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Synopsis

Let Fa be a finite field and let Fq [x] denote its polynomialring. Let ACFQ [x] denote a sequence of
polynomials and A(n) the counting number Card {f E Aôf _<— n) where ôf denotes the degree of f.

A sequence ACF5 [x] is said to be an asymptotic basis of order 2 if all polynomials of sufficiently
high degree lie in A+A = 2A and an asymptotic complementary sequence is defined analogously.

Let further P denote the sequence of irreducible polynomials in Fq [x] . The subject of this paper
is to translate two principal results of a chapter of the book of H. Halberstam and K. F. Roth to
the case of a polynomialring over a finite field.

We shall use an idea of Erdös to make the space of polynomial sequences into a probability
space.

We then prove the following two existence theorems by showing that the property one looked for
holds with probability 1.

There exist:
a thin asymptotic basis of order two
an asymptotic complementary sequence to P such that the counting number B(n) < n2.
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§1. Introduction .

Let Fq be a finite field of q = pm , m E N elements and let Fq [x] denote its
polynomialring. The degree of a polynomial is denoted af. We denote by sign f
the leading coefficient of f. The absolute value of a polynomial f is defined by

I

fl = c af. We can assume that the polynomials in Fq [x] are arranged in lexico-
graphical order (= <) based on an arbitrary ordering of Fq

Let A C Fq [x] denote a sequence of polynomials and A (n) denote Card
{f E Alaf �_n). Further let P denote the sequence of irreducible polynomials

in Fq [x] .
We denote by r, (A) the number of representations off in the form:

f = f'± f", f', f" E A, af' = af, af" <ar.

Also let R, (A) denote the number of representations off in the form:

f = p + f', p E P, f' E A, a p = ar, sign p = sign f.	 (1.2)

Definition 1.1.

A C Fq [x] is said to be an asymptotic basis of order 2 if all polynomials of
sufficiently high degree lie in A+A = 2A.

Definition 1.2.

For a given sequence A C Fq [x] the sequence B is said to be "complementary"
to A if the sequence A+B contains all polynomials of sufficiently high degr4e.

The subject of this paper is to translate two principal results of a chapter of
the book of H. Halbertstam and K. F. Roth to the case of a polynomialring over
a finite field.

Discussion and introduction of the first result.

The following question is a direct translation to the polynomialring Fq [x] of the
same question raised by S. Sidon (see [1]) concerning the existence and nature
of certain integer sequences A whose representation functions r„ (A) are bounded
or in some sense exceptionally small.
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Does there exist an asymptotic basis A C FQ [x] of order 2 which is economical in

the sense that, for every e > 0

lim r,( ) —0
ar-»

By elementary methods we have proved the existence of a subset A of Fy [x] which

is a basis of order two and have zero-density (see [2]).
By probability methods we shall obtain theorem 1.1 below which is mush

sharper than is required for an answer to the question above.

Theorem 1.1.

There exists an asymptotic basis of order 2 such that

of << r 1 (A) < of for large a f.	 (1.3)

It should be remarked that the proof of theorem 1.1 is based on Bernstein's
improvement of Chebychev's inequality (see the book of A. Renyi: Probability
theory [3]).

Discussion and introduction of the second result.

By elementary methods we have proved the existence of a complementary
sequence B to P such that

B(n) <n3 (see [2])	 (1.4)

By probability methods we shall prove that we can reduce the factor n 3 of the
right hand side of (1.4) to n'.

The proof of this result is rather complicated and requires beside the pro-
babilistic machinery also some deep results concerning the distribution of ir-
reducibles in the ring over a finite field. (See the paper of D.R. Hayes and the
work of Georges Rhin [4], [5]).

Further is should be remarked that the definition of R f (A) is essential and will
affect the result. If for instance we let R,(A) be the number of representations
of f in the form f = p f', p E P, f' E A, ap < af we would not by this method
obtain the estimate n2 but only n3 in (1.4). We state the theorem as follows.
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Theorem 1.2.

Let P denote the sequence of irreducible polynomials iii Fq [x]. There exists a
"complementary" sequence such that the counting number

B(n) << n2 .	 (1.5)

Finally we remark that these theorems correspond to results obtained by Erdös-
Renyi for integer sequences (see [1]) and can be considered as their directly
translations to the polynomialring Fq [x] .

I am very grateful to professor Georges Rhin (Metz, France) to have com-
municated his work
"Repartition modulo 1 dans un corps de series formelles sur un corps fini".

Also I would like to thank professor Asmus L. Schmidt, Copenhagen for his
comments and very helpful instruction.

