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Synopsi s

We have studied theoretically the sharing of energy among the constituents of a polyatomic
medium in random atomic collision cascades initiated by heavy atomic particles . Our main
interest was to estimate the significance of possible nonstoichiometric effects as they might be o f
interest in radiation damage and sputtering.

It is assumed that primary and recoiling particles slow down by random collisions, scatterin g
and stopping being described according to the framework of LINDxnnD, SCHARFF, and coworkers .
Collision cascades are characterized quantitatively by the recoil density and the slowing-down
density . The former quantity specifies the number and energy distribution of recoil atoms of th e
various species in a cascade and is of particular interest in radiation damage problems . The latter
quantity deals with the number and energy distribution of moving atoms in a stationary state
and is of particular interest in sputtering problems . Both quantities are calculated for slowing-
down in an infinite medium of uniform composition . We determine explicitly the asymptoti c
expressions at high ion energy as compared to the recoil energy . Deviations from this asymptotic
behaviour are studied, too .

We find nonstoichiometric effects in both recoil and slowing-down density, and these effect s
are determined not only by different binding energies of different atomic species . A key role i s
being played by the mutual partial stopping cross sections of the constituent atoms of the me-
dium. It turns out that deviations from stoichiometric behaviour are independent of concentra-
tion in case of the slowing-down density, but dependent on concentration in case of the recoi l
density.

A preliminary account of this work has been reported at a recent conference°) .
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1 . Introduction

When an ion beam hits a solid target, the kinetic energy of the ions i s

dissipated among the nuclei and electrons of the medium . This energy dissi-

pation may result in a number of observable effects such as sputtering ,

disordering, ionization, dissociation, etc . The theory of energy dissipation in

random and crystalline media has been developed in some detail, mostly fo r

random, monatomic targets (for a recent review see, e .g ., ref. 1) . One of the

central problems concerns the sharing of energy between the electrons an d

the nuclei of the system, i .e . the relative significance of atomic displacement

effects (e .g . sputtering, disordering) on the one hand, and electronic excitatio n

effects (e .g . photon and electron emission) on the other hand . According t o

theoretical predictions 2) , this sharing of energy depends significantly on th e

atomic numbers and masses of the bombarding ion and the target atoms, an d

on the kinetic energy of the ion . When single crystals are bombarded, th e

sharing also depends on orientation 3 ) .
In the present paper we deal with the sharing of energy between th e

different atomic species of a polyatomic random medium, with specia l

emphasis being laid on binary compounds or alloys . By analogy with the

sharing of energy between electrons and nuclei, one would expect, qualita-
tively, that the kinetic energy of a bombarding particle is not necessaril y
shared stoichiometrically between the different constituents of a polyatomi c

medium, i .e . that the sharing does not only depend on the composition, bu t
also on the atomic masses involved . For example, in the limiting case o f

Rutherford scattering, it is easily seen that energy is dissipated preferentially

among the lightest target nuclei, although even those, in this special case ,
receive several orders of magnitude less energy than what is dissipate d

among electrons .

When energy is deposited nonstoichiometrically, preferential displace -
ment of one particular atomic species may result, and, moreover, composi -

1*
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tion changes may occur near the surface due to preferential sputtering . Most
probably neither effect is determined by energy sharing alone, but an under -
standing of energy sharing is a basic requirement for further theoretica l
treatment of effects connected with different binding energies and mobilitie s
of the atomic species .

Nonstoichiometric effects have been observed in sputtering4 - 10) Their
occurrence appears to be well established, whilst very little systematics ha s
yet developed from these studies . The interpretation will almost certainl y
be complicated in view of the fact that the sputtering yield of a binar y

material, according to experimental observation, may be significantly highe r
or lower than the sputtering yield of either of the pure materials"- l2 ) . Even
rather small amounts of (alloyed or implanted) impurities may influence th e
sputtering yield significantly in either direction, dependent on the implanted
species") . Surface topography appears to be a particularly important facto r
in determining the sputtering of alloyed targets14, 15) Systematic nonstoichio-
metric effects may be observed in experiments with single crystalline target s
such as GaAs16, 17) . In view of all these competing effects the present investi-
gation is hardly more than one step forward on a rather long way toward s
a comprehensive understanding of the sputtering of compound targets .

While the theory of ion ranges in polyatomic targets is well developed ls_20 )

the theory of energy deposition in such targets, apart from a few early inve-
stigations of Frenkel-pair production 2l - 23) has concentrated on the gros s
spatial distribution of deposited energy2o, 24) and the overall sharing of
energy between nuclei and electrons24, 25) In view of a lack of knowledge o f
atomic scattering cross sections, it was not possible in the early work o n
Frenkel-pair production 21 - 23) to arrive at quantitative criteria for the im-
portance of nonstoichiometric effects in defect production . In fact, only the
influence of different displacement threshold energies was considered i n
detail .

In this communication, we concentrate on random collision cascade s
mainly in diatomic solids, with the aim of estimating the relative and, les s
extensively, absolute numbers of recoiling or moving constituent atoms ,
mostly at keV bombarding ion energies where effects of nuclear stopping ar e
most pronounced. Both with a view on potential applications, and in order t o
isolate possible nonstoichiometric effects, we are in particular interested in th e
case of widely different masses of the constituent atoms . This latter attitude i s
somewhat complementary to that of earlier investigators 21 - 23) while it i s
similar to that of Kistemaker et .a1 26) who investigated energy dissipation in
organic materials qualitatively .
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The basic integral equations used in the analysis (sect . 2) are equivalent
to those used befor e 23) in similar problems . The specific results are restricted,
first to a special class of cross sections (sect . 3) and, second, to binary targets
(sects . 4 and 6) . The ternary case is considered briefly in sect . 5.'We mainly

consider asymptotic solutions for high ion energy as compared to the relevan t
recoil energies ; in sect . 7 we briefly discuss the limitations to this approxima-
tion. In sect . 8 we discuss some physical implications and the relation t o
experimental results .

Electronic stopping is neglected in part of the analysis . This approxima-
tion restricts the energy range under consideration, but it will be shown tha t
mostly absolute rather than relative numbers of moving atoms are affected by
this simplification .

The presentation of the basic physical model will be kept brief . The
reader who is less familiar with the notation and the way of argument i s
referred to ref . 1 for an introduction .

2 . Basic Equation s

Consider a random, infinite medium with NN = ajN atoms of type j
(atomic number Zj , atomic mass MM ) per unit volume . aj (0 aj <_ 1 ;
~ag = 1) is the concentration of j-atoms, and N the atomic density [atoms /
cm 3 ] . Let an atom of type i with initial energy E slow down in the medium .

