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Synopsis
We study dynamical aspects of equivalence between mass and energy, for systems of interacting
particles. The starting-point consists in the classical formulae for electromagnetic self-momentum,
self-energy and self-force. These formulae possess puzzling terms which have been subject to various
explanations, like compensating Poincare stresses, or were bypassed through attempts of redefini-
tion of the classical electron model. By means of a comprehensive study of acceleration processes we
show that there is a crucial error in the usual derivations of self-force. We derive a basic acceleration
equation for a point-like system, with detailed equivalence. It also follows that the standard formulae
for self-energy and self-momentum are, at best, misleading. Next, we study how systems are to be
described in an accelerated, rigid coordinate frame — the Møller box. In considerable detail we
investigate classical and quantal equations of motion for fields and for particles in the Møller box,
including the Dirac equation for the hydrogen atom, arriving at equivalence. Finally we discuss
properties of composite systems as compared with properties of particles.
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§1. Introduction
The present paper contains a study of equivalence between mass and energy, for
a system of interacting particles. This question may appear trivial from the point
of view of general principles in special relativity, for there can be no doubt about
the validity of equivalence as a basic statement. But if we turn to actual calcula-
tions on systems with Coulomb interaction, we find that the resulting self-
energies and self-momenta do not correspond to equivalence, and lack four-vector
properties. This is certainly surprising to the uninitiated, for one would expect
beforehand that the Maxwell equations must give equivalence unambiguously
and in a straightforward manner, since special relativity, in a sense, is suspended
in the Maxwell equations. It should be added that the results in question have
often been treated in connection with the problem of electron self-energies
where they apparently required the presence of non-electromagnetic forces.
Because of the complications, some authors have preferred to define an electro-
magnetic energy-momentum four-vector for the electron'''. This will hardly do,
however. The basic classical case is not an electron, but a macroscopic system,
for which one is not free to define the electromagnetic self-energy or self-
momentum.

These preliminary comments will be enlarged upon in the remainder of this
chapter. But they indicate the aim of the present paper. In fact, we hope to
convince the reader that simple acceleration processes, if studied with care,
reveal that there is not only equivalence, but even detailed equivalence: each
individual term of, e.g., the interaction energy, has separate equivalence. The
basic conclusions in this respect are contained in §2, where the connection between

mass, forces and acceleration is studied. A central issue is the question of com-
parison of forces acting in different points of a system. In § 3 is presented the more
systematic treatment of accelerated frames of reference. Next, in § 4, we calculate
the various contributions to self-mass in a number of classical and quantal cases,
including the Dirac equation for a hydrogen atom.

As outlined, our study has an immediate background. But it is also a necessary
step in a more general pursuit: the endeavour to understand composite systems
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and elementary particles, including the connection between them and between
their classical and quantal descriptions. At the end of this paper, in § 5, we outline
general viewpoints on this matter.

Basic equivalence

The equivalence between energy and inertial mass was first established by Ein-
stein' (cf. also v. Laue3 ). He considered the change suffered by a system emitting
electromagnetic radiation. The usual derivation consists in showing, first, that

the energy E and momentum P of any closed system constitute a four-vector.
The basis for this result is the special principle of relativity, combined with con-
servation of energy and momentum for initial and final states of a collision process
(corresponding to Einstein's idealized experiments). Second, the four-vector
may be written as

E = E'y,

P E
= yv,

where E' is a constant, and

= 
	 1 

Y	 (1 _ V2/e2)1/2 •

Now, on the one hand, E' in (1.1) has to be the energy of the system in the rest
frame. On the other hand, E'/c 2 in (1.2) must be the mass M of the system,
belonging to the non-relativistic limit v < c, and so we obtain equivalence,

M = 2.c (1.3)

Equivalence is therefore derived by comparing initial and final states of an
elastic or inelastic process. The proof concerns not only a stable system ; it includes
unstable systems. Although it appears that the proof of equivalence is concerned
with only the total energy of a system, still there are evidently cases where part
of the energy must have equivalence. Moreover, one can divide the total energy
of a system into well-defined average contributions from various forms of energy,
as exemplified by the virial theorem. Beforehand, one would expect individual
equivalence from these clearly separated contributions. Thus, it is natural to
investigate the possible validity of detailed equivalence, as formulated in the
preamble.

The previous results may be put on a more comprehensive form if we introduce
the Lagrangian of the system. In fact, the above momentum-energy four-vector

(1.2)
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with its derivation from collisions, must be connected to a variational principle,
albeit with limited validity. In an inertial frame where the system has velocity y,
the corresponding Lagrangian must be

v22)112.L=—E' 1— 	   c

In this formula the internal energy E' is a constant of the motion for a given
internal state of the system. If we now observe the given system from another
frame, where it has velocity v+ 8v, the change 8L becomes

(SE = 8v-P,	 (1.5)

where Pis given by (1.2). Furthermore, the quantity E = —L + v •P corresponds
to (1.1).

In (1.5) we are concerned with a variation where the internal state of the
system is kept unchanged. Thus, we have obtained equivalence, E' = Me e , by
being able to separate the external velocity variable, y in (1.4), from the internal
variables of the system, concealed in the constant E'. Moreover, for soft collisions

if the internal state of the system is not changed during a collision — the equa-
tion of motion will be based on (1.4), i.e. the kinetic contribution to the total
Lagrangian.

In itself, eq. (1.4) reasserts the surmises about detailed equivalence made
above. Thus, when the system is in internal statistical equilibrium, and E'
separates into definite terms according to the virial theorem, these terms should
contribute separate mass terms in the account of the system.

The classical electron model

Already before the advent of special relativity, Poynting's theorem of density of
field energy was utilized in several calculations of self-energy and self-momentum
of a charged body (cf. e.g. Jammer 4 ). The foremost contribution was made by
Lorentz'. The results were hardly changed at all by special relativity. We shall
illustrate the situation in terms of the so-called classical electron model, as quoted
in numerous monographs (e.g., Jackson', Pais', Feynman7).

Consider then a stable spherical shell with radius a, on which a total charge
Qis uniformly distributed. In a inertial frame K the shell moves with velocity v.
According to standard results, the densities of momentum and energy of an
electromagnetic field are given by the field strengths

g(r,t) = 4 ^ cE(r,t) X B(r,t) ,

(1.4)

(1.6)



6	 40:11

u(r,t) = 8n(E2(r,t)+B2(r,t)).

In these equations we introduce the field belonging to the shell, as observed
in the frame K. By integrating over all space we find a momentum Pet and an
energy 

E, 
(cf. Jackson', Becker and Sautere, Rohrlich9)

2
Pe, = d3rg(r,t)= 3 	  Yv ,	 (1.8)

Eel =f (13 r u(r,t) =Qa Y(1+3 Cz^	 (1.9)

In particular, it is seen that, in the rest frame, the momentum is P^, = 0, and the
energy Ee', = Q2 /2a. Therefore it follows that not only is equivalence lacking,

but also Pe„ Ee„ Pe„ and Eel fail to transform like the four-vector (1.1), (1.2).
As is well known, this curious result cannot be rejected out of hand, the reason
being that Pe, and E e, do no represent the total momentum and energy of the
shell. The shell in question must in any case be stabilized by other, nonelectro-
magnetic, forces. These forces, or Poincaré stresses, should then compensate the
erratic behaviour of (1.8), (1.9), giving a correct total four-vector.

The results (1.8) and 1.9) are obtained somewhat indirectly, in a sense. Their
basis, i.e. the densities (1.6) and (1.7), was derived in turn by studying the action
of forces from material charges on an electromagnetic field. Therefore, by omitting
the intermediate step (1.6), there should be a more direct, but apparently
equivalent, way of obtaining the self-mass due to Coulomb interaction. In fact,
one can instead find the electromagnetic self-force of an accelerated shell of
charge. An early calculation of this kind was performed by Born 10 (cf. also
Heisler", and Jackson'). If the shell is momentarily at rest, but accelerated, at
time t = 0, one may find the electric field E s (r,t) caused by it. We assume that
the acceleration is small, or ga/c 2 << 1. It follows that Es (r,t) is linear in g. Let
further Q(r) denote the internal charge distribution of the shell. The total self-

force Fs is then linear in the acceleration

Fs = fd3 rQ (r)Es (r,t = 0) .	 (1.10)

By these means the self-mass was calculated as the ratio F s /g, the result being in
agreement with (1.8).

It thus looks as if the previous result (1.6) has been vindicated in an elemen-
tary way by the self-force (1.10). The latter becomes our starting-point, however.
For although it concerns non-relativistic motions and an apparently innocent

acceleration process, still this process contains unexpected relativistic pitfalls,
and (1.10) is not connected to the self-mass, as we shall see ind §2.

