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Synopsis
Straggling in energy loss for 40-keV to 1-MeV hydrogen ions and 100-keV to 2.4-MeV helium ions
in a variety of atomic and molecular gases has been measured with an accuracy of 5-7 %. When
straggling data for hydrogen and helium penetrating the same monatomic gas are compared, signi-
ficant deviations from the Z? scaling contained in the Bohr expression for energy straggling OA are
observed. These deviations are explained by an atomic correlation term stemming from the bunching
of electrons into atoms and by an additional straggling term f2 c resulting from charge-state fluctua-
tion§. It is shown that the importance of charge-exchange straggling has been substantially over-
estimated in the past. For hydrogen ions penetrating heavy monatomic gases, the straggling increases
with increasing energy and approaches the high-energy Bohr limit, in agreement with theory. The
qualitative agreement between these hydrogen results and the electron-gas calculations by Bonderup
and Hvelplund and by Chu is, however, markedly improved by inclusion of the atomic correlation
term. For hydrogen and helium targets, an excess over the Bohr value, caused by finite values of the
electron velocities compared to that for the projectile, is observed at velocities, where the electronic
stopping power has its maximum. For molecular gases, a further increase in straggling is seen, caused
by bunching of atoms into molecules, which leads to a further increase in the fluctuations of the
number of collisions with electrons.
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§ 1. Introduction
When an initially monoenergetic ion beam penetrates matter, the average energy
loss is accompanied by a spreading of the energy of the ion beam due to the
statistical nature of the collision processes. A measure of this energy broadening
is given by the mean-square deviation Q 2 of the resulting energy-loss distribution,

also known as the energy straggling. ][
While the average energy loss per path length, the so-called stopping power,

of energetic hydrogen and helium ions has been extensively studied and can be
predicted to within 3-10 70 for all elements from recent tabulations (Andersen
and Ziegler (1977) and Ziegler (1978) ), the straggling in energy loss has received
much less attention, probably because straggling measurements involve more
experimental complications than do stopping-power measurements, and most
of the published experimental straggling results are thus rather uncertain. How-
ever, as Rutherford-backscattering and nuclear-reaction analysis have become
important microanalytical techniques for discerning atomic mass, resolving depth,
and perceiving crystalline structure of the near-surface region of materials,
precise data on energy straggling are desirable since electronic energy-loss
straggling is indeed one of the main features limiting the depth resolution of both

these ion-beam-analysis teckniques.
The fact that the majority of experimental straggling results have been

obtained using solid targets has obscured our understanding and description of
the straggling processes since specific solid-state effects stemming from target
inhomogeneities such as nonuniform film thickness, porosity, surface contamina-
tion, and crystal structure can obscure the measured straggling in an uncontrol-
able way. Measurements with gaseous targets provide a much better basis for
quantitative comparison between theory and experiment, and we have there-
fore performed an accurate, systematic investigation of the straggling in energy
loss for hydrogen and helium ions on a variety of atomic and molecular gases

(H 2 , He, N 2 , 02 , CO2 , Ne, Ar, Kr, and Xe) at ion energies of 40 keV E. 1 MeV

and 100 keV EHe < 2.4 MeV.
The present paper belongs to a series of three, which describes the results of

an experimental study of the penetration of swift hydrogen and helium ions
through gases [Besenbacher (1977)]. The stopping-power results and a detailed
discussion of the experimental setup was presented in the first paper [Besenbacher
et al. (1979)], hereinafter referred to as I. In the second paper [Besenbacher et al.
(1980) ], referred to as II, a comprehensive discussion of the theoretical descrip-
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tion of straggling in energy loss of energetic hydrogen and helium ions was
presented. The present paper deals mainly with a presentation of the experimental
straggling results, some of which have been published in a recent letter [Besen-
bacher et al. (1977) ] and in II.

Following a review of the theory of electronic energy straggling for light,
swift ions in § 2, we shall give a brief description of the experimental procedure
and data treatment in §3 together with a discussion of how the measured straggling
results are influenced by the small contribution from nuclear collisions. Finally,
in §4, the experimental results are presented and discussed in connection with

a comparison with theory.

§2. Theory
A general description of the statistical nature of the energy-loss processes in
targets with randomly distributed atoms has been given by Bohr (1948). For a
monoenergetic beam suffering, an energy loss, which is small compared to the
initial energy (the thin-absorber approximation), Bohr divided up the collisions
of the projectile into various types of processes i, each one corresponding to a
small interval of energy transfer (T, , T,+ dT,) . If n ; denotes the fluctuating

number of processes of type i, the average energy loss and the average square

fluctuation in energy loss is given by

AE = En,T, = NOR (da(T) = NORS	 (1)

and

02 = (DE— AE) 2 = E(n,— ni)2Ti2 = En,T;2 =NOR(dQ(T)T 2	 (2)

Here, NOR is the target density, da is the cross section for an energy transfer T,
and S is the stopping cross section. The two important assumptions underlying
Eqs. (1) and (2) are that processes of different type are statistically independent
and that the number of processes of a given type follows Poisson statistics.

As argued by Bohr (1948) and Vavilov (1957), the energy-loss distribution is
expected to be a Gaussian provided all the individual contributions to the energy
loss are small compared to 0, i.e., Q ? 3 Tmax , where T ax is the maximumma

energy transfer in a single collision with a free electron. This inequality, together
with the requirement that DE << E, leads to the following condition on the target
density,

E/S NA R [atoms/cm2]   2 x 1020
 I 	 E[MeV]  2

Z 2 Z1M1 [amui) ' (3)
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where Z 1 , M 1 , and E denote the atomic number, mass, and energy of the pro-

jectile and Z2 the atomic number of the target atoms. This requirement defines
a broad, experimentally accessible and interesting region, in which comparison
between experimental data and theoretical results is most easily performed since
the resulting Gaussian energy-loss distribution is characterized by AE and ^2
only. The general case, for which the inequalities in Eq. (3) are not necessarily
fulfilled, has been treated by Bohr (1948) and, in particular, by Williams (1929),
Landau (1944), Vavilov (1957), and Tschalär (1968). In the limit of very thin

(f2 < Tmax) and very thick (DE ti E) absorbers, highly asymmetric energy-loss

distributions are obtained.
For the light, swift ions considered in this experiment, the slowing-down is

mainly caused by collisions with electrons. Assuming as a first approximation
that all the target electrons contribute to the straggling as free electrons initially
at rest, we may insert in Eq. (2) as the differential cross section the Thomson
formula for the scattering of a projectile with velocity v by a free electron,

2nZie 4 dT
da —	 mv2 TT'

where —e and m denote the charge and mass of the electron. As opposed to the
calculation of the average energy loss, the Rutherford cross section may provide
a reasonable approximation to be used in the calculation of energy straggling
since this quantity is dominated by the more violent collisions, for which atomic
binding and screening are less important. By inserting Eq. (4) into Eq. (2), we
obtain Bohr's remarkably simple nonrelativistic high-energy limit,

f2 2 = f2B = 4nZie4Z2NOR.

So far, the orbital velocities ve of the electrons have been completely neglected
as compared to the projectile velocity v. For small but finite values of ve /v, a
correction term to the simple Bohr formula appears, and in the quantal-perturba-
tion limit v 2Z 1 vo , where vo = e2/h, the following formula is obtained [Fano

(1963)],

f2'ß	 Z s(1)	 2 m v2
cx3 = 1 + mv2 log 

I1 .
	 (6)

Here, the average excitation energy I 1 is given in terms of the atomic dipole
oscillator strengths fo , and the corresponding transition frequencies w o , by

Efo ,hwo , log hcoo,
log I 1 = Efo , loghwo, 	, l og = Z2

(4)

(5)

(7)
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while the parameter S(1) defined as the zero moment over the dipole oscillator-
strength distribution according to Fano (1963) can be written as

S(1) _ Eh
	 = 23 <

where v, is the velocity of the i'th atomic electron and < >p denotes the ground-
state expectation value. The validity of Eq. (8) is discussed in some detail in
Sec. 4.3.

