI
calculations at the internuclear distance 4 .72 a .u. The 9 lowest lying
states all have holes in orbital pairs 3db, 3d3r of each of the two atoms . In
the 9 highest lying states the holes are in the 3db and in the 3do subshell s
of each of the two atoms, respectively . Most of the remaining state s
cannot be described by the symmetry of the holes in a simple manner .
The interaction between two Co atoms is of a similar nature as the
interaction between two Ni atoms. Thus, the chemical bond in Co 2 i s
mainly due to the delocalized doubly occupied 4sog molecular orbital . At
the internuclear distance 4 .72 a.u. the populations in the bonding and i n
the antibonding 3d orbitals are approximately equal . This indicates that
the 3d electrons hardly participate in the bonding, but localize around the
nuclei . The interaction between the 3d electrons of the two Co atoms
occurs as a Heisenberg exchange coupling resulting in the small energ y
splittings between the 84 low-lying potential energy curves . Thus, of the
9 lowest lying states all with holes in the orbital pairs 3dß, 3d3t of each
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atom, the E states are ferromagnetic coupled while the I states are antifer-
romagnetic coupled . The exchange coupling constant for the E states i s
23 cm-' and that for the I states is -43 cm -' at the internuclear distanc e
4.72 a.u. The 9 highest lying states arising from holes in the orbital pair s
3dS, 3dß of each atom are all antiferromagnetic coupled. The exchange
coupling constants are -15 cm- ' for the E + states, -8 cm-1 for the E -
states, and -16 cm- ' for the IT states, respectively .

The spin-orbit coupling which has not been considered for the Co 2
molecule would cause considerable mixing of the low-lying states, but a s
for Ni2 and Pd 2 it would not alter the description of the chemical bond .

The 5l+g ground state of Co2 has been investigated further by perform -
ing CI calculations that allowed full reorganization within both the 3 d
and the 4s shells . The natural orbital configuration of the 5E+g ground
state determined in these calculations is (3dog ) 2 - 00 (3dnu)3 ° 9 (3dô g ) 3 . ° 2

(3d&i ) 2 .98 (3datg)2 .91 (3dou)2 .oo (4sog) 1 • 94 (4so ) 0 .06 at the internuclear dis -
tance 4 .72 a.u.

The calculated points of the potential energies for the 5Eg ground state
of Co2 have been fitted to a Morse curve from which we have derived
the equilibrium distance as 4 .84 a .u . and the vibrational frequency as 16 2
cm-1 . The calculated equilibrium distance is presumably too long b y
0 .4-0.5 a .u. as is the case for Cu2 and Ni 2 in equivalent calculations . The
calculated vibrational frequency is considerably lower than the experi-
mental value of 290 cm -1 quoted by DiLella et al . 1982 .

In the present description the dissociation energy relative to two Co
atoms in the 4 F(3d) 8 (4s) 1 term is 0 .81 eV. but relative to two Co atoms in
their 4F(3d) 7(4s) 2 ground term the Co 2 molecule is unbound by app. 0 .02
eV. However, in the light of our experience with the Cu 2 molecule w e
are confident that larger CI calculations based on our sets of molecula r
orbitals would result in a bound Co2 molecule relative to the atoms in
their ground term . Furthermore, it is unlikely that such additional calcu-
lations, which would demand considerable resources, would give rise t o
any significant change in the description of the chemical bond or in th e
picture of the many low-lying electronic states .

Rh2 . The only experimental investigations of the Rh2 molecule know n
are the high temperature mass spectrometric measurements by Ginge -
rich and Cocke 1972, Cocke and Gingerich 1974, and by Piacente et al .
1974 . The present work constitutes the first theoretical investigation o f
the Rh2 molecule .

According to Moore's Tables 1952 the ground term of the Rh atom is
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4F(4d)8(5s) 1 , and therefore no ambiguity arises as to which term give s
rise to a bonding interaction . Two Rh atoms interacting in their ground
term will lead to the formation of a stable molecule .

In search for a state that would be able to describe a bound molecule ,
we have performed HF calculations for many different configurations a t
the internuclear distance 5.082 a .u. which is the nearest neighbour dis -
tance in bulk Rh. Only one of the configurations we tried out, namely
(4dog)2(4dau) 3(4d8g) 3 (4döu) 3 (4dag) 3 (4do)2(5so'g) 2 was associated with a n
energy below the sum of the energies of the separated atoms . It is noted
that this configuration is equivalent with the configuration used for opti-
mization of the molecular orbitals for the Co 2 molecule .

The molecular orbitals optimized for the above-mentioned configura-
tion have been utilized in Cl calculations to describe all the low-lyin g
states of the Rh2 molecule . The Cl calculations performed are equivalent
to those performed for the Co2 molecule, that is, full reorganization
within the 4d shells is allowed, but the 5s6 g orbital has been kept fully
occupied . In Fig. 8 we show the energies of the 84 low-lying states at th e
internuclear distance 5 .082 a .u .

The 3 lowest lying states sEg, 1 Ig have holes in the orbital pair s
4da, 4d6 of each of the Rh atoms, and thus they are equivalent to the 3
lowest lying states of the Co2 molecule . However, contrary to our find-
ings for Co 2 the lowest lying electronic states of the Rh2 molecule canno t
be described as simple Heisenberg exchange couplings . This is clearly
recognized from the fact that the energy of the lowest lying IEg state is in
between those of the lowest lying 51g and 31g states .

The 51g ground state of Rh 2 has been investigated further in CI calcu-
lations allowing full reorganization within the 4d as well as the 5s shells .
This gave rise to CI matrices of dimension 1084. In an additional set of
Cl calculations also excitations from the 5so g into the 5pat u orbitals have
been included resulting in matrices of dimension 1682 .

In Table XI we present the major contributions to the wave function s
describing the 51g ground state of the Rh2 molecule . The principal con-
tribution to the chemical bond is due to the delocalized 5so g molecular
orbital . It is noted that the wave function with 1084 configurations intro-
duces left-right correlation of the bonding electrons through double ex-
citations from the 5s0g into the 5so orbital . In the largest calculation th e
left-right correlation of the 5sog electrons is reduced in favour of the
angular correlation. This trend is in agreement with our results for the
molecules Cue and Age .

The configurations of the 4d shells have not been specified in detail in
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Table XI . Major contributions to the wave functions describing the

Srg ground state of the Rh 2 molecule at the internuclear distanc e

5 .082 a .u .

Contributions in (%) inCIwith
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Table XI. If this had been done, it would have revealed that large r
contributions stem from configurations with excess of electrons in th e
bonding 4d orbitals relative to configurations with excess of electrons i n
the antibonding 4d orbitals . This indicates that the 4d electrons do no t
localize completely, but to some extent participate in the formation o f
the chemical bond in the Rh 2 molecule .

The sIg ground state of Rh2 as resulting from the CI calculations wit h
1084 functions arises from the configuration (4dOg) 1-98 (4d u ) 3 .2° (4dög) 3 . °7

(4diu ) 2 .97 (4d3tg) 2 .79 (4do0)198 (5so'g) 1 - 94 (5sß0)° 06 at the internuclear dis -
tance 5 .082 a .u .

The calculated energies for the 51g ground state have been fitted to a
Morse curve, and the spectroscopic constants have been derived . The
equilibrium distance is determined as 5 .40 a .u . and the vibrational fre-
quency as 118 cm-1 . The calculated dissociation energy is only 0 .85 eV
as compared to the experimental value of 2 .92 eV .

The calculated spectroscopic constants of the Rh 2 molecule are pre-
sumably encumbered with similar deficiencies as those of the othe r
transition metal dimers . In analogy with our results for the Age molecul e
we estimate the true equilibrium distance of Rh 2 to be in the range 4 .7-
4 .8 a.u .

In the present work we have refrained from treating the spin-orbit
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coupling . Due to the participation of the 4d electrons in the bonding th e
spin-orbit coupling is not solely an atomic effect, and therefore mor e
difficult to treat adequately . It certainly would cause considerable mixin g
of the low-lying electronic states, but probably not influence the descrip-
tion of the chemical bond significantly .

Fe2 . Of the open shell transition metal dimers the Fe 2 molecule is one o f
the most widely studied experimentally . Thus, Lin and Kant 1969b, an d
also Shim and Gingerich 1982 have performed high temperature mas s
spectrometric measurements to determine the Fee / Fe + ratios over liquid
Fe. Matrix isolation techniques have been utilized in work by de Vore et
al . 1975 to obtain a UV-visible spectrum, and by Moskovits and DiLella
1980 to observe resonance Raman spectra . Barrett et al . 1970, McNab et
al . 1971, Montano et al . 1976, Montano 1980, and Nagarathna et al . 1983
have investigated the Fe 2 molecule using matrix isolation techniques i n
conjunction with Mössbauer spectroscopy . Furthermore, Montano an d
Shenoy 1980, and Purdum et al . 1982 have performed extended X-ra y
absorption fine structure measurement on Fe and Fe 2 isolated in an Ar
and a Kr matrix, respectively .

Nonempirical theoretical calculations have previously been performed
by Harris and Jones 1979 using a local spin density approximation . They
predicted the ground state of the Fe 2 molecule to be a'A u state with th e
configuration (3dog ) 2 (3d7tu) 4 (3dö g ) 3 (3d8 u ) 2 (3daru ) 2 (3dou ) 1 (4sag ) 2 . From
their calculations they derived the equilibrium distance as 3 .96 a .u., the
vibrational frequency as 390 cm -1 , and the dissociation energy as 3 .45
eV.

Guenzburger and Saitovitch 1981 have reported results of discrete
variational Xa type calculations on various electronic configurations o f
Fe 2 at the internuclear distance 3.53 a.u. These authors compared thei r
calculated hyperfine parameters with the experimental values, and on
this basis they concluded that the most likely ground state configuration
of Fe2 is (3do g ) 2 (3d7t u)4 (3d8 g ) 2 (3d8u) 2 (3dTt g) 3 (3dau) 1 (4sug) 2 .

Nagarathna et al . 1983 have performed Xa-SØ calculations on fiv e
different configurations of the Fe, molecule . The lowest lying state in
their calculations is a 7Au state with the same configuration as found b y
Harris and Jones, but they find that other configurations give rise t o
quadrupole splittings in closer agreement with their experimental work .

The ground term of the Fe atom is 5D(3d)6(4s) 2 . The closed 4s shell of
the Fe atom will prevent a bonding interaction between two Fe atoms i n
their ground term . However, a 5F(3d)7(4s) ' term is found 0 .88 eV above
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the ground term, and interaction between two Fe atoms in this term wil l
result in formation of a stable molecule .

In our previous work on Fe 2, Shim and Gingerich 1982, we hav e
employed Wachters' basis set which does not include a diffuse d function
for the Fe atom . The molecular orbitals have been optimized for a 'E u
state with the configuration (3dog ) 1 (3dau) 4 (3d5 g ) 2 (3d8u) 2 (3dTt g ) 4
(3dou) 1 (4sog ) 2 . The resulting orbitals have been utilized in Cl calculations
that allowed full reorganization within the 3d shells while the 4so g orbita l
was kept doubly occupied . The resulting 112 low-lying electronic state s
are shown in Fig . 9 at the internuclear distance 4 .691 a .u .' which is the
nearest neighbour distance in bulk Fe .

The ground state of the Fe2 molecule is a 'A u state with the configura-
tion (3dog ) 1 - 57 (3dat u ) 3 . ° 6 (3d8 g ) 2 .53 (3dô u ) 2 .47 (3datg)2.89 (3dou )1 .4 9
(4sog)200 at the internuclear distance 4 .691 a .u . The principal bondin g
orbital is the delocalized 4sog molecular orbital . The 3d electrons localize
around the nuclei and give rise to the small energy splittings between the
potential energy curves . The larger number of holes in the 3d shells o f
Fe 2 relative to the other transition metal dimers treated give rise to an
increasing number of low-lying electronic states, and this of course
makes a simple interpretation of the calculational results more difficult .
Although the 3d electrons hardly participate in the bonding it is recog-
nized from the configuration of the 'Au ground state that there is a n
increased population of the natural orbitals arising from the bonding 3d
orbitals relative to those arising from the antibonding 3d orbitals .

Recently we have performed additional calculations on the Fe 2
molecule using a basis set that included a diffuse d function . The molecu-
lar orbitals have been optimized for the configuration (3dog) 1 (3dnu) 3
(3d8 g ) 3 (3d8u) 3 (3dn g ) 3 (3dou ) 1 (4sog) 2 and utilized in CI calculations
allowing full reorganization within both the 3d and the 4s shells . The
new results confirm our previous work as to the description of th e
chemical bond including the existence of the »band« consisting of 11 2
low-lying electronic states. The configuration of the 'Au ground state is
(3do g ) 1 .50 (3datu ) 3 .08 (3dög) 2 .72 (3d8u ) 2 .59 (3dng)2.78 (3dou) 1 .33 (4sog) 1 .97

(4sou)°. °3 at the internuclear distance 4 .691 a .u. It is noted that this config-
uration is slightly different from that of our earlier work . The net exces s
of electrons in the bonding 3d orbitals relative to the antibonding 3 d
orbitals is 0 .60 compared to 0 .31 in our previous work. This indicates
participation of the 3d electrons in the bonding, but the Mulliken popu-
lation analyses in Table XII reveal that the total overlap population is
almost entirely due to the 4so g orbital .
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The potential energies of the 7Au ground state as obtained in the C I
calculations with the different basis sets have been fitted to Mors e
curves, and the spectroscopic constants of the Fe 2 molecule have been
derived. The calculations with the smaller basis set resulted in an equilib-
rium distance of 4 .54 a .u. and a vibrational frequency of 204 cm -1 while
the corresponding values with the larger basis set are 4 .99 a.u. and 13 4
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cm-1 . The dissociation energy relative to two Fe atoms in the
'F(3d)'(4s)1 term is 0 .69 eV when derived from the calculations with th e
smaller basis set, but only 0 .04 eV based on the calculations with th e
larger basis set . Relative to two Fe atoms in their ground term the Fe 2

molecule is unbound in both sets of calculations . However, we expect
that larger CI calculations would make the molecule bound withou t
changing significantly the description of the chemical bond .

We expect that our calculated equilibrium distance using the smalle r
basis set, 4.54 a .u., is close to the true equilibrium distance of the Fe 2

molecule, since the experimental equilibrium distance for Ni2 , within th e
error limits given, has turned out to be identical to our value derived i n
the equivalent set of calculations . In addition, the deviation of 0 .44 a.u .
from the calculated value based on the larger basis set is consistent with
our findings for the Cue molecule . However, based on extended X-ra y
absorption fine structure measurements Montano et al . 1980, and Pur -
dum et al . 1982 have derived the equilibrium distance of Fe2 isolated in

Table XII . Mulliken population analyses of the valence orbital s

for the 7Au ground state of the Fe2 molecule resulting from a C I

calculation with 1152 functions at the internuclear distanc e

4 .691 a .u .

Orbital Overlap Orbital analyses Occupation

population
s p d numbe r

4sag 0 .73 0 .93 0 .05 0 .01 1 .9 7

3dag 0 .06 0 .01 0 .00 0 .74 1 .50

3dru 0 .14 0 .00 0 .00 1 .54 3 .0 8

3ddg 0 .03 0 .00 0 .00 1 .36 2 .7 2

3dd -0 .03 0 .00 0 .00 1 .30 2 .59u

3dn -0 .11 0 .00 0 .01 1 .38 2 .78
g

3da -0 .05 0 .00 0 .00 0 .66 1 .33u

4sau 0 .00 0 .01 0 .01 0 .00 0 .03

Total 0 .77 6 .95 12 .07 6 .99
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an Ar matrix as only 3.53 a .u. and in a Ne matrix as 3 .82 a .u., respective-
ly. These distances appear to be very short perhaps indicating a differen t
structure of Fe2 in the matrix than in the gas phase .

Montano 1980 has reported the quadrupole splitting of Fe 2 as 4.05
±0.04 mm/s, and he also found that the electric field gradient at the F e
nucleus is negative . Based on our calculated wavefunctions for the 'Au
ground state of Fe 2 we also estimate that the electric field gradient at th e
nucleus is negative . The electric field gradient is estimated by assumin g
that the major contributions are the one-center contributions due to th e
3d electrons . It turns out that the one-center contributions from the 3 d
electrons to the electric field gradient are negative for all the states belo w
0.09 eV in Fig . 9, whereas they are positive for the highest lying states .
Of course, it is necessary to perform accurate calculations to deriv e
numerical values of the electric field gradient and of the quadrupole
splitting, since the neglected contribution to the electric field gradien t
due to core polarization and two-center terms might be sizable as foun d
in the work by Guenzburger and Saitovitch 1981 .

To us, however, it appears rather meaningless to argue as to whethe r
the ground state of the Fe 2 molecule is a 7A or a 'Eg state as done by
Nagarathna et al . 1983. The spin-orbit coupling that has been neglected
in the present work will certainly mix the low-lying electronic state s
considerably and only leave Q as a good quantum number .

Ru 2. The ab initio work by Cotton and Shim 1982 is the only known
investigation of the Ru 2 molecule .

The ground term of the Ru atom is 5F(4d)7(5s)', and two Ru atoms
interacting in their ground term will lead to the formation of a stabl e
molecule . HHF calculations revealed two configurations with energie s
below the sum of the energies of the separated atoms. The molecular
orbitals optimized for these configurations : (4dog) 1 (4dit u) 3 (4dög) 3
(4dö„ )3 (4da g ) 3 (4dou) 1 (5sog) 2 and (4dog)2 (4dnu)2 (4dô g ) 3 (4d8u) 3 (4dat g ) 2
(4dou ) 2 (5sog ) 2 have been utilized in CI calculations allowing full reorgani -
zation within the 4d shells . Both sets of calculations predict a 7A ground
state with just slightly different configurations . The lowest energies hav e
been obtained in the calculations based on orbitals optimized for th e
former configuration, and only these results will be presented .

In Fig. 10 we show the 112 low-lying electronic states resulting fro m
interaction between two ground term Ru atoms at the internuclear dis-
tance 5 .006 a.u. It is noted that there is a distinct energy gap between th e
ground state and the low-lying excited states . This has not been found
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for any of the other transition metal dimers considered, and it presum-
ably arises from the increased participation of the d electrons in the bon d
formation .

The 'Au ground state has been subject to further investigations in CI
calculations allowing full reorganization within both 4d and 5s shells .
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These CI calculations included 1152 functions, and resulted in a 'A u
ground state with the natural orbital configuration (4dog)1 .67 (4d 3t )3 .3 1

(4d6g) 2 .'3 (4dbu) 2 .42 (4dng) 2.60 (4dou) 1 .2' (5s0g) 1 .94 (5sou)0 .06 at the inter-
nuclear distance 5 .006 a .u .

Analogous with the other transition metal dimers investigated, th e
chemical bond in the Ru2 molecule is mainly due to the delocalized 5so g
molecular orbital . However, there is an excess of 1 .42 electrons in th e
natural orbital arising from the 4d bonding relative to the antibonding 4d
molecular orbitals . We consider this as a manifestation of the participa-
tion of the 4d electrons in the bond formation although it hardly contrib-
utes to the overlap population in the Mulliken population analyses .

The calculated points of the potential energies of the 'A u ground state
have been fitted to a Morse curve, and the spectroscopic data have bee n
derived. The equilibrium distance has been determined as 5 .13 a.u., the
vibrational frequency as 116 cm -1 , and the dissociation energy as 0 .64
eV .

The calculated spectroscopic constants for the Ru 2 molecule presum-
ably have similar defects as those of the other transition metal dimers .
Judging from our results for the Age molecule we estimate the true
equilibrium distance of Ru2 to be app . 4 .5 a.u. This value is quite close t o
the range 4 .25-4.35 a.u. which was found by Bino et al . 1979 to cove r
the equilibrium distances in various compounds containing the formall y
Rul+ ion. We expect that the calculated vibrational frequency and als o
the dissociation energy are too low, but we refrain from making any
estimates of the true values at this point .

The spin-orbit coupling has not been considered in the present work .
This effect, of course, would give rise to mixing of the close lying
electronic states . However, contrary to the other open shell transition
metal dimers, we expect that the spin-orbit coupling only will hav e
minor effect on the 'Au ground state of the Ru 2 molecule, since this state
is quite well separated from the higher lying states .

The Mn2 molecule

Mn2 . Kant et al . 1968 observed of the Mn 2 molecule in their high tempe -
rature mass spectrometric studies, but already prior to that Nesbet 196 4
investigated the molecule theoretically. Nesbet's work represents the
very first ab initio investigation performed for any transition meta l
dimer .
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Nesbet utilized a minimal Slater type basis set, but including a 4 p
function, in his HF calculations on the closed shell 11g (3dog)2 (3 dItu) 4
(3då g ) 4 (4sO g ) 2 (4sß„) 2 state of the Mn2 molecule . Thereafter, he made us e
of the optimized molecular orbitals to calculate the energies of othe r
states derived by successive replacement of the bonding 3d orbitals wit h
(3 spins in the Slater determinant by the corresponding antibonding 3 d
orbitals with a spins . In this way he achieved localization of some of th e
3d electrons around the nuclei, and he identified a 91g(3dOg ) 2 (3cla u ) 2
(3d8 g)2 (3d6 u ) 2 (3dat g ) 2 (4sa g ) 2 (4sß„) 2 state that was bound by 0 .758 eV a t
the internuclear distance 5 .5 a.u .

The configuration of the 9Ig state reveals that the chemical bond in th e
Mn2 molecule essentially is due to the delocalized 3do g molecular orbital .
The remaining 3d electrons are localized, and they give rise to a net spi n
of 2 on each Mn atom. Finally Nesbet determined the molecular ground
state by calculating the energies of the states arising when the localize d
atomic spins were coupled to molecular spin states .

The ground state of the Mn2 molecule as derived in Nesbet's calcula-
tions is a 1Ig state resulting from antiferromagnetic coupling of th e
localized spins . The equilibrium distance of the molecule was deter -
mined as 5 .44 a.u., and the dissociation energy as 0 .79 eV . Furthermore ,
he also derived a value for the Heisenberg exchange parameter J in th e
phenomenological Hamiltonian -JS 1 •S2 as -8 cm-1 at the equilibrium
internuclear distance .

Nesbet's predictions of the nature of bonding in the Mn2 molecule ha s
recently been confirmed by experimental investigations by Van Zee et al .
1981, Rivoal et al . 1982, and by Baumann et al . 1983. In these investiga-
tions the exchange coupling constant of Mn2 has been determined as - 8
cm-1 , - 10.3 cm-1 , and -9 cm-1 , respectively .

Harris and Jones 1979 have performed calculations on the Mn 2
molecule using a local spin density method . They identified two state s
with essentially identical energies, namely "Hu (3dog) 1 (3dit ) 3 (3dôg) 2
(3dö u ) 2 (3datg) 2 (3dau) 1 (4sag) 2 (4scu) 1 and 11Iû (3dOg ) 2 (3dat u) 2
(3d8 g ) 2 (3d&u) 2 (3dag ) 2 (3dou) 1 (4sa g ) 2 (4so u ) 1
The spectroscopic constants associated with the "Hu state are r e =5.03
a.u., we=220 cm -1 , and D e =1 .25 eV, and with th

1
e 111Eû state : r e=5.1 0

a.u., cu e=210 cm-1 , and D e =-1 .25 eV. In addition, Wolf and Schmidtke
1980 have performed restricted HF calculations on the closed shell 11g
state investigated by Nesbet .

None of these later calculations, however, match the physical insigh t
into the bonding of the Mn 2 molecule gained by Nesbet's work .



190

	

IRENE SHI M

»d electron deficient « transition metal dimer s

Cr2. The Cr atom has a 7S(3d) 5 (4s) 1 ground term well separated from the
higher lying terms, and therefore, the possible molecular states arising
from coupling of the angular momenta of two interacting Cr atoms are
limited to 13Eg 11~û 9~g 'Eû sag 31±u , and 1 Eg. A priori, it is to be
expected that the Cr2 molecule has a 11g ground state that is well de -
scribed by a single Slater determinant with the configuration (3do g ) 2
(3darLt) 4 (3dôg)4 (4sog) 2 corresponding to a »sixtuple« bond between th e
two atoms.

Such a description would be in accordance with the experimenta l
investigations of the Cr2 molecule which have revealed, beyond reason-
able doubt, that the molecule has an extremely short equilibrium dis -
tance, 3.18 a .u. The determination of the equilibrium distance byEf-
relnov et al . 1974, 1978, and especially its confirmation by Micha-
lopoulos et al . 1982, and by Bondybey et al . 1983 have given rise t o
enhanced activity of the theoretical investigations of the Cr 2 molecule .
This is evident from Table XIII, where we have summarized the spec-
troscopic constants derived in the various calculations together with an
abbreviated description of the methods used .

From Table XIII it is noted that two calculations have been reporte d
for the 1Eg (3dog) 2 (3dat tl) 4 (3d8g) 4 (4sog ) 2 state of Cr2 in the restricted HF
approximation. Wolf and Schmidtke 1980 used a reasonably large basi s
set consisting of Gaussian type functions, and McLean and Liu 198 3
employed an extremely large basis set of Slater type functions. Qualita-
tively the two calculations are in agreement by resulting in too shor t
bond distances and too high vibrational frequencies . The calculated dis-
sociation energy has not been reported in Wolf and Schmidtke's work ,
but it would, without doubt, be negative of the same order of magnitud e
as found by McLean and Liu . In their work the energy associated wit h
the 1Eg (3dß g ) 2 (3dat u)4 (3d8g)4 (4sog) 2 state is app . 19 eV above the dissoci-
ation limit of the molecule at the calculated equilibrium distance .

Of the calculations going beyond HF, the one by Goodgame an d
Goddard 1981 including 1516 functions (GVB without inclusion of va n
der Waals terms) is almost equivalent with the MCSCF calculations wit h
3196 functions by Atha and Hillier 1982, and this presumably also hold s
for the basis sets used . It is noted that the spectroscopic constants derive d
in the two calculations are in close agreement, but far off the experimen-
tal values . As observed by Goodgame and Goddard, the bond in the Cr2
molecule as resulting from their calculations, is due to an antifer-
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,le XIII . Experimental and calculated spectroscopic constants of the Cr, molecule .

Basis set Spectroscopic constant s
Method Type ; primitive-contracted State

r e (a .u) 5 e (cm 1 ) F e (eV)

Experimental
3 .184 3) -470 2) 1 .56 1 )

All

	

electron ab

	

initio calculations

3 .5 9MCSCF(APSG*)

	

GTO ;(13s,7p,Sd)-(6s,3p,2d)

Restricted HF

	

GTO ;(14s,11p,5d)-(8s,6p,2d) 1£• 2 .95 75 0

619(1516

	

functions)

	

GTO ;valence double

	

zeta
g14 6 .14 70 0 .1 3

GUB(6364

	

functions)

	

as above 1~+
g

5 .78 110 0 .3 5

MCSCF(APSG*)

	

GTO ;(14s,11p,bd)-(8s,6p,3d )

+ bond centre functions s,p,d

1~ +
g

3 .50 355 -6 .7 6

CI(3196x3196)

	

as abov e

MCSCF(3196 functions)

	

as above

1£ +
g

11 .
6 .5 6

5 .93

5 8

92

-0 .0 1

0 .1 4

Ci(351003520)

	

GTO ;(11s,8p,5d)-(5s,4p,3d)
g

1 1
3 .27 39 6

+ bond centre functions s,p, d

MCSCF(3088

	

functions)

	

GTO ;(14ss,11p,6d,3£ ;;-(8s,6p,4d,2f)

g

-1 . 4

Restricted HF

	

STO ;(9s,6p,4d,3f,2g) 2 .784 1181 -19 . 1

Ka type calculation s

Local spin density 13

g
6 .92 55 0 .2 0

Local spin densit y

Xa-LCAO

	

GTO ;(10s,6p,4d )

+ bond centre functions s,p, d

Xa-LOA0

	

as above

11y+
u

l E o

13£+

5 . 33 7

5 .20

20 0

110

-0 .0 2

1 .0 0

Local spin density
g

1£
6 .9 2

33 .21

5 5

-450

0 .2 0

1 .8 0
Pseudopotential local sp n density

g
1 Z +

g
3 .2 1

4 .01

47 0

106

2 . 8

1 . 4
Xa-LCAO ; ap0-potential GTO ;(14s, 11p, 7d)-(9s,8p,3d )

Xe-LCAO ;corr .

	

potential as above 3 .72 423 5 .0

r Antisymmetric products of strongly orthogonal geminals .

) Dom, Kant and Strauss 1966 . - 2) Bondybey and English 1983 . - 3) Efremov, Somoilo-
'a, and Gurvich 1978 . - 4) Wood, Doran, Hillier, and Guest 1980 . - 5) Wolf an d
;chmidtke 1980. - 6) Goodgame and Goddard III 1981 . - 7) Atha and Hillier 1982 . - 8 )
(ok and Hall 1983 . - 9) Walch, Bauschlicher Jr ., Roos, and Nelin 1983 . - 10) McLean
nd Liu 1983 . - 11) Harris and Jones 1979 . - 12) Dunlap 1983 . - 13) Delley, Freeman, and
Ellis 1983. - 14) Bernholc and Holzwarth 1983 . - 15) Baykara, McMaster, and Salahub
984 .
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romagnetic coupling of localized spins of 3 on each of the Cr atoms .
Thus, not even the 4s orbitals form a bonding molecular orbital at th e
calculated equilibrium distance. From their calculations, they deter -
mined the value of the exchange coupling constant as -93 cm-1 at the
calculated equilibrium distance .

Kok and Hall 1983 have performed calculations that reproduce quit e
well the experimentally determined values of the equilibrium distanc e
and the vibrational frequency for Cr 2. However, they do not report an y
value for the dissociation energy, and without doubt, the Cr2 molecule i s
unbound in their description . The nice results obtained in their calcula-
tions, most likely, stem from basis set superposition errors combine d
with an inadequacy of their Cl wave function to allow the molecule t o
dissociate properly into two Cr atoms in the 7S ground term. The wave
function determined by Kok and Hall arises from the natural orbital
configuration (3do g ) 1 .78 (3datu) 3 .62 (3dög) 3 .20 (3d6u)° 80 (3d Tg) 0 .38 (3dou) 0 .22

(4sog) 1 .92 (4sß,1) ° .08 at the internuclear distance 3 .27 a .u. This configuratiol:
is very similar to those derived by Walch et al . 1983 in MCSCF calcula-
tions with 3088 functions. Thus, at the internuclear distance 3 .0 a .u .
their wave function has the natural orbital configuration (3dß g) 1 .83

(3djtu) 3 .7° (3d8g ) 3.36 (3d8u)° 64 (3dat g ) 0 .30 (3d3,1)0 .16 (4sßg)1 .9° (4Sou)0 .11 and
3.5 a.u . (3dog ) 1 .6° (3d76 u) 3 .32 (3då g ) 2 .58 (3döu)1 .42 (3dvo.68 (3dø,1) ° .3 9

(4sog)1 .85 (4S6u) °-1 5

This indicates the similarity of the descriptions of the Cr 2 molecule in
Kok and Hall's and in Walch et al .'s calculations, but in Walch et al .' s
calculations the Cr2 molecule is unbound by 1 .4 eV.

The Xu type calculations also result in diversified values of the spec-
troscopic constants as is seen from Table XIII .

It is recognized that in spite of the vast amount of theoretical wor k
performed for the Cr 2 molecule no clear picture of the chemical bond i n
this molecule has emerged . It is possible, however, that internal C ]
calculations within the 3d and 4s shells, comparable to the calculation s
done by Goodgame and Goddard 1981 and by Atha and Hillier 1982 ,
will provide a reasonable description of the nature of the chemical bond
in the Cr2 molecule when performed at the experimental internuclea i
distance .

This would be in agreement with the results obtained for the »d elec-
tron rich« transition metal dimers . For the molecules Cu 2 and Ni2 the
calculated spectroscopic constants derived from extensive CI calculation s
are in reasonable agreement with the experimental values . However ,
these calculations did not alter the qualitative description of the chemical
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XIV . Experimental and calculated spectroscopic constants of the Mo t molecule .

