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Synopsi s

The effect of molecular geometry on single and multiple scattering of charged particles off
molecules is investigated theoretically . The treatment is based on classical scattering theory and
is valid at small scattering angles. Two limiting cases are identified ; a short-range limit where
atoms within a molecule act as separate scattering centers, and a long-range limit, where a
molecule acts as one scattering center . The transition region is shown to fall into the range o f
impact parameters corresponding to moderately screened Coulomb scattering, i .e., the typica l
Thomas-Fermi scattering region . General expressions are derived for single-collision cross sec-
tions valid in each limit and in the transition region, and for the half-widths of angular an d
lateral multiple-scattering distributions . Comments are made upon the behaviour of the shap e
of multiple-scattering profiles . Quantitative results are based on the power approximation to
the Thomas-Fermi and Lenz-Jensen interaction . Comparison with recent experimental result s
on multiple-scattering half-widths for the Pb+-N2 system shows excellent agreement . Even mor e
pronounced effects are predicted for polyatomic molecules .
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1 . Introduction

When asked to describe the interaction between an energetic particl e
and a molecule, you will most likely choose one of two simplifications a s
your starting point . Either you consider the molecule as one target particle ,
with a suitably simplified shape (spherical, linear, etc .), or you treat it as
being composed of independent atoms . Which of the two simplifications yo u
will judge to be the more appropriate one depends on the effective range o f
interaction . In typical molecular-beam experiments, at eV energies or below ,
collision partners interact at distances well up to, and greater than, inter -
nuclear distances in molecules, hence the first description is likely to be pre-
ferred . Conversely, MeV or more energetic particles have their most violent
encounters at very small internuclear distances, whence the second descrip-

tion might seem more appropriate . Indeed, a very customary approach to
penetration problems in molecular solid or gaseous targets is to ignor e
molecular structure altogether, and to consider instead a mixture of ran-
domly distributed atoms of the right overall density and composition .

There must be an intermediate situation where neither description i s
appropriate . As an example, let the typical interaction distance be of th e
order of one half the internuclear distance in a binary target molecule, and
let the target be a dilute gas of such binary molecules . Then, every collision
of the projectile with one target atom is accompanied by another collisio n
with the other atom in the molecule . While the impact parameter specifying
the first collision is distributed at random, the corresponding quantity fo r
the second collision is obviously correlated. Whereas in an atomic gas of
equal composition all collisions would obey a random distribution of im -
pact parameters, only half of them do so in the molecular gas . Thus, mole-
cular geometry has an influence on the spectral distribution of energy loss ,
deflection angles, and excitation phenomena . It is the purpose of this paper
to investigate the influence of molecular geometry on small-angle single and
multiple scattering of a beam of charged particles penetrating a molecular
gas . In a related paper, the corresponding problem of energy loss is treated i .
A short note reporting some conclusions of the present work as well as
experimental results on multiple scattering by molecules has appeare d
recently 2 .

1*
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The geometric effects discussed in this paper are characteristic of suc h
scattering processes where the trajectory of the scattered particle as well a s
the location of the scatterer are well-defined in terms of a classical-orbit
picture . There is a broad range of heavy-particle scattering processes ,

initial energies, and scattering angles where the scattering cross section s
derived from classical dynamics can be applied in the analysis . These in-

clude the scattering of MeV fission fragments in solids or gases at the on e

end, and the scattering of keV or even eV helium and hydrogen ions i n
dilute gas targets at the other end . Criteria for the validity of a classical-
orbital picture have been established3 ' 4) , and are fulfilled in those cases

where numerical results are given in this paper . Experimental work has

been reviewed recently5 ' 6 ) .

The present analysis has been developed in close analogy and simul-

taneously with related work on energy lossl, and the outline of this paper

has been deliberately chosen to be that of a follow-up . Although the presen-

tation is hopefully self-contained, you may find it advantageous to first hav e

a look at the simpler, 1-dimensional problem of energy loss .

2 . General Description

Let a charged particle (usually an energetic ion) pass by a molecule

(Fig . 1) at a vector distance p from some point Q that specifies the positio n

of the molecule . Throughout this paper, we only consider situations where

the deflection of the projectile at the molecule (and at its constituent atoms )
is so small that the trajectory can be approximated by a straight line over th e

range of interaction with the molecule . This implies high velocity and/or

large impact parameter p(= IN) . Within the region of validity of classica l

scattering, the ion is scattered by some angle

= OM) ,

where ,Q stands for three or two angles that specify the orientation of th e
target molecule with respect to the direction of motion of the projectile .

We shall assume that cp is also small in an absolute sense, such that th e

direction of motion of a scattered ion is determined by a small incremen t

T(P, Q)

	

( 1)

to be added (and perpendicular to) the unit vector along the initial directio n

(Fig. 1). With that direction representing a polar axis, we can introduce an

" impact plane" perpendicular to it ; this plane contains the 2-dimensional
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Fig. 1 . Geometry of charged-particle scattering on a molecule .

vectors p and cp . In accordance with the conventional concept of a cros s
section we denote the quantity

da = K(p)d2p = d2p fd2på (p p(p , Q))

	

(2)

the differential cross section for scattering into, the solid angle d 2p at p,
where S is the Dirac delta funtion in two dimensions, and d2p an element
of the impact plane (Fig . 1) .

Eq . (2) applies Lo a polarized gas, i .e. where all target molecules have
the same orientation Q . For random orientation, we generalize (2) so tha t

K()) = fd2p < å(p - P(P, Q))>,Q ,

	

(2 ' )

where < . . . >1 indicates an average over all orientations .
It will be convenient in the following to carry on the analysis in the

Fourier space conjugate to p . In order to avoid the complications of a pos-
sible divergency at 9) = 0, we consider the transport cross sectio n

6(k) = fd2pK(p)(1 - eik '~) = fd2p<(1 - e'lk ' ( n,Q ))>,Q ,

	

(3)
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from which the differential cross section can be recovered ? by inverse

Fourier transformation,

1
K(~) _

-(2n)2
d 2k a(k)é ik C for

	

p T 0 .

	

(4)

3. Binary Molecules . General

Let us first consider a binary target molecule . The total deflection p i s

then composed of two parts,

(P = cpi+(P2, ( 5 )

i .e ., the respective (vectorial) scattering angles belonging to the constituen t
atoms 1 and 2 of the molecule. Such a division is straight forward in case

of a hypothetical molecule consisting of two nonoverlapping target atoms .