As the velocity of the projectile decreases, the velocity of the inner electrons
may even exceed the projectile velocity, especially for heavy substances. Accord-
ing to Bohr (1948), an approximate way of accounting for the straggling in this
situation is to neglect the contribution to the straggling from the inner electrons
and replace the total electron density NZ 2 in Eq. (5) by the density of elec-
trons with velocities lower than v. For this density, Bohr inserted the value
N (ve < v) ' NZ2" (2v/v0 ), and at lov velocities, this implies a significant reduc-
tion in the straggling compared to the Bohr value.

Bohr's treatment was improved by Lindhard and Scharff (1953). They treated
the target as a collection of free electron gases, and the straggling pertaining to
an atom was obtained as an average over the electron cloud of the straggling
Q 2 (e,v) for a gas of constant density e (see Eq. (7) in II). In order to calculate
0 2 (e,v), the electron cloud of the target atom is divided into an outer and an
inner region, where the outer electrons are roughly those corresponding to a
local Fermi velocity lower than v. Assuming that the contributions from the

outer and inner electrons are given by the asymptotic expressions for an electron
gas and using the Bohr model for the atomic density e (r), Lindhard and Scharff
(1953) arrived at the following formula,

12 
LS = L2x) 

for x

1	 for

3

 3
(9)

C.2 
B

Here, x is a reduced energy variable, x = (v/v0 ) 2 /Z 2 , and L(x) is defined in terms
of the electronic stopping cross section through the relation

1	 dE'	 47rZ2e'

Bonderup and Hvelplund (1971) have refined the Lindhard-Scharff model
by using a more accurate expression for the straggling contributions from the
various parts of the electron cloud and the more realistic Lenz Jensen model for
the atomic-electron density. Similar calculations with Hartree-Fock-Slater elec-

E NT,
2
>0, (8)

S e =	 	  Z2L(x) .
\N dR /	 mv2

(10)
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tron densities have been performed by Chu (1976). These calculations were based
on the following expression for 0 2 (e,v), (Bonderup and Hvelplund (1971)).

2

OBa(e,v) J l+[5 ( v )F 	 m 2 
log (uF)2 ; v?vF 	(lla)

(1 + 13;2)-'/2(F)2i V SvF ^ (11b)

where vF (e) is the local Thomas-Fermi velocity, co, (e) is the local plasma fre-
quency, and ,Y 2 = vO /nvF is a dimensionsless quantity proportional to the third
root of the density. The term with the plasma frequency stems from resonance
collisions due to collective excitations, but the main contribution in the limit
v	 VF comes from single-particle collisions.

However, as pointed out by Bonderup and Hvelplund (1971) and discussed
in greater detail in II, it is important to realize that, within the Lindhard-Scharff
(LS) model, the projectile-electron excitations are assumed to lead to the same
basic, statistically independent excitations in the atom as in the electron gases

by means of which the electron cloud is described. In a real atomic gas target, the
electrons are bunched into atoms, leaving part of the space empty. This spatial
correlation of the atomic electrons leads to stronger fluctuations in the number
of collisions with electrons and thus to an increase in energy straggling. A similar
type of correlation results when the target is a dilute gas of diatomic molecules.
In this case, the electrons are not only bunched into atoms, but the atoms are
also bunched together into molecules, leading to a further increase of the fluctua-
tion in the number of collisions with electrons. These molecular correlation effects
have been discussed extensively by Sigmund (1976, 1978) from a somewhat
different point of view. Another type of correlation effect may stem from charge-
state fluctuations in a gas target, when the charge of the ion fluctuates in such a
manner that a given charge state persists during several ion-atom collisions.
Since the energy loss depends on the charge state, the losses in successive collisions
with atoms become correlated, and an additional straggling contribution 0B re-
sults. Spatial and charge-state correlations were discussed in detail in II, and
only the main results will be stated here.

As shown in II, the straggling for a light, swift ion colliding with an atom,
which contains many electrons, can, if charge-state fluctuations are neglected, be
written as

02 =f2 Ls +f21	 (12)

with the atomic correlation term 0,2, given by

f2' = NORfd2p[e(p))2.	 (13)
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Here, e(p) is the average energy loss to an atom at fixed impact parameter with

respect to the nucleus. In II, it was found convenient to introduce an atomic

area,

n'. 2 = [ rd2PE(P)^2 
rd2P[6(P)]2

such that Eq. (14) can be written as

2
f2 =NORnr2 .	 (15)

A

Equation (12) reduces to the Lindhard-Scharff expression in the high-velocity
limit, where the probability for electron excitation is small. In the opposite
extreme to the LS limit, i.e., at sufficiently low projectile velocities, the penetra-
tion of the atom leads to the excitation of several electrons. For a fixed impact
parameter, the fluctuation in energy loss may then be neglected, and the entire
straggling derives from the statistical distribution of impact parameters, i.e., is
given by Eq. (13).

For heavy ions at low velocities, v < v0Z32/3 (vo is the Bohr velocity), Firsov
(1959) has calculated c(p) within a Thomas-Fermi treatment. Inserting the
Firsov result 6F (p) in Eq. (13), we get the entire straggling for heavy ions in this
low-velocity limit (Hvelplund (1971) and II).

2
HF

NO	
f e (p)2npdp = (Z1 +Z2 ) 8/3 (̂ 0 )2 8x 10' 5 eV 2 cm2 /atom.	 (16)
R 

For hydrogen and helium ions, on the other hand, a detailed knowledge of
6(p) is still lacking, and this complicates a calculation of the atomic area nr, ,
and thereby of the atomic correlation term i2Å . However, as discussed in some
detail in II, simple estimates based on the Lindhard-Scharff model [Lindhard and
Scharff (1953), Lindhard and Winther (1964), and Bonderup (1967)1, for energy
loss show (i) that nrÅ depends only weakly on Z 2 , (ii) that for energies around the

stopping-power maximum where i2å has its maximum value, nr,Z is —8-107ra,
(a0 is the Bohr radius) and (iii) that the energy dependence of nr,Z is probably
rather weak. In II it was therefore tentatively suggested that the simple formula
(15) with an atomic area irr, 	  107r4 may account for the increase in straggling
for an atomic-gas target due to the bunching of the electrons. This suggestion is
supported at least for protons and a particles by comparison with the comprehen-
sive set of straggling results presented here, a fact that will be discussed in detail
in §4.1.

If, instead, the projectile penetrates a target of homonuclear diatomic mole-

(14)
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cules with internuclear distance d, the total straggling is obtained by adding to

Eq. (12) a further correlation term 0,2  , which results from the bunching of the

atoms into molecules. For the simple case, where the molecular axis is aligned
with respect to the beam axis, the molecular term OM equals 0,2  . A misalignment

reduces the molecular term, and a simple geometrical argument presented in II
as well as a more refined calculation [Sigmund (1976)] yields the following
molecular correlation term,

S2 

^^ L _
,L M -

i2Å = NOR
nr2

, d < rA

Concerning the straggling contribution stemming from charge-state fluctua-
tions, the discussion will be restricted to target thicknesses, for which several
charge-changing collisions occur, and to cases where only two charge states q1

and q 2 are important. This is the situation for helium ions at the energies and

target thicknesses used in the present work. If S i and S2 denote the stopping cross

section for the projectile in the two charge states and a is the fractional time
spent in charge state 1, the average-square fluctuation in AE due to fluctuations
in a is given by

f2 (22 = (NA R) 2 (S i —S 2 ) 2 (a2 —a2 ) .	 (18)

The average-square fluctuations in a is determined by the capture and loss cross

sections 012 and 021, and a calculation presented in II yields

2 =	 2  2^12^21 i2 c, — NOR (S 1 — S 2 )2
	 +0 ),12	 21

This result is similar to that stated by Vollmer (1974) and by Efken et al. (1975).