(1.7)
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§2. Self-Mass and Self-Force of Accelerated Systems

In this chapter we attempt to find the way in which inertial mass can be deter-
mined by means of acceleration processes. Since we know that there may be
hidden difficulties in this problem, we try to be careful — and thereby perhaps
overly cautious — in deriving the relativistic connection between acceleration,
forces, and mass. We do it in two steps. First, we look for the physically simplest
acceleration process for a system of finite size. Next, we find the expression for
the mass of a system, given in terms of its acceleration and the forces acting on it.
We will then be ready to find actual self-masses for charged systems, and have
also prepared the way for the more systematic treatment in the following chapters.

The problem at hand can be exemplified by an elastic body originally at rest,
and in equilibrium, in an inertial frame. We want to transfer it to another
inertial frame, where it should finally be at rest and in the same state of equilibrium
as before. The simplest way in which to bring about this change is to have an
adapted acceleration of the various parts of the system, such that it is moved as
if it were rigid. In fact, by means of the idealized process of rigid acceleration we
avoid producing internal stress or excitations in the system, as well as growing
deformations. It would of course be possible to employ acceleration processes
other than the rigid one; they would be more complicated, however, and would
need the rigid acceleration as a standard of reference.

Rigid acceleration

As our first step we therefore consider the kinematical consequences of rigid
acceleration of a static system. Then there exist successive frames in which the
velocities of all constituent particles vanish simultaneously. Consequently the

time, t ; , at which the i'th particle obtains a given velocity, v o , in the inertial

Fig. 1. Space-time diagram showing world
lines of system of accelerated particles. In
the inertial frame K the time t ; at which
the i'th particle obtains a given velocity,
vo , depends on its position x, relative to the
reference point. The instances t, and t9 are
simultaneous in the rest frame, i.e. the
oblique line corresponds to simultaneity
in this frame.

x
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frame K depends on its position, r 1 (see Fig. 1). For constant acceleration, g ; , of
t he i'the particle we then have, since we consider small time intervals and velocities,

Vo = g , t ; .	 (2.1)

Let us measure positions relative to some reference point chosen arbitrarily within
the system, and let to denote the time during which the reference point has been
accelerated with acceleration g„ . Since the instances t o and t ; in the frame K
must correspond to simultaneity in the rest frame, they are to first order in vac
related by the equation

tj = to+ V gr' = 	 gCZr`).C 

It therefore follows that the accelerations of the various points r; must obey the
relation

go 
g	 + go 'r1/0

Thus, the acceleration of the points r; decreases in the direction of g o . This effect
exactly corresponds to the Lorentz contraction of the system as measured from
the frame K.

Mass determined from forces and acceleration

As a second step, let us study the connection between force, acceleration, and
mass. The fundamental relation between the three is obtained in the idealized
case of a point particle. In fact, consider a point particle at rest, and with mass m.
If it acquires a small acceleration g, the applied force must be F = gin. More-
over, during a time 8t, its change of momentum and velocity are, respectively,
(Sp = F8t and åv = gat. This result has an immediate consequence. For suppose
that, by applying the above force F in one point of a composite system, we obtain
the acceleration g of this point, while the system remains, internally, in a stationary
state. Since the momentum transfer and velocity change remain as before, the
composite system must have the same mass m as the above particle. Presumably,
part of its mass is then due to deformation energy caused by the acceleration.
These seemingly trivial conclusions give one important clue to self-mass problems,
as shown in an example at the end of this chapter.

Having verified the basic results belonging to a point force, we next consider
acceleration of a system where forces are applied in several points. It follows
from, e.g., eq. (2.3) that in special relativity there must be a somewhat intricate

connection between forces on a system, its acceleration, and its total mass. Because
of this, and because of the important consequences, we treat the problem at hand
in an elementary and somewhat elaborate manner. We also want to show that

(2.2)

(2.3)
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one is not concerned with new definitions, but instead with an inherent physical

property of accelerated systems: although the velocities are non-relativistic, we
sometimes have to introduce a relativistic correction to the usual conception of

forces.
Consider then a set of point masses m ; , at r., initially at rest and with no

mutual forces. By means of suitable external forces we can accelerate the masses
together, according to (2.3). We must act on them with the individual forces F;,

located at r; ,

m;
Ft	 go 1+go•r,/c2

where the acceleration at r = 0 is g o . Now, if we compute the total force F, we

obtain

m;
F = E F, = E go 1+go•rllc2

which quantity is not proportional to the total rest mass, M =
the exact expression for the mass M is, by (2.4),

go M =EF;(I+g 
/csrt

(2.5)

. Instead,

(2.6)

In point of fact, we have here normalized all forces to the point r = 0, with
acceleration go . At first, eq. (2.6) might appear to be an unnecessary elaboration,
for if go is imagined to be sufficiently small, it looks as if the factors (1 +g o •r /c2)
can be replaced by unity. That will also be true in many cases, but for self-forces
it is in error, because they contain large leading interaction terms, which would
cancel if this replacement were made.

The conception of rigid acceleration may appear a little artificial for non-
interacting point masses. But the idea is, as before, that we can replace this system
by an actual system of interacting masses, e.g., an elastic body. In order not to
deform the body more and more during the acceleration, we must keep to the
prescribed rigid acceleration. As before, the total mass of the elastic body must
be the same as that of the non-interacting point masses, if the accelerations and
forces are the same. The formula (2.6) is therefore the general expression for the

mass of the system, calculated in the simplest consistent situation.

Electromagnetic self-mass

Suppose that a system consists of charged particles, with individual masses m ; .
At time t = 0 in the frame K the particles arc all at rest with separations r ;k and
electrostatic energy

(2.4)
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i *k

U = 2 E gig k 	(2.7)r	 '
, k

where q i is the charge of the i'th particle. We assume that the particles are all
accelerated according to (2.3), i.e. with rigid motion. By means of the Lienard-
Wiechert potentials we can find, for t = 0, the total electric field at r, , as generated
by all the other particles. It is readily shown to be'' 12 to first order in the accelera-
tions g k ,

E(ri) = E g k j råk— 1z (g k
—^(gk' rsk)rik)}

k #i	 r ik	 2rik e	 l2ik

where rik = r1 — rk , and gk is given by (2.3). Note that the first term in the
brackets is the dominating Coulomb force.

The self-forces are g i E(ri ), and by applying, in principle, external forces
F =—g 1 E(ri )+m,gi , we maintain the stipulated acceleration. The total mass
is now given by (2.6) and (2.8), i.e.

i$k_	 c7^ f1 f1 rik 	 1	 (gk rik)
goM — go^ilni —LJ 7 i `l k{ rik	 2rik cz (gk+	 rik k){

{I
+gOcrk}. (2.9)

The right-hand side of (2.9) contains go to first power, and higher powers. The
latter terms are to be omitted, however, since we disregarded higher order terms
in (2.8). But then the multiplying factor 1+ g„ •r ßc2 is needed only for the domi-
nating Coulomb term, and we may also put gk = go in the second term within
the brackets. Finally, a cancellation occurs for all terms directed along rik . We
can then divide out the common factor go , and obtain the inertial mass

i * k

M = ^Ini+ 1 2 E grgk =E m i +U.
2c , ,k	 ik 

Hereby we have found separate equivalence in a simple example of Coulomb
interaction. Equivalence even applies for each individual pair of particles.

As expected, the calculation for the Coulomb interaction is independent of
the presence of other compensating forces, whose contribution to self-mass may
be obtained separately, if the corresponding field equations are known. But even
if the compensating forces are only known on an approximate, non-relativistic
form, we can obtain their contribution to the self-mass. At the same time, our
basic equation (2.6) gives a condition to be fulfilled by the retarded solution of
these forces, to first order in relative velocities.

We omitted the deformation energy caused by the acceleration, and its
equivalence. This is mainly because the acceleration did not correspond to a
normal physical situation. The external forces introduced were artificial, in that

(2.8)

(2.10)
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they exactly took care of maintaining the configuration of the particles within
t he undisturbed system. In actual acceleration processes one can instead be con-
cerned with an external electric field which is constant in space and time. Then,
the configuration of the particles will be changed slightly from that of the undis-
turbed system. Hereby, deformation energy, and its equivalence, can be obtained.
In many cases, such deformation terms are of higher order in g o , and therefore
do not affect the basic result (2.10). We shall presently discuss a simple example
where deformation energy plays a major role.