§2. Probability methods on the space of sequences
of polynomials in Fq [x]

We shal use an idea of Erdös to impose a probability measure on the space of
polynomial sequences such that (in the resulting probability space) almost all
polynomial sequences have some prescribed rate of growth.

From now on we use w to denote an (infinite) subsequence of F, [x]. Let S2
denote the space of all such sequences w. We shall need the following variant of
a theorem from Halberstam and Roth's book 11] chapter III.

Theorem 2.1.

Let
{pglg E Fg [x]}	 (2.1)

be real numbers satisfying
0 ç Pg	1 (g E F[x])	 (2.2)

Then there exists a probability space (S2, S, P) with the following two properties:

For every polynomial g E Fq [x] the event
B( g ) = {w : g e w} is measureable and P(B( )) = pg .

(2.3)

The events B' g> , g E F, 1 Ix] are independent.	 (2.4)
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Further we assume that the sequence {p g} of probabilities (introduced in theorem
2.1) satisfies the following conditions:

0<pg < 1, gEF,[x]. (2.5)

If ag = of then p g = pf . (2.6)

p g	0 as ag	 co . (2.7)

We denote x g (w) the characteristic function of the event B. Then (2.4) is

equivalent to saying that x,, g e FQ [xi are independent (simple) random var-
iables. Further we shall need the following definitions.

Definition 2.1.

Let w be a constituent sequence of the space S2, and let f be a polynomial. We
denote by w (f) the counting number of the sequence w, so that w (f) is the number
of polynomials of w which do not exceed f. We denote by w(n) the number of
polynomials of w which degree do not exceed n. Furthermore let r f (w) and R f (w)
be as in the introduction.

Definition 2.2.

Let x : S2 — R denote a random variable. We denote by E (x (w)) the mean of
x(w) and by V (x (w)) the variance of x (w).

Definition 2.3.

Fi P^ Pr-^ _ /1 é", i = 1,2,3,4, AP) 
 < ar

Obviously we have :

w(f) = Card {gEwlg=<f}=E x, (w)	 (2.9)
g = <e

w(n)= Card {g E wlag<n}=E xg (w)	 (2.10)
ag <n

(2.8)
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rr (w) = ^ x^ xf-m (w)
Og< af

R f ( w ) = LJ xf - P (w)
peP

ap =af
sign p=sign f

§3. A limit distribution for r f (w)

Theorem 3.1.

Let us choose a sequence {pi } of probabilities such that

V (rt.) — co as af	 co	 (3.1)

Then we have for - co < x < co :

lim Pr r` - A`  < x = Ø (x)	 (3.2)
af o \ ^V(rf)

where Ø(x) denote the standard form of the normal distribution function.

Proof.

By the central limit theorem (see [3]) we need only to prove that the Lyapunov
condition is satisfied.

That is:

e> 0: 1- ZE
e ag < af

xg xf — g — pgpf -g 

V A	 Å ( z )Af 	 r

3

-> 0 (3.3)

as at - 00

We obtain:

E xg xf — g — pg Pr—g

2 f j2'

1	 3	 Ig) 13(r-g))	 3 3	 I g )	 (f-g)=	 3 ((1 –PKpr-g) P(B n	 + PgPr-gP(C(B n B	 )))
(A1—Ar(21)

2

3
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1	 3 (pxpr-g-3pgPr - g+ 4pgpf-x-2pgpi-x)
—% (2 ))2
r 

Hence we have:

E E
ag< ar

xg tir -g — exer -g 3	 2r- 3.ï121+443'-244' 
3

(A1 —^12 1)2r	 r

(3.4)

By (3.1) and (3.4) we have (3.3) and this proves the theorem.

Application of theorem 3.1.

We will prove that V (r r )	 oc as of	 oo in the case:

1	 ag <11

Pg =
2

a g 	 ^	 2 65 log qk, 
gl 

ag 11,k1 = 4 f

Let Y denote a random variable such that

P(Y = k) = f—k for k = 1,2,...
(v4)

We need the following lemmas:

Lemma 3.1.
n-1

lim 	 n E f . /gk = 	
n->^ ^^ k=1	 VIFI -1

Proof.	 n-1	 n-1

First we note E f \/qk = E vn —k v qn-k
k=1	 k=1

Then we have:

	

n-1	 n-1

^^
1 nn E ^gk = ^, ^

1  ^^n—k 
f	 P(^,—k)—

	

V lr V ^ÿ k=1	 k=1 ^ " 
`1 — 1	 .. ""

(3.5)
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1(^/max (0,n —Y))  	 1	 = 	 1 
f -1 E
	

n	 f —1 E(1) V4-1

since /max n — Y) — 1 and

o,n :^/max(0,n—Y) < 1.
VT-1

Lemma 3.2.