In real molecules, the region of overlapping electron shells is occupied b y
valence electrons ; these contribute to scattering only in a certain class o f

(very soft) collisions . In cases where this is important, scattering regions fo r

atoms 1 and 2 may have to be defined. In case of a minor contribution o f

valence electrons to the scattering potential, the above picture of a molecule

consisting of two unperturbed target atoms appears acceptable . This im -

plies that the individual scattering vectors in (5) exhibit radial symmetry,

(pi = Ti(p i) = Ti(pi)pilpi,

	

i = 1, 2 -

where pi and p 2 are distance vectors from the two target nuclei to th e

trajectory (Fig . 2), and pi = lpil the individual impact parameters .
Eq . (3) can now be written in the for m

y(k) _ < fd2p(1 - eik' (m=(n=)+Ta(n4))>,Q

	

( 7' )

which can be rearranged in the form

6(k) = ai(k) + c2(k) + åo(k) .

	

(7)

Here,

6i(k)

	

<f d2p(1

	

e ik ' 9i(n -i) )>9 = dai(1 - e iit 9) ;

	

i = 1, 2,

	

( 8 )

with dai(p) being the differential cross section of atom i ; because of (6), th e

rotational average has no effect on eq . (8) . The following interference ter m

remains,

6a (k)

	

<f d2p(1 - e i)c 9 ' (n,))(1
- eik ~a(nz))~~ ;

(6)

(9)
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Fig . 2 . Geometry of charged-particle scattering on a diatomic molecule.

this term is nonpositivs, and composed of contributions from those impact
parameters pl and p2, and orientations SQ, where both 921 and 92 2 are non-
zero. (The orientational dependence (Q) is implicit in pi and p 2 ) .

4. Binary Molecules. Evaluation of the Transport Cross Section

Let the internuclear distance vector in the molecule be d, and its projec-
tion on the impact plane be b . Then (Fig. 2) ,

and

	

b = Pt - P2,

	

(10)

åc(k) = - f d2p,(1 - ei1 9 ' (P1)) f d2 p2 (1 - e¢1 APP(Pd) . <å(p,- P2 -b))Q .

	

(11 )

The last factor in the integral has been evaluated previously l ; it is easily
found to be

<b(Pl P2 - b)>2 -
2 7rd2 ( 1

	

(pl p2) 2 /d2 )-1/2

	

(12)

for dpi - p2l < d = udl, and zero otherwise. In those situations where th e
integral (11) is made up mainly of contributions from impact parameters

I1)1- p 2I « d, we obtain from (11) and (12) the asymptotic relationship
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61(k)a 2 (k)
åcr(k)

	

2ad 2

by means of eq . 8 . Therefore, eq. 7 reads *

o1(k)o-2(k)
o'(k) = cii(k) = u2(k)

	

2ad2
	 . . . for "large d"

	

(14)

In the opposite limit of a large interaction range ()» d), Taylor expansion
of the delta function in (11) yields

d 2
< 8 (p l - p 2 - b)>D = S (P1- P2) + Vp, S (pi - p 2 ) .

and, by direct evaluation of eq . (7') ,

2

6(k) = f d2p ( 1 - eik • ( P i+~s) ) -
6 f

d2peik ~zp e il'

	

. . . for "small d" (15)

where pi now stands for p i(p) .

5. Power Scattering

The integrals that appeared in the previous section offer themselves for
convenient evaluation in the particular case of power scattering

(13)

Ci
Øi(p) =

	

;
P s

i = 1,2

	

(16)

with a positive parameter s . It is known3-5) that within the small-angle ap-
proximation, (16) represents the scattering law for a repulsive interactio n

potential a R-s where R is the distance from the scattering center . The

quantity Ci contains atomic parameters and is inversely proportional to th e
energy. Thus, at any given impact parameter p, the small-angle assumptio n
can always be fulfilled by choice of a sufficiently high ion energy .

* Note added in proof: Eq. (14) is formally very similar to an expression derived b y
Glauber' s for the forward scattering amplitude in GeV nucleon-deuteron scattering . The un-
derlying physical effect in that case is a mutual shadowing of two independent scatterers .
This shadowing effect has the same origin as the correlation effects considered in the pre -
sent work as well as in previous work on energy loss', i .e ., the geometric structure of th e
target particle, but it is otherwise different because of the rather different scattering me-
chanism. In particular, Glauber's treatment of diffraction scattering yields an interferenc e
term corresponding to (13) that is a factor of two smaller . I am grateful to N . Andersen for
drawing my attention to a note referring to Glauber's work .
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It is known that by proper choice of the power s, an accurate representa-

tion can he found for repulsive atomic interaction potentials 3 , cross sections
for screened-Coulomb scattering4, and multiple-scattering profiles$. For the
present purpose, the assumption of one exponent s applying to both atoms
(i = 1, 2) is an important mathematical simplification . Except in case of

very different masses of the constituent atoms, this assumption is not a
severe physical limitation .

Inserting (16) into (8), we obtain

with
di(k) = Aik2m (17)

and

Ai =

	

P(1 - nt)
(17a)(Cz 12)2 m

P(1 + In)

Moreover, (15) reads
m =1 fs (17b)

with

and

o(k) = Ak2m + Bd2 + . . . (18)

(18a )A = (Als/2 + A 2 s/2)2m

~

	

Ci C 2
B=-(s-In) (18b)

3

	

(Cl + C2)2

6 . Single Scattering . Differential and Incomplete Total Cross Sectio n

After inserting (14) into (4), and observing (17) we obtain the followin g
expression for the single-collision cross section of a diatomic molecule i n
the power approximation, in the limit of short-range interaction ,

R(m) Kl(p)K2(p )9g2K(p) = K1(T) + K2(p) - In

	

d 2
where

A lm
Kl p ) =	 	

2 2mP(1 + m)

ac ~
2-2m	

P(1 -In)
and

P(1 + 2m)P(1 - m)2
R(m) =

r(1 - 2m) P(1 + m)2

R(m) has been plotted in fig . 3 .

(19')

(20)

(21)
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1 .0

R

Fig. 3 . The quantity R defined by (21), versus m .

In the (more familiar) notation

da
da = K(q))d2(p =

di?)
dg~ ,

(19') reads

da

	

dal dat R(m) 9) dat dat.

dip

	

dip dip

	

m 2'rd2 (IT dcp

the subsequent term in the series would he proportional to d-4 . In the oppo-
site limit of long-range interaction, eq . (18) yields

(22)

(19)
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nt

	

22m I'(1 -I- nt)
K(0 =

z
.A .99-2-2m

	

r(1 - m)

	

+ . . .

	

(23)

= [(K1((p))sl2 + (h2(0)s1212m -I- .

and the subsequent term in the series would behave like d 2 • ô(p) ; it has t o
be dropped, according to eq . (4) .