§ 3. Experimental procedure and data treatment
In the present work, an extensive investigation of energy loss and straggling in
energy loss for hydrogen ions of 40-keV to 1-MeV energy and helium ions of
100-keV to 2.4-MeV energy penetrating thin layers of various gases (H 2 , He, N2,

CO2 , 02 , Ne, Ar, Kr, Xe) has been carried out.
Since details of the experimental procedure and data treatment were pre-

sented in I, only a brief description will be given here.

NOR2^

2

d2,	
d > rA (17a)

(17b)

(19)
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A magnetically analyzed hydrogen or helium beam passes through a differ-
entially pumped, 504-mm long gas cell via 0.2-mm diameter apertures. For
energies below 300 keV, measurements were performed at a 400-kV Van de Graaf
accelerator and a 100-kV electromagnetic isotope separator . The energy-degraded

beam was energy-analyzed by means of an electrostatic analyzer and detected

Detector

Gas Supply
and Manometer

A	 C
B

Beam	 H	 D	 U I 	 0 

	

I°	 ll 1
	j	

11

Pump	 It I	 Pump
Pump

Fig. I: Experimental setup used at the 400-kV Van de Graaff accelerator and at the 100-kV isotope
separator.

P H A

Scaler _ Energy
window

PHA or
Recorder y DAC Scaler —	 	 window
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x
Detector IC)

Slit-Stabilization
System

Beam

	 I

Pump	 Pump
Pump

Fig. 2: Experimental setup used at the 2-MV Van de Graaff accelerator. 
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by a standard Si surface-barrier detector, as shown in Fig. I. The energy-loss
distributions were measured by sweeping the beam across the exit aperture D by
means of the electrostatic analyzer. In this way, the beam intensity is averaged
in time, and no beam normalization is needed. For energies above 200 keV,
measurements were performed at a 2-MV Van de Graaff accelerator, and the
beam transmitted through the gas cell was momentum-analyzed, using a double-
focussing sector magnet, and detected by a solid-state detector (Fig. 2). Detector
N counted neutrals and was used for normalization. Thus fluctuations in the
beam current did not influence the measurements. The use of energy-dispersive
detectors allowed elimination of beam contamination and slit-edge-scattered
particles. The pressure in the gas cell was measured with a membrane manometer,
and the pressure was kept stable within less than 1 7 via a motor-driven, servo-
controlled needle valve. The purity of all gases used was better than 99.5 %.

In all cases except for hydrogen ions penetrating H 2 at energies above 200 keV,
the gas-cell pressure (0.1 PG 2 torr) was chosen to satisfy the inequalities (3),
which give Gaussian energy-loss distributions. This was confirmed experimentally
by plotting the distribution on graph paper with a cumulative Gaussian scale,
as shown by the example given in Fig. 3.

Fig. 3: Energy distribution of an
incident 60-keV H* beam after it
emerges trom a 1.51 x 10" mole-
cules/cm2 CO2 layer. The main
part of the distribution is plotted on
probability paper, from which it is
concluded that the energy-loss dis-
tribution is Gaussian.

225	 22	 21.5	 21	 205	 20
V[Volt]

From the measured energy-loss or momentum distribution, the average energy
loss and the standard deviation are easily obtained as
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DE=E,	
2

E1 + E2

and

E1 — E 2
f2E 

221og2

where E, is the incident energy and E 1 and E2 are the energies corresponding to
the half-maximum positions for either the momentum or the energy-loss distribu-
tion. The energy spectra obtained with no target gas were also approximately
Gaussian with a mean-square deviation O, , corresponding to an energy resolu-
tion (FWHM/E,) of 0.74 % and 0.10 % for the electrostatic and the magnetic
analyzers, respectively. Consequently, the straggling can be obtained from the
formula

02 = f2É — S22 .

In all the cases reported here, Q, is small compared to 0 E . The target density
NOR in molecules/cm 2 is calculated from Eqs. (15) and (16) in I, and the
straggling parameter 0 2 /NAR is assigned to the mean energy Ear, = E, — AE/2.

For asymmetric energy distributions, which were found only for hydrogen
penetrating H2 at energies E 200 keV, the moments M 1 = DE and M 2 = 02
were found by numerical integration of the energy-loss distribution W (AE)
according to

J
LEW(LXE)d(LE)

0

W(AE)d(AE)
o

(DE — AE) 2 W (DE) d (DE)
0M2	

^̂W(^E)d(^E)
o

To verify that the straggling 0 2 is proportional to the target density NOR,
Q2 was plotted versus NAR for different energies and gases, and a typical example
is shown in Fig. 4.

In the present energy region, it is not possible to correct in a simple way the
measured straggling data for contributions from nuclear collisions as is the case
for stopping-cross-section data. The reason is that compared to average energy

(20)

(21)

(22)

(23)

(24)
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Fig. 4: 'ihe energy straggling 0 2 versus target
density for He in N2.

loss, straggling depends more strongly on close collisions, and hence the separation
of the elastic and inelastic collisions becomes more ambiguous. In order to
estimate the contribution from nuclear collisions to the measured straggling, we
shall consider the following example, which represent one of the cases with the
largest contribution from nuclear collisions,

113.4 keV He	 He
	

NA R = 1.24 10 t8 atoms/cm'

f2 e = 0.792 keV
	

f2 n = 1.137 keV

Tmax, e = 0.062 keV
	

Tmax n = 113.4 keV

Here, indices e and n refer to electronic and nuclear collisions, respectively, and

O n is calculated from Bohr's nuclear-straggling formula (Bohr (1948)), which is
analogous to formula (5). The spectrum originating from the electronic collisions
will be a Gaussian distribution, while the nuclear collisions give rise to a strongly
asymmetric distribution with a low-energy tail. However, particles which have
experienced the most violent nuclear collisions are scattered out of the angularly
narrow, forward-directed, analyzed beam, thus reducing the "nuclear tail" con-
siderably. According to Hvelplund (1971), the particles accepted by the analyzer
will approximately be those which have suffered collisions with an energy transfer

T S T, ` where T„* is the nuclear-energy transfer, corresponding to a deflection
angle rp * that divides the angular distribution into a Gaussian peak and a tail.
In Fig. 5, T# and the corresponding impact parameter Amin are shown for the
case considered here. If the measured straggling is given by

2	

f^exP
R = J pm1(T

n+Te)22npdp,	 (25)NA 
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113.4 keV He — He
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Fig. 5: Energy transfer in a single collision as
a function of impact parameter. Inelastic
transfer is calculated from Firsov's (1959)
Te (p). The elastic energy transfer is calculated
from a power potential V (r) cc r-2 (Lindhard
et al. (1968)). T, and p m ,,, refer to maximum
elastic energy transfer and the corresponding
impact parameter for atoms still belonging to
the forward-directed beam, cf. text. The TF
screening radius is given by
a = 0.8853 ao (Ziis + Z:ia ) -va

10 0	 os	 is	 15	 2.0	 25

then for the actual case exp > Te (pmin) +Tn , and hence the energy distribution
for the forward-directed beam should be Gaussian, in agreement with the experi-
mental findings. From Fig. 6 it is found that the contribution from the nuclear
collisions (area I 2 ) to the measured straggling 0,4 is roughly 2 %, whereas the
excluded straggling term from electronic collisions with p < pn, in (area I t ) is
approximately 4 7..