Af 	 k1(011 +1)ôf as ôf ---> oo.	 (3.6)

Proof

We put af= n
Fence we obtain:

„-i
"if 

=ki(q-1) 
f^ 

Ç

vkyqk +0(1)
n k =1

Then by lemma 3.1:

—> k;(q-1) 1	 as n—> o0
n	 f - 1

and the lemma is proved.

Lemma 3.3.
A42 ' ---> 0 as af—, 00

Proof

Obvious.
Then by lemma 3.2 and lemma 3.3

V(rf ) = Ar —A1.2  —> oo as af—, 00

(3.7)
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§4. The law of large numbers for w(f)

By a variant of the strong law of large numbers (see [1]) we obtain the following
theorem.

Theorem 4.1.

If

E E (xg) = E pg=+ 00 	 (4.1)
geFa [x]	 geFa[x]

and

Ce^
V(xf)  <+^

x] E^(w(f))

Then with probability 1

lim 
E(^f))

=1
arm

Applications of theorem 4.1.

We define:

1
2

pß =	 ag

IgI 
ag>5'k2— 30

ggq

From this definition follows

Lemma 4.1.

E(w(n)) = ^ 
pg

^ 13 
(logg)n2 asn —> o0

ag n

Lemma 4.2.

We have with probability 1

ag 4

(4.2)

(4.3)

(4.4)
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w(n)	 log gn2 asn—oo	 (4.5)

where {p g} is defined by (4.4).

Proof.

By lemma 4.1 the conditions (4.1), (4.2) are satisfied since

k

E EVw(^) CE 
kgk=Zk -a <^

k= 1 	k=I

Then by (4.3) we have (4.5).

§5. Some results concerning the distribution of irreducibles
in the ring over a finite field

Let M denote the multiplicative semigroup consisting of the polynomials f with
sign f = 1 in the ring Fq [x] .

Let B = x"+b "_,x '+...+b„_kx"-k-1-...+b,, be a polynomial in M. The
field elements b " _, , b " _ 2 , ... , b " _ k are called the first k coefficients of B, it being
understood that b ; = 0 if i < 0.

Let k be a non-negative integer, and let a sequence of k field elements be given.
Let H be a polynomial in Fq [x] and let K be a polynomial prime to H. We denote
by h the degree of H, and Ø(H) denotes the number of polynomials in M of
degree h and prime to H.

Let rc(n,H,k,K) denote the number of irreducibles in M of degree n which
(1) are congruent to K modulo H and (2) have as first k coefficients the given
field elements, then by comparing results in [4] and [5] we obtain the following
explicit estimate.

(n,H,k,K) 
ncil(H)	

(k+h+1)g2	(5.1)

In the estimate (5.1) we put

H=x,K=ßo 0(eFq ), then ail= 1,(x,(3o)=I and Ø(x) =q—l.

Then we have the following estimate
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qn ^ (k+1+1)g2 (5.2)T(n,x,k,ßo)	
k

nq (q-1)

(5.2) implies the following lower bound estimate

n1

> (5.3)n(n,x,k,ßo)	
ci	

qk (q - 1) —(k+2)g2

We denote by n(n,k) the number of irreducibles in M of degree n and with the k
first coefficients being fixed. Then by (5.3) we obtain the lower bound estimate
we need for the proof of theorem 1.2.

n —k	 n

n ( n , k )	 7r(n,x,k,ßo) > qn	 — (q-1)(k+ 2)q2
t7o E Fÿ

§6. Proof of theorem 1.1 §1

We prove theorem 1. I by establishing theorem 6.1 below.

Theorem 6.1.

Suppose that S2 is the probability space generated in accordance with theorem
2.1 §2 by the choice (3.5) of the probabilities p g . Then with probability 1:

af< rr (w) << of for large af.	 (6.1)

Proof

We have {xo,x,_TI ary <af} are independent random variables such that:

E(
	 x xr-Q,) = E (rr) = Ar
a9 < at

V (rr ) = î. r —Rf2'

`dry :a(1< af I 4,x,-m— E (xm xr-Q,) I ^ I

1
r

We put ,u —	 ^2	 )	 . Then by lemma 3.2 and lemma 3.3 §3: P ^ VV (r r ) for
^^

2
s
—

^^r

large af. Hence by Bernstein's improvement of Chebychev's inequality (see [3]
p. 387) we obtain the following result:

(5.4)
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p( r, —.l f 1> 1 .?f)ç 2 exp 	

^/V

^ 
	 ll

2

 (2	
2(1+2(rr )/ 1

2	

l

for large al.
By (3.6) and (3.7) we have for large al:

