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Introduction

The idea that the electron is a spinning top was introduced by UIILEN-

BECK and GounsnlmT (1925) fifty years ago and has been touched upon a t

numerous occasions ever since . DIRAC (1928) found "a great deal of truth i n

the spinning electron model, at least as a first approximation" , but he did
not make any attempts to interpret the "other dynamical variables" required
"besides the co-ordinates and momenta of the electron" . Instead, he created
a purely mathematical model of the electron, in which these variables ar e
represented by 4x4 matrices . The resulting equation leads to complet e
agreement with experiment and is, therefore, the equation of motion for th e
electron .

Several authors have felt the need of some type of interpretation of th e
internal variables in DIRAC's theory, and have explored the quantum theor y
of rotating systems with this in mind. Thus, BoPP and HAAG (1950) drew
attention to the fact, that the differential operators describing the angula r
momentum of a two particle system admit eigenfunctions with half-integra l
quantum numbers. Yet, they found that no associated Schrödinger equation
could make use of these through its regular solutions .

These findings, together with the generally accepted view that it i s
impossible to formulate a satisfactory relativistic description of a 3-dimens-
ional rotor, have led to the consideration of more complex models with adde d
degrees of freedom . At the saine time, the scope has been widened by
extending the group of particle characteristics to be described to include e .g .
isospin and hypercharge . ALLCOCK (1961), in his investigations, considers a
particle model based on two 3-dimensional rotors rotating with respect t o
each other . Other authors (VAN WINTER, 1957 ; HILLION ET VIGIÉR, 1958 ;

BOHM, HILLION and VIGIÉR, 1960) consider instead a 4-dimensional space -
time rotor . A comprehensive list of the many diverse classical and quantum
mechanical papers in the field is presented in the monograph by CORBE N
(1968) .

A study of the various sophisticated models does admittedly leave on e
with the impression, that the whole field has acquired a somewhat meta -
physical character. It is at least fair to say that no simple alternative to
DIRAC ' s purely mathematical model of the electron has emerged .
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The alternative does exist, however, as we show in the present paper .
It is in fact nothing but the elementary 3-dimensional rotor governed by
relativistic quantum mechanics . The dynamics of the rotor is in all respects
identical with the dynamics of a DnRAC particle, and hence it gives us new
and equally exact ways of visualizing the sometimes rather complex be-
haviour of electrons .

To make the following presentation reasonably self-contained we sum-

marize the most relevant properties of a 3-dimensional rotor in section 2 .
Section 3 discusses the relativistic description of a spinless particle ; the
extension to the relativistic rotor as a model of a particle with spin is cons -
idered in section 4, and the possible forms of a local Hamiltonian are derive d
in section 5. In agreement with DIRAC' s conclusions, it is found that onl y
for s = 2 can one construct a local relativistic Hamiltonian (the DIRAc

Hamiltonian), and the rotor is in this case an asymmetric top . The DIRA C
equation and its solutions are then discussed in sections 6-12 in the ligh t
of the preceding sections . The invariance group of the problem is described,
and detailed expressions are given for all symmetry operations of this group .
Throughout the paper we operate with an unassigned indicator, reflectin g
the fact that the basic commutator relations may be written in two ways ,
either with an i or a-i.

2. The quantum mechanical roto r

Consider a right handed Cartesian coordinate system So, with axes X,
Y, Z and origin 0 . Two point s

Ti = (xi, yi, zi) ,

define a second right handed system S with origin 0 and axes specified by
the unit vectors

1

u
(1.1

r2
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2 sin-
2
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rl r2
-+ -

u r l r 2
2cos 2

1
ri x r2 = ei x e2 ,

	

~
rlr2 sinu

r2 = (X2, y2, z2) (1 )
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e 2

e 3 =

(2)

I1
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where u is the angle between r l and r2 . The orientation of S with respect t o
So may be specified by three Euler angles a, ß, y such that (RosE 1957) S i s
obtained from So b y

1) a rotation about the Z-axis through the angle a ,
2) a rotation about the new Y-axis through the angle /3 ,
3) a rotation about the new Z-axis through the angle y .

The following relations are then valid :

xi = - 1•1

L
cos a cos ß sin(y 2~ + sin acos(y - 2

~i =

	

I'1 sina cos /3 sing y 2 - cosacos(y -2)1,

	

(3)

u
zi = ri sinß sin y -

2

- r2 lcosacosßsinly + 2 +sinacos(y + 2)I ,

u

	

u
sin a cos ß sin y + 2 - cos a cosy +

2

x 2

Y2 = - r2

u
r2sinßsin y + .~

The components si , s2 , s3 of the vector operato r

s= th [r i x pi + r2 x V2 ]

are the generators for rotations of S about the X, Y, Z axes, respectively .
A finite rotation through an angle e about a unit vector n is effected by th e
operator

Q(n,e)

	

exp(- cen . O.) .

	

(6)

The "indicator" c is either i or -i, with i being the ordinary imaginary unit .
Obviously, Q(n, e) is independent of the value assigned to the indicator .

Substitution of (3) and (4) into (5) gives :

z 2

(5)
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a cos a a
sl ch sinaaß+cot/3cosaaa

sinß ay '

a

	

a sin a a
S2 th - CoSa- + COtß Slna- -

aß

	

Oa sin ß ay '

a
s 3

	

- c~
aa.

The operators
sl = s • el,

	

2 = s . e2,

	

3 = s . e2

commute with every component of s and have the form :

p

	

a

	

a cosy a
bl = iii(- sinya - cotßcosy a

+ sin ß a sß

	

Y

a

	

a

	

silly a
52 = th i - coS y

-a/3

	

O
y -,cot ß sin

y - sin ß âa '

a
3 = ihđ .

Y
They satisfy the "anomalous" commutator relations

[ i,Cjl = - 1h8ijk4 ,

whereas the operators sl , s2, s3 satisfy the "normal" relation s

[si,Sj] = th r ijksk •

sijk is the Levi-Civita symbol, antisymmetric in all three indices (8 123 = 1) ,
and the convention of summing over repeated indices is understood .