Basis set Spectroscopic constant s
Method Stat e

Type ; primitive-contracted r e (a .u .) w e (Cm 1 ) D e (eV )

Experimental 3 .666 3) 477 .1 2) 4 .18 1 )

All electron ab initi o

MCSCF(APSG*) GTO ;(27s,13p,9d)-(8s,4p,3d) 3 .97 ~- 1

CI(3212x3212) GTO ;(27s,13p,9d)-( 9s , 5p , 4d ) 3 .89 39 2

CI(3212x3212) GTO ;(27s,13p,9d)-(9s,5p,4d) 3 .72 47 5

GVB(6064 functions)

+ bond centre functions s,p, d

GTO ; valence double zeta + 1f
ly; 3 .72 455 1 .4 1

GVB as above
3£ +

u 3 .91 325 0 .6 0

Restricted HF GTO ;(18s,1 lp,9d)-(125,5p,4d) 1 1 +
3 .48 699 -9 .3 5

MCSCF(APSG*)

+ bond centre functions 2s,2p,l d

as above

g

1F 8
3 .82 392 -3 .1 0

CI(3196x3196) as above 1~+ 3 .80 388 0 .8 6

Restricted HF STO ;(11s,8p,6d,3f,2g)
g

1 1
g
+_

3 .400 717 -18 . 1

X a type calculation s

xa-SW
1 £+

B

1~+

4 . 3

3 .69 520 4 .3 5Local spin densit y

Pseudopotential local spin density
g

1 r • 3 .97 360 4 . 2ag

-5 .1 92 0 . 4Xa-LCAO ;ap'A -potential GTO ;(17s,11p,9d)-(14s,9p,7d )

Xa-LCAO ; corr . potential

	

as above 3 .17 441 2 .6

* Antisymmetric products of strongly orthogonal geminals .
1) Do, Gupta, Atkins, and Gingerich 1978 . - 2) Efremov, Somoilova, Kozhukhovsky ,
and Gurvich 1978 . - 3) Hopkins, Langridge-Smith, Morse, and Smalley 1983 . - 4)
Wood, Doran, Hillier, and Guest 1980 . - 5) Bursten, Cotton, and Hall 1980 . - 6)
Goodgame and Goddard III 1982 . - 7) Atha, Hillier, and Guest 1980 ; Atha and Hillier
1982 . - 8) McLean and Liu 1983 . - 9) Norman, Kolari, Gray, and Trogler 1977. - 10 )
Delley, Freeman, and Ellis 1983 . - 11) Bernholc and Holzwarth 1983 . - 12) Baykara,
McMaster, and Salahub 1984 .

bond derived from internal Cl calculations within the 3d and 4s shells . A
similar relationship for the »d electron deficient« transition metal dimer s
still needs to be proven .

Mo 2 . Theoretical investigations of the Mo2 molecule are up against simi-
lar difficulties as those encountered in the Cr 2 molecule. Like the Cr
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atom, the ground term of the Mo atom is 'S(4d) 5 (5s) 1 well separate d
from the higher lying terms . Intuitively, it is to be expected that th e
ground state of Moe is a 1 1g state, which should be well described in th e
molecular orbital picture by a one determinant wave function with al l
valence bonding orbitals fully occupied : (4dog) 2 (4d3tu) 4(4dbg) 4 (5sß g ) 2 .
Furthermore, such a description is supported by the experimental find-
ings of the very short bond distance, 3 .666 a.u., and the high vibrationa l
frequency, 477.1 cm-1 .

However, the data presented in Table XIV reveal that the accurate ab
initio calculations based on the above assumptions lead to too short bon d
distances, too high vibrational frequencies and, more disturbing, the
molecule is unbound by 9 eV in the calculations by Atha et al . 1980,
1982, and by 18 eV in McLean and Liu's 1983 calculations, which pre-
sumably are very close to the HF limit .

Contrary to the findings for Cr 2, however, reasonable spectroscopic
constants have been obtained in the calculations going beyond HF .
Basicly, the methods used in these calculations are very much alike, an d
they also lead to spectroscopic data in quantitative agreement .

Bursten et al . 1980 and Atha et al . 1980, 1982 have optimized thei r
molecular orbitals in MCSCF type calculations, which included selecte d
configurations within the space spanned by the 4d and 5s valence orbit -
als . Both groups utilized the optimized molecular orbitals in internal C I
calculations within the 4d and 5s shells, but including only restricte d
excitations . Bursten et al . included all single and double excitations fro m
the 64 determinants corresponding to perfect pairing in the GVB meth -
od. Atha et al . included all configurations in which the number of elec-
trons in the 4do as well as in the 5so added up to 2 while those in the 4drt
and in the 4db added up to 4 . These restrictions reduced the dimension o f
the CI matrix to 3212 and 3196, respectively, as compared to app . 35 000
for a full internal CI calculation within the 4d and 5s shells .

At the internuclear distance 3 .78 a .u. the wavefunction derived by
Bursten et al . has the configuration (4do g ) 1 - 92 (4d3t u ) 3 .78 (4d6g) 3 .4 '

(4dbu) 0 .s8(4dJt g )° 22 (4do„)° .08 (5sog) 1 .88 (5sou) 0 .1' and that of Atha et al .
(4dog) 1 .86 (4dJtu ) 3 .76 (4db g ) 3 .33 (4dbu) ° 67 (4ditg) 0 . ' 4(4dß„) 0.14(5sog ) 1 .8 7

(5sou )° .1 3

The similarity of the configurations indicates that the wave functio n
determined by Bursten et al . does describe a bound molecule with a
dissociation energy similar to that obtained in Atha et al .'s work . The
improvement of the spectroscopic data achieved by Bursten et al . by
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inclusion of bond centre functions in their basis set probably reflect s
larger basis set superposition errors .

The calculations by Goodgame and Goddard 1982 are more elaborat e
than those by Bursten et al . and by Atha et al ., but not much different i n
principle . Their wave functions are constructed by assigning the 4d an d
5s electrons pairwise to either doubly occupied bonding orbitals, doubly
occupied antibonding orbitals or one in a bonding and the other in the
corresponding antibonding orbital . This gives rise to 36=729 spatial con-
figurations, or 1516 spin eigenfunctions for the '1 +g state . On top of thi s
they include excitations from the 5s orbitals into the 5pa and the 5pr c
orbitals . The resulting wavefunctions consist of 6064 spin eigenfunctions
and they are optimized in MCSCF type calculations . The improved
spectroscopic constants derived in Goodgame and Goddard's work a s
compared to those derived by Bursten et al . and by Atha et al . are partly
due to the better optimization of the orbitals and partly due to inclusio n
of correlation of the 5s electrons .

It is gratifying to experience that acceptable spectroscopic constant s
for the Moe molecule can be derived from conceptually simple wav e
functions including external correlation only of the 5s electrons . In addi-
tion, this certainly implies that the method we have used, that is full
internal CI based on molecular orbitals optimized in HHF like calcula-
tions, to describe the electronic structure of the *d electron rich« transi-
tion metal dimers is appropriate, indeed .
V2. Recently, Langridge-Smith et al. 1984 have investigated the V2
molecule spectroscopically in the gas phase . Their results indicate that
the molecule has a 3~ g ground state . Furthermore, they determined th e
equilibrium distance as 3 .34 a.u., and the vibrational frequency as 535
cm-1 . From evidence of predissociation they derived the dissociatio n
energy as 1 .85 eV, and this is considerably less than the value, 2.47 eV,
derived from high temperature mass spectrometric measurements .

The first theoretical investigation of the V2 molecule has been per -
formed by Harris and Jones 1979 using a local spin density method .
Their calculations resulted in a 91 --u ground state with the configuratio n
(3da g ) 1 (3±tu)2 (3dS g) 2 (3dbu) 2 (3dau ) 1 (4sag ) 2 , but they found numerous
other states with similar energies . The calculated spectroscopic constant s
for the 91-u state were derived as re=5 .01 a .u ., o.1 e=230 cm-1, and
De=1 .00 eV.

Apparently the experimental results by Langridge-Smith et al . in-
spired Øalch et al . 1983 to perform theoretical investigations of a 31
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state of V2. They performed MCSCF type calculations using two differ -
ent basis sets consisting of Gaussian type functions . Their smaller basi s
set consisted of (14s, 11p, 6d) primitive functions which they contracte d
to (8s, 6p, 4d) . The larger basis set was derived from the smaller b y
addition of 3 primitive f functions contracted to 2 .

The ground term of the V atom is 6D(3d) 3 (4s) 2, but the chemical bond
in V2 probably arises from two V atoms interacting in the 4 F(3d) 4 (4s) 1

term that is only 0 .25 eV above the ground term . In this case, a simple
molecular orbital picture suggests that the V2 molecule has a 3 E ; ground
state with the configuration (3dag)2 (3dn,,) 4 (3dôg) 2 (4sag)2 .

In Walch et al .'s MCSCF calculations they constrained the configura-
tions included to those having 4 valence electrons in orbitals of a sym-
metry, 2 valence electrons in nx orbitals, 2 in rt y orbitals, 1 in SXy , and 1 in
6,0_3,2 . The type of calculations Walch et al . have performed especiall y
takes into account the left-right correlation of the 3d and the 4s electrons .

In the calculations with the smaller basis set the V2 molecule was foun d
to be bound relative to two V atoms in the 4F(3d) 4 (4s) 1 term, but not
relative to two ground term V atoms . This is, however, achieved in the
calculation with the larger basis set . Presumably the two sets of calcula-
tions result in very similar descriptions of the chemical bond, but thi s
cannot be judged from the data given .

The spectroscopic constants derived from Walch et al .'s calculations
with the larger basis set are in good agreement with the experimenta l
values as to the equilibrium distance and the vibrational frequency . The
calculated equilibrium distance is 3 .34 a.u., the vibrational frequency i s
593.6 cm-1 , but the calculated dissociation energy is only 0 .33 eV. At the
internuclear distance 3 .00 a . u . the wave function has the configuration
(3dag ) 1 .83 (3dat„) 3 .80 (3dbg)1 .86 (3d5u)0 .14 (3d7tg)0 .2o (3d(j)0 .15 (4sa g ) 1 .9 3

(4sau) 0 .oy and at 3 .50 a . u . (3dog)
1 .81 (3dnu ) 3 .70 (3d5 g) 1 .74 (3d&1)0.26 (3dTt g ) 0 .3 0

(3dau ) 0 .18 (4so g ) 1 .93 (4sau )° .07 These configurations indicate considerable
participation of the 3d electrons in the bonding .

Thus, as in the case of Moe, spectroscopic constants for the V2
molecule in reasonable agreement with the experimental values have
been obtained from conceptually simple wavefunctions .

Nb 2 . From high temperature mass spectrometric measurements Gupt a
and Gingerich 1979 determined .the dissociation energy of the Nb 2
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molecule to 5 .21 eV. Recently Cotton and Shim 1985 have performed a
theoretical investigation of the molecule using ab initio methods .

The ground term of the Nb atom is 6D(4d) 4 (5s) 1 , and it is expecte d
that interaction between two Nb atoms in their ground term will resul t
in formation of a stable molecule .

The numerous HF and HHF calculations we have performed at th e
internuclear distance 5 .402 a.u. only revealed two configurations which
are associated with energies below the sum of the energies of the sepa-
rated atoms. These configurations are (4d1g) 1 (4dat u ) 2 (4dôg) 1
(4döu) 1 (4datg)2 (4dß,)1 (5sog ) 2 and (4dO g ) 1 .o (4datu ) 1 .5 (4d8g) 1 .5 (4d8 u ) l . 5

(4dat g) 1 .5 (4dou ) 1 .0 (5sOg)2 .0 , respectively . The molecular orbitals optimize d
for the latter configuration have been utilized in CI calculations tha t
allowed full reorganization within the 4d shells .

Fig . 11 shows all 75 low-lying electronic states of the Nb2 molecule a t
the internuclear distance 5 .402 a.u., which is the nearest neighbour dis -
tance in bulk Nb . It is noted that the six lowest lying states are separate d
from the dense manyfold of higher lying states by an energy gap of app .
0 .1 eV. This is of the same order of magnitude as the energy gap separat -
ing the ground state from the higher lying states in the Ru 2 molecule .
The ground state of the Nb2 molecule is a 1Eg state with the configura-
tion (4dog ) 1 .34 (4datu) 2.69 (4d8 g ) 1 .11 (4d8u) o .91 (4datg ) 1 .28 (4dou) 0.6' (5so g )

2 .oo

at the internuclear distance 5 .402 a.u. Two other states, 1 hg and 1E-u ,

lying very close to the ground state arise from almost identical configu-
rations . The lowest lying 31g state has the configuration (4dog) 1 .2 '

(4datu ) 2 .62 (4d8g)1 .09 (4döu) o .93 (4dIg) 1 .36 (4dou) o .'3 (5SOg)2 .00 and this is al-
most identical to the configurations of the lowest lying 32+,, and 3I'u
states . Thus, the six lowest lying states reveal substantial participation of
the 4d electrons in the bonding . For the lowest lying singlet states, th e
excess of electrons in bonding 4d orbitals relative to antibonding 4 d
orbitals is 2 .28, whereas it has decreased to 1 .96 electrons for the lowes t
lying triplet states . Judging from Mulliken population analyses, the prin-
cipal bonding orbital is the delocalized Sso g molecular orbital . At 5 .402
a .u. this orbital contributes 0 .69 out of a total overlap population of 0 .81 .

The equilibrium distances derived from the calculated potential energ y
curves for the 75 low-lying states are scattered over app . 1 a .u., ranging
from 5 .6-6.6 a.u. This is in contrast to the findings for the »d electro n
rich« transition metal dimers . Thus, for the Pd 2 molecule the corre-
sponding spread of the equilibrium distances is only 0.26 a .u. Due to the
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Fig . 11 . Relative energies in eV of the 75 low-

lying elektronic states of the Nb2 molecule at th e
internuclear distance 5 .402 a .u . States are li-

sted in order of increasing energy .
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appearence of shoulders in the potential energy curves for the 3 lowes t
lying states, the calculated potential energies of these states could no t
with sufficient accuracy be fitted to Morse curves . For the 1Eg and the 1E 11

states the shoulders appear at app . 4.8 a .u., and for the lrg state at app .
5 .1 a .u. The equilibrium distances for the 3 states are app. 5 .6 a.u .

In light of the very short bond distances found experimentally for th e

0 . 1
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molecules V2, Cr2, and Mo 2 we also expect that Nb2 has a short bond
distance . The change in equilibrium distance in going from Cr2 to Mo2 i s
identical with that of going from Cu, to Ag 2. If we invoke a simila r
relationship when going from the V2 to the Nb2 molecule we should
expect an equilibrium distance of only 3 .81 a .u. in Nb 2. This implies, by
analogy with our findings for the Ag2 molecule, that the calculated
equilibrium distance for Nb2 should be app . 4.36 a .u . The calculate d
equilibrium distance, however, is app . 5 .6 a .u .

We expect that the major reason for the shoulders in the potentia l
energy curves as well as for the large discrepancy between the calculate d
and the expected equilibrium distance is due to the lack of f functions i n
the basis set . Such functions are required to account properly for the 4d
electrons, because they are deeply involved in the bonding .

Based on the simple molecular orbital picture the Nb 2 molecule should
have a 31 x ground state with the configuration (4do g) 2 (4dat u ) 4 (4d8g)2
(5sog) 2 . HF calculations reveal that this state does not describe a boun d
molecule, but it should be noted that the total number of do and d 8
electrons each add up to app . 2 for the 'Eg ground state, just as the dat
electrons add up to app . 4. Walch et al . 1983 imposed such constraint s
onto their wavefunctions for the V 2 molecule . In our work no such
constraints have been imposed, and therefore the number of electrons
associated with each symmetry type is a genuine result of the calculation s
performed. This implies that the molecular orbital picture offers a useful
guidance in determining the ground state of the Nb 2 molecule . A similar
result has not been found for the »d electron rich« transition metal di-
mers, and it still needs to be investigated, if it is valid also for other »d
electron deficient« transition metal dimers .

Sc2 . The Sc 2 molecule has been investigated by high temperature mas s
spectrometry by Verhaegen et al . 1964 . However, the dissociation ener-
gy derived from the mass spectrometric data appears unreliable, since th e
original value 1 .12 eV derived by Verhaegen et al . later on, without
justification, has been changed to 1 .65 eV as quoted in Table XV. Lately ,
the Sc2 molecule has also been studied by matrix isolation techniques .
This has resulted in determination of the ground state vibrational fre-
quency as 238 .91 cm -1 , and from the ESR studies by Knight et al . 1983
the symmetry of the ground state has been derived as 51 .

The first theoretical investigation of the Sc 2 molecule is a local spin
density calculation performed by Harris and Jones 1979 . Their calcula-
tions resulted in a 5EL(3do g ) 1 (3datu ) 2(3do u)'(4sog ) 2 ground state with an
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equilibrium distance of 5 .10 a.u., a vibrational frequency of 200 cm -1 ,
and a dissociation energy of 1 .80 eV. Furthermore, they also have re-
ported the spectroscopic constants for a 3Eg (3da u) 2 (4sag) 2 (4sou) 2 state as
re=6.15 a .u ., w e =235 cm-1 , and D e =1 .00 eV. Harris and Jones 1978 hav e
determined the discrepancies in the local spin density method between
the calculated and the experimental energy splittings of atomic state s
originating from different orbital configurations . Applying this correc-
tion to the dissociation energy for the Sill state of Sc2 reduces it to app .
0 .4 eV. This is, however, still in disagreement with the results obtaine d
in HF calculations by Wood et al . 1980 . They found the SEll (3dog) 1
(3dn,,) 2 (3dß,,) 1 (450g) 2 state unbound by app . 2 eV relative to the atomi c
limit 2D(3d) 1 (4s) 2+ 4F(3d) 2 (4s) 1 . At least for the transition metal dimers ,
this kind of relationship between dissociation energies derived in HF and
Xa type calculations are common, and the reason for the discrepancy i s
presently not clear .

The most extensive theoretical investigation of the Sc 2 molecule has
been carried out by Das 1982 using a pseudopotential method in con-
junction with a large valence basis set consisting of Slater type functions .
The conclusion of his work is that the Sc 2 molecule is a van der Waal s
dimer with a binding energy of app . 0.17 eV at the internuclear distance
app . 9 .4 a.u. His results, of course, are in sharp contrast to the availabl e
experimental data for the Sc2 molecule .

The results by Das were essentially confirmed by Walch and Bau-
schlicher 1983a . They performed all electron ab initio calculations on a
few selected states of the Sc2 molecule and found that the states dissociat-
ing into two 2D(3d) 1 (4s) 2 ground term Sc atoms were very weakly
bound with equilibrium distances of app . 8 a .u. and dissociation energies
of app . 0 .06 eV. However, they also performed calculations on a 5Au and
a 51,, state that dissociate into one Sc atom in the 2D(3d) 1 (4s) 2 ground
term and the other in the 4F(3d)2(4s) 1 excited term. Relative to this
dissociation limit the 5Au and the 51ü states were strongly bound by app .
0 .8 eV.

The appearance of the experimental results by Knight et al . 1983 indi-
cating the existence of a bound 51 state for the Sc2 molecule influenced
Walch and Bauschlicher 1983b to reinvestigate the Szll state. In thei r
MCSCF calculations on the 51-,, state they constrained the configuration s
included to those having a total of 4 valence electrons of o symmetry an d
2 of n symmetry . The optimized molecular orbitals were utilized in C I
calculations that allowed single and double excitations from ten selected
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.e XV . Experimental and calculated spectroscopic constants of the Sc, molecule .

Basis set

	

Spectroscopic constant s
State(atomic limit)

Type ; primitive-contracted

	

r e (a .u .)

	

me lcm 1 )

	

D e (eV)

Experimental

	

238 .91 2)

	

1 .65 1 )

All electron ab initio calculation s

MCSCF

	

GTO ;(13s,7p,Sd)-(6s,3p,2d)

	

5 S u ( 2 0(4s 2 3d 1 )+ 4 F(4s 3d 2 )) 4 .86

	

0 .3 0

CI

	

as above

	

S Yu ( 2 D(4s 2 3d 1 )+ 4 F(4s 1 3d 2 )) 4 .91

	

1 .1 2

Restricted HF

	

GTO ;(14s,11p,5d)-(8s,6p,2d) 1 Fg(3do g ) 2 (3do u ) 2 (4sa g ) 2

	

5 .76

	

21 0
Restricted HF

	

as above

	

1 'g(4so g ) 2 (3dn u ) 4

	

4 .20

	

36 0

CI

	

GTO ;(14s,11p,6d)-(8s,6p,4d) 1 1g( 2 D(4s 2 3d 1 )+ 2 D(4s 2 3d 1 )) -8

	

0 .04 5
CI

	

as above

	

3 1g
JJ
( 2 D(4s 2 3d 1 )+ 2 D(4s 2 3d 1 )) -8

	

0 .04 5
CI

	

as above

	

3 IûlD(4s 2 3d1 )+ 2 D(4s 2 3d 1 )) -8

	

0 .02 9

CT

	

GTO ;(14s,11p,6d,lf)-(6s,6p,3d,if) 3 1û( 2 D(4s 2 3d 1 )+ 2 D(4s 2 3d 1 ))-B

	

0 .04 6
CI

	

GTO ;(14s,11p,6d)-(8s,6p,4d) Sp u ( 2 D(4s 2 3d 1 )+ 4 F(4s 1 4p 1 3d1 )) - .

	

0 . 8
CI

	

as above

	

5 1u ( 2 D(4s 2 3d 1 )+ 4 F(4s 1 4p 1 3 1d )) -6 .5,-7

Cl

	

GTO ;(14s,llp,6d)-(8s,6p,4d) S lu ( 2 D(4s 2 3d l )+ 2 1)(4s 2 3d 1 ))

	

5 .27

	

184

	

0 .1 2
CI, corrected

	

as above

	

as above

	

5 .27 184

	

0 .4 4

Pseudopotential calculation s

CI

	

STO ;(3s,3p,4df)

	

1 g( 2 D(4s 2 3d 1 )+ 2 D(4s 2 3d 1 ))

	

-9 .4

	

61

	

0 .1 7

Xa type calculation s

Local spin density

	

S~ll

	

5 .10 200

	

1 .8 0
Looel spin deuait~

	

3
S

	

6 .15

	

235

	

1 .0 0

1) Drowart 1967 . - 2) Moskovits, DiLella and Limm 1984 . - 3) Wood, Doran, Hillier an d
Guest 1980 . - 4) Wolf and Schmidtke 1980 . - 5) Walch and Bauschlicher Jr . 1983a . - 6)
Walch and Bauschlicher Jr . 1983b . - 7) Das 1982 . - 8) Harris and Jones 1979 .

reference configurations . From their calculations they derived an equilib-
rium distance of 5 .27 a.u ., a vibrational frequency of 184 cm -1 , and a
dissociation energy relative to two ground term atoms of 0 .12 eV which
they corrected to 0 .44 eV by taking into account Davidson's correction ,
correction for errors in the asymptotic limit and also corrections for basi s
set insufficiencies .

Prior to the appearance of the experimental work by Knight et al .
1983, Wood et al . 1980 suggested a 5 E -u ground state of the Sc 2 molecule
on basis of their MCSCF and CI calculations . Their calculations, how-

Method
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ever, were not convincing by themselves due to errors in the atomic
limit, and substantial superposition errors associated with the basis set s
used .

Conclusion

During the past two decades great efforts have been devoted to experi-
mental and theoretical investigations trying to elucidate the natures o f
the chemical bonds in small molecules composed of transition meta l
atoms . In the present work we have reviewed the experimental and the
theoretical knowledge of the dimers of the first and second transitio n
metal series, and in addition, we have presented some new calculationa l
results for the molecules Ni 2 , Fee, and Rh 2. At present, it appears that a
unified understanding of the transition metal dimers is emerging fro m
the combined experimental and theoretical results, which for a long tim e
have seemed contradictor y

By now it must be considered proven that it is extremely difficult ,
from ab initio work, to derive spectroscopic constants for the transition
metal dimers, which are in good agreement with the experimental val-
ues. Nevertheless, such good agreements have been achieved for a fe w
transition metal dimers of the »d electron rich« and recently also of the
»d electron deficient« types . In addition, the theoretical predictions o f
the many low-lying electronic states in the Ni 2 molecule have recently
been confirmed by experimental work . Therefore, we are confident tha t
ab initio methods in general provide physical insight into the comple x
chemical bonds of the transition metal dimers . In particular, it appear s
that adequate descriptions of the transition metal dimers are obtained i n
internal CI calculations involving only the valence d and s shells . Such
calculations do not result in spectroscopic constants of high accuracy ,
but for the »d electron rich« transition metal dimers, it appears that th e
calculated equilibrium distances deviate systematically from the experi-
mental values . For the »d electron deficient« transition metal dimers the
theoretical data are still too scarce to reach a similar conclusion . In any
case, it is far more difficult to achieve reasonable agreements for thes e
molecules .

Due to the unfilled d shells of the transition metal atoms, the wav e
functions for the dimers usually consist of a large number of Slate r
determinants and therefore appear to be very complicated . In spite of
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this, however, it has been possible to interpret the wave functions i n
simple physical pictures .

Thus, the chemical bonds in the »d electron rich« transition metal
dimers, Cue, Ni2, Coe, and Fee are mainly due to the delocalized 4so g
molecular orbitals . The 3d electrons localize around the nuclei and inter -
act through Heisenberg exhange couplings . This gives rise to the small
energy splittings between the many low-lying electronic states . The
principal bonding orbitals in the corresponding dimers of the secon d
transition metal series are the delocalized 5sß g molecular orbitals . The 4d
electrons in Age and Pd, are well localized, but in the sequence Rh 2 to
Ru, the 4d electrons become increasingly delocalized signifying thei r
participation in the bonding . The d electrons in the »d electron deficient «
transition metal dimers are considerably delocalized and strongly in-
volved in the bonding of the molecules . In these molecules the combined
contributions to the bonding from the d electrons are comparable to the
contributions from the outermost sog molecular orbitals .

The chemical bonds in the transition metal dimers cannot be describe d
in a molecular orbital picture, but at least in the case of the Nb 2 molecule ,
it appears that the simple picture still has a significance .

In summary, accurate spectroscopic constants for the transition metal
dimers are not obtained from ab initio calculations, but it appears tha t
the nature of the chemical bonds in such molecules are well described b y
the conceptually simple wave functions resulting from internal CI calcu-
lations within the valence d and s shells .
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HANS L . SKRIVE R

Crystal Structure
from One-Electron Theory

ABSTRACT . We have studied the crystal structures of all the 3d, 4d, and 5d transition metals at zer o
pressure and temperature by means of the LMTO method and Andersen's force theorem . We find
that, although the structural energy differences seem to be overestimated by the theory, the predicted
crystal structures are in accord with experiment in all cases except Au . In addition we have
investigated the effect of pressure upon the alkali metals (Li, Na, Rb, Cs) and selected lanthanide
metals (La, Ce, Lu) and actinide metals (Th, Pa) . In these cases the theory gives accurate
predictions of the stability of the close packed structures but is found to be less accurate for ope n
structures such as a-U .

Risø National Laboratory, DK-4000 Roskilde, Denmark

1 . Introduction

Many of the characteristic properties of the metallic elements are a conse -
quence of their ability at normal temperature and pressure to form crys-
tals in which the metal atoms are arranged in a regular pattern whic h
repeats itself throughout the interior of the crystal . These crystals are the
microscopic building blocks of all the pieces of metal which we encount-
er around us, and it is therefore of great importance to investigate their
basic properties both experimentally and theoretically . The hope is of
course that by isolating and understanding the factors that govern th e
stability of the crystal structures found in nature one may eventually b e
able to design metals with specified properties .

The crystal structures of solid state materials are established by X-ray
diffraction experiments, and the results for the elemental metals are com-
piled in Fig . 1 . It turns out that the variety of crystal structures which th e
metallic elements take on is limited to essentially the five types shown o n
Fig. 2, and that four of these five structures are so-called close-packed
structures . The term close-packed refers to the fact that the fcc, hcp ,
dhcp, and Sm-type structures can be derived from stacking hexagonal
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Fig . 1 . Crystal structures of the metallic elements at low temperature .

layers of spheres of equal radii in the closest possible fashion. As a resul t
of this close-packing the coordination number in these four structures i s
12, each atom being surrounded by 12 nearest neighbours . The bcc
structure is a little less close-packed and has a coordination number of 8 ,
although it is sometimes referred to as having a coordination number o f
14 on account of the 6 next nearest neighbours, which are only slightl y
farther away than the nearest neighbours .

It may be seen from Fig . 1 that the crystal structures of the metalli c
elements tend to occur in sequences when viewed as functions of atomi c
number or hydrostatic pressure . The most prominent example of thi s
phenomenon occurs with the d transition metals, where all three transi-
tion series, excluding the four magnetic 3d metals, exihibit the sam e
hcp--bcc-hcp-fcc sequence as the d states become progressively filled . A
similar sequence is found in the lanthanides where the hcp -
6m-type-dhcp-fcc sequence established as a function of decreasing atomi c
number may also be realized by subjecting each individual lanthanid e
metal, except Ce, Eu, and Yb, to hydrostatic pressure . Finally, the al-
kaline earth metals, together with the divalent rare earths Eu and Yb, are
part of a short fcc-*bcc sequence which is also realized in Ca, Sr, and Yb

under high pressure .
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In the present contribution we shall establish the extent to which the
systematics outlined above can be explained by means of a state-of-the -
art theory for the ground state of the bonding electrons . The theory we
apply is a one-electron theory in which each electron is treated as an
independent particle moving in the effective potential from all the othe r
electrons and the nuclei, and the only input to the calculations is the
atomic number of the metal to be treated . In order to be able to reduce
the original many-body problem significantly one has to solve the elec-
tronic structure problem self-consistently, and to this end we use th e
Linear Muffin-Tin Orbital (LMTO) method (Andersen 1975) in con -
junction with a scaling principle as outlined by Skriver (1984) . The
structural energy differences which determine the relative stability of th e
crystal structures to be studied are in turn obtained from the one-electro n
states by means of Andersen's force theorem (Mackintosh and Anderse n
1980) . The whole procedure is quite general and allows us to treat al l
metals on the same footing .

Fig . 2 . Close-packed crystal structures of the elemental metals .
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The remainder of the present contribution is organized as follows : In
Sect . 1 .1 we outline the simplest possible theory of structural stability i n
terms of the density of electronic states, and in the following section 1 . 2
we apply this simple theory to state densities obtained by means o f
canonical band theory . In Sect . 2 we review previous theoretical effort s
in the field and compare them with the present approach, the theoretical
foundations of which are discussed in Sect . 3. In Sect . 4 we outline an
electrostatic correction to the Atomic Sphere Approximation (ASA )
which becomes important for structures less close-packed than thos e
shown in Fig . 2. Finally, in Sect . 5 we present the calculated structural
energy differences for the alkalis, the alkaline earths, the transition met-
als, the lanthanides, and the light actinides .

1 .1 . A simple theory of structural stability

In the main part of the following we shall describe the results of a serie s
of calculations of the relative stability of the crystal structures of some 4 0
elemental metals . In such a presentation, centred around an account o f
theoretical results and their relation to experimental observations, it i s
easy to lose track of the principles upon which the calculations are based .
We shall therefore immediately present a simple model which will illus-
trate these principles and in addition will serve to make more com-
prehensible the complete calculations to be described later .

According to standard textbooks one may imagine a metal formed i n
the thought experiment illustrated in Fig . 3 where N initially infinitel y
separated metal atoms are slowly brought together . Here we shall con-
sider specifically a transition metal in which the important states have d
character . As a result of the increasing contact between neighbourin g
atoms the 5N atomic d states give rise to a band of energies ranging fro m
B which corresponds to bonding between most neighbours to A which
corresponds to antibonding between them . The band of energies formed
in this way constitutes the energy band of the metal, and it contains al l
the one-electron states which the conduction electrons may occupy .

The energy gained in the above process is called the cohesive energy ,
and according to Fig . 3 it is simply the difference between the total
atomic energy nEa and the total band energy nE, i .e .

E coh = n(Ea-E)

	

( 1 )

assuming an occupation of n d electrons per atom . In writing down (1 )
we have furthermore assumed that the d states broaden around th e
atomic level E a, that is that the centre C of the d band coincides with E a .
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Fig.3 . Formation of th e
energy band of a meta l
from an atomic energ y
E,, . The width is W, th e
bottom and top B and A,
respectively, the Ferm i
level, i .e . the highest oc-

cupied energy EF , th e
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the number of electrons
per atom n .
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The average energy Ë, which corresponds to the centre of gravity o f
the occupied part of the d band and which enters (1), may be obtained b y
summing the one-electron energies e, between the bottom of the band B
and the highest occupied one-electron level EF , i .e .
_

	

occ
E=n-1 E ei

(2)
= n-1 fEFEN(E)dE

where we have introduced the state density function N(E) which de-
scribes how the states are distributed in the energy range from B to A .

If we assume that all states within the d band are equally probable th e
state density will have the rectangular shape shown in Fig . 4a, and th e
cohesive energy will simply be given by

Ercoh =	 Wn(10-n)

	

(3 )
20

As noted by Friedel (1969) this form clearly exhibits the parabolic varia-
tion with the d occupation, cf. Fig. 4, which is also found experimental-
ly (Gschneidner 1969, Friedel and Sayers 1977), especially when prope r
account is taken of the atomic effects (Brooks and Johansson 1983), an d

C =E a

E

B

A



214 HANS L . SKRIVE R

Atom

	

SolidFig .4 .