In small-angle single-scattering experiments, it is most often the in-
complete total cross section

( '`

	

do-
atot ° J dT -

which is the measured quantity . Here, rp, is a (very small) limiting angl e

defined by the geometry of the apparatus . From eqs. (19) and (23) we obtain

by integration

61, tot 6 2, to t
1tot - cil, tot + d2, tot - R(m)	

27Cd2

	

(25)

for large d (short-range limit), and

atot = [(a1, tot) s12 + 0-2, tot) s/2 ] 2m + . . .

	

(26 )

for small d (long-range limit) . Alternatively, (25) is a high-energy, and (26)
a low-energy expansion .

Take, as an example, the case of a homonuclear binary molecule . Then,
eqs. (19 '), (19), and (25) represent the limit of a molecule consisting of two

independent, identical scattering centers, and the apparent cross section i s
twice the cross section of a single atom (for d ø) . Conversely, eqs . (23)
and (26) represent the case of a molecule acting as one target particle, th e

apparent cross section (averaged over all orientations) being 22m times the
cross section of a single atom . This value is smaller (larger) than the forme r
one provided that m is smaller (larger) than 1/2 . The behaviour of the

numerical factor R(m) in (19 '), (19), and (25) is consistent herewith :
R(m) 0 for m 1/2 . Therefore, so long as the inter-atomic potential itsel f

is reasonably close to a power potential, we can expect that the two limiting

expansions, with some possible interpolation, describe the small-angle single -

scattering cross section of a molecule satisfactorily . As will be shown in th e

following section, the short range limit (19) is appropriate in existing dif-

ferential measurements, while it is not normally reached in measurements

of the incomplete total cross section .

(24)



7. Application : Thomas-Fermi Scattering for Homonuclear Diatomi c

Target Molecul e

Lindhard et a1. 4 have given a very compact description of the elasti c
scattering between heavy atomic particles on the basis of a Thomas-Fermi

(TF) interatomic potential . Their description hinges on the power-like be-

haviour of the TF potential over a moderately wide range of interactio n

energies . In their description 4 ,

~~da = ~a2 f(1)
~

where a is the screening radius of the interaction, and '

= e sin 0/2

	

(28)

with 0 the center-of-mass scattering angle, and e the center-of-mass energ y
in units of Z1Z2 e 2/a, Zl and Z2 being atomic numbers of ion and target atom .
An) is some (given) universal function that can be approximated a s

f(rl)

	

(29)

over limited regions of ri, with A a dimensionless constant depending on m ,

and m ranging from slightly greater than 0 to 1 . in = 1 refers to Rutherford

scattering .
In the small angle approximation, (28 ') can be written in the for m

E

	

~
Z1 Z2 e2fa 2 = 9~

where E is the laboratory energy, and the last part defines the scaled lab-
oratory scattering angle

	

(21) reads, then

da

	

ira 2

d(T)
=

	

for

	

<< I .

	

(27 ' )

The TF description is valid mostly at comparatively small interaction dis -

tances (~, ao = 0 .529A) . Therefore, the TF cross section for a diatomic

homonuclear molecule is to be found primarily from eq. (19) which reads ,

by means of (27' )

* The notation 11 1 2 is frequently found in the literature for ay .

(27 )

(28' )



Nr . 11

da

	

dal R(m) g

(dal) 2
= 2-- -

dcp

	

dq

	

rn 2nd2 dq

2aca 2

	

R(m) a2 f((T )

q2
f( q) ) 1

	

4m d2 ç

	

]
.

In the limit of large E, i .e . large ) , the expression in brackets is small, an d
the molecule acts like two independent atoms . The case of strict Rutherford
scattering (m = 1) has to be excluded, however, since the expansion (19) i s
not applicable in that case (R(m = 1) = - Pronounced deviations fro m
the independent-atom picture occur at small values of q, i .e . at low energie s
and/or small angles . In that case, (q 0.1) the TF interaction is described
well by (29) with 9

(30)

and the factor in the brackets of (29) reads, then ,

a2
1 - 0.761 d2 q- 2 / 3

	

(TF)

since R(1/3) - 0.775 . For medium-mass collision partners we have s ,
a

	

0 .885 ao(Z12/3+ Z22/3)-1/2 - 10-1 Å, i .e . a 2 /d 2 - 10-2 . Hence, measur-
able deviations from 1 occur for

	

0 .1, and the expansion breaks down
above q~ - 10- 3 . In fact, the low-energy limit (23) yields

da/4' -~ 2 2 / 3 daltdip ;

	

(32)

this value is reached, according to (31), at

a3
cP~ 7 d3 ,

i .e. around q - 10-2. Thus, the following qualitative picture arises for th e
small-angle scattering on molecular targets .

i) At scattering angles corresponding to q = > 1, a molecule be -
haves with high accuracy (better than 1 pct .) like two independen t
atoms .

ii) In the region 10-2 q' 1 the cross section of a molecule become s
measurably smaller than that of two independent atoms .

iii) In the region q' 10- 2 the cross section approaches the long-range
limit .

121 = 1/3 ;

	

.1 = 1 .309,

(31)



Now, conventional small-angle scattering experiments that have been per -
formed on molecular gas targets5, 10(in the atot-geometry) dealt with impact
parameters in the Born-Mayer region, where < 10- 3, and this refer to th e
long-range limit. The analysis of those experiments has been based on a
molecular picture . The present analysis confirms this picture but adds littl e
new to it . In fact, it is oversimplified in this respect since valence electrons
are important there, but are not taken into account explicitly .

Conversely, differential cross section measurements tend to deal wit h
large enough angles and/or energies so that > 1., and the short-range limit

should apply. A notable exception is Loftager's setupll where differential
cross sections have been determined in the genuine TF region (10-3

10), i .e . including the transition region between the long- and short-
range limit. So far, mainly experiments with noble-gas targets have bee n
performed, but pronounced molecular effects would be expected . Since, in
that work, the atomic interaction appeared to he closer to a Lenz-Jensen

(LJ) potential as characterized by (29) with 1 2

in = 0 .191 ; A = 2.92 (33)

at small values of 77, we also quote the expression corresponding to (31) fo r

LJ interaction,

a2
1 - 3 .68 d2Ø 0 .382 ;

	

(34)

the long-range limit da/dcp -, 20 .382 da l /d95 is reached around

	

= 500 (a/d) 5
- 1/2 . 10-2 , i .e . at a similar value as in the TF case' .