We also note, that

( 7 )

(8)

(9)

(10)

1 a (
s 2 = - li e

	

sin

sin ß aß
a

	

1

	

0 2

	

0 2

	

2cosß 0 2

aß + sin 2 ß aal + ay e) sin 2 ß away
(12)

where
s 2 = sisi = SiSi•

	

(18)

The expressions (5) - (12) are, of course, well known . They are re -
produced here for the sake of reference and in order to stress, that the si

and operate directly on the "dreibein" defined by e l , e 2 and e 3 , or equiva-
lently, on functions depending on the orientation of the dreibein through a ,
ß and y . Thus, we do not consider ri and r2 as coordinates of particles, they
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are merely mathematical points by means of which the dreibein may b e
defined . r l , r 2 and u are, in accordance with this, dummy coordinates which
drop out of the description as soon as the Euler angles are introduced . It is
in this way that it becomes possible to separate the fact that a system ma y
have an orientation, from more or less arbitrary speculations concerning a n
internal distribution of matter . That such a separation can be made is, o f
course, the basic assumption behind most efforts mentioned in the Introduct-
ion - with the work of BoPP and HAAG as an exception .

The vector ri and r 2 may play a very different role in other contexts, as i n
the theory of two-electron atoms (HYLLERAAS, 1929 ; BREIT, 1930) where
they do represent particle coordinates . rl , r2 and u are then actual internal
variables, of the greatest importance for the character of the atomic states .
The construction of internal coordinate systems similar Lo ours has conse-
quently been studied by several authors . A review is due to BHATIA and
TEMKIN (1964) .

Let us now assume that the dreibein discussed above describes th e
orientation of an elementary particle with respect to So . The probability
amplitude for this orientation is then a wavefunction built over the simultane-
ous eigenfunctions Dm n(a, ß, y) of the commuting operators s2 , Ss and ~s .
These eigenfunctions have been known since the early days of quantu m
mechanics, and up-to-date presentations of their properties, as well as th e
various phase conventions introduced in the course of time, may be foun d
in the books by Bonn and MOTTELSON (1969) and JUDD (1975) . They
satisfy the relations :

S2 Ds = s(s + 1)h12D msn

	

(s =mn

	

0, , 1 . . . ) ,

27t

	

rîG

	

4 z
< Dmn ~ Dm,'n'% _ f

o
da

J
o sinßdßf

o
dyD~nn (a , y)

	

(a , ß, y)

	

(15)

åss' km' ånn '

and the phases may be chosen such tha t

(sI t ts2) Dmn = h [(s ~ m) (s + m + 1)]'l'Dmfl,n

	

l

YY

	

} (16)
(S l + 1 YS 2)Dmn = h [(s = n) (s f n + 1 )]1l'Dm,nfl •

	

JJJ

s3 D;Zn = m iD,s,Ln

	

(m = s, s - 1, . . . , - s),

	

l (14)

~sDmn = nhDmn

	

(n

	

s, s - 1, . . . , s) . J

For each value of s they define a linear function space Sy s of dimension
(2s + 1) 2 . Properly normalized they satisfy the orthonormality condition :
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Thus we have, for s =

01 = D1Îî, I~ =
(87c2)-113cos eta/2 e cyr 2

2

0 2 = D~= 13, 111 -(8~2) lhsin ~ é cal2 6y12

e3 = D1lz -' / z
--(8z2 ) '/ssln (3_ e ca12 (3-1y /2,

2

04
=

Dls
lz,- 'Iz = (8)

' h cos ß e'/2 e-q/2 .

2

It was shown by EuLER, in his pioneer work on the motion of rigid bod-
ies two hundred years ago, that the configuration space for a 3-dimensiona l

rotor is the 4-dimensional unit sphere (see, e .g . WHITTAKER, 1904), each

orientation of the rotor corresponding to two points on the sphere. The

functions Dm,, may accordingly be viewed as 4-dimensional spherica l

harmonics (HUND, 1928), and Ds is an irreducible function space under the

operations of 0(4), the 4-dimensional orthogonal group . The operators s i

and represent the generators of 0(4). It is for certain purposes convenient

to replace them by the operators

%i = si -

%i = Si +ti

which obey the commutator relations :

[A , 2.j] = thei jk%k ,

[2i,yj[ = 1neijkik ,

[Xi,Xj] = theijk%k .

Having characterized the functions from which the probability amplitud e

for the orientation of a 3-dimensional rotor may be constructed, we shal l

pass on to a discussion of its dynamics . Our basic assumption will be, that
it is possible to construct a Hamiltonian of the form

H = H(si,s2,S3 ; ;a),

	

(20)

with a referring to a set of external variables which commute with the interna l
variables si and . It follows, that

(17)

(18)

(19)

[H,s2 ] = 0,

	

(21)
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and hence that the eigenfunctions of H may be written a s

( 2 s y1) 2

'Pk - L 'Pi,k 0i,

	

(22)
i= 1

where Bi (i = 1 , 2, . . . , (2s + 1) 2) are the functions Dsnn (a, ß, y), and Vi, k
are functions of the external variables .

Each function space Ste will thus give rise to its own set of eigenfunctions .
Inded, it will turn out that the very form of H will depend on the quantu m
number s, and that only for s = is it possible to construct a local Hamil-
tonian. These results are consequences of the constraints imposed by the
theory of special relativity, and discussed in the following section .

3. Relativistic description of a spinless particl e

The special theory of relativity requires that the laws of physics b e
invariant under the operations of the inhomogeneous LORENTZ group . Let
us, by way of introduction, sketch the implications of this requirement in th e
case of a free particle without spin .

With
xµ = (xl, xa, x3, ict)

	

(23)

d .enoting a general space-time point, we introduce the operator s

a
pµ -th	 ax

and

Lµv = xpPv - xvpµ •

	

( 25 )

The following commutator relations are then valid :

] xµ,Pv]

	

eÏiC~~ev,

	

(26)

[Py, P7,] = 0,

	

(27)

Lµv Lxa,] _ LÏi.(aµxLvd + åo, Lµx - å Lµß - 61,2.40,

	

(23 )

[ Lµv Pa] = Lh (6,01Pv - å pµ) .

	

(29)

We adopt the convention that greek indices take on the values from 1 to 4 ,
italic indices the values from 1 to 3 .

The operators Lµ,, represent the generators of 0(4) . They are antisym-
metric in ,u and v, and hence one introduces new operators which are al l
independent, viz .

