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Introduction

Intermolecular positional correlation forms the core of a description of
fluid structure (sec e .g . FRISCH and LEBOWITZ 1964, FISHER 1964, RICE and
CRAY 1965, COLE 1967, EGELSTAFF 1967, and, for experimental data, FRISCH

and SALSBURG 1968) . The response of a molecular fluid to light is largely '
determined by the response of an isolated molecule and by the equilibriu m
structure of the unperturbed fluid . It can therefore be described in terms o f
molecular correlation . Molecular refractive index theory results in a pertur-

bation series for the refractive index m, which can be interpreted as describin g
a series of elementary scattering processes (YVON 1937, MAZUR 1958, BuL-

LOUGII 1968, BuLI.ouGH, e .a . 1968, to be referred to as I, HYNNE 1970, to
be referred to as II) . A general term of such series involving p molecules ,
contains a (p-1)-fold integral having a particular p-body correlation func-
tion 2 as a weight factor . This correlation function gauges the contribution t o
the refractive index of a multiple scattering process with p scattering event s
from p molecules in given configuration . Clearly, the character of the many-
body response (as condensed in m) depends decisively on the set of cor-
relation functions .

In this paper we consider correlation functions W [ p ] that appear as
weight factors in a theory of the refractive index of a molecular fluid form-
ulated in terms of a `screened' intermolecular interaction (II) . Although
entirely microscopic 3 , the screened theory has interesting macroscopic con -
sequences : from the theory we have derived (HYNNE and BULLOUGII 1972 ,

to be referred to as III) a generalized form of a dispersion relation, previousl y
obtained by ONSAGER (1936) and BÖTTCHER (1942) by purely macroscopic

Namely in the approximations of a quasistatic linear response theory and the polarizatio n
diagram approximation (I) .

2 We use the term `correlation function' to denote an arbitrary combination of distributio n
functions (compare e .g. HILL 1958) . We deviate from the terminology in our previous paper s
on refractive index theory which did not distinguish distribution functions from other correlatio n
functions .

8 The screened theory is initially completely equivalent to the fundamental unscreene d
theory (BuLLounn 1968, I, II) but the `bulk approximation' (see II) is required to reach the
final, translationally invariant form .
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arguments . We have also obtained (HYNNE 1974) an expression for absorp-

tion lines, at variance with simple two-body results, but agreeing with line -

widths from coupled oscillator theory (HOLTSMARK 1925) . The physical
significance of these results shows that the screened formulation is physically
very natural and motivates a study of the g functions . A more concret e
incentive is the necessity of knowing the asymptotic behaviour of the g func-

tions for a proof of convergence in the refractive index theory .
Correlation of p molecules can be expressed by the p-body (reduced )

molecular distribution function, which gives the probability density of con -

figurations of any subset of p molecules . (See e .g . HILL 1958, FRISCx and
LEBOWITZ 1964 ; compare also section 2 of this paper) . The p-body correlatio n
function

~tp l = 'Y123 •

	

p ° ~p ( x l, x2, x3, • • , XP)

considered here is a function of the p points in space x1 , x2 , . . . , xp, and

can be expressed as a combination of distribution functions of orders q p .
Although the set of distribution functions is perhaps the most natural choic e
other sets of functions, notably the set of Ursell functions , 4 may serve equally

well as basis for a description of intermolecular correlation . It is the purpos e

of this paper to characterize the set of g functions in relation to the tw o

fundamental sets of functions, the set of distribution functions and the se t
of Ursell functions .

In the following section we introduce generalized correlation function s
and define g functions by an equation emerging from the refractive inde x
theory (II) . The most important part of the paper is a derivation in section 3

of an explicit expression (2 .12) for the J functions in terms of generalize d

Ursell functions and a recurrence relation (2 .11) in terms of generalized
distribution functions . Section 4 contains a discussion of some properties o f
'J functions, and section 5 an application of the result (2 .12) to the original

physical problem. The short section 6 summarizes the results .