	

Rectangular and

	

Soli d
skew state densities model -

ling the dependence of the

	

E
cohesive energy upon crystal

	

W
structure . The cohesive ener-
gy as a function of d occupa-

	

E
tion n is shown for the rec-
tangular state density at th e
bottom . 10 N(E )

W

	 ~
Ea

	

E
~

co h

	

n

	

0

E
W

10 NIE )
W

Eco h

W

this agreement was taken as confirmation of the assumptions of th e
model outlined above .

From Eq. (1) and Fig . 4 it is clear that the energy gained in forming a
metal from the free atoms depends upon the relative position of the
atomic d level E a and the average band energy E . The latter depend s
upon the shape of the state density which in turn depends upon th e
arrangement of the atoms in the metal crystal, and hence different crysta l
structures will lead to different cohesive energies .

It follows that the relative stability of all possible crystal structures fo r
a given metal will be determined by the particular shape of the corre-
sponding state densities . We have illustrated this simple result in Fig . 4
from which it is straightforward to see that the crystal structure leadin g
to the skew state density will have a higher cohesive energy and hence b e
more stable than the structure which leads to the rectangular state densi-
ty on account of the lowering of E . Hence, the relative stability
of two crystal structures may be estimated simply by comparing the
corresponding average band energies E .

In the complete calculations to be reported later we have applied thi s
simple principle to accurately calculated state densities, and the succes s
with which the results explain the experimental observations may be
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taken as a justification of the assumptions underlying the one-electron
approach outlined above. As will be explained in Sect. 3 there is howeve r
also theoretical justification for such a one-electron approach in the for m
of the so-called force theorem (Mackintosh and Andersen 1980) whic h
dictates how the band structures and the corresponding state densities o f
the metals in the different crystal structures should be calculated .

1 .2 . Structural stability from canonical band theor y

The concept of canonical bands (Andersen 1975, Andersen and Jepsen
1977) gives rise to a simple and yet realistic procedure for estimating th e
relative stability of the close-packed crystal structures which form fo r
instance the transition metal sequence, Fig . 1 . According to canonical
band theory an unhybridized, pure 1 band may be obtained from (An-
dersen and Jepsen 1977, Skriver 1984)

E 1i (k) = C~ +

	

1

	

Ls;

where are the canonical bands which depend solely upon the crysta l
structure, S is the atomic Wigner-Seitz radius, C l the centre of the/ band ,
Ri the band mass, and y t a distortion parameter. The three potentia l
parameters C 1 , R i and y l depend upon potential and volume but not upo n
crystal structure .

In a transition metal one may to a good approximation neglect all bu t
the d bands. Since furthermore yd is small, one has the following poten-
tial-, i .e . atomic number-, independent estimate of the band contributio n
to the cohesive energy E co h

µd S2 Ecoh = - µdS2 fEF (E - Cd) Nd(E ) dE

fSd(nd ) Sd

	

c

	

(5)
Nd("d) dSd

in terms of the first-order moment of the canonical state density Nd .
Andersen et al . (1977) have evaluated (5) as a function of d occupatio n
number nd and found the expected parabolic behaviour (Friedel 1969)
which may also be obtained directly if N d(E) is approximated by a
rectangular state density as explained in the introduction .

Since the centre Cd and the band mass µd are independent of crystal
structure, the first-order moment (5) may be used to estimate the struc-
tural energy differences according to Eq . (9) . The result shown in Fig . 5
is identical to that of Andersen et al . (1977) and similar to the one

	

k

	

(4 )I~rS2

	

1
-yiSr~
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obtained by Pettifor (1970) . It accounts qualitatively for the crystal struc-
tures of the non-magnetic transition metals, Fig . 1, in the beginning of
the series but fails to predict the fcc structure at high d occupations . This
failure is attributed either to a failure of the force relation (Mackintos h
and Andersen 1980) or to hard-core effects (Pettifor 1970, 1972, 1977 )
omitted i Eq. (5) .

The lanthanide metals are found to have d occupation numbers vary -
ing almost linearly with atomic number from 1 .99 in La to 1 .45 in Lu

(Skriver 1983) or from 2.5 to 2.0 if hybridization is neglected (Duthi e
and Pettifor 1977) . Furthermore, their crystal structures are as closel y
packed as are those of the d transition metals and hence their structura l
energy differences may be estimated by Eq . (5) . The results shown i n
Fig . 6 are qualitatively similar to but on the average a factor 1 .7 smaller
than those obtained by Duthie and Pettifor (1977) . In this comparison
one may take the d-band width to be approximately 25402 in order to
bring their Fig . 2 onto the scale of Fig . 6 . The results in Fig . 6 account
qualitatively for the hcp- Sm-type-'dhcp sequence found experimentally
in going from Lu to La and more importantly perhaps, since the d
occupation for the lanthanides is calculated to increase with pressure an d

Fig . 5 . Structural energy

	

1,0
ferences obtained from canon-

ical d bands by means of Eq .

(5) as functions of the calcu-
lated canonical d occupation .
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decrease with atomic number, they also explain that part of the sam e
sequence is realized when a particular lanthanide metal is subjected t o
pressure. It therefore follows that the d occupation number, which i s
essentially a measure of the relative position of the s and d bands, may b e
used to rationalize the structure of the generalized phase diagram for th e
lanthanides constructed by Johansson and Rosengren (1975) .

At the present stage one should realize that the results obtained b y
canonical band theory and shown in Figs . 5 and 6 are only qualitative .
Indeed, if one considers Fig . 7 where the canonical estimates are com-
pared with experimental crystal structures, one finds that the canonical
theory in several cases does not predict the correct crystal structure
independently of whether one uses the self-consistent d occupation num -

0.6

Fig . 6 . Structural energy dif-

ferences obtained from canon-
ical d bands by means of Eq .

i

	

l

	

(5) in the d occupatio n

3
number range appropriate to
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- 0.2

hcp



218 HANS L . SKRIVE R

Sm -t Sm -t fcc

	

dhcp
fcé hcp

	

dhcp

	

bcc

	

hcp
I

	

I

	

I

	

I

	

I

	

I

Canonical theory
fcc bc

c

~//////////

	

//////////H//////////I/H////. %///////////////////
8

	

10

d-occupation n d [stateslatom]

n d (self-consistent )

nd (conventional )

La
dhcp

0

	

2

Ba Lu Hf

	

Ta

	

W Re Os

	

Ir

	

P t
bcc hcp hcp

	

bcc

	

bcc hcp hcp

	

fcc fcc Experimen t

Fig. 7. Canonical estimate of the most stable close packed crystal structure as a function of th e
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estimates of the actual d occupation numbers of the 5d metals together with the experimentally ob -

served crystal structures .

bers or those obtained conventionally by nonlinear interpolation along a
row in the periodic table (see Fig . 1) . La, Re, and Jr, for instance, ar e
examples of incorrect predictions, but here one may argue that the cor-
rect crystal structure is nearby and hence the failure of the theory may b e
considered less important . Ba is another example and in this case there i s
no nearby bcc structure . However, in Ba the d occupation number is
only a fraction of the total number of electrons and hence a theory based
solely upon unhybridized d bands is probably inapplicable . The mos t
important failure is connected with the d occupation range from 1 .6 to
2 .6 [states/atom] . According to Fig . 7, La, Pr, Nd, and Pm should incor-
rectly form in the Sm-type structure while Ti, Zr, and Hf are expected t o
be part of the lanthanide sequence . Instead, the latter three metals form
in the hcp structure which is the least stable among those considered i n
the d occupation range above 2 [states/atom] .

It may be concluded that the simple estimate of structural energy
differences obtained by means of the first-order moments of the canoni-
cal state densities is of limited value as a predictive tool . It is, however, o f
sufficient physical significance to warrant a study of the crystal structure s
of metals using a more accurate one-electron theory, and to be used i n
the interpretation of the results of such a study.
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2. Theoretical approaches to structural stability

The most prominent crystal structure sequence in the periodic table i s
the hcp-bcc- hcp- fcc sequence found among the d transition metals, se e
Fig . 1 . Qualitative explanations of this trend have been given by Brewe r
(1967) in terms of Engel correlations between the valence sp electron s
and by Kaufman and Bernstein (1970) in terms of semi-empirical ther-
modynamic calculations of phase diagrams, whereas Deegan (1968) ,
Dalton and Deegan (1969), and Ducastelle and Cyrot-Lackmann (1971 )
have attempted more quantitative approaches based upon one-electron
theory .

Deegan (1968) and Dalton and Deegan (1969) showed that the stability
of the bcc phase for nearly half-filled d shells might be explained by
differences in the sum of one-electron band structure energies, and the y
pointed to the special double-peak structure of a bcc state density a s
responsible for this stability . Later, Pettifor (1970, 1972) extended the
work of Dalton and Deegan and showed that the entire crystal structure
sequence of the transition metals could be accounted for by a one-elec-
tron approach. In his calculations Pettifor (1977) found no evidence fo r
the Brewer-Engel correlation (Brewer 1967), which relates crystal struc-
ture stability to the sp occupation numbers, and instead he related th e
hcp-bcc- hcp->fcc sequence to the change in d occupation which take s
place across a transition series . This latter viewpoint has proven to b e
very fruitful in that it may be used as a simple »one-parameter theory «
which in many cases provides remarkably good estimates of structural
stabilities also for non-transition metals such as the alkaline earth s
(Skriver 1982) .

The crystal structures of the trivalent lanthanides, i .e . Pr through Lu
except Eu and Yb, exhibit such regularity, as functions of atomi c
number, pressure, and temperature, that Johansson and Rosengren
(1975) were able to construct a single generalized phase diagram for thes e
metals . In this case the crystal structures observed under ambient condi-
tions, (see e .g ., Beaudry and Gschneidner 1978) are found to be part o f
the sequence hcp-Sm-type- dhcp- fcc- fcc' established by high-pressur e
experiments (Jayaraman and Sherwood 1964, Piermarini and Weir 1964 ,
Jayaraman 1965, McWhan and Stevens 1965, 1967, Liu et al . 1973, Liu
1975, Nakaue 1978) and alloying (Koch 1970) . Here fcc' refers to the
recently discovered distorted fcc structure (Grosshans et al . 1981) . The
lanthanide sequence is also found in Y (Vohra et al . 1981) where there ar e
no occupied f states and in the heavier actinide (Stephens et al . 1968,
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Akella et al . 1979, 1980, Roof et al . 1980, Roof 1982, Benedict et al .
1984) at pressures where the 5f states are still localized . Qualitative expla -
nations of the hcp- Sm-type-dhcp-fcc sequence have been attempted i n
terms of pseudopotential theory by Hodges (1967) and in terms of a 4 f
contribution to the bonding by Gschneidner and Valletta (1968), whil e
Duthie and Pettifor (1977) gave a quantitative explanation in terms o f
one-electron theory .

Duthie and Pettifor (1977) showed that the lanthanide crystal structure
sequence could be explained by differences in the total one-electron ban d
structure energies, and they found a strong correlation between crysta l
structure and d-occupation number . Hence it appears that the lanthanide
metals, as far as their crystal structures are concerned, behave as ordinar y
5d transition metals with a d occupation ranging from approximately 2 . 0
in La to 1 .5 in Lu. This result is very appealing because there is a one-to -
one correspondence between the calculated d-occupation number an d
the single f parameter used by Johansson and Rosengren (1975) and
Johansson (1978) to rationalize the lanthanide crystal structure sequence ,
and because it is immediately possible to understand the behaviour of Y
(Vohra et al . 1981) and the heavy actinides (Stephens et al . 1968, Akella e t
al . 1979, 1980, Roof et al . 1980, Roof 1982, Benedict et al . 1984) within
the same framework .

At first sight it may seem surprising that the crystal structures of s o
many metals can be explained on the basis of differences in the total one -
electron band structure energies alone, since the total electronic energy ,
apart from the one-electron term, has contributions also from doubl e
counting and exchange-correlation . However, it has recently bee n
shown (Andersen et al ., 1979, Mackintosh and Andersen 1980, see als o
page 119 of Heine 1980) that, provided the one-electron potential is kept
frozen upon a displacement of the atoms, the corresponding changes i n
the double counting and exchange-correlation terms cancel to first orde r
in the appropriate local electron density, and hence the difference in th e
sum of the one-electron energies, obtained by means of the frozen, i .e .
not self-consistently relaxed, potential, will give an accurate estimate o f
the corresponding self-consistent change in the total electronic energy . I t
is exactly this cancellation, which also leads to the so-called pressur e
expression (Nieminen and Hodges 1976, Pettifor 1976) and to the mor e
general force relation derived by Andersen (see Mackintosh and An-
dersen 1980), that in turn justifies the simple band structure approac h
taken for instance by Pettifor (1970, 1972, 1977) .

In their work Pettifor (1970, 1972, 1977) and Duthie and Pettifor
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(1977) focused their attention on the contribution to the total energy
from the d bands and either neglected hybridization with the sp bands
entirely or included hybridization appropriate to some average element .
Hence their picture is essentially a canonical one (cf. Sect . 1 .2) in which
the energy band structures depend only upon crystal structure and no t
upon band-filling . It is obvious that such a picture, although adequat e
for the d transition metals, will fail in cases where states of non d charac-
ter are as or more important than the d states, as they are for instance i n
the alkali, the alkaline earth and light actinide metals . Fortunately, the
force theorem is not restricted to the canonical approximation and it has
recently been used in theoretical investigations of crystal structures in th e
third row metals (Moriarty and McMahan 1982, McMahan and Moriar-
ty 1983) the alkaline earth metals (Skriver 1982), and in Cs above the s-d
transition (McMahan 1984) .

In the present work we go beyond the canonical approximation an d
use the force theorem (Mackintosh and Andersen 1980) to calculate the
structural energy differences for all the 3d, 4d, and 5d transition metals a t
zero pressure and temperature . In addition we investigate the effect o f
hydrostatic pressure upon the crystal structures of alkali, alkaline earth ,
lanthanide and actinide metals .

Traditionally the non-transition metals, e .g. alkali and alkaline eart h
metals, have been treated by means of pseudopotential theory, and th e
crystal structures predicted from this approach are generally in goo d
agreement with experiment (Animalu 1967, Heine and Weaire 1970 ,
Moriarty 1973, 1982, Hafner and Heine 1983, Young and Ross 1984) . I t
has, however, not been straightforward to generalize the pseudopoten-
tial method to treat narrow d band materials, and to do so one has had to
add localized orbitals to the plane-wave basis (Zunger and Cohen 1979) .
Thus the d band in K is described by the d component of plane-wave s
while that of Cu is described by additional d orbitals, which is somewha t
inconsistent with the smooth lowering of the 3d band through the serie s
K, Ca, Sc, . . ., Cu. The method has, however, proved to be very accu-
rate .

The present approach, based upon the Linear Muffin-Tin Orbita l
(LMTO) method (Andersen ].975), has the advantage of employing the
same type of basis functions for all the elements thus leading to a concep-
tually consistent description of trends throughout the periodic table . In
addition, the LMTO method is extremely efficient on a computer re-
quiring only the solution of an eigenvalue problem of 9x 9 (or 16x16 if f
states are included) per atom at each point in reciprocal space . Since we
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are mainly interested in trends, we have neglected the nonspherical con-
tributions to the charge density, which may explain what seems to be a
systematic overestimate of the calculated structural energy differences .
We have furthermore neglected a structure-dependent electrostatic inter -
action between atomic spheres except in the few cases where it contrib-
utes significantly to the energy differences .

3 . One-electron theory of structural stabilit y

At low temperatures the crystal structure of a metal is determined by th e
total electronic energy U in addition to a small contribution from the
zero-point motion*, which we shall neglect . Hence, if one wants to
determine the stability of some crystal structure, say bcc, against som e
reference structure, which we shall take to be the close-packed fcc struc-
ture, one may calculate the total energy of both phases and form th e
structural energy difference

Abcc-fcc = Ubcc - U fcc

	

(6 )

where the total energy according to the local density approximation
(Kohn and Sham 1965) may be written as the sum over occupied states o f
the one-electron energies ei corrected for double counting, plus electro-
static terms (see e .g., sections 13 and 15 of Heine 1980 or sections 7 .2 and
7 .3 of Skriver 1984), i .e .

oc c

U =

	

E; - double counting + electrostatic

	

(7 )

If the difference (6) is negative the bcc structure will be stable against fcc .
The total energy for say a 4d metal is of the order of 104 [Ry] mainly

because of the contributions from the low-lying core levels while typica l
structural energy differences are of the order of 10 -3 [Ry] . Hence, ex-
treme accuracy is needed in order to use (6) directly, and one would lik e
to have a numerically more satisfactory procedure . The force theore m
(Mackintosh and Andersen 1980) gives rise to such a procedure, bu t
more importantly perhaps it casts the problem of finding stable crysta l

* The zero-point energy is proportional to the Debye temperature i .e . E0 = (9/8) k B OD .
Typically OD varies by 1-10 [K] between different structures of the saine metal (se e
Gschneidner 1964) and hence the DEo to be added to (6) is of the order of 0 .01-0 . 1
[mRy] which in most cases will be too small to affect the structural stabilities .
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structures into a form. where the significant contribution comes from th e
one-electron valence energies and not from double counting nor from
the deep core-levels .

The force theorem dictates that we adopt the following procedure : For
a given metal at a given atomic volume one must solve the energy-ban d
problem self-consistently assuming the reference crystal structure . To
this end we use the LMTO method (Andersen 1975) within the Atomi c
Sphere Approximation (ASA) including the combined correction to th e
ASA (Andersen 1975) . In addition we take account of the relativisti c
effects, except spin-orbit coupling which we neglect, include exchange -
correlation in the form given by von Barth and Hedin (1972), and freez e
the appropriate cores . This part of the calculations is described in detail
by Skriver (1984) . We have now minimized the energy functional U{n}
with respect to changes in the electron density n and obtained the groun d
state density nfccc . Because of the stationary properties of U one ma y
obtain, for instance, U bcc from a trial charge-density nbc c constructed by
positioning the self-consistent fcc atomic-sphere potentials in a bcc geo-
metry, solving the one-electron Schrödinger equation, and populating
the lowest-lying one-electron states . Hence ,

Abcc-fcc - Ubcc{nbcc} - U fcc{nfc}

	

(8 )

where the errors relative to (6) are of second order in nbcc - nbcc. Now,
the use of a frozen, i .e . not self-consistently relaxed, potential to generat e
nvcc ensures that the chemical shifts in the core levels drop out of Eq . (8 )
and also that the double-counting terms cancel . Hence, the core level
energies and the double-counting terms may be neglected entirely in Eq .
(7) leaving only the valence one-electron energies and the electrostati c
terms to be considered. The fact that the freezing of the potential leads t o
such a computationally simple and conceptually important result wa s
already noted by Pettifor (1976) in his derivation of the pressure expres-
sion .

Within the atomic sphere approximation (Andersen 1975) the atomi c
Wigner-Seitz sphere of an elemental metal is neutral and there is there -
fore no electrostatic interaction between the spheres . Hence the electro-
static terms in Eq. (7) vanish and the structural energy difference (8) ma y
be obtained from

Abc~-fcc = fEF E Nbcc(E) dE - fEF E Nfcc(E) dE

	

(9)B

where N(E) is the one-electron state density . Furthermore, the AS A
allows a separation of the potential- and crystal-structure-dependent
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parts of the energy band problem (Andersen 1975, Andersen and Jepsen
1977, Skriver 1984) . Hence, all that is required at a given atomic volume,
in addition to the self-consistent fcc calculation, is to calculate the energ y
bands of the relevant crystal structures with the use of the self-consisten t
fcc potential parameters, evaluate the sums of the one-electron energies ,
and subtract according to Eq . (9) . This procedure is quite general, treat s
all s, p, d, and f electrons on the same footing, and may be applied to al l
metals in the periodic table .

4 . Madelung correction to the AS A

The errors of neglecting the structure-dependent electrostatic terms in
(7) may be estimated by means of what has been called either the Muffin -
Tin (Glötzel and Andersen, unpublished) or Ewald (Esposito et al . 1980)
correction to the ASA . To derive this correction one observes that the
electrostatic energy per ion of a lattice of point ions of charge gsle l
embedded in a negative neutralizing uniform charge density is given b y
the well-known Madelung expression

UM = - 1 /2(gslel)2

	

S
where am is the lattice Madelung constant and S the atomic Wigner-Seitz
radius . In the ASA this expression is approximated by the energy of an
ion embedded in a single neutralizing atomic sphere, whereby am(ASA)
= 1 .8. The correction is therefore

(10)

eAUM = 1/2(g s
2 1 .8-am

)

	

S

In a Muffin-Tin model the effective charge ci s lel is the charge density in
the interstitial region between the Muffin-Tin spheres times the volume
of the unit cell . In the ASA this become s

Tabel 1 . Madelung constant to be used in Eq . (11) .

am 1 .8-am (1 .8-aM)-( )frc

fcc 1 .79174723 8 .253 10-3
bcc 1 .79185851 8 .142 10-3 - 0 .111

	

10-3
hcp 1 .79167624 8 .324 10-3 0 .071

	

10-3
a-U*) 1 .78418298 15 .817 10 -3 7 .564

	

10-3

*) b/a = 1 .964, c/a = 1 .709, y = 0 . 1
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gSIe I = - 4371 S3 n(S) l el

	

(12 )

where n(S) is the electron density at the atomic radius .
For close-packed crystal structures am is approximately 1 .8, see Table

1, and hence the correction (11) is smallest in these . Typically qs/S lies in
the range from 0.5 to 5 [a .u .] so that the Madelung correction for the bc c
and hcp structures relative to the fcc structure lies in the range 0 .05 to 0 . 5
[mRy] .

5 . Structural stability from LMTO band calculations

In the following we shall present structural energy differences for mos t
metallic elements to the left of and including the noble metals as obtaine d
by means of the procedure described in Sect . 3 . The results will be valid
only at low temperature and at atmospheric pressure, strictly T = 0[K ]
and P = 0 [GPa], except in a few important cases where structura l
stability has been followed as a function of pressure .

5.1 . The alkali metals

The calculated structural energy differences for alkali metals at equilib-
rium are almost two orders of magnitude smaller than those of, fo r
instance, the alkaline earth metals . To judge the accuracy of our approac h
we have therefore studied these differences as functions of pressure a s
shown in Fig . 8 from equilibrium down to a compression of 2 .5 . The
results in Fig. 8 include the Madelung correction (11) which turns out to
be crucial in the comparison with recent pseudopotential and LMTO
results (Moriarty 1982, Moriarty and McMahan 1982, McMahan an d
Moriarty 1983) .

From Fig . 8 it is expected that the heavy alkalis at low temperature an d
pressure should form in the bcc structure while Li should be hcp . Experi-
mentally it is known (Donohue 1975, Young 1975) that all five alkal i
metals at room temperature form in the bcc structure, and that they
remain in this structure down to 5 [K] except Na which below 51 [K ]
transforms into the hcp structure and Li which at low temperatur e
exhibits both an hcp and an fcc phase. Hence, except for Na the low
pressure structures are correctly predicted .

Recently, Moriarty (1982) successfully estimated the structural stabili-
ty for some 20 non-transition metals by means of his Generalize d
Pseudopotential Theory (GPT) . He found incorrectly (see his Table VIII)
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that all the alkali metals at P = 0 and T = 0 should form in the hc p
structure, but pointed out that at a slight compression the experimentall y
observed bcc structure would be stable in the heavy alkalies K, Rb, and
Cs. A similar problem is encountered in another recent pseudopotentia l
study (Young and Ross 1984) where the structures of Li and K at lo w
temperature and pressure are predicted in agreement with experimen t
but where Na is expected to be fcc . On the other hand, in view of the
extremely small energies involved, see Fig . 8, it is not surprising that the
prediction of the low-pressure part of the alkali phase diagrams is a
severe test of any calculation .

In their work on the third-row metals McMahan and Moriarty (1983 )
compared structural energy differences obtained by means of the LMT O
and GPT methods and found excellent qualitative agreement except fo r
Na . If we compare our Na results in Fig . 8 with their Fig . 1 we find
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somewhat surprisingly that our calculations are in closer agreement with
their GPT than with their LMTO results . There are several reasons fo r
the differences between the two LMTO calculations . Firstly, we have
included the Madelung correction (1I) without which the calculated bc c
curve is entirely above and the hcp curve entirely below the fcc, in
qualititative agreement with their LMTO results . Secondly, we have
sampled the Brillouin zone on a finer mesh, i .e . 916, 819, and 448 points
in the irreducible wedge for fcc, bcc, and hcp, respectively, and finally ,
we have improved the convergence of the reciprocal lattice sums in th e
expression for the combined correction terms (Andersen 1975) whereb y
the numerical errors in the structural energy differences for Na are below
0.01 mRy. As a result it appears that in the case of closely packed crystal
structures the LMTO method including the Madelung correction (11 )
has an accuracy comparable to that attained by pseudopotential theory .

Owing to the inclusion of only three crystal structures in Fig . 8, Cs i s
incorrectly calculated to transform into the bcc structure at a compres-
sion of 2 .2. However, in a recent study of Cs above the s-d transition ,
i .e . beyond the pressure range of the present work, McMahan (1984 )
found that Cs had transformed into the Cs IV structure before the bc c
structure became more stable than fcc, in agreement with high pressur e
experiments (Takemura et al . 1981, 1982) .

5.2 . The alkali metals at moderate compressio n

According to Fig . 8 all the alkali metals should at low temperature b e
part of the same crystal structure sequence bcc->hcp-fcc, and one woul d
anticipate that these transitions are driven by the pressure-induced low-
ering of initially unoccupied d states through the Fermi level, whereb y
electrons are gradually transferred from the s into the d band . If one plot s
the calculated crystal structures as functions of d occupation number a s
in Fig. 9 it is seen that only in the heavy alkalis K, Rb, and Cs is this
mechanism at work while the transitions in Li and Na at least below 35
[GPa] have a different origin .

The experimental situation at room temperature has recently bee n
summarized as follows (Takemura and Syassen 1983, Olijnyk and Holz-
apfel 1983) . Li exhibits a bcc-fcc transition at 6 .9 [GPa] (Olinger and
Shaner 1983) while Na remains in the bcc structure up to at least 3 0
[GPa] (Alexandrov et al . 1982) which substantiates the notion that the s -
d transition is unimportant in these two metals . The heavy alkalis al l
exhibit a bcc--)fcc transition [K (Takemura and Syassen 1983, Olijnyk
and Holzapfel 1983), Rb (Takemura and Syassen 1982), Cs (Hall et al .
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Fig . 9 . Calculated crystal structures for the al-
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1964)] before they transform into more complex structures of which
only the so-called Cs IV has been solved so far (Takemura et al . 1982) .

To our knowledge there are no low-temperature high-pressure ex-
periments which could substantiate the existence of the predicte d
bcc-hcp-fcc sequence, where according to Figs . 8 and 9 the hcp phase a t
least in K should be stable over an appreciable pressure range . However ,
in view of the fact that temperature at atmospheric pressure stabilizes th e
bcc phase to the extent that all the alkali metals are bcc above 100 K it is
reasonable to assume that the intermediate hcp phase, which is only
marginally stable, is also suppressed at higher temperatures . Thus, in a
high-pressure experiment at room temperature one would see a direc t
bcc-fcc transition, as indeed one has observed (Hall et al . 1964, Take-

0.0
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mura and Syassen 1982, 1983, Olijnyk and Holzapfel 1983) . If the hcp
phase is suppressed the best estimate of the room temperature bcc-fc c
transition pressure is the critical pressure for the low-temperatur e
hcp-fcc transition (cf. Fig . 8) . We find the transition pressures to be 11 ,
5.5, and 1 .4 [GPa] for K, Rb, and Cs, respectively, which should b e
compared to the experimental values of 11, 7, and 2 .2 [GPa] listed in the
references cited above .

Independent of whether the intermediate hcp phase exists or not, th e
high-pressure fcc phase in K, Rb, and Cs is much more stable than the
initial bcc phase, see Fig . 8 . Bardeen (1938) suggested already in 193 8
that the transition observed at 2 [GPa] in Cs was from the normal bcc to
an fcc phase and that it resulted from the non-electrostatic interaction
energy of the ions, the important term being the Born-Mayer (Born an d
Mayer 1932) repulsion . between the ion cores . Here we shall show tha t
the fcc phase in the heavy alkalies owes its stability directly to the
pressure-induced s-d transition which is also shown to be behind, fo r
instance, the isostructural fcc-fcc transition in Cs (Glötzel and McMaha n
1979) .

In Fig . 10 we compare the important parts of the fcc and bcc band -
structures of Cs at the zero-pressure volume, Vo , and at the volume
where the fcc phase becomes more stable than the initial bcc phase . The
four band structures may be characterized as nearly free-electron and s -
like below the Fermi level EF and d-like above EF . Typical d states have
symmetry labels such as F12, 1'25', H12, and X3, and they are seen to
approach the Fermi level under compression . At V = Vo the fcc and bcc
band-structures are found to be extremely similar in the range below EF

which is important in the sums over occupied states in Eq . (9): They are
both parabola shaped and »touch« EF at a single symmetry point, L 1 for
fcc and N 1 for bcc. As a result, the sum of the one-electron band-
structure energies are almost equal and the main contribution to th e
stability of the bcc phase comes from the electrostatic Madelung ter m
(11) which is negative, see Table 1 .

At V = 0 .7 Vo hybridization with the descending d band has moved
the X1 and neighbouring levels below EF thereby lowering the energy in
the fcc phase with respect to that in the bcc phase to the extent that th e
Madelung term is overcome and the structural energy difference is zero .
Under further compression the X 1 level continues to descend and the fc c
phase becomes increasingly stable, see Fig . 11 . This trend is eventually
broken because the maximum in the F 1 A 1 X1 band moves away from X
and because the X3 level drops below the Fermi level . Both effects de-
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stabilize the fcc structure and subsequently Cs transforms into the Cs I V
phase . We shall not discuss this development here but refer to the experi-
mental work of Takemura et al . (1982) and the theoretical treatment o f
McMahan (1984) .

The presence of a gap at X (see Fig . 10) near the Fermi level in th e
compressed fcc phase which has no counterpart in bcc phase (nor in th e
hcp phase) stabilizes the fcc phase over the bcc in exactly the manner
discussed by Jones in his classical work on the phase boundaries in binary

0.0

12



CRYSTAL STRUCTURE FROM ONE-ELECTRON THEORY

	

23 1

alloys (Mott and Jones 1936, Jones 1937) . The electron states below the
gap have their one-electron band-energies lowered and are more densely
populated than their free-electron or, here, bcc counterparts . The way
the fcc phase is stabilized in Cs under pressure is shown in Fig . 11 wher e
one notes that the stabilization occurs gradually from the point where th e
X 1 level crosses EF . Hence, although the fcc phase eventually becomes
more stable than the bcc phase because of the presence of the band gap a t
X, there is no direct relation between the volume (V = 0 .70 Vo ) where
the phase transition occurs and the volume (V = 0 .82 Vo) where the van
Hove singularity connected with the X1 level moves through the Ferm i
level . This delayed action is characteristic of many electronically driven
transitions .

In the discussion of the stability of the fcc phase we have considere d
only Cs for simplicity, but examination of the band structures for K an d
Rb shows that the above picture applies equally well to these two metal s
although there are quantitative differences between K, Rb, and Cs
caused by the fact that the zero-pressure position of the initially unoc -
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cupied d band drops relative to the Fermi level as the atomic numbe r
increases .

5.3 . The alkaline earth metals

The calculated structural-energy differences for the alkaline earth metals
under pressure are shown in Fig . 12 . In the figure the metals are ordere d
according to their calculated d occupation number at equilibrium and w e
have included the two divalent rare earths Eu and Yb, but excluded th e
divalent metals Be and Mg since they do not really belong to the crysta l
structure sequence we shall presently be discussing . The results at zer o
pressure for Be and Mg may, however, be found in the preliminar y
account (Skriver 1982) of the present work .

According to Fig . 12, Ca, Yb, and Sr at low temperature and pressure
should form in the fcc structure while Eu, Ra, and Ba should be bcc .
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These predictions are in agreement with experiments (Donohue 1975 ,
Young 1975) except for Yb which at low temperature takes up the hc p
structure (Bucher et al . 1970) . However, at a slightly expanded volume
the hcp phase is calculated to be the stable phase, and hence one may no t
have to appeal to zero-point motion to explain the anomalous low-
temperature hcp phase in Yb. Previous pseudopotential calculations
(Animalu 1967) have explained the bcc structure in Ba and the pressure-
(and temperature-) induced fcc-,bcc transition in Sr, but gave an incor-
rect (bcc) zero-pressure crystal structure in Ca . Later pseudopotential
results (Moriarty 1973) indicated that the stable structure at ordinar y
pressure should be the fcc structure for all the alkaline earths . Hence, it i s
still a challenge to pseudopotential theory to predict the crystal structure s
of the alkaline earth metals as a function of both atomic number and
pressure .