(24)
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(31 )

(32)

Ii = aijr L jm ,

ki = Li4

The relations (28) are then replaced b y

[li, Ij] = thaijm lm ,

[li ,lcj ] = iktaij ,nk,n ,

[ ki,kj] = lh8jjm lm ,

which are similar to (19) .
Next, we define operators for finite transformations :

F(a) = exp(- tai pi/h.) ,

U(r) = exp(- tip4/h) ,

R(n,e) = exp(- tai li /h) ,

A(n ' , n ) = exp(- ta7iki/pi) ,

characterized by the six real parameters ai , e j , and the four imaginar y
parameters z and ni . n and n ' arc real unit vectors such that en = (el, 82, 83 )
and nn' = (all, a72, 173) . F generates a spatial translation a, U a time displace -
ment x/(ic), and R a rotation through the angle e about n . A generates a
LORENTZ transformation in the direction n ' corresponding to the relativ e
velocity V such that

tann = iV/c .

	

(33)

The transformations are all independent of the value assigned to the indi-
cator i .

All F and U and products thereof represent the group Y of translation s
in MINKOWSKI space . All R and A and products thereof represent the proper ,

orthochronous, homogeneous LORENTZ group 2o. The semidirect product of
and -To is the proper, orthochronous, inhomogeneous LORENTZ group

Y.To. The representations of these groups, as well as of the extensions
obtained by adding the operators for space and time inversion, have bee n
thoroughly studied . 'We refer to papers by WIGNER (1939), BARGMANN and
WIGNER (1948), and to the books by ROMAN (1960), LYUBARSKII (1960), and
LOMONT (1959) .

A representation of .% 20 for a single particle without spin is obtained by
constructing a linear function space which is invariant under the operator s
(24) and (25). As basic functions we may choose eigenfunctions of th e
commuting operators pl,p2,p3, and p4 , i .e . functions of the general form
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7c1 ,at2, 713,iato~ = exp(crr • r/h)exp ( - tc7totfh) . (34)

The operator

l a2
pItpIt = h2

c2 a t2
-
°

2 (35)

commutes with all operators in (24) and (25) and hence with all operator s

in the set (32) . A function space which is irreducible under the operator s

representing „/-lPo will consequently be characterized by a single eigenvalue

of p~p~ . Since

p pl, I Tr, into> = ( r - 7r ô) I IT, ino>,

	

(36)

we have the requirement :

zô
= ac e + môc2 ,

	

(37 )

2 with mo being a constant. This constant is identified with the mass of th e

particle . We further identify Tr with the momentum and taco with the kinetic

energy :

I% kin = taro .

	

(38)

mo and aro are, accordingly, assumed to be non-negative ; (Tr, ilro) is a time -

like four-vector, and

no = 1I712 + rno c 2 .

It is easy to verify that all functions of the form (34), with the same mo ,

may be generated from one function in the set by use of the operators R

and A of (32) . A convenient choice for the representative function is

1 0, 0, 0, imo c> = exp(- tmo c2 t/h)

	

when mo > 0,

	

(40)

f 0, 0,1, i > exp [t(x3 ct)/h]

	

when mo = 0 .

	

(41 )

We get, for instance :

A(0, 0, 1,17) 0, 0, 0, imo c > = exp (tnxs/h) exp (- tcl/ac2 + mô c 2 t/h)

= 0,0,TC,i7toi,

	

}
with

tan 97 = iTh/
1/z2 + mô c 2 = icar/Ekin .

	

(43)

By comparing with (33) we obtain the usual expression for the velocity o f
the particle :

(39)

(42)

V = c2 .7t/E ki n •

	

(44)
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Similarly we get :

11(9, 0, 1, n) 10, 0, 1, i > = exp [car ' (xa - ct)/h]

	

10, 0,7r',

	

i,

	

(45)
where

ai = exp(- in) .

	

(46)

Let us now consider the equation of motion for a free spinless particle .

The existence of such an equation is, of course, a necessary condition for

being able to predict the future from the instantaneous situation . An equatio n
of motion must have the form

Hy = ch
at

,

with

	

being the wavefunction and H a time independent operator, the

a
Hamiltonian of the particle . H and that are thus required to be equivalent

operators, and this implies that the relations (27)-(29) must remain un -

affected by the substitution

p4 -)- -H.
c

The relations (27)-(29), with the substitution (48), represent what has been
called by DIRAG "relativistic dynamics in the instant form " (DIRAC, 1949) .
The problem of constructing a dynamical theory is tantamount to finding a n

H that will satisfy the substituted relations .

The operators ci/p 2 + mgc 2 , with mo being an arbitrary constant, wil l

satisfy the relations in our case . mo is again fixed as the mass of the particle ,
and a comparison with (34) and (47) shows, that we must choos e

H = 4p 2 + môc2 .

The solution for the Hamiltonian is thus unique. Its eigenvalues represent
the kinetic energy according to (38) .

4. The relativistic rotor

We shall now extend the treatment of the previous section to the case of a
quantum mechanical rotor, as a model of a particle for which it is possible

to talk about an orientation in space. The coordinates define the position

of the particle by specifying the origin of the coordinate system So, in spac e

(47)

(48)

(49)
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and time . The EuLER angles a,(3,y specify the orientation of the particle, i .e .

the orientation of S with respect to So .
A first necessary condition for being able to construct a relativisti c

dynamics for the rotor is the existence of an algebra similar to the one give n

through the relations (27)-(29) . The four-momentum (24) is defined a s

before, but the operators Li„ must be supplemented with operators built

over the internal generators s i and as given by (7) and (9) . Thus we

define :

Ji ,, =

	

+ si,,,,

	

(50)

and similar to (30) :

Ji = 2 £ijmJjm ,

	

Si = z Eijm Sjm ,

Ki = Ji4 ,

	

xi = SM .

The operators Jiv and pp must satisfy the relations (27)-(29) with

substituted for L . The operators (51) must satisfy relations similar to (31) ,

in particular :

[

	

1
[si, sj1 = thEijmsm,

	

Il
•si, xi] = tht£ijm xm,

	

r (52 )

[ x i, x jJ = G~2E ijm s m•

	

JI

We have already, by (18), constructed a set of operators satisfying (52) ,

but they cannot be used for the present purpose, because it is essential tha t
the si in (52) be identical with the si in (7). This is dictated by the form of

the rotation operator (6) .

