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Synopsis

It is now generally believed that Einstein's beautiful theory of gravitation under special cir-
cumstances leads to inconsistent results . In fact, according to this theory a well-defined physical
system may after a finite time pass over into an unphysical state, where the metric is singular
and consequently the notions of space and time lose their physical meaning . This inconsistenc y
calls for a generalized theory of gravitation for macroscopic matters which is free of singularitie s
and at the same time retains all the satisfactory features of Einstein ' s theory . It is shown that
such a generalization may possibly be obtained by assuming that the fundamental gravitationa l
variables are, not the metric tensor, but the components of a tetrad field from which the metri c
of space-time can be derived uniquely . In a tetrad theory of gravitation the basic principles o f
Einstein's theory are still valid exactly, first of all the principle of general relativity, the principl e
of equivalence, and the fusion of gravity and mechanics . Such a theory also leads to a more
satisfactory solution of the energy problem .
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1 . Statement of the Proble m

During the last two decades all the effects predicted by Einstein 's theory
of general relativity and gravitation (EGRG) have been experimentall y
verified with a reasonably high degree of accuracy . It is true that these test s
are concerned with cases only where the gravitational field is comparativel y
weak ; but the simplicity and generality of the principles underlying the
theory as well as its intrinsic consistency and cogency made it reasonabl e
to assume that the theory be valid for stronger fields also .

However, at the same time investigations concerning the stability of larg e
amounts of mass led to strange results which implied a serious crisis fo r
EGRG, or for physics itself if this theory is taken for gospel truth . In fact it
was shown]) that a sufficiently large amount of matter according to EGR G
will undergo a steady contraction under the influence of its own gravitationa l
field. After a finite time as measured on a standard clock following th e
matter, the system is engulfed in a ` black hole ' from which no message can
be sent into the outside world, and after a further very short time the system
collapses into a singularity, where not only the mass density is infinite, but
where the space-time metric itself becomes singular .

Thus, according to Einstein's theory a well-defined physical system ma y
after a finite time pass over into an unphysical state, where the notions o f
space and time become meaningless . Since these notions enter in an essentia l
way in the formulation of all physical laws this means the breakdown o f
physics ; for one cannot know what will come out of a singularity, and it i s
then not possible any more to predict the future .

For a long time many physicists (including myself) did not believe tha t
Einstein ' s otherwise so usccessful theory had such disastrous consequences2) ;
but by now there seems to be a consensus of opinion that these space-tim e
singularities are inevitable, whenever the energy-momentum tensor, which
in Einstein's theory represents the source of the gravitational field, satisfie s
certain physically reasonable conditions . Some physicists have tried to main-
tain that the situation is not so bad ; for the final collapse of the system int o
the singularity is preceded by its passage through the Schwarzschuld wall
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(the event horizon) that delimits the black hole, and in this state no light o r
any other signal from the system can penetrate into the outside world, s o
that the final collapse is totally unobservable from outside . Moreover, an
observer at a constant distance r outside the Schwarzschild wall with radius
a will strictly speaking never experience the formation of the black hole ; for
measured on a standard clock at rest at constant r > a the formation of a
black hole will take an infinite time, in contrast to the finite time as measure d
by a standard clock following the matter . (An extreme example of the rela-
tivity of time.) However, this attempt of explaining away the difficulty is not
very satisfactory . What about observers that are sitting on the collapsing
matter, should the laws of physics not be valid for them? Was it not just on e
of the main requirements of general relativity that these laws should be o f
the same form for arbitrarily moving observers ?

Other physicists hope that a quantization of the metric field along the
lines followed in quantum electrodynamics could prevent the collapse into
the singularity, similarly as the introduction of Planck's quantum of actio n
into mechanics and electrodynamics prevents the collapse of the Rutherfor d
model of the atom. Indeed it would seem reasonable to expect quantu m
gravitational effects to be important for the very strong fields in the smal l
regions of space-time in the vicinity of a singularity . However, in the firs t
place it does not seem possible to carry through the quantization progra m
for the gravitational field along the same lines as in quantum electrodyna-
mics, because the non-linear gravitational field of general relativity is bas-
ically non-renormalizable . Moreover the root of the trouble does not seem
to lie exclusively in the very small regions near the singularity, but rather i n
the whole usually macroscopic domain of the black hole .

In a number of interesting papers Hawking 3), Wald4) and Parker 5) have
shown that black holes create and emit particles at a steady rate . It is main-
tained that this radiation will cause the black hole to lose mass and even-
tually to disappear, leaving a naked singularity behind . In this situation ther e
is a basic limitation on our ability to predict the future, which Hawking 6 )
has formulated in a new physical principle-the randomicity principle .
According to this principle all configurations for particles emitted from a
black hole singularity compatible with the external constraints are equall y
probable . This means that a complete set of data on a space-like surface i s
not sufficient in general to determine with certainty the behaviour of a sys-
tem, since information may disappear into or suddenly appear from a hol e
singularity .

The randomicity principle implies a much more radical departure from
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the deterministic description of classical physics than that which was brough t
about by the principles of quantum mechanics . In the latter theory it was

recognized that the deterministic Newtonian equations of mechanics coul d
not be used to predict the motion of an electron exactly, because this would
presuppose that we can know the initial position and momentum of the elec-
tron exactly, which is impossible according to Heisenberg's uncertainty prin-
ciple . On the other hand, the randomicity principle claims that the futur e

state in certain cases may be undetermined even if the initial state is well-
defined, which would make physics truly indeterministic .

This is such a serious departure from the philosophy, which has been th e
mainstay of physics since Galileo, that many physicists will ask if this step
is really necessary. Could it not be that Einstein's classical theory of gravita-
tion, on which Hawking's conclusions are based, breaks down in the case o f
very strong gravitational fields . After all the theory has been experimentally
verified for comparatively weak fields only, and surely Einstein's theory lik e
all other theories must be expected to have a limited domain of appli-
cability. In fact, in the past the occurrence of essential singularities in a
physical theory has usually been taken as a sign that the theory has bee n
applied in a region that lies outside its domain of applicability .

As an example let us recall the situation concerning the black body radia-
tion which caused Max Planck so much trouble around 1900. If one applies
the laws of classical physics in calculating the energy density of the radiatio n
inside a cavity in thermal equilibrium, one obtains the formula of Rayleigh-
Jeans, according to which the energy density per unit frequency interval i s
proportional to the square of the frequency v . Thus the total energy density,
obtained by integrating over all v, is infinite which obviously is meaningless .
This " ultra-violet catastrophe" indicates that we have applied the laws o f
classical physics to a phenomenon that lies outside their domain of appli-
cability . Using instead the laws of quantum physics, that are valid also fo r
large v, we are led to Planck's formula for the energy density which gives
finite results .