Basic equation of motion

From the previous results it is easy to formulate the basic equation of motion of
charged system momentarily at rest, and placed in a weak external electric field

Eext (r,t) varying slowly in space and time. By a slow variation in space we mean
that the relative change of Eext(r,t) is small within the system. We suppose that
the field varies sufficiently slowly so that the system remains in a quasistationary
state. Eq. (2.9) provides an expression for the acceleration go of a standard point

ro , times the total mass M as arising from Coulomb interaction and from other
energy contributions in the system. Next, according to (2.6) the product g o M is
equal to the weighted sum of external forces,

M-E F(1+go'(c,— ro )) — ^ E 
(r 

t) ( l + go (C, —ro  )). (2.11)g0	 2	 /	 `li ext i^ 

Here, we expand	 in powers of r; —ro , and include only first order terms on
t he right hand side. But since the standard point ro may be freely chosen, we place

it at the charge centre, ro = re	 F, q ; rt /q, where q = E q ; is the total charge of

the system. For it then turns out that first order terms in r ; —ro disappear, and
we are left with gEext (re ,t) on the right hand side of (2.11). The equation of
motion is now simply, in the momentary rest frame,

ge M = g Eext (re , t ) )

where re is the charge centre, and ge its acceleration. Moreover, q is the total
charge, and M the total mass of the system. Thus, the result (2.12) represents a
precise basic equation of motion of a charged system. It gives an essential modifi-

cation of the so-called Abraham-Lorentz equation; the standard factor 4/3 mul-
tiplying the electromagnetic mass has disappeared, because equivalence reigns
in M. In addition, eq. (2.12) contains the subtlety that the system is represented
by one definite point, i.e. the charge centre re . Consequently, eq. (2.12) can be
used as an equation of motion for, say, a uranium nucleus in an external electric

(2.12)
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field, or, for a classical electron model. One may immediately correct the equation
by a familiar term containing radiation damping, if so desired.

Although, as mentioned, eq. (2.12) is widely applicable, let us register main
corrections to it, or assumptions contained in it. We have assumed that the
external field varies slowly in time. The time variation of EeX1 will, first, give rise
to adiabatic changes of M and, second, to non-adiabatic mass excitations. Third,
we have already mentioned that a time variation of g,, leads to radiation damp-
ing. Finally, it g,. quickly changes direction, the mass centre need not remain
behind the charge centre, and rotations may be induced. In order to study that,
systems with spin must be included in the description, but that is outside the
scope of the present paper.

Shortcomings of standard formulae

At this stage it is convenient to compare with the standard derivation of self-force
as alluded to in §1, and performed by Heitler, for instance. In that description,
the self- fields are again given by (2.8), but with gk = go , which does not lead to
immediate errors. Next, the total force is calculated, corresponding to (1.8) and
(2.5), and erroneously identified with the mass times the acceleration go . Thus,
from (2.8) and (1.8)

'*k 	 1 (go r. )
F=F, _ ^ tn ' g0+	 2r, k c2 (gu+ r2 

rik)	 (2.13)

where the dominant Coulomb terms have cancelled out, in contrast to (2.9).
For a spherical symmetric charge distribution, with electrostatic energy U,

the expression (2.13) leads to

F = (E m i + 3  go

In case the charge distribution is merely symmetric about the direction of go,
the factor 4/3 is seen to be replaced by a number 1+ , where 0 < < 1. For a
general distribution, however, the force F need not even point in the direction of
g,,. We have hereby clarified in some detail the shortcomings of the Galilean
concept of a total force and its association with total mass, in special relativity.

Next, let us consider the standard formulae for self-momentum and self-energy
of a charged system, i.e. (1.8) and (1.9). Although they are connected to the
above-mentioned standard self-force calculation, their short-comings are of a
more elusive kind. Still, in order to elucidate their basic contents, we can observe
the following. If a system has internal Coulomb energy U, then the standard
self-momentum corresponding to (1.8) can be Pe, = (U/c2 )v y• (1+ ), where

(2.14)
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= 1/3 for a spherically symmetric charge distribution. Similarly, the standard
self-energy becomes E e, = U • y • (1+ ev2 /c2 ), corresponding to (1.9). Therefore, if
we form the difference v • Pe , — E e, , we invariably get a quantity independent
of e, namely

2
Lei = —E,,,+V • Pe, =— U 	 11•(1 — V2 

In point of fact, we have recovered eq. (1.4), i.e. the Lagrangian belonging to
equivalence. Moreover, it is apparent that, instead of making the indirect deriva-
tion of (2.15) via E e , and Pe„ we could have obtained it directly by integration
of the invariant Lagrangian density in space, as belonging to the field and to
its interaction with matter, or £°aeid + Y; n , •

Returning to the Lagrangian in (2.15), we have already seen, in (1.5), that
if we vary L e, with respect to v, keeping the internal state unchanged, we arrive
at the momentum P = (U/c2 )y•v, leading to equivalence. In fact, this implies

detailed equivalence, the Coulomb contribution being only part of the total
internal energy.

Next, it also becomes clear how the standard momentum Pe , can be connected
to (2.15) : when v is varied, there is assumed to be an associated variation of the
internal state — i.e. of U. Thus, P e, will result if we let U vary proportionally to
(1—v2 /0Y", when L e, is varied with respect to v. The factor in question must
be due to a Lorentz transformation of the internal variables of the system.

We have thus realized that the standard momentum and energy (1.8) and
(1.9), arise from an unwarranted variational procedure, whereby they lose con-
nection to our basic concepts of momentum and energy of an isolated system, as
described in §1. Such results arise in general from arbitrary transformations of
internal variables of a system, where momenta become abstract quantities, with-
out direct physical significance.

Self-mass for point force

"Ihe present discussion of the central ingredients in equivalence calculations is
perhaps best concluded by means of an example serving a triple purpose. First,
it concerns an external point force, implying the simplest possible connection to
mass and acceleration. Second, the equivalence in question applies to deforma-
tion energies, not studied explicitly above. Third, Poincaré stresses cannot be
introduced.

Let two mutually repelling charges, q a and q b , be accelerated from rest along
their line of connection, rba . An external force Fa acts on particle a, while particle
b in turn is made to accelerate by the Coulomb repulsion from particle a. The

(2.15)
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force and distance rab are balanced such that the particles are accelerated in
rigid motion. The internal energy of the system, cl a ck/raj) , is purely an energy of
deformation. The internal electric fields are given by (2.8), and so the equations
of motion of the two particles become

g a q b 	 gaqb
ma g es = rab rab — rab e2gt• + Fa ,

g a q b 	 _ gaqb
mbgb = 3 rba	 2 g;i

rab	 rab e

where all vectors are collinear, while m a and m b are mechanical masses. Further,
the condition of rigid acceleration determines gb in terms of ges and rba , cf. (2.3),

_ 	 ges	
(2.18)gb	 1 +ges •rba/c2

We multiply (2.17) by l + (ges •rba )/c2 , add (2.16), and obtain to first order
in ges

F= ga (m a + Mb+ 
grq b 1 2 1.	 (2.19)

ab C )

Since the mass M of the system must be given by Mga = Fa , we find

M = ma +mb + grgb c
2 •

In the simplest imaginable case we have thus obtained equivalence, and for a
deformation energy in fact.

Let us next turn to the standard procedure, where the total self-force is
calculated, cf. (2.13) or (1.10). It corresponds to adding the right-hand sides of
(2.16) and (2.17), omitting F es . The self-mass becomes erroneous, or 2gagb/(rabc2),
like in (2.13). We might similarly, as done by Heitler, add (2.16) and (2.17) with
the Galilean demand gb = g es , and obtain a wrong value of the force Fa . In any
case, there are here no compensating Poincaré stresses, which can repair the error.

Whereas, in the present chapter, we have arrived at the proper treatment
belonging to coordinates (inertial frames) where equations of motion are simple
but self-mass calculations delicate, the theme in the following will be reversed.
In fact, we shall introduce coordinates (Møller box) where self-mass calculations
become extremely simple; our task will be to obtain the equations of motion.
Thereby, the discussion becomes lengthy, containing transformations of equa-
tions of motion in various classical and quantal cases.

(2.16)

(2.17)

(2.20)
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§ 3. Systematic Description by Means of
Accelerated Reference Frame

Basic properties of Møller box

The previous chapter contained a preliminary analysis of simple acceleration
processes for which the intrinsic state remained stationary in the instantaneous
rest frame. A systematic analysis of such processes must be based on a description
of the system in an accelerated rigid frame of reference, always coinciding with
the instantaneous rest frame. A coordinate system of this kind, where each point
has a time independent acceleration in its momentary rest frame, we shall refer
to as a Møller box*).

Before embarking on a detailed discussion of the Møller box, we may point
out some of its salient features. First, the physical laws in the box are independent
of time, i.e. there is invariance against time displacement and time-reflection.
Second, there is an inborn simultaneity, like in a static gravitational field. Third,
it also follows that a charge at rest in the Møller box gives rise to a purely elec-
trostatic fi eld in this frame. This feature corresponds to the fact that for a static
charge in the box, performing a hyperbolic motion in an inertial frame, the

retarded and advanced fields are identical within the box. Fourth, in the inertial
frame we had to distinguish between, on the one hand, that weighted sum of
forces which leads to the total mass of a system and, on the other hand, the total
force. In the Møller box these concepts are united in the sense that the total
force required to keep a body at rest in the box is proportional to the total mass
of the body.