It can thus be concluded that the measured straggling can be attributed
mainly to electronic collisions, and no corrections for nuclear straggling have
been applied.

Based on the systematic and statistical experimental errors quoted in I and
an assumed 10 % uncertainty in 0 2, (stemming from the assumption that the
primary energy distribution is Gaussian and from the actual value of 02), we
estimate the total uncertainty in the measured straggling 0 2 /N AR to be 5-7 %.

Fig. 6: The energy transfer squared
times the reduced impact parameter
for the specific case considered in	

3
Fig. 5, plotted versus the reduced
impact parameter. According to
formula (25), the contribution to 	 ...
the straggling from nuclear ô 2

collisions is given by the area I 2 	 Ø
and the straggling term stemming
from small impact parameters, which 	 1
we exclude in the present experimental
setup, is given by the area I T . Concer-
ning Te , T0 , and pm ,,, , see Fig. 5.	 00

=0.29a      

2 3 4 5 6
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§ 4. Experimental results and comparison with theory
4.1 Deviations from Z2 Scaling for H and He Ions in Monatomic Gases

Since the contributions to the Lindhard-Scharff straggling term in Eq. (13)
mainly stems from close collisions with electrons, °i s is proportional to Zi even
in an energy region where the electronic stopping power may deviate from the

Zi perturbation scaling. The corrections to flis , however, show a different de-
pendence on Z 1 since they are proportional to Sé and thus to ' Z 1.3 —  Zi . It is
therefore possible to obtain a semi-emperical determination of the atomic-corre-
lation term O A' due to bunching of electrons into atoms by comparing experimental
hydrogen- and helium-straggling results for the same monatomic gas. As argued
for in II, such a semiempirical procedure is preferable because of the problems
involved in performing a stringent theoretical calculation of 0 .
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Fig. 7: Experimental energy-straggling data for H ions in Ne, Ar, Kr, and Xe.
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Fig. 8: Experimental energy -straggling data for He ions in Ne, Ar, Kr, and Xe.

The experimental straggling parameters Q 2 /NOR for hydrogen and helium
ions penetrating Ne, Ar, and Xe are plotted in Figs. 7 and 8 as a function of the
mean energy E ar, . While the hydrogen data increase monatomically and approach
the Bohr value for increasing energy, as expected from theory, the helium data
show a local maximum at EHe ' 1 MeV. In Fig. 9, the hydrogen and helium
results f2 2 /QB are plotted versus energy per nucleon for Ne, Ar, Kr, and Xe,
while similar results for a helium target are shown in Fig. 15. A significant devia-
tion of the 0 2 values from the Zi scaling contained in the Bohr straggling formula
OB (Eq. (5)) is revealed. The difference between the averaged helium and
hydrogen results in Figs. 9 and 15, which is plotted as points in Figs. 10 and 16,
can, as argued above, be attributed to corrections to the Lindhard-Scharff term,
i.e., to straggling terms resulting from the bunching of electrons into atoms and
from charge-state fluctuations.

The contribution from charge-state fluctuations for helium ions can be ob-
tained from Eq. (20) and is shown in Figs. 10 and 16 as the lower solid line. For
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Fig. 9 (continued from p. 19).

E - (keV)i
the capture and loss cross sections in Eq. (20), the experimental values for Kr,
Ar, and He of Pivovar et al. (1962a, 1962b) and of Hvelplund et al. (1976, 1980)
are used while no data are available for Ne and Xe. A simple estimate of the
partial stopping cross section S e (He+ ), i.e., the stopping cross section of a helium
ion in the fixed charge state He+ (Cuev as et al. (1964)) can be obtained from our
measured helium-stopping cross sections (I) through the equation

S (He) = F S 1 (He+) + F2. S2 (He++ ) ,	 (26)

for EFT , ? 400 keV, for which the neutral component is negligible. Here, the
equilibrium charge-state fractions are given by F1oo = 021(12 } 021 ) -1 and

F2 co. = 012 (012 + 021) —1 , while the partial a-stopping cross section S2 (He++ ) can
be set equal to four times the measured proton-stopping cross section S p (I). The
uncertainty in the derived straggling contribution 0,2 /0,32 is ti 15-25 %, stemming
from uncertainties in the applied experimental quantities. For the heavy mon-

atomic gases, it is seen in Fig. 10 that Q c2 is negligible for Eva  300 keV and

that i2 2,./OB cannot alone account for the experimental helium-hydrogen dif-
ference.

In previous investigations of the influence of charge-exchange straggling
[Besenbacher et al. (1977) Bednyakov et al. (1977), Efken et al. (1975), Sofield
et al. (1978), Crowern et al. (1979), Schmidt-Böcking and Hornung (1978), Voll-
mer (1974) 1, it has been assumed that the partial stopping cross section of an ion in
a fixed charge state q can be written as S Q = g2 Sp, which for the factor in Eq. (19)
yields (S1 —S2 ) 2 = (q, —g) 2 S; . For helium ions, this means that S1 (He+ ) = Sp,
which is appropriate for distant collisions only, and consequently, S 1 (He+ ) is
underestimated. The assumption thus leads to values of 0,2 /0A, presented by
the upper full-drawn curves in Figs. 10 and 16, which overestimate the influence
of charge-state fluctuations considerably.



Fig. 10: The deviation
from the Z; scaling of
energy straggling for H and
He ions in Ar, Kr, Ne, and
Xe versus energy per
nucleon. The points display
the difference between the
experimental He and H
results from Fig. 9. The
contribution from charge-
state fluctuations Q . (Eqs.
(19) and (26) for He ions,
measured in units of
Q (He), is given by the
lower, solid curve, whereas
the upper solid curve shows
the incorrect value off)
calculated previously under
the assumption that the
stopping cross section for
He + is equal to that for
protons. The difference
between the atomic-correla-
tion terms in units oft): for
He and H ions is represented
by the dot-and-dash curve
for an atomic area of 107r4.
When the contribution from
charge-state fluctuations is
added, the dashed curve
results.

0.4

0.2

0 ° °
°	 °0.3

°
°

40:9 21

/0°	 	
50	 150	 250	 350	 450	 5 5 0

M
E MP (key)

t



1.0

0.8

Q 2 0.6

RB
0.4

0.2

22	 40:9

The difference between the atomic correlation terms „Å/0B for helium and
hydrogen ions is shown as the dot-and-dash curve in Figs. 10 and 16. For 0„2 we
have used Eq. (15) with the experimental-stopping cross section (I) and an
atomic area nr,Z of 10ira0. Adding to this curve the contribution from charge-
state fluctuations, we obtain the dashed curve, which is seen to be in overall good
agreement with the experimental data. This fact lends strong support to the
theoretically predicted expression for the atomic correlation term (Eq. (15) with
an atomic area nil 	  10na0 , approximately independent of energy and Z2 .

For a xenon target, the helium-hydrogen difference is nearly completely
described by O ; for the medium elements such as Kr, Ar, and Ne, the relative
importance of 0,2 increases with decreasing atomic number, and for helium, the

difference can on the whole be accounted for by S2 c . The experimental results
thus support the expectation that the relative importance of the atomic bunching
term 0,2 decreases with decreasing number of target electrons since from Eqs.