Similarly one would be inclined to think that the occurrence of essentia l
singularities in Einstein's theory indicates that this theory breaks down i n
the case of very strong gravitational fields-a thought that was not unfamiliar
to Einstein himself? ) . This point of view is supported by the circumstance tha t
EGRG actually ceases to be a physical theory connecting measurable phys-
ical quantities already before the system passes into the singularity. In order
to measure the metric, for instance, we need an instrument which measures
the proper time, i .e . a physical clock which shows the saine time as the
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ideal standard clocks with which one operates in general relativity 8 ) . It i s
well-known that an oscillatory system with atomic frequency represents an ex-
tremely good standard clock in ordinary gravitational fields. However, as wa s
shown in a recent paper s) any such clock ceases to give the correct proper
time when approaching and before actually reaching a singularity . For thi s
reason we concluded that the proper time and therefore also the metric itsel f

lose their physical meaning already somewhat outside the singularities in

question .
Under these circumstances it seems imperative to investigate the possi-

bility of constructing a theory of gravitation for macroscopic matter that i s
free of singularities and at the same time retains all the satisfactory features

of EGRG. According to the preceding discussion this would presumably hav e
to be a theory in which there are no black holes and which gives the sam e
results as Einstein 's theory at least for weak fields up to the second order o f
approximation. However we would have to require more than just that ; for
there can be no question of returning to the ideas prevailing in physic s
before 1915 . A number of the principles on which Einstein based his theor y
must be regarded as irrevocable .

In the following we have listed the most fundamental assumptions an d
properties of EGRG which it would be desirable to retain in a generalize d
theory :

A . Space-time is a manifold with a pseudo-Riemannian metric . The metric
tensor gik is a physical quantity that can be measured in principle by mean s

of standard clocks, and the determinant g = det (gik) is everywhere negative :

g < 0 .

	

(1 .1 )

All physical laws are expressed by equations that are covariant or form-inva-
riant under arbitrary transformations of the space-time coordinates .

In these equations the measurable quantities gik enter in an essential way
along with the other physical quantities that describe the phenomena in
question . The form-invariance of the equations is the mathematical expres-
sion of the general principle of relativity, according to which the funda-
mental laws of nature, obtained by experiments, are of the same form ir -
respective of the state of motion of the observers . Thus, for the first time i n
the history of physics a given set of phenomena is described by a uniquely
determined set of equations . This inalienable property can be regarded a s
the crowning touch of a long development of physics from Aristotle over
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Galileo and Newton to Einstein-a development that is characterized by a
constantly increasing symmetry or form-invariance of the laws of nature
under ever wider groups of transformations .

B. Another precious acquisition of EGRG is the fusion of gravitation and me-
chanics . Einstein 's gravitational field equations do not only determine the gra-
vitational field for a given matter distribution, but also the motion of the mat -
ter source is determined by these equations : the mechanical equations of mo-
tion are consequences of the field equations .

For incoherent matter the equations of motion of an infinitesimal piec e
of matter following from the field equations are identical with the equation s
of motion of a freely falling test particle .

C. A basic assumption in EGRG is the equivalence principle, according t o
which the effects of a gravitational field can be 'transformed away' in an
infinitesimal region around a given event point P by introducing a system of
coordinates that is geodesic at P . Moreover, if this system is locally Lorentzian ,
all the physical laws at P are of the same form as in special relativity .

As an immediate consequence of this principle gravity must effect the
trajectories of all freely moving particles in exactly the same way inde -
pendently of the mass of the particle . In the case of the gravitational fiel d
of the earth this has now been verified experimentally to the very high ac -
curacy of 10-11 by Dicke10) and Bragnisky 11) and their co-workers . Thus at
least for weak gravitational fields this consequence of the principle of equiv-
alence can be regarded as well established .

For a matter system with the energy-momentum tensor Tik it follows
from the principle of equivalence that the `conservation laws' in a genera l
system of coordinates must be of the for m

Ti k ;k - 0

	

(1 .2)

where ;k denotes the covariant derivative formed by means of the Christoffe l
symbols corresponding to the metric tensor gik . Thus according to B the
equations (1 .2) must be consequences of the field equations .

Further it follows from C that the world line of a freely falling particl e
is a geodesic in the 4-space with the metric tensor gik .

D. The gravitational field equations are derivable from a Lagrangean prin-
ciple with a Lagrangean density which is a scalar density under the group o f
general coordinate transformations . In this way the general covariance an d
the compatibility of the field equations are secured .
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E. The field equations are partial differential equations in the field variable s
of not higher than the second order . This is essential for obtaining a Cauch y
problem of the usual kind .

F. In Einstein 's theory the gravitational field is assumed to be exhaustivel y
described by the metric tensor gu alone .

According to T) and F the gravitational part of the Lagrangean integral
is of the form f L it - g dx, where L is a scalar constructed from the gik and
their derivatives . Among the numerous independent scalars of this type, th e
curvature scalar R plays a special role . In fact, only with L = R do we get
field equations of the type E . Thus the assumptions A-F lead uniquely t o
EGRG, with the field equations

Gik = - x Tik .

	

(1 .3 )

The Einstein tensor Gik is a function of the gik and their space-time deriva-
tives up to the second order and Tik is the energy-momentum tensor of th e
matter source, which depends on gik as well as on the matter variables .
On account of the Bianchi identities the divergence of the Einstein tenso r
vanishes identically, i .e .

Gik ; k = O .

Hence the "conservation laws " (1 .2) are consequences of the field equation s
in accordance with B and C .

For incoherent matter we hav e

Ti k = ,uoUiUk ,

	

(1 .4)

where ,uo is the proper mass density and Ui is the four-velocity of the matter .
With this expression for the energy-momentum tensor the equations (1 .2)
yield

and
( ;uoUk) ;k = 0 (1 .5)

DUi

d-c
= Ui;kUk = O .

	

(1 .6)

(1 .5) expresses the conservation of proper mass, while (1 .6) shows that th e
world line of a particle in the incoherent matter is a geodesic, as it shoul d
be according to B and C since the particle is freely falling.

The remarkable wholeness of EGRG makes a generalization of this theor y
a difficult job. At least it would obviously be necessary to give up some o f
the assumptions contained in A-F . The properties A, B, D and E are so
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essential that they hardly can be abandoned and also C seems indispensable .

The equivalence principle is well established at least for weak gravitational

fields . Then remains a possible change of assumption F .