4 The Ursell functions can be defined without reference to distribution functions . For thi s
and for a more general discussion of Ursell functions see in particular PERCUS 1964; see also
the brief review in section 2 below . Notice, however, that. there exists a different usage of th e
term 'Ursell function' ; see e .g . FISHER 1964 and UHLENBECK and Fonn 1962 and compare th e
original paper by URSELL (1927) .

(1 .1)



2. Definition of g functions

Rather than using ordinary distribution functions we shall work in term s

of generalized distribution functions

~lp l = W 123 .

	

p = < e( x i) e(x2) e(x3) . . . e(xp)>av

which are averages of products of the ` instantaneous' density of molecule s

O(x) _ ~ å(x-xn,

	

(2 .2)

.7

taken at different points . The instantaneous density e(x) depends on the

configuration of molecules 5 (specified by the positions xj ) of a member of

the grand canonical ensemble . The system is homogeneous, and the averag e

density n = < O(x)>av is independent of x . In equation (2 .1) and below w e

use subscript indices to denote position variables .
The g functions generalize the ordinary distribution functions o f

statistical mechanics (see e .g. HILL, 1956) to include self-correlations, an d

the first few functions are (see e .g . LEBOWITZ and PERCUS 1963 ; 81234 i s

exhibited in HYNNE 1974, p. 452)

~3Pl = n

X12 = n 2 8 12 + nå12

	

(2 .3)

p123 = n 3 8123 + n2 (å12 823 + ô23 831 + ô31 gl2) + nå 12 ô2 3

In equation (2.3) n p gtpl is the ordinary p-body distribution functio n

and å = a(xi- xj ) denotes a delta function representing a self-correlation .
Although ordinary correlation functions are perhaps appropriate fo r

most applications, generalized functions are in many ways simpler than

ordinary ones . In many-body optics it is possible to exploit the simplicity o f
the generalized functions to great advantage by formally expressing radiatio n

reaction in terms of self-correlations (I) . This definition is made initially i n

the (more fundamental) `unscreened theory' (I), but it is carried over, wit h

new significance, into the screened theory . (See II and, in particular, III) .
The 0J functions therefore emerge from the screened theory with all self -

correlations included, and it is natural to express them in terms of th e
generalized distribution functions .

6 The refractive index theory (I, II) applies only to optically isotropic molecules for whic h
orientational correlation is irrelevant .

(2.1)
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The function ~J[pl is the average value of the instantaneous (configur-
ational dependent) function

g[pl, recursively defined by the relation

Jï = °1 - e (xl)

p- 1

123---p-lep -

	

X123---q 6q+1---p '
q= 1

which emerges from an integral equation in the refraction index theor y
(equation (2 .6) of III) .

We easily find the first few g functions directly from the definition (2 .4) :

=

	

0'12 = T/12 - g1 'g2

	

(2 .5 )

0'123 = X123 - g 12 g3 - X23 gl - g 31 -2 + 2 g1 3 2 '§3

It is remarkable that these 91 functions are identical with the correspondin g
generalized Ursell functions, which can be defined as (I, STELL 1964, LE13o -
WITZ and PERCUS 1963)

-1 lp] _ >

	

f qt Q

	

(2 .6)
e p Q G

In equation (2 .6) the sum is taken over the collection gp of all partitions
of the set of indices [p] _ (1, 2, 3, . . . , p) . °

The generalized Ursell functions may be obtained from a simple r
recurrence relation, derivable from equation (2 .6) (compare PERCUS 1964) :

	

ß̀ [ p 7 =

	

°uQ ~[pl - Q . 1 E Q

	

(2 .7 )
Q

in which the sum is taken over all subsets Q of [p] containing 1, and [p] - Q
denotes a set difference with ordered elements (compare footnote 6 an d
below). The p-body Ursell function? can be characterized (PERCUS 1964) a s
the part of the correlation between p particles not contained in lower order
functions . This characterization is natural in view of the definition (2 .6) ,
and it manifests itself in the asymptotic properties of the Ursell functions .
Let the variables of Q1[p] be partitioned into two sets with indices Q an d
R = [p] = Q and let dQR denote the minimum distance between the two sets :

s Below we shall take sets of indices like [p] and Q to denote ordered sets . Here, the order-
ing is immaterial because both

	

and
0?/[pl

are symmetric in all their variables .

