
J. U . ANDERSEN, S . KJÆR ANDERSE N
AND W . M . AUGUSTYNIA K

CHANNELING O F

ELECTRONS AND POSITRON S

Correspondence between Classical and Quantal Description s

Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser 39, 1 0

Kommissionær : Munksgaard

København 1977



Synopsi s

Channeling of 700-keV electrons in silicon has been investigated by measurements of th e
large-angle scattering yield from thin single crystals as a function of incidence direction . The
peaks in yield for incidence parallel to low-index planes and axes are compared mainly to cal-
culations based upon the dynamical theory of electron diffraction . This description is reviewed in
a formulation emphasizing similarity to the classical theory of channeling. The relationship
between the two descriptions is discussed, and correspondence in the limit of large quantu m
numbers is illustrated, partly by the example of a harmonic oscillator, partly by analytical result s
for a simple model, derived within the WKB approximation . Estimates of the magnitude of th e
quantum numbers associated with the transverse motion of channeled particles are derive d
semiclassically from the available phase space for bound states in the transverse continuu m
potential, and the importance of distinguishing between axes and planes and between positiv e
and negative particles, is pointed out . These qualitative considerations are supplemented with
results of numerical calculations, based upon the classical channeling theory and the dynamica l
theory of electron diffraction, respectively . This comparison illustrates the transition to th e
classical limit for increasing projectile mass and provides a quantitative test of the correspondenc e
criteria based on semiclassical estimates .
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Introduction

This study of electron and positron channeling may be seen as part of a
general investigation of the channeling of light particles which, during th e
last decade, has been performed partly at the University of Aarhus, partly a t
Bell Telephone Laboratories. Motivated by the strong channeling effect s
found for heavy particles (protons, a particles, etc .) 1 . 2 , attemps were made to
look for similar phenomena for electrons penetrating single crystals 3. The
basic features of the channeling effect for both positrons and electrons wer e
first established by Uggerhøj in a beautiful experiment 4 , where the angular
distribution of electrons and positrons, emitted by "Cu embedded in a
copper single crystal, were studied simultaneously. The observation of an
axial dip in yield for positrons, and a peak for electrons, was in qualitativ e
agreement with expectations based upon the theory5 of heavy-particle
channeling . The measurement was continued in order to obtain mor e
quantitative data, and the results were found to be in fair agreement wit h
estimates based upon classical mechanics 6 .

A basic difficulty in such emission experiments is the damage due t o
implantation of the radioactive atoms. To avoid this problem, experiment s
with external beams of electrons and positrons were initiated. A measure -
ment of the large-angle scattering yield as a function of direction for a n
external beam is, in principle, equivalent to a determination of the angula r
distribution of particles emitted from lattice sites (reversibility 5 or reci-
procity') .

Positron channeling in gold s and silicon9 was studied with an external
beam. The general result was that positron channeling is adequately des-
cribed by the channeling theory based upon classical mechanics, althoug h
for planar channeling some fine structure due to Bragg interference wa s
observed .

For electrons the situation is somewhat different 1s . Owing to their negativ e
charge, electrons penetrate readily to the atomic scattering centers in the
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rows and planes . Incoherent multiple scattering will therefore be stronger
than for positive particles . Furthermore, it may be seen from semiclassica l
phase-space estimates that the number of bound states in the transvers e
potential is quite large in most cases for channeled positrons, while for
electrons it is considerably larger than unity only at relativistic energies .