We have already mentioned that EGRG is the only possible theory if w e

assume that the gravitational field is described exclusively by the metri c

tensor gik . Therefore we shall tentatively assume that there are as yet un-

discovered properties of the gravitational field which cannot be described b y

the metric field only . Thus besides the gik, that certainly describe the field

correctly for weak fields, we introduce additional field variables that pla y

a role for strong gravitational fields only . The most primitive assumption is

that the new gravitational field variables are independent tensor fields em -

bedded in the Riemannian space with the metric gik . However, as we shal l

see now, this does not work .

Let us consider the case of an antisymmetric tensor field r which

satisfies equations of the same form as the Maxwell equations in genera l

relativity, but with the electric rest charge density replaced by the proper

mass density* multiplied by a new universal constant A ." Then the formalis m

is entirely analogous with the Einstein-Maxwell equations for electricall y

charged matter. The field equations for the metric tensor will be influence d

by the presence of the F-field since the energy-momentum tensor of the latte r

field will act as an extra source along with the energy-momentum tensor o f

the matter. From B it follows then that a "freely falling" particle of proper

mass mo is acted upon by a gravitational four-force

ki = Amorik Uk fc

	

(1 .7 )

on the analogy of the electromagnetic Lorentz force .

The extra gravitational force between two massive bodies following fro m

(1 .7) is repulsive, independent of the sign of A, and it increases indefinitel y

with decreasing distance, which might help preventing a gravitational col -

lapse. On the other hand, the presence of the force ki means that the equiv-

alence principle C is not exactly valid . In a locally Lorentzian system of

coordinates the gravitational field is not completely transformed away . How -

ever for sufficiently small A, C may still be approximately valid for wea k

gravitational fields .
The solutions of the metric field equations are in this case quite analogou s

with the solutions of the Einstein equations given by Reissner lm and Wey1 13 )

for the electromagnetic case . In the empty space outside a spherically sym-

* Strictly speaking this is possible for incoherent matter only . In the general case the proper
mass has to be replaced by the conserved "bare mass' .



10

	

Nr.13

metric distribution of matter we have therefore in a system of "curvatur e
coordinates " {r, 0, q), et} :

ds2 = adre +r2 (d0 2 +sin 2Odgo2) - bc2dt2

	

(1 .8)

1

	

a fi2b=-=1--+- .

	

(1 .9)
a

	

r r2

Here the constant a is approximately equal to the Schwarzschild radius, i .e .

xMc 2
oc

= 4n

	

(1 .10)

and for the constant ß we get approximately

2 2
ß2 = a2	

2 xc4 .

Instead of the single event horizon in the Schwarzschild solution, we hav e
in (1 .8) two horizons in general, viz . at the values of r for which b = 0 .
a and b will be everywhere positive only when ß2 /a2 > 4, or by (1 .11), when
the dimensionless quantity 2 2 /xc4 satisfies the conditio n

> 2

	

(1 .12)

in which case black holes would be excluded. However, in order to have
agreement with EGRG and the experiments in the case of weak fields i n
particular as regards the red shift effect, it can be shown that 2 2 /xc4 cannot
be larger than 0 .005, i .e .

ß.2 fxc4 « 1 .

	

(1 .13)

Since (1 .13) is in contradiction with (1 .12), the introduction of the P-fiel d
does not solve our problem.

Let us now consider the case where the extra gravitational field i s
described by a scalar 1I' with field equations

aVfri ;

	

Alto,

	

I 'a = - - .
8x z

Here again 2, denotes a coupling constant and ,uo is the proper mass density .
In this case we have instead of (1 .7) a gravitational four-force

with

2 2

xc 4

(1 .14)

II



k i = -2mo.Pi .

	

(1 .15)

The corresponding extra gravitational force between two particles is attrac-
tive and increases indefinitely with decreasing distance. Therefore there i s
not much hope of avoiding the singularities of EGRG in this way .

However, a suitable combination of the fields Pik and Pi seems to be
promising. If the coupling constants A of the two fields are equal we hav e
instead of (1 .7) and (1 .15)

	

ki = Amo(rikUk/c-Ti).

	

(1 .16)

In the Newtonian approximation, i .e . for weak fields and small velocities ,
it can be shown that the two terms in (1 .16) cancel, so that the theory is i n
accordance with the results of classical celestial mechanics, even if 22 /xc4
is of order 1 . The extra force on a particle at rest in the field of a spherical
distribution of matter vanishes for large distances r, but for decreasing r thi s
force is increasing and repulsive, so that there is a hope of avoiding col-
lapse with this combination of fields .

A closer investigation of the solution of the metric field equations in th e
static spherically symmetric case shows that the conditions for the absenc e
of event horizons is again approximately given by (1 .12), which in this case
is compatible with classical celestial mechanics in the Newtonian approx-
imation. However if we go to the next approximation and consider the peri-
helion precession of planets, the theory gives a formula for the precession
A that deviates from the expression ATE in Einstein 's theory by a factor
(1 - 22 /xc4) :

	

AT = A E(1 -22 /xc4) .

	

(1 .17 )

Thus even with the lowest value of 1 2 /xc4 compatible with (1 .12) we get a
value for the perihelion precession in distinct disagreement with the observa-
tions .

Another serious difficulty is the following fact . The four-force (1 .16) is
not a true mechanical force of the Minkowski type14), since

ki Ui = -Amol 'iUi = Imo
ddT

O . (1 .18)

This means that the proper mass mo of a particle is not constant in a gravita-
tional field . Indeed from the equations of motion of a freely falling particl e

DmoUi
= ki (1 .19)

dz
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we get

drno

	

1

	

A mo dT

dz

	

-
c2

Ic i Ui =

	

c 2 da

The solution of (1 .20) is
J:Tf

mo = mo(0) e ~$

	

(1 .21 )

where mo(O) is the proper mass for

	

= 0 i .e . in a system of inertia .
Thus the value of the proper mass of an electron, for instance, varie s

with the scalar gravitational potential . Therefore also the standard fre-
quency of a transition in an atom depends on ' and this dependence ma y
even be different in atoms of different constitution . The shift of spectral lines
arising from this effect has to be added to the Einstein shift . In the gravita-
tional field of the sun or the earth, and with a A satisfying (1 .12), A W is o f
the same order of magnitude as the Newtonian potential x, so that this ne w
effect should have been noticed in the experiments of Pound 15) and colla-
borators, by which Einstein 's formula was verified with a high degree o f
accuracy.

If one goes to more complicated tensor fields than the Pik and ri it
seems that it is not even possible to maintain B . It was bad enough that C
could be satisfied approximately only in the just treated cases, but it woul d
seem quite out of question ever to give up B . Therefore we have come to th e
conclusion that a generalization of Einstein's theory in accordance with
known facts cannot be obtained by assuming that the metric quantities gik

together with independent tensor fields are the basic gravitational fiel d
variables .

