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Synopsis

Angular and energy distributions of electrons excited by a heavy charged particle penetrating an
electron gas have been studied theoretically for a range of electron densities. The calculations are
based on the self-consistent dielectric theory of Lindhard in which the properties of the electron gas
are described by a frequency and wave-vector dependent dielectric function. The excitation cross
section has been investigated in the present work for a broad range of incident projectile velocities,
and numerical results are presented both for doubly and singly differential forms of the excitation
spectrum. An analytical approximation is developed for the case of low projectile velocities, and
comparison with numerical results indicates that the analytical form is quite adequate for velocities
up to near the Fermi velocity. For higher incident velocities the emitted energy spectrum is char-
acterized by a resonance for electron energies in the range — 1-4 times the Fermi energy; at electron
energies about 10 times the Fermi energy the spectrum approaches that given by the Rutherford
cross section. The electron energy at which the resonance occurs is independent of the projectile
velocity, but is a slowly varying function of the electron density. The angular position of the reso-
nance is, however, a strong function of the projectile velocity, occurring first in the forward direction
at a critical velocity, u0 , moving to higher angles with increasing projectile velocity, and limiting
to lateral (90°) emission at high incident velocity. These results may form a basis for more detailed
studies of electron emission in both atom-atom and atom-solid collisions.
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1. Introduction
The free electron gas is a convenient system for model studies of atomic and solid-
state properties. In particular, this system offers unique possibilities of studying
the interaction of energetic charged particles with matter, as far as the inter-
action with electrons is concerned. The free electron gas in the self-consistent
picture developed by Lindhard' allows a treatment of the stopping of a charged
particle with essentially no limitations on the range of particle velocities to be
considered, thus giving qualitative insight into the partition of energy that would
be quite difficult to obtain by other means.' When combined with the Thomas-
Fermi principle, this dielectric theory provides estimates of stopping parameters
that exhibit basic scaling properties as a function of atomic number. s.4

The dielectric theory has implications on the excitation spectrum of an electron
gas. While collective excitations (plasma modes) occur in rather well-defined
energy quanta, and thus show up in a number of well-studied phenomena,' the
situation is different with regard to single-particle excitations. In a free electron
gas, single-particle excitations form a continuous spectrum. Therefore most
discrete systems would seem to call for a more elaborate treatment, unless atten-
tion is given to high levels of excitation and, especially, ionization. These pheno-
mena have received less attention from the point of view of the dielectric theory
than the stopping process.

In the present study, the spectrum of electrons excited by an energetic charged
particle has been analyzed within the framework of the dielectric theory. Both
energy and angular distributions of electrons have been evaluated as a function
of the velocity of the primary particle. Therefore, the information extracted
from the model is more specific than the predictions on energy loss, where
primary velocity and Fermi velocity are the only variables. Both the capabilities
of, and limitations to the model are expected to show up more clearly in differ-
ential quantities than in integrated ones.

Our main motivation for this study was a need for universal, and not neces-
sarily very accurate angular and energy distributions of electrons after excitation
by charged particles. Such spectra are called for in the analysis of a wide range
of phenomena in radiation physics, chemistry, and biology.' Although quantita-
tive studies have been made of specific systems, both experimental and theoretical,
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we were missing the qualitative guidelines that the dielectric mode] provides in
stopping theory. We started with a numerical evaluation of doubly differential
electron spectra from the dielectric theory, similar to what was done by Ritchie
et al. 7.8 for the energy spectrum. Later the numerical evaluation of electron
spectra was followed up by an analytical study. The theory in its present form,
we believe, provides insight into the qualitative behavior of secondary-electron
spectra from light-ion bombardment, in particular the possible occurrence of
peaks in the energy and angular distributions, the correlation between the energy
and angular distribution as a function of particle velocity, and the range of angles
that is accessible for secondary electrons at any given set of particle and electron

energies. We had hoped to present Thomas-Fermi scaled spectra at the same time,
but with an increasing amount of available analytical results we found that
within the time limits imposed, it seemed most appropriate to present the free-
electron results separately, and reserve applications to a later occasion.

2. Basic Equations
The basic equation governing the excitation of secondary electrons by a charged
particle traversing a degenerate Fermi-Dirac gas of electrons has been derived

by Ritchie. 9 His primary attention was directed toward the effects of the target
on the incident projectile, and consequently the secondary electron spectrum has
not been discussed in great detail. In the present section we will present a brief
derivation of the basic equations for both the excitation cross section and for
the single-particle contribution to the stopping cross section. Our procedure
differs from that of Ritchie, but is consistent with Lindhard's derivation of the
dielectric function. The derivation also makes evident the limitations of the
procedure, and serves to introduce the notation which will be used throughout

the paper.

