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Synopsis

The effect of molecular geometry on single and multiple scattering of charged particles off
molecules is investigated theoretically. The treatment is based on classical scattering theory and
is valid at small scattering angles. Two limiting cases are identified; a short-range limit where
atoms within a molecule act as separate scattering centers, and a long-range limit, where a
molecule acts as one scattering center. The transition region is shown to fall into the range of
impact parameters corresponding to moderately screened Coulomb scattering, i.e., the typical
Thomas-Fermi scaftering region. General expressions are derived for single-collision cross sec-
tions valid in each limit and in the transition region, and for the half-widths of angular and
lateral multiple-scattering distributions. Comments are made upon the behaviour of the shape
of multiple-scattering profiles. Quantitative results are based on the power approximation to
the Thomas-Fermi and Lenz-Jensen interaction. Comparison with recent experimental results
on multiple-scattering half-widths for the Pb+— N, system shows excellent agreement. Even more
pronounced effects are predicted for polyatomic molecules.
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1. Introduction

When asked to describe the inleraction between an energetic particle
and a molecule, you will most likely choose one of two simplifications as
your starting point. Either you consider the molecule as one target particle,
with a suitably simplified shape (spherical, linear, elc.), or you treat it as
being composed of independent atoms. Which of the two simplifications you
will judge to be the more appropriate one depends on the effective range of
interaction. In typical molecular-beam experiments, at eV energies or below,
collision partners interact at distances well up to, and greater than, inter-
nuclear distances in molecules, hence the first description is likely to be pre-
ferred. Conversely, MeV or more energetic particles have their most violent
encounters at very small internuclear distances, whence the second descrip-
tion might seem more appropriate. Indeed, a very customary approach to
penetration problems in molecular solid or gaseous targets is to ignore
molecular structure altogether, and lo consider instead a mixture of ran-
domly distributed atoms of the right overall density and composition.

There must be an intermediate situation where neither description is
appropriate. As an example, let the typical interaction distance be of the
order of one half the internuclear distance in a binary target molecule, and
let the target be a dilute gas of such binary molecules. Then, every collision
of the projectile with one target atom is accompanied by another collision
with the other atom in the molecule. While the impact parameter specifying
the first collision is distributed at random, the corresponding quantity for
the second collision is obviously correlated. Whereas in an atomic gas of
equal composition all collisions would obey a random distribution of im-
pact parameters, only half of them do so in the molecular gas. Thus, mole-
cular geometry has an influence on the spectral distribution of energy loss,
deflection angles, and excitation phenomena. It is the purpose of this paper
to investigate the influence of molecular geometry on small-angle single and
multiple scaltering of a beam of charged particles penetrating a molecular
gas. In a related paper, the corresponding problem of energy loss is treated?,
A short note reporting some conclusions of the present work as well as
experimental results on multiple scattering by molecules has appeared
recently?,

1#*



4 Nr. 11

The geometric effects discussed in this paper are characteristic of such
scattering processes where the trajectory of the scattered particle as well as
the location of the scatterer are well-defined in terms of a classical-orbit
picture. There is a broad range of heavy-particle scallering processes,
initial energies, and scattering angles where the scattering cross seclions
derived from classical dynamics can be applied in the analysis. These in-
clude the scattering of MeV fission fragments in solids or gases at the one
end, and the scattering of keV or even eV helium and hydrogen ions in
dilute gas targets at the other end. Criteria for the validity of a classical-
orbital picture have been established3 %, and are fulfilled in those cases
where numerical results are given in this paper. Experimental work has
been reviewed recently®-6),

The present analysis has been developed in close analogy and simul-
taneously with related work on energy losst, and the outline of this paper
has been deliberately chosen to be that of a follow-up. Although the presen-
tation is hopefully self-contained, you may find it advantageous to first have
a look at the simpler, 1-dimensional problem of energy loss.

2. General Description

Let a charged particle (usually an energetic ion) pass by a molecule
(Fig. 1) at a vector distance p from some point Q that specifies the position
of the molecule. Throughout this paper, we only consider situations where
the deflection of the projectile at the molecule (and at its constituent atoms)
is so small that the trajectory can be approximated by a straight line over the
range of interaction with the molecule. This implies high velocity and/or
large impact parameter p(= [pl|). Within the region of validity of classical
scattering, the ion is scattered by some angle

= o(p,4),

where £ stands for three or two angles that specify the orientation of the
target molecule with respect to the direction of motion of the projectile.
We shall assume that @ is also small in an absolute sense, such that the
direction of motion of a scattered ion is determined by a small increment

¢ = o) (1)

to be added (and perpendicular to) the unit vector along the initial direction
(Fig. 1). With that direction representing a polar axis, we can introduce an
“impact plane” perpendicular to it; this plane contains the 2-dimensional
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¢

Unit Vectors, Initial and
Final Direction

Fig. 1. Geomelry of charged-particle scattering on a molecule.

vectors p and ¢. In accordance with the conventional concept of a cross
section we denote the quantity

do = K(¢)d%p = d29fd2pd(p — ¢(p,2)) (2)

the differential cross section for scaltering into, the solid angle d2p at o,
where & is the Dirac delta funtion in two dimensions, and d?p an element
of the impact plane (Fig. 1).

Eq. (2) applies to a polarized gas, i.e. where all target molecules have
the same orientation 2. For random orientation, we generalize (2) so that

K(p) = [d?p{d(® — (.2 . 29

where {...>, indicates an average over all orientations.

It will be convenient in the following to carry on the analysis in the
Fourier space conjugate to ¢. In order to avoid the complications of a pos-
sible divergency at ¢ = 0, we consider the transport cross section

oK) = JPK(9)(1 — %) = [ap((1 - F MDYy (3)
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from which the differential cross section can be recovered? by inverse
Fourier transformation,

K(p) = — fdzk o(k)e ™ ®  for ¢ = 0. €))

(2m)?