For radiation damage calculations, we need the recoil densit y 27 ) F2 , (E, Eo)
which is defined as the average number of j-atoms recoiling per energy
interval (E0 , dE o) in a collision cascade initiated by an i-atom with initia l
energy E .

For sputtering calculations we need the slowing-down density" 28 )

G,,(E, Eo) which is the average number of j-atoms moving per energy interva l
(Eo, dEo) in the stationary state, with Tp [i-atoms/sec] slowing down from
energy E .

Following a well-known procedure r ), the following integral equation s
can be derived for F, j and Gi, ,

r
a
kJ

da¢x{Fz1 - F2; - Fx1} =
k

d62g(E, E t))
(1 )

dE 0

ak

	

dadk{q - q - Gkil =

	

~ -- Szfå(E

	

Eo) (2 )k

	

Nvo
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where Fgf = Fif (E' , Eo) and FFI = Fif (E" , Eo), etc. Furthermore, E ' and
E" are the energies of a scattered i-atom and a recoiling k-atom, respectively ,

after a collision that is governed by the differential cross section do ik(E, E ' , E" )
The quantity vo is the velocity of a j-atom with energy Eo, and du if(E, Eo) /
dEo stands for

The integral operators on the left-hand side of eqs . (1) and (2) are iden-

tical. However, eq . (2) has the form of an equation determining the Green' s
function of this integral operator . Hence, the functions Fif and G if are inter -

related in the following way,

Nv i

	

da af (E i, E 0)
Fif (E, Eo) = af~ f dE1 -Gil(E,E 1 )

	

(3)dEo

Eq . (3) can be verified by insertion into eq . (1), interchanging the order o f
integrations, and utilizing eq . (2). Hence, once eq . (2) has been solved, Fi f

follows from Gi f by integration according to (3) . Both equations are equiva-
lent to those used in ref . 23, although the present notation is more general .

Furthermore, we use integral equations in the so-called " backward" form 29 > ,

while previous authors mostly used the forward form .

Eq . (2) will have to be solved subject to the boundary condition s

Gif (E,Eo) = 0 for E < Eo . (4)

In the special case of a binary medium, eq . (4) even holds for E < Eo/y if
where

y if = 41VfiMf f(Mi + 1äf ) 2

	

(5)

The following (usual) approximations will be made in order to solve eq . (2) :

i) No binding energy is lost by recoiling atoms," '

ii) Electronic stopping is separated according to the scheme of LINDHAR D

et . al 2 ) .

Then eq . (2) reads

	

11
ak f dQik (E, T ) { Gif (E, Eo) - Gif (E - T, Eo) - Gkf( T, Eo)Ik

a
+ akse,ik (E) 	 Gif(E, Eo) =	 S if S (E - Eo)

k

	

aE

	

Nv o

f
do'if (E, E ' , E" ) å(E" - Eo)•

(2a)

* This simplification is dropped in appendix B .
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where S5,ik(E) is the electronic stopping cross section for an i-atom collidin g

with a k-atom, and T the recoil energy. The cross section da ik(E, T) is that

of elastic collisions .

It is most often possible to define an elastic-collision region 2 ) E Ec where

electronic stopping is relatively small, so that it can be neglected as a firs t

approximation. In this case we shall see (sects . 3, 4 and 5) that

Gij (E, Et)) gj (Eo) • E for Eo « E ,` Ec

	

(6)

where gj(E o ) is a well defined function . The important features of eq . (6)
are i) the linear dependence on E and ii) the nonoccurrence of the index i on
the right-hand side .* From eqs . (2a) and (6) one verifies immediately that

the following extension holds for higher energies beyond the elastic-collisio n

region

Gij (E, Eo) g(E0)v(E) for Eo « Ec and E > Ec

	

(7 )

where the v i(E) obey the set of equations

~ak f derv, (E, T) {vi(E) - v i (E T) -- vk(T)} +akSe,ik(E)
d

vi (E) - 0 (8)
k

	

k

	

dE

This is the generalization to polyatomic media of an integral equation
first derived by LINDHARD et al .2, 30) ; a computer code for its solution has

been worked out by WINTERBON 25) . It is obvious from eqs . (6) and (7) that,
in order to determine deviations from stoichiometric energy sharing, w e
need the g j(E) function rather than v i (E) . Since the former can be determine d
by solely considering the elastic-collision region, we shall restrict our attentio n

to this region in the following sections . This simplifies the analysis substan-
tially .

It may be stressed that the present argument is based on the existence of
an elastic-collision region . For very different masses of constituent atoms,
e .g . the case of a target containing very heavy atoms and hydrogen atoms,
Ec may be prohibitively small. In such a case, caution has to be applied with

respect to quantitative conclusions .

* gj (L'o) does, however, depend on all the constituents of the medium . See, e.g ., eqs . (24a, b) .



3. Power Cross Sections

The solution of integral equations of the type of eq . (2a) is facilitated

greatly by use of a power cross section of the form al )

da(E, T) = CE -m T-1-mdT ; 0<_ m< 1

This cross section describes approximately the scattering of two Thomas-

Fermi atoms over a limited range of energy E and recoil energy T. The
proper value of in depends essentially on the product E • T and on the ion-
target combinational, 20) At present, we apply eq . (9) in the form

da ij(E , T) = CijE -mi T-1-midT ; 0 < T < y ijE

	

(10)

in order to allow greatest possible generality within the inherent simplicit y

of the power cross section .* We note that eq . (10) is somewhat more genera l

than the cross section used in ref. 23, since it allows for a variety of energy

dependences of, e .g., the stopping power . We shall see below that this genera -
lization is significant .

In sect . 6 we shall need more specified constants Cij . We use the two forms

M
il

mi 2ZiZj e2
2m i

C2j

	

2
A mZ

a j~Mj/ ~ aij }

	

; mi
> 1 ,

	

(l0a)

Cif

	

2
2m2 ai

\MZ/
mZ (2A~j)2mZ- .