There is a strong correlation between the calculated d occupatio n
number and the calculated crystal structure as may be seen in Fig . 13 .
According to this the heavy alkaline earth metals should be part of the
same hcp- fcc-bcc-hcp sequence. At zero pressure each individual metal
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Fig .13 . Calculated crysta l
structures for the alkaline

earth metals as functions of
the LMTO pressure and d
occupation number .
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may be characterized as being at different stages on the continuous s-to- d
transition, i .e . by their d occupation number, and the structural phas e
transitions are then driven by the pressure-induced lowering of the d
band with respect to the s band . The correlation is, however, not perfec t
and the calculated crystal-structure changes occur over a narrow range o f
d occupation numbers .

Experimentally (Jayaraman et al . 1963a, b, Jayaraman 1964, Olijnyk
and Holzapfel 1984) one observes at room temperature the fcc-*bcc par t
of the above sequence but the bcc-hep transition is found only in B a
whereas the lighter alkaline earth metals transform into more complex
high-pressure phases (Olijnyk and Holzapfel 1984) not considered here.
The critical pressures for the fcc->bcc transition in Ca, Sr, and Yb plus
the bcc-ahcp transition in Ba are calculated to be 21, 3 .8, 5 .5, and 10
[GPa], respectively (cf. Fig . 13) . At room temperature Olijnyk and
Holzapfel (1984) find experimentally 19 .7 [GPa] for the transition in C a
while a low-temperature extrapolation of the high pressure crystallo-
graphic measurements by Jayaraman et al . (1983a, b) and Jayaraman
(1964) gives 4, 5, and 5 [GPa] for the latter three transitions . In view of
the fact that no adjustable parameters have been used to construc t
Fig. 13, the agreement with the calculated critical pressures may be con -
sidered satisfactory .

The band structure calculations show in agreement with the high -
pressure resistivity data (Stager and Drickamer 1963a, b, Souers and Jur a
1963, McWhan et al . 1963) that Ca, Sr, and Yb in the fcc phase shoul d
undergo a metal-semimetal-metal transition under pressure as describe d
in detail for Ca by, for instance, Jan and Skriver (1981) . Recently, Dunn
and Bundy (1981) re-measured Ca and found the pressure range of th e
semimetallic phase to be much narrower than that found in earlier meas-
urements (Stager and Drickamer 1963a) or predicted by band theory
(McCaffrey et al . 1973, Mickish et al . 1974, Jan and Skriver 1981) . Jan
and Skriver (1981), for instance, predicted that fcc Ca should be semime -
tallic from 4 to 29 [GPa] . In the present extension of those calculations i t
is seen in Fig . 12 that before Ca reaches 29 [GPa] it is expected to trans -
form into the bcc phase whereby the semimetallic behaviou will b e
terminated already at 21 [GPa] . This termination of the semimetalli c
phase at approximately 20 [GPa] is in agreement with both resistivit y
(Dunn and Bundy 1981) and crystallographic (Olijnyk and Holzapfel
1984) measurements . However, the critical pressure of 4 [GPa] for th e
onset of the semimetallic behaviour is still too low compared to tha t
obtained from the resistivity data of Dunn and Bundy (1981), and this
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discrepancy must be due to a failure of local-density theory of the kin d
mentioned by Jan og Skriver (1981) .

In recent high-pressure measurements (Holzapfel et al . 1979, Take -
mura and Syassen 1985) both Eu and Yb are found to transform from the
bcc to the hcp phase in seeming agreement with the systematics exhibit -
ed in Fig . 13 . However, since Yb (Syassen et al . 1982) and presumably
also Eu (Johansson and Rosengren 1975, Rosengren and Johansson 1976 )
change valence under pressure their high-pressure hcp phase is mor e
appropriately thought of as belonging to the rare earth sequence, see
Fig. 1, whereby it follows that Eu and Yb at very high pressures shoul d
exhibit the well-known hcp-)Sm-type- dhcp-fcc transitions .

5.4 . The transition metals

The calculated structural energy differences for the 3d, 4d, and 5d transi-
tion metals are shown in Fig . 14 and, as a comparison will show, th e
predicted crystal structures of all the metals included in this figure, neg-
lecting the three ferromagnetic 3d metals, agree with the experimentall y
observed crystal structures, Fig. 1, except for the case of Au where th e
bcc structure is calculated to be marginally more stable than fcc . Hence ,
it follows that by including complete, i .e . fully hybridized, band struc-
tures for each individual metal but still retaining the force theorem one
has cured most of the problems connected with the simple canonica l
picture discussed in Sect . 1 .2 and exemplified in Fig . 7 . Furthermore, one
should note that the correlation between crystal structure and d occupa-
tion which the canonical description predicts remains valid also for the
complete calculations .

The results in Fig . 14 are very similar to those obtained by Pettifo r
(1970, 1972, 1977) for the 3d metals and by Williams (quoted by Miede -
ma and Niessen 1983) for the 4d metals . However, in spite of the agree-
ment of the theoretical calculations to within 25% and the correct predic-
tion by the theory of the crystal structures of 27 metals, the calculate d
structural energy differences are found to be as much as a factor of 3-5
larger than the enthalpy differences obtained from the study of binar y
phase diagrams (Miedema and Niessen 1983), Fig . 15 . At present th e
cause of this discrepancy is not known . The most likely candidates ar e
either neglect of non-spherical terms in the charge density or a genuin e
failure of the local density approximation . The force theorem itself doe s
not seem to be the cause of the discrepancy since Williams as quoted b y
Miedema and Niessen (1983) obtains results similar to ours by subtrac-
tion of total energy calculations . Finally, the »experimental« results de-
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rived by Miedema and Niessen (1983) are certainly model dependent an d
may therefore have large error bars .

5.5 . The lanthanide metals

The calculated structural-energy differences for the two lanthanide met -
als La and Lu which bracket the lanthanide series are shown in Fig . 16 .
To compare directly with the canonical results, Fig . 6, the energy differ-
ences have been brought onto the canonical scale and plotted as function s
of the calculated d occupation number . The results in Fig . 16 are qualita-
tively similar to the canonical results but the energy differences are gen-
erally smaller by approximately a factor of 2, judged by, for instance, th e
minimum in the Sm-type curve, than their canonical counterparts .
Furthermore, the lanthanide sequence has been shifted to lower d occu-
pation numbers whereby the problems connected with the canonica l
description in the d occupation range above 1 .6 have been removed .
Hence, Ti, Zr, and Hf are no longer part of the lanthanide sequence and
are instead correctly predicted to form in the hcp structure, Fig . 14 .

In an account of the cohesive properties of the lanthanides Skriver
(1983) found that the d occupation numbers calculated at the experimen-
tally observed equilibrium volume decreased approximately linearly

0 . 2
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Fig . 16 . Structural energy differences for L a
and Lu calculated as functions of pressure P an d

- plotted versus d occupation number n d . The cal-
culations included s, p, d, and f orbitals, 4f fo r
La and 5f for Lu, but not the Madelung correc-
tion Eq . (11) .
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with atomic number between La and Lu. Hence, Fig . 16 may be used t o
estimate the equilibrium crystal structures of the lanthanide metals, ex-
cluding Ce because of its y-ca, transition, and the two divalent metals Eu
and Yb . In agreement with the generalized phase diagram (Johansson
and Rosengren 1975) we find that La, Pr, Nd, and Pm should form in the
dhcp structure while Sm should be Sm-type. However, the heavy lan-
thanides are incorrectly estimated to form in the Sm-type structure . The
immediate reason for this failure seems to be that the stability of the hc p
structure at a given d occupation is calculated to be too low compare d
with dhcp and Sm-type but the deeper cause is not known at present . As
a result, the Sm-type structure extends over too wide a d occupatio n
range .

Fig. 16 may also be used to predict the behaviour of La and Lu under
pressure . We find that Lu should transform from hcp to the Sm-typ e
structure at - 2 [GPa] and into the dhcp structure at 35 [GPa] . Because of
a 2% error in the calculated equilibrium radius and because of the failure
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mentioned above, the first estimate is in error by 25 [GPa], the experi-
mental critical pressure being 23 [GPa] (Liu 1975) . The second transition
has not yet been observed .

Under pressure La is predicted to transform from dhcp to the fc c
structure at 8 [GPa], Fig . 17, which compares favourably with the exper -
imental room-temperature transition pressure of 2 .5 [GPa] (Piermarin i
1964) . The distorted fcc phase discovered by Grosshans et al . (1982) ha s
not been considered, but we shall return to the high-pressure propertie s
of La in the following section .

5 .6 . Cerium metal under pressure

The behaviour of Ce under pressure has been a subject of long-standin g
and some controversy, primarily because of the unusual isostructura l
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y->a transition. Here we shall be concerned with the fcc-a-U-tetragonal
crystal-structure sequence exhibited by metallic Ce at low temperatur e
in the pressure range up to 20 [GPa] (see Fig. 18) . In the calculations w e
shall treat the s, p, d, and the 4f electrons on the same footing, i .e. as
band electrons . Hence, we favour the picture of the y- ci transition sug-
gested by Gustafson et al . (1969) and elaborated by Johansson (1974 )
according to which pressure induces a Mott transition within the 4f shel l
such that the 4f electron goes from a localized state in y-Ce to a de-
localized, i .e . band state, in a-Ce .

According to the Mott-transition picture Ce metal at pressures above
the y- Kx transition is different from the other lanthanides (and indee d
from all the other metals we have considered so far) in that it has a fourt h
conduction electron residing in the 4f band . It is this occupation of the 4 f
band which is expected to be responsible for the stability of the a-U
structure found experimentally above 5 .6 [GPa] (Ellinger and Zacharia-
sen 1974) and perhaps for the tetragonal phase found above 12 .1 [GPa ]
(Endo et al . 1977) . To shed light on this question we shall now present a
series of calculations of structural stabilities for Ce under pressure, and
compare the results with those obtained for La where the 4f band i s
essentially empty .

The orthorombic a-U structure may be viewed as distorted fcc, wher e
some of the face-centered atoms have been moved away from thei r
positions as described by the parameter 2y, see Fig . 19 . If 2y = 0.5a and a
= b = c one has the usual fcc unit cell . In the case of Ce the Madelung
contribution to the structural energy favours a 2y of approximately 0 . 3
(see top panel of Fig . 19) but the one-electron contribution moves th e
minimum in the energy difference to 2y = 0 .21 which is the 2y value
found experimentally in U (Donohue 1975) . Under pressure the mini-
mum is seen to move to slightly lower 2y values and eventually the a- U
structure becomes more stable than the fcc .

From fig. 19 it is expected that Ce will exhibit an fcc-a-U phas e
transition at a pressure which is calculated to be 11 .7 [GPa] . The experi-
mental transition pressure is 5 .6 [GPa] (Ellinger and Zachariasen 1974) ,
and the discrepancy may be attributed to the fact that the atomic sphere
approximation is less suited for open crystal structures such as the a- U
structure. As may be seen in Fig. 19 the Madelung correction, which w e
could neglect for the close-packed crystal structures of the alkaline earth
and transition metals is now of the same order of magnitude as the one -
electron contribution. Hence, inadequacies in the Madelung approxima-
tion of the electrostatic contribution to the structural energy are magni-
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fled and lead to errors in the estimate of the stability of the a-U structure .
A similar problem was recently encountered in the case of the open C s
IV structure in Cs metal (McMahan 1984) .

If we compare the structural energy-differences for Ce and La
(Figs. 17, 19) under pressure we find that while the a-U structure eventu-
ally becomes more stable than fcc in Ce it does not do so in La. Since the
4f band is essentially unoccupied in La, whereas Ce has approximately
one 4f band electron, the notion that f-band states are responsible for th e
stability of distorted crystal structures such as the a-U structure i s
strongly supported by the present calculations . It follows that the a-U
structure would not become stable in Ce under pressure unless the 4f

electrons were delocalized, i .e. band like, and therefore any adequate
description of the a and a' phases in Ce must treat the 4f states on the
same footing as the s, p, and d states . In short, Ce is a 4f band metal .

The high-pressure tetragonal structure (Endo et al . 1977) of Ce may be
regarded as a distorted fcc structure in which the unit cell has bee n
elongated along the c axis such that the c/a ratio in a body-centred
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tetragonal (bct) description is approximately 1 .7, see Fig . 20 . In the same
description bcc and fcc correspond to c/a equal to 1 and U 2 , respective -
ly. According to the structural energy differences in Fig . 20 Ce should a s
a function of pressure start out in the fcc structure and then transfor m
into a bct structure with a c/a ratio which increases with pressure . In this
.case the 4f states do not seem to be responsible for the pressure-induce d
transition, since the same bet structure is also calculated to be the stabl e
high-pressure phase of La, Fig . 17 .

In Fig . 21 we have collected the calculated structural energy difference s
for Ce under pressure . Owing to the less accurate description of ope n
structures discussed above, the a-U structure is seen not to be the stabl e
phase in the pressure range considered, and instead Ce would be expect -
ed to go directly from the fcc into the bet phase . However, if we move
the a-U curve down by 4 .5 [mRy] which is 20% of the Madelung
correction (see Fig . 19) we obtain agreement with experiment (Effinger ,
and Zachariasen 1974, Endo et al . 1977) in the sense that Ce is now ,
expected to exhibit the crystal structure sequence fcc- a-U-*tetragonal .

5.7 . The light actinide s

The calculated structural energy differences for the light actinides Th-Pu

are shown in Fig . 22, from which we deduce the most stable close -
packed structure to be fcc in Th and Pa and bcc in U, Np, and Pu . This
indicates that although these structures are not the stable low-tempera-
ture structures in Pa-Pu, they are at least close in energy to the distorted
structures observed experimentally and may therefore be realized at ele-
vated temperatures . Experimentally one finds the fcc structure to be
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stable in Th up to 1670 [K] (Donohue 1975, Young 1975), and there ar e
indications that Pa has a high temperature fcc phase (Donohue 1975) .
Furthermore, neither U nor Np has a high temperature fcc phase bu t
instead they become bcc before melting . Pu has a high temperature fc c
(b) phase but since this phase becomes unstable at a pressure of only 0 . 1
[GPa] it is most probably associated with a localization of the 5f elec-
trons, and the relevant high temperature phase in the present context i s
then the bcc (c) phase . Thus, experimentally the most stable close-pack-
ed structure appears to be fcc in Th and Pa, and bcc in U, Np, and Pu, in
agreement with the findings in Fig . 22 .

The low-temperature tetragonal structure (a) in Pa may be viewe d
(Zachariasen 1952) as a distorted bcc structure in which the unit cell ha s
been compressed along the c axis such that the c/a ratio is approximatel y
0 .82, see Fig . 23. According to Fig . 23 the Madelung contributio n
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10

	

5

	

0
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differences for Ce calculate d
as a function of pressure P
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equilibrium radius of Ce i n
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tals and the Madelung correc-

tion Eq . (11) .
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favours bct structures with c/a in the range from 0 .95 to 1 .50, whereas
structures with c/a outside this range rapidly become extremely unsta-
ble . In contrast, the one-electron contribution tends to favour c/a outsid e
the central range, and as a result the energy difference curve for Th has
one minimum at c/a = V 2 , corresponding to fcc, in agreement wit h
experiment, while that of Pa exhibits three minima, one of which is clos e
to the c/a observed experimentally in the a phase .

As in the case of the a-U structure in Ce, we are again experiencin g
problems stemming from the atomic sphere approximation and in par-
ticular the Madelung correction, which leads to slightly incorrect esti-
mates of the structural energy differences for open crystal structures .
Thus, in the case of Pa the most stable structure is calculated to be bct
with c/a = 1 .6, which incidentally is the high-pressure phase of Ce ,
whereas the minimum which corresponds to the experimental a struc-
ture lies 1 .3 mRy above the absolute minimum and is shifted to a c/a o f
0.92. However, in view of the rapidly changing Madelung correction i n
the range below c/a = 0 .95, it is not unlikely that a better calculation o f
the electrostatic contribution to the structural energy differences ma y
correct both errors .

Since the 5f band is unoccupied in Th while Pa has approximately one
5f electron it follows from Fig . 23 that the 5f states are responsible for th e
stability of the tetragonal a phase in Pa . Thus, the situation here is ver y

2 0

_ 0

E

a

-2 0

Fig . 22 . Calculated structural energy differen -

ces for the light actinides plotted versus atomi c
number . The calculations included s, p, d, and f

orbitals but not the Madelung correction Eq .
-40
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Fig .23 . Energy of Th and

Pa in the bct structure rela-

tive to the fcc phase calcu-
lated as a function of the c/a

ratio . The upper panel

shows the one-electron con-

tributions, the insert show s

the shape of the Madelung

correction, and the lower

panel shows the total energy

differences .
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similar to that found earlier in Ce where the presence of one 4f electron
stabilized the high pressure a-U structure, and again we take this to
mean that the 5f states in the light actinides are itinerant, i .e . band-like,
and give rise to distorted crystal structures .

6 . Conclusion

We have studied the stability of the crystal structures of some 40 elemen-
tal metals within a one-electron approach . The effective one-electron
equations have been solved self-consistently by means of the LMT O
method and the structural energy differences calculated by means o f
Andersen's force theorem . This approach has the advantage of treating s ,
p, d, and f states on the same footing, thus leading to a conceptually
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consistent description of trends throughout the periodic table . However ,
the present implementation of the method is only accurate for close-
packed crystal structures, and for that reason we exclude in our stud y
open structures such as CsIV and the more exotic structures found in th e
actinide series. On the other hand, this shortcoming is not fundamenta l
and will undoubtedly be remedied in the near future .

We find that the theory correctly predicts the crystal structures ob -
served experimentally at low temperature and atmospheric pressure i n
35 out of the 42 cases studied. In those few instances where the theory
fails we find that the correct crystal structure is only marginally les s
stable than the calculated structure - this is the case for Na, Au, Yb, and
Pa - or the metal is magnetic at low temperature, as in Mn, Fe, and Co.
For the light actinides U, Np, and Pu we have not considered the experi-
mentally most stable crystal structures but only the most stable close-
packed structures and find the predictions of the theory to be in qualita-
tive agreement with the known phase diagrams .

In a comparison between the calculated structural energy difference s
for the 4d transition metals and the enthalpy differences derived from
studies of phase diagrams we find that, although the crystal structures
are correctly predicted by the theory, the theoretical energy difference s
are up to a factor of 5 larger than their »experimental« counterparts . The
reasons for this discrepancy may lie in the local-density approximation
or in the neglect of the non-spherical part of the charge distribution .
Furthermore, the derived enthalpy differences are certainly model de -
pendent and may change as the model is improved .

In addition to the equilibrium properties we have studied the crysta l
structures of the alkali, the alkaline earth and some rare earth metal s
under pressure . We find that the heavy alkalis K, Rb, and Cs should be
part of the crystal structure sequence bcc-'hcp-fcc where the interme-
diate hcp phase may be suppressed at room temperature, and explain th e
experimentally observed bcc-fcc transition in terms of the pressure-
induced descent of a zone-boundary energy gap which exists in the fc c
band structure but has no counterpart in the bcc case . For the alkalin e
earth and rare earth metals we find crystal structure sequences which
correlate with the calculated d-occupation numbers and which are i n
agreement with experimental high-pressure observations if we neglec t
some complex structures found in Ca and Sr .

Finally, we have studied the high-pressure crystal structure sequenc e
fcc->a-U--stet for La and Ce and find that under compression the a-U
structure becomes more stable than fcc in Ce, but not in La . This indi-
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cates that the presence of itinerant 4f states is responsible for the fcc-aa- U
transition observed experimentally in Ce . In both La and Ce the calcula-
tions predict a tetragonal high-pressure phase . This phase is seen experi-
mentally in Ce but not in La where one instead observes a distorted fc c
structure not considered in the present work .

In conclusion, we have studied the stability of crystal structures o f
metals both at equilibrium and at high pressures by a one-electron ap-
proach. We find that we can account for the occurence of most of the
close-packed structures observed experimentally . In the few cases wher e
the theory is in disagreement with experiment we find that the correc t
crystal structure is only marginally less stable than the predicted struc-
ture . In order to describe open structures, such as a-U or CsIV, with the
same accuracy as the close-packed structures one needs a more accurat e
approximation for the electrostatic contribution to the total energy .
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CLAUS S . JACOBSE N

Infrared Studies on the Electroni c
Structure of Organic Conductors

ABSTRACT . It is experimentally shown that a simple Drude analysis of the reflectance edge in
organic conductors yields reliable values for electronic transfer integrals . The integrated infrare d
oscillator strength is found to be smaller than expected from band theory . The reduction is interpret-
ed as being an effect of the short range electron-electron interaction and is used to compare th e
strength of this interaction among different materials . It is concluded that highly correlated system s
may be semiconductors due to electron-phonon driven instabilities, or, if the interstack coupling i s
sufficient, may remain good metals to low temperatures . The role of the electron-molecular vibra-
tion coupling is stressed, both as contributing to instabilities, and as a microscopic probe .

Physics Laboratory 3, Technical University of Denmark ,
DK-2800 Lyngby, Denmark .

Introduction

An ordinary metal, like copper, is characterized by two basic features : (1 )
A high concentration of valence electrons, which are in principle free t o
move through the metal, and (2) a strong overlap of the valence electro n
orbitals (wavefunctions) on neighbour atoms, which effectively make s
the electrons delocalize in the metal . The only force capable of inhibitin g
the free motion of the electrons is the direct Coulomb repulsion betwee n
the negatively charged particles . If strong enough, such a repulsio n
would localize the electrons, one on each atom (Mott, 1949) . Although
the arguments are quite complicated, it is now well understood, how th e
electronic system itself almost completely screens out the Coulomb re -
pulsion. The effectiveness of the screening is due to the same two fea-
tures listed above: A high carrier density and a good neighbour contact .
As a consequence ordinary metals have high electrical conductivities
(e .g. copper at room temperature with o = 6x105 Scm-1 ) .

Furthermore, the conductivity increases when the metal is cooled ,
since the scattering rate for the electrons decreases as the thermall y
induced vibrations of the atoms get smaller in amplitude . Some metals
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even become superconducting at very low temperatures (a few Kelvin) ,
that is, their electrical resistivity vanishes completely .

Such behaviour is contrasted by semiconductors like silicon, wher e
the charge carriers are thermally excited from a state which is insulatin g
at low temperatures . All electrons take part in the localized crystal bind-
ing . Thus typically, the conductivity of semiconductors increases wit h
temperature .

In a recently very active, interdisciplinary field of the materials sci-
ences, chemists and physicists have attempted to mimic metallic, electri-
cal properties in organic compounds . The long term perspective is to
make it possible employing the great flexibility of organic chemistry t o
design, synthesize, and manufacture materials with specific, desirable
properties .

Presently, there are two approaches to the synthetic metal problem . A
considerable amount of effort goes into attempts of doping to high levels
polymeric semiconductors like polyacetylene, (CH) X (for a review see ,
for example, Baeriswyl et al . (1982)) . Although promising for applica-
tions, such materials are not truly metallic, since their carrier concentra-
tions are fairly low .

The other approach has lead to the large class of materials, normall y
called organic conductors (see, for example, Jerome and Schulz (1982) ,
and references therein) . Here the work has been directly aimed at incor-
porating the two basic features of a metal into crystals of organi c
molecules . The high concentration of charge carriers is obtained by
bringing together at least two species of molecules, one which is willin g
to accept an extra, unpaired electron (acceptor molecule), and another
which readily gives up an electron (donor molecule) . Thus in the crystal ,
charge is transferred from donors to acceptors . The second feature, goo d
contact between neighbour building blocks, i .e. the molecules, i s
achieved by using near planar,-bound organic molecules, which ten d
to form stacks with a fair inside overlap . It follows that the contact
between stacks must be rather weak, hence the materials are electrically
highly anisotropic . In some contexts, they may even be designated one -
dimensional (ID) .

Thus to shortly characterize organic conductors, they are syntheti c
materials, which by elementary solid state physics are expected to b e
metals in electrical sense . However, they are highly anisotropic, have
carrier densities one or two orders of magnitude below those of ordinary
metals, and even along the molecular stacks, the neighbour contact is a t
least ten times weaker than in, for example, copper . The latter features
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arise from the use of rather big building blocks, which do not pack a s
effectively as compact metal atoms .

Therefore, it is not surprising that organic conductors so far have been
found to be inferior to the elements with respect to metallic quality . The
first organic conductors were in fact semiconducting . These early studie s
date back to the 1950s and -60s (see Gutmann and Lyons, 1967) . In 1973
the first material with genuine metallic properties was synthesized (Fer-
raris et al ., 1973) . TTF-TCNQ has a room temperature conductivity o f
order 600 Scm-I, and a strongly increasing cr(T) down to 60K. However ,
below 60K a metal-insulator transition destroys the conductivity . In the
following years many derivatives of TTF-TCNQ were studied, and in
1980 Jerome et al . reported superconductivity in the material
TMTSF2PF6 (below 1K and only under a pressure of -10 kbar) . The
present state of art involves several ambient pressure superconductor s
(working up to 2 .5K), as well as materials with a wide range of interest-
ing magnetic and non-magnetic ground states . Many of the metal-in-
sulator and magnetic phase transitions may be related to the low-dimen-
sionality of the materials . Thus while applications are still somewhat in
the future, the materials constitute extremely interesting model system s
for solid state physics .

It is the aim of the present study to use infrared (IR) spectroscopy in
characterizing the basic interactions in organic conductors . We shall dis-
cuss how the IR properties give direct information on the intra- as wel l
as interstack contacts, on the interplay between electron-electron an d
electron-vibration interactions, and to some extent on the detailed natur e
of the phase transitions occuring in these materials . It is a central result o f
the study, that the short range electron-electron interaction plays a rol e
far more important than in ordinary metals . It indeed appears that th e
probability for finding two conduction electrons on the same molecule i s
quite small in several materials . The electrons then more or less behav e
as spinless fermions in transport and optical properties .

Although essential for a microscopic understanding of the electroni c
structure, the electron-electron interaction needs not destroy the metalli c
state . Even the organic superconductors appear to have a sizeable elec-
tron-electron Coulomb interaction, but a large interchain overlap re-
duces its impact on the physical properties .



254

	

CLAUS S . JACOBSEN

Materials and methods

All the materials investigated in this study belong to the group of poten-
tial metals, which are characterized by partially filled one-electron bands
and no strong static disorder . The constituent organic molecules ar e
shown in Fig . 1, and their systematic names are listed in Table I .

We will deal with two groups of compounds . (1) The doublestack
conductors, like TTF-TCNQ, have uniform stacks, and donor as well a s
acceptor chains have unpaired electrons . The crystal structure is sketched
in Fig. 2(a) . A key parameter for these materials is the degree of charg e
transfer, Q, equal to the average number of carriers per molecule . Q is
determined by a complicated energy balance (Torrance, 1979), and i s
best found indirectly by diffuse X-ray scattering, which detects weak
superstructures related to the Fermi wavevector . (2) The singlestack
conductors, dealt with here, are complex salts, where the stoichiometr y
is such that there is one closed shell ion for a pair of organic molecules .
The counterion may be organic or inorganic, but Q for the conductin g

Table I . Organic molecules . D = donor . A = accepto r

Abbr .

	

Type Systematic nam e

TTF D A 2'2' -bi -1,3-dithiolyliden e

TMTTF D A 2 ' 2' -bi -4,5-dimethyl-l,3-dithiolyliden e

DBTTF D A2 ' 2' -bibenzo-l,3-dithiolylidene

HMTTF D A2, 2' -bicyclopenteno-1,3 -dithiolyliden e

TSF D A 2 ' 2' -bi-1,3-diselenolyliden e

TMTSF D A 2,2' -bi-4,5-dimethyl -l,3-diselenolyliden e

DBTSF D A 2 ' 2' -bibenzo-1,3-diselenolyliden e

HMTSF D A 2,2 '-bicyclopenteno-1,3-diselenolylidene

BEDT-TTF (ET) D A 2' 2'-bi-5,6-dihydro-l,4-dithiino-l,3-dithiolyliden e

MEM + D a N-ethyl-N-methyl-morpholiniu m

TCNQ A 7 , 7,8,8 -tetracyano-p-quinodimethane

DMTCNQ A 2, 5 -dimethyl-7, 7, 8, 8 -tetracyano-p-quinodimethane

TCNQC1 2 A 2, 5-dichloro -7, 7, 8, 8- tetracyano -p-quinodimethane

TCNQF4 A 2,3,5,6- tetrafluoro-7,7,8,8- tetracyano -quinodimethane

TNAP A 11,11,12,12- tetracyanonaphto -2, 6-quinodimethane

a closed shell ion
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Fig .1 . Donor and acceptor
molecules (cfr . Table I) .
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stack is always 0 .5 . Due to the stoichiometry alone the stacks show some
dimerisation. A typical structure is sketched in Fig . 2(b) .

Table II lists the relevant materials with basic physical properties, an d
gives references to more detailed information .

The organic conductors are usually available as small, 2-4 mm lon g
needles with cross-sectional dimensions of a few tenths of a mm . The
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D

	

A

P

(a) (b )

Fig . 2 . Schematic crystal structures . (a) Double-stack conductor . is the degree of charge transfer .
(b) Single-stack conductor with inactive counterions .

faces tend to be of high optical quality, and since the crystals are opaqu e
in the entire range, studies of the IR properties are best conducted a s
specular, polarized, near-normal incidence reflectance measurements .
Details on experimental equipment and procedures are described b y
Jacobsen et al . (1983) .

A frequency range as broad as possible is covered . Then the Kramers -
Kronig relations, valid for linear, causal and local response function s
may be employed to extract information on the complex dielectric func-
tion, É(w) . From the power reflectance, R(w), it is possible to calculate th e
phase shift on reflection, 0(w) :

Ø(w) = w
P

f
co

1nR(w')
dw'~ J o wZ-w'2

and then

1 +VR(w)e'"
E (w) = ( 1 - VR(co) e'e ~ w"
	 )2 .

(1 )

(2)
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Table II . Characteristics of some organic conductors. The third column
gives high/low temperature characte r
(M = metal, S = semiconductor, SM = semimetal, SC = superconduc-
tor, I = insulator) .

Material

	

o d,(300K)

	

Cha-

	

Structur e
S cm-1

	

ratter

TTF-TCNQ 60 0

Cohen et al . (1974)

M/S 0 .5 5

Kagoshima et al .

monoclini c

Kistenmacher et al .

(1976) (1974)
TSF-TCNQ 80 0

Etemad et al . (1975)

M/S 0 .63

Weyl et al . (1976)

monoclini c

Etemad et al . (1975)
TMTSF-TCNQ 1000 M/S 0 .57

Pouget (1981)

triclinic

Bechgaard et al . (1977)Jacobsen et al . (1978)

TMTTFF 120 M/S triclinic
-DMTCNQ Jacobsen et al . (1978) Jacobsen et al . (1978 )

TMTSF 500 M/S 0 .50 triclinic

-DMTCNQ Jacobsen et al . (1978) Pouget (1981) Andersen et al. (1978 )

HMTTF-TCNQ 400 M/S 0 .7 2

Megtert et al . (1978)

orthorhombi c

Greene et al . (1976)Greene et al . (1976)

HMTSF-TCNQ 2000

	

M /SM 0.74 orthorhombi c

Phillips et al. (1976 )Bloch et al . (1975) Weyl et al . (1976 )
DBTTF 40 S/I 0 .56 triclini c

-TCNQC1 2 Jacobsen et al . (1980) Mortensen et al . Soling et al . (1981a )

(1983 )

HMTSF-TNAP 240 0

Bechgaard et al . (1978)

M/SM 0 .58 triclini c

Kistenmacher (1978 )Pouget (1984 )

DBTSF 0 .0001 S/I

	

1 .0 monoclinic

-TCNQF4 Bryden et al. (1984) Bryden et al . (1984) Bryden et al . (1984)

MEM-TCNQ2 0 .00 1

Huizinga et al . (1979)

S/I

	

0 .5 triclini c

Bosch and v .Bodego m

(1977 )
TMTSF2PF6 , 500 M/S

	

0 .5 triclini c

-AsF 6 ,-SbF 6 Bechgaard et al . (1980) Thorup et al . (1981 )

Soling et al . (1981b)
TMTSF2C1O4 70 0

Bechgaard et al . (1981a)

M/SC 0 .5 triclinic

Bechgaard et al . (1981b)
TMTTF 2 Br 26 0

Delhaes et al . (1979)

M/I

	

0 .5 triclinic

Liautard et al . (1982 )
TMTTF 2PF 6 20

Delhaes et al . (1979)

0 .5 triclinic

Liautard et al . (1982 )
(BEDT-TTF) 2I3 30

Yagubskii et al . (1984)

M/SC 0 .5 triclinic

Kaminskii et al . (1984)
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P denotes principal value . Clearly in Eq . (1) suitable extrapolations fo r
the ranges not covered must be adopted (see, for example, Woote n
(1972)) . However, if the measured range is sufficiently wide, E(w) is no t
very dependent on the particular choice of extrapolations .

For conducting substances, the imaginary part of E(w) diverges as w

0+ . Hence it is more convenient to introduce the real dielectric function ,
£(w), and the frequency dependent conductivity, a(w), related to t(w) by

E(w) = E(w) + ia(w)/sow .