These results seem to indicate that EGRG is the only possible theory o f
gravitation and that the breakdown of physics referred to in the introductio n
is inevitable . However there is a remaining possibility in assuming that the

gik are not among the truly fundamental gravitational variables, but that the
latter are a set of tensor variables from which the metric quantities can b e

derived uniquely . Such a set of 16 independent variables are the components
of so-called tetrad vector fields which determine the 10 metric component s

gik by simple algebraic relations .
In a paper 16) from 1961 it was shown that a tetrad description of gravita-

tional fields also allows a more rational treatment of the energy-momentu m
complex than in a theory based on the metric tensor alone . In 1963 Pellegrini
and Plebanski 17) gave a Lagrangean formulation of the theory and a paper l8 )

(1 .20)
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from 1966 contains a survey of all the investigations on the energy-momen-
tum complex in general relativity .

The advantage of using tetrads as gravitational variables is connecte d
with the fact that this allows to construct expressions for the energy-momen-
tum complex which have more satisfactory transformation properties tha n
in a purely metric formulation . However in the just mentioned investigation s
the admissible Lagrangeans were limited by the assumption that the equa-
tions determining the metric tensor should be exactly equal to the fiel d
equations of Einstein . In the present situation, where we are looking fo r
metric field equations which deviate from Einstein's field equations in the
case of strong gravitational fields, a wider class of Lagrangeans are admis-
sible. In the following sections we shall see that this freedom can be used t o
construct a consistent theory of gravitation in which all the important pro-
perties A-E are retained and which deviates from Einstein's theory in th e
case of strong fields only .

2 . The Basic Notions in a Tetrad Theory of Gravitatio n

In this section we shall give a survey of the basic notions of tetra d
theories already contained in the paper reference 16, to which we shal l
frequently refer in what follows (the reader is requested to disregard § 6
in ref. 16) .

At the out-set, before anything is filled into it, space-lime is assumed t o
be just a continuum of points with arbitrary coordinates (x i) but without
any geometrical properties . A gravitational field in this space is described by
four independent contravariant vector fields h i(x) . Here a = 1,2,3,4 is an

a
index numerating the four vectors and i = 1,2,3,4 is a contravariant vector
index, which means that the h i transform as the coordinate differentials dxi

a
under all coordinate transformations . There are thus sixteen independent
gravitational field variables in this theory in contrast to the ten gik in EGRG.

Consider the determinant
h = det(h i )

	

(2 .1 )

with the element hi in the a 'th row and the i'th column . We shall assumea
that this determinant is nowhere zero, i .e .

h + O.

	

(2 .2)

Then we can define a new set of sixteen variables hi by the equations
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a
hih i =

	

= (Kronecker symbol) .
b

The solutions of these equations are obviously the components of fou r
a

covariant vectors . If Mi is the conjugate minor of the element hi in the deter-
minant (2.1) the solutions of the equations (2 .3) are

	

a

a

	

a
hi = Mi/h .

	

(2 .4)
Therefore we also have

hihk = 81 = (Kronecker symbol) .

	

(2 .5 )
a

From (2 .3) we get, using a well-known theorem from the theory of deter -
minants,

a
det(h i)•det(hi) = 1,

	

(2 .6)

a

	

a
where det(h i ) is the determinant with hi in the a 'th row and the i'th column .

Let ea be a quantity with components

E a = 1, a = 1,2,3, E4 = -1, (2.7)

equal to the diagonal elements in the constant Minkowski matrix nab = nab,

i .e .

yfab = Yrab = ea)g ,

where the parenthesis in a) indicates no summation over a although it ap-
pears twice in the expression on the right hand side of (2 .8) . Now we

a
define two sets of vectors hi and hi by

a

(2 .3)

(2 .8)

and the inverse relations

a

	

hi = nabhi

	

Ea)h i

	

b

	

a

	

b

	

a
hi = nabhi = Ea) IZ i
a

a

	

a
hi = Ea)h i, hi = Ea)hi ,
a

	

a
(2.10)

a,b, . . . are lowered and raised by means of th ei .e . the tetrad indice s
Minkowski matrix .

The presence of a gravitational field hi(x) endows the space-time Ion-
a

tinuum with definite geometrical properties . In the first place we can define
a metric in this space with a metric tensor
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a
gik = hihi = £ahihk = gift, (2.11 )

a

	

a a

which obviously is a symmetric covariant tensor . Its determinant
g = det(gik) is

a

	

1
g = det(h i)•det(hk) _ -h (2.12 )a

	

h2

on account of (2 .6), (2.1) and the relation

a
det(hi) = -det(hi) (2.13)

a

following from (2 .9) and (2.7). According to (2.12) and (2 .2) g is always
negative which means that the metric of space-tune defined by (2.11) i s
pseudo-Riemannian like in EGRG . By a suitable choice of coordinates x i it
is then always possible to make the values of gik and their first order deriva-
tion at a given event point P equal to the values in a local Lorentzian system
of coordinates :

gik(P) = nik,

	

gik, t (P) = 0. (2.14 )

From (2.11) and (2 .3) we get

(2 .15 )
b

gikhk = hihhkaz h = hiaa = hia

	

b

	

b

	

a

which shows that h i and hi are the covariant and contravariant components ,
a

	

a
respectively, of one and the same tetrad vector . The contravariant com-
ponents of the metric tensor are then

a
gik = hink = eah ihk .

a

	

a a
(2.16)

Tensor indices are raised and lowered by means of the metric tensor . For
a given metric the curvature of space-time can be defined as in EGRG and ,
as already mentioned, the only usable invariant which can be constructe d
from the gik and their derivatives is the curvature scalar R .

However the gravitational field hi endows space-time with other geo-
a

metrical properties besides curvature viz . those connected with the notion
of torsion. Thus it is not a simple Riemannian space but rather a space o f
the type considered first by Weizenböck19) . If we multiply (2 .3) by as we get

hih E = ea g = nab ,
a b

(2 .17)
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which shows that the four vectors hi are mutually orthogonal unit vector s
a

in the space with the metric gik . The vectors hi (a = 1,2,3) have positiv e
a

norm and are called space-like while the norm of the "time-like" vecto r

hi is -1 . Thus space-time can be pictured as a pseudo-Riemannian spac e
4

with a built-in tetrad lattice.
Since space-time is more general here than in EGRG we can form a

larger number of tensors and invariants . In the first place we can form the

tensor
a

	

a

yika = hihk ; a= hihk; a

	

ykia •

	

(2 .18)
a

	

a

Here hk ; t is the usual covariant derivative of the vector hk , i .e .
a

	

a

hk ; a = hk a -hrI 'ka,

	

(2 .19)
a

	

a

	

a

where Pka is the Ghristoffel symbol corresponding to the metric gik . The

antisymmetry in the indices i and k follows from the vanishing of th e
covariant derivative of gik :

a

	

a
0 = gik ;a = hi ;ahk+hihk ;a = ykia+yik a

a

	

a
(2.20 )

Obviously yika is a homogeneous linear function of the first order partia l

derivatives of the tetrad vectors . In fact one has (see ref. 16, B.1, A.11 and

A.15)
a

	

a

yikl = 2Pika rsthrhs, t =- 2Pikarsthshr, t
a

	

a

where

Pikarst = azgka st + åk gust - ål gikst

(2.21 )

(2.22)

and
gkast = 6'A-åIå,

	

(2 .23 )

are tensors that do not depend on the derivatives of the tetrad vectors . The
a

same holds for the coefficients of hs,t and of h r , t in (2 .21) . The tensor yik a
a

is closely related to the Ricci rotation coefficients (ref . 16, 3 .8) and to the

torsion (ref. 16, 5 .14, 5 .15) .