J

The first choice 31) corresponds to Thomas-Fermi scattering with the screenin g

radius
aij = 0 .8853 a 0 (Zij3 + Z,' 3 )-1j2

	

(11a)

and", 20)

2 1/2 = 0.327 ; 2 1/3 = 1 .309 ;

	

(11b)

The second choice 28> corresponds to exponential interaction withal )

* Preferably one would use exponents mij instead of mi ; however, this would mean a
substantial complication in the algebra . In fact, we have not succeeded in deriving eqs . (25) an d
(28) in this latter case, although the Laplace transform can be carried out easily . One might als o
suggest to use an index nip This would still be substantially more complicated than using mi
and, more important, would be physically a less reasonable choice than the one adopted in eq . (10) .

(9)

and

mi < ~ .

	

(10b)



a2 j -= const . = 0 .219 A ;

A ij = 52(Zi Zj)3j4eV ;
and 23)

0 .055 = 15" ; Ao = 24 .

	

(11d)

Since we need mostly the cross sections at low particle energy Eo (in the
eV region) when calculating recoil and slowing-down densities 2s . 34), it i s
mostly the expressions (1Ob), (11e), and (11d) that will be used in applica-
tions . However, for low-mass ions - up to about oxygen - the Thomas-Ferm i
coefficients can be expected to be appropriate even in the lower eV-region ,
and will be used, therefore .

A convenient procedure of solving integral equations with a cross sectio n
like (9) has been described in detail by RoBINSON 33 ) and one of the authors 1 )
for the monatomic case . Straightforward generalization to the present situa-
tion is possible . Inserting doik(E, T) as given by eq. (2a), setting Se , ik(E) = 0 ,
introducing the variables

E=Eo eu ; TEoev ,

following the procedure of ref. 1, and taking the Laplace transfrom with
respect to the variable u yields

E2mi - 1
Gif(s)ßik(s)(s )

	

ßik(s)Gkj(s) _	 1\ U	 åij

	

(12 )
0

where

Yik	
flik (s) =

	

ak Cik
s - mi

and

s - mi

	

YikZ

	

1

eik(s)

	

Yik
m2

	

mi
- BYik(- mi,s + 1)

J

	

(13b)

By (x, g) is the incomplete beta function ,

By (x,y) = fY dttx_1 (l - t)y-1

	

(14)

and Gij(s) the Laplace transfor m

Uij (s) = f due- SU G(Eoe u,Eo)

	

(15)

where use has been made of eq . (4) .

* This value has been extracted from fig . 4 of ref. 28 . It is rather uncertain . Note that for th e
high-energy portion of Born-Mayer interaction, a value about half as large was reported in ref . 28 .

(13a)
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Eq. (12) is a system of algebraic equations that splits up into separat e

subsystems, one for each target element j . All the subsystems have the same

determinant, but different inhomogeneities on the right-hand side .

In accordance with eq . (6), we are looking for solutions in the regio n
E» E 0 , i .e . large values of u. The procedure of determining asymptoti c

solutions is a generalization of the one described in detail in refs . 1,33,34 .

The main problem is to find the highest value of s, say s = sV) where

Gid (s) has a single pole . Then, GiJ (E, Eo) has the asymptotic form

Gi, (E, Eo) Ais . (E/Eo ) L for E »» Eo

	

(16)

where A if is the residuum of Gil(s) at s = sV ) . Some properties of the asympto-
tic expansion will be analysed in the following in the special case of a binary

target . At present we discuss, somewhat loosely, some simple consequence s

of eq. (12) .

Poles of Gij(s) may occur at the zeros of the determinant of eq . (12) an d

the poles of the subdeterminants . According to (13a, b) poles of subdetermi-

nants might occur at s = m i , and at some discrete negative values of s .
The determinant, on the other hand, is expected to have a zero at s
as in the monatomic case . Indeed, from (13b), it follows that

1, just

eik(1) = 1 . (17 )

With this, the determinant achieves the for m

D(1) = Det{åiik>_:ßii(1) - ßîk(1)} (18)

which is obviously zero. Moreover, it follows from (12) that

(19)Gij(s)

	

G k) (s)

	

for

	

s

	

1

or, from (16), Ai; = Ake . This proves eq . (6) . The remaining problem is t o

calculate gj(E o ) . This will be done by evaluating determinants .
In appendix A we prove that s = 1 is the highest singularity for a

general polyatomic target . This is not surprising from a physical point o f

view. It is evident already from eels . (1) and (2) that energy conservation in
binary collisions requires solutions that are asymptotically (E » Eo) linear

in energy, and independent of the bombarding particle .



4. The Binary Case . I

With the abbreviation

(20)

the system of equations (12) has the solution s

Dii)
Gu(s) - BiD(2) ; G 21( s ) = - Bi

DitiD(2)

where

D(2) - [ß11(e11 - 1 ) +

/ß

ß12 e 121 [1322( e22 - 1 ) + ß21 e 21 - 1102 1

D11 - ß22(22 - 1 ) + (3212 1

D 1(2 )2 - + 13 21 '

For s = 4) = 1, and observing (17), we obtai n

Gufs)

	

G 21 (s)

	

-	 B1ß21( 1 )	 for s 1

	

(23a)
(s - 1)D' (l)

d
where D' (s) = ds D(s) .

Similarly, or by interchanging indices, we obtain

(21 )

(22a)

(22h)

(22c)

622(s)
~ 612(s) - 	 B2ß12( 1)

(s - 1)D ' (1)
for s 1

	

(23b)

Applying inverse Laplace Transform, we obtain asymptotic solutions

G 11(E) ~ G21(E) E B1ß21( 1 ) ;

E0 D (1)
or

E
G22(E) ^ G 12 (E)

~ Éa ~U ~i) ~ ; or

g1(Eo) = B1ß21( 1 )

EoD (1 )

B2/3 12( 1 )
92(Eo) = EoD'(1) •

(24a)

(24b)

These equations provide the connection with eq . (6) .

* We drop the index ( z ) from D ( z ) for the rest of this section .



If we take the ratio of the fluxes of moving atoms of the two species, th e
determinant and the ion energy drop out, hence '

1), G 11 (E )

	

v a G 21(E)

	

v o Gll (E)

	

v oG21(E)-
v o C-T1.2(E) ry v o G 12(E)

	

U 0 G 22 (E)

	

U 0 G22 (E)

-
Y21

E -2m4
C

E - (25)21
4

	

1 0a l 1 - m 2 al S21(Eo )
a2 y12 ml

E
1-2m

l
a2 S12(Eo )

where

C 12 01 - in l

S ie(E) =

	

0
(Yi1cE

Tdaik; ßik( l ) = akSik(E)Epmi-l ;

	

(26)

S fk(E) is the nuclear stopping cross section of an i-atom colliding with a
k-atom .