	

(3 )

It is noted that the area under the o(w) curve in a natural way correspond s
to the optical oscillator strength . For example, integrating over all fre-
quencies yields the sum rule (Wooten, 1972) ,

~o a(w)dw = (n/2)Ne2 /m,

	

(4)

where N is the total electron density and ni is the electron mass . As
demonstrated later, similar sum rules may with some care be applied t o
limited frequency ranges and particular groups of electrons .

Basic interactions and instabilitie s

This section introduces important physical parameters and models ,
which will be referred to later . Theoretical expectations to the IR proper-
ties associated with the models are discussed . Finally, we review shortl y
the different types of low-dimensional instabilities .

One-electron mode l

The simplest model for the molecular chain compounds assumes non -
interacting electrons, which can move only in the chain direction :

H

	

Eoni,Q -

	

t(c oc i+1,Q + c+i,ac i,Q)•

	

( 5 )
1, Q

	

1, 0

c±Q creates an electron of spin projection o on site i, and ni Q = c+ Q ci,Q is the
occupation number . E0 is the solid state ionization potential, and t is th e
transfer integral associated with the finite overlap between near neigh -
bour orbitals . More distant overlaps may be safely ignored in molecula r
crystals. This tight-binding approximation leads to a cosine energ y
band :

sk = Eo - 2tcoskd,

	

(6)
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Fig . 3 . Optical properties of the Drude model .
Notice the logarithmic reflectance scale . Para -
meters : Ec = 3.0, o , = 10000 cm -1 , y ot =

1000 cm-r .

where d is the molecular repeat distance . With Q electrons per site, th e
band is filled to ±kF = ±JTQ/2d (assuming t > 0) . Thus the Fermi surface
consists of the two parallel planes k = ±k F . The density of states at th e
Fermi level is N(EF) = (Jttsin(nQ/2)) -1 .

The IR properties associated with Eq . (5) may be derived in the self-
consistent field approximation (see, for example, Wooten (1972)) . As-
suming a frequency independent relaxation rate, yopt , and a background
dielectric constant arising from virtual high frequency transitions, cc, th e
result is of the Drude form ,

E(w) = £, - UJp/w(w + iyopt),

	

(7)

where the plasma frequency, cop , may be calculated fro m

~p = (e2/toh)
BzB

f(£k)a 2£k/ak 2 .

	

(8)

f(Ek) is the Fermi-Dirac occupation number, and the derivative a 2 Ek/ak2
is to be taken along the direction of the electric field .

In the present quasi-1D model, Eq . (8) yield s

t1Jp = 4td2e22 sin(nQ/2)/3Teoh2Vm ,

	

(9)

where V,,, is the crystal volume per molecule . This expression is derive d
for T = O. The explicit temperature dependence may be ignored whe n
kBT « EF , a condition which is normally fulfilled . In Fig. 3 the IR
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properties of the Drude model are shown for typical values of the para -
meters .

Especially noteworthy is the characteristic drop in reflectance in th e
near IR, which arises from the zero-crossing of E(w) . This is also the
frequency of the plasmons, i .e . long wavelength oscillations in the con-
duction electron charge density . Since the plasmons are longitudinal
excitations, they are not optically excitable in a normal incidence experi-
ment, but the sharp drop in reflectance, the plasma edge, is a signature o f
their existence .

Another point is that the area below the o(w) curve is related to w p by a
partial sum rul e

f 6(w)dw = (rr/2)E ow4 .

	

(10 )
intraband

Interchain hopping may easily be incorporated into the model . If, for
simplicity, we consider an orthorhombic, 2D model with transfer integ-
rals t „ and t1 , the band dispersion is given by :

Ek = Eo - 2t„ cos(k„d „) - 2tlcos(kldl ) .

	

(11 )

Here dl is the chain spacing. A small ti « t„ will introduce a warping
of the Fermi surface . For considerable interchain coupling, t i - t ,, , the
Fermi surface will be closed, cylindrical .

From Eqs . (8) and (11) a tensorial E may be calculated . By symmetry
the principal axes are the chosen directions, along which Drude be-
haviour is found with plasma frequencies that in the general case must b e
calculated numerically . As an example to be used later we show in Fig . 4
the normalized plasma frequencies for a quarter-filled band . The cross-
over from open to closed Fermi surface is indicated .

Electron phonon coupling

In molecular crystals there are many possible sources to the electron -
phonon coupling. Usually, the most important are considered to be : (1)
Modulation of t by external modes (acoustic translational and rotationa l
modes), and (2) modulation of E 0 by internal modes (molecular vibra-
tions) . A good discussion, including estimates for TTF-TCNQ, ha s
been given by Conwell (1980) . The second source to the electron-pho-
non interaction is of central interest to analysis of IR spectra, since the
molecular vibration frequencies span the IR range (100-3000 cm -1 ) .

The origin of the electron-molecular vibration (emv) coupling is easil y
understood . The conduction electron orbital energy is in general a func-
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Fig .4 . Anisotropic plasma behaviour in 2 D

orthorhombic and quarter filled tight-binding
model . The dashed line indicates the cross-over
from open (left) to closed (right) Fermi surface .
The bottom graphs show normalized plasma

frequencies .

tion of the exact atomic configuration in the molecule . Hence the
molecular vibrations will modulate the one-electron energies, giving ris e
to the emv coupling . For a non-degenerate level only the totally sym -
metric Ag-modes couple linearly to the electrons (Duke et al ., 1975) . The
Ag-modes are Raman active, but IR inactive . However, when charge can
move to and from the molecule as in the solid state or in molecula r
complexes in solution, the modes may, through the emv coupling, bor-
row oscillator strength from the conduction electrons and give rise to
spectacular effects in the IR (see, for example, Bozio and Pecile (1980 )
and references therein) . If the electronic structure is sufficiently simple ,
information on coupling constants may be extracted from the spectra .
One example is the material MEM-TCNQ, at 300K, where the TCN Q
molecules are organized in stacks as quasi-isolated dimers, with on e
electron per dimer . In Fig . 5 is shown the IR spectra . Note the stron g
features in the chain axis spectrum, which has been used to obtain th e
emv coupling constants for TCNQ (Rice et al ., 1980) . The couplin g
constants may also be calculated theoretically and reliable values are no w
known for several molecules .
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Fig . 5 . Polarized reflectance of MEM-
TCNQ2 at 300K. Notice the logarithmi c
scales . (Rice et al ., 1980) .

.1 0

.03

MEM-TCNQ 2
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	 E'l stack s
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1 0

Frequency (10 3 cm- 1 )

In the organic conductor with uniform stacks, the emv coupling
should not have direct resonant effects on the optical spectra . Resonanc-
es/antiresonances are only activated if the symmetry is broken, either b y
structural distortion or by the presence of charge-density waves (CDWs )
in the system .

Assuming unbroken symmetry, the question arises how electron-pho-
non interactions influence the IR behaviour . The main deviations fro m
the Drude spectrum are found in the pure metal at low temperature ,
where the electron-phonon coupling does not contribute to the dc-resis-
tivity. Then the dc-relaxation rate, ydc , is determined by residual im-
purities and defects, and a near 8-function contribution to o(w) is ob-
tained. As w is increased and reaches frequencies of current-degrading
phonons, photon absorption assisted by phonon emission becomes pos-
sible and a threshold in o(w) is anticipated (Holstein (1954, 1964) ; see also
Allen (1971)) . At frequencies well above all important phonon frequen-
cies, the relaxation rate yopt - TtX tr<wph>, where Xtr is an appropriat e
dimensionless electron-phonon coupling constant and <w ph> is an aver -
age phonon frequency. In terms of oscillator strength, a fraction
^'Xtr/( l +k tr) of the low frequency Drude contribution appears as IR ab-
sorption with a high frequency Drude tail determined by phonon emis-
sion processes . However, the sum rule, Eq . (10), is still expected to b e
obeyed .

At high temperatures kBT » h<wph>, and both phonon absorption

o

øU
m
0
~ .01
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and emission contributes to y so yds = yopt and a single Drude absorption
is found. We note that in the molecular metals the high temperature limi t
is never reached with respect to the majority of the vibrational modes :
Thus Holstein thresholds may be encountered, even at room tempera -
ture .

Electron-electron interactions

The electron-electron Coulomb interaction is more difficult to deal with .
It is commonly assumed that it can be treated as in ordinary metals . Thu s
the long range interaction part is frozen in the zero point motion of th e
plasmons, while the short range part gives rise to quasiparticles with
screened interactions (see, for example, Pines (1964)) . The screening
efficiency was recently discussed by Mazumdar and Bloch (1983) . Their
conclusions may be described as follows : Only on-site and nearest neigh -
bour interactions need to be considered . Thus the proper model Hamil-
tonian is of the extended Hubbard type (Hubbard, 1978) :

H =

	

Eoni a -

	

t(ci aci+1,a + C i+1,a Ci,a)1,6

	

1, 6

+ UniTni
+ißQ

Vni,,ni+1,å .

	

(12 )

U is the extra electrostatic energy associated with two carriers on the
same site, and V is the corresponding energy for two carriers on neigh -
bour sites . Both U and V are to be considered effective, screened values ,
which depend strongly on band filling (ç) . For g = 0.5 and 1 .0 the
screening is found to be inefficient (U > 4t) . In the intermediate range ,
screening may be quite efficient (U « 4t), mostly so for Q = 0 .7-0 .8 . g
= 1 (half-filled band) constitutes a special case, since for any finite U ,
there is a gap in the excitation spectrum (Lieb and Wu, 1968) . Thus the
1D half-filled band is an insulator of the Mott type . For g < 1 there is n o
clear evidence for a gap in the energy spectrum of Eq . (12) .

We now turn to the IR properties of a system described by the Hub-
bard model. First we note the existence of a modified partial sum rule fo r
the intraband absorption (Maldague, 1977) :

f 6(w)dw = - (ne2d2 /2so ) (FL )
intraband

(Ht) is the ground state expectation value of the transfer terms o f
H. Since H t determines the ground state in the absence of correlatio n
effects, it is evident that finite correlation reduces the oscillator strength
below that of Eq . (10) .

(13)
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The next issue is the distribution of oscillator strength . Again P = 1 is a
special case . Even in the weak coupling limit, U « 4t, optical absorp-
tion may occur via Umklapp electron-electron scattering . In the strong
coupling limit, U » 4t (V=0) Lyo and Gallinar (1977) find a symmet-
ric absorption extending from U-4t to U+4t. The oscillator strength i s
proportional to t2/U. A finite nearest neighbour interaction induces an
asymmetry in the absorption (Lyo, 1978) . Then there is a strong onset o f
absorption at U-4t and a tail extending to U+4t . Physically the absorp-
tion band corresponds to charge transfer transitions into states with
doubly occupied sites .

For Q < 1, the main question is whether the dominant part of th e
oscillator strength goes into charge transfer bands of the correlation typ e
(11w U,V) or whether it appears in a low frequency Drude-like absorp-
tion . The answer again depends on the band-filling . However, there i s
strong evidence from various approximative calculations (Maldague ,
1977) and finite chain calculations that for 0 .5 < < 0.6 less than 10% of
the oscillator strength appears in correlation bands .

Finally, it is of some interest to describe a specific limit of Eq . (12) : V
= 0 and U -~ (double occupancy of sites excluded) . In this case the
translational and the spin degrees of freedom are decoupled (Sokoloff ,
1970) . The spin susceptibility is Curie-like and the electrons behav e
otherwise as a system of non-interacting spinless fermions described by
the usual tight-binding model of Eq. (5,6) . Because of the spinlessness
the density of states is halved and the band is now filled to k =
The optical properties are Drude-like, as described above, and the rela -
tive reduction of oscillator strength is obtained from Eq . (9) :f o(w)dcoi f o(w)dw = cos(nQ/2) .

	

(14 )
U-> ..

	

U= 0

It is noted that with respect to oscillator strength, the dense electro n
system is more sensitive to the high U limit than the less dense system .

Low-dimensional instabilities

The linear chain structure of the molecular conductors has importan t
consequencies for the occurrence and behaviour of instabilities . As dis-
cussed below the quasi-one-dimensionality leads to phase transitions not
known in isotropic systems . At the same time thermodynamic fluctua-
tions tend to suppress the phase transition temperatures . It is well -
known that long range order cannot persist in a 1D system for T > 0 .
Thus usually short range order develops below some scale temperature,
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Fig . 6 . Effect of 2kF-distortion on cosine band and density of states .

TMF . As temperature is lowered, the on-chain correlation length grows
and since the real systems consist of arrays of chains any finite interchai n
coupling will eventually induce long range 3D order at a temperature ,
Tc, which defines a three-dimensional phase transition. In the range Tc
< T < TMF , the fluctuations may have important impact on the physica l
properties .

The most famous of the 1D instabilities is that of the linear chain
metal . We shall here repeat the argument by Peierls (1955) with referenc e
to Fig . 6 . The figure shows the band structure and density of states o f
Eq. (6) with the inclusion of a weak 2k F-potential which spans the Ferm i
sea . The crucial point is that this potential opens a gap at the Fermi level ,
EF, and thus lowers the energies of those electrons closest to EF . Due to
the 1D divergent density of states near a gap this energy gain will alway s
outweigh the cost of creating the 2kF-potential . The latter arises from a
CDW/periodic lattice distortion mediated by the electron-phonon
coupling . For a half-filled band a detailed calculation gives the followin g
zero temperature gap (Rice and Strässler, 1973) :

Eg = 2A = 2e F/sinh(1/?-ln2) = 8E Fexp(-1/X) .

	

(15 )

The last expression applies for X « 1 . The dimensionless electron -
phonon coupling constant, X, is related to the bare coupling constant, g ,
the density of states in the metallic state, N(EF ), and the unperturbed
phonon frequency, co 2kF, by

g 2N(EF)/hw2kF . (16)
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The temperature dependence of the gap is BCS-like (Bardeen et al . ,
1957). Thus the mean field scale temperature, where the gap vanishes i s
given by

kBTMF = 2A/3.52 .

	

(17 )

The actual phase transition temperature, Tc, may be fluctuation suppres-
sed below TMF .

There are two kinds of elementary excitations associated with th e
Peierls state : (1) Electron-hole excitations across the gap and (2) phas e
and amplitude oscillations of the 2kF-CDW. The phase oscillations have
a dipole moment and are thus IR active . Fröhlich (1954) noted that in
situations where the energy of the CDW is independent of the phase, th e
CDW is free to move through the crystal and carry current in a way
reminiscent of superconductivity . In real systems this may happen in
incommensurate cases (where ? 2kF does not match the lattice) for T Tc,
where, however, a finite correlation length will limit the conductivity .
For T < TT the CDW is pinned and appears as a far IR absorption .

Rice and coworkers (Rice et al . (1975), Rice (1978)) have emphasize d
the role of simultaneous involvement of many phonons . They find that
for the molecular conductors, it is to be expected that much of the Peierl s
gap is due to the sizeable number of intramolecular modes coupled to th e
electrons, while the dynamic properties, e .g . effective mass, of the CD W
is dominated by the low frequency external modes . The CDW is a
complicated superposition of contributions from each mode . In the in-
frared spectrum phase oscillations may be identified in the vicinity of
each unperturbed mode frequency (Rice et al ., 1977) . This is a goo d
example of IR-activation of the Ag-modes .

A number of other instabilities have close analogies to the Peierl s
instability. The Overhauser instability (Overhauser, 1960) may occu r
when the electron-phonon interaction is comparatively weak and a finit e
short range electron-electron interaction is present . Then a 2kF spin-
density wave will act on the electrons as an effective 2kF-potentia l
through the modulation of the exchange interaction (Slater, 1951) . The
energetics are then similar to what is described above, but the effectiv e
coupling constant rather is N(EF)U, U being an appropriate Coulomb
interaction .

Another important modification of the Peierls instability happens i n
the limit of strong electron-electron interaction, where we may let U -
00 . As stated above, the translational degrees of freedom are described i n
terms of non-interacting spinless fermions in a tight-binding band filled
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to ±2kF. The fermion-phonon interaction is of the same form as that
entering the theory for the Peierls instability, thus a 4k F-CDW Peierl s
type of instability may occur (Bernasconi et al ., 1975) . The behaviour i s
completely analogous if the differences in wavenumber, in band-filling ,
and in dimensionless coupling constant are taken into account .

If the electrons are locked into such a 4k F-CDW or are localized by
direct Coulomb interaction (Mott insulator) the magnetic subsystem is
susceptible to yet another 2kF-instability, the spin-Peierls instability
(Chesnut, 1966), which is a magnetic analogue. In this case the coupling
between the antiferromagnetic exchange integral, J, and the phonon s
induces a 2k F modulation of J, which quenches the magnetic suscepti-
bility .

After this short discussion we stress that for the instabilities to occur ,
the 1D nature is crucial . The Peierls type instability depends on the
ability of a single wavevector to nest the entire Fermi surface . The nest -
ing efficiency will in general deteriorate as interchain coupling increase s
(see, for example, Horovitz et al . (1975)), but even 3D materials may
undergo density wave formation if segments of the Fermi surface allo w
nesting .

As a last remark it is noted that also superconductivity may occur i n
1D systems. However, it is not clear at present how one may distinguis h
between a quasi-1D superconductor and a highly anisotropic 3D super-
conductor .

Plasma edges and band structure

Measurements of the polarized reflectance in the vicinity of the plasm a
edge have frequently been used to obtain estimates for the transfer integ-
rals . The method consists of fitting a reflectance model based on the
Drude expression of Eq. (7) to the data in a limited range and then use
Eq. (8) in conjunction with information on carrier density and crystal-
lographic data to derive values for t . Such an approach has often bee n
criticized (see, for example, Williams and Bloch (1974)) because th e
molecular conductors show strong deviations from Drude behaviour a t
lower frequencies (cfr . next section) . The aim of the present section is to
use experimental data in arguing for the validity of the Drude analysis .
The underlying idea is that the plasma edge is a signature for existence o f
plasmons . Since these are long wavelength oscillations in the charg e
density their frequency is intuitively expected to be insensitive to the
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Fig . 7 . Polarized reflectance of TMTSF-
DMTCNQ at 300K. Notice the logarithmi c
reflectance scale . The solid line is a fit of th e
Drude model to the chain axis spectrum . An
extra oscillator has been added to the model to
account for the absorption band near 10000
cm 1 .
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details in the short range interactions, which give rise to the non-Drud e
features observed in the infrared . Thus the Drude expression should be
viewed as a convenient mathematical tool in estimating the plasmo n
frequency, Q p , and the background dielectric constant, e, . Then the
transfer integral is calculated from the unscreened plasma frequency, w p

= QV' .
During the argumentation we shall further attempt a decompositio n

of average transfer integrals in double-stack conductors and show exam-
ples of materials with 2D character .

Chain axis

As a typical example we present in Fig . 7 the polarized room temperature
reflectance of TMTSF-DMTCNQ with a model fit to the chain axi s
spectrum. The most striking feature is the well-developed plasma edg e
observed along the stacks . Virtually no dispersion is seen in the other
directions . The infrared spectra are indeed a remarkable manifestation o f
the linear chain structure .

The plasma edge is quite sharp with a drop in reflectance of more tha n
two orders of magnitude . This hints to the existence of rather well -
defined plasmons, i .e . e l = 0 and E2 « 1 are simultaneously obeyed .
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Plasmons have so far been observed directly in TTF-TCNQ only (Rits-
ko et al ., 1975) . In that case the plasmon frequency is in complete agree -
ment with the optical properties (Tanner et al ., 1976) .

The solid line is a fit of a model based on the Drude expression, Eq .
(7), with an extra oscillator added . The latter takes into account th e
absorption band near 10000 cm -1, which is observed in all TCNQ base d
materials and which is presumably intramolecular in origin (Tanaka e t
al ., 1978) .

A close inspection of the quality of the fit reveals a systematic devia-
tion from the Drude model in the edge region . The data points fall belo w
the model both at low frequencies (entering the IR) and near the
minimum. The model could be improved by allowing the relaxatio n
rate, yopt , to decrease slowly with frequency in the near infrared range .
This observation, which is made in many of the organic conductors lead s
us to shortly discuss the origin of optical absorption in the near IR .
Usually the absorption is attributed to phonon assisted electron-hol e
excitations within the one-electron tight-binding band . However, the
bandwidth, 4t, is found to be of order 0 .7-1 .0 eV corresponding to
frequencies of 6000-8000 cm -1 . But as the frequency exceeds the band -
width many phonon assisted processes become impossible by energy
conservation. For ho) > 4t only processes involving emission of hig h
energy phonons are conceivable . Thus such absorption mechanisms in a
natural way account for the observed frequency dependence of yopt . This
discussion viewed together with the remarks made on the Holstein
mechanism previously, strongly suggests that the near IR relaxation rat e
has little to do with the low frequency scattering, which governs th e
static conductivity . Indeed, the temperature dependence of yopt is much
weaker than that of the dc-conductivity in most cases (see, for example,
Bright et al . (1974)) .

In Table III is presented the results of Drude analysis and transfer
integral calculation for a number of materials, in all cases for the stackin g
direction, using Eq . (9) . For the double-stack conductors the value given
is the average of donor and acceptor bandwidths . For the single-stack
conductors the slight dimerisation is neglected .

Since the table contains some results for single- and double-stack con-
ductors with the same molecule, it should be possible to decompose the
bandwidth of the double-stack conductors into donor and acceptor con-
tributions adopting certain assumptions. For this purpose interplanar
distances (ipd) for the molecules in the stacks have been included. Our
principal assumptions are, (1) that the bandwidth depends only on the
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Table III . Chain axis Drude parameters and bandwidths .
Also given are cation and anion interplanar distances .

Material T e, wP 4t cation ipd anion ipd
K cm-l cm-l eV Å Å

TTF-TCNQ 300 3 .27 1430 11400 0 .61 3 .48 3 .1 7

TSF-TCNQ a 300 12200 0 .69 3 .52 3 .2 1

TMTSF-TCNQ a 300 12000 0 .89 3 .59 3 .2 6

TMTTF-DMTCNQ a' b 300 - - 10700 0 .77 -

TMTSF-DMTCNQ 300 2 .91 1180 11200 0 .88 3 .64 3 .3 1

HMTTF-TCNQ 300 3 .15 1260 12400 0 .78 3 .57 3 .2 3

HMTSF-TCNQ 300 3 .30 1030 14200 1 .03 3 .6 3 . 2

DBTTF-TCNQC12 300 2 .51 2000 7500 0 .41 3 .51 3 .41

HMTSF-TNAP 300 2 .95 1100 11300 0 .84 3 .58 3 .28

TMTTF2 PF 6 300 2 .50 1380 8900 0 .80 3 .5 8

TMTSF 2 AsF 6 300 2 .56 1230 9900 1 .00 3 .6 3

30 2 .55 1160 10500 1 .11

a estimate from edge shift
b e is assumed equal to 0 .5 (as in the isostructural TMTSF-DMTCNQ )

molecular species and ipd, and (2) that t increases -5% for a decrease in
ipd of 1% . The first assumption is based on the quasi-1D nature of th e
materials and on the very similar overlap patterns observed for the sam e
molecule in different materials (see references of Table II) . The secon d
assumption is based on molecular orbital calculations (Herman, 1977 )
and on the change in t observed on cooling to low temperatures . This
change usually amounts to +10% (Table III), while the stack-contraction
is about 2% (Schultz et al ., 1976) .

The resulting decomposition is given in Table IV. There is a rathe r
large spread in bandwidths from 0 .4 to 1 .3 eV. Substituting Se for S in
TTF-based molecules always results in increases in t as expected fro m
the increased overlap . It is noteworthy that methylation of TTF-based
molecules leads to strong increases in bandwidths (Jacobsen et al ., 1983) .
Although we cannot go into a detailed discussion of the results in contex t
of other physical properties the general trends are clearly consistent wit h
independent knowledge . We give four specific examples : (1) The ther-
moelectric power of TMTSF single stack materials yields a bandwidt h
slightly larger than 1 eV (Mortensen, 1982) . (2) HMTSF-based metal s
have exceptionally high conductivities (cfr . Table II) . (3) The ther-
moelectric power of TTF-TCNQ is large and negative while it is clos e
to zero for TSF-TCNQ (Chaikin et al ., 1976) . (4) The conductivity o f
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TMTSF-TCNQ is significantly higher than that of TSF-TCNQ (Tabl e
II) .

Another argument for the validity of the present approach is the agree -
ment in values for the DMTCNQ-bandwidths . The number obtained
for TMTTF-DMTCNQ is based on analysis of data for the single-stac k
compound TMTTF 2PF 6, which is a semiconductor with strong non -
Drude behaviour in the IR (Jacobsen et al ., 1983), while the number fo r
the selenium analogue is based on data for an excellent metal ,
TMTSF 2AsF 6, which is close to Drude behaviour in the IR .

A final direct demonstration of the main point i .e . the simple connec-
tion between one-electron bandwidth and plasmon frequency will b e
given next while discussing 2D compounds .

Interchain contact

There are at present two groups of organic conductors, which sho w
considerable interchain coupling . They are both of single-stack typ e
with donor molecules, 0 = 0.5, and inorganic counterions . The basi c
structural features are also the same : Sheets of molecular stacks inter -
changing with layers of counterions . The important interchain contact i s
in the sheets so that the materials are effectively two-dimensional . Inter-
estingly these materials among them count the only representatives o f
organic superconductivity so far .

Table IV. Single-stack bandwidths . T = 300K
Donor

	

Accepto r

Stack 4t Stack 4t
eV eV

TTF- (TCNQ) 0.41 (TTF)-TCNQ 0 .81
TSF-(TCNQ) 0.62 (TSF)-TCNQ 0 .76
TMTSF-(TCNQ) 1 .06 (TMTSF)-TCNQ 0 .70
TMTTF-(DMTCNQ) 0.80 (TMTTF)-DMTCNQ 0.74
TMTSF-(DMTCNQ) 0.93 (TMTSF) -DMTCNQ 0.70
HMTTF-(TCNQ) 0.80 (HMTTF)-TCNQ 0.76
HMTSF-(TCNQ) 1 .3 (HMTSF)-TCNQ 0.76
HMTSF-(TNAP) 1.3 (HMTSF)-TNAP 0.4
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Fig . 8 . Polarized reflectance of TMTSF2PF6
at 300K, 100K, and 25K . Notice the logarith-
mic frequency scale . The chain axis is along a .
The solid line is a Drude fit to the low tempera -
ture spectrum with polarization perpendicula r
to the chains . One extra oscillator has been ad-

ded to the model to account for the sharp vibra-
tional line near 800 cm -1. (Jacobsen et al .
1981) .
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Their actual anisotropy may be deduced from reflectance studies . As
an example from the TMTSF2X-family we present in Fig . 8 the
polarized reflectance of TMTSF 2PF6 at three temperatures : 300K, 100K
and 25K (Jacobsen et al ., 1981) . It is evident that a reasonably well-
defined plasma edge appears in the b'-direction at low temperature. The
b '-direction is perpendicular to the stacks in the sheets of TMTSF-
molecules . Most of the sharp lines superimposed on the edge arise fro m
normal IR active modes in PF . The transverse reflectance edge appear s
at a frequency about ten times lower than that of the stacking axis edge .
A Drude analysis may be performed (solid line) and the ratio (O)pb ./Wpa .)

(a'/b') which refers to the model of Fig . 4 is 0 .09 . Calculation yields tb .
= 22 meV, about 10 times smaller than t a . Although tb, is significant a s
compared to kBT for all temperatures of interest the Fermi surface mus t
clearly be open. Table V gives Drude parameters and transfer integrals
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Table V. Drude parameters, transfer integrals, and b-axis lattice con-
stants in (TMTSF) 2X, É 1 b '

X E c col,
cm -1 cm-1

tb,

meV
b
Å

C104- 3.5 2020 250 24 7.678
SbF6- 3.5 1510 300 18 7.728
AsF6- 3 .5 1670 350 20 7 .71 1
PF6- 3 .5 1830 500 22 7.711

for several members of the TMTSF 2X family (Jacobsen et al ., 1983) . I t
should be noted that there is a reasonable correlation between tb and the
b-axis lattice constant . The largest tb, is found in the densely packe d
TMTSF 2C1O4, the only ambient pressure superconductor in the series .
This gives some support to the simple band picture of Yamaji (1985)
which predicts a critical value of tb . = 25 meV. The values are also in
good agreement with results of band structure calculations (Grant ,
1983) .

The other materials group of interest is based on BEDT-TTF (or ET) .
The first reported ambient pressure superconductor in this family i s
triclinic ((3-phase) ET21 3 (Yagubskii et al ., 1984) . Fig . 9 shows the
polarized reflectance of this material in the a-b plane (Jacobsen et al . ,
1985) . Again this plane corresponds to the sheets of molecular stacks .
Interestingly, the highest plasma frequency is associated with the direc-
tion perpendicular to the chains, while the chain direction shows muc h
weaker metallic character in the infrared properties . Although unusual ,
such behaviour is consistent with the molecular arrangement in the crys-
tal (Kaminskii et al ., 1984) and has also been seen optically at roo m
temperature in several materials from the family (Tajima et al . (1984) an d
Koch et al . (1985)) .

In Table VI we list Drude parameters and estimated transfer integral s
for ET2I 3 . Again the results of Fig . 4 have been used . Thus the analysis i s
based on a simplified orthorhombic model and the transfer integral s
given are weighted averages of several transfer integrals in the correc t
triclinic model . The rather small values of t are consistent with a low
room temperature conductivity (---30 Scm -1, isotropic in the a-b-plane )
and the near isotropy is confirmed by thermopower measurements o f
Mortensen et al . (1985) . The validity of the plasma edge Drude analysi s
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Table VI . Drude parameters and transfer integrals in (3-ET 2 13 .
11 Denotes the chain axis, 1 the direction perpendicular to the chains i n
the a-b plane .
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is again confirmed. It is particularly interesting to compare the 40K an d
300K analysis of the data for the perpendicular direction . It is obvious
from Fig. 9 and even more so from the dielectric function reproduced i n
Fig . 10 that the 300K spectrum is non-Drude in the IR while the 40K
spectrum is near-Drude in the entire measured range . Nevertheless, th e
predicted plasma frequencies are different only by an amount expecte d
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Fig . 10 . Real part of É(w) for (3-ET273 perpen-
dicular to the chains, for T=300K and 40K.
Notice the different scales for the two curves .

(Jacobsen et al ., 1985) .

from a thermal contraction induced change in t1 (Table VI) . This is als o
evident from Fig . 10 by noting that the zero-crossing in e(w) near 500 0
cm-1 only shifts slightly .

Hence our principal conclusion of this section is that careful analysis o f
reflectance data in the plasmon region yields reliable estimates for trans-
fer integrals . These estimates will be used subsequently while discussing
the IR spectra .

Size and distribution of infrared oscillator strength

After having discussed the plasma edge range we now turn to the actua l
infrared excitation spectra of organic conductors . The aim is to under-
stand the deviations from Drude behaviour in terms of the short rang e
electron-electron and electron-phonon interactions . In Fig . 11 is shown
300K-spectra of 4 double-stack conductors with widely different physi-
cal properties (Jacobsen et al ., 1984) . HMTSF-TNAP, TTF-TCNQ an d
DBTTF-TCNQC12 are incommensurate conductors with slightly mor e
than quarter-filled one-electron bands, while DBTSF-TCNQF 4 has half-

- -20

- -4 0
T-40 K

- -6 0

- -80

0

	

1

	

2 3

	

4

	

5

	

6

	

7 8
Frequency (103 cm- 1 )

-1 0

3 0

2 5

2 0

15

10
- 20

o



276

	

CLAUS S . JACOBSEN

Fig . 11 . Frequency dependent conductivities of

	

1 2

4 doublestack conductors at T=300K, along
the stacks . (Jacobsen et al ., 1984) .
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filled bands. All materials are expected to be metals in the absence of
Coulomb interactions and at 300K there is no evidence for the 2kF-
distortion, which might destroy the metallic state by pure structura l
effects .
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DBTSF-TCNQF 4 is known to be a Mott insulator (Lerstrup et al . ,
1983), and as we shall shortly discuss, available theory allows a rathe r
unambiguous interpretation of the spectrum.

HMTSF-TNAP is a high conductivity, wide band metal, and the IR
behaviour is indeed rather close to Drude behaviour with a monotoni c
o(w) . TTF-TCNQ is also a metal but of intermediate bandwidth an d
with distinct deviations from the Drude spectrum. The oscillator
strength is shifted away from zero frequency and fine structure is seen
near molecular vibration frequencies. These features are even more pro-
nounced in the narrow band material DBTTF-TCNQC1 2, which is a
magnetic semiconductor . It is obvious that these room temperatur e
spectra can not be rationalized within traditional 3D models like the
Holstein absorption picture .