A. The Model

We consider a point particle of charge el and velocity y, which traverses a degen-
erate Fermi-Dirac gas of electrons. The fractional energy and momentum losses
suffered by the particle through its interaction with the system are assumed to
be small over a time period which is long compared with pertinent electronic
periods, so that y can be taken as a constant. This assumption will be quite good

for a massive particle traversing the system, or for a highly energetic particle
with mass comparable with the electron mass. The charge density, Q(r, t) asso-
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ciated with the perturbing particle is given by

e(r,t) = e i 8(r—vt) .	 (2.1)

where 8 represents the Dirac delta function.
The local electric potential Ø(r, t) which results from the charge density (2.1)

includes the Coulomb field of the incident projectile as well as the induced field
which results from the dynamic response of the electronic system to the perturba-
tion. In the self-consistent treatment of Lindhard' the many-body problem of
the interaction between an incident projectile and the electrons and between
the electrons of the system themselves is resolved in the dielectric function

c(k,co) of the system. By definition, e(k,co) connects Ø(r,t) and e(r,t) through

the relation

Ø(k,co) = 4ne( k , w)/k2e ( k , w) ,	 (2.2)

where Ø (k, co) and e (k, w) are the Fourier transforms of Ø (r, t) and e(r,t),

respectively. For a function g(r,t), the Fourier transform g(k,co) is defined such

that

g(r,t) = ( VT)' Eg(k,w)e,(k•r—.1), 	 (2.3)
k, ru

where periodic boundary conditions in the volume V and time interval T are
assumed. Both V and T are taken to be large, and will ultimately be allowed to
limit to infinity.

Equations (2.1)-(2.3) give the perturbing potential

Ø r, t = 
47re, E 8k v,w e,(k•r -øt)

	(2.4)
( )	 V k,m k2e(k,w)

Ø(r,t) as given in Eqn. (2.4) is the effective interaction potential between the
incident projectile and the electrons of the system. This field is the generalization
for the system of electrons of the Coulomb interaction between two isolated
charged particles.

B. The Dielectric Function

The dielectric function e(k,co) has been evaluated for the free Fermi gas by
Lindhard' within first-order time-dependent perturbation theory. The electrons
of the system are assumed to occupy states described by single-particle free-
electron wave functions, y(r,t), where

W (r, t) = V -
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The single-particle energies, E, are given by

h2 k2

E 
2m 

= 11w

where h is Planck's constant divided by 2n and m the electron mass. The system
is taken initially to be in its ground state so that all states are occupied up to the
Fermi energy EF given by

1	 2 2	 2

EF, = 2 m
a2 

= mF = 
m 

(3n2 n) 2/32 

where n is the electron density in the system, and VF and kF are the magnitudes of
the velocity and wave vector, respectively, of electrons having energy E F .

The results of Lindhard's analysis are conveniently expressed in terms of the
variables u, z, and x 2 , defined by

u = cwlkuF

z = k12kF

and

x 2 = ee l (7rhv F ) ,

where e is the electronic charge. In these variables

(k, co) = 1+ ^ [f (u,z)+^if2(u,z)]

where

f (u,z) = 2+ 8
z

{[l_(Z+ U)2]1fl1  
z+u+1 
z+u-1

40:8

(2.6)

(2.7)

(2.8a)

(2.8b)

(2.9)

(2.10)

+ [1 — (z — u)2]ln
z — u + 1
z—u- 1

(2.11)

and
^r u

2
for z +u < 1, (2.12a)

f ( u,z) = 8z 
[1— (z — u) 2 ] for z— u < l< lz+ul (2.12b)

otherwise. (2.12c)
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C. The Transition Rates

The excitation spectrum and the stopping cross section can be obtained from the
perturbing potential, Eqn. (2.4), and electron wave functions, Eqn. (2.5), through
a straightforward application of first-order time dependent perturbation theory.
The use of first-order theory is valid as long as the transition rates remain small,
and it is consistent with Lindhard's form of the dielectric function. It is our aim
in the present work to discuss some qualitative features of the single-electron
excitation spectrum, and therefore we disregard higher order effects10 , as well as
many-body corrections to the Lindhard dielectric function.

In the present section we will write

E(k) =Eo ; k =ko ; w=coo =Eo /h	 (2.13a)

for the initial electronic states (i.e., for Ikl< kF ), and

E(k) =E 1 ; k=k,; w= w, =E1 /h	 (2.13b)

for the final states (Ikl> k F ). If W(k,)d 3 k, represents the probability per unit
time for excitation of electrons into states k1 in the k-space volume element
dik„ then first-order time-dependent perturbation theory yields

W(k,)d 3 k, = 2 7rN,(El )dE,dS2, E
ko

4icele 

Vk2 s (k, k • v)

z

S(E1 —E0 —kik•v),	 (2.14)

where k = kl — ko , N1 (E1 ) is the density of states at E1 , and dQ2, a solid angle

at k, . The extra factor of two in front of the standard expression comes from the
sum over spin states which are not altered by the potential (2.4). For large V the
sum in (2.14) can be expressed as an integral through

and, likewise

(2.15a)(27r)3
J

d3k

Ni ( El) dE, =
V	 2 . (2.15b)k1 dkl

(27t)

This yields

2 2

W ( ki) d3k, _ ^ n d3 k 1 d3ko
1 z

S (col — wo —k•v). (2.16)
k2s(k,k • v)

The integration over vectors ko is restricted to k, < k F . The transition rate can

also be expressed as a cross section d 3 a(k1 ) by
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d3 k) = w(k' ) d3k,.
n a

Eqn. (2.16) has already been derived by Ritchie (Eqn. (4.14) in ref. 9; his equa-
tion contains a spurious factor h-').