When introducing the Møller box it is useful to consider first the hyperbolic
motion of a single particle. Let a particle in an inertial frame K be accelerated
along the X-axis, with the constant acceleration g o in its rest frame. It is convenient
to introduce the length A = c2 /go and write for the trajectory

Xo =.îcosh j, Yo =Zo =0,	 (3.1)

cTo = A sin h

Thus, the coordinates cTo and Xo lie on the hyperbola

Xå-c 2 Tô =.12 .	 (3.2)

*) Accelerated rigid frames of reference are discussed in some detail by C. Møller in his mono-
graph on relativity13. We have adopted the name Møller box for the particular frame discussed in
the text. The wording box is meant to indicate that we are considering a space-time domain of
finite extension.
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Here (To , X0 , Yo , Zo ) are the particle coordinates in the inertial frame K, and t
denotes proper time for the particle. For this motion the four-velocity

Uo = 
( d (d t	 dd o' 

0,0) _ A (X0,cT0,0,0)
	

(3.3)

Fig. 2. The world lines of the
reference points 0,1 and 2 in
the Møller box are scaled
hyperbolae with the light cone
through the origin as the com-
mon asymptote. Successively
steeper lines through the origin
correspond to progressive
time in the Møller box. Proper
time on the hyperbola labelled
0 has been chosen as the
common standard time in the
box, and distances are measured
from this hyperbola. The wavy
lines represent the world line
of a light signal exchanged
between the observers 1 and 2.

2

is always perpendicular to the radius vector from the origin (eT0 , Xo , 0,0) . It is
therefore clear from Figure 2 that if another particle is to remain at rest relative
to the first at the distance x 1 , its world line will be given by

(cT1 ,Xt ,0,0) = (l+)(cT0,Xo,O,0)	 (3.4)

i. e. it will also perform a hyperbolic motion, but with rest acceleration
go (1 +goxl/c2)-'. Thus we are led to the introduction of the accelerated rigid frame,
the Møller box, with coordinates (t,x,y,z), by the transformation from the vari-
ables (T,X,Y,Z) in the inertial frame K:

X= (x+,1)cosh ^ , Y=y, Z=z,

cT = (x+ .1) sinh ,
(3.5)
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corresponding to the line element	

/

	

ds2 = c2 dT'2 — 	 2 = I 1 + 1)2 c2 dt2 — dr2 .

For T = t = 0 we have X = x +A, where we have selected a standard hyperbola
from which we measure distances along the x-direction in the box. The proper
time t of the standard hyperbola x = 0 has been chosen as the common standard
time variable in the box. Hence, outside the standard hyperbola, local proper
time deviates from standard time. In fact, the relation between standard time t
and local proper r at the position x is given by

dr = (l+ --)dt.

The choice of the standard time t in the Møller box makes explicit the in-
variance against time displacement and time reflection inherent in this static
reference frame. Therefore, this way of synchronizing events corresponds to the
inborn simultaneity in the box. This can be illustrated by considering a light
signal moving along the x-axis between two observers 1 and 2 at rest in the box
(see figure 2). We assume that the light signal is sent back at time T = 0. We
notice that since each hyperbola corresponds to the locus of constant distance
from O in Minkowski space, they are symmetric with respect to the radius vectors
in this space. We have therefore drawn the figure such that the inherent symmetry
of the hyperbolae is made explicit with respect to the axis T = 0. Events on the
line OB° B, are simultaneous with the departure of the light signal from the first
observer, and events on the line 0A 0 A, are simultaneous with its return. It is
obvious from the figure that if the events are synchronized to proper time of the
standard hyperbola x = 0, the time of arrival to the second observer will be half-
way between the time of departure from the first observer and the time of return.
This result is also directly borne out by evaluation of the standard time intervals
in question, which are found to be (2/c) log [(x2+ .i.)/(x,+.1)], x, and x2 being
the coordinates of the two observers.

It follows from the transformation (3.5) that a particle at rest in the Møller
box at position x at time T = t = 0 has acceleration

c2	 go 
g(x) —a+x— 1+gox/c2

in the inertial frame. This is of course the result (2.3) already deduced for the
rigid acceleration in the inertial frame. In contrast, a particle at rest at T = t = 0
in the inertial frame at the same position X = x+ .1, in the Møller box has an
acceleration

17

(3.6)

(3.7)

(3.8)
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åt2 =—g (1 +
2 

o	 -	 (3.9)

Thus (3.9) expresso the acceleration of a freely falling particle in the coordinates
of the Møller box. It has of course the opposite sign of (3.8), but, more important,
its magnitude increases in the direction of go in contrast to g(x).

The line element (3.6) implies a simple scaling law for velocities. In particular,
the velocity of light in the box is given by

c(x)=c•(I+gc%2).

In fact, whereas the velocity of light in local units is alsays c, it must be changed
by the factor in (3.7) when we measure in standard time.

Electrostatic interactions in Møller Box

In this section we shall be concerned with charged particles moving in static
potentials*). The field equations for static potentials in the Møller box are
derived from the action principle

SS f +SS,nt = 0,	 (3.11)

where the contributions to the action from the field and the interaction are
obtained from the general expressions (A13) and (A14) :

S t = — Aid t Jd3 r (1(+ x/A ) ,	 (3.12)

S, nt =— feltid 3 re(r)v(r) .	 (3.13)

If (3.11) corresponds to variation of the potential ip for fixed charge distribu-
tion e, one obtains to first order in A

_ 1 
= go /c2 the result

Av(r) 
,1 aaxr) - -4n(1 +3)e(r)•

*) For the sake of completeness, a discussion of electrodynamics and the equations of motion of
charged particles in the Møller box is given in appendix A, while the static potentials are solved in
appendix B.

(3.10)

(3.14)
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Consider the potential (r ;r1 ) in the point r generated by the charge density
g(r) = g 1 S(r—r1 ), i.e. by a single charge q1 at rest in the point r1 . According to
(3.14) this potential is to first order in 112

(r ;r1 ) -= g'	
(1+ 

x2^x1^ 	
(3.15)

r — rl

In order to appreciate the significance of the second term in the brackets in
(3.15), consider a second charge q 2 at rest at the position r2 . We notice that the
density of the interaction energy of two charges depends on the values of the two
charges only through their product. We therefore expect that the position of the
centre-of-mass of the interaction energy is always the same as for two identical
charges, namely midway between them. Thus, in the interaction energy q 2 tp (r2 ;r1)

we can interpret the term

91 c:2 	 x2 +x i 
SEint — I	 l 2 go 	 2

r2 — rl c

as the potential energy of a mass g192/c21r2 —re l located at the midpoint between
the charges in the artificial gravitational field g o . The energy (3.16) therefore
represents the work required to lift a mass equivalent to the Coulomb energy from
the reference level x = 0 to the height (x 1 +x2 )/2. Hence we expect that the sum
of the mutual forces be equal to ( g 1 g2/ c2 I r2 —r1 ) go • This is indeed in accordance
with (3.15), from which it follows that

9z 
a V(r2 ; r1)g1 	 (ri ; r2) — 	 9192 	

go
a 	 —1.1 H2

This relation, which embodies the equivalence between electrostatic energy
and mass, will be crucial in the following discussion. It corresponds to the weighted
addition of forces (2.6), applied to the Coulomb case (2.8), but in the Møller
box it emerges as a direct consequence of the term (3.16) in the interaction energy.

The equations of motion in the Møller box, for a particle of mass m and
charge q moving in a static potential rp, is obtained from the action principle

SSkin + SSi„t = 0,	 (3.18)

with

S =—mc2jdr=—mc2J d t1(1+ )2—
c211î2

kin

(3.16)

(3.17)

(3.19)

S 1nt = — J dtqv(r(t)) .	 (3.20)
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If (3.18) corresponds to variation of the particle coordinates for fixed potential,
one obtains the equations of motion of the particle. They correspond to the
Lagrangian

L = —mc2 {(I+1)2 — C:}1/2
— q(r) •

Equivalence for kinetic energy

The first term in the Lagrangian (3.21) turns out to contain separate equivalence
for kinetic energy. In order to illustrate this property let us consider a ball of
mass m, bouncing between ceiling and floor of a small rectangular enclosure
which is kept at rest in the Møller box, with its floor at the reference level x = 0,
and with its edges parallel to the coordinate axis. Let the ball jump from the
floor with momentum p,t (1) in the x-direction and hit the ceiling after a time T
with momentum p x (2) along this direction. We assume that the enclosure is so
small that the kinetic energy of the ball can be regarded as constant during its
motion. Consequently the net momentum transfer per unit time from the ball
to the box is

T	 T

p x( 2 ) —p x( 1 ) _ 1 ^ dt dpx — 
l Idt 

al, m go 
T	 T	 dt	 T	 a x — (1— 

v2/c2)u2'
o	 o

where we have used the equation of motion corresponding to the first term of
the Lagrangian (3.21). In order to keep the enclosure at rest in the Møller box,
the presence of the bouncing ball thus requires an extra force 8F so as to support
the floor of the enclosure

8i =(1—v/c2)i2go.	 (3.23)

This force is the same in the Møller box as in the particular inertial frame,
which momentarily coincides with the enclosure, since standard time coincides
with proper time at the location x = 0.