' Here and below 'Ursell functions' and `distribution functions' denote generalized func-
tions unless the contrary is expressly stated .

123---p
(2 .4)

II
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dQR minIx i - x i I, i EQ, jER . (2.8)

For any such partition the Ursell function °h [ p
] satisfie s

J[p ]

	

O

	

for

	

dQR -~ 00 . (2 .9)

This is the cluster property of the Ursell function (compare UHLENBECK and
FORD 1962), which follows (compare KAHN and UIILENBECK 1938) from
equation (2 .6) and the factorization of distribution function s

V[p] VQ V3 R for dQR, -~ œ .

The asymptotic behaviour (2 .9) makes the Ursell functions very suitable for
discussion of convergence of integrals, a property we exploit in section 5 .

However, direct evaluation shows that

0/1234 = °1234 + *13 l 24 ;

	

(2 .10)

so despite the striking coincidence at the lowest orders, the class of g func-
tions differs from the class of Ursell functions . Nevertheless, the results (2 .5 )
and (2 .10) suggest that the two classes of functions are simply related .

Whereas it is relatively easy to obtain expressions for lower order g
functions directly from (2 .4), several features of the defining relation (2 .4)
complicate the derivation of a general expression for gm, whether in term s
of distribution functions or in terms of Ursell functions : Equation (2 .4) i s
a non-linear many-terms mixed recurrence relation in the instantaneou s
functions gin involving the averaging operation in addition to arithmeti c
operations .

In the next section we shall solve this problem by deriving the followin g
two relations

	

g [ p ]

	

II Js
a E ,;Pp se a

	

J [p]

	

II '&C
yEWp CE y

which independently determine Jrpl : equation (2 .11) is a pure recurrenc e
relation for J [p] in terms of distribution functions whereas equation (2 .12)
is an explicit expression for f [ p l in terms of Ursell-functions . $ The sums in
equations (2.11) and (2.12) are taken over certain sets of partitions of the
index set [p] = (1, 2, 3, . . . ,p) defined in the following section . Indeed, th e

(2 .11)

(2.12)

$ The result (2 .12) has been quoted in Il : here we present the derivation of the result .
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core of the derivation involves essentially just manipulations with partition s
of index sets, and it would be a futile notational complication to formulat e

the derivation in terms of the functions . We therefore base the derivation

on two lemmas on `ordered partitions' which we derive in the followin g

section . Since this arrangement may obscure the motivation for the variou s

steps of the derivation, we start with a brief outline of the argument .

3. Derivation of Equations (2.11) and (2 .12)

To derive (2 .11) we first obtain an expression for a product of function s

e(x) (compare equation (2 .1)) which upon averaging yields equation (2 .11) .

The structure of the terms of the sum in equation (2 .11) can be ascertained

by scrutinizing equation (2 .4) . Here, we prove the result by induction . For

this proof we use equation (2 .4) and a lemma showing how the set „9'p+ 1
of partitions of [p + 1 ] can be generated from the set Yp of partitions of [p] .

From equation (2 .11) we obtain (2 .12) by comparison of equations (2 .6)

and (2 .11) using another lemma which states that any partition of [p] can

be uniquely decomposed into a certain subpartition of a partition belonging

to Sop . We first derive the lemmas .

We consider partitions of the set

[p ] =(1,2,3, . . .,p)

	

(3 .1 )

of the first p positive integers . The relevant partitions are all characterized

with reference to the numerical order of the integers . 9 We shall also need

to consider ordered subsets of [p] as well as partitions of such subsets . We

therefore take [p] to denote the naturally ordered set, and we shall under -

stand that any set of integers (whether it is element of a partition or not )

is ordered according to magnitude unless the contrary is stated . By an ordere d

partition of an ordered set we simply mean a partition in which the element s

are ordered within each set of the partition, whereas the sets of the partitio n

are not ordered among themselves . (Nevertheless, the ordering induces a

relation among the sets, which we exploit below) .
It is very helpful to represent partitions by diagrams . Let the elements