The introduction of a cross section according to eq. (2.17) should at this
point be taken as a formal step that will allow a direct comparison with the
corresponding single-electron (or binary-encounter) cross sections at all stages
of the theory. The physical significance of a single-electron cross section in a
theory that takes into account the mutual interaction between target electrons
is less evident, and we do not claim that there is any in a strict sense. Both Lind-

hard" 2 and Ritchie' -9 and coworkers avoid introducing such cross sections
altogether and restrict their analysis to quantities characterizing the interaction
with the medium rather than with the individual electron. Thus, any cross sec-
tions discussed in the following become physically meaningful when multiplied
by the electron density n to become inverse mean free paths.

D. The Stopping Cross Section

Lindhard and Winther2 have previously discussed in detail the stopping cross
section S(v) of the free electron gas for an incident charged particle. They take
as a starting point for their discussion the electric field resulting from the potential
of Eqn. (2.4) which acts to retard the motion of the incident particle.'" The
contribution of the single-particle excitations to the stopping cross section can
also be found from the above excitation cross section.

The basic transition probability is multiplied by the energy transfer hw before

summation over the initial states. An extra factor of hw = hk • v therefore appears
in the equation corresponding to (2.16). The resulting expression is

e2e2 

S(0)	 nutin"
id3k,fd3 kolk2e(k,k•v)2 8(w,—wo —k•v),	 (2.18)

n

where ko < k,< k, defines the integration limits. This expression will be discussed
in more detail in the following section.

3. Integrated Cross Sections
It is convenient first to study the cross section integrated over all ejection angles,
i.e., the energy distribution of ejected electrons. This will be done in the present

(2.17)
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section. In addition, the total cross section will be discussed briefly as well as
the connection with the stopping power. The results of this section overlap to
some extent with those of the study of Ritchie et al. 7-9

After introduction of the vector k rather than ko as the integration variable,
(2.16) reads

2
2 2	 8( 

he
+ hk•kl —k^v)

3	 el e	 3 d 3  ` 2m	 m
d Q= no 70 d k,^ k	

Ik2E(k,k • v)12

with the boundary

k v? 
m 

( ki —k F ) >_ 0
2

corresponding to ko < k,. By means of spherical coordinates, and integrating,
we obtain

 dik
da =JId3a_2e iem knvir2h3 

,dk, 
klk2 s( k k • v)12

4,,

with

2m
(ki—k F2.) <_ k • v ^ 

2 m
(2kk1 —k2) ;

Let us now introduce Lindhard's variables z and u, Eqn. (2.9). Eqn. (3.2) becomes

z	 r

da = 
e l
	 X 2 k l dk, 

J 

2 dzdu 
2	 (3.3)nmv2	 z c(z,u)

with boundaries on the integrals

u z ? 1(4114- 1)	 (3.3a)

u+z <_ k11 kF 	 (3.3b)

u <_ vlv, , .	 (3.3c)

Before analyzing (3.3), we also carry out the integration over kl in order to obtain
the total cross section. This yields

a=f
k,../1 } 4uz

da
k= Max (k,.k(utz))

eiX2k 2 f z dzdu [1—(z—u) 2 ]0(u+z-1)1 (3.4)
2nmv

2 14uz •B(1 —u—z)-1-
J Iz e(z,u)1

(3.1)

(3.1a)

(3.2)

(3.2a)
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with the bounds

z—ul < 1	 (3.4a)

0 < z	 (3.4b)

0<u<_ aw,...	 (3.4c)

The integration region is the total accessible range for single-particle excitation ;
the term in the brackets of (3.4) is readily identified as n zf (z, u) in the range

Iz —ul < 1. Therefore, (3.4) can be rewritten

4eik^ lmJ 
dz ^du 	 1	 l 	 (3.5)

7r1[mU	 o	 o	 (e(z,u)	
)

Iz — ul < 1

The stopping cross section S is a similar integral; it can be found by adding

a factor

h (uw, — cop ) = ttk • v= 2mvuz

in (3.5). Then,

d	
('

(S)si^g^ePart^e =^^(w' 
—w	

m

o)d^ = — 24>me^2^iaFlmJ zdzJ ^4,,udu(E(z,u)
	

1)	 (3.6)
0	 0

Iz — u l < 1

which is identical with Lindhard's expression' for the stopping cross section, except
that the integration is restricted to single-particle excitations, Iz—ul < 1. This
was to be expected from the derivation procedure. The expression (3.6) has
been studied extensively in ref. 2. The total cross section, Eqn. (3.5), can be

evaluated in the same manner. A detailed study has been published recently.'
Rather than evaluating that quantity separately, we go back to the differential

quantity da, and mention some results concerning a as a check on da where

appropriate.
Fig. la shows the area of integration in Eqn. (3.3) for a number of values

of k,/k F . I t is seen that the integral extends over a segment of the stripe lu—z1:5_ 1;
for u> uF the size of this segment is independent of o in the range of k,-values

limited by

1 ^̀< '<2 `—' —1
k F	 UF

U =

(3.7a)



40:8
	

13

and decreases towards zero in the range

2 
v 

—1 < k'<2 a + 1.
u,	 kF	 uF

For u/V F < 1, the integration region depends on u for all values of k, (Figure lb).

(3.7b)

Fig. la. Limits of integration for Eqn. 3.3
in the (z, u) plane for v > u p .