3. Binary Molecules. General

Let us first consider a binary target molecule. The total deflection ¢ is
then composed of two parts,

¢ = 1+ 92, ()
i.e., the respective (vectorial) scattering angles belonging to the constituent
atoms 1 and 2 of the molecule. Such a division is straight forward in case
of a hypothetical molecule consisting of two nonoverlapping target atoms.
In real molecules, the region of overlapping electron shells is occupied by
valence electrons; these contribute to scattering only in a certain class of
(very soft) collisions. In cases where this is important, scattering regions for
atoms 1 and 2 may have to be defined. In case of a minor contribution of
valence clectrons to the scattering potential, the above picture of a molecule
consisting of two unperturbed target atoms appears acceptable. This im-
plies that the individual scattering veclors in (5) exhibit radial symmetry,

i = ¢i(Ms) = @i(p)pifpi, 1=1,2. (6)

where p; and ps are distance vectors from the two target nuclei to the
trajectory (Fig. 2), and p; = |p:] the individual impact parameters.
Eq. (3) can now be written in the form

a(k) = {[d?p(1 — eik'(q>1(pl)+%(pz))>9 , (7)
which can be rearranged in the form

o(k) = o1(k) + o2(k) + 6a(k). ()

Here,
oi(k) = (JdPp(1 — H V@Yo = [doy(1 — %) i=1,2, (8)

with doy() being the differential cross section of atom i; because of (6), the
rotational average has no effect on eq. (8). The following interference term
remains,

do(K) = —{fdp(1 — Py (1 — R Pty 9
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Tig. 2. Geomelry of charged-particle scattering on a diatomic molecule,

this term is nonpositive, and composed of contributions from those impact
parameters p; and pz, and orientations £, where both ¢1 and gz are non-
zero. (The orientational dependence (£2) is implicit in p1 and pe).

4. Binary Molecules. Evaluation of the Transport Cross Section

Let the internuclear distance vector in the molecule be d, and its projec-
tion on the impact plane be b. Then (Fig, 2),

b = p1 — ps, (10)

and

Bo(k) = — [dopr (1 — & PO [l2py(1 — P B (S pa Do, (11)

The last factor in the integral has been evaluated previously!; it is easily
found to be

B(p1—-p2—b)>y = (1 = (pr— p2)?/a®)~1/2 (12)

2 rrd?
for |p1— p2|l £ d = |d], and zero otherwise. In those situations where the
integral (11) is made up mainly of contribulions from impact parameters
[p1— p2| < d, we obtain from (11) and (12) the asymptotic relationship
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So(k) ~ — m——gl(?ﬁ;k), (13)

by means of eq. 8. Therefore, eq. 7 reads®

o1(k) 62.(k)

o(k) = o1(k) + o2(k) — >

... for “large d” (14)

In the opposite limit of a large interaction range (3> d), Taylor expansion
of the delta function in (11) yields

d2
O@P1—P2—b)pg = d(p1—p2) + Evﬁﬁ(m— P2). ..

and, by direct evaluation of eq. (7°),

. dz . .
o(k) = jdzp(l - el @Ry Efcﬁpelk-%v% &P for “small d” (15)

where @; now stands for @;(p).

5. Power Scattering

The integrals that appeared in the previous section offer themselves for
convenient evaluation in the particular case of power scattering

C.
p(p) = —; i=1,2 (16)
p

with a positive parameter s. It is known?-5 that within the small-angle ap-
proximation, (16) represents the secattering law for a repulsive interaction
potential « R~% where R is the distance from the scattering center. The
quantity C; contains atomic parameters and is inversely proportional to the
cnergy. Thus, at any given impact parameter p, the small-angle assumption
can always be fulfilled by choice of a sufficiently high ion energy.

¥ Note added in proof: Ed. (14) is formally very similar to an expression derived by
Glauber® for the forward scattering amplitude in GeV nucleon-deuteron scattering. The un-
derlying physical effect in that case is a mutual shadowing of two independent scatterers.
This shadowing elfect has the same origin as the correlation effects considered in the pre-
sent work as well as in previous work on energy loss!, i.e., the geometric structure of the
target particle, but it is otherwise different because of the rather different scattering me-
chanism. In particular, Glauber’s treatment of diffraction scattering yields an interference
term corresponding to (13) that is a factor of two smaller, I am grateful to N. Andersen for
drawing my attention to a nole referring to Glauber’s work.
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[t is known that by proper choice of the power s, an accurate representa-
tion can be found for repulsive atomic interaction potentials3, cross sections
for screened-Coulomb scattering?, and multiple-scattering profilest. For the
present purpose, the assumption of one exponent s applying to both atoms
(i=1,2) is an important mathematical simplification. Except in case of
very different masses of the constituent atoms, this assumption is not a
severe physical limitation.

Inserting (16) into (8), we obtain?

oi(k) = Agm (17)
with
A = 't —m) Cofayem {7
Z—n?il—km)(z ) (172)
and
m = 1/s (17b)
Moreover, (15) reads
ao(k) = Ak* + Bd?+ . .. (18)
with .
A = (A1572 + Aps/?)2m (18a)
and
7 Ci1Co
B - 3 (s — m) (Cit G (18b)

6. Single Scattering. Differential and Incomplete Total Cross Section

After inserting (14) into (4), and observing (17) we obtain the following
expression for the single-collision cross section of a diatomic molecule in
the power approximation, in the limit of short-range interaction,

R(m) E(@)ExA(9)p*

K(9) = Ki(9) + Ko(9) — - .. (19"
m a2
where
Aim 221 + m)
K = T p-2-2m TN T 20
ORIy TG~ (20)
and

I'(1 + 2m)I'(1 — m)?

RO = R0 2wy Tt = my? @0

R(m) has been plotted in fig. 3.
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Fig. 3. The quantity R defined by (21), versus m.

In the (more familiar) notation
do
do = K(@)d®p = — dp,
dy
(19’) reads

dp ?(p de m 2md? de dy

do dal+daz R(m) ¢ doidoz

v

Nr. 11

(22)

(19)

the subsequent term in the series would be proportional to d=2. In the oppo-

site limit of long-range interaction, eq. (18) yields
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22m (1 + m) N
I'(1 — m) o (23)
= [(Ku(@))*2 -+ (Ke(@)) 2P+
and the subsequent term in the series would behave like d2-d(¢); it has to
be dropped, according to eq. (4).