1 , 2, 3, . . . , p of the basic index set [p] be represented by consecutive ver-

tices of a regular polygon of p sides . A partition of [p] is then represented b y
a collection of polygons (which may include points and lines as degenerate

s The ordering arises from a chronological ordering of scattering events in the refractiv e
index theory (II).
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9

cases), each having the representative points of a set of the partition as ver -
tices . The sides of a set-polygon connect vertices corresponding to cyclic -
ally consecutive elements of a set . Figure 1 c exemplifies the diagram repre-
sentation by showing the representation of the partition

{ (1, 4, 7), (2, 8), (3), (5, 6) }

	

(3 .2 )
of the set [8] .

From any partition of [p] containing a set Q with more than one element
we obtain a particular subpartition by dividing Q into a non-empty, proper ,

(a)

	

(b)

	

(c)

	

(d )
Figure 1 . Diagrammatic representations of partitions exemplifying the various types of parti-
tions :

(a) The s-partition (3 .3 )
(b) The c-partition (3 .5 )
(c) The composite partition (3 .2 )
(d) The basis (3 .4) of the composite partition (c) .

The composite partition (c) is neither an s-partition nor a c-partition ; but it can be obtaine d
from the s-partition (d) which is its basis by replacing the sets of (d) by definite c-partition s
of these . This representation of the composite partition (3 .2) as a subpartition of its basis is

the sc-decomposition of the partition.

ordered subset of consecutive elements from Q and the ordered subset of th e
remaining elements from Q. We call this special subpartitioning an s-proces s
(where s stands for `sequence') . We define an s-partition of [p] as any parti-
tion that can be obtained from [p] by repeated use of s-processes . By defini-
tion, [p] is itself an s-partition . l0 The diagram representation permits an
especially simple characterization : A partition is an s-partition if and onl y
if it is represented by a diagram in which sides of different polygons do no t
intersect . This is a direct consequence of the definition of s-partitions . Figure
1 a illustrates the property for the s-partitio n

{( 1 , 3, 8), (2), (4, 7), (5, 6)} .

	

(3 .3 )

The diagram representation shows that we may replace the term `consecutive '
by `cyclically consecutive' in the definition of the s-process .

10 We shall not distinguish between the one-set partition { [p] } and the set [p] itself.
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We denote by 9p the collection of all s-partitions ap of [p], and by Yp
the subset of Yp consisting of the partitions 6-°p in which the integers 1 and p

belong to the same set. We obtain a mapping fp from qp into the set ~p+1

of all partitions of [p + 1] by defining the image fp(ap) of a partition ap E Yp
as the partition obtained from ap by adjoining p + 1 to the set in ap containing

the integer 1 . Since 1 and p + 1 are cyclic neighbours in [p+ 1], and sinc e

ap E Yp, fp(ap) belongs to -`fip+ i and hence to Yp+ 1 . Conversely, for each
0 °p+1 Y°p+1 there is a unique original element under fp obtained simply by
removing the integer p+ 1 from 4+1 . Thus, fp establishes a one-to-one cor -

respondence between Yp and 91 +1 .

We now find a prescription for generating the whole collection .fp+l
from 9°,+1 and hence (by fp) from Yp . We obtain ~p+1 as the collectio n

of the partitions in Yp+l and the partitions obtained from each of thes e

partitions by employing one s-process in all possible different ways giving

partitions in which 1 and p+ 1 belong to different sets . All the partitions

obtained this way belong to Sp+i . by construction, and each element ap+ 1 of

is generated exactly once . If o+ 1 eY°p+1, this is obvious . If ap+, 0Yp

it arises precisely once from the unique partition obtained from ap+ 1 by

uniting the sets containing the elements 1 and p +1 : The resulting partitio n

is indeed contained in Yp+l since 1 and p + 1 are cyclic neighbours in [p + 1 ] .