Fig. lb. Limits of integration in the (z,u) plane
for Eqn. 3.3 for v< 1F.

These relations provide a classification scheme for the evaluation of du

according to Eqn. (3.3). For practical purposes, it is convenient to include one
more dimension in such a scheme, namely the role of the resonance point de-

fined bye

e(ze,u,) = 0; u e = z,+ 1	 (3.8)

The function do. will normally have a singularity at that value of k, where the

point P1 (Fig. la) passes through the resonance point (z e , u,). According to (3.3c),

this is only possible for

u > u,V F = u,	 (3.9)

Thus, O e. represents a "critical" velocity above which a singularity occurs in the
excitation spectrum. From (3.8) and (2.11), we find u, to obey the relation

(u — 1) 2 + 22 [1 —u e log u ` J— O.
u,— l

(3.10)
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Fig. 2. Portion of (v,kl ) plane showing the classi-
fication scheme for projectile velocity and exci-
tation k-vector. Region I, 0< v< v F ; region II,
o,.< 0<o,; region III o,< o.
The labels A and B indicate k,-values for which
the reduced integrated excitation spectrum, Eq.
(3.22), is independent of v and dependent on v,
respectively.

Now, we have three regions of particle velocity (Fig. 2). In region I, v <_ 0F , the

integral in (3.3) depends on y , and the allowed range of k t -values is

1 5 kdkF <_ 2 u + 1.
uF

In region II, v F < v � v„ and region III, v>_ v„ the integral (3.3) is independent
of y for k,-values in the range (3.7a), called A, and dependent on y in the range

(3.7b), called B; in region III, da has a singularity at

ke =(2u,- 1)kF ,	 (3.12)

while such a singularity does not occur in region II (nor I).
The singularity in the excitation spectrum due to the resonance in e(z,u) at

the point (z,,, u c ) results from the excitation of virtual plasmons with wave vector
k,, and frequency w, = v F k e u c . These plasmons correspond to the shortest wave-
length collective excitations which are supportable by the free electron gas.

A. Analytical Approximation: Region I

A simple analytic approximation is possible in region I in the limit of o << v FF.

The area of integration in the z—u plane as defined by Eqns. (3.3a-c) is indicated
in Fig. lb, and Eqn. (3.3) reads, to lowest order in v/„,

(3.11)
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2 1	 #
dk, (3.13)k,

PP

	

nm^ F z , ^z E (^ p) Iz 
(1 	

Z)

where

z * = F (k; Ik 2 - 1),	 (3.13a)
4 v

so that

dQiPP
ze, —5 *	 *	 *1	 Z	 Z	 — (3.14)

2 nmvvF	 t	
.,

a2
+ 

XZ 
+ x a arctg 

X
+ 

az *

a	 X

with

a=-V1—X3 (3.14a)

and

0<z*<1.	 (3.14b)

In the evaluation of (3.14), the approximation f, (o,z) — 1 —3z2 has been made. *

The form (3.14) offers itself for introduction of the excitation energy above the

Fermi energy

h2
	 2	 2e, =	

m 
(k2

2  
(3.15)

Then

* —	 el (3.16)z*
2mooF

and

Integration over

0 5 el _ 2mvvF .

de, leads to

(3.17)

,I` ._0
do;ipp = 04 " 2	 2 2 {a arctg X a2 + X2 , (3.18)

an expression that can be obtained directly by evaluation of (3.4) in the limit

* This approximation is identical with the one used by Lindhard and Winther, 2 but differs from
that used by Ritchie.'
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vw F << 1. Eqn. (3.18) is equivalent with Ritchie's corresponding result (Ref. 9,

Eqn. 6.15) when proper account is taken of the fact that his approximation for
f (u,z) leads to an a' 2 = 1 -e1 2 in place of a2 as given by our Eqn. (3.14a).12

Going back to the energy spectrum we write (3.14) in the form

4 1 	e  l
d 	 - 2nh v F.v (1+2X2 13) g\2mvFvl	

(3.19)

where

a

	

g(z*) = 1—z*+z* —+X	
z*-1

arctg 	 	 (3.20)

	

X a	 X +az* 
a	 X

Fig. 3. Normalized low velocity excitation cross
section, Eqns. (3.19) and (3.20).

has been plotted in Fig. 3. Note the very simple scaling properties as a function
of the primary velocity v(z* cc v -t ). In particular, note that for a wide range of
electron densities (0.03 < X' < 0.3) the curves for g are almost linear on the
semilogarithmic plot of Fig. 3. Figs. 4.a-c shows the ratio of the actual (numer-
ically evaluated) cross section (3.3) and the analytical approximation formula
(3.14') for three different values of the density parameter X2, and three values of
the ratio vwF . We conclude that for rough estimates, the analytical approxima-
tion will be satisfactory at all allowed values of the electron energy at values of o
not too close to the Fermi velocity.



1.2

0.8
do

å° app

0.4

00
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Fig 4. Excitation
cross section
normalized to the
analytical approxi-
mation for low
incident projectile
velocities,
a) 2(2 = 0.01,

b) x2 = 0.1,

c)f = 1.0.
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B. Analytical and Numerical Results : Region II &III

For v> 0, , it is convenient to compare our results with the Rutherford cross
section averaged over the Fermi distribution of initial electron velocities. This
averaged cross section dal is found be setting e = 1. Eqn. (3.3) yields, then

2 ne; e2 de 1
da R = mvz e2 g1(el)

^
(3.21)

with

1	 ... 0 <_ e 1 <_ 2mv 2 — 2vpF.