8 . Multiple Scattering. Angular and Lateral Distributions

In typical multiple-scattering experiments, either an angular distributio n

F(x,a)d.Q of an initially collimated beam, or a lateral distribution G(x,Q)d 2 P
is observed (fig . 4), where x is the travelled distance in the target . In the
small-angle approximation, the angular distribution is given by Bothe' s

formula?

1

	

'xa(x)

	

F(x,a) = -
J

dk le J0(ka)éiv

	

(35)
2ac 0

* Since the Lenz-Jensen interaction potential, contrary to the TF potential, does not ap-
proach power form at large inter-atomic distances, eqs . (29) and (33) approximate the LJ
scattering law less accurately than eqs. (29) and (30) approximate the TF scattering law . In
an accurate analysis of molecular scattering measurements, it may thus be necessary to expli-
citly include a dependence m = m(T) in R = R(m) .



Beam

x
Target

	

Target

a) Angular Distribution

	

b) Lateral Distributio n

Fig . 4 . Geometry of typical multiple-scattering experiments with gas targets .

where N' is the density of scattering centers and a(k) the transport cros s
section (3) . Similarly$ ,

x
G(x,o)

	

~o '
dx Jo(x~) exp(- N 'J o dx'o'(xx')) .

	

(39)

The two distributions are formally very similar and contain equivalent in -
formation . In addition, somewhat surprisingly, the two distributions scal e
very accurately even rather far out into the tails, as has been shown bot h
theoretically$ and experimentally13. It was found recently 8 that the power
approximation for the transport cross section, as exemplified by eq. (17) ,
serves as a very accurate basis for multiple-scattering theory in the screened -
Coulomb region ; it seems, in fact, more accurate than the actual underlyin g
power potential and single-scattering cross section . The following consid-
erations, therefore, have been based on the power approximation (17) .

Let us apply eqs . (35) and (36) to atomic systems first . From (17) and
1

	

i
(35), we find that k scales like (N'x) 2m /C i and a like k-l , i .e . (N'x)2mCi .
In particular, the half-width a1/2 of F(x,a) must behave like

i
' al/2 cc (N'x) 2m IE,

	

(37 )

i x
e1/2 a (N'x)2m ~

E .

since C I œ 1/E .
Similarly, from (17) and (36),

(38)



These variations have been checked experimentally in considerable detail .

With regard to the present analysis, experiments with gases have been most

convincingl3-15 .

Let us, now, consider a diatomic gas, and let us assume, as in sect . 5 ,

that one and the same power m governs collisions with both types of con-

stituent atoms .

In the following, our reference standard is the completely dissociated ga s

of N' = N/2 atoms of type 1 and 2 ; N is the density of atoms . In that state ,

the exponent in the exponential function in (35) reads

- 2 x(~l + 0'2) = 2x(Al + A 2)k2 m

Al and A 2 being defined in (17a) .

In the long-range limit, (18a) yields instead ,

N

	

1

	

1

The latter expression takes on the form (39) if an apparent target thicknes s

,

	

(C1

	

C2) 2 mx
=	 	 x

	

(40a)
C2m + C2 m

2

is introduced. Eq. (37) provides then the following relationship for th e

angular half-widths,

-
2

x(A l 2m + A2 2m)2mk2 m

0~/ 2 )dssoc

(x')1+2m = ((x

X

I)I + 2m)
2

1m -

(C1mC+ C2m)1/2 m

( «1/2)mol

	

x)2--w1

	

Cl + C 2

(

	

ß _	 	 (41)
(al/2)dissoc

	

x

	

(C2m + C2m)2 m

in the long-range limit . In particular, for homonuclear atoms, Cl = C2, (41 )

yields 21-1/2m.

The same argument applied to (36) yields another apparent thicknes s(1 2m -F1 (Cl + C2) 2 m
C2m + C 2 m

2

This, together with (38), provides a relationship between the lateral half-

widths

+ C2

(39)

(40b)

(42)
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i .e . exactly the same ratio as (41) in the short-range limit . In particular, thi s

ratio becomes 2 1 2m for a homonuclear molecule . The angular and latera l
half-widths (a1/2)aissoc and (Pi/2)dissoo are comparable to atomic quantitie s
that are known experimentally for a wide selection of ions and targets . The
present argument makes use only of the scaling properties of the power cros s
section, i .e . of the experimental fact that the relations (37) and (38) ar e
satisfied. The parameter ni occurring in (41) and (42), in particular in the
homonuclear case, is thus to be understood as the one extracted fro m
measurements on the corresponding atomic systems .

The transition between the short- and long-range limit is harder to find .
The argument has been outlined briefly in ref . 2 . `Ve note first that straight
insertion of (14) into (35) or (36) with o i(k) according to (17), would yiel d
a spurious divergence at k = co, since the correction term 8a(k) would be
applied outside the region where it is small. Instead, a perturbation approach
is taken .

Let us, first, insert (14) and (17) into (35) . The exponent of the expo-
nential function can be written in the form

- N 'x(a. l + A2 )k2m
A 1A 2

-	 • k2 m /2acd 2
A 1 + A 2

(43)
A 1 A 2

N'x(A l + A2 )k2m 1 - 	 	 . ko m /22-cd2
A 1 + A2

where ko is some representative value of k that will be specified below. This
approximation is appropriate so long as the term in the brackets does not
differ substantially from 1 . It is also vital that k2m varies slowly. (In the sub-
sequent example, m 0 .2). Eq. (43) reduces the molecular correction to
the independent-atom limit to an apparent target thickness x i ' ,

A 1A 2 kôm
x 1 x 1 -	

A 1 + A 2 22-cd2
'

and thus, by means of (37 )

(0(1/2)mol

	

x m ,..

	

1 A1A2 kom

	

(44)
(a1/2)aissoc

	

.x)

--

-

	

2m Al + A 2 2zd2

Similarly, the exponent in (36) read s
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x2m+1

	

2m + 1 AlA2 x 2m x 2 m
- N ' (A l - I- A 2 )x2m --- 1 -

	

-

	

(45 )
2m + 1

	

4m + 1 A 1 + A2 2 7cd2

with xo same representative value of x . Again, the molecular correction can
be described by an apparent thickness xi " with

2112 + 1 A1A2 x 2
0m x2m

(x1")2m+1 = x2m+1 1 -
4m + 1 Al + A 2 27cd2 ) '

from which the lateral half-width can be found by means of (38)

(e1/2) 2 m
mol

	

xl 1+ 2m 1 - 1 2m + 1 A lA 2 xo x 2 m
_	 (

_ (e1/2)dissoc

	

x

	

2m 4m + 1 Al + A 2 27cd2

	

(46)