In the following we first derive parameters for the Mott insulator case .
Next we review the physical properties of DBTTF-TCNQC12 and argu e
for using the simple U -> 00 model for this material . Then the size of the
IR oscillator strength for a number of organic conductors is compare d
with expectations based on bandwidth estimates . It is suggested tha t
Coulomb correlations modify the wavefunctions appreciably in all mate-
rials . However, depending on band-filling and dimensionality the effect
on other physical properties differs widely . Finally, we discuss the tem-
perature dependent IR properties of TTF-TCNQ with special emphasi s
on understanding the separate roles of the two chains .

The Mott insulator (o = 1)

The frequency dependent conductivity of DBTSF-TCNQF 4 resembles
surprisingly well the prediction by Lyo (1978) for the extended Hubbar d
model with half-filled one-electron bands . The absorption is dominate d
by a charge transfer band corresponding to the creation of a doubly
occupied site. A finite near neighbour interaction, V, produces a rathe r
strong onset of absorption at U-4t as observed near 5500 cm-1 = 0.7 eV
in the present case . Additional information may be obtained from th e
size of the oscillator strength . It is assumed that it follows that of th e
isolated Hubbard dimer (Rice, 1979) :

f o(w)dw/f o(w)dw = (1 + (U/4t) 2) -lam ,

	

(18 )
(u=o)

(correct for U/4t « 1 and » 1 (Lyo, 1978)) .
Then we find U = 1 .4 eV and 4t = 0 .7 eV. Such a value for th e

bandwidth appears reasonable when compared to the results of Table III
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Fig . 12 . Basic physical prop-
erties of DBTTF-
TCNQCI2 . See the discus-
sion in the text .
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for similarly composed materials (e .g. TSF-TCNQ) but an independent
estimate is not available . U/4t = 2 for the half-filled band case is i n
accord with theoretical expectations (Mazumdar and Bloch, 1983) .

As a side-remark it is noted that the Ag-vibrational modes are no t
activated in the Mott insulator . Charge localization does not suffice :
symmetry breaking is a necessary prerequisite for IR activation.

The infinite U model (O < 1 )

DBTTF-TCNQC1 2 is a good example of a non-metallic, but incom-
mensurate (0 = 0.56) and near quarter-filled organic conductor . The
physical properties are known in rather great detail and are summarize d
in Fig. 12 . The dc conductivity and the thermoelectric power are consis-
tent with the existence of a one-electron gap of order 200-250 meV
(1500-2000 cm -1 ) . The activated behaviour is cleanest below T c1 = 180K
where a slight anomaly is observed . The spin susceptibility, xs, is high ,
about three times the expected non-enhanced Pauli value (xe) at 300K ,
and remains high to T c2 = 36K, below which temperature it vanishe s
rapidly. Note that xs (300K) is about 2/3 of the Curie value ()cc ) for the
appropriate carrier density . Finally, diffuse X-ray scattering has shown
the existence of rather large amplitude 44-CDWs. Down to T01 there
are only weak interchain correlations . Tc1 is found to be a 3D ordering
temperature, while Tc2 involves the onset of 3D-2kF scattering .

The implications of these observations are obvious : Enhanced mag-
netic susceptibility and occurrence of 4k F-CDWs may both be taken a s
evidence for important electron-electron correlations . The two transi-
tion temperatures also indicate a substantial decoupling of the spin an d
translational degrees of freedom . The overall behaviour is common to a
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larger group of low conductivity materials and the physical picture is th e
following : The carriers are fairly localized even at high temperature due
to the Coulomb repulsion between them . The spins experience a weak
antiferromagnetic exchange coupling and through interaction with th e
lattice undergo a spin-Peierls transition at low temperature . With thi s
discussion we have established that DBTTF-TCNQC1 2 is a strongly
correlated, incommensurate organic conductor with a sizeable energy
gap in the excitation spectrum .

In Fig . 13(a) o(w) is shown at 100K . The main difference from the 300K
spectrum is a sharpening of the vibrational structure below 1500 cm-1 .
In both spectra there is a broad maximum around 2000 cm -1, which ma y
be interpreted as arising from a gap in the electronic spectrum in accord -
ance with the low frequency transport properties . This gap, the intensity
of the vibrational structure, the presence of 4kF-CDWs, and the apparan t
decoupling of magnetism and electronic behaviour leads us to sugges t
that DBTTF-TCNQC1 2 is subject to an »infinite«-U Peierls instabilit y
partly stabilized by the emv coupling . A zero temperature model for o(w )
of the ordinary 2k F (U=0) Peierls semiconductor has been given by Ric e
(1978) . Because of the formal analogy with this case the theory can b e
immediately applied, when proper account for the spinlessness of th e
fermions is taken. As stated earlier the difference concerns the band -
filling and the density of states . Rice gives the following expression fo r
Ë(w) :

E(w) = e +(wF/w)2[f(w/2A)-1-(w/2A) 2f2(w/2A)XD s, (w)] .

	

(19 )

wF is a measure for the oscillator strength so tha t

f a(w)dw = (n/2) £owf.

2A is the Peierls gap and X. is the total electron-phonon coupling constant
given by

~ _ IX. = lg~N(£F)/hwn ,
n

	

n

where n is the mode number .
Furthermore, the function, f(x), is defined by

(21 )

f(x) = [11i+ln(1-S)/(1+S)]/2Sx 2 , S=(1-x-2 ) vz (22)

A small electronic damping may be introduced by the substitution x 2 -p
x(x+iö) in these expressions . Finally, the phase phonon propagato r

D,p (w) = [D;1(w)+i+X(w/2A)2f(w/2A)+b],-1

	

(23 )

(20 )
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Fig .13. 4kr-CDW mode l
for o(w) of DBTTF-
TCNQC12 at 100K. (a)
data, (b) total o(w) in model ,
(c) contribution from accepto r
stack, and (d) contribution
from donor stack .
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where

D0 (w) = -E(kn/k)con/(co-OJ2-icoyn) .
n

Fyn is the natural damping rate of mode n . b is a positive constant, which
models the pinning of the CDW ; f b = 0, the CDW contributes to the d c
conductivity .

The physical contents of this model were described previously . The
main problem in its application to DBTTF-TCNQC12 is the double -
stack structure . There are two contributing stacks and we must assume
that É(w) is simply a sum of two individual terms. Clues to the decom-
position may be obtained by studying single-stack materials lik e
DBTTF(BF4)0 .42 . It is rather easy to show that DBTTF dominates the
full spectrum and we have obtained a model fit to the data of the quality
shown in Fig . 13(b) . The individual contributions are pictured in Fig . 1 3
(c+d) . The model parameters are given in Table VII, which also contain s
independent estimates of the emv coupling constants .

The overall quality of the fit is reasonable, especially with respect t o
distribution of oscillator strength between the vibrational modes and th e
single particle contribution . We note that it is possible to introduce only a
modest electronic damping in the present model hence the gap structur e
in the fit is sharper than in the data .

From Table VII it follows that the coupling constants (g n) obtained are
of the correct magnitude . This is a crucial point, since in Eq . (21) we
have used the U->00 density of states, which for a quarter-filled band i s

iE
o

(24)
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Table VII. 4kF-CDW parameters for DBTTF-TCNQC1 2, T = 100K .

DBTTF TCNQC12

wf(cm-1) 4500 3600
4t(eV) 0 .43 0.27
20(cm-1) 1700 1900
8 0.2 0 . 2
~ 0.46 0.60
b 0.08 0.08
DE, 1 .0 1 .0

a b
n wn n gn wn gn

C171 -1 cm 1 cm 1 cm 1

1 1430 .16 1100 (940) 2253 .04 550(350)
2 1130 .017 320 (170) 1573 .01 230 (540)
3 473 .11 530(630) 1345 .01 210(500)
4 (40 .17 190) 1200 .04 400 (300)
5 1020 .03 340(85)
6 870 .009 160
7 820 .012 180
8 (40 .45 250)

a values in parentheses are estimates for TTF for corresponding modes (Lipari et al . ,
1977) .

b values in parentheses are estimates for TCNQ for corresponding modes (Rice et al . ,
1980) .

only 35% of the U=0 value . Thus the strength of the vibrational modes
constitutes a direct verification of the applicability of the large U model .

A few other points may be emphasized: (1) Assuming mean field
behaviour the observed gap position corresponds to a scale temperatur e
TMF = 600K . This is consistent with the well-established gap and CDW -
structure at 300K and below. (2) In the fitting procedure the estimate d
gap-values were used to derive the total electron-phonon coupling con-
stant, X, from the gap equation (Eq .(15)) for each stack . Part of X i s
assumed associated with low frequency (external) modes outside th e
experimental range (given in the last lines of Table VII) . However, it i s
striking that more than 60% of X for the DBTTF-stack is due to th e
internal modes. Hence, the CDW is predominantly stabilized by the em v
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coupling. On the acceptor chain this is less pronounced. (3) The average
bandwidth, 4t, is 0 .35 eV from Table VII . This may be compared to 4f =
0 .41 eV from the Drude analysis (Table III) . It appears that the oscillato r
strength is further reduced below what is expected from the large U
model. Introduction of a finite nearest neighbour interaction, V, in th e
theory might account for that .

In conclusion the IR properties of DBTTF-TCNQC12 are surprisingly
well described by the model for the large U, 4kF -Peierls system . The
infrared properties of several singlestack conductors like TMTTF 2PF6 ,
and MEM-TCNQ2 at 350K, may also be analysed satisfactory in term s
of the same model (C . S . Jacobsen, to be published) . Thus it appears tha t
for a large group of organic conductors the electronic properties are
reminiscent of those of a system, where double occupancy of sites i s
effectively excluded .

Sum rules and correlation effects

To investigate whether the infrared oscillator strength can give informa-
tion on the strength of Coulomb correlations in general we give in Table
VIII a comparison of the observed oscillator strength with the predicte d
in the U=0 and U-cc limits for a number of compounds . In particular,
the last column gives the ratio, (3, between observed reduction of oscil-
lator strength and the reduction associated with the U- oo model . Thus
(3=0 corresponds to U=V=0 and 13=1 to U-00, V=0. It is notable that
(3 is in no case smaller than 0.5 . HMTSF-TCNQ and -TNAP, an d
TMTSF 2C1O4, which are all excellent metals have (3's close to 0 .5. The
semiconducting materials have (3=0 .9-1 .3. TTF-TCNQ which will be
discussed in more detail below has (3 = 0 .85 decreasing to 0 .56 at 60K ,
the temperature of maximum conductivity . This may indicate a connec-
tion between the absolute value of o and the screening efficiency . A
similar trend is observed in E T2I3 (1) . However, here (3 > 1 in spite of th e
metallic ground state. The large (3 is attributed to the narrow (Table VI )
and quarter-filled band . It appears that the metallic/superconductin g
ground state must be related to the 2D-nature of this material whic h
precludes, for example, the 4k F-CDW instability .

The only material, which appears not to match the pattern is TMTSF-
DMTCNQ, which has metallic character, but (3 = 1 .1 . We understand
such a large (3 as arising from a Coulomb correlation dominated accepto r
stack and a metallic donor stack as previously implied by analysis of the
transport properties (Jacobsen et al ., 1978) .

Thus it largely appears that the (3-values of Table VIII are consistent
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Table VIII . Infrared oscillator strength and correlation effects . The first
column gives the values expected if U=V=0 (based on Tables III and
VI) . The second column corresponds to U-oo, V=0 (Eq. 14), while the
third gives the measured oscillator strength. (3 is a relative measure for
the strength of the correlation effects (see text) .

Material (temp .) COp2 (A)p 2coSo/2 co- (3
(107cm-2) (107cm-2) (107cm-2)

TTF-TCNQ (300K) 13 .0 8.4 9.1 0 .85
TTF-TCNQ (60K) 15 .9 9.5 12.3 0 .56
TMTSF-DMTCNQ (300K) 12.5 8.8 8.5 1 .08
HMTSF-TCNQ (300K) 20.2 8.0 13.0 0 .59
DBTTF-TCNQC12(300K) 5.6 3.6 3.1 1 .25
HMTSF-TNAP (300K) 12.8 7.8 10.3 0.50
TMTTF2PF 6 (300K) 7.9 5 .6 5.8 0.91
TMTSF2CIO4 (300K) 9.8 6 .9 8.3 0.52
ET2I3(1) (300K) 8.3 5 .9 5.2 1 .29
ET2 I3(1) (40K) 9.2 6 .5 6.2 1 .11

with independent information on the importance of correlation effects .
The relatively big reduction of oscillator strength found indicates a
considerable localization trend in the wavefunctions in full agreemen t
with the enhancement in magnetic susceptibility generally observe d
(Torrance et al ., 1977) . The (3-values, through Eq. (13), may prov e
useful in testing specific models for the wavefunctions in the intermedi-
ate correlation regime .

TTF-TCNQ : 2kF- and 4k4-instabilities

As the first good organic metal prepared, TTF-TCNQ remains one o f
the best characterized solids at all . Even so, many details remain con-
troversial, one of them being the roles played by the two stacks . The
physical and structural properties may briefly be summarized as follows :

The conductivity increases as T -2 or faster down to well below 100K
(Cohen et al., 1974) . At 60K a(T) is sharply peaked, and from 53K an d
down a cascade of phase transitions destroys the metallic character .
Extensive structural studies (see, for example, Comes and Shirane, 1979 )
have shown considerable 1D diffuse scattering at 4kF from 300K and
down to the phase transitions . Below 150K appreciable 2kF-scatterin g
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Fig .14 . Frequency dependent conductivity of
TTF-TCNQ at 25K, 60K and 300K. Notice
the logarithmic frequency scale . (Tanner an d

Jacobsen, 1982) .

15

TTF-TCNQ _

EII stack s

10
- T=25 K
	 60 K

	 300 K

-
E

17
CO

Cr)
0

'5

	

-

°

	

-

	

l:r
-o
c

	

cb 0	 Jr --~

	

10

	

30

	

100 300 1000 3000 10000

Frequency (cm 1 )

develops . The character is 1D to 53K, where it becomes 3D . Several
physical properties indicate that the 53K transition takes place on th e
TCNQ-stacks and that the TTF-stacks follow at a lower temperatur e
(Schultz and Craven, 1979) . It also appears that the TCNQ-stacks carr y
most of the conductivity in this material . The magnetic susceptibility i s
enhanced by a factor 2-3 over the Pauli value at room temperature an d
decomposition into individual stack contributions tends to show that th e
TTF-stacks have most of the susceptibility . While these results agree
with the bandwidth estimates of Table IV they disagree with a recent
NMR study (Takahashi et al ., 1984) .

Here we will discuss the infrared properties in general and in particular
try to assign the 2k F- and 4kF-instabilities to individual stacks . The over-
all infrared properties have recently been studied by Jacobsen (1979) ,
Tanner et al . (1981), and Tanner and Jacobsen (1982) . The temperatur e
dependence of o(w) is shown in Fig . 14 in the entire infrared range . Eld-
ridge and Bates (1983) have subsequently studied the low temperature ,
far infrared spectrum by a different technique . While their results are i n
general agreement with those shown here, details in especially the sharp-
ness of the features differ .

At 25K, a(w) displays a double peak structure with a low frequenc y
band near 40 cm-1 and a very intense band near 300 cm -1 . The low
frequency band contains about 5% of the total oscillator strength . In
view of the observed 2kF-superstructure and an energy gap estimated



THE ELECTRONIC STRUCTURE OF ORGANIC CONDUCTORS 285

from O dc (T) of order 300 cm -1 , the intense band may be ascribed to singl e
particle transitions across the gap in a 2k F-Peierls semiconducting state ,
while the 30 cm -1 band is assigned to the Fröhlich (i .e . CDW) pinned
mode .

The CDW parameters estimated on basis of such an interpretation
agrees with theoretical expectations (Tanner et al . 1981) . However, a
detailed fit of the spectrum in terms of the multiphonon theory previous-
ly employed is not yet possible .

The 60K spectrum shows a broadening of the 300 cm -1 structure and
apparently the oscillator strength of the low frequency band has move d
to zero frequency. Since odc(60K) = 10 4Scm-1 , there is a sharp drop i n
o(w) in the millimetre and submillimetre range . Physically, this is consis-
tent with a depinning of the CDWs at the phase transition . They appear
to contribute to Odc and in the IR a pseudo-gap induced absorption ,
broadened by fluctuations, may be followed to temperatures above 100K .
Going to 300K the features are much broadened and the maximum i n
o(w) has moved to about 800 cm -1 . The latter change can not be under-
stood in terms of the 2k F-instability .

Instead we may focus on the role of the 4kF-instability which gives ris e
to the only detectable superstructure at 300K. It may be associated with
only one or with both types of stack. As usual we expect the infrare d
properties of the 4k F-CDW to consist of a maximum in o(cu) correspond -
ing to a pseudogap plus a number of sharper features near the A g-vibra-
tional modes . TCNQ has such a mode near 2200 cm -1 (C ° N stretch) ,
which couples strongly to the electrons . Fig. 15(a) shows a high resolu-
tion study of the reflectance near this mode . At 300K and 200K the
feature has the strength and shape of an ordinary IR active mode super -
imposed on the metallic response of the conduction electrons . Fro m
100K and down to 30K the oscillator strength increases and the shape i s
inverted (the original structure is presumably hidden behind the new
band) . The low temperature spectrum is exactly what is expected from a
Peierls distorted semiconductor . The point is that the temperature de-
pendence follows that of the 2k F-scattering. Thus the 4kF-instability
must (at least largely) take place on the TTF-stacks . This conclusion
agrees with recent diffuse X-ray studies on irradiated TTF-TCNQ (For -
t-6 et al ., 1984) .

It is also corroborated by a careful inspection of the far IR reflectance ,
shown in Fig . 15(b) . Being raw data, these curves should be reliable wit h
respect to position and relative strength of fine structure . Also shown is a
model calculation for a 2kF-CDW system with 2A = 300 cm -1 , using the
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Fig . 15 . Chain-axis reflect-
ance of TTF-TCNQ. (a)
Temperature dependence i n
the vicinity of the C=N
stretch frequency . (b) Tem-
perature dependence in th e
far infrared (Tanner et al . ,
1981) . At bottom is shown a
2kF-CDW model with iden-
tified Ag-mode features . Q
refers to TCNQ, F t o
TTF .
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known emv coupling constants of TTF and TCNQ (references from
Table VII) . The model mainly serves to identify the individual Ag-mode s
in the far infrared . It is again evident that TCNQ-modes (Qlo, Q 9) show
a temperature dependence as that of the 2200 cm-1 mode, while th e
TTF-modes (F 6, F7) are different . F6 corresponds to a strong, near tem-
perature independent dip in the reflectance from 160K to 60K . Below
60K it moves slightly up in frequency and becomes weaker with a differ -
ent shape . This behaviour may tentatively be assigned to a cross-over
from a 4kF- to a 2kF-CDW state on the TTF-chains .

The infrared properties are clearly consistent with the idea that the 2 kF
(ordinary) Peierls instability develops on the TCNQ-chains and perhap s
at low temperature induces 2kF-order on the TTF-chains as well . The
4kF-instability in contrast develops on the TTF-chains . This also agree s
with the bandwidth estimates of Table IV . The rather narrow TTF-band
is susceptible to a correlation induced 4kF-instability . The theory applied
to the case of DBTTF-TCNQC1 2 is probably inappropriate, but qualita-
tively we may understand the 300K spectrum of TTF-TCNQ (se e
Fig. 11) as arising from a near Drude-like contribution from the TCNQ -
stack and a contribution from the TTF-stack, which has a maximu m
near 800 cm 1 and emv interference effects in the 1400-1500 cm -1 range ,
where the important carbon skeleton modes are situated (compare Table
VII) . Interestingly, the rise in ß(o.ß) at low frequencies may arise from
sliding 4kF-CDWs, which here (in contrast to the case of DBTTF -

30 K

200 K

300 K

TTF-TCNQ

É II stacks
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TCNQC12) experience no Coulomb scattering from oppositely charged
density waves.

Conclusions

In the above study we have completed the following line of argumenta-
tion: It was shown empirically that the plasma edge Drude analysis of
organic conductors yields reliable estimates for bandwidths . This in par-
ticular means that the plasmon frequency is largely insensitive to th e
often strong deviations from Drude behaviour encountered at low fre-
quencies .

By comparing the bandwidth values with the integrated intraband
oscillator strength, information on the importance of short rang e
Coulomb correlations was extracted . It appears that all organic conduc-
tors have prominent »Coulomb holes«, but clear differences are foun d
between good metals and moderate conductors . For the latter, model s
where double occupancy of sites is excluded have proven useful i n
explaining the semiconducting nature . In other materials, wher e
Coulomb correlation effects appear equally strong, interchain interac-
tions preserve the metallic character to low temperature, where eve n
superconductivity may be found (as exemplified by ET 2 I 3) .

Finally, those molecular vibration modes, which couple to the elec-
trons, were used as »fingerprints« to understand the nature of TTF-
TCNQ, where apparently one chain-type shows much stronger correla-
tion effects than the other .
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Function of tRNA
in Initiation of Prokaryotic Translatio n

ABSTRACT . This paper is a review of studies on structural and functional aspects of the interactions

between the methionine accepting tRNAs and other macromolecules (enzymes, protein factors an d

ribosomes) in the cellular reactions preceding the formation of the first peptide bond during protei n
biosynthesis . Before discussing the recent research results, the problem will be introduced in a

chronological order according to the discovery of the required molecular components and thei r

functions . This introduction also aims at giving the reader an impression of the importance of th e
chosen subject in the field of molecular biology .

Division of Biostructural Chemistry ,
Department of Chemistry, Aarhus University ,

DK-8000 Aarhus C, Denmark

Introduction

All living cells contain a large number of different protein molecules .
The exact number is not known, but estimates from the size of th e
genomes and two-dimensional polyacrylamide gel electrophoretic ana-
lysis of crude cell-lysates suggest the order of 2000 to 10000 different
natural proteins .

These molecules consist of chains of amino acids linked together b y
peptide bonds as shown in Figure 1, where R I and R2 are specific side -
chains . All known proteins contain up to 20 different amino acids in the
polypeptide chain - the primary sequence, which determines the three-
dimensional structure and the function of each individual protein . The
mechanism by which amino acids are linked together in the sequenc e
specified by the nucleotide sequence of the gene is the biological transla-
tion. A four-letter "nucleotide alphabet" in DNA (and in messenger
RNA) is translated into a 20-letter "amino acid alphabet" in protei n
molecules - a sequence of three nucleotides (codon) specifies each amin o
acid. The biological translation is a complicated process consisting of
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many steps and involving a number of specific macromolecular interac-
tions. One of the most important components of this process is the
tRNA molecule, which started its scientific career as a purely intellectua l
creation .

The suggestion and discovery of transfer RNA

After the elucidation of the DNA structure and the suggestion of th e
principles in the relation between DNA and protein in the early and mid-
1950s, no one could envisage how nucleic acids could programme th e
synthesis of protein by direct structural interactions with amino acids .
The first clue to this problem was the introduction by Francis Cric k
during the years 1955-57 of the "Adaptor Hypothesis" by which a smal l
adaptor molecule would mediate between amino acids and a piece o f
nucleic acid which carried the genetic information for specifying the
amino acid sequence during polymerisation into proteins . The Adaptor
Hypothesis was almost simultaneously confirmed by the discovery o f
soluble RNA molecules carrying amino acids (Hoagland et al ., 1959) .
The molecules were larger than expected by Crick, and turned out to be
nucleic acids containing approximately 80 ribonucleotides and a molecu-
lar ratio of 25,000 .

The first soluble RNA molecule (called sRNA - and since 1967 trans -
fer RNA or tRNA) was sequenced by Holley et al . (1965) during th e
years 1958-65. The structure is shown in Figure 2A in the so-called
cloverleaf representation . Many other tRNA molecules were soon se-
quenced, and a similar cloverleaf structure could be drawn for each
molecule . The tRNA molecule can form intramolecular Watson-Cric k
base-pairs in four regions . One of these contains the terminals of th e
nucleotide chain, and the three others end in singlestranded loops . It is
shown in Figure 2B where the amino acid attaches to the molecule an d
the "anti-codon" nucleotide sequence which "reads" the amino acid -
specifying nucleotide sequence on messenger RNA is indicated at th e
bottom of the molecule .

The first three-dimensional structure of a tRNA molecule was ob-
tained independently by the groups of Aaron Klug in Cambridge an d
Alexander Rich at M .I.T. in 1975 . The folded structure (of phenyl-
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alanine specific tRNA from yeast) is shown in Figure 3 . Although minor
and probably important differences may exist, the overall spatial struc-
ture is believed to be general in tRNA molecules .

The knowledge of the three-dimensional structure of the tRN A
molecules is one of the prerequisites for the study of structural interac-
tions between tRNA and proteins, which is one of the main subjects o f
this paper .

Protein biosynthesis starts at the amino termina l

At the time the tRNA molecules were discovered, only very limite d
knowledge existed about the molecular reactions in which it is involve d
during its functional cycle . The study of the components and mechanis m
of protein biosynthesis was just starting . However, it was becoming
clear that the process took place on sub-cellular particles - first called
microsomes and in 1958 named ribosomes by Richard Roberts .

Then it was a crucial question in which direction the reaction of amin o
acid polymerisation proceeded . If we look at Figure 1, would R, or R2 b e

A

	

B

Ô H

Fig . 2A . Cloverleaf representation of the nucleotide sequence of tRNAAla from yeast .

B : Common features of tRNA molecules .
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Fig .3 . Schematic diagram of the three-dimen-
sional structure of tRNA P11e from yeast . Base d
on the X-ray crystallographic data of Ladner e t
al ., 1975.

the first amino acid in the polypeptide - in other words would the
initiating amino acid become the N- or C-terminal of the molecule ?

The first answer to this question came from a study of the biosynthesi s
of haemoglobin by Bishop et al . (1960), who found that the polypeptide
chain growth began with the N-terminal amino acid . This means that R I
in Figure 1 is the terminal amino acid in a protein starting by this reac-
tion. Shortly after, Goldstein and Brown (1961) showed that E. cold
proteins are synthesized beginning with the N-terminal amino acid .

N-terminal amino acid = methionine

By that time, other workers were studying sequences of amino acids in
proteins . From the work of Moriwitz and Spaulding (1958), it seemed
that one particular amino acid appeared more than statistically in the N -
terminal position of E. coli - namely methionine .

That methionine is found much more than randomly as the N-termi-
nal amino acid of E. coli proteins was confirmed by Waller and Harris
(1961) - for ribosomal proteins - and finally by Waller (1963) - for tota l
E. coli proteins . This led to believe that proteins are synthesized by a
mechanism which specifically incorporates methionine as the first an d
N-terminal amino acid. Twenty years ago, the picture of the molecular
mechanism of protein biosynthesis can be presented as shown in Fig . 4
(Watson, 1964) .

The genetic information in the chromosomal DNA (in the form of a
fourletter nucleotide sequence) is transcribed into messenger RNA by
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the enzyme RNA polymerase . The mRNA is then bound to a ribosom e
and by adaptor molecules - aminoacyl-tRNAs - translated into a 20 -
letter amino acid sequence in a polypeptide chain .

It was known that special protein factors (transfer enzymes) wer e
needed to stimulate the overall process of translation and that energy wa s
supplied by GTP, but the knowledge specifically concerning the
mechanism by which the process started was clearly expressed by Wat-
son: "Almost no hints exist about chain initiation" .

The first important discovery of initiation specific molecules cam e
from the Cambridge laboratory of Perutz .

Initiator tRNA

In their work with sulfur containing amino acids (easily labelled wit h
high specific radioactivity) and their interaction with tRNAs from E .
coli, Marcker and Sanger (1964) found that [ 35S]-methionyl-tRNA upo n
mild hydrolysis (which splits off the amino acid as shown in Fig . 16)
gave two radioactive spots on electrophoretic analysis - one from me -
thionine and another which was identified as N-formyl-methionine .
Shortly after Marcker (1965) showed that two different classes of me-
thionyl-tRNA exist of which one could be N-formylated in the methio-
nine by an in vitro system, whereas the other could not . The two specie s
were named Met-tRNA 1 (not formylatable, now called tRNAMet) and
Met-tRNA 2 (formylatable, now called tRNAMeY ) and the role of formyl-
methionyl-tRNA as initiator tRNA in protein synthesis was the authors '
immediate suggestion . The cloverleaf structures of the two tRNAs are

''\'''"--- AA -

ssRN

A

POLYPEPTID E
CHAINS

	

AA-AM P

AA ATP

Fig . 4 . Schematic view of

protein synthesis as of March
1964 (Watson, 1964) .
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Fig . 5A . Cloverleaf representation of the nucleotide sequence of initiator tRNAyee (Dube et al . ,

1968) .

B . Cloverleaf representation of the nucleotide sequence of elongator tRNA ;ne ` (Cory et al ., 1968) .

shown in Fig . 5 . Similarities and differences in the nucleotide sequence s
will be discussed further in subsequent paragraphs . In an in vitro system
similar to the one developed by Nirenberg and Matthaei (1961), Clark
and Marcker (1966a) showed that N-formyl-methionyl-tRNAMet exclu-
sively incorporated formyl-methionine into the N-terminal of a growin g
polypeptide chain (in response to poly(U,G)), similarly the same author s
showed (1966b) that the non-formylatable Met-tRNAM et incorporate d
methionine into internal positions of polypeptides and not into the N -
terminal . This was considered as a proof that tRNAM et is the true ini-
tiator tRNA in E . coli .

Aminoacylation of tRNA1et

The tRNA molecules carry the amino acids from the cell cytoplasm to
the ribosome - the site of protein biosynthesis . Now the question arises :
How are the correct amino acids linked to the tRNA molecules? This i s
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an enzymatic process, which requires catalysis by an aminoacyl-tRN A
synthetase specific for each amino acid .

The methionyl-tRNA synthetase aminoacylates both tRNA,net and
tRNAMet The enzyme has been extensively characterized by the grou p
of Sylvain Blanquet at the Ecole Polytechnique in Paris (Blanquet et al . ,

1973, 1976) . The native protein contains two identical polypeptide
chains (type a2) each with an Mr of 76,000 .

The monomer can easily be split by trypsin, resulting in a 64 k dalton
fragment, which retains the activity of aminoacylation (Dessen et al . ,

1982) . This fragment has been crystallized, and the X-ray crystallogra-
phy group of Risler in Gif-sur-Yvette has determined the crystal struc-
ture at 2 .5 A resolution (Zelwer et al ., 1982) .

The aminoacylation reaction catalyzed by Met-tRNA synthetase i s
shown in Fig . 8 (Reactions 1 and 2) .

Formylation of initiator tRNA

Marcker (1965) showed that the formylation in the a-amino group o f
methionine takes place after the aminoacylation of tRNAM et and found
that N10-formyl-tetra-hydrofolate was a good formyl-donor in the crud e
in vitro system. The formylating enzyme was purified by Dickerman et

al . (1967), who confirmed that N 70-fTHF was the formyl-donor . There-
fore, the enzyme was named : N10-formyl-tetrahydrofolate :L-methionyl-
tRNA N-formyltransferase (E .C.2 .1 .2 .9) . This means that the formyla-
tion of Met-tRNAM et is coupled to the C-1 metabolism as shown in
Fig . 6 .

The transformylase has been extensively purified by Kahn et al . (1980)
who showed that at physiological ionic conditions, the enzyme has a
significantly higher affinity to charged initiator tRNAMet as compared t o
uncharged tRNAMeC and to other tRNAs .

From the reactions of aminoacylation and formylation (and as it will
be discussed later, also from the interaction with the elongation facto r
Tu), it seems clear that the tertiary structure of the initiator tRNA mus t
be partially identical to that of tRNAMet but also partially different fro m
all other tRNAs, and this specific tertiary structure seems sensitive t o
aminoacylation .

Not only in E. coli but also in cell organelles of eukaryotic organisms
(chloroplasts and mitochondria) is the protein synthesis initiated b y
fMet-tRNA (Galper and Darnell, 1969) . This led Marcker (1969) to
propose the general rule that prokaryotic cells and eukaryotic cell or-
ganelles use N-formyl-methionyl-tRNA as polypeptide chain initiator
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tRNA. The initiator tRNA in eukaryotic cytoplasmic protein synthesi s
is also methionyl-tRNA. Although it has been shown that this tRNA
(tRNAMet) can be formylated by E . coli transformylase, no formylatio n
takes place in the eukaryotic cytoplasm in vivo (Lodish, 1976) .
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Formylation of prokaryotic Met-tRNAfet is not indispensable .

In vivo evidence against the general rule offormylation

However, formylation of initiator tRNA methionine in prokaryotic or-
ganisms is not general - that cells may grow without formylation ha s
been shown in different organisms in four principal classes of cases :

1: organisms which cannot synthesize the formyl-donor de novo may
grow in the absence of formylation

2: organisms which contain no transformylase enzyme grow without
formylation

3: E. coli can grow when formylation is inhibited
4: mutants of E . coli have been isolated which grow normally in the

presence of an inhibitor of formylation .