(,.^63 + 1^re„/2 my— p,
gi( 81) =	

(el  2 pF (pl + 2pF) 
+ 4 (e F.) (p1 +pF)2

0	 ...e >_2mv2+2apF.

e, is defined in (3.15), and

(3.2la)2 mv2 — 2vpF. < e 1 < 2mv2 2vpF.

p 1 = hk,	 (3.21b)

p, = hh I. •

In the region where g1 (e1 ) = 1, (3.21) is identical with the conventional
Rutherford spectrum for target electrons initially at rest except that the electron
energy here is measured from e i.. The smearing of the edge (g = 1) is then caused
by the ground-state motion in the Fermi gas. The function g1 (e1 ) has been plotted
in Fig. 5 with the expression

	

x=
,—(2mv2 -2vp F.)	

(3.21c)
4vpF

as the independent variable. It is seen that for v> 20 F , this function is essentially
independent of o.

In the more general case, we can write

da  	 3 e,	 zdzdu 

where the Rutherford cross section dQ R is the expression (3.21) for g1 = 1. This
form does not contain the velocity at all in regions IIA and IIIA, and is there-
fore a universal function of e, , dependent on the density parameter f only. In

8 eF .	 z2e(z,u)I2dCR 	 \e i . J
(3.22)



0
10

X2

0.1

0.01
1.0 	 15	 20

	
2.5

V,/VF

Fig. 7. Peak electron velocity (vi/v,) versus
electron density, expressed by X2 =ezlnhvp,

cf. eqn. (3.25).

v/ v, ^10
VIVE = 4
VIVE	 2
v/vF	1.5
v/VF	1

40:8
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0.0
 .0	 0.2	 0.4	 0.6

Fig. 5. Cutoff region for daR , Eqns. (3.21
and (3.21a).

E, /EF
1.0

0.8

0.6

91

0.4

0.2

0.8 10

do
A do R

3	 v 1 / v F
Fig. 6. Excitation cross section da, normalized to da R , for a series of values of the electron density
(cf. eqn. 3.22). For this plot g1 = 1. The numerical integration has been performed by" Schou.



^

x 2 • O.OI

„/.r^— — =^- ----

/

Fig. 8. Excitation cross sections, do/do, .
in region II. a) / = 0.01, b) f = 0.1,
c) f = 1.0.

ô

20
	

40:8

regions IIB and IIIB, the universal function is to be multiplied by some function
g' (81, 

o; x'), with 0 < g' < 1 and g' monotonically decreasing with increasing e, .
Moreover, for large o (region III) we must have

gl(e,,v;x2)—	 ( e,)	 (3.23)

since e -> 1 at large z, i. e., large values of k.
Fig. 6 shows the expression (3.22), evaluated numerically for u/aF >1. Obvious-

ly, da can be determined directly from Fig. 6 in the regions IIA and IIIA
where g, = 1.

Fig. 6 shows that substantial (Z 25%) deviations from straight Rutherford
scattering occur at electron energies

e < 10eF.,	 (3.24)

the deviations being somewhat dependent on the density parameter f. Most
spectacular, of course, is the peak at the position

e, C = 4u, (u e —1) eF ,	 (3.25)

following from (3.12), with u, given by (3.10). This relation has been plotted in
Fig. 7. It is seen that the peak position varies slowly with f, and so does the
detailed shape of the peak.

Ritchie et al. 7 8 have previously pointed out that the cross section da/daR is
a universal function of e,, independent of projectile velocity, for e l <. 2 mug — 2VPF ,

1.0
	

1.3
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and have evaluated an expression similar to (3.22) for incident electrons. Their
spectra also show a peaked behavior with the peak occurring at the position
indicated by (3.25). *

Figs. 8a-c show electron spectra, evaluated numerically, and normalized to

*See, for example, Fig. 4 of the second paper of Ref. 7 where the value r, = 2.07 corresponds
to e = 0.343.

2
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Eqn. (3.21), i.e., including that region for which g,< 1. Curves are shown

(dashed) for o = 0 F , va , and o r , where va = (v F vC )/2. Also shown are the

universal curves from Fig. 6 (solid). (Note the different horizontal scales on the
various parts of Fig. 8). The velocity v F is the boundary velocity between regions

I and II, o r is the boundary velocity between regions II and III, and va lies in

the center of region II. For the more dense gases (.x < 0.1) the presence of a
resonance is already noticed at o = va , although the singularity in the spectrum

occurs only for v >_ o r... Also, for these cases it is seen that with v in region III the

actual cross section will differ by less than 10% from that determined from the

universal curves (providing that the function g, is included in da R ). For x2 > 0.1

at o = o r , deviations 25% are seen between da/doR and the universal curve;

therefore o must be somewhat greater than o r before the universal curve becomes
an accurate representation of do/do RR . It should be noted, however, that these
deviations are important only for region IIIB in which da is a rapidly decreasing
function of v, .