Next, we insert eq . (24a, b) into eq . (3), and evaluate Fo to the highest
power of ETE ° , i .e . the linear term . This yields, in the same notation a s
eq. (24),

F11(E) ~ F21(E) - E2
	 f~'21(1 ) (N1~~~)+13.0))

0

F22(E) - F12(E) -
E2

	 P12( 1 )022( 1 )~ß2l( 1 ))

0
From this we obtain the rati o

F11(E) a 1 ~21(Eo) a1 S11(Eo) +a 2 S12(EO )

F 22 (E ) a 2 S12(Eo) a 2S22(Eo) + a1S21(Eo )

where again eq. (26) has been used. Eqs . (25) and (28) show that in genera l

i) the ratio of the fluxes of moving 1-atoms to moving 2-atoms is propor-
tional to the ratio of the respective concentrations, but not nessecarily
identical with it, an d

ii) an even more pronounced deviation from stoichiometry is expecte d
in the ratio of the number of recoiling 1-atoms and recoiling 2-atoms ,
since the concentrations enter nonlinearly .

* We include the velocity vo in voGii(E, E 0 ) because of the index j in v o = V' 2E 0 /Mj . Note
that both in sputtering theory Es ) and in eq. (3) it is actually this product that is important.

(27a)

(27b)

(28 )
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5. The Ternary Case

We briefly mention the asymptotic solutions for the cas e
pound . From (12) we obtain .

D11~ E

Gll N G21 ~ G31 B1 D(3)' E O

Dg E

G12

ti

G22 N G32 N

B,
D(3)/ E O

D33 ) E
G13

ti
G23 G33 B3 Dc3>' Et,

where

D IT - ß21ß37 + ß21ß32 + 13 2313 3 1

D22) = cycl. perm .

D33> = cycl. perm.

dD(3)/

	

R,
-

ds

D(3)
(

S)Is = i - (ßll E 11 + ß12 E 12 + ß13 E 13) D11~ + Cycl . Penn- ,

	

(31 )

and the upper index (3) indicates the ternary case . Both Dik ) , Ec k , and fli k
are taken at s = 1 . The B ( are given in eq. (20). It is straightforward t o
determine relative magnitudes of the G ik from eqs. (29-31) .

By applying eq . (3) to the ternary case, we readily obtai n

	

E N11 D11) +ß21D 22)	 ß31 D33
Fll - F21 - F31 - E2

	

D(3) ,
0

of a ternary corn -

(29a)

(29b)

(29c)

(30a)

(30b)

(30e)

(32a)

Eß12 Dii)
F12 F22 F32 - E2

0

	+ß22D 22)+ß32D331
D (3„ (32b)

E13 b
1i

)
F13 ti F 23 ^' _E33

	

_
E 02

	+ß23D 22) +ß33D331
D(3)ß (32c)

Evaluation of G ik and Fik in terms of stopping powers can be made by us e
of eqs . (35) and (26) . We shall not go into any further details with the genera l
ternary case .
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6. The Binary Case. II

In this section we discuss in more detail some implications of the equa-

tions derived in sect . 4 for the binary case . For illustration we have evaluate d
numerically the solutions in a few specific cases .

Let us first consider the ratio between the slowing-down densities . Eq. (25 )
may be written

v0G1 al C21 X Eô(m ms )

v 0 G 2

	

a 2 C12

	

~

where the constant

-X
=

1 ml
ym, - m a

1-m2

is of the order of one (In view of eq . (6), we dropped the first index from
Gid) . For strictly stoichiometric behaviour, we would just have al/a2 on the
right-hand side of eq . (25a) . If m1 = m 2, the ratio (25a) depends on the
energy E0 , and in such a way that the fraction of moving atoms of the lighter
species increases in the upper parts of the energy spectrum . If m 1 = m2 = m,
(25a) reduces to

UDGI

	

al x-`21

	

c 1
7~12m

v 0 G 2

	

a 2 C 12

	

a2 11V11 1
!

according to eqs . (10a, b) . Then the deviation from stoichiometry does not
vary over the energy spectrum (for E0 <K E) and is determined solely by the
mass ratio and m. Since m > 0, the lighter species dominates at those energie s
where (25b) is valid .

The ratio between the recoil densities, eq. (28), is energy-independent
even for m 1 m 2i as may be seen by insertin g

Sik(E 0)

	

Cik y1-miEô_2mi

1 - Ini

into eq. (28) ,

F1 a 1
al • yml-1 . Ç11

+a2

C 12 al
Y

	

(28a)
F2 a2 m,-1

	

C 22 2
a 2 •y

	

•-+al
C z1

where again the first index was dropped from Fi s . Here the factor Y depends
on concentration, and its variation with a l and a2 determines the deviation

(25a)

(25b)



constituents, (28a )

(28b)

(28c)

from stoichiometry . For small amounts of one of th e

reduces to

al

	

yml-i(a2
<< 1 )

as G1 2

a,G_21y1-mE(al« 1 ) •
a 2 G 22

A useful dimensionless quantity in the calculation of the average numbe r

Ni of displaced i-atoms is the displacement effiency 33 ) Ki , defined by *

JE

	

E

Ni

	

d iFi
(E,

Eo) dEo

	

Ed i .
ai

.
Ki

E d , i is the displacement threshold energy for atoms of type i. In the mona-

tomic case one obtains 27 >

m
K

	

v(1) - 'tp (1 -
In) ,

6
i .e .0 <K<

2
for0 <<- nl<_ 1 .

For the numerical examples, we have chosen binary compounds o f

rather different masses : Tungsten Oxide (y = 0 .295), Uranium Carbid e

(y = 0.183), and Copper-Gold (y = 0 .738) . In the calculations we have use d

the two values of m, 0 .055, eq . (11d) and 0 .333, eq. (1 lb) . Both choice s
m, == m 2 and m, = in t have been considered. In the case of different m-values ,

in = 0 .333 has been used for the lighter element, and m = 0 .055 for th e

heavier one .

According to eq. (24), the slowing-down density Gi is determined by a n
equation of the form

Nvo
Gi

= E,o (mi - 1) 'A i ; Eo << E .
~p E

Figs. la and lb show the energy dependence of this quantity for W an d

O in W-O compounds, plotted for concentration 0, 1/4, 1/2, 3/4 and 1, i n

* The present model for the displacement number is oversimplified, since it does not tak e
into account replacement events . Therefore, the displacement efficiency can become greater than
0 .5, contrary to the result of ref . 33 . Although replacements constitute another interesting aspec t
of collision cascades in polyatomic targets, we refrain from including them here, since the available
models seem to be even less quantitative than those for displacement . In particular, no experi-
mental data are known to us for replacement threshold energies for any system .