(15) and (5), we have that 0„2 /0„2 is roughly proportional to Z2.
While the helium-hydrogen difference in Fig. 10 approaches zero at high

energies, negative values are obtained at low energies (see, e.g., the argon and
krypton data in Figs. 9 and 10) . This at first somewhat surprising result is explained
by the energy dependence of the stopping, cross sections and thereby of the atomic

correlation term 0Å, Eq. (15). For energies EM, ti 50-100 keV, S H and conse-

quently f2Å for hydrogen ions reach their maximum values and are approximately
constant while SHe and hence 0„2 for helium ions decrease with energy as E" 2 and

E, respectively, and at 50 keV, (0 A2 /0:), is in fact larger than (]LÅ /f2B)He • This

explains the steep slope of the dot-and-dash curves in Fig. 10 at the low energies.
In Fig. 11, the straggling data for helium and hydrogen ions in Ar have been

corrected for the influence of the atomic-straggling term 0,2 due to the bunching

Fig. 11: The experimental-straggl-
ing results from Fig. 9 for H and
He ions in Ar corrected for the in-
fluence of the atomic-straggling
tern QÅ given byg Eq. (15) with
an atomic area of l07raå. The cor-
rected He (dashed curve) and H
(dot-and dash curve) results are
compared with the electron-gas cal-
culations by Bonderup and Hvelp-
lund (1971) (0132H).
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of the electrons into atoms. These corrected helium (dashed curve) and hydrogen
(dot-and-dash curve) results agree mutually and with the Bonderup and Hvelp-
lund results (solid curve) both at low and at high energies. The increase of the

helium results over the hydrogen results at E Mp ti 50-100 keV is due to the in-

fluence of charge-state fluctuations. Similar curves can be obtained for the
other rare gases.

We may complete this section by concluding that the importance of charge-
exchange straggling has been overestimated substantially in the past, and that

the deviation from the Zi scaling of 0 2, resulting in a significant difference between
the helium- and hydrogen-straggling results may be accounted for by the atomic
bunching term given by Eq. (15) with an empirically determined area of 107r4
and the charge-exchange straggling expression given by Eqs. (19) and (26).

4.2 Straggling for Hydrogen Ions in the Monatomic Heavy Gases

In Fig. 12, the experimental straggling results for hydrogen in Ne, Ar, Kr, and
Xe are compared with the electron-gas calculations ° H by Bonderup and Hvelp-
lund (1971) shown by the dashed curves. The experimental results are in quali-
tative agreement with the theoretically predicted reduction in straggling com-
pared to the Bohr value for decreasing velocities, but the quantitative agreement

Fig. 12: Energy straggling for
protons in Ne, Ar, Kr, and Xe
versus the reduced- energy
parameter x, nor malized to the
asymptotic Bohr value (Eq. (5)).
The experimental data (•)
from Fig. 7 and (•) from
Bonderup and Hvelplund(1971)
are compared with the theoretical
results. Dashed curves: theoretical
values by Bonderup and
Hvelplund (1971) ; solid curves:
the sum of the BH results and
the atomic correlation term,
Eq. (15) for an atomic area of
107rad; double dot-and-dash
curve: theoretical values of Chu
(1976) ; dot-and-dash curve:
equivalent to the solid curve
except that the BH results

are modified, as explained in text.

Q 2

2 

v I\2
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is rather bad. For the heavier atoms, the discrepancy increases for decreasing x.
Adding, however, the atomic correlation term 01 given by Eq. (15) with an
atomic area of l0naô to 0 , the solid curves in Fig. 11 are obtained, and it is
seen that 0Å on the whole accounts for the discrepancy between 0BH and the
experimental results for Ar, Kr, and Xe, while the agreement in the case of Ne
is still relatively poor. However, for the lighter rare gases such as Ne and He,
the more realistic Hartree-Fock-Slater electron densities applied by Chu (1976)
are superior to the Lenz Jensen densities underlying the Bonderup-Hvelplund
(1971) calculations, and from Fig. 12 it is in fact seen that for Ne, the energy
dependence of the measured straggling is in somewhat better agreement with
°2chu (the double dot-and-dash curve). For the heavier elements Ar and Kr,
f2 2chu and f2B2H are in very good agreement, while f22c:ht, is systematically 0.05
Bohr units higher than 0,2„, for Xe, probably because this element is positioned
in a maximum of the Z2 oscillatory structure in 0 2 revealed by Chu (1976).

From Fig. 12 the only remaining systematic deviation between theory and
experiment appears to be an underestimate of the predicted straggling at higher
x values, corresponding to energies above the stopping-power maximum. Since

Q .  in this energy region becomes small, the deviations may be due to uncer-
tainties in 0 

B2 
(Eq. (11)), some of which we shall discuss in the following.

In the straggling calculations by Bonderup and Hvelplund (1971), the target
was considered as a collection of free electron gases, and the straggling contribu-
tion from an atom was obtained as an average over the electron cloud of the
straggling for a gas of constant density. One of the advantages of considering the
case of straggling in a free gas of electrons is that one is concerned with a simple
scattering phenomenon: An equilibrium situation is established where the pro-
jectile is screened by the electron gas or, equivalently, free electrons are scattered
in a self-consistent, steady-state screened Coulomb potential. The influence of
the screening on the straggling contribution from the outer atomic electrons
(ve < v) is of minor importance since for these electrons, the pure Coulomb
potential results in the Bohr expression (Eqs. (4) and (5)), which deviates only
slightly from the electron-gas expression in Eq. (11 a) .

However, since the relative contribution from the inner electrons increases
with decreasing x (e. g., for Z2 = 18, Q2 1 1111er /f2 2total takes on the values 0.63, 0.46,
and 0.27 at x values of 0.125, 0.41, and 1.52, respectively), the calculated straggling
at low x is rather sensitive to the detailed screening prescription used for the
contribution from the inner electrons. It might be questionable whether the
steady-state screening leading to the explicit dependence of 0 2 ,nner on the para-
meter x2 in Eq. (11b) is established in a collision with a single atom. One can
obtain an overestimate of the straggling contribution from inner electrons by
letting the electrons scatter in a pure Coulomb potential around the projectile.
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Mathematically, this is equivalent to a replacement of the quantity x2 in Eq.

(l lb) by unity since X2 is equal to the ratio (kF /2a) 2 , where 4 is the wavelength
of an electron at the Fermi surface and a is the static screening length in an
electron gas ( F =h/mvF).

Another type of uncertainty exists in the high-velocity limit of the electron-gas
expression given by Eq. (11a). The electrons in an atom are influenced by both
the polarization force corresponding to a local plasma frequency co o and an
orbital force corresponding to the revolution frequency co rev Since wren coo in
the simple Bohr atomic model, Lindhard and Scharff (1953) accounted approx-
imately for the binding of the electrons in the atomic system by multiplying the
plasma frequency in the electron-gas calculation by the factor A/2.

To get an estimate of the uncertainties underlying the electron-gas calcula-
tions, those of Bonderup and Hvelplund (1971) have been repeated with the two
above modifications of the expressions for the straggling contributions from the
outer and inner electrons, and as a result, the solid curves in Fig. 12 are replaced

by the dot-and-dash curves. Of the two substitutions, coo --> coo is the least
important, and it only gives rise to a 3 % increase in i2 BH at the highest x values.

The dot-and-dash curves are in good agreement with the experimental results at
the high x values but overestimate the straggling at the low ones, and thus the
overall agreement is not improved. The results, however, may indicate that the
discrepancies between the experimental results and the theoretical estimates,
which are « 10-20 %, are within the accuracy of the electron-gas calculations.

4.3 Straggling in Light, Monatomic Substances
The straggling results for hydrogen penetrating helium are shown in Fig. 13,
and the data disclose a characteristic "overshoot" above the Bohr value. In Fig.
13 are also plotted the results of the electron-gas calculations by Bonderup and
Hvelplund (1971) (dashed curve), and by Chu (1976) (double dot-and-dash

curve), together with Fano's straggling formula (6) (solid curve). The para-
meters I 1 and S (1), which enter this formula, have been calculated by Inokuti
et al. (1978) for atomic systems, and in the case of helium, they obtain I 1 = 80.1 eV
and S (1) = 104.9 eV.