We refer to the rule for obtaining ,9''p+ 1 from Yp as lemma 1 .
Consider diagrams of partitions as two-dimensional point sets. We say

that two sets of an ordered partition are connected if the diagram of the

partition contains a continuous curve joining points of the polygons tha t

represent the two sets . 1 1

Clearly, connectivity is an equivalence relation and hence gives rise t o

a classification of the sets of a partition . From an arbitrary partion n w e

obtain another partition a, which we call the basis of ac, by replacing each

connectivity class by the union of all sets in the class. The basis of a partition

has a diagram in which no polygon-sides intersect : it is an s-partition . For

example, the basis of the partition (3 .2) (exhibited in figure 1 c) i s

{(1, 2, 4, 7, 8), (3), (5, 6)}

	

(3.4)

which is an s-partition as figure 1 d clearly shows . An s-partition is its own

basis .
A partition in which all sets are connected is said to be connected an d

u `Connectivity' is not used in the graph-theoretical sense : the diagrams are not graph s
in the narrow sense of this term (compare e .g . BEuGE 1962) .
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is called a c-partition. Compare the diagram in figure 1b which represents
the c-partition,

{(1, 4, 7), (2, 6, 8), (3, 5)}

	

(3 .5)

of the set [8] . The set of all c-partitions of [p] is denoted

	

The basis of
a c-partition of [p] is [p] itself (compare footnote 10) .

Any partition determines its basis uniquely and can be recovered fro m
this by a unique, partitioning of the sets of the basis into connected parti-
tions. Therefore, any partition can be uniquely decomposed into a c-sub-
partition of an s-partition. We refer to this result as lemma 2 . It shows tha t
c-partitions are in a sense complementary to s-partitions .

The sets

	

and f̀ip appearing in equation (2 .11) and (2 .12) are now
well defined, and we procede to prove these relations . Assume 1 2

M2 P3 . . . eP -

	

°fis li °Ys

	

(3 .6)

	

aE,r9 P p

	

3> 1

where the sum is taken over all partitions a = {SI, S 2, . . . } e fip, and Si
is the set containing the integer 1 . Multiply both sides of equation (3 .6) by

ep + 1 and eliminate all products °21s Pp+i by equation (2.4). By employin g
lemma 1 we then find that the resulting expression has the form (3 .6) with p
replaced by p + 1, and the validity of equation (3 .6) follows by induction .
From equation (3.6) we obtain the recurrence relation (2 .11) by taking the
average value .

Consider now equation (2 .6) . By lemma 2 we can write the sum ove r
gp in this equation as the sum over ,rp of the sum over all c-sutpartitions :
The existence of the sc-decomposition of an arbitrary partition guarantee s
that all terms of (2 .6) are included in the double sum, and the uniquenes s
of the decomposition ensures that each term is included only once . All terms
of (2 .6) having a given basis u E,9''p factorize alike, corresponding to th e
sets S of u . We can therefore rewrite equation (2 .6)

g[ p ] _ >

	

H

	

. ,

	

IT Qlc

	

(3 .7)
aeyp SEa yE'(S) Cey

in which CC(S) denotes the collection of all connected partitions of the ordere d
set S.

To prove the expression (2 .12) equate the right hand sides of equations
(2 .11) and (3 .7) and assume equation (2 .12) to be valid for all orders smaller
than p. All terms in the sums over 5°p except those corresponding to u =[p ]
then cancel10 leaving the expression (2 .12) at order p, and the general validit y
of equation (2 .12) follows by induction .

12 We simplify the notation when no confusion can arise.
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4. Discussion of Results

The derivation of equation (2.12) in the preceding section reveals tha t

the two equations, (2.11) and (2 .12), are in a sense complementary with

respect to equation (2 .6). The 6 functions may therefore be naturally char-

acterized as being intermediate between the distribution functions and th e

Ursell functions . Both equations have a form comparable to that of equatio n

(2.6), but in equation (2.11) the of functions appear similar to Ursell func-

tions, whereas in equation (2 .12) they appear similar to distribution functions .