F l a 1 Sl, (E o )

F 2 a 2 S ,2(E o)

F, a, s21(Eo )

F 2 a 2 S22 (E0)

(33)

(34)

(35)
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Fig . 2 . Slowing-down densities GI and G2 of each of the two constituents of three binary com-
pounds, normalized to the values of the respective pure media, G, as a function of concentration .
The ratios Gi/G do not depend on spectral energy E0. In addition to the two combinations of
scattering parameters mi used in fig . 1, a third one with m l = mz = 0 .333 has been included fo r
illustration . Full-drawn and stipled lines refer to the heavy and light constituent, respectively .
Apart from a constant factor given by eq . (25a) or 25b), thin fulldrawn lines refer to stoichiometri c

variation .

Fig . 2a . Tungsten oxide . The two curves with m 0 > m w are presumed to come closest to reality.
Fig . 2b . Uranium carbide . The two curves with mu > mu are presumed to come closest to reality.
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Fig. 2c. Copper-gold alloy . Only the two curves with mutt = m Au have been included.
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case of mo > mw and mo = mw, respectively . The variation of the expressio n
(35) at fixed energy with composition is illustrated in fig. 2a. We notice tha t
the variation of G-i near a i = 1 is much weaker than the stoichiometric
variation. The qualitative conclusion appears justified that the total numbe r
of moving matrix atoms in a nearly pure target is almost unaffected b y
alloying impurities of widely different mass .

This effect can be understood qualitatively . The slowing-down density i s
determined both by the number of atoms set in motion and the time fo r
slowing-down. Alloying an impurity of very different mass causes a decreas e
in the former quantity (the recoil density), but an increase in the latter .

As might be expected, this effect is even more pronounced in the case o f
U-C (figs . 1c + d and 2b), and less pronounced in Cu-Au (figs . le and 2c) .

The recoil density, Fi , is determined by eqs . (27a, b) ,

1
-•Fi = Eo2 .Ci ; Eo <K E,

	

(36)

where Ci = ai -Ki . The variation of the expression (36) with recoil energy Eo
for W and 0 in W-0 compounds is shown in figs . 3a + b for mo > mw and
mo = mw, for concentration 0, 1/4, 1/2, 3/4 and 1 . For mo > mw, the heavier
component recoils preferentially . This arises from the sensitivity of the recoil
density to the steepness of the differential cross section2, 33), the latter being
greatest for the largest value of m according to eq . (9) .

The variation of the displacement efficiency Ki with concentration is
shown in fig . 4a . As one might expect, the displacement efficiency is almos t
independent of concentration in the vicinity of a i - 1 . When a i becomes
smaller, Ki drops gradually to a significantly lower value . The relatively low
displacement efficiency of impurities (a<< 1) is due to the comparatively
inefficient energy transfer in collisions with host atoms and the small chanc e
for impurity-impurity collisions . The same features are observed for U- C
and Cu-Au, see figs . 3c-e and 4b + c .

Figs . 5a-c contain the same information as fig. 4 . We have plotted the
factor Y in eq . (28a) as a function of concentration . This factor represents
the (concentration-dependent) deviation from stoichiometric behaviour o f
the recoil density . The upper and lower limits of Y are determined by eqs .
(28b, c) .

To make sure that our results do not hinge heavily on the detailed assump -
tions concerning the displacement process, we estimated in appendix B
the influence of an atomic binding energy, and especially the significance o f
different binding energies of the two constituents, on the slowing-dow n
density .
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Fig . 3a . Tungsten oxide, mo > mw .
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Fig . 6 . The poles s i of the Laplace transform G(s) for a monatomic medium, as a function of m .
The principal pole at s(°) = 1 has been omitted .

7. Range of Validity of the Asymptotic Solution s

We should like to estimate the range of validity of the asymptotic solution s
(24) and (27) . This is conveniently done by finding the correction terms in

the asymptotic expansions, i .e . determining residues at subsequent poles o f
the Laplace Transforms, G 1(s) and Pij(s) .

In the case of a monatomic target, this problem has been discussed i n

ref . 34, in which it is shown that the higher-ordcr poles, s (1) , s (2 ), . . ., etc . obey
the inequalities -i + in < s (1) < -i + 1 . The positions of the poles s(1 ), . . .,s( 5) ,

in the monatomic case, for 0 < m < 1, are plotted in fig . 6 . No poles ar e

found in the interval 0 < s < 1 . Therefore, for a monatomic target th e

asymptotic solution has a remarkably large range of validity l ) .
In the binary or polyatomic case, the situation is substantially mor e

complicated because eq . (6) only holds for the principal term in the asymp-

totic expansion. The subsequent terms do not only depend on the target (j)
but also explicitly on the projectile (i) . For the sake of simplicity we restric t

the discussion to binary targets and analyse the possibility of poles ocurring
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between zero and s = 1 . However, since eq . (6) is not generally valid w e

want to treat the problem for an arbitrary projectile, 3 . This is conveniently

done by considering a ternary target (sect . 5) with species 1, 2, 3, but a 3 = O .
The complete set of solutions of eq . (12) is then given by :

G13- 0

G23 - 0
Jr

N
/~

	

f~
G33 = B3/

[J~31//
8 31 + N32 E 32 ]

B2 . ß 1~712 -

	

2/ D ( 2)

	

..
G22 - B2

	

qq
Ell1)

/~

+ ß12 E 12}
/

I B ( 2 )

G32 =
B 2 ''(P1213 31 + ß32[ 19 11( 8 11+1 ) + 18 12E 121 }l{D ( 2) [/331 E 37. + ß

//3 32 832 4

Gll = B 1 ' 022(8 22 +1 ) +
//~
ß21 8 21}I D ( 2 )

G21 ° B1-ß211D ( 2 )

G31 - B 1 . {ß21ß32 + 133422(8 22 1 ) + ß21E21}Il-D(2) [N32E32 + 13 318 31 ] I

where we have used the notation of sect . 4. Of these equations, only the si x

lower ones are of interest here . Furthermore, because of symmetry we ma y

concentrate on the lower three equations . The poles and residues of O1i ,
021 and 031 determine the number of moving 1-atoms when particles of typ e
1, 2, or 3 impinge on a 1-2 compound .Writing G 31 in the form

	 /3 32
G21 + //

	

ß3l

	

Gi i
/332 8 32 + ß31 8 31

	

/332832 + ß31 E 3 1

facilitates the discussion .