With the si fixed by this requirement, it only remains to determine th e

xi . The second of the relations (52) shows that K must be equal to s times an
operator b commuting with s :

	

K = bs,

	

(53)

and because of (13) we may take this b to be à function of the alone . The

third of the relations (52) shows finally that the condition

	

b 2 = 1

	

(54)

must hold for b .
In looking for an operator that will satisfy (54) one must exclude th e

trivial solutions b = +1, since s and K must be linearly independent . This

implies, that it is impossible Lo find a universal expression for b, but with
(20) and (22) in mind it becomes meaningful to solve (54) within eac h

function space Os separately (cf . (14)) . In this way one obtains the followin g

semigeneral solution, independent of the value assigned to t :
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b = exp (- me • s/h)

	

for s integer ,

b = i exp (- .me s/h)

	

for s half-integer ,

with e being an arbitrary unit vector in the internal coordinate system S .

Since no dynamical preference has been given to any of the axes of S s o
far, we can now introduce such a preference by fixing the direction of e .
A convenient choice at the present stage i s

e = e3 .

	

(56)

Thus we obtain :

2 i
b = - -

h z

fors- 13

	

L '

b = 1- 2s

	

fors= 1 ,

etc .

	

J

Having determined the operators of the basic algebra we obtain the
operators for the finite transformations of .J`Po by multiplying R(n, e) in

(32) with the operator (6), i .e .

Q(n,s) = exp(- ceisi/h) .

	

(58)

The operator A(n' , ri) is similarly to be multiplied wit h

1(n' , ß) = exp(-ini x¢/h) .

	

(59)

These operators are again independent of the value assigned to t .

The operator p~pju of eqn. (35) will also commute with all operators i n

the new algebra. The irreducible representations of ,% Yo are consequentl y

spanned by functions of the form

=

	

(a ,ß,y ;Tr,mo) I Tr ,im0 >

	

(60)

where I Tr, imo> is given by (34), and 94 are functions of the internal coordinat -

es, depending parametrically on s, Tr and mo . The relation (39) is still vali d

and the energy is given by (38) as before .

Let us assume, in what follows, that mo + 0 . The form of 94 is then

completely given, once it is known for Tr = O . The relation is :

9 (a, )3 , Y ;Tr,mo) = A( Tr /mc,rl)94(a,ß,y ; 0 ,mo),

	

(G 1 )

with ai given by (43) . We are thus left with the problem of classifyin g

cps (a, ß, y ; 0, mo) further with respect to the symmetry of Y2o.
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At this point we note that there is another operator besides p1p1 which
commutes with all operators in the basic algebra, namely m~ cv, where

	

LVFa = (p X K + p4 S , -

	

p S),

	

(62a)

(BARGMANN and `SIGNER, 1946) . USING (53) and (54) we get, that

zv u W1 = p1u pu sisi .

	

(62b)

This new invariant gives the mathematical justification for the label s in (60) .
The components of wtu do not commute with each other. We have ,

however, the very important result :

	

~~u Pv j = 0,

	

(6 3 )

according to which each vl may be taken as an eigenfunction for one of the
new wtl as well . We note, in particular, that for Tr = 0 may be chosen a s
an eigenfunction of p 4 s3 .

For the sake of completeness we also note, that P,uW/L is an invariant,
but since it is identically zero, it is of no use in the present context .

The functions q are linear combinations of the (2s + 1) 2 functions
Dean (a, ß, y) of section 2, but it is readily seen that the 2s + 1 functions cor -
responding to a given value of n constitute an invariant function space unde r
all si and xi . Each value of n will thus give rise to an irreducible represent-
ation of err-To, with the functions 99; equal to the functions Dnn (a, ß, y) ,
m=s,s-1, . . , -s .

The 2s + 1 irreducible representations (n = s, s 1, . . . , - s) obtained in
this way are, however, all equivalent . This follows from general discussions
on the irreducible representations of .T.To (see references following eqn .
(33)), according to which the representative functions for p = 0 are character-
ized as spanning irreducible representations of R(3), the 3-dimensional rea l
rotation group . R(3) is in this context the little group associated with the
four-vector (0, 0, 0, imoc) .

We have thus arrived at the conclusion, that only for s = 0 (which is th e
case already studied in the previous section) is there no redundant degenerac y
in the classification of the rotor states When s 0 we arc left with a 2s + 1
fold degeneracy .

Any function of the form (60) will satisfy the SCHRÖDINGER equation (47 )
with the Hamiltonian (49) . This is, however, of little interest in the presen t
context, since such a Hamiltonian does not effect the internal coordinates a t
all . We shall consequently look for a more general Hamiltonian by recon-
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sidering the basic algebra and require that it be satisfied with the substi-

tution (48) .
The variable x4 = ict commutes with all operators of the substitute d

algebra, and may therefore, without loss of generality, be set equal to zero .

Thus, we get the substituted operators :

Pp, = pi, p2,pa, H ,
c

1i = li + si ,

Ki = - xi H +
c

and the algebraic equations involving H become :

[ H, pi ] = 0,

[H,Ji]=0 ,

i
[H,Ki ] = ,- rcpi ,

i

	

1
[Pi,KJ] = 7 126ij-H,

i

	

c

[Ji,KK] = ihtsijrnKm ,

[Ki, Kj ] = theijn, Jin .

In addition, we have the invariance relatio n

H2 = c2p2 + I7î~c4 .

5 . The local Hamiltonians

In searching for solutions to the above relations we begin by noting ,

that (65) and (66) imply that xl,x 2 ,x3 and a,ß,y are cyclic coordinates, i .e .

H must be of the form

H = H(si, i, pi ; mo),

	

(72)

as alredy anticipated by (20) . The relations (68) and (69) are then auto-

matically satisfied, whereas (67) imposes the conditions

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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1
c [H, xi]

-
2 [H, x i ] H = chpj .

The relation (70) is automatically satisfied whenever (73) is .
The necessary conditions on H are thus contained in (66), (71) and (73) .
It follows from (71), as well as from (73), that if H is a polynomial i n

pi, then this polynomial must be of the first degree . Any local Hamiltonia n
must thus be linear in the momentum operators . The only other conceivable
solution is the non-local form

H = aJc 2p2 + m il c4 , a2 = 1

	

(74)

with a being a function of the si and ~i .
A short consideration of (66) and (73) shows, that a must commut e

with every si and x i , and hence the only possible values are ± 1 and + b ,
with b given by (55) and (57) .