4. Doubly Differential Cross Section
In this section, the full angular and energy distribution of excited electrons is
analyzed on the basis of eqs. (3.1) and (3.1a). The procedure is very similar to
the one sketched in Section 3. We first introduce spherical coordinates for both
k and k„ with polar angles 0 and 0, against v as the axis. Then, eqn. (3.1) reads

d .20. 	 X2 e 12 k , dki dq,r zdzdudtp  
8 (cos 0 cos 01 + sin 0 sin 01 cos	

kF	
u))

2n um?	 Iz2e(z,u)12	
^—	 (z+ uk,	 (4.1)

where z, u, and X 2 have been introduced in Eqns. (2.8) and (2.9), W is an azimuth,
and ry, = cos 0, . We also have

V
u =— cos B,

up,

and the limit of integration (3.1a) reads

4zu > k
2

22
-1>_ 0.

F

The integration over rp can be carried out in (4.1), whereafter d 2 a reads

XZei k, dk, dry,	 zdzdu	 k	 u2d20.
=
	nnma2	^Iz2e(z,u) IZ 

{(1_2)(l_) _ (,
ry^ — ^̂ (z + u)) 2 ^ 	(4.3)

(4.2a)

(4.2b)
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with the extra integration condition that the square root be real, i.e.,

(1— re) [1—z(z+u)2]>[^—^1 
-, 

(z+u)] 2	(4.4)

The condition (4.2a) provides a hyperbolic boundary for the integration in
the z—u plane, curve C, in Fig. 9, while condition (4.4) provides an elliptical

Fig. 9. Limits of integration for Eqn. 4.1 in the
(z,u) plane. C, corresponds to Eqn. (4.1a), C2

corresponds to condition (4.4), and C, corre-
sponds to condition (3.3b) (Fig. 1).

boundary, curve C2 . We note that the ellipse is tangent to the line z+u = vi/o,
at point P and also to the line u = vIV F at point Q, and thus the integration area
for ea lies within the integration area for da (Fig. la), but is tangent to those
boundaries. The points P and Q are given by

z(P) = 
	
-'l1 u , u(P) = 

^ 1 'J	
(4.5a)

V F	 F	 JF

and

z(Q) = -
1)

,7 1 - 
	
, u(Q) = U/aF •	 (4.5b)

F	 UF

It is thus clear that the elliptical boundary determines the upper bound on the
u-integration.

For fixed y, y5 , Eqns. (4.5 a and b) indicate that the points P and Q move
along their respective tangent lines as '/1 is varied. This motion is accompanied
by rotation and change in magnitude of the axes of the ellipse so that from the
standpoint of an observer stationed on either of the tangent lines the ellipse would
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appear to roll along the tangent line as 11 varies. This rolling motion allows the
integration area to vary in such a way with rj, so as to eventually cover the
entire boundary region given in Fig. la). It is noted that for q, = 1 the points P
and Q are identical and the integration area degenerates to a straight line. The
cross section d2 a does not become zero in this case, however, because of the
integrable singularity in the integrand.

The area of integration in Fig. 9 is only slightly smaller than that for du
(Fig. la) so long as P and Q are well separated and P remains within the two
straight lines that bound the region of single-particle excitations, u= z+ 1, i. e.,

2vry,— vF^ v, 2vr/,+vF

or

ïJ, - OF	 v1+ v,
2v 	 i 	 2v

The integration area decreases rapidly outside this range. An interesting special
case, which depends on the form of e (z, u), is the position of the resonance. Accord-
ing to (3.12) it occurs at

k^^kF = 2u,— I ;

in order to specify the angular region where a peak may be observed, we note
that the integration area in Fig. 9 includes the resonance point (z r , u r ), only when
the point P coincides with the resonance point, i.e., according to (4.2)

ti e = vF U C /v .	 (4.7)

However, because of the rolling movement of the ellipse one may expect the res-
onance to be broad as a function of q, at a given v,wF in the region near q r . .

We now consider the case where the ellipse becomes tangent to the hyperbola
at a single point, i.e., where the two points of intersection degenerate to one. In
this case, the integration area has approached zero. This determines the bounds
on electron velocity and ejection angle at a given primary velocity. Solving (4.2a)
and (4.4) for u2 , and setting the discriminant equal to zero yields

U,	 (2U+ UF)UF	 U l	 (2v—vF)U F

2v	 2 vv,	 < ^' ^ 2v +	 2vv,

For y 1 > 2 v — v s the right hand side of (4.8) is greater than 1 and the upper bound
on r^, is 1 in this case. This relation is illustrated in Fig. 10. The reader may keep

(4.6a)

(4.6b)

(4.8)
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Fig. 10. Values of the excitation velocity, e 1 , and
cosine of the emission angle, q„ which are
allowed by conservation of energy and momen-
tum.
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in mind that it is based only on conservation laws as well as the Fermi distribution
at zero temperature, while the dielectric function need not be specified. Thus,
no spectral information is contained in Fig. 10 except that the intensity is zero
outside the shaded area at any given velocity v.