However straightforward this demonstration of separate equivalence for
kinetic energy may appear, one should note that it stands in contrast to the
conventional treatment of similar examples. In fact, in the latter approach
equivalence can only be stablished by explicitly taking into account the stresses
set up in the walls by the bouncing ball, and would not apply to the kinetic energy
separately.

(3.21)

(3.22)
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§4. Equivalence for Atomic Binding Energies
So far we have discussed quite idealized systems in which there was either electro-
static or kinetic energy present. As a simple example of a more realistic physical
system with both kinetic and potential energy, we consider a hydrogen atom and
enquire into the total force necessary to keep the nucleus at rest at the position

rn = 0 in the Møller box. This force is the same in the Møller box as in that inertial

frame in which the nucleus is momentarily at rest, since standard time coincides
with proper time at the position r = 0. For simplicity we treat the atom as a one-
particle system, i.e. we neglect the motion of the heavy nucleus around the mass
centre.

The atom is assumed to be in a stationary state in the Møller box. Within
quantum mechanics, this means that the wave function corresponds to a definite
energy in the Møller box and the associated charge distribution of the electron is
static in this frame. In the case of classical mechanics we are dealing with definite
orbits, time-averages over which correspond to quantum mechanical expectation
values. One would expect that the question of equivalence be independent of
whether a quantal or a classical description is used in accounting for the stability
of the system. This is indeed borne out by the following discussion.

Classical hydrogen atom

The external force, T, required to keep the nucleus with charge Ze and mass mn
at rest in the box, must compensate the fictitious gravitational force —m n g0 acting

on the nucleus in the accelerated frame, as well as the reaction force on the nucleus
from the electron of charge — e and mass m e .

According to the Lagrangian (3.21) the time average, FX , of this reaction
force over a time T, long compared to the orbital periods of the atom, is

F = 1 dt Ze aç(rn;r e (t))	 (4.1)Fx TJ aXn	 r,=0
0

where re (t) is the coordinate of the electron. From the relation (3.17) and the
Lagrangian (3.21) we find for the integrand in (4.1)

Le atV(rn ; re ) —  Ze( —e)
ax„	 /l.lre —rn

( e) 
a q,(re ;rn) 

axe

2_ / rZe 
rn1 4-

ae + a Xe m e C2 (1 +

Because of the equations of motion, the term 	 \

(4.2)
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=[m,,+
(1 —xr/c2)u2

Zee 	1
Ire — r„lc2J go (4.4)
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aL d  aL 
ax e — dt aveJ,

does not contribute to the time average (4.1). Hence, keeping only terms of order
1/A, we obtain an average reaction force

1
F„ = — :1- J

me c Ze2	 go
4.3

(	 )
<It [(1— v /c2)'i2 Ire—r„1] c2 •

0

We notice that the integrand n (4.3) is the energy of the electron multiplied by

go/ c2, and accordingly time independent. Thus the total force required to keep
the atom at rest is

or

^ = ( m„+ me — B)g,c

where B is the binding energy of the atom. The relation (4.5) expresses the
equivalence between binding energy and mass for a classical hydrogen atom to
all orders in v/c. The limitations to this result are solely due to the possible radiation

from the system, proportional to some power of e 2 . The classical orbits depend on
the charges through their product only. We can therefore consider (4.5) as an
exact result for a given orbital con figuration of the atom, corresponding to the
limit e2 —> U for fixed value of the product Ze2 , in which limit the radiation is
negligible.

Quantal hydrogen atom

The above discussion of a classical hydrogen atom can be carried over to the
quantal case by passing from a Langrangian to a Hamiltonian description and

replacing time averages by expectation values. Whereas the motion of the nucleus
is still treated in classical terms, the state of the electron is now described by the
Hamiltonian operator constructed from the Lagrangian (3.21) :

H = 
{(l + ) c {mc2 + pl112 + c[mc2 +p1h/2 (l+

 ^)^^ eW(re;r„)

= H o —et/F(re ;r„) .	 (4.6)

Here the operators r e and pc refer to the electron and satisfy the usual commuta-
tion relation, whereas r„ , the coordinate of the nucleus, is a c-number. The first
term, Ho , has been symmetrized in an obvious manner, and the potential q (re ;r„)

(4.5)
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generated by the nucleus, is given by (3.15). We use here the Hamiltonian (4.6)
in order to emphasize the analogy to the classical treatment. As indicated below,
similar considerations can be applied to the Dirac Hamiltonian, whereby effects
associated with the electron spin are included.

In close analogy to (4.2) we obtain from (4.6)

Ze a9(rn,re) — 	Zee  +e a9(ree rn ) = 	 Zee 	
—L 

a H—H^ (4.7)ax n	 Are —rn l 	 axe	 2lre —rn l	 axe'	 0 .

Since the expectation value of [aa , H] in the last term of (4.7) vanishes in a
e

stationary state, we get for the expectation value, F., of the reaction force

FX = — < yr	 	L axn w > = —<w
7

c[mec2+Pe11/2
I re — rnl	 c

^V > g2

=—(m e — B
)g

o -	 (4.8)

Thus, the total force required to keep the atom at rest is given by eq. (4.5).

The Dirac equation

In order to establish the form of the Dirac equation in the Møller box we notice
that for any value of the standard time t, the wave function tp(t) in the Møller
box is equal to the wave function wx ,,,(T) in that inertial frame K(t) which at
time t coincides with the box

	

(t) = WK ( t ) ( T) •	 (4.9)

Here T is the time measured in the inertial frame K(t) and, according to (3.7),
the time intervals dt and dT are related by

	

dT = (1 + )dt .	 (4.10)

The time variation of v(t) is due partly to the change of inertial frame K(t)
with time and partly to the intrinsic time variation of the state. In order to find
the change with time, t, of the wave function at a fixed space point in the box,
let us consider the three events pictured in Fig. 3. Here the events 1 and 2 refer
to one and the same space point in the box, but are separated by the time interval
åt in this frame. Similarly 2 and 3 are simultaneous in the box, whereas 1 and 3
refer to one and the same space point in the inertial frame K(t), but are separated
by the time interval 8T in this frame.

aw(rn> re) 2Ze2
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Fig. 3. Space-time diagram
showing the events 1, 2 and 3,
mentioned in the text, and two
successive rest frames K(t)
and K(t+St). The events 1
and 2 refer to one and the same
space point in the Møller box,
whereas 1 and 3 refer to one
and the same space point in the
the inertial frame K(t).

T

For the sake of simplicity we use as variables in the wave function the numbers
referring to the appropriate space-time points. With this notation we get

w( 2 ) —w(1)	 w K(t+at, (2) — V k(t) (1) =(VK(t+bt)(2) —wK(t)(3))+(K(t) (3) — li(t) (1)

(4.11)

Since the separation between the points 2 and 3 is of the order g o (öt) 2 , we get to
first order in 8t

w (2)-4^(1)=(w K+Ö (2)—w (2))+^^K(t) aT.t)	 K(t)	 ÔT

Because the inertial frame K(t +60 moves with the infinitesimal velocity
y = g(x)c5T = g„&t relative to the inertial frame K(t), we obtain

^K(t+at) ( 2 ) ^ exp ( 2 c)W K(t) (2) 	  (1— 2g ot)w K(t) (2)	 (4.13)

Here the matrix exp (— Zav/c), where a denotes the usual Dirac matrices,

(4.12)
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transforms the wave function from the inertial frame K(t) to K(t+åt). Combining
(4.10), (4.12) and (4.13), we obtain

ihåw= - ih g0 yi+(1+ )ih å = ih 7°yi+(1+ )H .	 (4.14)

Here Hn is the Dirac Hamiltonian in the inertial frame K(t),

	

Hn = cot (la +4AK) , ))+ß1nc2 — x)c),	 (4.15)

where (NPK (, ), Ax(t) ) is the four-potential in the frame K(t), and where the electron
charge is —e. The Møller box coincides with K(t) at time t, and therefore

p = — ifiVr ,	 (4.16)

where r denotes the spatial coordinates in the box. From the equations (4.14)-
(4.16) it follows that the Dirac equation in the Møller box takes the form, valid
to all orders in 1/A,

ih 	 = [(l+)HI)+HD(l+)]w.	 (4.17)

From eq. (4.17) one may derive the continuity equation

	

åt (v+v) +di ,. (w + (1 + )coop) = 0 .	 (4.18)

'hherefore, the quantity (— eyi +yi) is the charge density in the Møller box and
(—ev +(l +x/A)acyi) is the charge current density.