The Fano formula is the result of a perturbation calculation, i. e., the probability
of an electron excitation is assumed to be small. In principle, all straggling con-
tributions are included in the Fano formula, but in practice, only one-electron ex-
citations are taken into account [Dehmer et al. (1975) and Inokuti et al. (1978)1 in
calculations of I i and S(1). However, as mentioned in Sec. 4.1, the relative
importance of the atomic bunching term, which in the Fano treatment can be
interpreted as the contribution from multi-electron excitations, decreases with
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decreasing Z 2 . For helium, the corrections to the Fano curve, with only single-
electron excitations included, are therefore expected to be small, but for heavier
target elements such as argon, the correction might be important.

For energies E 300 keV, the experimental results are in good agreement
with Fano's formula, while it fails at low energies, where the assumption v > ve

is no longer fulfilled.
As was the case for neon, the calculations by Chu are superior to those by

Bonderup and Hvelplund, and on the whole, the energy dependence of Clth„
agrees with that of the experimental results. The comparison of absolute values
is, however, less satisfactory. As shown by the double-dashed curve, this discrep-
ancy cannot be removed through an application of the modified electron-gas
expression described above, and the addition of the small atomic correlation term.

In order to understand the difference between f2 Fano and 02chu or f2 By , one

has to compare the asymptotic straggling formulas (6) and (lla). The Fano
formula is based upon the sum rules for the generalized and the dipole oscillator
strengths F01 (q) and f„, , and for large and small momentum transfers hq, these
sum rules are given by

h2q2 4
Ehwa1 Fo, (q) = m + 3 < K >o, q large

2m 

S(1) =	 co o, fo, = 3 [<K>„+ E <v;v; >1. q small	 (27b)2 

where <K >„ is the mean kinetic energy of an electron in the ground state of the
target system. Using these sum rules, Fano calculated the contribution from the
close and distant collisions, but in the combination of the two contributions to
the final formula (6), it was assumed that

< K >„ = F,hwos lo; = S ( 1 )	 (28)

As illustrated by the example of an electron gas, the neglect of the correlation
term in Eq. (27b) may be quite serious for the evaluation of the correction to
the Bohr formula. In this case, all of the dipole oscillator strength is contained
in the plasmon excitation, and the left and right-hand side of Eq. (28) are equal
to 2 vF = (0.12 /;c 2 ) 1/2. h coo and h cwo , respectively. Applying the correct sum
rules Eq. ((27)) for an electron gas, we obtain, as expected, the two terms in the
square brackets of Eq. (11a). In the high-densi ty limit, x — 0, the second term
in Eq. (11a) may be neglected, and the constants in front of the logarithms in
Eqs. (11a) and (11 b) differ by a factor of 2.

In the asymptotic expression (6), shell corrections and other terms of order
<v>/v2 have been neglected as compared to the logarithm. This may not be a

(27a)
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Fig. 13: Experimental energy-
straggling data for H ions in He
compared with theoretical results.
Upper solid curve: the asymptotic
Fano straggling formula (6); dashed
curve: theoretical values by Bonderup
and Hvelplund (1971) ; double
dot-and-dash curve: theoretical
values by Chu (1976); 	 curve:
1-2BU , modified (as explained in text),
plus the atomic correlation term,
which, in the case of He, is given
approximately by Eq. (15) times 0.5
with nr) equal to 107taä, cf. II.
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very good approximation at the relatively low projectile velocities, at which the
correction to the Bohr formula becomes significant. Again, the electron gas pro-
vides a convenient illustration. The energy I i appearing in Eq. (6) is equal to
Iicoo , as obtained from the defining equation (7), and at normal atomic electron
densities, this energy is quite low as compared to the value 2mv, implied by
Eq. (11a). To obtain this expression, which was found to be in good agreement
with the exact values evaluated numerically by Bonderup and Hvelplund (1971),
it was necessary to include terms of order one as compared to terms of order
log(v/vF ) in the expansions. The good agreement between the experimental
results and Eq. (6) may therefore be somewhat fortuitous. On the other hand,
the statistical description underlying the electron-gas calculations, i.e., Q2Chu and
0BH , is probably rather inaccurate for a very light atom such as helium.

In Fig. 14, the experimental straggling results for helium ions transmitted

through a helium target are compared to the asymptotic Fano formula (solid
curve). Both the energy dependence and the absolute magnitude of the discrep-
ancy between theory and experiment deviate significantly from the values for
hydrogen ions shown in Fig. 13. To understand the deviation, we proceed as
in Sec. 4.1 by plotting in Fig. 15 the experimental values of Q2/08 as a function
of energy per nucleon for helium ions and for protons, and the difference between
the two averaged curves in Fig. 15 is plotted as points in Fig. 16. As expected,
these difference values for helium mainly contain contributions from charge-state
fluctuations (lower solid curve), and the atomic correlation term (dot-and-dash
curve) only amounts to a small correction. The figure has been discussed in
detail in Sec. 4.1.

Fig. 16: The deviation from
the Z; scaling of energy
straggling for H and He ions
in He versus energy per
nucleon. The points display
the difference between the
experimental He and H re-
sults in Fig. 15. The con-
tribution from charge-state
fluctuations (2 c (Eqs. (19)
and (26)) for He ions, meas-
ured in units of Q, (He), is •
given by the lower solid
curve, whereas the upper
solid curve shows the in-
correct value of O calculated previously under the assumption that the stopping cross section
for He is equal to that for protons. The difference between the atomic correlation terms (for He
given by Eq. (15) times 0.5, c£. II, and zero for H 2 ) in units of (2 for He and H ions is re-
presented by the dot-and-dash curve for an atomic area of 107raô. When the contribution from
charge-state fluctuations is added, the dashed curve results. 
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4.4 Molecular Correlation Effects

In Figs. 17 and 18 are shown the experimental straggling data for hydrogen and
helium ions in N2 , 02 , and CO 2 . To investigate the molecular correlation effect,
we need information on the straggling in targets where the molecules have been
dissociated into their constituent atoms. Experimentally, it is extremely difficult
to obtain such dissociated targets, and therefore neon was chosen as an atomic
reference in the evaluation of molecular correlation effects. According to Bonderup
and Hvelplund (1971), the Z2 dependence of the straggling normalized to the
asymptotic Bohr value is very weak when plotted as a function of the reduced
variable x, and it is therefore a good approximation to use neon as an atomic
reference for N 2 , 02 , and CO2.

In Figs. 19 and 20, the straggling results for the molecular and atomic targets

are therefore shown as a function of x. It is evident that the molecular targets
cause a consistently higher straggling than the atomic ones, and the difference
between the curves may be interpreted as a molecular correlation effect.

For N 2 and 02 in Figs. 19 and 20, the molecular bunching term 4M , calculated
from the asymptotic formula (17a) with experimental stopping cross sections
taken from I, is indicated by arrows. It is seen that both the energy dependence
and the absolute value of the correction term are in fairly good agreement with
experimental data.

However, the applicability of the asymptotic formula (17a) is questionable
since the assumption underlying this expression is far from being fulfilled. This is
seen by a comparison of the internuclear distances in nitrogen and oxygen
(d(N2) = 1.1Å and d(O 2 ) = 1.21 A) with the atomic radius r„ = 1.65 Å for an
atomic area of l0naô . Nevertheless, if it is correct that the smaller of the two values
in Eq. (17) gives a reasonable estimate of the molecular correlation term O m' , the
asymptotic formula (17a) is, in fact, the appropriate expression for in in the case
of oxygen, and it only overestimated OM for nitrogen by 10 7..