A. Analytical Approximation: Region I

An analytical approximation is possible on Region I in the limit of a7‹ VF,, as
was the case for da. Ignoring u in comparison with z, and working in the (z,' )

rather than the (z,u) — plane, we find from (4.3),

11 dril	 zdz	  ( 	 d„2 e,

7r

2k

nmvVF

dk

	lz2E(z,0)12 J -^/(1—'e) (1 — z2) 
—('1-111)2

X 

where the area of integration corresponds to the one indicated in Fig. 9, but with
the simplifying feature that the ellipse C2 has its axes parallel to the diagonals on
the (z,u) plane. Therefore, (4.9) reads

d2 a = el X2 k, dk, dr nfl2 zdz2 ♦f2zdz2arc cos 	
r
—z

>71

2nnmVVF	{	 ,Ize(z,0)1	 Jz 1z2e (z, 0 )	 1^(1—X11)(1—z)^
(4.9a)

after integration, where

(4.9b)

and z_ and z.. represent the z coordinates of the upper and lower point of inter-
section, respectively, of the hyperbola and the ellipse as indicated in Fig. 9.

Again we approximate

z2 E (z, 0)	 a2 z2 -I- x2

d'a = (4.9)

v1 — vF
r— 2v
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Fig. 11. Low velocity (v,,F) values
d 2 Q/d 2 aapp vs r = (v, —vF )/2v for several
values of ry , cf. eqn. (4.10) for d2Oapp.
a) x2 = 0.01, b)	 0.1, c) f = 1.0.
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where a is given by (3.14a). Then, the integration in (4.9a) can be carried out.
The resultant expression for d2 a is

d2o 51, 
v 3n2  eit 2 de,d^7 	

[ l - g2( r, rl1)]	 (4.10)
16 mae F (a + ;(2) 

for-1+2r< 1 S1; r < 1,

and where

f7	
(ce +2X2)r- X2'l1 

g2(r^71)	 r(a2r
+X21)2 +X2(a2 +X2)(1 -^1)^1^2.

(4.10a)

We note also that within this approximation (r < 1F)

el = 4eF ru/vF ,	 (4.10b)
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i.e., r is proportional to the excitation energy e, above the Fermi level. Figs.
l l a-c show spectra, evaluated numerically, normalized to the analytical approxi-
mations 4.9) for four different values of 71 1 , and three values of vwF . These curves
are analogous to the integrated spectra in Figs. 4a-c, respectively. In Figs. 11,
the three values of vlO F, are also 0.2, 0.6, and 0.8, corresponding to the dash-dot,
solid, and dashed curves, respectively. The drop to zero on the leading edge of
each spectrum occurs because d 2 a,pp does not go to zero at the right-hand
boundaries indicated in Fig. 10, while the exact spectra do.

While the integrated spectra of Figs. 4 do not show large deviations from
daapp , the doubly differential spectra of Figs. 11 show considerable departure
from d2aapp for both the forward and backward directions. Despite this, the
approximate cross section, Eqn. (4.8), can be quite useful in obtaining spectra
for other values of x2 by interpolation between curves such as those displayed in
Figs. 11. For example, although the numerical values of the absolute cross section
differ by more than two orders of magnitude for x2 = 1 and x2 = 0.01, the relative

cross sections of Figs. I l a-c differ by a factor less than 2 for most values of ri , r,

and y. This is made particularly evident when angular distributions are compared
as in Figs. 12a-c. We thus conclude that the approximate cross section, d2aapp,

is quite useful in normalizing the spectra in region I, and that it may be accept-
able for many purposes even for velocities y approaching the Fermi velocity.

B. Analytical and Numerical Results : Regions II and III

As in the case of the integrated cross section it proves convenient to compare the
numerical results for d'a- with the Rutherford cross section, appropriately aver-
aged over the Fermi sphere of initial electron velocities. This cross section d2 o
is obtained from (4.1) when e = 1. The resultant expression for d2 aR is some-
what complicated, but it can be compactly written in terms of several character-
istic energies associated with the excitation event. These are

ee = 2mvi= e1 +eF ,	 (4.11a)

e„ = mv 2 	 (4.11b)

e,. = e+se -2r/, ( e e sp) 1 ' 2 = r (v—v,) 2	 (4.11e), 

and

eo =ep + er -2(e„er )
1

/
2
 = 2 (

v — i v—vll) 2.	 (4.11d)
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Here, s e is the kinetic energy of an excited electron and c the energy of an

electron at the projectile velocity, er is the excited electron energy in a system

moving with the projectile velocity, and E o is the minimum energy an electron

can have in order to be excited to the velocity v 1 . The expression which results

for d2QR is then

2	 37eeie2(EeEp)1/2g3(Ee,Ey,Eo,q1) 
d Q R —	

4(ERET)3/2	
dEedgl

where

g3 =Ee ( 1 -112 ) L( E e —8F) -2— (E e —E0) -2 ] — [ 1— q, ( E e/En) 1/2 ] L( E P —8 F) -1— (EP —EO)_1j •

(4.13)

It can be shown that in the limit as E F. —> 0

d2 	 —> dQR' a ( 711 — v 11 2 v) ,	 (4.14)

where du R is the expression given in (3.21) with g1 = 1, and where proper account
is taken in the limiting process of the fact that the cross hatched areas in Fig. 10

limit to straight lines as E F. —> 0. The cross section (4.12) can also be obtained by
appropriately averaging the classical binary-encounter cross section (Ref. 13,
eqn. 15) over a Fermi distribution of initial electron velocities.