An example of each of these cases will be described briefly :
1 : The organism Streptococcus faecalis R is (in contrast to E . coli and other

prokaryotes) not able to synthesize folic acid de novo, but it was found
that the cells could grow in the absence of folic acid when the substrat e
was supplemented with the folic acid metabolites serine, methionine ,
thymine and a purine base - see Fig . 6 . At such conditions, the for-
myl-donor N10-formyl-tetrahydrofolate cannot be synthesized, an d
formylation of the initiator tRNA must (if there is a formylation )
follow other metabolic pathways (Samuel et al ., 1970) . Indeed, n o
formylation or other blocking of the a-amino group of Met-tRNA
methionine took place in the folate-free medium, although in the
presence of folic acid, most of the Met-tRNAMet was formylated in
vivo (Samuel et al ., 1972). Later, the authors showed that the tRNAfle t

from folate-free cells was altered as compared to the initiator tRNA
isolated from cells grown in the presence of folic acid - the ribothy-
midylic acid normally found in the TIC loop was not found in the
"folate-free " tRNA, see Figs 5A and 7. So it seemed that a structural
change in the initiator tRNA could compensate for the lack of formy-
lation (Samuel & Rabionwitz, 1974) .

However, it was found that the methylase responsible for the for-
mation of rT in the tRNA in S . faecalis requires a folate coenzyme as
methyldonor. This means that the absence of formylation and of rT in
the tRNA of "minus folate" cells are both (and possibly independent -
ly) induced by the folate deprivation (Delk & Rabinowitz, 1975) .

Rabinowitz and coworkers did not study the in vitro binding of
fMet-tRNAM et from plus and minus folate S . faecalis in crossed experi-
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Fig . 7. The T-arm of the initiator tRNAJ" from S . faecalis .

The ribothymidylic acid present in +folate cells is replaced by
uridine in folate cells (Samuel and Rabinowitz, 1974) .

ments with ribosomes (and initiation factors) isolated from the tw o
growth conditions. It can therefore not be excluded that the ribo-
somes (and/or the initiation factors) play an important role for th e
ribosomal binding of the unformylated (and undermethylated) in-
itiator tRNA from "minus folate" S . faecalis stimulated by initiation
factors (and thus in the ability of S . faecalis cells to grow in the absenc e
of formylation) .

2: The strongly halophile Halobacterium cutirubrum was studied by Whit e
& Bayley (1972) who found that this organism does not synthesize th e
transformylase enzyme needed for the formylation of Met-tRNA Met ,

although the methionine accepting tRNA isolated from H. cutirubrum

could be separated into two species of which one was formylatable b y
E . coli transformylase .

As the organism requires extreme high salt concentrations, it i s
likely that conformational changes of the tRNA (and/or the ribo-
somes) may occur as compared to a hypothetical low-salt structure .
Such salt induced structural changes may explain the ability of H.

cutirubrum to grow without formylation of the initiator tRNA .
3: The antibiotic trimethoprim is an inhibitor of dihydrofolate reductase ,

the enzyme which reduces dihydrofolate (DHF) to tetrahydrofolat e
(THF) - see Fig . 6 . Harvey (1973) has studied the effect of trimethop -
rim on the growth ofE. coli . He found that E. coli wild type (B/r) cell s
could grow exponentially at a reduced rate in the presence of trime-
thoprim when the folic acid metabolites were added . Under these
conditions, no formylation of Met-tRNAM et took place .

Harvey found that at the growth conditions where the initiato r
tRNA was unformylated, a two-fold increase in the ratio ribosomal
subunits :70S ribosomes arised. As will be discussed further in th e
following sections, the increased level of ribosomal subunits may b e
involved in the explanation of the ability of the cells to grow without
formylation of Met-tRNAM et

4: The isolation of E . coli mutants able to grow normally without for -
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mylation (Danchin, 1973) is an additional support for the idea tha t
formylation of initiator Met-tRNA is not general and vital for pro-
karyotic organisms .

Danchin isolated E . coil mutants on media containing the C- 1
metabolites supplemented with trimethoprim, and found quite sur-
prisingly that among these mutants were strains resistant to strep-
tomycin . Such rpsL mutants are known to be point mutations in th e
ribosomal protein S12. Therefore, it seems clear that the ability to
grow in the absence of formylation in some way is linked to altera-
tions in the structure of the ribosomes .

Another E . tali mutant was isolated by Baumstark et al . (1977 )
which was able to grow without formylation of the initiator tRNA .
By the same method as previously used by Danchin (1973), a K1 2
mutant was selected in the presence of sulfathiazole and trimethoprim .
The authors showed that the initiator tRNAM et of this mutant con-
tained a reduced (but finite) amount of ribothymidine in the TiC loop
of the tRNA and concluded that this alteration in the initiator tRN A
structure was possibly the reason why the mutant could grow withou t
formylation .

However, their in vitro f2 directed protein synthesis did not includ e
crossed experiments with mutant ribosomes and unformylated Met-
tRNAM et isolated from the parental strain cells . This would be requir-
ed to exclude that the ability to grow in the absence of formylatio n
arises from altered ribosomes . In fact, the mutant of Baumstark is not
a single mutation but derived from a parental strain which was strep-
tomycin resistant (altered in the ribosomal protein S12) .

E. coli mutants containing unmethylated uridine instead of rT in the
tRNA have been isolated by Björk & Isaksson (1970) . In order to tes t
the hypothesis of Baumstark and coworkers, trimethoprim was adde d
to the growth medium of the mutants (and the C-1 metabolites) .
Under such conditions no formylation of Met-tRNAM eY could take
place, and it would show if the lack of rT was sufficient to account fo r
growth in the absence of formylation . The cells were not able to gro w
under such conditions (Danchin and Isaksson, personal communica-
tion) . Thus it seems clear that the other mutations in the strain isolated
and studied by Baumstark, in addition to the mutation in the methyl-
ase, must play a role in the ability of these cells to grow withou t
formylation of the initiator Met-tRNA .
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In vitro evidence against the general rule offormylation

Looking back at the first experiments in vitro with the initiator tRNA
there were indications that formylation might not be indispensable .
Clark & Marcker (1966a) did not find any significant difference in the
activity of Met-tRNAMet whether formylated or not, and just before th e
discovery of the initiation factors in 1966, Bretscher & Marcker (1966 )
had shown that at 10-20 mM magnesium, both formylated and unfor-
mylated Met-tRNAMet could bind to ribosomes and react with puromy-
cin. They concluded that the only role of the formyl group was t o
increase the rate of initiation .

This led Clark and coworkers to believe that the specificity as initiato r
tRNA lay in the tRNA structure and not in the presence of the formy l
group on the methionine . Therefore, the two methionine acceptin g
tRNAs were sequenced in the hope that the nucleotide primary structur e
could reveal some characteristic differences between the two tRNAs (o n
the one hand and between tRNAMet and all other tRNAs on the other) .

In the two cloverleaf structures shown in Fig . 5, one observes a
number of differences in nucleotides at the individual positions . How-
ever, an intensive comparison of the tRNAMet sequence with other
tRNAs shows that all individual nucleotides and local sequences o f
tRNAMet can be found in other tRNAs . Only one difference in th e
primary structure seems to be characteristic for tRNAMet - namely the
fact that the 5'-terminal nucleotide (cytidine) is not involved in a Wat-
son-Crick base-pair which is the case for the 5'-terminal nucleotide of all
other tRNAs.

Although this may be very important, it is unlikely that it accounts fo r
all the specificities which are found for the initiator tRNA as compare d
to tRNAmeC and all other tRNAs, especially as this difference is no t
found in eukaryotic cells which also use a formylatable (by E . coli tran-
formylase) Met-tRNA species as initiator tRNA .

Other workers then found that formylation was required for the trans-
lation in vitro of natural mRNA (from phage f2) at 5 mM magnesium
(Eisenstadt & Lengyel, 1966), and after the discovery of the initiatio n
factors and the establishment of their optimal salt conditions (5-10 mM
magnesium), many in vitro experiments suggested that fMet-tRNAM et

was the correct initiator tRNA as only the formylated tRNA specie s
could bind to 70S ribosomes strongly stimulated by initiation factor s
(the concept of "enzymatic binding") (Grunberg-Manago et al ., 1969 ;
Drews et al ., 1973) .

In most of these experiments, 70S ribosomes were used for studying
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the initiation factor stimulated binding . As the initiation mechanism wa s
supposed to involve the formation of a 30S initiation complex wit h
mRNA and initiator tRNA (see Fig . 8), one could ask whether 30 S
subunits would behave differently from the 70S ribosomes in such i n

vitro binding experiments . A first indication of such a difference can b e
seen from the work of Grunberg-Manago et al . (1969) . In one experi-
ment, 30S subunits were used, and indeed, a small stimulation (in abso-
lute scale, but 50% relative) by the initiation factors of the binding o f
unformylated Met-tRNAM et at 5mM magnesium is observed .

In the work of Samuel & Rabinowitz (1974) previously described, th e
initiator tRNA from "minus-folate" S . faecalis cells was extracted and
purified . In the in vitro ribosomal binding assay, the authors showed tha t
initiation factors stimulated the unformylated and the formylated for m
of this Met-tRNAMet to the same degree . (This IF-stimulated bindin g
was seen at Mg" concentrations up to 30 mM . )

Together these results indicate that although the formylation may in -
crease the rate of interaction of the initiator tRNA with ribosomes, the
enzymatic binding of Met-tRNAM e` to ribosomes or ribosomal subunit s
does not absolutely require formylation .

More recently, Rich and collaborators have used the single-stran d
specific endonuclease S1 to study structural characteristics of initiator
tRNAs compared to elongator tRNAs (Wrede et al ., 1979). They found
that S1 cleaved at two distinct sites in the anticodon loop of three differ -
ent initiator tRNAs (from E . coli, yeast and mammalian), whereas elon-
gator tRNAs were cut at four sites. The authors suggest that the specific-
ity is caused by the three G-C base-pairs of the anticodon arm (se e
Fig . 5), which are common in the initiator tRNAs and different from the
elongator tRNAs included in the experiments by Rich & Wrede . How-
ever the initiator tRNAs in Bean chloroplasts and in yeast mitochondria
contain only two G-C base pairs in these positions . The nucleotide at
position 29 is here A in stad of the G in E. coli tRNAMe` (Fig . 5A) .
Furthermore, at least two examples are known of elongator tRNAs
which contain three G-C base pairs at position 29-41, 30-40 and 31-39 ,
namely tRNAMet from Bovine liver mitochondria and tRNAseL from
Halobacterium vol . (Sprinzl & Gauss, 1984) . Therefor it seems clear that
no single local nucleotide sequence in the anticodon stern of the initiato r
tRNAMet is determining its specific function . Indeed as it will be discus-
sed in later paragraphs, there are indications that unformylated Met-
tRNAMet can function as an elongator tRNA .

As it seems unlikely that formylation should cause a drastic change in
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the structure of the anticodon stem, the results of Rich et al . are in
agreement with our results presented in the following sections, that
formylation is not the determining factor but that the tertiary structur e
of the initiator tRNA most probably is one of the most important fea-
tures in the functional specificity of fMet-tRNAM et We have studied the
accessibility of different regions of tRNA MeY and tRNAMet to a number of
ribonucleases and compared the results in the presence and absence o f
proteins . These results will be discussed in detail in subsequent para -
graphs . Other important elements which will be discussed in the follow -
ing is the presence in vivo of translation factors . The fact that unfor-
mylated Met-tRNAM et binds to the elongation factor EF -Tu (see later)
indicates that at extreme growth conditions, some of the initiator tRNAs
might in fact function in the elongation step of translation .

Buckingham and collaborators have found that initiation factor s
stimulate the binding of formylated or acetylated Trp-tRNA TrP to 30S or
70S ribosomes in the presence of poly(U,G) . A number of other tRNA s
have been tested for similar initiator activity with negative results (Leo n
et al ., 1979) . These results indicate some structural similarity between
tRNAM et and tRNA TrP , although such similarity does not appear from a
comparison of the nucleotide sequences of the two tRNAs . One poin t
which may seem rather odd is that these two tRNAs, alone among the
21 different amino acid acceptors, do not show degeneracy in their cor-
responding codons, namely AUG and UGG respectively, are codons for
tRNAMet and tRNATrP (with the exception that the valine codon GUG
and the normal codon for isoleucine AUU in a few cases have bee n
found as initiator codons) .

Finally, the amino acid part of fMet-tRNAM et seems to be of minor
importance for the functional specificity as initiator tRNA . Giegé et al .

(1973) showed that the methionine of fMet-tRNAM et could be replace d
by valine or phenylalanine without any change in the initiation factor-
stimulated binding to ribosomes . The puromycin reactivity too was
unchanged by the mischarged f-aa-tRNAMet s

As a conclusion, it seems that the ribosome-mRNA interaction wit h
the initiator tRNA must be considered when determining the specificity
of a tRNA as initiator . The proper selection of the initiator tRNA may a t
least in a final step be controlled by the initiator codon of the mRNA ,
and although formyl-Trp-tRNATrP can bind to the P-site of the 30S o r
70S ribosome (in vitro), the use as initiator tRNA in vivo is prevented by
the lack of formylation and by the mis-matching of the tRNATrP antico-
don and the initiator codon of the mRNA .



FUNCTION OF PROKARYOTIC INITIATOR tRNA

	

305

So the total recognition between the components in the initiatio n
complex is most probably a combination of the mRNA-aa-tRNA, th e
mRNA-30S, the as-tRNA-IF2 and the 30S-as-tRNA interactions, an d
although one or more of these interactions might proceed by specie s
other than (f)Met-tRNAMet the final complex will not be stable in suc h
cases .

A summary of the reactions involving the initiator tRNAM e t

during the initiation of translation

A short summary of the present view of the mechanism of polypeptide
chain initiation follows . Fig . 8 is a schematic representation of the step s
involved in the initiation process (Petersen et al ., 1984b) .

After the aminoacylation (reaction 1+2) and formylation (reaction 3 )
of tRNA et , a pre-initiation complex between fMet-tRNAM et and initia-
tion factor IF2 is formed (reaction 4) . GTP may be involved in the
formation of a ternary complex fMet-tRNAMet:IF2:GTP, but no direct
evidence for such a complex has yet appeared ; a later section discusses
this subject in more detail .

The next step involves the ribosome and in particular the 30 S
ribosomal subunit . The 70S particle exists in equilibrium with the 30 S
and 50S subunits (reaction 11) . In vitro experiments have shown that
temperature, pH and especially ionic conditions are parameters of im -
portance for this equilibrium. Thus increased concentration of potassium
or decreased concentration of magnesium promotes dissociation (see als o
Fig. 10) . However, in the cell, the equilibrium is supposed to be control -
led by special proteins, the initiation factors IF1 and IF3 . IFl increases the
rates of dissociation and association, and IF3 prevents reassociation by
binding to the 30S subunit . IF3 is thus acting as an anti-association
factor, and in the presence of IF3, IF1 acts as a dissociation factor, thus i n
collaboration, the two factors shift the equilibrium towards the 30S +
50S state (Grunberg-Manago, 1980) .

The sequence in the following steps, the binding of mRNA and fMet-
tRNAM et to the 30S subunit, is not known . There exist indications for
both molecules being bound prior to the other . Therefore, in Fig . 8, the
binding of both components is shown simultaneously .

In the review previously mentioned, Watson (1964) introduced th e
concepts of two distinct ribosomal sites for interaction with mRNA an d
aminoacyl-tRNA - now called the P- and A-sites . The initiator region
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Fig . 8 . Principal steps in the initiation of prokaryotic translation . Reactions involving the initiato r
tRNAfe t

(the nucleotide sequence preceding and including the initiator AUG co-
don) of the mRNA is supposed to form a varying number of base-pairs
,with the 3'-OH terminal region of the 16S ribosomal RNA (Shine &
Dalgarno, 1975), similarly a part of the fMet-tRNAM et molecule, includ-
ing in particular the anticodon region, binds to the 30S ribosome . Both
these interactions take place at the P-site . The P-site is thus a functional
as well as a structural definition .

The implication of the P-site and the role of formylation of Met-
tRNAM et in the formation of the 30S initiation complex will be discussed
in more detail in the subsequent sections .

The last step in the formation of the functional initiation complex i s
the association of the 50S subunit with the 30S initiation complex (reac-
tion 6) . During this step, GTP is hydrolyzed, and the three initiatio n
factors are released. The role of the GTP hydrolysis is not clear, but i t
seems reasonable that a final correct positioning of the four mac-
romolecular components in the initiation complex requires a conforma-
tional adjustment which could be energy-requiring . Other molecules
may play an important role in the regulation of the initiation-complex
formation as for instance the ribosomal protein Si ; this is currently
under investigation in a number of laboratories, and is therefore no t
included in this short review of the initiation mechanisms .

In addition to the described classical mechanism of initiation, Fig . 8
shows reactions involving Met-tRNAM et or fMet-tRNAM eY , which hav e

l~

EF-Tu:GTP

~
MetRS
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Table 1 : Functional differences between tRNAM et and other tRNA s

Codon

	

Interaction with proteins and ribosomes

specificity
Met-tRNA

	

Transformylase*

synthetase

	

(E. C.2.1 .2 .9 )

(E. C . 6 .1 .1 .10)

Initiation

	

Elongation

	

70S ribosomal

factor [F2

	

factor EF-Tu

	

A-site

	

P-sit e

tRNAM et AUG

	

O+

	

+ O+

	

®

	

±
. .#

	

#

tRNAMet

(GUG) .

	

,(AUU) ,(UUG)

AUG

	

O+ O+

	

+
other tRNAs not AUG +

	

+

* after charging with the cognate amino acid
shown to stimulate Met-tRNAMet binding to ribosomes in vitro (Clark & Marcker ,
1966b )

# found as initiator codon in mRNA (Steitz, 1980 ; Sacerdot et al ., 1982) .
O+ complexes discussed in this paper .

only recently been investigated . Such studies are partly the subject of th e
following sections . The functional differences between tRNAM et and
other tRNAs are shown in Table 1 . The proteins and ribosomal interac-
tions involving the different tRNAs are indicated with encircled symbol s
at complexes which are discussed in the subsequent sections .

In vitro studies of the 30S and 70S ribosomal
Met-tRNA comple x

The initiation of translation is believed to proceed via the formation of a
complex between mRNA, 30S ribosomal subunit and formylmethionyl-
tRNAMet as shown in Fig . 8 . Because of the several exceptions to the
general rule that the initiator tRNA methionine must be formylated, w e
wanted to study the in vitro formation of the 30S initiation complex . We
have measured the binding of initiator Met-tRNA et formylated and
unformylated, to 30S ribosomal subunits, and we have studied the ef-
fects of different molecular components on this binding (Petersen et al . ,

1976a) .
Table 2 shows that crude initiation factor extracts stimulate the bind -

ing of both tRNA species in the presence of the synthetic messenge r
poly(A,G,U) . In addition, it was shown that purified initiation factor s
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Table 2 : Effect of different messengers on the binding of fMet-tRNA et
Met-tRNAf

et

and Met-tRNA, et to 30S ribosomal subunits in the absence and in the presence o f
initiation factors and GTP

Relative molar binding to 30 S
ribosomal subunits

Messenger

	

GTP

	

Crude IF [Mg+ *], mM fMet-tRNAM" Met-tRNA f̀W ' t Met-tRNA "

No

	

+ 5 1 3 2
+

	

+ 5 4 2 1

ApUpG

	

+ 5 3 2 2
+

	

+ 5 27 7 3

R17RNA

	

+ 5 1 6 1
+

	

+ 5 74 13 1

Poly(A,G,U)

	

+ 5 21 17 3
+

	

+ 5 183 35 8
5 12 1 8

+ 5 112 68
15 46 45

+ 15 127 107
35 49 52

+ 35 117 95

(Petersen et al . 1976a) .

had the same effect . This stimulation also exists in the presence of the
trinucleotide codon for methionine ApUpG and in the presence of the
natural messenger RNA from phage R17. No significant binding of the
elongator Met-tRNAmet is found under any of these conditions .

Subsequently, preassociated 70S (tight couples) ribosomes were used
in similar binding experiments, and as seen in Table 3, unformylate d
initiator Met-tRNAMeL binds to 70S ribosomes in the absence of initia-
tion factors . At low magnesium concentration, this binding is almos t
completely inhibited when initation factors are present during the incu-
bation.

Contrastingly, formyl-Met-tRNAM eY does not bind significantly to
70S ribosomes at low magnesium concentration . The addition of initia-
tion factors shows the well-known stimulation of the binding of fMet-
tRNAM et

Furthermore, Tables 2 and 3 show that GTP inhibits the binding of th e
unformylated initiator tRNA to both 30S and 70S ribosomes, both in th e
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Table 3 : Effect of GTP on the binding of Met-tRNAMe1 and fMet-tRNAMet to 70 S
ribosomes in the absence and in the presence of initiation factor s

pmol

Addition

	

Crude IF Met-tRNAMet fMet-tRNAMet

none 1 .89 0 .1 5
GTP 1 .64 0 .50
none

	

+ 0 .07 0 .24

GTP

	

+ 0 .04 1 .85

Incubation mixtures contained : 3 .8 pmol of Met-tRNAM et or 2 .8 pmol of fMet-tRNAM et ;

15 pmol of 70S ribosomes and, where indicated, 1 mM GTP and 49 .tg of crude IF .
Magnesium acetate, Tris -HC1 buffer, ammonium chloride, and poly(A,G,U) were in th e
amounts described in the legend to figure 9 (Petersen et al ., 1976b) .

absence and in the presence of initiation factors, whereas this highenerg y
nucleoside triphosphate, as is well-established, stimulates the binding o f
fMet-tRNAM et in all cases . This may indicate that GTP binds directly t o
the 30S subunit and not through a complex with IF2 .

To test whether the Met-tRNAM et bound to 30S ribosomal subunits i s
bound at the ribosomal P-site, 5OS subunits were added after the bindin g
to 3OS, and subsequently puromycin was added . This antibiotic resem-
bles the 3'-end of aminoacyl-tRNA and reacts with aminoacyl or pep-
tidyl groups of P-site bound aa-tRNA or peptidyl-tRNA .

The results are seen in Figure 9 which shows that at least a part of th e
Met-tRNAM et which is bound to 3OS ribosomal subunits is bound at a
site which after addition of the 50S ribosomal subunit corresponds to th e
ribosomal P-site . About 50% of the totally bound Met-tRNAM et transfer
methionine to puromycin.

The results show that formylation does not seem to be needed for th e
formation of a 30S initiation complex . Unformylated Met-tRNAM et i s
recognized by initiation factors in the presence of 30S ribosomal subunit s
and bound like fMet-tRNA et at a puromycin reactive site (measure d
after addition of 50S ribosomal subunits) .

As it will be discussed in a later section, this recognition may be caused
by ribosome-bound initiation factors as free IF2 does not seem to hav e
any significant affinity to Met-tRNAMe t

This indicates that it is the structure of the initator tRNAM et - and not
the formyl group - which is recognized by the 3OS ribosomal subunit i n
the presence of initiation factors .
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Fig .9A. Binding of fMet-tRNAfe` to 30S
ribosomal subunits, effect of 50S subunits, and
puromycin sensitivity in the absence (o) an d
presence (a) of initiation factors . Incubation 1.0

mixtures (50 µl) contained, at time 0, 15 pmo l
of 30S subunits, 50 mM Tris-HC1 (pH 7 .4) ,
0 .11 A260 unit of poly(A,G,U), 5 mM mag-
nesium acetate, 50 mM ammonium chloride,

	

E
1 mM GTP and 2 .1 pmol fMet-tRNAf", and

a

where indicated, 26 µg of crude initiation factor

	

0. 5

extract . After 10 min incubation at 37°C ,
15 pmol of 50S ribosomal subunits were added .
After an additional 10 min incubation, 5 p.l of
puromycin (5 µg/.l) were added . The amount
offMet-tRNAIet bound to ribosomes was mea -
sured by nitrocellulose filtration, and th e
amount of formylmethionine reacted with
puromycin was measured by ethyl acetate ex -
traction .
B . Binding of Met-tRNAr" to 30S ribosoma l
subunits, effect of SOS subunits, and puromycin

	

1 .0

sensitivity in the absence (o) and presence (0)
of initiation factors . Same incubation mixtures
as in A, except 3 .0pmol of Met-tRNÅf e` wer e
used instead of fMet-tRNAf e` , and no GTP É
was added . Incubation periods are indicated

	

a

with arrows corresponding to the time of the

	

0 . 5
various additions (Petersen et al ., 1976a) .

	 I 	 I
10

	

20

	

30 Minute s

The finding that formylation is not essential for the formation of th e
30S initiation complex may explain why some E . coli mutants can gro w
in the presence of trimethoprim (which inhibits the enzyme dihydrofo-
late reductase and thus the formation of the formyl donor 10N-formylte-
trahydrofolate (see previous section)) .

Nevertheless, the initiator Met-tRNAM e` has been found to be entirely
formylated in almost all E . coli cells . What then is the role of the formyla-
tion? One explanation is that the N-blocking of the initiator tRN A
methionine speeds up the rate of formation of the initiation complex a s

10 20 30 Minute s

B
addition

	

addition of
of 50 S

	

puromycin
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suggested by Bretscher & Marcker (1966) . A second or additional pos-
sible explanation arises from our finding that only the formylated Met-
tRNAMet binds to 70S ribosomes in the presence of the initiation factor s
which were discovered after Bretscher's and Marcker's experiments .

Thus, the formyl group is necessary in cases where initiation of trans-
lation proceeds via the (untraditional) formation of a 7OS initiation com-
plex without a previous involvement of 3OS ribosomal subunits . This
possibility is investigated in the following section .

A two-state model for the 7OS ribosome

In the preceding section it was shown that the 30S ribosomal subunit is
apparently not able to distinguish between formylated and unformylate d
initiator Met-tRNAMet, whereas the 70S ribosome discriminates strong-
ly in favour of the formylated species in the presence of initiation factor s
(which is relevant to the situation in vivo) but - also in the absence of
initiation factors - it was found that the 70S ribosome can distinguis h
between the two initiator tRNA species .

The behaviour of the 70S ribosome in this binding reaction has been
studied in more detail, as it seems to possess the property to select the N-
formylated initiator Met-tRNAM et (Petersen et al ., 1976b) .

The ability of the 70S ribosome to discriminate between Met-
tRNAMet and fMet-tRNAMet is found to be particularly strong at lo w

Table 4 : Effect of potassium and magnesium ion concentration on the binding of fMet-
tRNA f̀" et and Met-tRNAMet to 70S ribosomes .

Potassium conc . Magnesium conc . fMet-tRNAM et Met-tRNA`` e t
(mM) (mM) (pmol) (pmol )

0 5 0 .22 1 .29
0 20 1 .16 1 .3 3
0 35 1 .29 1 .1 1

100 20 0 .99 1 .20
200 20 0 .81 1 .23
400 5 0 .06 0 .1 8
400 20 0 .69 1 .2 1
400 35 1 .06 1 .02

Incubation for 20 min at 37°C of the following mixture (50 µl) : 15 pmoles of 70 S
ribosomes ; 0 .11 A260 unit of poly(A,G,U) ; 1 mM GTP; 50 mM Tris -HC1 (pH 7 .4) ;
50 mM ammonium chloride ; magnesium acetate and potassium chloride as indicated ;
and 3 .0 pmol of fMet-tRNAM et or 3 .8 pmol of Met-tRNA''-let . The amount of tRNA
bound was analyzed by the Millipore filter assay (Petersen et al ., 1976b) .
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10 0

(f)0 50

0

Fig .10 . The equilibrium between 70S ribo-

somes and 30S + 50S subunits measured b y
light-scattering at 24°C as a function of mag-

nesium concentration in the absence of potas-

sium '(o) and at 400 mM (40) (Petersen et al . ,

1976b) .

5 10 20

	

50 10 0
mM Mg"

2

magnesium concentration (around 5 mM), whereas it disappears whe n
the Mg" concentration is increased to 20-35 mM (Table 4) . It was als o
found (especially at low Mg ++ concentrations) that high concentration
of potassium (400 mM) strongly inhibits the binding of both initiato r
tRNA species to the ribosomes . The dissociation curve of ribosomes as a
function of magnesium concentration (Fig . 10) shows that the ribosomes
are 100% associated at 5 mM Mg" in the absence of potassium (but i n
the presence of 50 mM ammonium chloride), whereas the ribosomes a t
400 mM K+ and 5 mM Mg' are 100% dissociated . Thus the effect o f
potassium is in agreement with the results shown in the previous para-
graph, neither of the two initiator tRNAs binds to ribosomal subunits i n
the absence of initiation factors .

Met-tRNAM et first bound to 30S subunits can react with puromycin
after addition of 50S subunits (Fig . 9) . A similar puromycin reaction i s
not possible for the Met-tRNAM et bound directly to the 70S ribosomes
in the absence of initiation factors and at low concentrations of K + and
Mg' (50 mM and 5 mM, respectively) . However, when the concentra-
tions of these ions are increased to 400 mM and 35 mM, respectivel y
(almost completely associated ribosomes), the Met-tRNAMet binds to a
puromycin reactive site on the ribosome (Fig . 11) .

The assay for the binding reaction requires filtration on nitrocellulos e
filters and therefore a reasonably high affinity between the compound s
we want to isolate in complexed form, whereas the puromycin reactio n
takes place on the ribosome and liberates into solution the puromycin
covalently bound to the radioactive amino acid, and the reaction produc t
is easily extracted by ethylacetate . Thus, a much weaker binding to the
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Table 5: Effect of messenger RNA (poly(A,G,U)) on the binding and puromycin reac-
tion of fMet-tRNAMet and Met-tRNAM e t

(pmol)

- poly(A,G,U) + poly(A,G,U )

fMet-tRNAMet binding 0 .30 1 .0 5
fMet-puromycin 2 .01 1 .6 8
Met-tRNAM et binding 0 .11 0 .9 5
Met-puromycin 1 .75 1 .41

Sanie incubation mixture as in Table 4 except that GTP was omitted ; the amounts o f
magnesium acetate and of potassium chloride were 35 and 400 mM, respectively . Bind-
ing was measured after 20 min at 37°C . For the puromycin reaction, 25 ag of puromyci n
was added after 20 min at 37°C, and the reaction was continued for 5 min . The reacte d
amounts were analyzed by the ethyl acetate extraction technique (Petersen et al ., 1976b) .

ribosome of the Met-tRNAM et can be detected by the puromycin reac-
tion compared to the "binding assay" . It was therefore interesting to
compare the effect of mRNA (synthetic poly(A,G,U)) in the two assays .
As shown in Table 2, the binding of Met- and fMet-tRNAM et to 30S
subunits in the presence of initiation factors depends completely on th e
presence of a messenger RNA . Table 5 shows that the binding to 70 S
ribosomes also is messenger-dependent, whereas the puromycin reactiv-
ity is found in the total absence of messenger .

It is also shown that the binding of Met-tRNAM et as well as fMet-
tRNAM et is uninfluenced by tetracyclin, an antibiotic which at low con -

4

E

Fig . 11 . Puromycin reaction of prebound in-
itiator tRNA as a function of potassium con -
centration . The incubation mixture contained :
16 pmoi of 70S ribosomes, 50 mM Tris -HC1
(pH 7.4), 1 mM GYP, 35 mM magnesiu m
acetate and 4 .2 pmol of fMet-tRNAfet (o) ,
3 .8 pmol of Met-tRNAfe ` (o) or 4 .6 pmol of
Met-tRNA`Y" (A) . The reaction products
were analyzed as described in the legend to Fi-
gure 9 (Petersen et al ., 1976b) .

400

	

600

	

80 0
mM K '

200
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Table 6 : Effect of tetracyclin on the binding of fMet-tRNAMet Met-tRNAM eC and Met-
tRNA,MeC to 70S ribosomes

Translation Factors

	

tetracyclin

	

tRNA bound (pmol )

non e

crude I F

none

crude I F

none

EF-Tu

0 .5 5
0 .6 1

1 .4 4
1 .4 7
1 .9 6

2 .20

0 .3 9
0 .52

0 .42
0 .42

0 .8 4

0.4 0

fMet-tRNAMet

Met-tRNAM eC

Met-tRNAmet

+

+

+

+

+

+

Incubation mixtures were as in Table 4, except for the amount of magnesium acetat e

which was 5 .5 mM and, where indicated: 50 .tg of crude initiation factors (IF) ; 50 tg of

elongation factor EF-Tu ; 0.1 mM tetracyclin ; 2 .3 pmol of fMet-tRNAM et ; 5 .2 pmol o f
Met-tRNAMe1 ; or 4 .6 pmol of Met-tRNAm et (Petersen et al ., 1976b) .

centrations inhibits the binding of aminoacyl-tRNA to the ribosomal A-
site (Table 6) .

Parallel experiments were made with the elongator Met-tRNAm et In
no case was this tRNA bound in response to initiation factors or showe d
any reaction with puromycin.