From eq. (13a) it follows that P ik ' = Go for s = mk ; otherwise ßz i i s
finite and nonzero . According to (13b), the product ßzkeik is zero for s = 0 ,

positive for s > 0 and negative for s < O . Therefore, poles of G 31 may only
occur at

(i) s = 0 ,

(ii) s = mi or m 2, and

(iii) the poles of

	

and G 21 .

For s = 0, insertion of eqs . (13a) and (13b) into (37) shows that Gii and

Û2i have finite values at this point ; G31 has a pole at zero because of the
vanishing factor ß32 E 32 + ß31 E 31 in the denominator .

The occurrence of poles at s = mi or m2 depends on whether or not som e
(or all) of the parameters m 1, m2, and m3 are identical . It can happen that

G31 has a pole here, but not G il or G 21 .

(37 )

(38)



Fig . 7 . Deviation of the slowing-down density G11(E,Eo) from asymptotic behaviour. We plo t
reciprocal Laplace transforms G 11, Gil , and G31 versus s . For details see text .

Fig. 7a. Moving oxygen atoms in WO3
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The number and distribution of poles in the remaining part of the inter -

val will depend on the parameters a i , Cik, and mi .

We have analysed numerically the case of a W-0 compound bombarde d

with W, 0 and Xe . The positions and residues of the poles of GLI, G21 and G3 1
were determined, and their variation with concentration and choice o f

scattering parameters was investigated . Since the parameters are chosen s o
as to give a good description at low spectral energies, i .e . near s = 1, caution
is required in drawing detailed physical conclusions from the correctio n
terms to asymptotic behaviour .

An example is given in fig . 7a and b. For clarity, we have plotted th e

reciprocal values of GLl, G 21 and G 31 versus s, so that the poles of the G-func-
tions show up as zeros, and the residues may be determined from the invers e

slope of the 1/6' - curve .

Fig. 7a shows the 1/(71- functions for oxygen in a WO 3 target. bombarde d
with oxygen, tungsten, or xenon, corresponding to Gil, G21 or G81, respectively .

'We first note that all three curves pass through s = 1 with identical slopes, a s

it should be expected from the results of sect . 3 . Second, we notice that 1/6 3 1
has the expected zero at s = 0, and the other two curves do not .

Two additional zeros occur at s 2 - 0.17 and s t. - 0 .46 ; these are common
for all three curves . Thus, the second term in the asymptotic expansio n

varies approximately as 1/E/Eo in all three cases . As may be seen from th e

figure, the residues at the second pole s t. are comparable in magnitude to th e

residuum at s = 1 .

Fig. 7b shows the corresponding curves for tungsten in WO 3 , bombarded

with tungsten oxygen (6 21) or xenon (G 31) . A very similar behaviou r

is observed, except that an additional zero occurs at s = 0 .333 for 1 /G 31 .
Again, we observe that the second term in the expansion varies approximately

as i/E/Eo .
We conclude that the occurence of poles in the interval between zero an d

one narrows the range of validity of the asymptotic solution as compared t o

the monatomic case . As a rule-of-thumb the second term varies approxima-

tely as VE/E, as a function of energy .



8. Discussion

The major uncertain quantity entering the theory is the constant C in th e
power cross section (9), in particular its value and mass dependence for
m < 1/4, eq. (10b) . Therefore, the results presented in fig . 1 for the slowing-
down density can at most be considered qualitative . The other graphs, i n
particular figs . 2 and 4, show the slowing-down and recoil densities in a
suitably normalized form so that the inherent error is minimized .

Consider the recoil density first, and its connection with the number o f
displaced atoms . Previous work in this field 21 - 23) concentrated on the tota l
number of displacements created in a compound target by a primary particle .
The displacement model of KI cHIN & PEASE 36 j was usually adopted as well
as a strongly simplified model for the scattering cross sections . Baroody 21 ) in
particular assumed a fixed concentration, a l = a 2 = The main uncertainty
was the displacement model which, for a binary target, contains at least four ,
perhaps six, essentially unknown parameters, i .e . two displacement thres-
holds, two replacement energies and, perhaps, two lattice binding energies .
In most applications, the displacement and replacement energies were al l
set equal (" =Ed"), and the binding energies were either ignored or set equa l
Ed , too .

In the present calculations, we allowed for more realistic scattering cros s
sections, in particular for different energy dependences of the various cross
sections involved. Except for appendix B we ignored binding energies, but
eliminate a substantial part of the remaining uncertainty by plotting individua l
displacement efficiencies rather than defect numbers .

Fig. 4b shows that, for a uranium target with a few per cent alloyed car -
bon, the displacement efficiency of uranium atoms is six times as great as
that of carbon atoms . In addition, when the carbon content increases fro m
0 to 40 per cent, the displacement efficiency for uranium remains essentiall y
unchanged while the one for carbon increases by a factor of three, approxi-
mately linear with concentration. To our knowledge, such pronounce d
deviations from stoichiometric behaviour have not been predicted previously .

We are not aware of any experimental results that could be analyse d
directly in terms of a graph like fig . 4. Experiments to check these prediction s
(e .g. by channeling 37)) seem most promising when dealing with low, bu t
varying concentration of one of the two species, since then the displacemen t
threshold energies may be considered with reasonable confidence to be
independent of concentration .

3*
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Obviously, fig. 4 predicts a pronounced difference in the behaviour o f
dopant atoms under irradiation between the case of bombarding electron s
(where single defects dominate) and bombarding heavy ions or fast neutron s
(where displacement cascades dominate) .

Let us now go over to sputtering. According to ref. 28, the flux of sputtered
atoms is determined b y

i) the slowing-down density,
ii) the spatial distribution of deposited energy ,

iii) the surface binding energy .

The two key problems in the sputtering of compound targets ar e

a) how is the total sputtering yield related to the sputtering yields of th e
respective pure targets, an d

b) what is the composition of the sputtered material .

We have to note that any deviation from stoichiometric sputtering wil l
cause a change in composition of the remaining target material, such that th e
target is no longer homogeneous . Homogeneity, however, is a vital assump-
tion entering our basic equations . Thus, the present theory can at most b e
applied to low-dose sputtering experiments, i .e ., experiments involving
sputtering of, say, one monolayer of target atoms . Such experiments hav e
been performed on pure metallic targets (e .g . ANDERSEN & BAY 13 )) but, with
one exception (see below) not on compound targets . The following con -
siderations will, therefore, be kept brief and qualitative .