In small-angle single-scattering experiments, it is most often the in-
complete total cross section

m 9_3
K(g) = —-A-gma=2m

7T
do
Otot = f d(P— (24)
Pe de

which is the measured quantity. Here, ¢, is a (very small) limiling angle
defined by the geometry of the apparatus. From eqs. (19) and (23) we oblain
by integration

01, tot 02, tot P
Jtot = 0‘1’ tot + 0'2’{;0(; — R(In) sz e (Zb)

for large d (short-range limit), and
otot = [(01, 10t)5/2 + (02, 1ot)s2]2™ + . . . (26)

for small d (Jong-range limit). Alternatively, (25) is a high-energy, and (26)
a low-energy expansion.

Take, as an example, the case of a homonuclear binary molecule. Then,
egs. (19, (19), and (25) represent the limit of a molecule consisting of two
independent, identical scattering centers, and the apparent cross section is
twice the cross section of a single atom (for d > «). Conversely, eqs. (23)
and (26) rvepresent the case of a molecule acting as one target particle, the
apparent cross section (averaged over all orientations) being 227 times the
cross section of a single atom. This value is smaller (larger) than the former
one provided that m is smaller (larger) than 1/2. The behaviour of the
numerical factor R(m) in (19), (19), and (25) is consistent herewith:
R(m) Z 0 for m S 1/2. Therefore, so long as the inter-atomic potential itself
is reasonably close to a power potential, we can expect that the two limiting
expansions, with some possible interpolation, describe the small-angle single-
scallering cross section of a molecule satisfactorily. As will be shown in the
following section, the short range limit (19) is appropriate in existing dif-
ferential measurements, while it is not normally reached in measurements
of the incomplete total cross seclion.
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7. Application: Thomas-Fermi Scattering for Homonuclear Diatomic
Target Molecule

Lindhard et al.? have given a very compact description of the elastic
scattering between heavy atomic particles on the basis of a Thomas-Fermi
(TF) interatomic potential. Their description hinges on the power-like be-
haviour of the TF potential over a moderately wide range of interaction
energies. In their description?,

d»
do = ma® = () (27)
7

where a is the screening radius of the interaction, and*
% = &sin 6/2 (28)

with 6 the center-of-mass scattering angle, and ¢ the center-of-mass energy
in units of Z1.Z; e2/a, Z1 and Z3 being atomic numbers of ion and target atom.
f(n) is some (given) universal function that can be approximated as

f() = Aot =2m (29)

over limited regions of #, with 4 a dimensionless constant depending on m,
and m ranging from slightly greater than 0 fo 1. m = 1 refers to Rutherford
scattering.
In the small angle approximation, (28") can be written in the form

E 4

= ——— == ¢, 28’

1 VAVA) ez/a 2 ¥ (28

where E is the laboratory energy, and the last part defines the scaled lab-
oratory scaftering angle . (21) reads, then

do  ma? :
= @ for oL (279
@ @

The TF description is valid mostly at comparatively small interaction dis-
tances (< ap = 0.529A). Therefore, the TF cross section for a diatomic
homonuclear molecule is to be found primarily from eq. (19) which reads,
by means of (27")

* The notation /2 is frequently found in the literature for .
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do 2(101 R(m) ¢ (d01>2

d@ dg m 2md? dg) = (29)
2ma? | R(m) & f(§)
= f(‘l’){l" -y e
@ dm  d? ¢

In the limit of large E, i.e. large §, the expression in brackets is small, and
the molecule acts like two independent aloms. The case of strict Rutherford
scattering (:n = 1) has to be excluded, however, since the expansion (19) is
not applicable in that case (R(m = 1) = — %). Pronounced deviations from
the independent-atom picture occur at small values of ¢, i.e. at low energies
and/or small angles. In that case, (¢ < 0.1) the TF interaction is described
well by (29) with?®

m = 1/3; 1= 1.309, (30)

and the factor in the brackets of (29) reads, then,

2
1 - 0.761 Z—zq3~2/3 (TF) (31)

since R(1/3) = 0.775. For medium-mass collision partners we have3 4
a =~ 0.885 ag(Z23+ Zx2/3)~1/2 ~ 1014, ie. a?/d? ~ 10-2. Hence, measur-
able deviations from 1 occur for ¢ < 0.1, and the expansion breaks down
above § ~ 1073, In fact, the low-energy limit (23) yields

do/d§ - 2273 doy/d§; : (32)

this value is reached, according to (31), at

ie. around ¢ ~ 1072 Thus, the following qualitative picture arises for the
small-angle scattering on molecular targets.

1) At scattering angles corresponding to ¢ = % > 1, a molecule be-

haves with high accuracy (better than 1 pet.) like two independent
atoms.

o~

ii) In the region 10-2 X @ < 1 the cross section of a molecule becomes
measurably smaller than that of two independent atoms.
iif) In the region @ < 10-2 the cross section approaches the long-range

Timit.
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Now, conventional small-angle scattering experiments that have been per-
formed on molecular gas targetsS- 19(in the oo-geometry) dealt with impact
parameters in the Born-Mayer region, where § < 1073, and thus refer to the
long-range limit. The analysis of those experiments has been based on a
molecular picture. The present analysis confirms this picture but adds little
new to it. In fact, it is oversimplified in this respect since valence electrons
are important there, but are not taken into account explicitly.

Conversely, differcntial cross section measurements tend to deal with
large enough angles and/or energies so that ¢ > 1, and the short-range limit
should apply. A notable exceplion is Loftager’s setup!® where differential
cross sections have been determined in the genuine TF region (103
< $ < 10), i.e. including the transition region between the long- and short-
range limit. So far, mainly experiments with noble-gas largets have been
performed, but pronounced molecular effects would be expected. Since, in
that work, the atomic interaction appeared to be closer to a Lenz-Jensen
(LJ) potential as characterized by (29) with!2

m = 0.191; 1= 292 (33)

at small values of #, we also quote the expression corresponding to (31) for
LJ interaction,

a2
1 - 3.68 ﬁq”o—m‘d‘; (34)

the long-range limit do/d@ — 29382 do1/d@ is reached around ¢ = 500 (a/d)5
~ 1/2-1072, i.e. at a similar value as in the TF case™.