The values of ko and xo need to be determined from the unperturbe d
integrals, i .e . the multiple-scattering distributions for the dissociated gas .
According to (43), Porn must scale like [N'x(A 1 + A 2 )] - 1 ; correspondingly
(45) requires xom to scale like (2m + 1)/ [N' (A 1 + A2)x2m+l ] . Therefore, (44)
and (46) rea d

	

(al /2mol

	

1

	

1

	

A jA 2
1 - const 2m

2 ~cd21V'x (A 1 + A2)2

	

(44 )
(a1 /2)disso c

	

(P1/2)mo1

	

1

	

const 1
(2m + 1) 2

	

1

	

A 1A 2

(el/2)dlssoc

	

2m 4m + 1 27td 2N 'x (Al + A2)2

	

(46 ' )

The values of the dimensionless constants in (44 ') and (46 ') depend on
the precise definition of ko and xo . Since the integrands in (35) and (36 )
are normally far from narrow, symmetric distributions, a choice based o n
extrema or zeros appears inappropriate . Instead, the median values have
been chosen ; moreover, for simplicity, we take median values at a = 0, an d

= 0, respectively. The latter choice is justified because of the qualitative
similarity of the contributions to the profile at any angle (or lateral spread )
within the half-width .

It is easily shown (and specified in appendix A) that this choice yields

	

const = const ' = g(m)

	

(47)

where g is the solution of the equatio n

	

-

	

r~

	

-

	

dt tm e
t

	

; J dt t m-l e t .

	

(47a)
0fO



TABLE I . The quantity g as defined by eq. (47a), versus in .

rn g ni g m g

1 .000 0 .694 0 .250 3 .671 0.143 6 .67 1
0 .667 1 .184 0 .222 4 .170 0 .133 7 .171
0 .500 1 .678 0 .200 4 .672 0 .125 7 .669
0 .400 2 .175 0 .182 5 .170 0 .118 8 .17 1
0 .333 2 .675 0 .167 5 .673 0 .111 8 .66 9
0 .286 3 .174 0 .154 6 .170 0 .105 9 .167

The function g(m) has been tabulated in table I .

The present discussion referred to the half-width of multiple scattering

distributions rather than the full profile . The perturbation approach use d

precluded the consideration of a possible influence on the shape of the

distributions by the molecular structure . A qualitative argument suggests

that there is indeed such an influence . Take, as an example, the angula r
distribution F(x,a), and consider first the range of angles up to the half -

width a 1 / 2 . The integral (35) receives, then, essential contributions from a

certain range of k-values around the median value ko . Now, with in -

creasing, the important range of k shifts towards smaller values because o f

the Bessel function, Jo(ka) ; consequently, the molecular correction becomes
less important (cf . eq . (43)) . Thus, at sufficiently large values of a the mul-

tiple-scattering profile for a molecular gas will approach the independent-

atom solution, even though the half-width may be close to or within th e

long-range limit . This result is consistent with what has been found in th e

single-collision case, e .g., eq. (29 '). A more quantitative consideration i s
sketched in appendix B .

9. Application : Multiple Scattering on Diatomic Homonuclear

Molecules

Just as in sect. 7, the description can be simplified substantially in cas e
of homonuclear molecules by the introduction of TF variables . These are
well established in multiple-scattering theory (cf ., e .g ., refs . 7 and 8) . We
have

z = 7ta 2Nx

	

(48a)

Ea

a	 a
2Z1Z 2 e2

Ea

= 7ca2N •
2Z1Z2 e 2 e

(48b)

(48c)

2 *
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where a is the Thomas-Fermi radius and N = 2N ' the number of atoms
per unit volume . The latter choice has been made because it fits best to th e
dissociated gas as a reference standard . Inserting these definitions into (44' )

and (46 '), and regarding that Al = A2 for homonuclear molecules, we finally
obtain

(CCl/2)mo 1

(CC1/2)dissoc

1

	

a 2
g

2m 2d r

1
2m

i

large r

for
(49)

and

F
1	 (2m + 1) 2 ( a )2

1 2m 4m + 1 ~d . .~ large z

(61/2)dissoc

	

for

12 2m

The upper relationships in (49) and (50) refer to the independent-atom

or short-range limit . The lower values refer to the long-range limit . It is
obvious that the relevant variable is the thickness parameter r that als o

controls the half-widths7, $> dl/2 and -dl/2 : At larger (large half-width) th e

short-range limit is appropriate, and the reverse is true at small r .

The upper parts of eqs. (49) and (50) were already mentioned in a shor t

notet>, where the notation

2rn + 1
h(m) =	 g(m)

4m+ 1

was employed . Moreover, as was shown in ref . 8, the parameter m, which

determines the interatomic potential, can be related in a definite way to the

thickness parameter r, eq. (48a), such that a function m = m(r) can b e

defined for a given screened-Coulomb interaction potential . By means of

these relationships for TF and Lenz-Jensen (LJ) interaction, one can relat e

g and h to r directly (Fig. 5) .
Fig. 6 shows experimental results of lateral half-widths measured with

lead ions scattered on nitrogen and neon at the same density of atoms 2 > .

The TF screening radii are determined essentially by the heavy lead ions ,

so that from the point of view of comparison, neon ions should be an ac -

curate substitute for nitrogen. The two full-drawn theoretical curves refer t o

eq. (50), with m = 0 .2 = const . This value is very close to the LJ valu e

(l/2)mol
(50 )

small r

(51)
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Fig . 5 . The quantities g and h defined by eqs . (47a) and (51), respectively, versus power m .

Scales of r (48a) have been included by means of the relations derived in ref . 8 .

0 .191 ; it was chosen as the one extracted from measurements of the latera l
half-width X1/2 on noble-gas targets 14) in the critical z range 10- 2 - 10-1. The
TF curve has been included for comparison . Both the general trend, the

region of the drop-off, and in particular the long-range limit are described
quite well by the theoretical curve for ni = 0 .2 . At the low -c values it i s
clearly superior to the TF-curve . Neither of them, however, explains th e
peculiar behaviour of the experimental points that is observed between -c = 1
and 5 .