A space of the Weitzenböck type has teleparallelism (ref. 16, § 5) . Two

vectors at distant points Pl and P2 may be defined as parallel when the y

have equal components relative to the tetrad lattice . This leads to a new typ e

of parallel displacement and covariant differentiation of vectors with an

affine connection
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a

A i kl

	

h ihk,l .

	

(2 .24)
a

It differs from the usual affine connection .1'kl in a pure Riemannian space

by the relation (ref . 16, 5 .9)

d i kl = I'kl + »kl .

	

(2 .25)

The covariant derivatives of the second kind of a vector field with com-
ponents Ai and Ak are

A i l i = Ai,i+AikiAk = Ai ;l +yiklAk
(2.26)

Akt = Ak, i - 4 ik1Ai = Ak ;l - yi kIA i

with obvious generalizations for tensors of higher rank .
When (2.11) is used in the usual expression for the curvature tensor ,

Rklm appears as a function of the tensor vikl and its first order covariant
derivatives . In (ref . 16, D. 6) it is given in terms of derivatives of the second
kind. In terms of the usual derivatives we have

Ri kim = y i km ;l - y z ki ;m + y zrty rkm - y i rmy r k i

Further, if Øk is the vector obtained by contraction of y i k i

Øk = y iki = - ykii =
a

the curvature scalar R can be written in the form

2
R = -	 (V g Ør) , r + yrs tytsr - ØrØr .

V- g

Here we have used (ref. 16, A. 5-A.7), (2.28) and

a
yrstytsr = hr ;shs ; r

a

(2.27)

(2.28)

(2 .29)

(2 .30 )

following from (2 .18) and (2.17) .
For a given tetrad field i the metric field is uniquely given by (2 .11) ,

a
(2.16) . However a given metric gik does not determine the tetrad field com-
pletely ; for any Lorentz rotation of the tetrads leads to a new set of tetrad s
2. i which also satisfy all the relations (2 .2-16) . Arbitrary point dependent
a
Lorentz rotations of the tetrads are given by

~i = Q (x)hi, Ai = aQ(x)hi

	

(2 .31)
a

	

a

	

b

	

b
Mat .rys .Øedd .Dan .Vid .Selsk. 39, no . 13 .
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where the rotation coefficients S-Ax) and the functions

Nr.1 3

a

a

b

(x) _ ea) £b) å b
(x)

(2 .32)

are scalars satisfying the Lorentz conditions

(2 .33)QcbQ =cQQb =Hence a

	

c

	

a 0

a
,1iAk = Qo aQ

hi
h
b

k = abhihk = gik (2 .34)
a

	

a

	

be

	

c

for arbitrary functions S~b (x) satisfying (2 .33) .
a

Since the Lorentz group is a 6-parametric group, the general solution
h i(x) of (2.16) for a given metric contains six arbitrary functions . Therefore ,
a
besides ten equations determining the metric as in EGRG, the field equation s
in the present theory must contain six further equations . It should b e

noticed, however, that a Lorentz rotation (2 .31) with constant Q b does not
a

change neither gu nor yiki . In this case and h i define a space-time with

	

a

	

a
identical curvature and torsion, i .e . the two tetrad lattices describe the sam e
physical situation. However, apart from a constant Lorentz rotation th e
tetrad field must be completely determined by the field equations .

The situation in special relativity is characterized by a vanishing torsion, i .e .

	

ytka = 0

	

(2.35)

which by (2.27) entails a vanishing curvature :

Rtklm = 0 (2.36)

This equation allows the introduction of a pseudo-Cartesian system of co -
ordinates with

	

gik = gik =

	

gtk •

	

(2 .37)

Then the equation (2 .35) gives

	

hi ; k = hi, k

	

= 0

	

(2 .38)
a

	

a

i .e . the h t are constant in this system of coordinates and by a suitabl e
a

constant Lorentz rotation we can mak e

	

h t = 8å .

	

(2 .39)
a

For an insular matter system, (2 .37) and (2 .39) can be chosen as the limitin g
values of gik and h t for spatial distances r --> .

a
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3. The General Form of the Field Equation s

In accordance with D we assume that the field equations are derivabl e
from a Lagrangean principle . The gravitational part 2 = V -g L of the
Lagrangean density must be a scalar density under coordinate transforma-
tions, i .e . L is a scalar constructed from the gravitational potentials h i and
their derivatives of the first order

	

a

L = L(h i , h i , k )

	

(3 .1)
a a

(higher order derivatives in (3.1) would violate condition E) . Since a con-
stant rotation of the tetrads shall have no physical effect we have to requir e

that L is invariant also under the group of constant Lorentz rotations . Ac -
cording to (2 .21) the tensor yiki is a linear homogeneous function of the firs t
order derivatives of the tetrads and it is invariant under constant Lorent z
rotations. Furthermore it is essentially the only tensor with these properties .
Therefore L must be a scalar constructed from the yiki and the metric
tensor gik .

The variation of the Lagrangean integral under arbitrary variations åh i
that vanish at the boundary of the region of integration is

	

a

S
J

2dx = åfLl/- gdx

82
= f

bhi Sh
a idx,

a
where

(3.3)

is the variational derivative of 2 with respect to hi . (3 .2) may also be writte n
a

åf
~dx = J Vikhka ah i i/- gdx,

where Vik is the tensor
1 â2

Va =	 	 h
V- g åh i

a k .

a

From (2.16) we get for the variation of gik corresponding to the variatio n

(3.2)

(3 .4)

(3.5)

6h i
a

2*
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a

	

a
dg ik = h iSh k + h k bh i

a

	

a
a

	

a
= h iåhk +h k bh i = bg ki .

a

	

a

If we define a quantity åfik by

åfik = hiåhk - hkbh i = - åf k i
a

	

a
we have

hkbh i = 2 (ågik åfik)
a

Thus (3 .4) may be written

5(Sgik±Fiic åflk) V _b f dx

	

g dx

	

(3 .9 )

with

Sik = 2 V (ik) = Sk i

Fik

	

_ - Fki .