The possibility of electron motion in bound states along rows of atoms ,
describable to some extent by classical mechanics, was first studied theor-
etically by LINDHARD 11 . In an experimental study of electron channeling in
gold by UGGERxøa et al . 12, the interest was focussed on classical aspects o f
axial channeling and on predictions from the classical treatment . Later
the measurements have been extended 13 to higher energies and to includ e
also planar effects and a detailed comparison to many-beam calculations .
Parallel to these investigations, the measurements to be reported here of th e
channeling of 700-keV electrons in silicon were undertaken. Results on
axial channeling were included in the discussion by UGGERHØJ et al . 12 , 1 3

Electron channeling was approached independently on the basis of th e
well-established theory for the phenomena observed in electron microsco-
py14 Angular variations of the electron-backscattering yield for incidenc e
close to a planar direction were predicted by HIRSCH et al . 15 and found
experimentally by DuNCOMB 16 . In the study by HALL 17 of the effect of lattice
structure on the yield of characteristic x rays, the main emphasis was on a
detailed description of the thickness dependence due to inelastic scattering .
Later HowIE et al .' s studied the emission of electrons from neutron-activate d
thin crystals and compared to both classical calculations and calculation s
based upon diffraction theory. It is a common feature of these experiments
that only planar channeling has been investigated . From the point of view
of diffraction theory, an axis is basically an intersection of a set of planes ,
and nothing much but unnecessary complications is gained by studyin g
channeling close to an axial direction19. In LINDHARD ' S theoretical work o n
channeling, however, the axial case is qualitatively different from the planar
case . For heavy positive particles, axial effects are stronger than planar
effects and therefore, from most points of view, more interesting . Also, for
electrons and positrons, the quantum numbers associated with axial effect s
are larger than for planar effects, and classical concepts may therefore mor e
readily be applied to the axial case .

The attempts 4 , 6 mentionedlearlier to relate the channeling phenomena fo r
electrons and positrons to classical channeling theory for heavy particle s
were met with strong criticism. The possibility of understanding electron an d
positron channeling on the basis of electron-diffraction theory was first
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pointed out by HowIE 20 and later argued strongly by DE WÅMES et al . in a
series of publications 21 . The resulting, at times rather heated, discussio n
greatly stimulated the interest in channeling of light particles and, mor e
specifically, in the problem of correspondence between classical and quantal
calculations related to channeling 22-25 . For fairly recent reviews of the field ,
and discussions of correspondence from different points of view, we may
refer to Refs . 26-28 .

Correspondence between classical and quantal treatment of channelin g
phenomena is the main theme of the present study. It is composed of fou r
parts. The first is a report on an experimental investigation of electro n
channeling in silicon, performed at Bell Telephone Laboratories in 1968 .
The main emphasis is on measurements of axial and planar peaks in yield
of large-angle scattering . While electron microscopy is based on wave in-
terference observed in transmission, the most interesting and useful phen-
omenon associated with classical channeling is the strong angular depend-
ence of the yield of processes which require a close encounter betwee n
projectiles and target atoms .

The experimental results are compared mainly to calculations based
upon the dynamical theory of electron diffraction . This theoretical descriptio n
is in the second part reviewed briefly in a formulation which emphasize s
similarity to the classical description of channeling. Problems related t o
incoherent scattering are discussed qualitatively, and examples are given
of the treatment in terms of an imaginary potential and scattering into plane -
wave states .

Correspondence with the classical treatment is discussed in the thir d
part and illustrated partly by an analysis of the example of a harmoni c
oscillator, partly by some simple calculations based upon the WKB appro-
ximation. This general analysis is followed in the fourth part by a derivatio n
from semiclassical phase-space arguments of estimates of the number o f
bound states in the transverse motion of channeled particles, leading t o
simple criteria for the applicability of a classical description . Differences
between positive and negative particles, and also between the axial and plana r
cases, are discussed on the basis of two examples . The transition to the
classical limit is then investigated quantitatively by a comparison of classica l
and quantal calculations for different electron and positron energies . At
high energy, where the number of bound states becomes large owing to th e
increase in relativistic projectile mass, the quantal results approach the
classical predictions . These are for the planar case obtained from the
formalism developed for heavy positive particles". For negative particles,
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the axial case presents special problems, in particular concerning the appli-
cability of results obtained from the assumption of statistical equilibrium in
the transverse motion . These problems are discussed in the appendix, which
contains the derivation of a classical estimate of the axial peak in yield fo r
negative particles, based on statistical equilibrium .