It is appropriate to distinguish between sputtering experiments performe d
at low and high bombarding energy, the former category referring to energies
around or below 1 keV . Pronounced depletion of surface layers due to
preferential sputtering has been reported in low-energy sputtering experi-
ments (e .g . ASADA et al . 4), ANDERSON ') , TARNG et al . 9) ) . Because of the small
penetration depth of low-energy ions, only a very shallow surface layer ca n
be involved in the sputtering process proper . The occurrence of a massiv e
depleted layer is, therefore, indicative of a competing migrational process .
Such a process may also be a disturbing factor in high-energy sputtering ex-
periments, and its influence needs to be checked by, e .g., variation of the
target temperature during bombardment .

A number of higher-energy sputtering experiments dealt with the Cu 3 Au
system4-s, 8) . In high-dose experiments a gold-rich surface layer was obser-
ved 5 , 6 ) . However, quantitative data on sputtering yields were only determine d
by OGAR et al . 8 ) . No bombardment doses were given, but since the sputtered
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material was detected by neutron activation, one may assume that only few

atomic layers were removed. The copper : gold sputtering ratio for Ar+ and

Hg+ bombardment in the 10 keV region was observed to be slightly smalle r

than 3 :1 . The authors proposed preferred migration of gold atoms to th e

surface as an explanation . Since the observed deviation from stoichiomerr y

is rather small (`„ 10 °/ 0) it does not appear feasible to make a definit e

statement on the actual source of nonstoichiometry . The slowing-down den-
sities excluding bulk binding forces behave in such a way that preferentia l

motion of copper atoms would be predicted (eq . 25b). However, inclusion o f

binding forces produces a shift in the right direction, the magnitude being

uncertain (appendix B) . Inclusion of, e .g ., focused collision sequences in th e

sputtering mechanism would seem to enhance the contribution of coppe r
atoms rather than decrease it . Finally, if gold atoms should migrate indee d
preferentially, one might also have to consider the possibility of a lower

surface binding energy of gold atoms .

OGAR et al . also determined absolute partial sputtering yields for copper

and gold atoms, respectively . They report a partial sputtering yield for copper

from the Cu 3Au alloy that is about twice as large as the sputtering yield o f

pure copper under equivalent bombardment conditions . It follows from fig .

2c that such a pronounced effect cannot originate in a drastic change of the

slowing-down density as compared to the pure target . Neither does it appear
feasible that the surface binding energy of copper atoms differs by a factor o f

two from the one valid for a pure copper target . We assert the change in

sputtering yield to be essentially due to the different spatial distribution o f

deposited energy . Indeed, alloying heavy gold atoms to a copper target causes

a pronounced decrease in ion penetration due to increased importance o f
large-angle scattering" 20) and, therefore, increased energy deposition at the

target surface . A quantitative evaluation is not given here since the measure-

ments of OGAR et al . were done on Cu 3Au single crystals while existing cal-
culations refer to random targets .

Pronounced deviations are expected from stoichiometric sputtering i n

metallic alloys of very different masses . Figs. 2a and 2b indicate that the

fluxes of both the heavy and the light constituent increase as compared to th e
pure targets, in terms of the respective concentrations . The flux of heavy

atoms increases most pronouncedly . However, the ratio of fluxes at any

given concentration behaves in a more complicated manner . Figs. la and

lc show that there may be different energy dependences, and comparing, e .g . ,
figs . la and lb, one may notice that preferential sputtering of the heavy con-

stituent may be predicted from fig . la, and the light one from fig . lb . In case
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of WO 3, our preference of the choice of potential constants is such as t o
predict preferential sputtering of W . This preference is, however, not s o
strong as the corresponding one with the uranium carbide system .

Systematic investigations of the sputtering of oxides 10) revealed preferen-
tial sputtering of oxygen in many cases . Consistently, oxygen happened to be
the lighter constituent . The analysis indicated a contribution of chemical an d
local-heating effects . From the point of view of the present investigation, i t
would be of considerable interest to have similar experimental results taken
at low bombardment doses .
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Appendix A

We want to show that the determinant of the system of equations (12 )
has no zero for s > 1 . First, it follows from eqs . (13) and (14) that Pik > 0
and s ik > 1 fors > 1 .

Now, let P = (P ik ) be an arbitrary nxn matrix with positive elements ,
Pik > 0, and let sik, where i, k = 1, . . ., n be a set of n 2 arbitrary elements .
We define another nxn matrix 4 = (Aik) by

d ik

	

aik

	

Pil Ei9
7

and will now prove the following theorem for the determinant

det(A-P) _

1311( 811 - 1) + 1312812 + . . . + ß112 8112

	

- P i n

- N21

	

/322( 8 22 - 1) + /321821 + . . + IN 2n s 2n

	

- 13 212

- fin'

	

Pn2 . . . Pnn(Enn - 1 + /3niEni + .

	

. + Pn n_1 8nn_i



If all elements Eik > 1 then det (d - fi) > O.

The theorem is proved by induction, increasing the dimension of the

matrix from n-1 to n .

i) The case n = 1 is trivial : det (ii - fi) = ßn(6 11 - 1 )

Since 13 11 > 0 and e ll > 1, det(d - .ß) > 0 .

ii) The general step n - 1 --> n : We first note that if all Eik = 1 then

det(4 - ß) = 0, because the sum of the elements in each row is zero. It is ,

therefore, sufficient to show that for E ik > 1, det(4 - ß) is a strictly increasin g

function of all the E ik , or :

a
det(A - ß) > 0 for all e i• k' > 1 .

For reasons of symmetry it is sufficient to consider the case i = 1 . We get

by differentation :

811(611 - 1) -1- ßl2 612 + . . . + ßin Ein - 812

	

1

- 1 3 21 822( 622 - 1 ) + 821 621 + . . . + ß2n 6 2n 2

aE ik

= Pik

- ßn1 ßn2 I nn( Enn - 1) + ßn1 Eni + . . . + finn_ i 6nn- 1

- 13 12
- ß1 n

1322( 6 22 - 1 ) + 1321 621 + . . + 82n 8 2n

	

- ß2n

0

	

- ßn 2 ßnn(enn - 1) + fini en]. + . . . + ßnn_i 6 nn_ i

13 22 ( 622 - 1 ) + 13 21 6 21 + . . . + ß2n 8 2n

	

- ß2n

- ßn 2 ßnn(Enn - 1) + ßn 1 Eni + + ßnn-i E nn- 1

The last determinant is a (n-1) x (n-1) determinant, but in a form not

suited for direct induction . However, the matrix can be brought into a

suitable form by defining new quantities Éii and ßii so that for i = 2, . . ., n

ß1 k
0

a
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1) ß«(e - 1) + ßi1eil =

	

(sii - 1 )

2) > 0

3) Éii > 1

which is evidently possible . For i + k we define Éia. = six and ßix = ßix . Then

a Elk

ß22(E22 ) + ß23 23 +

	

. + ß 2n E o n

a
det (4ß) =

ß2 n

ß1k

ßn2 .