We shall not, however, consider the non-local Hamiltonians further, but
instead confine the attention to local Hamiltonians, as the more satisfactor y
type of operators from a physical point of view .

A local Hamiltonian is, as mentioned above, necessarily linear in th e
momentum operators . Hence, we write it a s

H = 2 +

	

(75)

with 2 and pi being functions of s i and ~i . Insertion in (68) shows, that 2 mus t
be a function of the alone, and that = psi with ,u depending only on th e
~i • Thus we have :

H = A (~i) + uGi)(s • p) .

	

(76)

To determine the functions 2 and ,u we insert (76) in (73) and compare
the coefficients of p i , p 2 and p3 in turn. It is then found that a necessary
condition for (73) to be satisfied is, that si = s2 = s3 = a non-vanishing
constant. This is only possible if the operators act in the function space S2 Jg ,
in which case :

si si - I-sjsi

	

= 2h2 ,
} (77)

eiSj + CiS j
and

ff-SiS--j

	

=

h2 åij

2
hE ijk sk,

Y }} (78)
Si Sj = - ,hE ijk k .

Mat .rys .Medd .Dan.Vid .Selsk. 39, no . 12.

	

2

(73)
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Hence it follows, that it is impossible to turn a 3-dimensional rotor into a
relativistic system with a local Hamiltonian, unless it is endowed with an s

quantum number o f
We proceed, then, by assuming the validity of (77) and (78) . 2 and ii are

then linear function of We shall furthermore deviate from-(56) an d
(57) by choosing e l as the preferred axis when defining K, i .e . we put

e =

	

(79)

and hence

2 c
p

h

l Insertion of (77), (78) and (80) in (73) and further comparison of th e

coefficients of p i , p 2 and p3 leads to the unique result

4c pp
h2 51 •

Finally one obtains, from the terms independent of p i :

.1 1 + Sl~ = O.

	

(82)

This relation shows, in the light of (77), that 2 must be a linear combinatio n

of C2 and C3, and since no preference has been given to any of the axe s

perpendicular to el we may set

~ = (83)

with A being a constant .

Thus we obtain the Hamiltonian

4c
H = A ~3 + - ~l (s • p)• (84)

h2

To determine A we square H and compare with (71), while using (77) .

This leads to the values

2
A = ~ mo c2 ,

and hence :

2

	

-4c
H = +

h
- InO C2 3 + 2 1(sp)

The eigenfunctions of H are of the form (22) with s

(80)

(81 )

(85)

(86)

2 '
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4
y

k
E (r, a , ß, Y) = ~~pi, k(r) Oi (a, ß, Y) ,

=

where 0 1 , 02 , 03, 04 , are the functions specified by (17) . The equation o f
motion is of the form (47) . It becomes identical with the DIRAC equation
when transformed to a matrix representation .

6 . The Dirac equation

The transformation mentioned is obtained by substituting the genera l
expansion

4

=

	

ip i (r, t) 0i (a , ß, Y )
=

into the equation of motion (47), i .e .

HT = ~~,

	

(47 )

with H as given by (86) . The inner product is then formed with Ol , 0 2 , 0 3 , 0 4

in turn and the orthonormality relations (15) utilized . As a result one obtains :

( ~ mo c 2 ß + ea • p) ~p = c~ a~,

	

(89)
at

(87 )

(88)

where is a column vector with 111, 112, 113, 114, of (88) as components, and

(k = 1,2,3) .

	

(90
[0ak

ak =

I is the two-dimensional unit matrix, an d

61 = a2 = 63 = (91 )

become the PAULI spin matrices when t is assigned the value i.
Eqn . (89), with the upper sign in front of moc 2ß and t = i, is in fact th e

DIRAC equation in its Hamiltonian form . The ambiguity in sign of the first
term will be commented on in section 13. Until then we shall adopt the plus
sign in (86), and write

H mo c 2 C3 =

	

.p), (92)
2*
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where the primed operators, introduced for simplicity, are equal to the

2
corresponding unprimed ones, multiplied by

h
The present derivation of the DmAc equation is, of course, rather different

from DIRAC ' s own, since it is based on a model (albeit a very well-define d

one) rather than on the purely mathematical properties of hypercomple x

numbers . The principles underlying the two derivations are, however, th e

same, and they may therefore supplement each other in a fruitful way . It i s

interesting to note, that the 4-dimensional matrices ai and ei occurring i n

DIRAC 's paper (DIRAc, 1928) are nothing but the matrix representatives of

2
our si and

	

operators multiplied by - . The sign of e2 is the opposite of

ours, though, and the minus sign in the second of the relations (78) is thu s

absent in DIRAC's equivalent relation .

We shall now consider the solutions of (47) in the light of the previous

sections, with the aim of showing the coherence of our approach . We close

the present section with the obvious remark, that the functions (88) ar e

independent of the basis chosen in .Qrs . bz other words : if one prefers t o
take four orthogonal conbinations of the functions (17) as a new basis, the n

this has no effect upon the analytical form of T . The matrix representation o f

(47) will, however, now be different from (89) . The fundamental relation s

(77) and (78) will, on the other hand, be satisfied by the matrices in an y
representation. This expresses the so-called representation independence o f

the DIRAC equation .

7. The solutions of the Dirac equatio n

The solutions of the equation

a T
HT = th-

attt

with H given by (92) are, of course, equivalent to the solutions obtained b y

the more conventional theory, as presented in wcllknown textbooks (e .g .

BSORKEN and DRELL, 1964 ; SAKURAI, 1967) . Referring to the discussion in

section 4 we may present the results of solving (47) in the following way .

The solutions of (47) span two irreducible representations, I' and l', of

T 2o . These representations become the complex conjugate of each other ,

when the basis functions spanning them are generated by means of th e

(47)
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operators (32), (58) and (59), starting from the two complex conjugate pair s

of functions :

Øi = 01 ( cc, ß, y) exp (- aino c2 t/h), 1 (93 )

and
02 = 0 2 (a,ß,Y)exp(- m7oc 2 tfli) ,

Ø1 = 04(a,ß,y)exp(into c 2 t/h) ,

Ø2 = - 03 (a, ß, Y) eXp (Gino c 2 tlhi) . } (94)

Let us construct the functions obtained by performing a homogeneou s
LORENTZ transformation corresponding to the directio n

e = •rr/n

	

(95)

and the parameter 77 given by (43) .
The functions exp (±Gmoc2t/h) are transormed similar to (42) . The 0 3

functions are transformed by means of the operato r

A(e,

	

= exp(- Gr/e . K /h),

	

(96)

with x given by (80). Introducing the primed operator

2

	

G
K ' -= -K ° - ~1 S '

h

this becomes

A (e, v/) = cos- -

	

(e s')sin~ .