I. Experimental Study of Electron Channeling in Silico n

1.1 . Experimental procedur e

Setup . A sketch of the experimental arrangement is shown in Fig . 1.1 .
The electron beam, with an initial energy of 800 keV, is scattered by a 30-gum
gold foil. The current of electrons transmitted through the foil into the
Faraday cup is used to monitor the beam intensity . The electrons scattered
by 90° lose on the average - 100 keV in the gold foil, leading to a final beam
energy of - 700 keV, with a measured spread of 85-keV FWHM . The
angular spread of 0 .05° full width is defined by a 1-mm collimator place d
immediately in front of the gold foil and a 0 .4-mm collimator at the entranc e
to the scattering chamber .

The beam is incident on a thin silicon crystal, mounted in a goniometer

with two perpendicular rotations . The scattering chamber contains thre e
different detection systems :

(i) Annular detector for electrons scattered through - 10-20° by th e
crystal .

(ii) Movable detector ('forward detector') to scan the intensity distributio n
in the forward direction. Both detectors are silicon surface-barrie r
detectors .

(iii) Film to record photographically the angular intensity distribution in the
forward direction .

Crystals . The thin crystals were prepared by etching 0 .15-mm thick
silicon wafers, cut perpendicular to a <110> direction . A thicker ring was left
at the edge for support . The crystals were mounted by sandwiching them
between aluminum and lucite plates with a 5-min hole in the center . Mount-
ing the thinner crystals was a delicate operation, after which a careful
examination for wrinkles was necessary.

Results for two thicknesses are reported . From an a-particle, energy los s
measurement, the thicker crystal was estimated to be 2 .8 ,um thick. Un-
fortunately the thinner crystal was broken before a similar meassurement
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Fig . I .1 : Experimental arrangement.

could be made, but from the relative electron-scattering yield, its thicknes s
was estimated to be 0 .2-0 .3 ,um .

Measuring procedure . The orientation of the crystal was determined by th e
standard technique known from proton channeling 30 . The planes wer e
identified by an increase in yield of the scattering into the annular detector .
A stereogram was constructed, and thus the rotation parameters corres-
ponding to various planar and axial directions could be determined .

Angular scans through major planes and axes were performed by
measuring the yield of scattering into the annular detector for a fixed accum-
ulated charge in the Faraday cup . In preliminary experiments, the " forward
detector" was used, positioned at some large angle to the beam direction .
Strong asymmetries of the peaks in yield were observed, however, and thes e
asymmetries turned out to be dependent on the position of the detector .
Such effects are known also for proton channeling and are usually ascribe d
to "blocking" of the scattered particles . In this case, however, the solid angle
subtended by the detector was very large compared to the widths of the
channeling peaks . Also asymmetries were seen, depending only on th e
detector being 'to the left' or ' to the right' of the beam direction . Rather than
investigate these phenomena in detail, it was decided to use an annular
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counter which is axially symmetric and averages over a very large soli d
angle .

The forward detector was then used to scan angular distribution of th e
beam after its passage through the crystal . Because of the small distance fro m
the crystal, the angular resolution was not very good . A better resolution
was obtained in the photographic exposures .

1 .2 . Results

Results from measurements on two samples of thickness 0 .2-0.3 pm and
2.8 gum, respectively, are reported . The thickness may be compared to th e
mean-free path for scattering, defined as 1 = (Na)-1 , where a is the tota l
atomic scattering cross section and N the density of atoms, N = 5 x 10 2 2

cm-3 for Si . A simple estimate of a is obtained in the Born approximatio n
for an exponentially screened Coulomb potential ,

a = ra2 x 2 ,

	