Equation (2.12) is an explicit expression for the g functions. It shows

that these are sums of products of Ursell functions . To illustrate the structur e

of the 6 functions we have displayed these up to order six, in figure 2 ,

using a diagram notation related to the one used for partitions : A diagram

with dashed lines represents a product of Ursell functions, and a polygo n

covering a set of vertices corresponding to an index set Q indicates th e

presence of a factor QeQ . The terms of the sum for 6 [p] appear in classe s

within which the terms only differ by cyclic permutations or by complete

reversal followed by cyclic permutations of the indices . (Compare the dis-

cussion of symmetry below) . For clearity and to save space we therefor e

represent the terms of a class by just one diagram with unnumbered vertices ,

and indicate the number of terms in a class by a coefficient to the diagram .

For example, there are six terms in two classes at order five, namel y

6 12345 ° 612345 + 6135 624 + 6 124 63 5

+ 6235 614 + 6 134 625 + 6 245 6 13 •

Equation (2 .11) gives the Q-functions in terms of distribution function s

only implicitly . A simpler recurrence relation is readily obtained from equa-

tion (2 .11) :

6 [p] _ > GJQ 11 Qj , 1 E Q .

	

(4 .2 )
Q

	

3

Here the sum is taken over all subsets Q of [p] containing 1, and {Q, Ql ,

Q 2 , . . . } is the smallest13 partition of [p] in which each set Q i consists of

a single chain of consecutive integers . Evidently, the partition is determine d

uniquely by Q .

Equation (4 .2) is directly comparable to equation (2 .7) . The only differ-

ence of form is that the single function W [p ] _ Q in the equation with Ursel l

1, That is, the partition with the least number of sets .
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+
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Figure 2 . Diagrammatic representations of the first six / functions .

functions is replaced by a product of g functions covering the set [p] - Q
in the equation with & functions .

It is plain from equation (4 .2) that the explicit expression for &[p] in
terms of distribution functions must have the form

~[p] _

	

cc II s

	

(4 .3 )
aE9p se a

The coefficients ca can be obtained from equation (4 .2). This is easy for
partitions with few sets . In particular, the coefficient c 4- to the constant term

g 2 . . . g l, = nP of g[p] (corresponding to

	

= {0), (2), . . . , (p) }) i s
found to be c = (-1)p-1(p)p_lfp!, which (apart from sign) is known as
a Catalan number (SLOANE 1973) . The constant terms of the J functions
are of special interest in the refractive index theory (II) where they give ris e
to contributions which produce the `cavity field factor' of the dispersio n
relation (see section 2 of III) . But the general coefficient c a depends on the
detailed structure of the partition a in a rather complicated way, 14 and this
fact detracts from the usefulness !of the explicit form (4 .3). The simple

is In the corresponding expression for the Ursell functions, the coefficients are (-1P -1
(q-1)1, determined solely by the number q of sets in the correponding partition .
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expression (2 .12) in terms of Ursell functions is the natural representation
of & [p] •

Both distribution functions and Ursell functions are symmetric in al l
variables, i .e . ~J[pl and °/C[p] are invariant under all permutations of [p] .
In contrast, for p > 3 J[p l is only invariant under permutations belonging
to the dihedral group Dp, a proper subgroup of order 2 p of the symmetric
group of degree p (and order p!). The group Dp consists of all cyclic per -
mutations of [p] and of these followed by complete reversal of order (whic h
e.g. takes (1, 2, . . , p -1, p) into (p, p -1, . . . , 2, 1)) . The elements in 'Dp
are precisely the permutations that carry the polygon representing [p] into
itself (except for the numbering) . It is clear from the explicit form (2 .12)
that J[ p i is invariant under permutations from Dp : These map the set of
connected partitions onto itself (except for ordering) and hence just caus e
a rearrangement of the terms in the sum on the right hand side of equatio n
(2 .12) . (The Ursell functions are symmetric in all variables) . On the other
hand, there can be no forther symmetry : For any permuation P Dp of [p ]
there exists at least one pair (i, j) of not cyclically consecutive integers whic h
is mapped by P into consecutive integers . Therefore, P maps the c-partitio n
1(i, j), [p] - (i, j )} into an s-parLition, and consequently, there exists at least
one term in the sum on the right hand side of equation (2 .12) which trans -
forms under P into a term not contained in the original sum (and not can -
celled by other terms) .