10 . Polyatomic Molecule s

By application of the same physical model to a polyatomic molecule consistin g
of z atoms 1, 2, . . . z, eqs . (7') and (7) can be readily generalized ,

ik • E (P i (P i )
o'(k)=<fd2 p(1 -e

	

)

and (52' )

J
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TF,r'

;

/

	

o
short-range expansio n

0 0 0 -0
0

ô0 o 01 .0 o o

o -o- long-range limi t
o

ô
0	

0.5

010_2
z

	

1 0
Fig. 6 . Experimental ratio of lateral half-widths, Ci~2 (nitrogen) /P 1/2 (neon), versus thicknes s
parameter r (48a) from ref . 2 . Fulldrawn curves : Eq . (50) for power m = 0 .2 (Lenz-Jensen) at

all z. Dashed curve : Eq . (50) for Thomas-Fermi interaction .

o (k)

	

ai (k) -

	

8a ij (k) +

	

d6ija (k) . . .
i

	

i<j

	

i<j< k

with ai(k) defined by eq . (8) for i

	

1, 2, . . . z, and

a~ij . . . (k) = < fd 2p(1 - eik Pi (Pi)) (1. - eik' (Pj(Pj)) j ;

	

(53a)

p i is the (vectorial) impact parameter with atom i . The long-range limit is readil y
found from eq . (52') . Indeed, the leading term for small interatomic distances read s

a(k)

	

fd 2p(1 - eik 'xq'i(P) )

or, for power scattering, by means of (16) and (17) ,
z

	

1 (2 m
o'(k)

	

(A i 2m

	

lc2m,

1

of which (18a) is a special case . In the short-range limit, eq. (52) yield s

ai(k)oj(k)
a(k)

	

o f (k) -

	

2

	

-I-

	

åaijk (k) . . .
i<j

	

2Zdij

	

i<j<k

(53)

(54)

(55)



Nr . 11

	

2 3

where d id is the distance between atoms i and j . The term åaij(k), according to it s
definition (53a), is equivalent with (9) for i = 1, j = 2, and is, therefore, identica l
with (13) for 1 = i, 2 = j. It will now be shown that except for a very small numbe r
of special cases, the subsequent terms in (55), from Saijk on, are of higher than
second order in the inverse interatomic distance, and therefore have to be dropped .

Take the term 56123 as given by

60,123 = < fd2p(1

	

e ik • Ti(Pi) )(1 - e zb

	

(PO) (I - eilzq>a(Px))i S2
l (56)

_ ~ {f d2p i (1 - eik' (Pi))}
.< å (pl - P2 - b12) îj (Pl - P3 - b13) i .Q , ~

i= 1
where b id is the projection of the interatomic distance vector d id on the impact plane .
Since only the leading term for large interatomic distances is of interest, we ca n
simplify the rotational averag e

< 6 01 - P2 - b12)å(pl - p3 - b13)î2

	

å<( b 12) å (bis)>D

	

(57')

The operation < . . . > includes an integration over all orientations of an arbitrary
rotational axis (here taken to be (11 2 ) and over the azimuthal angle of an arbitrary
point within the molecule (here taken to be atom 3) with respect to that axis .

The azimuthal average is evaluated first . The factor 6(b 12) is not affected by
this operation, but it ensures (by b 12 = 0) that the rotational axis is identical wit h
the polar axis of the system . Therefore,

6(b13)

	

~ (d13 S111(p23 )
<a(b12)b(b13)iS? ° <~( b12)	 	 	 <å(bis)> .

nb13

	

nd13Sln (J1 23

Here, (pm is the angle between d 13 and (112 , i .e. a fixed angle within the molecule ,
so that b 13 = d 13 Sinp23 .

The average over the rotational axis reduces then t o

< å b l2)
2nd12 2

a result which is identical with (12) for p i - p 2 = 0. Therefore ,

S (sl nqJ 23)
<6 (b12) a(1)13) >Q =

2 Z2 d122d13 2 S1n 992 3
and, from (56)

61(k) 6 2 (k) 63 (k) 6(sln(p23)
(6123

	

27L2 d122d13 2

	

sln(j22 3

Thus, for sinp23 + 0, we have Scr im = 0 to order d12-2 d13-2 .
For a linear molecule, 99 23 = 0, (58) becomes strongly divergent . In a real

molecule, this divergence will be smeared out by molecular vibrations . Let, for
example, q~ 23 be distributed according to a gaussian distribution

(57 )

(58)
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g ((p 23) d2 T 23

1

	

_2
Q~za

~ s
- C

	

a
2 7r(p23 d 97 232 7ag) o2 (59)

with a width To « 1, then < 8 ( si ry~n 23)Ism

	

=	

	

rP23>g =

	

, and
2 9)0 2

0'10'20'3
< (30'123>g

	

(60)
(27r) 2d12 2 d132 p0 2

This expression is negligible in comparison with, e .g ., 80-12, i f

	

2rd13 2 Ço0 2 >> o3

	

(61)
The factor 9oo 2 makes this a rather strong requirement that will often not be fulfilled
in cases of practical interest .

Therefore, the linear molecule needs to be treated separately, once more, an dstarting from (56) . In such a molecule, we have, e .g. ,

d13 = 2d12 with 2 T 0, + 1

	

(62)

b13 = 2 1)12

	

(62a)

Thus, the rotational average in (56) can be writte n

< (3 (Pi - P2 - b 12)(3(p l - P3 - b13)> = 6 (13 1 - P3 - 2(Pi - P2))

• < (3(Pl - P2 - bl2)>,Q

	

(3(p1 - P 3 - 2

	

1

	

(63)
(P1 - P2)) ' 27rd12 2

If this is inserted into (56), it becomes obvious that 86123 a d12-2, i .e . of the sam eorder as the 86 i q and therefore not negligible in general, for a linear molecule .
The resulting expression

1 - J d2 p 1 (1 - eik' (P=) ) r
d 2 p 2(1 - ei~~ • Ts (Pa)) .

27rd122

	

J
(1 - eik (a(Pi•(1-A)+P•A) )

is a 2-center integral that can be evaluated by means of an expansion in Bessel func-tions, if needed . At present, we consider two limiting cases by means of a simpl eestimate .

We first note that the integrand in the expressio n

0'i (k) = f d2p (1

	

e ik • Pi (P) )

can be represented as a step function ,

1 - eik •
(Pi (P)

	

1	 p

	

poi(k)

0	 p '~. poi(k)

and hence

(65)
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since for small p, q is large, and the exponential rapidly oscillating . By comparison
with (17) and (17a) we find

poi(k) = ym(kC i)m

	

(65a)

with a well defined constant ym .
The following considerations refer, more or less explicitly, to a triatomic mole -

cule. Take first the case where p 03 (k) is greater than p01(k) and p 02 (k), i .e., C 3 > Cl , C 2 .
Then, the integration region in (64) is determined essentially by pol and P02, and
the last factor is 1 in that region . Then ,

1
06123

	

-- 6162 ,", å612 ; C l, C2 < C3 .