8. Multiple Scattering. Angular and Lateral Distributions

In typical multiple-scattering experiments, either an angular distribution
F(x,0)dQ of an initially collimated beam, or a lateral distribution G(x,0)d%p
is observed (fig. 4), where x is the travelled distance in the target. In the
small-angle approximation, the angular distribution is given by Bothe’s
formula?

17 SN
F(a:,oc) = 2—7_1f dk &k Jg(kot)e_N:w(M, (35)
0

* Since the Lenz-Jensen interaction potential, contrary to the TF potential, does not ap-
proach power form at large inter-atomic distances, egs. (29) and (33) approximate the LJ
scattering law less accurately than egs. (29) and (30) approximate the TF seattering law. In
an accurate analysis of molecular scattering measurements, it may thus be necessary to expli-
citly include a dependence m = m(P) in R = R(m).
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Detector

X
gDetector
Beam a Beam ‘'

Ft— X — E—X*Df

Target Target

a) Angular Distribution b} Lateral Distribution

Fig. 4. Geometry of typical multiple-scattering experiments with gas targets.

where N’ is the density of scattering centers and o(k) the transport cross
section (3). Similarly8,

® z
G(x,0) = LJ- xdox Jo(%g)exp<—N'f dx'cr(%x')). (39)
2mJ 0
The two distributions are formally very similar and contain equivalent in-
formation. In addition, somewhat surprisingly, the two distributions scale
very accurately even rather far out into the tails, as has been shown both
theoretically® and experimentally’. It was found recently® that the power
approximation for the transport cross section, as exemplified by eq. (17),
serves as a very accurate basis for multiple-scattering theory in the screened-
Coulomb region; it seems, in fact, more accurate than the actual underlying
power potential and single-scallering cross section. The following consid-
erations, therefore, have been based on the power approximation (17).
Let us apply eqs. (35) and (36) to atomic systems first. From (17) and
1 1

(35), we find that k scales like (N'x) #m/C; and « like k71, ie. (N'x)im(,.
In particular, the half-width a2 of F(x,«) must behave like

1
e« (N'x)2m K, (37)
since Cy « 1/E.
Similarly, from (17) and (36),

1

g2 = (N'a)im (38)

118
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These variations have been checked experimentally in considerable detail.
With regard to the present analysis, experiments with gases have been most
convincingls—15,

Let us, now, consider a diatomic gas, and let us assume, as in sect. 5,
that one and the same power m governs collisions with both types of con-
stituent atoms.

In the following, our reference standard is the completely dissociated gas
of N' = N/2 atoms of type 1 and 2; N is the density of afoms. In that state,
the exponent in the exponential function in (35) reads

N N
— gx(o‘l -+ (72) = - 5 -'L'(Al + AAZ)I{-ZM (39)

A1 and Az being defined in (17a).
In the long-range limit, (18a) yields instead,
N 1 1
_ _éx(Alzm + AZ 2m,)2m1€2m;

The latter expression takes on the form (39) if an apparent target thickness

(C1+ C2)*™
= — v_—:t
cam 4 cam

’

(404a)

is introduced. Eq. (37) provides then the following relationship for the
angular half-widths,

(o1 /2) mo1 _ (ml)sz%_ Ci+ Cq

. 1
(ee1/2)aissoc x (Cim T Cgm) am

(41)

in the long-range limit. In particular, for homonuclear atoms, C1 = Cz, (41)
yields 91-1/2m

The same argument applied to (36) yields another apparent thickness

(x//)Zm-l-l B (&_’i‘ Cz)2m

x cEm 4 cam )

(40b)

This, together with (38), provides a relationship between the lateral half-

widths .
J R
(o1/2) dissoc x T (C3m | czmy1iem
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i.e. exactly the same ratio as (41) in the short-range limit. In particular, this

1
ratio becomes 2' 2 for a homonuclear molecule. The angular and lateral
half-widths (o1/5)aissoc and (01/2)dissoc are comparable to atomic quantities
that are known experimentally for a wide selection of ions and targets. The
present argument makes use only of the scaling properties of the power cross
section, i.e. ol the experimental fact that the relations (37) and (38) are
satisfied. The parameter m occurring in (41) and (42), in particular in the
homonuclear case, is thus to be understood as the one extracted from
measurements on the corresponding atomic systems.

The transition between the shori- and long-range limit is harder to find.
The argument has been outlined briefly in ref. 2. We note {irst that straight
insertion of (14) into (35) or (36) with ¢i(k) according to (17), would yield
a spurious divergence at k = o, since the correction term do(k) would be
applied outside the region where it is small. Instead, a perturbation approach
is taken.

Let us, first, insert (14) and (17) into (35). The exponent of the expo-
nential function can be written in the form

— N’x(Al + Az)]ﬁzm 1- AI—AZ— . kZm/QndZ
A + Az )
(43
~ = N'a(Ar + A)kem |1 — A - k2™ '
B A1 + Az 0

where ko is some representative value of k that will be specified below. This
approximation is appropriate so long as the term in the brackets does not
differ substantially from 1. It is also vital that k27 varies slowly. (In the sub-
sequent example, m ~ 0.2). Eq. (43) reduces the molecular correction to
the independent-atom limit to an apparent target thickness x7’,

, A1dy B2
' Tl - —— s
A1 + Az 2md?

and thus, by means of (37)

- . 44
2m A1 + Az 2md? (44)

G (Lt i

(Oﬂl/z)dissoc €T

Similarly, the exponent in (36) reads
Mat.Fys.Medd.Dan.Vid.Sclsk, 39, ne. 11. 2
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Cdm + 141+ As 2md?

a2m+1 2m+ 1 A144 %gmem
(45)

~ — N’ (Al + Az)%zm —_ 1
2m + 1
with %o same representative value of ». Again, the molecular correction can
be described by an apparent thickness a1” with

\ A 2m .2m
(ac1")2m+1 = x2m+1(1 _2m A1 Ade " )’

4m + 1 A1 + Ay 2md?

from which the lateral half-width can be found by means of (38)

. (46)

(01/2) mo1 _ al” 1+£—n ’ _1_2m +1 Ade 272
(01/2)dissoc = 2mdm + 1 Ay + Ay 27ad?