A consequence of the incomplete symmetry of °1[p] is that the asymptoti c
behaviour of J[ p~ depends on the limit considered . Let the variables of °~[p }

be divided into two sets as discussed above equation (2 .8), define dQR by
equation (2 .8), and define

d Q =maxxi - xi I, i,jeQ .

Equations (2 .9) and (2.12) then show that

&[p] > 0 for dQR - m , dQ, d R <co ,

if and only if is Q consists of cyclically consecutive integers of [p] . In partic-
ular, `~ [ p ] -> 0, when the distance from one point to all the other points goe s
to infinity. These asymptotic properties of J functions are important i n
refractive index theory as we shall see in the following section .

In closing this section we note a straightforward extension of the results .

15
The `only if' part of the statement disregards possible accidental zeros for special con-

figurations within the two sets of points .

(4 .4)

(4.5)
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The & functions are generalized correlation functions in the sense that the y
include all self-correlations . By simply omitting these self-correlations w e
obtain a corresponding set of `ordinary' functions which evidently satific s
equations analogous to (2 .11), (2 .12) with the g and QC functions replaced
by ordinary distribution functions and Urseil functions . Obviously, the
ordinary functions also share the symmetry and the asymptotic behaviou r
(4 .5) with the ?J functions .

5. c functions in Refractive Index Theory

We now analyse a problem of convergence arising in refractive inde x
thory, in which the special structure of the

	

functions plays a peculiar role .
In microscopic refractive index theory (e .g . YVON 1937, BULLOUGH 1967 ,

I) the macroscopic response of a many-body system to an external electro-
magnetic field is naturally described in terms of elementary scattering pro -
cesses taking place in vacuum.. In this theory, the response related to bulk
porperties is mixed at all orders in multiple scattering with irrelevant sur -
face effects associated with molecular description of reflection and diffractio n
(I). Mathematically, the surface effect appears through integrals over a finit e
region, which diverge when taken over all space .

We have systematically eliminated the surface effect to all orders i n
multiple scattering and obtained a translationally invariant theory, th e
screened theory (II), by a reformulation of the theory in which the elementar y
scattering processes take place in the medium (compare BULLOUGH 1965 ,
1967) . This elimination involves extension of integrations to all space, a
procedure that demands a proof of convergence . It is this problem we con -
sider here .

A typical integral to be analysed (from the term at order p in multiple
scattering) i s

fJ . . . f P12 F23 . . . F(p - 1)pexp(1171 kp • (xP- x1)),123 . . . pCŸx2Cix3 . . . L7'x p

in which ko is a fixed vector of length ko, and the refractive index m is taken
to be real . 16 The tensor Fix = F (x5, xt ; w) is given by

i6 The choice Im (m) = 0 is consistent with translational invariance, but means neglec t
of external scattering . This is a logically necessary but unphysical feature of a translationall y
invariant theory . But the final equation (of which (5 .1) is a part) admits of no purely real solution
for m (compare especially Hvxxx 1974) . Thus, the translationally invariant form of the screene d
theory contains a logical inconsistency (compare BuLLOUGH 1965, 1967) . we shall not discuss
this question further here, however.
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F(x, x' ; w) = (0v +m2k
ô
U)(

exp(imkor)),

r = ~x-x' ~

	

(5 .2 )

m2r

where U is the unit tensor . It describes the propagation of radiation from
a dipole in a medium of refractive index ln . It has the asymtotic form

F(x, x' ; co)

	

lco(U -r"r)
exp(imkor)

	

kor
>)

1 ,
r

where

	

(x-x')/r.
For in real, F is long range, and the convergence of the multiple integral

(5.1) is ensured neither by the F tensors alone nor by the

	

functions alone .
(Compare the discussion of the asymptotic behaviour of the functions in
the preceding section) . It is through the special combination of Ursell func-
tions and tensors the integrals converge . As we shall see, the convergence
is only just secured, however .