According to Sigmund (1976), the description of the molecular correlation
effect in diatomic molecules can easily be generalized to polyatomic molecular
targets, for which the straggling correction per molecule takes on the form

OM = E 
S,S  

NOR,	 (29)2 nd,;

where the sum extends over the constituent atoms i = 1, 2, ... of the molecule.
This correction term is indicated in Figs. 19 and 20 for CO 2 , and again, reason-
ably good agreement with the experimental results is found.

It should be noticed that for CO 2 , which is a linear molecule, the same type
of correlation term as that in Eq. (29) is obtained if the somewhat different treat-
ment of correlation effect described in II is used. Generally, for nonlinear poly-
atomic molecules, Eq. (29) may overestimate the in fluence of molecular correla-
tions.
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Fig. 18: Experimental en-
ergy-straggling data for He
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Fig. 19: Straggling results
for protons in N 2 , 0 2 , and
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pared with straggling results
for protons in Ne from Fig. 7.
Solid curves drawn through
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whereas the arrows indicate
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correlation term OL (Eqs.
(17a) and (29)).
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Fig. 20: Straggling results
for He ions in N 2 , 0 2 , and
CO2 from Fig. 18 are com-
pared with the straggling
results for He ions in Ne from
Fig. 8. The solid curves
through the experimental re-
sults are drawn only to guide
the eye, whereas the arrows
indicate the asymptotic mo-
lecular correlation term Hit
(Eqs. (17a) and (29)).
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4.5 Straggling in Hydrogen

The straggling results for hydrogen ions transmitted through a hydrogen target
are shown in Fig. 21 together with the results from the asymptotic Fano formula

Fig. 22: Experimental energy-
straggling results for protons
penetrating a H 2 target com-
pared with the asymptotic
straggling formulas of Bohr (Eq.
(5)) and Fano (Eq. (6)), the
latter calculated for molecular
(solid curve) and atomic targets
(dashed curve). Arrows indicate
the molecular correlation term
OM given by Eq. (17b).

50	 100	 200

E (keV)
500	 1000

(6) for molecular (the full-drawn curve) and atomic (the dashed curve) hydrogen.

The values of S(1) and I i for molecular and atomic hydrogen have been calcu-
lated by Zeiss et al. (1977) and Inokuti et al. (1978), respectively, and they are
shown in the table below.

Ii (eV)	 Z, S(1)(eV)

H 2	29.13 eV	 22.79 eV

H	 24.07 eV	 18.13 eV

The difference in I 1 and S(1) reflects the change in electron density and thereby
in the oscillator-strength distribution upon molecular formation.

When H 2 molecules are considered as the basic target elements in the
straggling calculation, molecular correlation effects caused by two-electron exci-
tations in an H 2 molecule are in principle included in the Fano formula, but as
for He not in practice since the I i and S(1) values for H2 only include one-
electron excitations. However, according to the discussion in Secs. 4.1 and 4.3,
the molecular bunching term Q is small for hydrogen, and the good agreement
between the experimental data and formula (6) for energies as low as 80 keV
therefore supports the Fano formula.

To indicate that the molecular correlation term f2, actually is fairly small
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for hydrogen, OM calculated from Eq. (17b) is shown in Fig. 21. Equation (17b)
is used since the intermolecular distance is only 0 .74Å and the asymptotic for-
mula (17a) would overestimate OM by a factor of " 2.5.

Fig. 22: Experimental energy-
straggling results for He ions in
H 2 compared with the asymp-
totic straggling formulas by Bohr
(Eq. (5)) and Fano (Eq. (6)).
Arrows indicate the molecular
correlation term S-2;;,, given by
Eq. (17b).       

He —H2     

f.
/    

1   BOHR

1 	 I 
0.4	 0.8	 1.2	 1.6	 2.0	 2.4

E (MeV)

In Fig. 22, the experimental straggling results for helium ions penetrating
hydrogen are compared with the results from the asymptotic Fano formula (6)
for molecular hydrogen. A combination of three different effects leads to an
increase of the straggling to a factor of as much as 2.6 above the atomic Bohr value.
Of the three effects, i. e., (i) the "overshoot" in Eqs. (6) and (11a) caused by the
non-vanishing electron velocities, (ii) the molecular correlation effect, and (iii)
the charge-state-fluctuation effect, the latter being by far the dominating one for
a hydrogen target. This is seen from Fig. 23, where the difference between the
averaged helium and hydrogen results in Figs. 21 and 22 in units offs is compared
to the contribution from the different effects. In the calculation of 0,2 from Eqs.
(19) and (26), the capture and loss cross sections by Hvelplund et al. (1976, 1980)
have been applied. The agreement between the experimental results and the
dot-and-dash curve, which is the sum of the contributions from Qc , f2  , and ("2.
(Eq. (6)), is reasonable but certainly not as good as for the helium case in Fig. 16.

4.6 Connection to Other Measurements

As argued in II, the straggling of light, swift ions may be theoretically simpler in
a solid than in a gas. In a solid, the effective atomic diameter 2rA 3.3Å is of
the order of the interatomic distance and the fluctations in the number of ion-
atom encounters, and thus the atomic correlation term 01 will be small as corn-
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1.2

0 0	 100	 200	 300	 400

E MP (keV)
MI

Fig. 23: The deviation from the Z, scaling of energy straggling for H and He ions in H 2 versus
energy per nucleon. The points display the difference between the experimental H 2 results in
Figs. 21 and 22. The contribution from charge-state fluctuations f4 (Eqs. (19) and (26) for
He ions measured in units of Q,(He) is given by the solid curve. When the contribution
from molecular correlation effects fn, (Eq. (17b) is added, the dashed curve results. When fi-
nally the contribution from the Fano formula (Eq. (6)) is added, the dot-and-dash curve results.

pared to that in a gas of the same area density NOR. Similarly, charge-state
fluctuations in a gas, resulting in the straggling term Qc, is for a solid reduced to
a significantly smaller fluctuation of the screening cloud travelling with the ion.
Thus we would expect the straggling in a metal to agree approximately with the
electron-gas results, an expectation which is actually borne out by recent meas-
urements by Heine et al. (1979) on aluminium (Fig. 6 in II).

Generally, however, straggling data for hydrogen and helium ions in solids
deviate from the theoretical electron-gas estimates, and measurements on the
same target by different groups may even deviate by as much as a factor of two
(Fig. 7 in II). One of the reasons why it is so difficult to deduce any systematics
from straggling measurements in solids is probably that the target inhomogeneities
such as, e. g., non-uniform film thickness and texture effects tend to increase the
straggling in an uncontrollable way. It is worthwhile to point out, however, that
in many applications of straggling results to ion-beam analysis of solids, the diffi-
culties, which hamper accurate, reliable, and reproducible measurements on
thin solid films, often are reduced, and thus a precise knowledge of the basic
straggling term 0is caused by . fluctuations in electron excitation is still of great
importance. Experimentally, such information can be obtained for solids only if
a proper check and/or correction for foil inhomogeneities is performed. Unfor-
tunately, only very few experiments on solids have been made with proper control
of the target conditions, and we shall abstain from a further discussion of straggling

500
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data for light ions in solids and concentrate upon the straggling data for gaseous
targets.