1 22

2(1+ 2^V 
r 

)2	 2 Rs Y g(2f+ 8 +	 ) 13

(f)	
2 1+2 7 —^
	  (2_2 ■

( f	 f2 ))/	
)

Hence by (6.2), (6.3) and (3.6) we have for large al:

A,	 f  1  kffaf1	 5
p(Ir,- 2f1>

2 ^f / 

G 2 e - l < 2q	 logg 13	 = 2q -4'
af 

= 	
1- 4

 (6.4)

We put E f ={w: Irf—	 >1 2,}
Then by (6.4) :

E P (E f ) < x^
feF,[x]

Hence by the Borel-Cantelli lemma, with probability 1, at most a finite number
of the events E f can occur or equivalently:

(6.2)

(6.5)

P({w: rf —^1 < -
2

 for af > no (w)}) = 1 (6.6)

(6.6)	 implies since 2, — k; (f + 1) of that:

P({w: of<< rf (w)	 of for large af}) = 1
	

(6.7)

This completes the proof of theorem 6.1.

§ 7. Proof of theorem 1.2 §1

We prove theorem 1.2 by establishing theorem 7.1 below.

Theorem 7.1.

Suppose that S2 is the probability space generated, in accordance with theorem
2.1 §2 by the choice (4.4) §4 of the probabilities p g . Then with probability 1:
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(7.1)

(7.2)
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w(n)<n2

R 1 (w) > 0 for of > no (w)

Proof

By lemma 4.2 §4 we obtain (7.1). To establish the theorem, we must prove that,
with probability 1, R f (w) > 0 for large a f. By the Borel -Cantelli lemma we need
only show that

E P({w: Rr = 0}) < Do ,	 (7.3)
fEFF[x]

and in view of (7.3) it suffices to establish the existence of a number b > 0 such that

P({w : Rf = 0}) G< g -af(f+e) •	
(7.4)

Let f be a fixed polynomial of degree n and sign f = a (* 0). We have the following

estimate

P ({w : R f (w) = 0}) = II P ({w : x f _ P = 0})
pEP

ap =af
sign p=sign f

= IIP(CB' f - P )) =	 n(1- pf —P)
pEP	 pEP

ap =af	 ap=af
sign p=sign f	 sign p=sign f

[2(' -`)]
< ^ 

\ 

n 
(1- pr_lP)/

k=1	 /3E1'
a(f— p)=n—k

[2(l-E)1
< ^ e- Pr_ F,

k =^
E 1 ,0< e< 1

a(f— p)=n—k

To obtain the estimate (7.4) we need first to establish a lower bound estimate
for E 1 and secondly an upper bound estimate for

a(f—pi=n—k

e —Pf— P	 E 1.
a(f-p)=n-k

Let

(7.5)

n	 n-1	 n-k= ax +a„_ f x	 +...-^an_kx 	 at.)



40:12	 15

p = aXn +F'n-1Xn -1 + ... + ßn -kXn-k +... +F'0

a (f—p) =n—k

fi n -1 = an -1

F'n-k+1 = an -k+1

f n-k + an-k

By (5.4) we obtain

E 1

a (f- p)=n-k

= Card{ pEPlâp=n; signp=a; ß„- 1 =a„-,, i= 1,2,...k-1; f„_kt an_k}

Card {p 	 sign 	 yn-;=aå',i=1,2,...k-1; yn-k$d"a	 k}= C	 {pl 

> (g-1)(q n k — (q-1) (k+2)92/

(7.6) implies

e-pt-p	 E 1 Ç e-ks(g-1) n „ k [I-n(g-I)(k+2)q 2].
a (f-p)=n-k

Now take any e t :0 < e, < 1. Then for every k : k = 1, 2, ... L 2 (1—e)]   we have

n(q-1)(k+2)q k- i < el if n > No (e,e 1 ,Lq). 	 (7.8)

Then by (7.7) and (7.8)

	

e p`	 E	 1	 (I-e0 if n > N0 (e, e1, q) .	 (7.9)
a (f-p)=n-k

	By (7.5) and (7.9)	 [2 (I -e)1

P({w: R1 = 0}) < e-ks(q- I)(I-e0 E (I -4n )	 (7.10)

k=I

Take e = f —1( <1), then we obtain

(7.6)

(7.7)
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[` (I e)l	 n	 5^^ (1—n)^ 
4-4k=1

(7.10) and (7.11) implies

ks(q— I)(1—E,) 
P ({w : R t = 0}) << q o	 41ogq )

To obtain (7.4) with å = —
4
1  we need only choose in (7.12)

1 	 (1 +(5)41og q 	 201ogq

	

et — 4^ 2 — (q-1)(1—es)	 3 q-1

and this proves the theorem.
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