As usual V (ik) and V[ik ] denote the symmetrical and antisymmetrical com-
binations, respectively, i .e .

V(ik) = 2 ( Vik + Vki)

Vikl = z ( Vik Vki)

By well-known methods we can derive an identity involving S ik and Fi k
from the invariance of the Lagrangean integral f2dx under arbitrary in-
finitesimal coordinate transformation s

xi = xi + V(x)

	

(3 .12)

The corresponding "local" variations of gik and hi are
a

bgik = gilek l + gak ei l _ gik , l e l

bh i = h a ~i a- hi , l~ l
a

	

a

	

a

and, by (3 .7) and (2 .16) ,

bfik = gid~k l -gkaei a

+ (lzkh i , a - hih,, a) ~ l .
a

	

a

(3 .7 )

(3 .8 )

(3.13)

(3.14)

Introduction of (3.13) and (3 .14) into (3.9) gives after partial integrations
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8
J

2dx = 2f {-Sik ;x +Fi k x-Fxl yxai~s~ i `/ gdx = 0 .

	

(3 .15)

for arbitrary i(x) vanishing at the boundary. Hence the identity

	

Sik ;k = Fik ;k-Fki ykai .

	

(3.16)

Let 2m denote the usual Lagrangean density of a macroscopic body ,
which in addition to the matter variables depends on the metric tensor only .
Then the variation of the gravitational variables gives

6r 2m dx= (3.17)

where Tik is the energy-momentum tensor of the matter . By means of (3 .9)
and (3.17) the Lagrangean principle for the gravitational field in the presence
of matter is

å
J

(2+2m)dx = åf(L+Lm)V-gdx

r

	

(3 .18)
= J {Six + Tix)Sgik + Fikå f ix} V- gdx = 0

for arbitrary variations Shi of the 16 functions h i . These variations may b e
a

	

a
written

b
= h i

a

	

a b

where the

(3.19)

b(x) = dh
a

i hbi (x)

	

(3 .20)
a

are 16 independent infinitesimal functions . Writing s as a sum of a sym -
metrical and antisymmetrical part

	

a b

E = 6 +co,

	

CT = s=

	

Lo =

8hi = å(d) + å (r ) h i
a

	

a

	

a

b
å (d)hi = o hi

a

	

ab

b
b N hi = cohi .

a

	

a b

s= -CO,

	

(3 .21 )
[ab]

	

ba

(3.22)

(3.23)

ab

	

ab ab ab

	

(ab)

	

ba

	

ab

we get

with

The latter variation is obviously an infinitesima l
type (2.31), (2 .33) with

Lorentz rotation of th e
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b
= 8å + co b

~

	

= 8a + Eb) w ,
a

	

a

	

ab
(3 .24)

which leaves gik unchanged . In fact we get from (3 .6), (3 .7) and (3 .23)

a b
S (r ) g ik = (co + w )hihk = 0

ab b a

a ba (r)fik = 2w h'lh k
a b

and
a b

8 (d)g ik = 2
hihk

	

b

	

(3.26)
6(d) fik = O .

According to (3 .22), (3.25), (3.26) a general variation åhi is composed
a

of 10 independent "dilations" 8(d) hi for which åf ik = 0 and 6 independent
a

"rotations" å ( r)h i for which agile = 0. Therefore the variational principl e
a

(3.18) leads to the field equation s

	

Sik+Tia =

	

0,

	

(3 .27 )

	

Fik = 0 .

	

(3 .28)

The 10+6 field equations (3 .27), (3 .28) determine the 16 tetrad function s
apart from arbitrary constant Lorentz rotations . From (3 .27) and the iden-
tity (3.16) we get

Ti k •k = - Si k ; k = - Fik •k+Fklykli = O

on account of (3 .28), i .e . the usual conservation law (1 .2) is a consequence
of the field equations as in Einstein's theory .

With an arbitrary L constructed from the yikl and gik we have thus a for-
malism in which all the essential properties A-E are valid . In particular the
equivalence principle is valid exactly and the world line of a freely fallin g
particle is a geodesic in the space with the metric (2 .11), but the metri c
determined by (3 .27), (3 .28) will of course in general be different from th e
metric following from Einstein's field equations . Moreover a theory of thi s
type will give a more satisfactory expression for the energy-momentu m
complex, since the necessary conditions formulated in ref. 18 are satisfied
in the present formalism .

(3.25)



Nr . 13

	

2 3

4. The Choice of Lagrangean

The arbitraryness in the choice of Lagrangean is decisively limited by
the essential requirement that the theory must give the same results as EGR G
for the gravitational phenomena inside the solar system . Since L is an in -
variant constructed from the yiki and g ik the simplest possible independen t
expressions are

L(l) = Ø rOr, L(2 ) = yrsty rs t

L(3) = yrsty
ts r

where Øk is the vector (2 .28)

Øk ° y i ki •

	

(4.2)

On account of (2 .21) the expressions LO') in (4.1) are homogeneous functions
of the first order derivatives hr , t of degree 2 . The next simplest algebraic

a
expressions are obviously of degree 4 and there are not less than twelv e
different independent expressions of this type .

In the simplest case L is a linear combination of the quantities (4 .1)

3

_

	

ava()' 1 , 20') = y- gL O') .

	

(4.3)
v

For each v we have an equation of the form (3.9)

8 fa(v ) dx = f(S2k)
ågik + F g) afik) i/- gdx,

	

(4 .4)

and with (4.3) we ,Jobtain
3

Sik =

	

OC,,Sg )

v
3

Fik

	

avF).
v= 1

A lengthy but elementary calculation gives the following explicit expression s
for S2k ) and Fgk ) :

SIP = Z(Øi ;k+Øk ; ) - 2 01(Y l ik+Y lki) - gik(0 1 ;1+ 2010 1 ) ,

SIP = y l ik ; l + y l xi ; i + yrsiy rsk - gikyrstyrsi

	

(4 .6)

ST = [ y l ik ; 1+ y i ki ; l] - 2 LYrsiykrs +Yrslcyi rs ] - 2gikYrstY tsr
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Fik) = Fik ) = r ., k = Øk, i- Øl(y l ik - lki) ]

Fik) = - yik l ;l .