	

ßnn( É nn -1) +ßn2 E ne +

	

+ ßnn-1 E nn- 1

Here fl ik > 0 and the determinant is positive too, since it is a (n-1) X (n-1)-

determinant of the type considered .
This proves the theorem .

Appendix B: Effect of Atomic Binding

We want to indicate briefly the effect of atomic binding on energy dissipa-

tion. Some results of similar calculations for monatomic targets have been

reported previouslyl, 27, 20yet without derivation . A detailed discussio n

will be given in a forthcoming paper 35>, but the main steps - for a polya-

tomic medium - will be sketched here .

We only consider the slowing-down density G . If we assume that an

atom of type i loses a binding energy Vi upon recoiling from its rest position ,

the only necessary change in eq . (2a) is replacement of the recoil ter m

Gxj(T, Eo) by

Gkj(T - Vk,Eo ),

	

(B 1)

while the boundary condition (4) remains unchanged .

In the evaluation for power scattering, eq . (10), the Laplace transforma-

tion is carried out conveniently by means of expansion in powers of Vx/Eo .
Then, the recoil term GIcj(s) in eq. (12) is replaced by the expressio n

! 7 1 ) (Vk/Eo) y k7 (S + ti) .
v=o

(B 2)

The resulting system of equations can be solved by perturbation expansion,



1Vr . 41.

Gk7 (s) =

	

Gkj) ( s ) ,
v

where GZ)(s) contains v factors of the set (V1 , V2 , . . .) . The zero-order
term Gk°)(s) is identical with the one calculated in sect . 3, and the first-order
term follows from the equation s

G
Vil)

( s) Pik(s) Pik(s)

	

flik (S) Gkj) (s) _
k

	

k

	

(B 4)
= - (s + 1)(Vk/Eo)ßik(s) Gk°> (s + 1) .

k

Only the inhomogeneity on the right-hand side differs from eq. (12) . In parti-
cular, the highest poles of 6W(s) are determined by the zeros of the deter -
minant D(s), just as those of GPjl(s) . The asymptotic solution Gg ) (E,Eo)
for E»»E 0 is, therefore, proportional to E, and the same is true for al l
higher orders GIP (E, Eo) . Note especially that the term on the right-hand
side of (B4) is regular for s > m i . Then, with the notations of sect . 4, the
asymptotic solutions (s = 1) of (B 4) in the binary case can be written i n
the form

Gii GiT Gzi/ G z
02

- (2/D(2)(2)){(ßh(1) + ß12( 1 ))(Vî/Eo) X

	

B 5 )
[(ß22( 2) - 1)ß22(2) + ß21(2)ß21(2) + (ß12(1)/ß21(1)) x

(ß21( 1 ) + ß22( 1)) ( V2/Eo) ß21( 2)} ,

where D(2) (s), e ik(s), and ßik(s) are defined in eqs . (13a, b) and (22a) .
In case of a monatomic medium (i .e. either for M1 - M 2 and arbitrary

al or for a, - 1 and arbitrary 12 ß11h), eq. (B5) reduces to the previously
quoted result27, 2s )

Gii
/Gro) - (2 - m 1) V1 /E o

	

for 1171 = M 2

	

(B 6 )

as it should be .

We have evaluated eq. (B5) numerically for the tungsten-oxygen system .
We write (B5) in the for m

Gii/Gii = G2î /Gf- - R1( V1/Eo) - R2( V2/Eo)

	

(B 7 )

and plot R i and R2 in fig . 8a for oxygen and in fig . 8b for tungsten. It is seen
that R 2 is vanishingly small in both cases . Ri has its greatest value for the
pure materials and drops off rapidly with increasing concentration of the
alloyed impurity . This is particularly so in case of fig . 8b .

(B 3)
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Fig . 8 . First-order corrections to the slowing-down density due to atomic binding, defined i n
eq. (B7) .

Fig . 8a . Oxygen in lig-0 compound (Index (1) refers to oxygen) . Note the different scales fo r
R l and R 2 .

Fig . 8h . Tungsten in W-0 compound (Index (1) refers to tungsten) . Note the different scales fo r
R I and _R 2 .
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Fig. 8c. Equal-mass compound . Same scale for RI and R2 .
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Figs . 8a and 8b indicate that the dominating contribution to eq . (B7) i s

due to the fact that moving atoms cannot be observed at their initial recoi l

energy, but at most at the recoil energy minus their respective binding energy .

The loss of energy during recoiling of former generations of atoms in th e

cascade appears to be of minor significance for the slowing-down density .

Fig. 8c shows a similar graph for an equal-mass compound . Because of
the possibility of complete exchange of energy between collision partners 1

and 2, the coefficient R 2 in (B7) becomes significant, though still smaller

than R 1 .

Figs . 8a-c are representative for most situations of practical interest .

We conclude that the influence of atomic binding on the slowing-down densit y

is essential only for nearly pure materials in case of very different masses, an d
roughly independent of concentration in case of nearly equal masses . The

correction cannot exceed that of the pure material, except when the bindin g
energies themselves undergo substantial changes due to the presence of the

alloyed material .

It follows from (B7) that the influence of atomic binding is most pro-

nounced near threshold (E 0 -. V1 ) . In radiation damage one often meets a

situation where Ed,i »Vii so that the correction is unappreciable at all
energies of practical interest . Therefore, we only evaluated the correction i n
case of the slowing-down density . In sputtering, the threshold energy o f

interest is the surface binding energy, which may well be comparable t o

VI, so that a correction may be necessary in the lowest parts of the spectrum .
Figs . 8a, b indicate that for the W-0 system at intermediate concentrations ,
the correction is larger for oxygen than for tungsten . Since the sign is negative

(eq. B7), the corrections tend to move the deviation from stoichiometric
behaviour towards dominance of the heavy species in the particle flux .
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