The results in section 3 suggest that (4.12) should be an accurate description
of d 2 a for sufficiently large excitation energy, and comparison with numerically
evaluated spectra bears this out. Figures 13a-c show such comparisons for d2a
as a function of electron velocity, v 1 , at th = rt e as defined by (4.6). The projectile

velocity, r, was selected for these calculations such that the values of q e are 0.25,
0.5, and 0.75, for plots a) through c), respectively. These spectra correspond to
Fig. 6 for the integrated cross section, du.

One notes that the width of the resonance is relatively independent of the
location of the critical angle, and thus that the shape of the resonance is essentially
independent of the projectile velocity, as long as v is greater than the critical
velocity, v, (Eqn. (3.9)). This property is further illuminated by the angular
distributions one obtains at the critical excitation energy, E 1e , Eqn. (3.25), as
shown in Figs. 14a-c, respectively. There it is seen that the angular width of
the singularity is almost independent of the projectile velocity. Fig. 15 shows the
combined energy and angular dependence of the cross section in the (v 1 ,11 ) plane.

It is nonzero in the cross hatched area defined by Fig. 10, above which is plotted
d 2 u/d 2 Q R , for X2 = 0.1. The singularity is indicated by the arrow at (xe,rle).

(4.12)
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Fig. 13. Normalized double
differential excitation cross sec-
tions, d 2 ald 2 a R , vs v1 /v, for in-
cident projectile velocities such
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Fig. 14. Normalized double differential
excitation cross sections, vs?/, at the critical
excitation energy. Incident projectile velo-
cities are such that r/, = 0.25, 0.5, 0.75, and
1.0. a) x2 = 0.01, b) x2 = 0.1, c) f = 1.0.
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From Figs. 13, 14, and 15 it appears that qualitatively we may describe the
relative cross section d2 a/d 2 Q R as the sum of two parts. One part increases slowly
with excitation energy, e, , from zero at the Fermi surface to a value approxi-
mately equal to 1 for energies greater than e tc . The other contribution comes
from the resonance whose location in the spectrum is determined by Eqns. (3.25)
and (4.6), and the shape of which is essentially independent of projectile velocity.
This qualitative description also indicates that relatively accurate cross sections
can be extracted from Figs. 13 and 14, even for velocities below the critical
velocity, by simply translating the angular distributions in I, so that the singu-
larity falls at the location determined by (4.6). It should be noted that for v< v„
(4.6) yields values of ti r > 1, so that the angular distributions are truncated in
this case at a value of r/, which is dependent on a.

5. Summary and Discussion
Single-particle excited-electron spectra have been calculated for heavy atomic
projectiles penetrating a free-electron gas. The interactions among the electrons
of the gas have been included through the dielectric function of Lindhard. The
calculations have been carried out for a broad range of electron densities.

For low incident projectile velocities it proves possible to derive analytical
approximations to both single and double differential spectra analogous to Lind-
hard's low-velocity approximation to the stopping power. The analytical expres-
sions are reasonably accurate for incident velocities not too close to the Fermi
velocity of the target electrons. Further, the analytical formulae form a con-
venient base for the normalization of numerical results, and simplify the process
of interpolation between the results presented here.

The low-velocity spectra exhibit characteristic scaling properties expressed
by Eqs. (3.19) and (4.10) for the single and double differential cross section,
respectively. Apart from normalization, both spectra depend on the excita tion
energy through the variable

r = e,/(2mv,v) ,	 (5.1)

and the cross section at e, = 0 is proportional to the reciprocal projectile velocity.
These relationships are well corroborated experimentally in low-velocity ion-
atom collisions. 14 A more quantitative check on the details of the predicted spectra
hinges on a proper averaging procedure over the electron density distribution of
the collision partners according to the Thomas-Fermi principle, and is outside
the scope of the present paper.
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In the limit of very high projectile velocity, the electron spectra follow the
laws of classical Coulomb scattering—due account being taken for the initial
Fermi distribution of electron velocities—except for excitation energies of the
order of the Fermi energy and below, where the behavior is influenced by the
mutual interaction between the electrons. A characteristic feature is the occurrence
of a resonance at a fixed excitation energy at '' 1-4 times the Fermi energy,
dependent only on the density of the electron gas. Inspection of the double differ-
ential electron spectra shows that this resonance occurs at an ejection angle B,
given by Eq. (4.7),

1),
COS 0, =

u`
•

a

the parameter u (^ 1.5) being determined by Fig. 7 as a function of electron
density. It has been shown recently 15 that Eq. (5.2) can be interpreted as a
preferential electron ejection in the direction of the Mach angle of the polariza-
tion wake",6,17 excited by the penetrating particle. The width of the resonance
in energy and direction depends on the electron density, and turns out to be
roughly proportional with the excitation energy at which the resonance occurs.
In atomic systems, the resonance is expected to be broadened due to the finite
volume of the atomic electron gas. Resonances of this type do not seem to have
been identified experimentally so far.

With regard to predicted spectra for the case of the free Fermi gas, the limiting
energies and angles of ejection are given by Fig. 10 as a function of electron
velocity, and Figs. 5 and 6 determine the deviations of single differential spectra
from straight Coulomb scattering. Similarly, Figs. 13a-c and 14a-c determine
the corresponding deviation of the double differential cross section in energy and
angular variables, respectively. Numerical tabulations are available.' 6 The latter
may become useful in particular for intermediate projectile velocities.
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