	

(66a)
22d12 2

In the opposite case, where p 03 is substantially smaller than po l and P02, a similar
consideration yields

66123 <<
6162

Cl, C2 iiC3 •
276d12 2

Now, C i increases with increasing atomic number of the target atom . Therefore ,
the two limiting cases refer to molecules where one heavy atom (3) is surrounded b y
two light ones, and one light atom (3) surrounded by two heavy ones, respectively .
For a triatomic molecule (55) yield s

	

6163

	

626 3
6 61 + 62 + 63 -

	

-

	

(atom 3 heavy)

	

(67a)

	

27zd132

	

27zd23 2

(66b)

and

	

6162

	

6163

	

6263
6 61+62+63-

	

-

	

27s112 2

	

27cd13 2

	

2ird23 2

The latter result does not differ from what would be expected for a nonlinear tri-
atomic molecule . And the former result (67a) could just as well have been derived

	

by means of the fact that the term 5612

	

tai

2
would be smaller than (San an d

12 2
8x23, both because al, 62 << a3 and d12 > d 13, d 23 . It thus appears that the onl y
case where some uncertainty prevails is that of a linear molecule with 3 roughly
equal constituents . In that case, we have

616
3	 ti

6263

	

4
6 1 6 2

	

27zd132
ti

27ad23 2

	

25-rd12 2

if 1 and 2 are the outer atoms . Thus, the uncertainty due to lack of knowledge o f
the accurate value of the sum - 6x12 + 56123 is - 12 pct . of 8013 + åa23, i.e . a
12 pct. error in a correction . This must most often be an acceptable uncertainty.

It, occurs therefore, that at least for triatomic molecules, the expressio n

(atom 3 light)

	

(67b)

(68)

II
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6(k) -
z

Gi (k) -

	

ai(k)
aj(lr)

=

	

i<

	

2yrdi3 2

gives a satisfactory estimate of the transport cross section in the short-range limit ,
independent of the detailed geometry of the molecule .

In atoms containing more than three molecules, similar considerations woul d
have to be applied to terms of the type 561234 etc. The type of argument would b e
the same as what was applied in this section, and the results would be similar .
A case where caution would have to be applied is that of long chain molecule s
("strings") . Other types of processes' G ) that are outside the scope of this paper
would have to be considered there .

11 . Polyatomic Molecules : Single Scattering

Single-scattering cross sections for polyatomic molecules are established readil y
be means of eqs . (54) and (69) from eq . (4) . The results are straight generalization s
of those quoted in sect . 6 for diatomic molecules . They read

da

	

dai R (m)

	

(p d6i dui
dq

	

m id 2n4 d dq .

for small interaction distance, an d

da
-

((~g,~)2m)2m

in the long-range limit . R(m) is defied by eq . (21 .) and plotted in fig . 3 . Both equations
show that the relative magnitude of molecular corrections in comparison with th e
independent-atom limit (d i5 = w) increases with increasing number of atoms pe r
molecule . The conclusions made in sect . 6 remain otherwise unchanged.

If the molecule is built up of z atoms with similar atomic numbers and masses ,
we can ignore the differences between the constituents, and write eqs . (70) in th e
form

do" dal R(m)

dcp d nt

jdQ 1 )2

	

1

Ì d(p

	

i <i 27cdi,i2
. . . (70a ')

da
2m da

l
dq7 . . (70W)

Thus, the two limiting cases differ by a factor of z2m-1 ; since the long-range limi t
applies mainly to collisions where m 0 .2 (LJ), this ratio decreases substantially
with increasing z . When the sum in (70a') is written in the form

(69)

(70a)

(70b)



Nr. 11

	

2 7

1

	

=

	

1	 > 1 z(z - 1),

	

(71 )
i<f Zndij 2

	

2ndij 2

it becomes evident that the molecular correction to the independent-atom limi t
increases like z-1 on a relative scale for small molecules (z 5), but more slowl y
for larger ones .

These relations can easily be written in terms of TF variables (28) . However,
TF variables provide a substantial simplification only for homonuclear (or approx-
imately homonuclear) molecules .

12. Polyatomic Molecules : Multiple Scattering

The generalization to polyatomic molecules of the relations derived in sect . 8
for multiple scattering starts also with eqs . (54) and (69), and eqs . (35) and (36) .
Instead of (41) and (42), we obtain

(a1/2)mo1

	

(e1/2)mo 1

(ai /2)dissoc

	

(el/2)dissoc

~Ci

(~.
G i 2m)]. /2m

(72)

in the long-range limit . This approaches zl-1/2m for homonuclear molecules .
For nearly independent atoms, we obtain the following relations instead o f

(44') and (46'),

(a1 /2)mo1

	

g

	

1

	

A i A j
-	 	 (73a)

(a1 /2)dissoe

	

2m (Ai)
2 i

	

2ndij 2N'x

0 1 /2)mol

	

1 - g (2m + 1 )2	 1	 A i A i

(0_ /2)dissoc

	

2m 4m + 1 (Ai) 2 i < j 27rdi f 2N'x

where Ai and g are given by (17a) and table I, respectively .
In case of (approximately) homonuclear target molecules, (73a) read s

(al/2)mol

	

1

	

g 1

	

1
= 1 -

g z 1

	

1
	 > (73a ' )( (Xl/2)dissoc

	

2m z 2 i < i 2nd,02%V 'x

	

2m

	

2

	

2ndif 21\ x

where N = zN' is the number of atoms per unit volume. Obviously, the molecular
correction to the independent-atom limit increases with increasing z in much th e
same way as was found in case of the single-scattering cross section . The corre-
sponding relations for 91J2, and the equations for TF-scaled quantities (in th e
homonuclear case) are easily found .

(73b)
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13 . Summary

1. In the classical small-angle scattering of charged particles by molecule s
it is convenient to define three regions ; a long-range limit, where th e

interaction takes place at a sufficiently large distance so that the mole -

cule acts as one target particle ; a short-range limit where the interactio n

takes place at sufficiently small distances so that each constituent ato m

(if close enough to the orbit) acts as one target particle ; and a transition
region .

2. In single scattering, the long-range limit is reached at low energies and/o r

small scattering angles . The reverse is true for the short-range limit. The

transition region covers the range 10- 2 7y (= tl / 2 ) ti 1 in Thomas Fermi

variables . This corresponds to moderate screening of the Coulomb inter -

action . Typical measurements of incomplete total cross sections trace th e

region of excessive screening 07 « 10-2) ; the long-range limit applies t o

those situations .

3. In multiple scattering, the long-range limit applies to small values of th e
thickness parameter r = ra 2Nx, and large ones for the short-range limit .
The transition region covers the range 10- 2 -<

	

1 .