In order to apply the Dirac equation to a hydrogen atom with the nucleus at
rest at r = 0, we have to find the potentials WK)r) and AK),) generated by the
nucleus. Because the inertial frame K(t) is the momentary rest frame of the
nucleus at time t, the retarded potentials are to first order in the acceleration
given by (cf. ref. 12, p. 167)

ZeZe d2r
^PK^t ) = r + 2c2 dT2 >

AK(,) = 0,

where r = ^r e —r,j and d2 r/dT2 refers to the inertial frame K(t), i.e.
2

d r __ >;o' (re —rte)
dT2	 r

(4.19)

(4.20)

Thus we obtain
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Sk i t, — ^ r —r (1	 2c2	 )'e	 „

	Ze 	 go • (re —re)

(4.21)
0.

From (4.15) and (4.17) we then get

t =}2 (1+ ^ ̂  ( ca • 
p o --ßIn e c2	2) + (ca • R• -}-ßmE,c2) (1-}- ^'^ — eT(re>r„)} tit

l	 (4.22)
Here the potential

(rei rn) — l +
xe
^ )tfl,:,t) (re;rn)

is seen to be identical with the electrostatic potential in the Møller box as given,
to first order in 1/A, by (3.15). The Hamilton in (4.22) is just what one would
obtain by simply replacing the square root in the Hamiltonian (4.6) by

(ca.P e +ßtnec2).
Since (—eyi +yi) is the charge density of the electron in the atom, we can

immediately write down the expectation value, F,„ of the reaction force on the
nucleus from the electron in a stationary state. By steps analogous to those of eq.
(4.7), we obtain

F,, = —< yr
atV(rn ; re)Ze—  aXt — I r,=o

yr >=

=-<yr
hireAire —r„ Yi>+<W

ayo (re >rn)^w>
a xe

(4.23)

=—<w Z e2 
'Pe+ßntec2 — ^re —rel >-2

=-•-• — (me— B go).

Thus the total force required to keep the atom at rest is given by the expression
(4.5), where B, the binding energy of the electron, now includes spin-orbit coupl-
ing, the Darwin term and all other effects contained in the Dirac Hamiltonian.

It is also possible to demonstrate equivalence for a hydrogen-like atom de-
scribed by the Klein-Gordon equation. Since the argumentation is somewhat
different from the cases considered so far, the Klein-Gordon equation is treated
separately in appendix C.

(4.24)
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Thomas-Fermi atom

In the previous analysis we have considered equivalence for electrostatic energies
and kinetic energies of a single particle bound in an atom. When we turn to more
general systems, consisting of several moving charged particles, one might attempt
to base the discussion on a mechanical description in terms of the coordinates
and velocities of the particles only. It has turned out, however, that this descrip-
tion can in general only be carried to terms proportional to 1/c 2 , within an expan-

sion in powers of 1/c. The corresponding Lagrangian is the familiar one intro-

duced by Darwin (cf. Landau and Lifshitz 12 ). Equivalence may be demonstrated
within this scheme, but a strong limitation is then imposed on the internal
velocities of the system as well as on the velocity belonging to Lorentz transfor-
mations. Such limitations are avoided in a self-consistent description of the system,
in which each particle interacts with a common four-potential, the latter being
generated by the particles themselves. As a first step towards such general dynam-

ical descriptions we shall study equivalence for the simple case of a non-relati-

vistic Thomas-Fermi atom.
The first step is to estab lish, within the Møller box, the equilibrium condition

for the electron distribution in an atom, the nucleus of which is at rest at r„ = 0.
The local Fermi momentum of a degenerate electron gas is

pF(r) 	 (37z.2)113hn113(r), 	 (4.25)

where n(r) is the density of electrons. "Thus, the electron charge density is

Qe (r) =—en(r),	 (4.26)

and the total charge density of the system is

Q (r) =ee (r)+Ze å (r—r„) .	 (4.27)

For a free atom at rest, the total Hamiltonian of the system then takes on the
familiar form (cf. Gombås14)

H= d 3 r(inc2 + 3 11(11-1 ))11(r) + d 3 r Zeee(r) + 1Jd 3 rJd3 r' ee r e(r ) , (4.28)
 ^ 	 ^r' ^

where m is the electron mass.
For the total electric potential tp(r), generated by the charge distribution

(4.27), we have according to (3.15)

q)(r) _ 1 d3r,  ^
(r , ) ^ 	 +

+ xx,2A	 )'
(4.29)

The effective Lagrangian for the individual electron, moving in the total
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potential tp, is given by (3.21), and the corresponding Hamiltonian for a single
electron is to lowest order in v2/c2

	

H e = (l+)1)(mc2+ pm )—eto (r) .	 (4.30)

All electron states up to the Fermi momentum p F (r) are occupied, and in equilib-
rium the maximum energy, Emax , that an electron can have at any point, is
constant throughout the atom

	

(l+)(mc2 +p(r))_ e(r) = E max ,	 (4.31)

where we have introduced the potential

	

u(r ) = 
p(r) 

= (37t2)" h2  n2 / 3 (r) .	 (4.32)2m	 2m

Combining (4.32) with the generalized Poisson equation (3.14), one may obtain
the Thomas-Fermi equation in the Møller box.

In order to derive the reaction force on the nucleus due to the electrons, we
note that from the potential (4.29), one obtains as a generalization of the relation
(3.17)

Jd2rQ(r) 
ôx	 l d r rr'^
aw(r)  	 1	 s  	 (r )e(r')

	
(4.33)

This relation is valid for any static charge distribution and may in particular be
applied to the charge distribution en (r) of the nucleus and the potential to n that

it generates

J
d3rn(r) 

ô 
å (r) = 22 Jd3rJd3r' en

1 (r ) er (r')	 (4.34)

Next, we write the total potential in (4.33) as

tP(r ) =tPn (r) +Te(r), (4.35)

where ye (r) is the potential generated by electron charge distribution ee (r) .
Subtracting (4.34) from (4.33) we obtain

J
d3ren(r)  å(r) +Id3 r en (r) 

a a(r) =

= l d 3 rf d3r' en (r')ee(r)+ 1 Jcl3rJd3r' ee (r) ee(r')

J

(4.36)
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In this relation we may approximate the charge distribution en (r) of the nucleus
by a delta function in accordance with (4.27). For the reaction force on the
nucleus from the electron distribution we thus get

Fx=— Ze açe (r) 
aX r=0

Jd3ree(r) 
a
a (r)	 d3 r  

Zr 
P (r)	

21^fd3fd3r 
ee

1
(̂ )P^ (^ ')	 (4.37)

Expressing the potential yo in terms of ft, cf. the equilibrium condition (4.31), and
using (4.32), we find

fd3re(r) ôx 
—1d3 r n (r) ax {(1+R)(p(r) -1-me2)}

_— d 3 rn (r)1(u(r)+ mc2) +(1 + 	 3n2(h2 ,u)3/2

= -Jd3 r n (r) (me ^- µ(r)) ,	 (4.38)

where the last equation follows by partial integration. Inserting this expression
in (4.37), the reaction force, Fx , becomes:

Fx =— H go =— I 11Tm—B) go^	 (4.39)

where H is the Thomas-Fermi Hamiltonian (4.28) and N the total number of
electrons. For the total force required to keep the atom at rest, we thus again
obtain the expression (4.5), where B is the binding energy of the Thomas-Fermi
atom.

§5. Conclusions and General Outlook

In the previous chapters we have verified that there is equivalence between
inertial mass and self-energy. The study was performed in considerable detail,
including electrostatic interactions and kinetic energies, for hydrogen-like systems
and the Thomas-Fermi model, within both classical mechanics and relativistic
quantum mechanics. Moreover, there was detailed equivalence, i.e. equivalence
for each term and for each element of the interaction energy. It was not necessary
for the treatment that the system were stable. Without doubt, these are satisfactory
results since they imply that all terms of a calculation of self-energies have a
separate and simple significance.

aul
ax
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The equivalence could be made specific in terms of the basic equation of
motion (2.12) for a charged, composite system, g e M = gE,„t(r0,t). Thus, not

only did the mass M contain detailed equivalence, but also the system, and its
acceleration, could be represented by one point: the centre of charge r,. Higher
order terms, like radiation damping, may afterwards be built into the above
equation of motion. In connection with these results we showed that there is an
error in the standard Born-Heitler calculation of self-mass from total self-force.
As to the conventional formulae for self-momentum and self-energy, i.e. (1.8) and
(1.9), we found that they resulted from an unwarranted variation of a constant
term in the Lagrangian (2.15), and therefore could not be compared with the
proper momenta and energies. It was apparent that if one kept to a Lagrangian
formulation in describing a system, the undesirable expressions (1.8) arid (1.9)
were avoided, the need for Poincaré stresses did not arise, and detailed equiva-
lence was explicit.

There is a more general background to our work, concerned with the con-
sistency and aim of the description. As promised in the brief introductory remarks
in §1, we shall now discuss this background.

We have been concerned with composite systems, and with their primary
property, i.e. their mass. It was supposed that we can speak consistently about
such systems. But already in the wording composite systems it is implicit that a
simpler concept exists. In point of fact, we have an idealized concept, that of a
particle, sometimes referred to as an elementary particle, or a point particle. From
old, a particle is conceived as an unchangeable building stone of matter. On the

one hand, we then visualize a composite system as a swarm of particles interacting
with each other. On the other hand, we have to compare the properties of this
swarm with the properties of one particle, asking for the likeness between the
two, as well as for their difference in behaviour.