Thus, the 70S ribosome is able to distinguish between the initiator
Met-tRNAM eY and the elongator Met-tRNAMet In the absence of initia-
tion factors, the initiator Met-tRNAMet binds very well to 70S ribosomes
and can be triggered to react with puromycin . Under these condition s
the elongator tRNAMet does not bind to the ribosome and reacts under
no conditions with puromycin . Furthermore, the results show that 70 S
ribosomes discriminate strongly between formylated and unformylate d
initiator Met-tRNAMet both in the absence and in the presence of initia-
tion factors . Contrary to the unformylated initiator tRNA, fMet-
tRNAMet does not bind to 70S ribosomes in the absence of initiatio n
factors. The amount of Met-tRNAM et bound in the absence of initiatio n
factors is unaffected by tetracyclin .
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This raises the following question :
1: Do two different 70S ribosomal sites exist for binding of fMet-

tRNAM et and Met-tRNAM et respectively, or
2: Do two different conformations exist of the ribosomal P-site - the

initiator tRNA binding site ?

The latter is most likely because : The Met-tRNAMeL does not bind to the
A-site (no effect of tetracyclin) but can be triggered to react with
puromycin (the definition of P-site bound aa-tRNA) .

Therefore, we propose the existence of the equilibrium :
7OS - 7OS*

between a 7OS ribosome containing a P-site with inactive peptidyl trans-
ferase and a 7OS* ribosome with an active peptidyl transferase (or a P* -
site) .

This also suggests a function of the formylation of the initiator tRNA
as fMet-tRNAMet only binds to the active P*-site and thus pulls the
equilibrium towards the active conformation, whereas Met-tRNAM et

binds equally well to both conformations and thus does not change the
equilibrium. Fig. 12 shows how Met-tRNAMet (M) and fMet-tRNAMe t

(FM) are supposed to bind to the two conformations at different condi-
tions .

In the presence of Initiation Factors

	

In the absence of Initiation Factors

	

In the absence of Initiation Factor s
A

	

B

	

C

30S .---= 30S*

	

30S

	

' 30S*

	

30S

	

30S*

50S

	

M

	

505

	

50S

	

M 1 .	 - 50S

	

50S

	

M

	

50S

~ y

	

a
70S

	

' 70S*

	

70S

	

70S*

	

70S ~ ' 70S*

	

30S

	

30S*

	

30S

	

305*

	

30S

	

30S *

505

	

FM

	

50S

	

50S

	

FM

	

50S

	

50S - FM

	

so s

	

V

	

y

	

70S

	

70S*

	

70S -' 70S*

	

70S s	 \70S *

Low magnesium concentration

	

Low magnesium concentration

	

High magnesium concentration

Fig . 12 . A schematical presentation of how the position of the 30S and 70S ribosomal initiator
tRNA binding site conformational equilibrium is supposed to be at low magnesium concentration (5
mM) (A and B), and high magnesium concentration (35 mM) (C) in the presence (A) and absenc e
(B and C) of initiation factors . The length of the arrows from each initiator tRNA species indicates
the relative affinity for the different ribosomal conformations, and the sum of arrows from on e
tRNA indicates the total binding at the respective conditions . M: Met-tRNAfe`, FM: fillet-
tRNA'j'-4" (Petersen, 1980) .
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TP9 - a puromycin resistant E . coli mutan t

As a consequence of the proposed hypothesis that the ribosomal P-sit e
exists in two conformations, one would expect the equilibrium betwee n
these two conformations to be sensitive to mutations in the ribosoma l
components involved in the tRNA binding area . We know that puromy-
cin binds to the ribosome in the region between the A-site and the P-sit e
(Cooperman, 1980), and it would therefore be expected that bacteria l
strains permeable for but resistant to puromycin would be affected in the
70S

	

70S* equilibrium .
From the parental strain DL1 (a puromycin sensitive strain of E . col i

K12), Dr . Antoine Danchin, Institut Pasteur, Paris, isolated a mutan t
(TP9) which was able to grow in broth medium supplied with the C- l
metabolites plus puromycin and trimethoprim .

In collaboration with Dr . Leif Isaksson at the Wallenberg laboratory ,
Uppsala, ribosomes isolated from TP9 were analyzed by two-dimen-
sional polyacrylamide gel electrophoresis, and we found displaced posi-
tions of the ribosomal proteins S7, S20 (= L26) and L27 . S7 is located at
the tetracyclin binding site (A-site), and L27 is part of the peptidyl trans-
ferase centre and thus both the ribosomal A- and P-sites (Ofengand et al . ,

1984) . S20 is situated at the "head" of the 30S subunit and most probably
at the interface between the two subunits (Stöffler et al ., 1979) .

Ribosomes isolated from TP9 and DL1 were used in in vitro experi-
ments where the kinetics of binding and puromycin reaction of Met-

cp m

600 0
Fig . 13 . Kinetics of the puromycin reaction of
Met-tRNAf `' bound to 70S ribosomes fro m
wild type (DL1) and puromycin resistent 500 0

(TP9) E . coli cells . The curves show the
amount of Met puromycin formed as a function

4000
of time afier 20 min binding incubation at 37° C
in 50 mM Tris -HC1 (pH 7 .5), 35 mM mag-
nesium chloride, 150 mM potassium chloride 3000

and 64 pmol of Met-tRNAfe ` . The radioactiv-
ity corresponding to the amount of Met-
tRNAr bound to the ribosomes after 20 min is
indicated (100%) . Dotted lines indicate th e
time required for a puromycin reaction of twice 1000

the amount of Met-tRNA bound after 20 mi n
(15 .0 min for wild type and 21 .8 min for TP9
ribosomes) (Petersen, 1980) .

2000

TP 9

time for

	

time for 200% puro
100°/o puro

	

i(15.0 min for DL1 an d
14.5 min)

	

i 21 .8 min fori TP 9 )

15

	

20

	

min .10
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A Fig . 14 . Puromycin reaction of fMet-tRNAf"

bound to wild type (K114) and TP9 ribosomes
as a function of (A) potassium and (B) thal-

lium concentration . Incubation conditions as de -
scribed in the legend to Figure 13 . Ethyl acetate

x ribosomes from TP9

	

extraction after 5 min puromycin reactio n
o ribosomes from Kl 14

	

(Petersen, 1980) .(control )

100 mM K{

B

500 0

1000

5

	

10mMT 1

tRNAMet were measured . No difference was found in the kinetics of th e
binding reaction, whereas a difference was observed in the puromyci n
reaction at prolonged time of incubation . As shown in Figure 13, the
time needed to obtain a puromycin reaction corresponding to the
amount of Met-tRNAMet bound is the same for the two types of ribo-
somes . A higher amount of puromycin reaction can be obtained if th e
incubation is continued, but in that case, the reaction proceeds muc h
more slowly with the mutant ribosomes as compared to the contro l
ribosomes .

This result may indicate that the mutation leading to puromycin re-
sistance affects the ribosomal site of translocation in some so far un-
known way .

The binding of fMet-tRNAM et to the wild type and mutant ribosomes
was studied as a function of K + concentration (Figure 14 .A) . One sees
the previously found sigmoidal shaped curve for the control ribosomes -
indicating the double function of potassium ions in the 70S ± 70S *
equilibrium and in the puromycin reaction, whereas the corresponding
experiment with TP9 ribosomes gives a hyperbolic shaped binding
curve. This indicates that with TP9 ribosomes, one of the two functions

cp m

5000

1000
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of K+ is suppressed - possibly the effect on the 70S ± 70S* equilibrium -
as this may be strongly displaced toward the active form in the mutant .

As potassium ions may have a specific catalytic site at the peptidy l
transferase center and not merely be required to obtain a certain ioni c
environment for the protein biosynthesis, we did similar experiments o f
binding and puromycin reaction replacing the potassium with varying
concentrations of thallium, which is similar to K + with respect to
stereochemical properties . Fig . 14B shows the results . To obtain similar
amounts of fMet-puromycin, 10 times lower concentrations of Tl+ as
compared to K + is needed. This is a further indication of a specifi c
ribosomal site for K + (Petersen, 1980) .

Hypothesis on the role of the formyl group of fMet-tRNAMet

in the translation of polycistronic messenger RNA s

Based on the in vitro experiments, a general function of the formyl grou p
of fMet-tRNAM e` in initiation of translation has been proposed (Peterse n
el al ., 1976b) . In prokaryotes, the traditional view of the mechanism o f
initiation involved the formation of a 30S initiation complex . As shown
in Table 2, the 30S ribosomal subunit (even in the presence of initiatio n
factors) cannot discriminate between formylated and unformylated in-
itiator tRNA, whereas in the presence of initiation factors, only the
formylated species binds to 70S ribosomes (Table 3) . Now, recall the
situation in eukaryotic cells : 1) no formylation of the initiator Met-
tRNA exists, and 2) no polycistronic mRNAs are known . Therefore, n o
initiation is possible at internal initiation sites in eukaryotic mRNAs .

In prokaryotes, the mRNAs commonly are polycistronic and one ca n
imagine that the 5'-end proximal initation site always (as in eukaryotes )
forms an initiation complex with 30S ribosomal subunits . This would
not require formylation of initiator tRNA (although the rate of initiatio n
is increased by the formylation which is in agreement with the fact tha t
prokaryotic translation is 9-12 times faster than eukaryotic translation) .

If the ribosome translating a polycistronic messenger does not dissoci-
ate into subunits after terminating the translation of the first cistron but
as a 70S particle migrates through the intercistronic region of the mRN A
(which varies considerably in length in different mRNAs), this 70S ribo-
some will be directly involved in the initiation complex formation at th e
next initiator codon . As only the formylated initiator tRNA binds to the



FUNCTION OF PROKARYOTIC INITIATOR tRNA

	

31 9

Table 7 : Effect of trimethoprim, chloramphenicol and kasugamycin on the coordinat e
synthesis of ß-galactosidase (Gz) and thiogalactoside acetyltransferase (Ac)

Strain Addition (µg/ml) Ratio (Gz/Ac)

CP78 None 1
Trimethoprim 0 .75 1 . 5
Trimethoprim 1 .5 2 . 4
Chloramphenicol 1 .5 1 .06
Chloramphenicol 2 1 .1 4
Kasugamycin 40 0 .92

CP781a None 1
Trimethoprim 0 .75 1 .1 5
Trimethoprim 1 .5 1 . 2
Chloramphenicol 1 .5 1 . 1
Chloramphenicol 2 1 . 2
Kasugamycin 20 0 .96

(Petersen et al ., 1978) .

70S ribosome in the presence of initiation factors, the formylation is an
absolute requirement in this situation .

From this hypothesis, one can predict that formylation of initiator
tRNA methionine can be related to the polarity in the translation o f
polycistronic mRNAs in such a way that a decrease in the level of formy-
lation under otherwise normal conditions will result in an increased
polarity, 5'-end proximal cistrons being translated relatively more effi-
ciently compared to 5'-end distal cistrons .

In vivo polarity in lactose operon expression, role of formylation of initiator
tRNA methionin e

It has been observed that E . coli mutants which were able to grow in the
presence of low levels of trimethioprim - an inhibitor of formylation, se e
Figure 6 - contained an increased proportion of ribosomal subunits t o
70S ribosomes as compared to wild type cells (Harvey, 1973) . This is an
indication that the cell can overcome the lack of formylation by increas-
ing the proportion of 30S to 70S ribosomes, which is in agreement wit h
the results that 30S and not 70S ribosomes are able to use unformylate d
Met-tRNAMet as initiator tRNA .

It is also expected from our hypothesis that depression of formylatio n
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Fig . 15 . Light-scattering measurement of the
association of ribosomal subunits as a functio n

of magnesium concentration at 150 mM potas-
sium chloride and at 37'C . Ribosomes from
strain CP78 (rpsL +) (o) and from strain

CP781a (rpsL) (6 ) ofE . coli (Petersen et a1 . ,
1978) .

10

	

2 0
mM Mg"

in normal growing cells will affect the ratio between the efficiency o f
translation of the 5'-end proximal and distal cistrons of polycistroni c
mRNAs in such a way that lack of formylation would favour the synthe-
sis of the first protein rather than later proteins from the operon .

This is tested by measuring the in vivo translation of the first and th e
last cistron of the lactose operon in E . coli - (3-galactosidase and
thiogalactoside acetyltransferase, respectively (Petersen et al ., 1978) . We
have studied the effect of inhibition of formylation of initiator tRN A
methionine on the relative synthesis of these two proteins in wild typ e
cells and in E . coli mutants resistant to streptomycin and trimetroprim .

The presence of trimethoprim in the growth medium has a significan t
effect on the differential translation of the first and last cistrons of the
lactose operon in E. coli wild type cells . This inhibitor of formylatio n
results in a two-fold increase in the ratio : 13-galactosidase/thiogalactosid e
acetyltransferase synthesized in wild type cells, whereas no significan t
effect was found in streptomycin resistant strains (Table 7) . Contro l
experiments with other antibiotic inhibitors (kasugamycin and chloram-
phenicol - which are inhibitors of initiation of translation without affect -
ing the formylation of initiator tRNA methionine) showed that thes e
compounds had no effect on the relative expression of the different
cistrons in any of the tested strains .

Ribosomes were extracted from all tested strains and dissociatio n
curves were measured . This showed that at conditions of pH, tempera-
ture and concentrations of mono- and divalent cations comparable t o
those found in vivo, the ribosomes from the mutant cells were signifi-
cantly more dissociated than those from wild type cells (Fig . 15) .

These results are consistent with the hypothesis that a significant par t

100

0

52 40 80
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of the ribosomes may pass through the intercistronic region from th e
previous termination step to the following initiation step without dis-
sociating off the messenger . This could be the case when an unlimited
amount of fMet-tRNAM eC is available for the initiation, whereas th e
ribosome must dissociate and use a 30S subunit for the following initia-
tion at low levels of formylation .

Our suggested mechanism also explains why, in eukaryotic cyto-
plasm, no formylation of initiator tRNA methionine is needed - as no
cellular polycistronic mRNAs apparently exist .

Structural elements in initiator tRNA involve d
in specific interactions with proteins

As a consequence of the results discussed above, we have been interested
in further investigation of the question : What are the specific structura l
elements in tRNAMet which are involved in and thus responsible for th e
different specific interactions with other macromolecules during th e
initiation process as shown schematically in Fig . 8? Recent developments
in the methodology of nucleic acids research has made such investiga-
tions of molecular details possible .

In the following paragraphs, we will look a little more closely at th e
regions within the initiator tRNAMet which are implicated in these inter-
actions. The effect of formylation is studied, and the results are com-
pared to experiments with the elongator tRNAm eC in the cases where the
two tRNAs are involved in similar macromolecular interactions .

Two methods have been employed in these investigations : The foot-
printing method, in which ribonucleases are used for cutting the tRN A
molecule at specific sites . The resulting RNA fragments are analyzed by
polyacrylamide gel electrophoresis, which makes it possible to deter -
mine the exact cutting positions in the nucleotide sequence . Results from
the treatment of free tRNA are compared to those from tRNA complex-
ed to a protein molecule . In the case where different ribonucleases cut a
particular position less efficiently in complexed tRNA as compared t o
free tRNA, it is concluded that this position is protected by the protein .
The technical details of this method has been described recently (Petersen
et al ., 1984c) .

The second method is based on the lability of the aminoacyl-ester
bond in aminoacyl-tRNAs. The reaction of hydrolysis of this linkage is
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Fig . 16. Reaction of spontaneous hydrolysis of the aminoacyl ester bond in Met-tRNAf e` .

shown in Fig. 16 . At neutral pH, the ester bond is hydrolyzed spontane-
ously at a rate which among other factors depends on the temperature .
This method has been applied successfully in the study of interaction s
between elongation factor EF-Tu, GTP and different aminoacyl-tRNAs
(Pingoud et al ., 1977) . The rate of hydrolysis of fMet-tRNAM et or Met-
tRNAM et is measured in the absence or presence of proteins . In the case
where the halflife of the ester bond is increased by the addition of a
protein, it is concluded that an interaction takes place between the tw o
macromolecules and in particular that a closer contact must take place at
the amino acid attachment site .

In the following, results are described from such studies on interac-
tions with methionyl-tRNA synthetase, initiation factor IF2, elongatio n
factor EF-Tu and the 70S ribosome .

Interaction with methionyl-tRNA synthetase (MetRS )
Some characteristic features of the structure of the initiator tRNAMet as
compared to that of the elongator tRNAMet can be studied by comparing
the footprinting results from complexes between methionyl-tRNA syn-
thetase and the two tRNAs . As described in an earlier paragraph, th e
enzyme aminoacylates both tRNAs with methionine in the reactions 1
and 2 shown in Figs . 8 and 23. Although, as shown, the tRNA enzyme
interaction in vivo takes place after the binding of a methionyl-adenylate
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t R NAMe t

0H" 0

	

H\~ 	 ~/H

	

OH

	

O H

0\C-C-CHZ-CH Z -S -CH3
0

	

NH 3

Methionine



FUNCTION OF PROKARYOTIC INITIATOR tRNA

	

323

to the enzyme (which may change the conformation of the enzyme), a
stable complex between tRNAM e` or tRNAm e` and MetRS can be forme d
and isolated in vitro in the absence of other ligands (complex I in Fig . 8
and complex I in Fig. 23) .

Results from experiments using Ti, T2 and cobra venom RNases o n
the binary complex enzyme :tRNA with each of the two tRNAs ar e
shown in Figs . 17 and 18 (Petersen et al ., 1984a) . Regions which ar e
protected by MetRS are shown in black, whereas locations which see m
more accessible for nucleases in the complexed tRNAs are show n
hatched .

The 3'-side of the anticodon loop is markedly protected by MetRS i n
both tRNAs . Differences are seen in the 5'-side of the anticodon stem ,
which is protected in tRNAM et , but cut more intensely in tRNAm e` when
complexed to MetRS . Alternatively, the D-loop and the extra-loop ar e

Fig . 17 . Footprinting results from tRNAf" Fig. 18 . Footprinting results from tRNAma

complexed to dimeric methionyl-tRNA syn- complexed to dimeric methionyl-tRNA synth-
thetase are transferred to a tertiary structure etase are transferred to a tertiary structure mode l

model of tRNAPhe (see Fig . 3) . Regions within oftRNA Pt1e as described in the legend to Fig . 1 7
tRNA1et which are protected (.1) or cut more (Petersen et al ., 1984a) .

intensely by ribonucleases O when complex -

ed to MetRS are indicated (Petersen et al . ,

1984a) .
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protected in complexed tRNAmet whereas both these regions are cu t
more intensely by RNases in tRNAM eC as a result of complex formation.

It is known that cobra venom ribonuclease cuts tRNA at many posi-
tions in the acceptor region (Boutorin et al ., 1981) . MetRS shows only
weak protection in the amino acid region . This supports the idea that (at
least in the absence of the other substrates of the aminoacylation reac-
tion), the acceptor region of tRNA is not strongly bound at the surfac e
of the enzyme (Jacques & Blanquet, 1977) .

Recent data indicate that also in the presence of methionine and ATP ,
no strong protection against cobra venom RNase digestion in the accep-
tor region takes place (H . U. Petersen, G. E . Siboska & S . Blanquet, un-
published) . This result is in good agreement with the effect of MetRS o n
the spontaneous hydrolysis of the aminoacyl ester bond in fMet-
tRNAM eC in the presence of the initiation factor IF2, which is discussed in
the next paragraph .

The interactions with the synthetase seem to be similar in the extrem e
parts (amino acid attachment site and anticodon region) of the tRNAs ,
whereas only tRNAmet seems to bind to the protein in the central part o f
the molecule . Thus, it can be concluded that the three-dimensional struc-
tures of the two molecules have differences in the region around th e
extra loop . In later paragraphs, it will be seen that the extra loop prob -
ably plays an important role for the specificity of the initiator tRNA .

Interaction with the initiation factor IF2

The initiation factor IF2 exists in 2 forms : IF2a (Mr 97300) and IF213 (Mr
79700), which are coded for by the same gene (Plumbridge et al ., 1985) .
The DNA sequence of this gene has recently been determined in th e
laboratory of Dr . M. Grunberg-Manago (Sacerdot et al ., 1984) . As the
available amounts of pure initiation factor protein has been used fo r
functional studies and no attempt to crystallize the protein has bee n
done, no information has been obtained on the higher order structure of
these proteins . However, using small angle neutron scattering (at th e
equipment D11 of the Institut Laue-Langevin in Grenoble, France) w e
have determined the radius of gyration, Rg, of IF2 to be 45-48A in
solution, which indicates that the protein has a rather elongated shap e
(H . U. Petersen, M. Grunberg-Manago and B . Jacrot, unpublished) .

Whilst it is well established that the protein chain elongation facto r
EF-Tu functions as an aminoacyl-tRNA carrier protein in a tertiary com-
plex: EF-Tu:GTP :aa-tRNA during the elongation step of the prokaryo-
tic translation, the question whether a similar complex is formed be-
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Fig . 19 . Kinetics of the non-enzymatic hyd-

rolysis of the aminoacyl ester bond of fMet-

tRNAfor at 37°C in the absence (o) and pre-
sence (•) of initiation factor IF2 at 8 times

molar excess, MetRS at 16 times molar excess

(x) or both IF2 and MetRS at 8 and 16 time s
molar excess, respectively, (A) (Petersen e t

al ., 1984c) .

tween the initiation factor IF2, GTP and fMet-tRNAM et during chain
initiation (complex II in Fig . 8) has been the subject of intense debate fo r
more than a decade. Although many different chemical and physical
methods have been applied in such investigations, a complex of native
IF2, fMet-tRNAMet and GTP has never been isolated (Petersen et al . ,

1979) .
Previous studies have shown that IF2 invariably interacts with fMet-

tRNAM et However, the extent of interaction with unformylated Met-
tRNAM et varied from no detectable interaction to almost the same leve l
as for the formylated species . Although it is clear that GTP hydrolysis i s
necessary for the formation of the functional 70S ribosomal initiatio n
complex, no experiments have shown that GTP is required for IF2 t o
interact with the initiator tRNA . In addition, the ionic requirements for
the formation of a binary complex IF2 :fMet-tRNAM eT has varied consid-
erably. A general feature of all earlier experiments is the attempt t o
isolate a macromolecular complex, and such a complex may dissociat e
during the preparation, whereas the methods employed here do no t
require the isolation of a complex .

Fig. 19 shows the rate of hydrolysis of the aminoacyl-esterbond of
fMet-tRNAMet, free and in the presence of MetRS, IF2 or both proteins
(Petersen et al ., 1984c) . This shows that MetRS has no effect itself on the
rate of hydrolysis . The lack of protective effect is an indication that
MetRS does not bind strongly at the aminoacyl-linkage . It also show s
that MetRS (in the absence of AMP) does not catalyze the de-aminoacy-
lation. In the presence of IF2, complete protection is observed . When
increasing amounts of MetRS are added in the presence of sufficien t
amount of IF2 to obtain such complete protection, the effect of IF 2
disappears . This is taken as an indication that MetRS and IF2 have over -
lapping binding sites on the tRNA molecule and, thus, in this experi-
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Fig . 20 . Footprinting results from _fMet-
tRNAf" in the presence of initiation factor IF 2

are transferred to a tertiary structure model of
tRNAPøe as described in the legend to Fig . 1 7
(Petersen et al ., 1984c) .

ment, compete for the binding to this site . However, it is also clear that
the binding site of MetRS is not the 3'-terminal part of fMet-tRNAM"
which, on the other hand, seems to be one of the important binding site s
for IF2.

Similar experiments were done using unformylated initiator Met-
tRNAMeY or elongator Met-tRNAm eC (Petersen et al ., 1979) . In both
cases, no effect was observed on the rate of hydrolysis when increasing
amounts of IF2 were added . Although this method does not exclude th e
possibility that the protein binds to the tRNA, it is clear that an interac-
tion similar to the one found with fMet-tRNA'f̀'1et does not take place .

The binding site of IF2 on fMet-tRNAM et has been further investigate d
by footprinting experiments (Petersen et al ., 1981) . Fig. 20 shows the
regions which are protected or cut more intensely in fMet-tRNAM et
complexed to IF2 . In this case, only the double strand specific ribonu-
clease isolated from the venom of Naja oxiana has been used to digest the
tRNA.

The protected regions include the 3'-end, both sides of the T-stem, the
anticodon stem (in particular the 5'-side) and the D-stem. It seems that
the protected regions are mainly located at the extreme parts of the L -
shaped tRNA molecule, and no protection is found in the extra loop .
This result is very similar to the one found with MetRS except that IF 2
seems to be in closer contact with the 3'-end of the tRNA .
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Footprinting experiments were also done with unformylated initiato r
tRNA. However, IF2 had no effect on the results obtained with fre e
Met-tRNAM eC This is a further indication that no binding takes place
between IF2 and Met-tRNAMeY and supports the idea that formylatio n
adds a signal to the initiator tRNA for the specific interaction with IF2 i n
the absence of ribosomes .

Interaction with the 70S ribosom e

As shown in reaction 7 of Fig . 8 and as discussed in detail in previou s
paragraphs, fMet-tRNAMeC can bind non-enzymatically to the ribosomal
P-site at 15-20 mM magnesium ion concentration . The complex de-
scribed here was formed in this way in the absence of initiation factors ,
using a poly(A,G,U) RNA chain as a messenger (Petersen et al ., 1984c) .
In order to ensure that no unbound tRNA is present in the footprinting
study, the complex was isolated on a Sepharose 6B column prior to
enzymic digestion . Fig . 21 shows the regions in the tRNAMeY which ar e
protected against ribonuclease (RNases Ti and T2) digestion in the initi-
ation complex in the absence of initiation factors . These are seen to b e
located in the aminoacyl-stem, the variable loop and in the part of th e
anticodon stem close to the extra loop . When compared to the footprint -
ing results with MetRS and IF2, this is the first time we observe a stron g
protection of tRNAM eC in the extra loop . The involvement of the extr a

Fig .21 . Footprinting results from fMet-
tRNAY'" bound non-enzymatically to 70 S

ribosomes are transferred to a tertiary structure
model of tRNA P12e as described in the legend to

Fig . 17 (Petersen et al ., 1984c) .
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loop in tRNA interaction with the 70S ribosome has also been observe d
for the A-site binding of tRNA Phe (Petersen et al ., 1984a), whereas othe r
regions within the two tRNA molecules seem to have different degrees
of involvement in A-site and P-site interactions (T. Jørgensen, personal
communication) . It must be noted that all the protected regions are
found located at one side of the tRNAM et molecule, the side exposing the
extra loop . Although it is too early to make a firm conclusion, thi s
indicates the contact-face of the initiator tRNA when bound at the 70 S
ribosomal P-site .

Interaction with elongation factor EF-Tu

During the elongation steps of protein biosynthesis, aminoacyl-tRNA s
form a ternary complex with the elongation factor EF-Tu and GTP .
Elongation factor EF-Tu is an acidic protein consisting of 393 amin o
acids . The amino acid sequence has been determined in Aarhus (Jones e t

al ., 1980), where also a three-dimensional structure model of th e
molecule at 2.9 Å resolution has been obtained by X-ray crystallograph y
(Morikawa et al ., 1978 ; Rubin et al ., 1981) . Using the footprinting
method, we have been investigating the interaction between this protei n
and different aminoacyl-tRNAs - in particular the elongator tRNAm e t

(Boutorin et al ., 1981 ; Wikman et al ., 1982) . A summary of these results
is seen in Fig. 22 . In this case as well, all protected sites are found at on e
side of the tRNAmet molecule . Again, the extra loop seems involved i n
the interaction together with parts of the T-arm and the region near th e
amino acid attachment site .

As a comparison with tRNAM et (Fig . 8), the interactions involving
tRNAmet prior to the binding at the ribosomal A-site in protein biosyn -
thesis are shown schematically in Fig . 23 . The aminoacylation is cataly-
zed by MetRS (Reactions 1 and 2), and the synthetase is probably dis -
placed by EF-Tu :GTP during the formation of the ternary complex
(Reaction 3) . Subsequently, the Met-tRNAm et is bound at the 70 S
ribosomal A-site carried by EF-Tu (Reaction 4) .

Until recently, it was believed that only tRNAmet and not tRNAMet

could take part in these two last reactions (reactions 3 and 4 in Fig . 23)
(Ofengand, 1977) . However, new experiments based on the protectio n
by EF-Tu against pancreatic RNase digestion of the (unformylated) in-
itiator Met-tRNAMet revealed that a ternary complex Met-tRNAM et:EF-
Tu:GTP can actually be formed (Tanada et al ., 1982) . This is shown as
reaction 8 in Fig. 8 . We have confirmed this observation by isolating a
ternary complex Met-tRNAMeY : EF-Tu:GTP . In experiments similar to
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Fig .22 . Footprinting results from Met-
tRNA`u" complexed to the elongation factor
EF-Tu and GTP are transferred to a tertiary
structure model of tRNAPhe as described in th e
legend to Fig . 17 (Wikman et al ., 1982) .

those shown in Fig . 19, we obtained a strong protection against hydroly-
sis of Met-tRNAMet by addition of EF-Tu :GTP, whereas no effect i s
found on the rate of hydrolysis of fMet-tRNAM et (P . Kamp Hansen ,
H. U. Petersen, J . Ø. B . Hershey & B . F . C. Clark, unpublished) .

Thus, EF-Tu:GTP in bacteria may well discriminate against only the
species fMet-tRNAM et The formylation could help play a role as securi-
ty against the Met-tRNAMet acting as an elongator and translating incor-
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Fig . 23 . Reactions involving the elongator tRNAIIet prior to the binding at the 70S ribosomal A -
site .
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rectly at GUG and UUG, which the initiator species theoretically can do
during initiation (Clark & Marcker, 1966b) . What happens durin g
eukaryotic protein biosynthesis in this connection is rather unclear, be -
cause the initiator species itself is not formylated and exists as Met-
tRNAMet However, the whole selection of the initiator tRNA is more
restricted in eukaryotes in the sense that more protein components ar e
involved (Hershey et al ., 1984) . Of course, during bacterial protein initi-
ation, as discussed in previous sections, initiation factors play a signifi-
cant role in placing the initiator tRNA in the correct P-site for initiation .
More detailed information about this interaction of the initiator tRNA
were obtained by footprinting studies on the complex similar to thos e
described above for elongator tRNA . Our results (Clark et al ., 1984) ar e
shown in Fig . 24 . Although the studies have not been so extensive, w e
observed a similar general pattern of protection by EF-Tu :GTP agains t
nuclease cutting of the initiator tRNA as for the elongator tRNAm e t

(Fig. 22) but with some small differences .
Again, we see protection in the as-stem, T-stem and extra loop . In

addition, the protection runs into the T-loop on both sides where we sa w
no changes for the elongator tRNA .

We are not able to decide at this time whether this should be interpret-
ed in terms of extra covering by EF-Tu :GTP of the tRNA or steri c
hindrance due to local conformational changes .

What appears to be a reasonable conclusion is that bacterial Met -

Fig . 24 . Footprinting results from Met-tRNAf"
complexed to the elongation factor EF-Tu and
GTP are transferred to a tertiary structure mode l
of tRNA 1'he as described in the legend to Fig . 1 7
(Clark et al ., 1984) .
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tRNAM e` the initiator tRNA in the unformylated state, can indeed for m
a ternary complex with EF-Tu:GTP . This ternary complex also appear s
almost normal in the disposition of the aa-tRNA on the EF-Tu :GTP, so
it should be able to bind to the ribosomal A-site if its formation i s
possible in vivo . We are presently investigating whether the small differ-
ences in the T-loop binding are sufficient for making a fit poor enough in
the A-site to be selected against .

Conclusion

In summary this paper has described work on the function of initiato r
tRNA during the steps of protein biosynthesis initiation . We have sug-
gested a role for the specific formylation of prokaryotic initiator tRN A
rnethionine in the translation of polycistronic messenger RNAs . The

Fig . 25 . A summary of the footprinting results shown in Figures 17, 18, 20-22, and 24 . Region s
protected in complexed tRNA are shown in red and regions cut more intesely are green . (A) :
t.RNAmet : Met-RS; (B) : tRNAfet : Met-RS; (C) : fMet-tRNAfet: IF2 (D) : Met-tRNAAet:

EF-Tu ; (E) : Met-tRNAfet : EF-Tu ; (F) : fMet-tRNAfet : 70S .
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regions within this tRNA which are involved in the interactions wit h
proteins during the initiation process have been studied and the result s
are compared in figure 25 . Although a firm conclusion about the exac t
sites of interactions with proteins requires further investigations - an d
ultimately the crystallization and X-ray diffraction structural determina-
tion of the tRNA within the complex - our results indicate som e
similarities and differences between the tRNAM et interactions with
MetRS, IF2, EF -Tu and 70S ribosomes and also between the interaction s
with MetRS or EF -Tu of tRNAM et and the elongator tRNAmet The
regions within the two tRNAs which are protected by proteins ar e
shown in red and the regions which are cut more intensely in complexe d
tRNA are green .
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