Express J l p l by equation (2 .12) as a sum of products of Ursell func-
tions, and consider a typical term . The structure of such a term is bes t
visualized by the diagram for the product of Ursell functions in which th e
F tensors are indicated by heavy lines ; a coincidence of a dashed and a heavy
line is indicated by adding a cross to the heavy line (compare figure 3 a) .
Because of the short range of the Ursell functions, we can integrate first over
the relative coordinates of each cluster (set of particles covered by one Ursel l
function) with one particle of the cluster held fixed . Hereby we are left with
integrations over relative positions of clusters . We can assume that the F
tensors that connect particles in different clusters can be replaced by F.
tensors connecting the fixed particles of the clusters . (This approximation i s
good when the clusters are far apart, and certainly proper for discussion o f
convergence) . The crucial point now is, that every cluster is connected wit h

(a)

	

(b )
Figure 3 . (a) Diagram representing an integral of the type shown in equation (5 .1) for p = 8
with '[8] replaced by a typical term Q/,26 0//,,,9 Q/67 of its expansion (2 .12) . (b) A schemati c
representaLion of the same term exposing ils structure of clusters (represented by shaded circle s

in (b) and by dashed polygons in (a)) connected by `external' tensors (represented by heav y
lines) .

(5.3)
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every other cluster by at least three independent chains of F tensors . This

fact is illustrated in figure 3 b for the term shown in figure 3 a . Here, cluster s

are indicated by large shaded circles, and r tensors going between cluster s

are shown whilst F tensors going inside a cluster are omitted . Any two of

the three clusters in figure 3 b are connected by precisely three independent

chains of F tensors . (This exemplifies the `worst case' : in the term corres-

ponding to the partition exhibited in figure 1 b, e .g., which also has thre e

clusters, there are four independent chains between any pair) .

An immediate consequence of this structure of multiply connected sets

of clusters is that the integral over all positions of any one cluster with all

the remaining clusters fixed in arbitrary configuration, converges . 'This al -

most proves the convergence of the multiple integral (5 .1) . The remaining

step of a complete and rigerous proof is complicated by the fact that th e

individual integrals are not in general absolute convergent . This means that

the process of integration over all space must he specified, for example a s

a limit of integration over a finite region ; it is then still necessary to specify

the passage to that limit . Such a proof is outside the scope of this paper .

As conclusion we may say that the result (2 .12) forms an excellent

basis for analysis of convergence of the multiple integral (5 .1). This analy-

sis strongly suggests that the multiple integral does converge although th e
convergence is shown to be conditicnal and extremely slow . Certainly, the

transformation to the translationally invariant screened theory has elimi-

nated all the manifestly divergent integrals that appear in the unscreene d

theory when the integrations are extended to all space .

6 . Summary of Results

The p-body correlation functio n

&[p] = W 123 . . . p = gp( x 1, x2, x3, . . . , Xp)

is a function of p variables (points in space) . It is symmetric in the variable s
corresponding to the dihedral permutation group Dp, i .e . it is invariant under

cyclic permutations of the variables as well as under complete reversal o f
the order of the variables . It is a generalized correlation function in the sens e
that it includes all self-correlations, but all results can be reinterpreted i n
terms of ordinary functions .

The set of & functions is related to the set of generalized distributio n
functions on the one hand, and to the set of generalized Ursell functions o n
the other hand, by the pair of equations (2 .11), (2 .12), the main result o f

(6 .1)
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this paper. This pair of equations shows that the g functions can be sai d
to be intermediate between distribution functions and Ursell functions . Eac h
of the two equations independently determine the g functions : equation
(2 .11) is a recurrence relation for the g functions in terms of generalize d
distribution functions, and (2 .12) is an explicit expression in terms of general -
ized Ursell functions . The two equations involve sums over either of tw o
distinct sets of partitions of the index set [p] that marks the variables of th e
functions . These partitions are defined in section 3, and the derivation o f
equation (2 .11) and (2 .12) is based on an analysis of `ordered partitions '
resulting in a theorem (lemma 2, stated below equation (3 .5)) on decomposi-
tion of partitions . The g functions of orders up to six are displayed in figur e
2 in a diagram notation explained in section 4 . The first three g functions
are identical to the corresponding Ursell functions .

The explicit expression (2 .12) is utilized to prove (with qualifications )
that characteristic asymptotic properties of the g functions just secure con-
vergence of integrals appearing in refractive index theory .
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