For the purpose of this comparison, consider a composite system, be it a
molecule, a liquid drop, a crystal, or an atomic nucleus, and note the following.
If we act upon the system by means of comparatively weak forces, the forces
varying sufficiently slowly in space and time, then the behaviour of the system
will be as if it were a particle. This means that it has a certain mass, charge,
inner angular momentum, magnetic dipole moment, etc. It can possibly be
represented as a point in space as was shown in the equation of motion (2.12),
just in the way a particle — if we are cautious — can possibly be described as a
point in space. By acting on the system with such moderate forces, we can measure
the properties of the system, properties which are conserved when the system
remains isolated. In this comparison to a point particle we need not require that
the system be absolutely stable when isolated. We can allow it to be unstable,
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like a.uranium nucleus with a probability of fissioning, or like a liquid drop which
may evaporate. In such cases we can think of it as having conservation within
sufficiently short time intervals, or with a certain width of its energy. Note in
this connection that, in the main, it is permissible to use classical mechanics as
well as quantum theory in the description of the system, although, of course,
quantum mechanics will give a more precise account of the physical properties.

Thus, in the limiting case of weak and slowly varying external fields, we find

that we must be able to describe a composite system and a particle in a like
manner. It lies near at hand to demand that we are also able to account for their

properties in a like manner. In a way, this hypothesis corresponds to the historical
development of particle physics where successively, molecules, atoms, and atomic
nuclei, etc., have been described as elementary particles. But it is more essential
that actual calculations of basic properties of systems comply with our demand,
in so far as we are able to calculate these properties. Correspondingly, the problem
of equivalence of mass and energy must be our primary concern.

Consider then calculations of self-energies and self-masses for, on the one
hand, composite systems, and, on the other hand, particles. In the case of com-
posite systems this calculation is prescribed: we treat its constituents, e.g., elec-
trons and atomic nuclei, as elementary particles, and only their interactions and
their motion contribute to the additional self-energy and mass. It is important
to notice that constituents of a composite system — constituents like the above
atomic nuclei — often can be regarded as composite systems themselves, and so
the division into constituents can be somewhat free. This possibility of a variable
division into constituents leads to the further expectation that each separate inter-
action contribution, or kinetic energy contribution, should show equivalence.
We described this as the demand of detailed equivalence, and we verified that it

is fulfilled.
If we demand a systematic account, the above ought to be compared with

self-energies for particles, such as the self-energy of an electron. The latter concept
is not quite simple, however, and that mainly on three counts. First, the basic
method of finding self-energies belongs primarily to composite systems, and we

can merely maintain that the proper procedure for a supposedly elementary
particle must not be in discord with the former. Second, the leading term in the
electron self-energy is apparently divergent, whereas the physically observable
parts of the self-energy, like the Lamb effect, appear only in higher order terms
in expansions in powers of 1/c. But our primary concern, for composite systems,
was not to evaluate cumbersome higher order terms. Third, there is an interest-
ing complication because of the spin and magnetic moment of the electron ; in
order to make a comparison, one must first analyse composite systems with spin,
or inner angular momentum. We have made this study and found that a classical
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system with spin must be described by at least two points, the centre of motion
and the centre of charge. An account of these questions will be given in a separate
publication.
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Appendix A

Electrodynamics in Møller Box

The line element (3.6) in the Møller box corresponds to a diagonal metric tensor
g ;k . If we put (x°, x 1, x2, x3 ) = (ct,x,y,z), we have

goo =(i+)2,

g11 - g22 — g33	 — l ,	 (Al)

A/—g= 1+^,

where g is the determinant of gik .
The field equations are derived from the action principle

(SS,

where, with general covariant notation,
field and the interaction are, respectively,

6S,„ = 0,

the contributions to the action

(A2)

from the

and

— 
1617rc

f d4x^	 F' F, (A3)Sr

S int	 — C2 f d4 x1/ —g (A4)

Here the field tensor is given in terms of the four-potentials by

__ a
Fik	 ax'

a
(A5)Ak 	 A i,

_
axk

and hence the action S 1 is invariant with respect to the gauge transformation

A,—> A+ a i A (r,t)T	 ô 

where A(r, t) is an arbitrary scalar function of the coordinates.
The condition that also the action S, nt be invariant against the transformation

(A6) yields the conservation law

ax' (A/ gJ') = 0 .

Therefore, we introduce the conserved current (ec, s) as

l' =	 ^ 
g 

(e c , s ) ,

(A6)

(A7)

(A8)
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so that the total charge

q =Jd3re(r,t)

is a constant.
If a point charge q l is located at the position ri (t), the current density takes

the form

qidxi 8 (r—ri (t)) .^/—gdt

From (A4) and (A8) we have

((''	 1	 l
S ant

=— dtJd 3 r (e +sxtk 	 (All)

where .l = 1,2,3.
Since the space integral in (All) represents the interaction energy, we must

introduce the scalar potential ç and the vector potential A through the relation

(^o,.4i,.42,.43) = (W, —Ax, —A —Az) ,	 (Al2)

so that	 ('

S int = —Jdt f d ; r(e^— s • A).	 (A13)

From eq. (A5) follows the homogeneous Maxwell equations

Øx` Fk ' + xk F. + 8x' 
Fik — 08 

whereas the inhomogeneous equations are obtained from the action principle
(A2), when the variation is carried out for fixed charge and current distributions.
The result is (cf. ref. 12)

-\/—g aX
k( 3_ gFik) =- 4̂  j.	 (A15)

The conservation law (A7) is of course one consequence of the Maxwell equations
(A15).

The physical significance of the potentials ç and A is expressed by the equal
tions of motion for a charged particle in an external field. These equations are
found from the action principle

(A9)

(A10)

(A14)

aSkin + ôS int = 0 ,	 (A16)

where a variation of the particle coordinates is carried out for fixed potentials.



40:11	 35

Here

	

Ski n =— mc2Jdt^(1 } )z— v2 }1/2'	 (A17)

	

S,,1 = —Jdtq{rp(r(t)) — A(r(t)},	 (A18), 

where m is the mass of the particle and q its charge. The corresponding Lagrangian

is

L=—mc2 (1+ ) -- 
1

—q^p(rt)+g v • A(r,t),	 (A19)
2	 2 /2

and hence the equations of motion become

—m(1	 +x/.î)go  
+!^ E + vc XB ,d 	 	
`1 dt {(1+x/2) 

mv

2— v2/c2 {1/2 — {(1 +x/Å)2 —v2/c2^1/2
	 (A20)

where we have introduced the electromagnetic fields

E= —V^p—^ å—̀̂, 	 (A21)

B = V x A .	 (A22)

In terms of these quantities the field action (A3) takes the simple form

S1 = nJdtJd3r(1 +x/ .1
 (1+x/.1)B) .	 (A23)

It can be convenient to express the Maxwell equations (A14) and (A15) in
the following three-dimensional notation

div B = 0 ,

rot E _ — c
aB at	 ,

(A24)
div D = 4ne ,

rot H=1 aD+ 4n s
c at	 c

where we have introduced the abbreviations

1	 (A25)D 
1+ x/.lE ,

H = (1 + 1)B.	 (A26)
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Appendix B

Static Potentials in Møller Box

In this appendix we derive the potential generated by a charge at rest in the box.
By introducing (A21) and (A25) into (A24), one obtains the generalized Poisson
equation for the potential tp,

d^— ^

+ 

x å^=-4ng,(1+ 8(r—rt) ,

where the charge q, is at rest at the position r, . In the text we only use the solution
of this equation to first order in 11A as given by (B12). But for the sake of com-
pleteness we here give the exact solution of (B1), subject to the boundary condition
that it vanishes at infinity in the box. This solution is a somewhat complicated
analytical expression, which can, however, be given a simple geometrical repre-
sentation.

Fig. 4. Geometrical construction
of potential and field from
fixed charge in the Møller box.
The x-axis in the box is chosen
in the direction of go . The thick
line, at x = —A, represents
the bottom of the box. i.e. the
region below this line does not
belong to the box. The circle is
drawn through the charge
point P, and the field point P as
well as through their mirror
images, Pi and P' beyond the
bottom of the box. The field
strength E is tangential to the
circle at the point P.

P"
Let P, represent the point in which the charge is located and P the field point

(see Fig. 4). We draw a circle through these two points and their mirror images,
P; and P', beyond the bottom of the box, at x = —2. Denote the vectors from P,
to P and from P; to P by d and D, respectively. We shall prove that the solution
of (B1) may be written

q^( d D
q)(r;r1) =2^ D + d °

(B1)

(B2)

DI.where d = and D =
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The right hand side of (B2) tends to the constant q,/A. at infinity and at the
bottom of the box. It is seen from Fig. 4 that d and D are given by

d - {(x x1)2+ (y y1)2 + lz - z1)2r2

D={(x+.l+x1+11)2+ (y- y1)2 +(z- z1)2}1/2.