Applying standard trigonemetric formulae in connection with the expressio n
(43) for tan 77 we obtain

r/

	

IL'I +inoc2
cos- __ ,

2

	

2mo c2

I E I - mo c 2
sm-9 = i

2moc2

where
1E1

= Y
c2 .7L2 + inp c4 .

Thus, we get :

c
A(e, 77 ) = cos- 1+ 	 - ~i(tr •s ') .

	

(101 )
2

	

1 E~ +moc 2

(97)

(98)

(100)
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The functions obtained from (93) and (94) are now readily seen to b e

Ÿ11 =

	

cos- 0 i +

	

c

	

(7zz 0 3 -I- 7r+ 0 4 ) exp (cTr r/h) exp ( c I E I tik) ,
2

	

I EI +moc 2

	

02 +

	

C

	

(yZ_ - 7L 04) exp ( 0Tr • rib.) exp (- 0 I E I tik) ,
1 E I +]noc2

and

c
y' 1 =

	

cos 2 - 0 4 + IEIF	
ino c2

( 7z_ 0 1 - ~z 02) exp (- ITr r/ h) exp (c I E ~ I /h) ,

T 2 ° - cos
2

0 3 + I
E I + mo c2

(7Zz 0 1 + 7s+0 2) exp (- err • r/li) exp (c ~ E I tin) ,

77

cos ~

(102)

(103)

where

:;r± = ?L1 + 022 . (104)

The functions (102) are eigenfunctions of H and p with eigenvalue s

I
E l and Tr, respectively . The functions (103) are cigenfunctions of the sam e

operators with eigenvalues - I El and - Tr .

The function space available for a DIRAC particle is the direct su m
S2 Q+ D of the two spaces Q and S2, obtained by operating with all operators o f
the form (32), (58) and (59) on the functions (93) and (94), respectively.

A function in Q represents a particle state, a function in f2 an antiparticle
state. A function with components in both Q and (j represents a super -
position of a particle and an antiparticle state .

8. Charge conjugation symmetr y

There is a one-to-one correspondence between the functions in the spaces
Q and !2 specified in the previous section, two corresponding function s
being the complex conjugates of each other . This reflects, that whenever a
function I' is a solution of (47), then the saine is true for the comple x
conjugate function i' . The process of complex conjugation is thus an invari-
ance operation of the theory . In the following we shall identify this operation ,
which we denote by C, with the charge conjugation operation of the con-
ventional . theory .

The operator effecting the operation C is defined by

Cop I' =

	

(105)
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with - denoting complex conjugation . It has the obvious property

Cå p = 1 . (106)

From the explicit expressions (17) we obtain the following relations, alread y
used in passing from (93) to (94) :

01 =

	

04 ,

02 = -03,
(107 )

03 = - 0 2 ,

04 =

	

01 .

Hence, we get for an arbitrary function of the form (88), i .e .

T = 01yh + 02yJ2. + 03 11)3 + 64 'lp4,

	

(108)
that

G op f = 6 4 V1 - A ''31P2 - 02 V3 -I- 6 1 'N ,

where - in order to facilitate comparisons with the conventional therory -
we have used r to denote complex conjugation of a function independent o f
a,ßandy.

This result may conveniently be written as

(109)

CI = [61020304]

0

	

0

	

0

	

1 --

0

	

0 -1

	

0

0 -1

	

0

	

0

1

	

0

	

0

	

0

(110)

The 4 x 4 matrix occurring in this relation is readily identified with Dix Ac' s
-y2 . It is equal to iy2 in the tensor notation by e .g . BJORKEN and DREL L
(1964) . Our simple definition (105) of the charge conjugation operation i s
then seen to coincide with BJORKEN and DRELL's . It differs from e .g.
SAKURAI ' S (1967) in sign. (Definitions in the literature may vary with a n
arbitrary phase factor) .

The operators (32), (58) and (59), from which the operators o f
arc constructed, are all real (see also (101)) . This implies that C commute s
with all elements of .%2'o . Hence, we may construct the direct product grou p

x, '.7- Yo, where

= {E, C{,

	

(111 )

II
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E being the identity operation . The function space Q eh' , which contains
the totality of solutions of eqn . (47), defines then a single irreducible re -
presentation of x J ~o . This group is thus an invariance group of the theory .

In the following sections we shall augment this invariance group further
by adding the space and time inversion operations .

9. Space inversio n

The process of space inversion, P, replaces r by - r and thus also p by
-p. To determine its effect on the internal axes of the rotor it is necessary
to go beyond the assumption made in section 2, that the vectors r i and r 2 of
eqn. (1) merely represent mathematical points . We must now assume, that
they in some way or other have a physical significance, such that they ar e
replaced by - r 1 and -r2 under inversion .

With this assumption it follows from (2), that the directions of e l and
e 2 are reversed under P, whereas e3 is left unchanged . The effect on the
DuLER angles is accordingly :

a ->ß~ /3,y -÷ y+~e .

The functions 01 and 02 in (17) are thus multiplied by t under inversion ,
0 3 and 04 are multiplied by - t . This result is in accordance with the assump-
tion of the conventional theory, that space inversion is effected by the matri x
aß, where ß is defined by (90) and a takes one of the four values ± 1, ± i

(see e .g . BJORKEN and DRELL, 1964 ; SAKURAI, 1967) .
Adopting (112) we see from (7), that sl, s 2 and s3 are unchanged under

inversion. (8), as well as (9), shows that S1 and 2 change sign, whereas 3
remains unaffected .

The relativistic description of a spinless particle is invariant under spac e
inversion, i .e . its symmetry group may be extended from Y - Yo to ..9-- p, the

orthochronous, inhomogeneous LORENTZ group. Within the algebra defined
by the operators (24) and (30) P has the following effect :

P

	

-p,P4-)-p4,4>Z,k-> - k . (113)

The substitution (48) requires that

- > - H , (114)

a condition which is certainly satisfied by the Hamiltonian (49) .