The Langrangean density

2(o) _ 2( 3) - 2(1) = V_ g (yrstytsr _ Ø rØr)

has the remarkable property that f a (0 )dx is invariant under arbitrary in-

finitesimal Lorentz rotations of the tetrads ; for we have, since F211) = FIT

åf2(0 )dx = J(Sa) -S k) ) àg ik V - gdx. (4.9)

This is in accordance with the fact shown in (ref. 16, Appendix A), tha t

2(0) is equal to the Lagrangean density V- R in Einstein's theory, apar t
from a usual divergence which can be disregarded in the variations con -

sidered. Thus

oJ
'
2( 0 ) dx = 8

J
RV- gdx = I G ik Sgik V- gdx

	

(4.10)

where Gik is the Einstein tensor in (1 .3). A comparison of (4 .9) and (4 .10)

gives
Gik = SI/c - Sik )

	

(4.11 )

in accordance with (ref. 16, D.7, D.8) .

We shall now choose the constants a. 2, such that our theory gives the same

results as EGRG in the linear approximation of weak fields. In a suitable

system of coordinates we have in this cas e

gik = 77ik +gik,

	

(4.12)

where the small quantities gik satisfy the de Donder relation s

6kgik,k = ZU,i, g = Ekgkk . (4.13)

Then, neglecting terms of the second order in gik, Einstein's equations (1 .3)

reduce to

å (q gik - 2 dikq g) = - xTik ,

	

(4.14)

where

0 2
q =

Ek axk 2

is the usual d 'Alembertian .

In the same approximation the tetrad s

hi = rjai + -gai

(4.7)

(4 .8 )

(4.15)

(4.16)
a
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obviously satisfy (2 .11) with gik given by (4 .12), and from (4 .16) we get
using (4 .13)

yikl

	

(gkl, i - gil, k )

Øk = - 4 g, k

These quantities are small of 1 . order . Therefore, neglecting terms of 2 . order
and using (4.13), the equations (4 .6) and (4.7) give

Sil o = (Øî,k+ Øk,i) 77ik e l 01, 1

= (IMO

Sil o = 2 Silo = e l ylik, + el ylki, l

q ,ÿåk

	

2 g > i, k ,

FQ k ) = F k' = 2 (Øi , k- Øk , i) = 0

FK) = - 8lyikl,l = - (Elglcl, i, l - E lgil, k, l )

= - (g,k,i-g,i,k) = 0 .

From the latter equations and (4 .5) we see that the expressions (4 .16)
satisfy the field equations (3 .28) :

Fi k = 0,

	

(4.20)

and iL can be shown (ref . 16, § 4) that (4 .16) are the only expressions satis-
fying (4.20), apart of course from physically unimportant constant Lorent z
rotations .

With (4 .18) we get for Sik in (4.5)

Sik = (2a2+a 3)

	

gik+

	

77ikC7g- 4( 0c 1+ 2a2+as)g,i,k .

	

(4.21 )

When (4 .21) is introduced into the field equations (3 .27), iL is seen that th e
latter equations be identical with the linear Einstein equations (4 .14), if we
choose

1

	

?

	

1

	

al = - , a2 = - ,

	

- ( 1 - 2 2 )
x

	

x

	

x

with A equal to an arbitrary dimensionless constant . With these values for
the a„ we get from (4.5), (4 .6), (4.7) and (4.11)

(4 .18)

(4.19)

(4.22)
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%suk = - SZk ) + ASg) + SQk ) - 2 ASZk )

= Gik + A (S22) - 2SZk) ) ,

A
Fik

	

(2 Fik ) - Fik2,2

(2)

)

For A = 0 the present theory is identical with Einstein's theory, but fo r
A + 0 the field equations (3 .27), (3 .28) take the form

Gik+Hik = -xTik,

	

(4 .24)

2Fî 3 -FFk) = Øi , k - Øk,i - Øa (2) -y) + 1 ; = 0,

	

(4.25)

Hik = A [y rsi yrsk + Yrsiyk rs +yrskyi rs +gik(yrsty tsr - 2)) rstyrst)] .

	

( 4 .26)\

The equations (4.25) are independent of the choice of A . On the othe r
hand the term Hik , by which (4.24) deviates from Einstein's field equation s
(1 .3) increases with A, which can be taken of order 1 without destroyin g
the first order agreement with Einstein's theory in the weak field case . One
might hope, therefore, that the metric obtained as solution of (4 .24), (4.25)
would be quite different from the solution of (1 .3) in the case of stron g
fields and that it be free of singularities . In the next section we shall in-
vestigate this point by considering the case of a spherically symmetric system .

5. The Spherically Symmetric Case

In the case of a static spherically symmetric system the equations (4.24) ,
(4.25) are most easily solved if we use a system of isotropic coordinate s
x i = {x',ct} . Here the metric is of the form

where a and b are functions of r = ex` only. A possible set of tetrads in
accordance with (2.11) and (5.1) i s

1
h i = '/I	 aa i
a

	

l gaa) I

å
i = gii)

a
i=

Ea) j1I gaa I åa i

gik = gii) å ik , gik = - auk ,
gii)

	

(5 .1 )

gii = {a, a, a, - b},
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from which we get the following expression for the tensor (2.18) and the

vector (4.2) (see ref . 16, B .4, B.8)

gyikl =	 ;l )

2

1') (n i dkl - nk Sit)

(5 .3)
ar

	

1 xi x2 x3ni =

	

==-, OO- ,

	

, (
ax i

	

r

	

r

	

r

	

J

and
Øk = - (InaVb), k = - (InaVb)' n k .

	

(5 .4 )

By calculating the functions (4 .7) with (5 .3), (5.4) and (5 .1) one finds

(see the corresponding calculations in ref . 16, Appendix B)

Fik ) =

	

= FT = O, Fik = 0

	

(5 .5 )

Thus the tetrads (5 .2) satisfy the field equations (4 .25), and it can be shown
that (5.2) are the only tetrads satisfying these equations, again apart fro m

constant rotations of the tetrads .
Using (5 .3) and (5 .1) we get for the different terms in (4.26)

yrsi y rs k

	

/-
2 yrsi ykrs = -2 yrsk yi rs

(gii)')2

	

a ' 2
=

	

Sik -

	

n ink
2 a gii

	

2a 2

a '2

	

b ' 2
yrstyrst = 2yrstytsr	 	 + 	

a3 2ab2

Hik=O.

Thus, in the static spherically symmetric case the equations (4.24) have the
same solutions as Einstein's equations (1 .3) . In the empty space outside the
matter they lead to the following equations for a(r) and b(r) :

2a' 3 a' 2
a " +	 = 0

r 4 a

a ' 2 )b
b

	

2a ' a ' 2
r + r~b + ra +2a

= 0

with the well-known solutions

(5 .6 )

(5 .7 )

(5 .8)
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(1 -a/4r) 2
a = (1 -(- af4r)4, b =	

(1+44r)2

The functions a(r) and b(r) in (5.9) are everywhere positive except at th e
Schwarzschild distance r = a/4 where b(r) has the minimum value zero .
It would seem that only a small change of the equations (5.8) is necessary
to make the minimum value of b(r) positive and thus remove the singularity .