The values of ko and xp need to be determined from the unperturbed
integrals, i.e. the multiple-scattering distributions for the dissociated gas.
According to (43), k2™ must scale like [N'x(41+ 42)]"1; correspondingly
(45) requires 5™ to scale like (2m + 1)/ [N'(A1+ Ag)x?m+1]. Therefore, (44)
and (46) read

1 1 A4
(%1/2)mo1 ~ 1 — const— ’ 142 (41"
(Ocl/z)dissgc 2m 2nd?N'x (A1 + Az)z

1 (2m + 1) 1 A1 A
(01/2)mo1 ~1 const'——ir»m ) . 142 (46’)
(Ql/z)dissoc 2m  4Am + 1 2md®N'x (A1 + As)?

The values of the dimensionless constants in (44") and (46") depend on
the precise definition of ky and #y. Since the integrands in (35) and (36)
are normally far from narrow, symmetric distributions, a choice based on
extrema or zeros appears inappropriate. Instead, the median values have
been chosen; moreover, for simplicity, we take median values at o« = 0, and
p = 0, respectively. The latter choice is justified because of the qualitative
similarity of the contributions to the profile at any angle (or lateral spread)
within the half-width.

It is easily shown (and specified in appendix A) that this choice yields

const = const’ = g(m) (47

where ¢ is the solution of the equation

¢ L,y ® I p—
f dtt™ e = %j dtt™ e . (472a)
0 0
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TasLe I. The quantity g as defined by eq. (47a), versus m.

m g m g m | g
1.000 0.694 0.250 3.671 0.143 6.671
0.667 1.184 0.222 4.170 0.133 7.171
0.500 1.678 0.200 4.672 0.125 7.669
0.400 2.175 0.182 5.170 0.118 8.171
0.333 2.675 0.167 5.673 0.111 8.669
0.286 3.174 0.154 6.170 0.105 9.167

The function g(in) has been tabulated in table L.

The present discussion referred to the half-width of multiple scattering
distributions rather than the full profile. The perturbation approach used
precluded the consideration of a possible influence on the shape of the
distributions by the molecular structure. A qualitative argument suggests
that there is indeed such an influence. Take, as an example, the angular
distribution F(x,x), and consider first the range of angles up to the half-
width e,2. The integral (35) receives, then, essential contributions from a
certain range of k-values around the median value ky. Now, with « in-
creasing, the important range of k shifts towards smaller values because of
the Bessel function, Jo(ke); consequently, the molecular correction becomes
less important (cf. eq. (43)). Thus, at sufficiently large values of « the mul-
tiple-scattering profile for a molecular gas will approach the independent-
atom solution, even though the half-width may be close to or within the
long-range limit. This result is consistent with what has been found in the
single-collision case, e.g., eq. (29). A more quantitative consideration is
sketched in appendix B.

9. Application: Multiple Scattering on Diatomic Homonuclear
Molecules

Just as in sect. 7, the description can be simplified substantially in case
of homonuclear molecules by the introduction of TF variables. These are
well established in multiple-scattering theory (cf., e.g., refs. 7 and 8). We
have

7 = walNx (48a)
N Ea
& = —« (48Db)
221Z262
T 48
= na®N - ———— c
0= N et (48¢)

2*
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where q is the Thomas-Fermi radius and N = 2N’ the number of atoms
per unit volume. The latter choice has been made because it fits best to the
dissociated gas as a reference standard. Inserting these definitions into (44")
and (46"), and regarding that A1 = As for homonuclear molecules, we finally
obtain

1 a 2 g
1-; oql = large =
@ | 2] o)
ai1/2 )dissoc or
(@72) ;
1
21_27” small =
and
1 CGm+1)2fa\?
- *’(i‘) I large =
(81/2) mol 29m 4m+1 \2d/ =
(31 ) dissoe 50
(@1/2)dissoc for ( )
1
21*27” small »

The upper relationships in (49) and (50) refer to the independent-atom
or short-range limit. The lower values refer to the long-range limit. It is
obvious that the relevant variable is the thickness parameter 7 that also
controls the half-widths? ® & » and gi2: At large v (large half-width) the
short-range limit is appropriate, and the reverse is true at small .

The upper parts of eqs. (49) and (50) were already mentioned in a short
note?), where the notation
2m + 1
4m + 1

h(m) = g(m) (51)

was employed. Moreover, as was shown in ref. §, the parameter m, which
determines the interatomic potential, can be related in a definite way to the
thickness parameter z, eq. (48a), such that a function m = m(7) can be
defined for a given screened-Coulomb interaction potential. By means of
these relationships for TF and Lenz-Jensen (L.J) interaction, one can relate
g and h to v directly (Fig. 5).

Fig. 6 shows experimental results of lateral half-widths measured with
lead ions scattered on nitrogen and neon at the same density of atoms?.
The TF screening radii are determined essentially by the heavy lead ions,
so that from the point of view of comparison, neon ions should be an ac-
curate substitute for nitrogen. The two full-drawn theoretical curves refer to
eq. (50), with m = 0.2 = const. This value is very close to the LJ value
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Fig. 5. The quantities g and h defined by eqgs. (47a) and (51), respectively, versus power m.
Scales of v (48a) have been included by means of the relations derived in ref. 8.

—
[

0.191; it was chosen as the one extracted from measurements of the lateral
half-width gi/2 on noble-gas targets'® in the critical 7 range 10-2— 10-1, The
TE curve has been included for comparison. Both the general trend, the
region of the drop-off, and in particular the long-range limit are described
quite well by the theoretical curve for m = 0.2. At the low 7 values it is
clearly superior to the TF-curve. Neither of them, however, explains the
peculiar behaviour of the experimental points that is observed between 7 = 1
and 5.