(112 )
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The relations (113) and (114) must likewise hold for the generator s
associated with the relativistic rotor, if we require that P be a symmetr y
operation in this case as well . In particular, we must require that

s->s, x-> - x . (115)

s is, in fact, unaffected by P . But in order that x change sign we must requir e

that b, as defined by (53), change sign . 3 is unaffected by P, and the choic e

(56) is thus an unacceptable one . For s = we must choose b as a linear

combination of

	

and 2 alone, as was in fact done in section 5, by (80) .
The fact that (56) is an invalid choice, if P is present as a symmetr y

operation, does not in any sense make the general conclusions of section 4
invalid, since these only refer to the properties of , .'7-.To and its represent-

ations .
Considering now the requirement (114), we get a narrowing of the condit-

ion on A in passing from (82) to (83), namely that A must be a constan t
times S3, in accordance with the actual choice (83) .

The Hamiltonian (86) is then unaffected by P, and the description whic h
we have constructed on the basis of section 5 is invariant under spac e
inversion. This remains true also after the inclusion of the charge conjugatio n
operation, since it is evident that C and P commute . We may thus extend
the invariance group of the theory from c' x J 22 o to x

10. Time inversion

The problem of reversing the direction of time has attracted muc h
attention in the physical literature (see, e .g. DAMES, 1974) . To-day's discus-
sions of the problem are often based on the so-called time reversal operatio n
T (see, e .g . BJORKEN and DRELL, 1964), originally introduced by WIGNE R

(1932) . Here, we shall define a simpler - and from a relativistic point o f
view more natural - operation, which we shall denote T ' and call the tim e
inversion operation .

The effect of T' on the external coordinates is to replace t by - t and thus
also p 4 by -p4 . Hence, we get the following result for the operators (24) an d
(30) of the basic algebra for a spinless particle :

p-~p,p4-> p4,l-31,k->- - k .

	

(116)

The substitution (48) requires, that if T ' is to be accepted as an invariance
operation, then we must demand that
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H --- H.

	

(117)

This condition is certainly not fulfilled for the Hamiltonian (49) . The

description of a spinless particle, as developed in section 3, is thus not in -

variant under time inversion .
For a particle with spin we require that the internal generators be

transformed similarly to (116), i .e .

S--> S,K ---> - K . (118)

It is now easy to verify that all three relations (116)-(118), with H as give n

by (86), are satisfied, if we define T' as the process, which besides transform-

ing t into - t changes the EULER angles according to the scheme :

--a+7r,/3 -> 7r - ß,y - .z - y .

	

(119)

This corresponds to a 2-fold rotation about the e2-axis, just as (112) corres-

ponds to a 2-fold rotation about the e 3 -axis . The effect on the operators is :

4' 1

	

2

	

3 >

	

(120)

The functions (17) are transformed thus :

0 1 -> 03 ,

0 2 -> 04 ,

0 3 - 01 ,

04-~-02 ,

Hence we obtain, from the explicit expressions (102) :

c
T'1P1 = -T3 = cos

2
03

I E I + mo c2
(zZ 0 1 + g-(4_ 02) exp (crr • r /h) exp (c I E I t/h) ,

T 'P2

	

P4 = cos 2 104

	

E + mo c2
(7r- 0 1 - n2 0 2 ) exp (crr rexp (c I E I Oh) .) .

The functions iT3 and'P4 may, just as well as the function q' and Ÿ'2 in (103) ,
be used as representatives for the function space b. T3 and Ÿ'4 are, in fact ,
equal to - lp2 and 1 , respectively, with -Tr substituted for rr . The effect of
T' on lff3 and P4 is :

T ' T3 = -

T ' P4 = 1P2 .

(122
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Hence, the time inversion operation converts a particle state into an anti -

particle state and vice versa, the velocity of the LORENTZ frame associate d

with the particle being reversed during the operation .

Adding the time inversion operation to the operations of 30712p, leads to
the full inhomogeneous LORENTZ group JY . The charge conjugation oper-

ation commutes with T ' just as it commutes with all other elements of Jam,

and the full invariance group is thus found to be x Jam .

This important result justifies the introduction of T ' and demonstrate s

the fundamental nature of this operation . To anchor it further, let us de-

monstrate the consistent transformation properties of the 4-vectors of our

theory, with respect to space and time inversion .

A 4-vector ap, = (a, a4 ) is a set of four quantities satisfying a relatio n

similar to (29), viz .

[Jpy , aA ] = c$(b~ t a ti -

	

ad.

	

(124)

The following expressions are readily found to correspond to 4-vectors :

xp = (r, let),

	

(23)

P1L = (p,P4),

	

(24)

zvp

	

(p x x +pos, - p • s),

	

(62a)

ÿu = (-

	

(125)

The matrices associated with the operators y' and the basis (17) are, whe n
c = i, identical with the y, matrices of the conventional theory, in the notation

of DIRAG (1928) and e .g . SAKURAI (1967). The y;, operators turn up in a

natural manner, when (47) is multiplied from the left with to give the
equation

(mo c+ c 4L p,u) cI' = 0 .

USING the properties of the P and T ' operations as described above, it i s

easily seen that x11 , p 12 and y' transform according to the scheme :

P(a, a4)

	

(- a, a4),
(127 )

T' (a, a4) = (a, - a4) ,

whereas w1 transforms as follows :

P(w, W4) = (w, - W4),
~ (128)

T' (w, m4) = (- w, UJ4) .

(126)
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These transformation properties characterize xt,, p, and y,, as ordinary
4-vectors, wiz as a pseudo-4-vector . For all four vectors it holds, that

PT 'ai = T 'Pal, = - u1 .

	

(129 )

The "strong inversion" operation PT ' = T 'P will be the subject matter of the
following section .

The possibility of defining a time inversion operation with the abov e
properties in the case of a DIRAC particle suggests, that a similar operato r
may be defined for other elementary systems as well . Let us, for the moment ,
assume that this is possible for the electromagnetic field . This field is
characterized by a 4-vector

AI, _ (A, icp),

	

(130)

where A is the vector potential and 9) the scalar potential . It is well known ,

that
P(A, icp) _ (- A, iqp ),

	

(131 )

and comparison with (127) makes us therefore expect, tha t

T ' (A, içe) = (A, - &O.