So far we have only considered the static case . As an important exampl e
of a time-dependent spherical system we shall now consider the case of th e
non-static homogeneous isotropic universe. In suitable coordinates the
metric has the form given by Robertson and Walker, i .e .

(5 .9)

RP

(r)2 , yi (r) = 1 +Cr2 /4
(5 .10 )

gik = gii) å ik, gii = {a, a, a, -1}

R(02
a =

With tetrads of the form (5 .2) we get in this cas e

0 for 1 = 4
yiki =

		

(5 .11 )
z [a,iaka-a,k å ix] for 1 = 2

T2
Øk = y iki = In --

R3 , k

Calculating the tensors (4 .7) with (5.11) and (5.12) we obtain

Figs = F2) = 2Fik ) _ (lnR),i(ln[),k-(lnR),k(In[),i,

	

(5 .13)

which shows that the field equations (4 .25) are satisfied with h i given (5 .2) .
Further we get for the different terms in (4 .26)

	

a

Yrsi y rsk

	

2 yrsi yk rs = - 2 yrsk yi r s

0 for i= 4 or k= 4

2

T2
[('2-R2)S~- Tf ' 2n, n,,] for

and

(5.12)
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Thus, Hik vanishes also in this case, and the metric following from th e
present formalism is again given by the Friedman solution which has a
singularity in the far past and for C = 1 also in the far future .

As we have seen the simple Lagrangean densit y

~ = 1 [2(0) +)L.(2(2 ) - 22(3))] ,
x

which leads to the field equations (4.24)-(4.26), does not solve our problem .
However, as mentioned before there is a large variety of possible expressions

2(4) of degree 4, and with

(5.15)

1
~ = _S3(0)+2(4) (5.16)

the variational principle leads to equations of the form (4 .24) with a non -
vanishing Hik in the static spherically symmetric case. Instead of (5 .8) we
get then

a „+2a'_3a'2
= f

r

	

4 a

a ' l b

b

' 2a' a ' 2

a + r)b + ra + 2a
- g

where f and g in general are algebraic functions of a, b, a ' , b ' , a " and b "
depending on the choice of 2(4 ) . Besides terms of degree 4, which in the cas e
of weak fields give contributions to Hik that are small of the third order, w e

3

may in $(4) also include terms of the type 1

	

îß,ß(v) with sufficiently small
v

dimensionless constants ~ v . It would be surprising if not one of the many
possible Lagrangeans would lead to equations (5 .17) with everywhere posi-
tive solutions a(r), b(r) . On the contrary one could rather fear that ther e
are too many Lagrangeans that have singularity free solutions, in which cas e
it would be difficult to obtain a uniquely determined theory without a ne w
guiding principle .

5 .17)
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Conclusion

In the present paper we have not arrived at a definite formalism whic h
can replace Einstein's precise equations . We have shown only that the break-
down of physics predicted by Hawking on the basis of Einstein's theory doe s
not seem to be inevitable. If we admit that the fundamental gravitationa l
field variables are tetrad fields, the way is open for generalizations of Ein -
stein's theory which retain all the satisfactory features A-E as well as th e
experimentally and observationally verified results of EGRG . At the same
time such a formalism allows a more satisfactory treatment of the energy -
momentum complex, in particular as regards the question of the localizabil-
ity of the energy . It still remains to be seen if the Lagrangean can be chose n
in such a way that the field equations in all cases have non-singular solutions .



Nr . 13

	

3 1

References

1) R. PENROSE, Phys . Rev. Lett . 14, 57 (1965) .
S . W. HAWKING, Proc. Roy. Soc . A 294, 511 (1966) ; 295, 490 (1966) ; 300, 18 7
(1967) .
S . W. HAWKING and R . PENROSE, Proc. Roy. Soc . A 314, 529 (1970) .

2) See f .inst . E . M . LIFSHITZ and I . M. KHALATNIKOV, Adv . in Phys . 12, 185 (1963) .
3) S . W. HAWKING, Nature 248, 30 (1974) ; Commun . Math . Phys . 17 (2), 174 .
4) R. M. WALD, On Particle Creation by Black Holes (Preprint, University o f

Chicago, 1975) .
5) L. PARKER, Probability Distribution of Particles Created by a Black Hole (Pre -

print, University of Wisconsin Milwaukee, 1975) .
6) S . W. HAwICING, Fundamental Breakdown of Physics in Gravitational Collapse .

(Orange Aid Preprint, OAP-420, California Institute of Technology, 1975) .
7) A. EINSTEIN, The Meaning of Relativity, Princeton University Press 1953, p .

129 .
8) See for instance C . MOLLER, Measurements in General Relativity and the Prin-

ciple of Relativity in Problems of Theoretical Physics, Ivanenko Festschrift ,
Moscow 1976 .

9) C . MØLLER, On the Behaviour of Physical Clocks in the Vicinity of Singularities
of a Gravitational Field. Report Ettore Majorana School of Physics, Erice, Marc h
1975 .

10) P . J . RoLE, R. KROTKOV and R . H . DICKE, Ann . Phys . 26, 442 (1964) .
11) V. B . BRAGINSKY and V . I . PANOV, Zh . Eksp . Theor . Fiz . 61, 873 (1971) .
12) H. REISSNER, Annln . Phys. 50, 106 (1916) .
13) H. WEYL, Annln . Phys. 54, 117 (1917) .
14) See f. inst . C. MOLLER, The Theory of Relativity, 2 . Edition, Oxford 1972, § 4, 6 ,

P . 104 .
15) R. V. POUND and G. A. REBKA, Phys . Rev. Lett . 4, 337 (1960) .

R. V. POUND and J . L . SNIDER, Phys . Rev. Lett . 13, 539 (1964) .
16) C . MØLLER, Mat . Fys . Skr . Dan . Vid . Selsk . 1, no 10 (1961) .
17) C . PELLEGRINI and J . PLEBANSKI, Mat . Fys. Skr . Dan . Vid. Selsk . 2, no 4 (1963) .
18) C . MØLLER, Mat . Fys . Medd . Dan . Vid . Selsk . 35, no. 3 (1966) .
19) R. WEITZENBÖCK, Invariantentheorie p . 317fî ., Groningen 1923 ; Sber . preuss .

Akad . Wiss . 466 (1928) .

Indleveret til Selskabet September 1977.
Færdig fra trykkeriet Januar 1978 .