10. Polyatomic Molecules

By application of the same physical model to a polyatomic molecule consisting
of z atoms 1, 2,...z, eqs. (7) and (7) can be readily generalized,

il - % Pi(Py)
o(k) = <[d@p(1 —e =1 ) (52)

and
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Bry2 (N2} 1B, ;o (Ne) independent - atom  limit
1.0
TR~
— b
pd S
= / /% short-range expansion .
’ o v

L / / o _

05—

- e} )
}'——-O—O‘%—oo——“" long-range limit

0 1 J
1072 107 1 T 10
Fig. 6. Experimental ratio of lateral half-widths, 3;/, (nitrogen)/g,, (ncon), versus thickness

parameter 7 (48a) from ref. 2. Fulldrawn curves: Eq. (50) for power m = 0.2 (Lenz-Jensen) at
all 7. Dashed curve: Eq. (50) for Thomas-Fermi interaction.

O’(k) = ZO‘@‘(]{‘) *Z(SG'”(k) Jr. Z 50”-1(1() P
i <d <<k (52)
oo+ (=) 002, . o (K)

with o4(k) defined by eq. (8) fori = 1,2,...z and
doii. . (k) = {Jd2p(l — ™ Pi@y (1 — Py s (53a)

p; is the (vectorial) impact parameter with atom i. The long-range limit is readily
found from eq. (5627). Indeed, the leading term for small interatomic distances reads

o(K) ~ [dp(1 — e T (53)

or, for power scattering, by means of (16) and (17),

2 1 \om
o(k) ~ (ZAﬂm) L2m (54)
1
of which (18a) is a special case. In the short-range limit, eq. (52) yields

a( K k
(k) ~ S ou(k) _g' J;‘LCZT() + S o (k). .. (55)

t<i<k
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where d;; is the distance between atoms { and j. The term &o4y(k), according to its

definition (53a), is equivalent with (9) for i = 1, j = 2, and is, therefore, identical

with (13) for 1 = i, 2 = j. It will now be shown that except for a very small number

of special cases, the subsequent terms in (35), from doys, on, are of higher than

second order in the inverse interatomic distance, and therefore have to be dropped.
Take the term dojez as given by

do1os = { d2p(1 — & PN (1 = HRBm (] (o RB@y,
= H {fdzpi(l _ eik-‘Pi(Dz‘))}.<§(p1 — p2 — b12)5(p1 - ps — b13)>g , I
=1

where b;; is the projection of the interatomic distance vector d;; on the impact plane.
Since only the leading term for large interatomic distances is of interest, we can
simplify the rotational average

<O(pr — P2 — b12)0(P1 — P3 — bis) Do ~ 8{(b12)d(b1a) > . (57")

The operation . .. > includes an integration over all orientations of an arbitrary
rotational axis (here taken to be d;2) and over the azimuthal angle of an arbitrary
point within the molecule (here taken to be atom 3) with respect to that axis.

The azimuthal average is evaluated first. The factor d(byg) is not affected by
this operation, but it ensures (by bjs = 0) that the rotational axis is identical with
the polar axis of the system. Therefore,

d(b13) 8 (dhssinges)
> = :
nbis md13singog

(56)

{O(b2)d(bz) >0 = (6(b12) - {B(h2)>.

Here, g3 is the angle between d;3 and di9, i.e. a fixed angle within the molecule,
so that byg = di3 sings3.
The average over the rotational axis reduces then to

1

27dr9?

{O(h1)> =

a result which is identical with (12) for py — pz = 0. Therefore,

d (singgs)
3(b12)- (b 0 = . 57
< ( 12) ( 13)>Q 2.n2d122d132811](p23 ( )
and, from (56)
k)yos(k)os(k) O(singe
51y ~ JL)02(R) 08 () O(singss) (58)

2n2d122d132 Sinqﬂzg,

Thus, for sinpsg + 0, we have do193 = 0 to order dys—2 di3~2.

For a linear molecule, @23 = 0, (58) becomes strongly divergent. In a real
molecule, this divergence will be smeared out by molecular vibrations. Let, for
example, @23 be distributed according to a gaussian distribution
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Pis
1 3 o _
9 (p23)d?pzs = QT%ée 2 pagdipas (59)
v
1
with a width ¢¢ (< 1, then (singes)/singpag >y = 503 and
Po~
010903
<(§O’12 ~ T —————— | 60
2e (2m)2d122d132pp? (69)
This expression is negligible in comparison with, e.g., doqs, if
2nd13%pa® >> o3 (61)

The factor po2 makes this a rather strong requirement that will often not be fulfilled
in cases of practical interest.

Therefore, the linear molecule needs to be treated separately, once more, and
starting from (56). In such a molecule, we have, e.g.,

d13 = /1(112 with 1 = 0, =1 (62)
and hence

b13 = },blz (62&)

Thus, the rotational average in (56) can be written
CO(PL = P2 = b12)d(p1 — Ps ~ D1a) >0 = 3(p1— p3 — A(ps — ) -

(63)
KO P2~ b)do ~ 8(pL— ps — A(p1 - P2))- -

202

If this is inserted into (56), it becomes obvious that do123 o d1272, ie. of the same
order as the do;; and therefore not negligible in general, for a linear molecule.
The resulting expression

1 ) )
daiag ~ — fd P(l — ezk'q)‘(pl))fdzpz(l — e“"q)”(p“)) .
27td122

(1 - ez‘k-%(pl-(l—l)+pz-l))

(64)

is a 2-center integral that can be evaluated by means of an expansion in Bessel func-

tions, if needed. At present, we consider two limiting cases by means of a simple
estimate.

We first note that the integrand in the expression
oi(k) = [d2p(1 — K- Pi(@))

can be represented as a step function,

L oo P < poi(k) } (65)
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since for small p, @; is large, and the exponential rapidly oscillating, By comparison
with (17) and (17a) we find

poi(k) = ym(kCi)y™ (65a)

with a well defined constant y,,.

The following considerations refer, more or less explicitly, to a triatomic mole-
cule. Take first the case where pog(k) is greater than po1(k) and poa(k), i.e., C3 > G, Ca.
Then, the integration region in (64) is determined essentially by pyy and Po2, and
the last factor is 1 in that region. Then,

1
-— 0102 ~ do12; C1, C2 < Cg. (66a)

da12s ~
2rdio?

In the opposite case, where pgg is substantially smaller than por and pgg, a similar
consideration yields

0102

do123 2— C1, Co > Cs. (66b)

>
di2?