	

(132 )

Suppose now, that the source of A l, is a charged DIRAC particle . The
field associated with the corresponding antiparticle must then be (A, - iq)) .
In other words, a particle and its associated antiparticle must have equal ,
but opposite, charges .

That this is indeed the case is of course well known . The interesting
thing in the present context is, that we have tied the conclusion to the pro-
perties of the full LORENTZ group, rather than to the properties of the charge
conjugation operation . A more appropriate name for the latter, is, in fact, th e
often used alternative : the particle-antiparticle conjugation operation.

11 . Strong inversion, alias the PCT-operatio n

Combining the operations P and T ' leads to what we shall call the stron g
inversion operation, I. It changes xju into - xp , while the EuLER angles
undergo the transformation corresponding to a 2-fold rotation about the
el-axis, i .e .

ij

a -> a+ (133)
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Hence, we get :

p.,,->- -p,,l-+l,k->k,

s->s,x -tex ,

H- H,

m
du

av~ y

	

- %µ -

The functions (17) are transformed thus :

I{0 1 0 2 03 64 )] = - t[0 3 0 4 0 1 62 ] ,

and for the general function (108) we obtain :

0

	

0

	

1

	

0

	

y~l (- xµ)

0

	

0

	

0

	

1

	

v'2(- x,) .

	

(136)
1

	

0

	

0

	

0

	

ip3(- xu)

0

	

1

	

0

	

0

	

1P4(- xy)

The 4x 4matrix in (136) is the matrix representative of the operator ~1 . I t
is readily identified with the matrix

(135)

I1 0i "Ÿi (xp) = - 1 [ 0 1 02 0 3 0 4 1

Y5 = Y1Y2Y3Y4 (137)

of the conventional theory.

A comparison with e .g . BJORKEN and DRELL (1964) shows us now, tha t

I has the same effect on a general wavefunction as the so-called PCT -
operation . Hence, we have arrived at an alternative and simple interpretatio n
of this fundamental operation .

The relation between the operations P, T ', I and the 2-fold rotation s
about the three internal axes of the rotor is a nice illustration of the group
theoretical fact, that the factor group of % with respect to the invarian t
subgroup

	

is isomorphic with the group D2 .

12. Wigner's time reversal operatio n

Combining the operation T ' and C leads to the operatio n

T = CT ' ,

	

(138)

which we shall now identify as WIGNER ' s time reversal operation . The effect
of C is to leave xt, unaffected, while each operator of the basic algebra (and
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thus also H) changes its sign. The effect of T ' was considered in section 10 .
Hence we get :

r =-r, t> -t,

$ ~ - p,P4>p4 i

I -> -l,k--->h,spp>- S,K >K,

s
-l > ~ 1, s2 > S2, 53 > 3 •

The effect on the general function (108) is found by combining (121 )
with (109) :

	

0

	

1

	

0

	

0 - - yr (r - t )

	

-1

	

0

	

0

	

0

	

y2 (r,-t)

	

0

	

0

	

0

	

1

	

(r, - t)

	

0

	

0 -1

	

0

	

(r, t)

The 4x 4 matrix in (140) is equal to t times the matrix representative of s2 ,
and equal to the matrix - y i y3 of the conventional theory .

Thus, the relations (139) and (140) establish the assertion, that the
complicated operation known as WIGN1, R's time reversal operation may b e
considered as a compound operation, made up of the two elementary
operations C and T ' .

With this result, we have seen that all the symmetry operations of the
conventional theory have a simple representation within the rotor model . I t
is further worth-while noting, that this model leads to a clear understandin g
of the way in which antilinear operators enter the theory : Alt operations o f
the group ,0.7- fZ' correspond to linear operators, the fundamental antilinear

operation being the operation C .

13. Some general remarks

The rotor model as developed so far is a one-particle model, and th e
comparisons we have made with the conventional theory have, accordingly ,
not included references to discussions based on field theoretical descriptions .
There is, of course, a very extensive literature on the symmetries of th e
quantized DIRAC field (see e .g . KEMMER et al ., 1959 ; MUIRHEAD, 1965) . This
literature leaves the general impression, that an operation like the PC T
operation has its roots in the connection between spin and statistics (PAULI ,

1955 ; LÜDERS, 1957) . We have no reason to doubt that this is true in general ,

(139)

TOivi(r, t) = [01020304] .

	

(140)
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but would like to stress that the PCT operation as it occurs in the present

treatment is a very simple operation . The presence of the letter C in it s
designation is in fact misleading, since it appears as a genuine operation o f
the group X ", of which C is not a member .

As far as C itself is concerned, we may obtain a clearer understanding of
its nature by tying it to the presence of the indicator t, which we have carrie d
through as an unassigned quantity . This is, however, best discussed else -
where .

Finally, we shall consider the ambiguity in sign of the first term of th e
Hamiltonian (86) . We have so far developed the theory with the plus sign ,
but it may equally well be developed with the minus sign . The only differenc e
in the resulting wavefunctions is, that the (r,t) dependent parts in (102) an d
(103) are interchanged. In the conventional theory one could talk about a n
interchange of the large and the small components of the wavefunction, an d
there would be no basis for believing that one had obtained anything but a n
alternative description of the same physical situation .

If, however, one adopts the rotor model, then there is no way of trans -
forming the time-dependent wavefunctions corresponding to the two different
signs into each other, and the two Hamiltonians must be considered a s
physically different, i .e . they must be associated with two different types o f
DIRAC particles. It is, however, easy to see that the two types of particles will
behave similarly in an electromagnetic field ; the type of interaction which
can distinguish between them must be of a different nature .

We are, of course, unable to settle the question as to whether such a n
interaction exists or not . If it does not, then one is free to choose either sign
in the Hamiltonian. If, however, is does exist, then one might perhap s
imagine a connection to the electron-muon problem .

14. Conclusion

The discussion of sections 7-12 illustrates the type of natural inter-
pretation one obtains by considering a DIRAC particle as a. quantum mechan-
ical rotor . The preceding sections taught us, that the only type of behaviour
that a relativistic, quantum mechanical rotor can adopt, is that of a DIRAc

particle .
Thus, we arrive at the conclusion, that the DIRAC particle and the quantum

mechanical rotor are identical dynamical systems . In other words : a DIRA C

particle is neither more nor less than a particle, for which it is possible to
talk about an orientation in space .
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