Hvelplund (1968, 1971, 1975) and Bonderup and Hvelplund (1971) performed
an extensive investigation of energy straggling suffered by keV ions penetrating
gas targets. A comparison with Hvelplund's straggling results for hydrogen ions
transmitted through H 2 , He, Ne, Ar, Kr, and for helium ions penetrating He
and Ne is made in the respective figures of this work. For the cases of H H2,
He, Ne, Kr, Hvelplund's straggling data agree with the present ones within the
uncertainties, while in the case of H –* Ar and He -- ∎ He, Ne at the highest
energies, the two sets of data deviate by approximately 20 %. The reason for this
discrepancy is not understood, but it may be mentioned that also the stopping-
power data in Ar by Bonderup and Hvelplund appear to be low (see I).

Mason et al. (1966), Ramirez et al. (1969), and Hague and Hora (1972) have
measured straggling for protons and a particles in gases. In these experiments,
the mean energy loss is considerable compared to the initial energy, and a com-
parison with the present measurements becomes difficult. (If DE is comparable
to E,, the measured straggling O 2 /NOR will be larger than that for negligible
energy loss provided the stopping power is a decreasing function of energy,
Tschalär (1968).) An exception to the above situation is the He He data by Ra-
mirez et al. (1969), where DE/E, is only ' 18 %. For energies of 1.5 S E He S 3.5 MeV,
Ramirez et al. (1969) found that 0/0 is approximately a constant equal to 2.5,
decreasing slowly with increasing energy. This result deviates drastically from the
present findings shown in Fig. 14.

Cameron et al. (1977) have measured straggling for low-energy a particles in
helium. Comparing their data for the lowest energy losses with those shown in
Fig. 14, good agreement is found for energies below 400 keV, while for higher
energies, the discrepancy increases with energy, resulting in a difference of a
factor of 3 in f2 2 for E = 1070 keV.

Concerning the above discrepancies in the helium data, it might be mentioned
that in the experiments by both Cameron et al. and Ramirez et al:, the energy
spread of the incident a-particle beam is not negligible as compared to that
resulting from the penetration of the helium gas, and this might obscure the
straggling results.

Recently, there has been a growing interest in straggling for heavy ions
because of its importance for many heavy-ion-accelerator experiments. Efken
et al. (1975) have measured energy-loss straggling of N, Ne, and Ar ions in He,
N2 , SF6 , and Ar-gas targets and in carbon foils at energies of 5-15 MeV. All
these measurements were performed in the thin-absorber limit LE/E, S 0.1. For
monatomic targets, the measured straggling was significantly higher (1.5-2.5)
than the straggling due to fluctuations in electron excitations, calculated from
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the Vavilov theory (Vavilov (1957)). Efken et al. attributed this discrepancy to
the straggling contribution Dc caused by charge-state fluctuations and, using
either formula (19) or Monte-Carlo calculations to predict 0,2 , they were able
to explain their experimental findings qualitatively.

However, their measurements belong to the velocity-proportional stopping
region v S v0 Zr, and thus the Vavilov theory is not applicable since the assump-

tion underlying the Vavilov theory and the Bohr formula (Eq. 5) is similar,
i. e., all of the target electrons contribute to the straggling as free electrons at rest,
and the cross section is given by the Thomson formula (Eq. 4). In the low-
velocity region, the straggling due to fluctuations in electron excitations is small
as mentioned in Sec. I and discussed in detail in II. The straggling results mainly
from the statistical distribution in impact parameters in the ion-atom collisions,
and within the Firsov model, it is given by Eq. (16) .

In Fig. 24, the experimental straggling data for heavier ions at low and
medium velocities by Efken et al. (1975), Hvelplund (1971), Andersen et al.
(1978), Sofield et al. (1978), and Cowern et al. (1979) are compared with the
Hvelplund-Firsov low-velocity straggling formula (16) and the high-energy Bohr
formula (5). When the straggling in Bohr units is plotted versus the parameter

[(Z, + Z 2 ) 8/3 / (Z2 Z 2 )] (^^  , formula (16) leads to a universal straight line.

From Fig. 24 it is seen that the straggling data by Ellen et al. (1975) on
atomic targets, and also the molecular results, when corrected for the molecular-
correction term OM , agree with the general trend of the straggling results by
Hvelplund (1971) and Andersen et al. (1978) and with Eq. (17) to within a

10

2

Fig. 24: The experimental straggl-
ing results for heavy ions at low
and medium velocities by Efken et
al. (1975), Hvelplund (1971), An-
dersen et aI. (1978), Sofield et al.
(1978), and Cowern et al. (1979) are
compared with the Hvelplund-Fir-
sov low-velocity straggling formula
(16), and the high-energy Bohr
formula (5). The dashed curves
through the data of Sofield et al.
and Cowern et al. are made only
to guide the eye, whereas the arrows
indicate the molecular correlation
terni f2 m .
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factor of 1-2. It therefore seems unneccessary to incorporate the straggling term
0,2 to explain the experimental gas data by Efken et al.

In Fig. 24 are also shown the straggling results of Efken et al. for Ne and Ar
ions on thin carbon foils. These solid-target results are systematically higher than
the results on atomic gas targets. According to the authors, this may be due to
the influence of foil inhomogeneities.

First, in Fig. 24 are shown the experimental straggling results of the Harwell
group [Sofield et al. (1978) and Cowern et al. (1979)] for nearly fully stripped
160 and 12 C ions penetrating aluminum foils. For the lowest energies, the experi-
mental results again agree with Eq. (17) to within a factor of 1-2. At the highest
energies, the data are significantly higher than the predictions based on the
Livingstone-Bethe formula (Livingstone and Bethe (1937) ), which is a semi-
empirical version of the perturbation formulas, Eqs. (6) and (7), with the atomic
quantities expressed in terms of ionization potentials and effective charges for the
various electronic shells. The deviations from the Livingstone-Bethe formula was
attributed to the straggling contribution 0,2 from charge-state fluctuations, and
on the assumption that Oc2 is given by Eq. (19) and that the partial stopping
cross sections can be written as SQ = g 2 S p , experimental values of the electron-

capture and -loss cross sections aa6 and ass were determined for 12C.
However, the results may be vitiated by large uncertainties. First, the assump-

tion that the stopping-power scales as the average square of the charge state may
lead to an overestimate of the influence of charge-exchange straggling 0,2 even
though one may expect the error to be smaller than in the helium-ion case dis-
cussed above. Also the applicability of the Bethe-Livingstone perturbation for-
mula might be questionable since the parameter KB = 2Z i vo/v is of the order of
unity. A better way to obtain information on 0,2 would be to compare the 12C
results with experimental-straggling results for a lighter ion, which is in a fixed
charge state, i.e., to use a method similar to that used in Sec. 4.1.

Second, the measurements may be obscured by straggling contributions , from
foil inhomogeneities on a microscopic scale. Such effects were carefully checked
by the Harwell group by means of a 25-pm diameter proton beam and a 2 x 0.1-pm
Tallystep profiler, and it was concluded that thickness variations over distances
larger than the lateral resolution of 2 x 105 Å and 2 x 104 Å for the methods con-
tribute to the straggling by less than 10 %. It is, however, noteworthy that the
energy dependence of the straggling is nearly identical to the energy dependence
of the stopping power, which is exactly what is expected for a contribution f2 ô,
from thickness variations since f2',, = (dE/dx) 2 0t2 , where At is the standard
deviation of the foil-thickness distribution. It may therefore still be worthwhile
to check for foil-inhomogeneity effects by comparing the straggling in the foils
for different light ions such as protons, a particles, and lithium ions, for which
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the influence of charge-state fluctuations is negligible. The applicability of this
method, which has a high lateral resolution, has been demonstrated by the Oak
Ridge group (see II for further details) .

Finally, in our opinion, the ultimate test of the influence of charge-exchange
straggling for heavy ions would be obtained from measurements with 12 C in a
gas target since the electron-capture and -loss cross sections are either known or
can be measured separately, and the problems with target inhomogeneities dis-
appear.
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