Now, C; increases with increasing atomic number of the target atom. Therefore,
the two limiting cases refer to molecules where one heavy atom (3) is surrounded by
two light ones, and one light atom (3) surrounded by two heavy ones, respectively.
For a triatomic molecule (55) yields

G103 G203

O~ Qgr+02+03g " — ————
27Td132 2%(1232

(atom 3 heavy) (67a)

and
0102 0103 0203

g ~ 01+ 03 + g3 — - -
2ad1s2  2mdis? 2mdps?

(atom 3 light) (67b)

The latter result does not differ from what would be expected for a nonlinear tri-

atomic molecule. And the former result (67a) could just as well have been derived
010

by means of the fact that the term oy ~ 21T22 would be smaller than doy3 and
7y

do23, both because o1, o3 {({ o3 and dis > di3, dgs. It thus appears that the only

case where some uncertainty prevails is that of a linear molecule with 3 roughly

equal constituents. In that case, we have

0103 d203 0102

dndig? ~ 4 68
27d1?  27das? 27122 (68)

if 1 and 2 are the outer atoms. Thus, the uncertainty due to lack of knowledge of

the accurate value of the sum — dogs + doqag is ~ 12 pct. of dois + doag, ie. a

12 pet. error in a correction. This must most often be an acceptable uncertainty.
It, occurs therefore, that at least for triatomic molecules, the expression
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2 oi(k)o;(k
w) ~ 3 oty - 3 ZRHD (69)
i=1 i<q  2mdy?
gives a satisfactory estimate of the transport cross section in the short-range limit,
independent of the detailed geometry of the molecule.

In atoms containing more than three molecules, similar considerations would
have to be applied to terms of the type do1azq etc. The type of argument would be
the same as what was applied in this section, and the results would be similar,
A case where caution would have to be applied is that of long chain molecules
(*‘strings™). Other types of processesl®) that are outside the scope of this paper
would have to be considered there.

11. Polyatomic Molecules: Single Scattering

Single-scattering cross sections for polyatomic molecules are established readily
be means of egs. (54) and (69) from eq. (4). The results are straight generalizations
of those quoted in sect. 6 for diatomic molecules. They read

do zdoz R(m) p do; doj
dg . do m  <j Q%dfj dop dy T

(70a)

for small interaction distance, and

o doi\ =\
%p - (;({%)2“) (70b)

in the long-range limit. R(m) is defied by eq. (21) and plotted in fig. 3. Both equations
show that the relative magnitude of molecular corrections in comparison with the
independent-atom limit (d;; = ©) increases with increasing number of atoms per
molecule. The conclusions made in sect. 6 remain otherwise unchanged.

If the molecule is built up of z atoms with similar atomic numbers and masses,
we can ignore the differences between the constituents, and write eqgs. (70) in the
form

d d R day\? 1

doy dy m do | < 2ndi?
d d
99 et (70b")
dp dg

Thus, the two limiting cases differ by a factor of z2m—1; since the long-range limit
applies mainly to collisions where m < 0.2 (LJ), this ratio decreases substantially
with increasing z. When the sum in (70a”) is written in the form
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1 - < ! > Lz(z - 1), i)
i< g 27Zdij2 Q.J'Edijz ¢ :

it becomes evident that the molecular correction to the independent-atom limit
increases like z—1 on a relative scale for small molecules (z < 5), but more slowly
for larger ones.

These relations can easily be written in terms of TF variables (28). However,
TF wvariables provide a substantial simplification only for homonuclear (or approx-
imately homonuclear) molecules.

12. Polyatomic Molecules: Multiple Scattering

The generalization to polyatomic molecules of the relations derived in sect. 8
for multiple scattering starts also with eqgs. (54) and (69), and eqs. (35) and (36).
Instead of (41) and (42), we obtain

C;
(1/2)mo1  (01/2)mor ; '

(o1 /2)aissoe - (01 /2)dissoc a (ZCiZm)]_/zm
i

(72)

in the long-range limit. This approaches z1-1/2% for homonuclear molecules.

For nearly independent atoms, we obtain the following relations instead of
(44 and (469,

o1 /0 1 AA;
ﬂgl_‘g. » I (73a)
(o1 2)dissoc 2m (X A2, % 2mdiy?N'x
i
@pno g Gmr DT 1 Ady (73b)
(Ql/g)dissoc 2111 4Hl + 1 (ZA1)23<] 27'5(11]‘21 X
i
where A; and g are given by (17a) and table I, respectively.
In case of (approximately) homonuclear target molecules, (73a) reads
o 1 1 z—1 1
AL L NPT AR Y. B U S ALY —> (73a")
(oe1 /2) aissoc 2m 2%, 2ndi2N'x 2m 2 2nd;2Nx

where N = zN’ is the number of atoms per unit volume. Obviously, the molecular
correction to the independent-atom limit increases with increasing z in much the
same way as was found in case of the single-scattering cross section. The corre-

sponding relations for ¢i1,2, and the equations for TT-scaled quantities (in the
homonuclear case) are easily found.
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13. Summary

In the classical small-angle scattering of charged particles by molecules
it is convenient to define three regions; a long-range limit, where the
interaction takes place at a sufficiently large distance so that the mole-
cule acts as one target particle; a short-range limit where the interaction
takes place at sufficiently small distances so that each constituent atom
(if close enough to the orbit) acts as one target particle; and a transition
Tegion.

In single scattering, the long-range limit is reached at low energies and/or
small scattering angles. The reverse is true for the short-range limit. The
transition region covers the range 10-2 T n(= 1/2) T 1 in Thomas Fermi
variables. This corresponds to moderate screening of the Coulomb inter-
action. Typical measurements of incomplete total cross sections trace the
region of excessive screening (7 < 1072); the long-range limit applies to
those situations.

In multiple scattering, the long-range limit applies to small values of the
thickness parameter v = 7a2Nx, and large ones for the short-range limit.
The transition region covers the range 10723 7 < 1.