4. The short-range limit can be realized experimentally by means of a dis-

sociated gas target, or a noble-gas target with similar atomic number .

The single-collision cross section of the molecular gas (differential or

total) is smaller by up to a factor of the order of - z2m-1 z- 0 .6 than
the corresponding quantity for the dissociated gas, where z is the numbe r
of atoms in the molecule. Multiple-scattering half-widths (angular o r

lateral) are smaller by up to a factor of - zl-1/2m

	

z-3/2

5. The calculations presented here are based on the simplifying assumptio n

of a target molecule composed of undisturbed, spherically symmetri c
atoms that are arranged in some geometric configuration ; i .e., valence

effects are ignored. Since the transition region between the long- an d

short-range limit lies entirely in the Thomas-Fermi region of th e

scattering diagram where valence effects are unimportant, this simpli-
fying assumption only affects the detailed behaviour within the long -

range limit . The quantitative results presented in this paper refer to th e

deviations from an independent-atom picture, i .e. the short-range limi t

and the transition region ; these results are insensitive to valence effects .
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6. For essentially the saine reason, the exclusive use of a classical-orbi t
picture of the scattering process is not a severe limitation .

7. Experimental data on single scattering off molecules in the transitio n
region do not appear to be available . One recently published set o f
multiple-scattering half-widths on nitrogen is in excellent agreement with
the theoretical prediction, both in the long-range limit and the transitio n
region, provided that the scattering law for individual atoms is chosen
in accordance with the experimentally found multiple-scattering half -
widths on noble gases . This scattering law corresponds much closer t o
Lenz-Jensen than to Thomas-Fermi screening . The multiple-scattering
half-width in the transition region is quite sensitive to the scattering la w
for individual atoms . Therefore, the molecular effect described in thi s
paper serves as an additional probe for interatomic potentials in th e
moderately-screened Coulomb region .

8. With respect to practical applications in accelerator physics, it may b e
useful to recall that regardless of the nature of the target molecule, targe t
pressure, and ion type and energy, the multiple-scattering distributio n
is narrower for the molecular than for the dissociated gas, so long as the
small-angle approximation applies .
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Appendix A

This appendix serves to specify the median values ko and xo as repre-
sentative values of k and in Bothe's formula (35) and its modification (36 )
for lateral profiles . Consider (35) first and define ko by the relatio n

ko

	

ao

2~
i f dkkJo(Ica)e N'xo(k) - i f dkkJo(Ica)e N'xo (k) ,

	

(Al )
o

	

ko
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i .e ., ko divides up the integration into two equal parts . For values of a

within the half-width a1/2 , one may set a = 0 without making a seriou s

error. Then, ko becomes independent of a, and (Al) has a unique solution .

(Al) is rewritten by means of (18) .

r ko

	

m

J
dkké N xAk 2m =

z f dkké N'zAk2m

	

(A2)
o

	

o

or, after introduction of the variable

t = N'xAk 2m ,

	

(A3)

	

f9

	

1 1

	

(i0'

	

1 -1

J
dttm e- t = 2 I dttm e- t ,

	

o

	

o
where

g = N'xAko2m ;

	

(A5 )

In terms of an incomplete gamma function17) , (A4) reads

P f m, g) = ;

	

(A6)

This determines g = g(m) . Table I shows g as evaluated from the tables in

ref . 17 . Insertion of (A5) into (44) with A = Al + A 2 yields (44 ') and (47) .

By applying the same argument to the lateral distribution (36), th e

equation that corresponds to (A2) read s

xo

	

2m+1

	

co

	

2m+ 1
Ax 2m

	

N'x

	

Ax 2 m
dxxe

N ' 	
2m+1

	

dxxe

	

2m+1

0

	

o

The proper variable is now
x2m+ l

t = N'

	

- Ax 2 m
2m + 1

x2m+l

g= N' 2m +l axo

(A4)

and

2m

(A7 )

(A8)

(A9)

with g being a solution of (A6) . (A9) inserted into (46) yields (46 ') and (47) .
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Appendix B

It is the purpose of this appendix to provide a somewhat more qualitativ e
argument for the claim that a molecular multiple-scattering profile approaches th e
independent-atom profile at larger scattering angles . Only the angular profile F(x,a )
will be considered . The procedure is a generalization of the perturbation approac h
taken in sect . 8 .

Take eq . (35) and insert (14) ,

1

	

-N'x(a,.(k)+6z(k)-a (k)a' (k) \

	

F(x,a) = -
J

kdkJo(ka)e

	

27id JI

	

(B1 )
2a o

for x sufficiently large so that the molecular correction is small . Within the perturba-
tion approach, we can writ e

N , x ai 	 (k,)az(ki)

	

1

	

w
e

	

2xda

	

.

	

f kdkJo (kg.) e N'x (61 (k)+a2 (k))

	

(B2)
2acJ o

where

	

kJ. = ki(a)

	

(B3)

is the median value of the integral (B2). Therefore, (B2) can be written in the form

F(x, a) = S(a) . Fat(x, a)

	

(B4)

where Fa t(x,a) is the independent-atom distribution, an d

N .x a,(Teoa, (ki )
S(a)

	

e

	

2g a z

	

(B5)

This function is greater than 1 for a = 0, and decreases towards 1 with increasing a ,
since k l(a) decreases . An approximate expression for k l(a) is found by series ex-
pansion ,

Jo(ka) 1 - k 2 a2 /4 ; (B6)

ki(a) ko - roal (B7)

where ko is defined by eq . (A2) . The requirement of k i(a) being a median valu e
yields, then, to first order in a2 , the following expression for ro ,

e N 'x[a, (ko)+az(k,)] ( r O
ro =	 Jl` J dkk 3 e -N'x(a,(k)+az(k) )

Sko

	

0

J.ko (B8)

dkk3e N'x(d,(k)+6z(k))} ;

o

	

)
j
'

In the notation of appendix A, this can be written

F(x, a. )

ro = F(2/m)(1 - 2P(2/m,9))16m kol . (N'xA)- 2 I m .

	

(B9)
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Nr . 1 1

From this, and (B7), we obtain

	 g 'A
I
A

	 ?	 	
a

S(a) 1+	 1- B(m)
2 .7rd2N 'x(A I + A 2 ) 2

	

2[gN 'x(Al + A2)] 1 /2 m

where

B(m) = T(2/rn) (1 2P(2/m,g))eg

	

(B11 )

(B10) shows that the zero-angle scattering intensity is greater than its independent -
atom value by an amount that corresponds to the decrease in half-width (44') du e
to the molecular correction . With increasing angle, this enhancement approache s
zero .
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