In order to show that (B2) is a solution of (B1), we observe that the Laplacian
acting on d/D becomes

Ad = 1 . 4d+dd1+2(
V

d)•(V
^	

=- 4nd8(D)+d1D D3
+ 4(å+A)2 

(B5)

and similarly

d D = -4nD8(d)+dD d3 4(Dd3^)2.

Furthermore,

1	 ô d  	 1x—x1 dx--).+x,+2

.1 +x ax D .l +x ( dD	 	  D3	 )'

1 8 D 	 1  (x-f-xl +. 	 D (x+,) — (xl +.l)
.1 +x ax d .1 +x	 dD	 d3	 )'

Finally, making use of the relation

D2 —d2 = 4(x+ 2) (x, +.1) ,	 (B8)

we obtain

(zi

	 x i3x) (
Dd

D ) =- 4nh(D8(d)+d8(D)) .

Since 8(D) vanishes everywhere within the box, we have verified that, apart
from an additive constant, (B2) is the solution of (B1) with the desired boundary
condition. It is easily seen that the electric field E at the point P is tangential to
the circle and of magnitude

E (P) = q, (1+ 1)(d2 — D2).	 (B10)

Incidentally it may be remarked that a light ray, sent from the point P, to the
point P, travels along the circle shown on the figure.

In order to obtain the potential to first order in 11A we expand as follows

(B3)

(B4)

(B6)

(B7)

(B9)
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D= 2^1+x, +x . . . .	 (B11)

Hence the potential becomes

D
x

q ^ 

l + 
T x i )

`^— 2.1 d 	  ir—rd	 2.i '

which is the form used in the text.
The above result for the potential may also be derived by transforming the

potentials, generated by a charge in hyperbolic motion, from the inertial frame
to the Møller box and performing a gauge transformation. The potentials in the
inertial frame were originally derived by Borneo

(B12)
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Appendix C

Klein-Gordon Equation in Møller Box

Let K(t) denote the particular inertial frame which coincides with the Møller
box at time t. In this frame, the Klein-Gordon equation for a spinless particle
of charge q and mass m in an external potential .it may be written as

(P, _q Ai) 
(P1_1)	

(T) = m2c2WK(t((T)
	

(C1)

where WK(t) (T), the wave function in the frame K(t), is a scalar quantity. With

the identification

P = ih 
ax"

and imposing the Lorentz condition we obtain

C12(_h2 D _2ihkai 	 +

z

1 A. 1 A ,)y^K(t (T) = 2 ezWK(t)(T).	 (C3)2 

We now notice that the wave function in the Møller box y(t) is equal to the wave

function WK (t) (T)

W( t) = WK ( t ) (T) •

Moreover, since WK(,) is a scalar, the product A l aVx(1) l ax' is an invariant.

Therefore the Klein-Gordon equation in the Møller box is simply obtained by
expressing this invariant and the d'Alembertian in non-Euclidean coordinates.
For the latter operator we have the general expression (cf. ref. 12, §86)

1 a 	 	 ;k  a 
q
_—g ax' ,3

—g 
gik 	 .

With the metric (Al) in the Møller box, this operator becomes

1	 1 a2	 1 	 a
q _ (l	

+x/2) 2 c2 ate — (d+ A+ x ax

z
(1-2x/.1) 

c2 aa2 —(d+-} ax ,

where the last expression is valid to first order in 1/.1. We shall only consider
the case of a static potential in the Møller box, i. e. = (9, 0, 0, 0) . Hence we

obtain

a = goo ^ ao=	
)

1 2 ^ 1 
a (1 -2x/a.) ^ ^ åtax	 ax	 (1+ x/).)2 c at

(C2)

(C4)

(C5)

(C6)

(C7)
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Similarly,

.A'. =g°°	 (1-2x/Å) (v2. 	(C8)

Multiplying eq. (C3) from the left with the factor (1+ 2x/.1), we obtain to first
order in 1/A

{

,2 1 a2	
 c2 

ate
— ihço- 

ôt + 2
9

2 + ( 1 +23)(61+1 ){yi=(1 b2-)m 2 c2 y/ , (C9)

or
a

(	 W	 T.
ihôt —qy')^ = m2ca (1+ 2^)—( 1 +2^ h2 d— ôx .

It is convenient to rewrite this equation in a more symmetric form by introducing
an auxiliary function

_ 	 1 
(l+ x/.i)1/2 V-

Thereby we get from (10), again to first order in 11A,

(ih 	  — q	 = {in2c4 (1 + 2	 cp (I + 2 	 (C12)

where p = —ih V. We note that to this order eq. (C12) may be written

(ih at — q(P)2`y = Hô`y,

where H„ is given by (4.6).
To the Klein-Gordon equation belongs a conserved four-current density (O, s) .

According to (C11) it is to first order in 1/A given by

ih
2

(^ ^ aY! _Yr)_ 	e	 mc2 	 Øt	 at	 mc21

s=— 2m (gi * (1 +2 ^)V`y — y^ ( 1 +2 ^)VYr*).
These quantities obey the continuity equation ae/at= —divs because of (C12).

Consider a hydrogen-like system, where a particle of charge q 2 moves in the
potential tp given by (3.15). The demonstration of equivalence in this case differs
slightly from the derivations in §4 for two reasons. First, the wave function
belonging to a stationary state of the atom is not an eigenstate of a Hamiltonian
as in the cases studied in the text. Second, the conserved density is not VI, but
is given by (C14).

(C10)

(C11)

(C13)

(C14)
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In a stationary state we have

W(X t) =  ,(x)eE Ei

Thus the density P takes the form

P— 
E — q2 ^F ,j, 2

mc

where VI satisfies the equations (C12) or (C13) with iha/at replaced by E.
We assume that the integral of the density g, in (C16), is normalized to unity,

and thus the charge density of the particle is equal to g 2 g(r2 ). Hence we get for
the expectation value, Fx , of the reaction force from the particle on the charge

centre q 1 situated at the position r = 0

Fx = —g 1 	 axl
aw(r,;r2)

r-0
=	 d3r2g^^(r2)( ^G( 

i ^ 2
—	 axi

ô r•r )

3	 (1	 aW(r2;r11\
_ — d ' r2P(r2) g2 ^^(r2^ri,	 ax2 f •

Noticing the relationships

d3r2 gg 2 L92= —fd3r2 Y' 
2  a  (E—g29)2
ax, 2 m 2 c2

= —
3	 ^d r2 Y^

a	
1-120 w

(C18)
L ax2 ' 2m2c2 J

=—^	 mJd3r V* 
(
E 

g^9)2y,
2	 2

2

— 9id3r2C(r2)(E—q2v) e

we obtain equivalence in (C17)

— ^ E
J

d3r2P(r2) = — E go•

(C17)

(C19)



42	 40:11

References
1.Jackson, J. D., Classical Electrodynamics, Chapter 17, Wiley, New York (1962).
2. Einstein, A., Ann. d. Phys. 17, 891 (1905), Ann. d. Phys. 18, 639 (1905).

Reprinted in English translation in "The Principle of Relativity", Dover Publications (1952).
3. v. Laue, M., Inertia and Energy, in "Albert Einstein, Philosopher-Scientist", (Ed. A. Schilpp)

The Library of Living Philosophers, Evanstone, Illinois (1949).
4. Jammer, M., Concepts of Mass, Chapter 11, Harvard University Press (1961).
5. Lorentz, H. A., The Theory of Electrons, Teubner Verlag, Leipzig (1916). Reprinted in Dover

Publications (1952).
6. Pais, A., Developments in the Theory of the Electron. Institute for Advanced Studies and

Princeton University (1948).
7. Feynman, R. P., Lectures on Physics II (Chapt. 28), Addison-Wesley, Reading, Mass. (1964).
8. Becker, R. and Sauter, F., Theorie der Elektrizität, Teubner Verlag, Stuttgart (1957).
9. Rohrlich, F., Am. J. Phys. 28, 634 (1960), Ibid. 38, 1310 (1970), and

Classical Charged Particles, Addison-Wesley, Reading, Mass. (1965).
10. Born, M., Ann. d. Phys. 30, 1 and 840 (1909).
11. Heitler, W., The Quantum Theory of Radiation, Oxford University Press, Oxford (1954).
12. Landau, L. and Lifshitz, I. M., Classical Theory of Fields, 3. ed. Pergamon Press, Oxford, New

York (1973)
13. Møller, C., The Theory of Relativity, Oxford Universi ty Press, Oxford (1972).
14. Gombäs, P., Die Statistische Theorie des Atoms und ihre Anwendungen, Springer Verlag,

Wien (1969).

Indleveret til Selskabet december 1981.
Færdig fra trykkeriet juni 1982














	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48