The short-range limit can be realized experimentally by means of a dis-
sociated gas target, or a noble-gas target with similar atomic number.
The single-collision cross section of the molecular gas (differential or
total) is smaller by up to a factor of the order of ~ z2"-1 ~ z~0-6 than
the corresponding quantity for the dissociated gas, where z is the number
of atoms in the molecule. Multiple-scattering half-widths (angular or
lateral) are smaller by up to a factor of ~ z1-1/2m ~ £73/2,

The calculations presented here are based on the simplifying assumption
of a target molecule composed of undisturbed, spherically symmetric
atoms thal are arranged in some geometric configuration; i.e., valence
effects are ignored. Since the transition region between the long- and
short-range limit lies entirely in the Thomas-Fermi region of the
scattering diagram where valence effects are unimportant, this simpli-
fying assumption only affects the detailed behaviour wifhin the long-
range limit. The quantitative results presented in this paper refer to the
deviations from an independent-atom picture, i.e. the short-range lHmit
and the transition region; these resulis are insensitive to valence effects.
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6. For essenlially the same reason, the exclusive use of a classical-orbit
picture of the scattering process is not a severe limitation.

7. Experimental data on single scattering off molecules in the transition
region do not appear to be available. One recenlly published set of
multiple-scattering half-widths on nitrogen is in excellent agreement with
the theoretical prediction, both in the long-range limit and the transition
region, provided that the scattering law for individual atoms is chosen
in accordance with the experimentally found multiple-scattering half-
widths on noble gases. This scattering law corresponds much closer to
Lenz-Jensen than to Thomas-Fermi screening. The multiple-scattering
half-width in the transition region is quite sensitive to the scattering law
for individual atoms. Therefore, the molecular effect described in this
paper serves as an additional probe for interatomic potentials in the
moderately-screened Coulomb region.

8. With respect to practical applications in accelerator physics, it may be
useful to recall that regardless of the nature of the target molecule, target
pressure, and ion type and energy, the multiple-scattering distribution
is narrower for the molecular than for the dissociated gas, so long as the
small-angle approximation applies.

Acknowledgements

This work was stimulated by Georg Sidenius’ insistence that a molecule
is not just the sum of its atoms. A major incitament was the close cooperation
with the experimental groups in Copenhagen, N. Andersen and G. Sidenius,
and in Aarhus, F. Besenbacher, J. Heinemeier, P. Hvelpland, and H.Knud-
sen. Special thanks are due to J. Schou for checking some of the integrals,
and to N. Andersen for numerous discussions. A. Russek made valuable
comments on the manuscript.

Appendix A

This appendix serves to specify the median values ko and xg as repre-
sentative values of k and « in Bothe’s formula (35) and its modification (36)
for lateral profiles. Consider (35) first and define ky by the relation

1 , 1 ,
2—7;J. dk k Jo(ko)e V' #0 &) ~ ;;f dkk Jo (ko) e Vo0 (B) (AD)
0 “ ko
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i.e., ko divides up the integration into two equal parts. For values of «

within the half-width @12, one may set « = 0 without making a serious

error. Then, kp becomes independent of «, and (A1) has a unique solution.
(A1) is rewritten by means of (18).

o o
f dik ke NoAR _ gJ‘ dlck e~ NoAEE (A2)
0 0
or, after introduction of the variable
t = N'xAkm, (A3)
g l—l ) lfl
f dtt™ et = %f dti™ et (Ad)
0 0
where
g = N'xAke2m; (A5)

In terms of an incomplete gamma function!?, (A4) reads

P(i, g) -1 (46)
m

This determines g = g(in). Table I shows g as evaluated from the tables in
ref. 17. Insertion of (A5) into (44) with A = 41+ A yields (44") and (47).

By applying the same argument to the lateral distribution (36), the
equalion that corresponds to (A2) reads

#o gZm+l o 3 g2m+1

—N' S axPm — N AT

drxe = 2m+l =5 | dxxe 2m+1 . (AT)
0 0

The proper variable is now

m2m+1
t =N — Ax2m (A8)
2m + 1
and
x2m+1
g =N’ - 1 32927 (A9)
2m+ 1

with g being a solution of (A6). (A9) inserted into (46) yields (46") and (47).
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Appendix B

It is the purpose of this appendix to provide a somewhat more quantative
argument for the claim that a molecular multiple-scattering profile approaches the
independent-atom profile at larger scattering angles. Only the angular profile F(x,«)
will be considered. The procedure is a generalization of the perturbation approach
taken in sect. 8.

Take eq. (35) and insert (14),

17 -
Flx,o) > 277;_[ kdkJy(ke)e
0

N’$(61 () + 0 (k) — 2ELO (&) oy UC))

27a?

(B1)

for x sufficiently large so that the molecular correction is small. Within the perturba-
tion approach, we can write

1 02 ()0 () w

F(x,o) ~ e | kdkJo(koyen M OERREN o (B2)
27
0
where

k1 = ki(a) (B3)
is the median value of the integral (B2). Therefore, (B2) can be written in the form
F(x,o0) = S(a) - Fai(x, o) (B4)

where Fy(x,e) is the independent-atom distribution, and
1 010 02 ()
S(x) = e 2 (B5)

This function is greater than 1 for « = 0, and decreases towards 1 with increasing o,
since kj{o) decreases. An approximate expression for ki(«) is found by series ex-
pansion,

Jo(ke) ~ 1 — IPu?[4; (B6)
kl(oc) ~ ko — roe? (B7>

where ko is defined by eq. (A2). The requirement of kj(x) being a median value
yields, then, to first order in «2, the following expression for rg,

e N2 [0 (k) +0s (%) ] ®
ro — J dle JBe— V'8 (01 (B) + 0 ()

8o 0

. (B8)

_ 2f dle 3 e~ N'®(01k) + 0 (k))};
0
In the notation of appendix A, this can be written

ro = I'(2/m)(1 - 2P(2/m, g))l—ég;-kgl-(N’xA)—z/m. (B9)
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From this, and (B7), we obtain

g°ALAs 1 - B(m) * ’ B10
QUTdZNJx(A1 + A2)2 m 2[91\7’:)3(‘41 + Az)]l/Zm ( )

Sy =1+
where

B(m) = I'(2[/m) (1 — 2P(2/m,g))e? (B11)

(B10) shows that the zero-angle scattering intensity is greater than its independent-
atom value by an amount that corresponds to the decrease in half-width (44) due
to the molecular correction. With increasing angle, this enhancement approaches
Zero.
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