(I .1)

where a is the screening parameter and x is defined a s

2~Z1 ~Z2e 2

=
hu

Here, Z1e and Zee are the charges of the particle and the scattering nucleus ,
and v is the particle velocity . While for x > 1, the collision may be describe d
by classical mechanics31, the Born approximation is valid in the limit o f
x < 1 . In the present case, we have x 2 0 .05 . For the screening parameter a ,
we way may insert the Thomas-Fermi screening radius, a = 0 .8853 Z2-113 ao ,

where ao is the Bohr radius, ao = 0 .53 Å. This leads to a cross section o f
a 5 x 10-3 Å 2 and a mean-free path for scattering, 1 N 4000 Å. More
accurate calculations indicate that such a simple estimate is probably no t
far of132 . According to Eq. (I,1), 1 depends on Z 2 approximately as I cc Z2 4/3

for fixed electron energy. The scattering length in gold will then be roughly
ten times shorter, in good agreement with the measured value of 1 400 Å
for 1-MeV electrons 12 .

Thus the thickness of the thinner sample is comparable to the scattering
length, whereas the thickness of the thicker sample corresponds to about 71 .
The angular distributions of the transmitted electrons were in qualitativ e
agreement with these estimates . For the thinner sample, the distributio n
consisted of an unscattered, central peak with tails due to single (or plural )
scattering, whereas for the thicker sample, no central peak was observed .
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Fig. I.2 : Scan through {111} plane for the
0 .2-0 .3-Fp m sample . The crosses are experi-
mental points, and the fully drawn curve is th e
result of a nine-beam calculation for a stati c
lattice . Bragg reflections of order up to + 4 ar e

included (9 beams) .
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Fig. I .3 : Scan through {110} plane for th e
0 .2-0 .3-Fem sample. This calculation includes
reflections of order up to ± 3 (7 beams) . The
error flag on the upper right-hand side indi -
cates beam divergence and statistical uncer-

tainty of the measurements.
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As mentioned above, the angular resolution in scans with the forwar d

detector was too poor for quantitative measurements . More direct informatio n

on the scattering and its variation with incidence direction is obtained fro m

the yield of large-angle scattering into the annular detector .
0.2-0 .3 ,um crystal . Scans through the three major planes, {1111, {1101 ,

and {1001 are shown in Figs . I .2-1 .4. The measured yields are normalize d
to the yield in a "random" (nonsymmetry) direction . The angle with the
plane is given in units of the Bragg angle, 0 B = 2/(2dp), where )1, is the electron

wavelength and dp the planar spacing . We shall discuss the calculations i n

more detail in the following chapter . Inelastic scattering is not included, an d

thus the discrepancy in peak height, due to attenuation with depth, is to be
expected . If, for simplicity, exponential damping with depth is assumed, the
measurements indicate that the length corresponding to a reduction by 1 fe i s
approximately equal to the crystal thickness (cf. also Sec . II .7) .

The general peak shapes are rather well reproduced by the calculations .

For the {1101 and {1001 planes, the width is twice the Bragg angle, wherea s
for the strongest plane, the {1111, the width is 4 to 5 times O B . The peculiar
shape of the {1111 peak is due to the diamond structure of silicon . Each

{1111 atomic plane is split into two planes with a separation of dp f4 . The
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Fig . I .4 : Scan through {100} plane for th e
0 .2-0 .3-,um sample compared with five-beam
calculation . The error flag on the upper right-
hand side indicates beam divergence an d

statistical uncertainty of the measurements .
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Fig. I .5 : Film exposures of the forward beam for the 0 .2-0 .3 pm sample. The upper series of fou r
exposures corresponds to the incidence angles of 30B, 20B, and 0B, and 0 with respect to a {111 }
plane . The lower two exposures correspond to incidence angles of OB and 0 with respect to a

{1101 plane .
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Fig. I.6 : Scan through the (110> axis for th e
0.2-0.3-µm sample . The experimental results
are compared to the classical formula derive d
in the Appendix. The calculated excess yiel d
has been multiplied by 0 .5 to account appro -
ximately for inelastic scattering . The error fla g
on the upper right-hand side indicates bea m
divergence and statistical uncertainty of the

measurements .
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Fig . I.7 : Scan through a <111) axis for th e
0 .2-0 .3-pm sample. The experimental results
are compared to the peak in yield obtained
from a 49-beam calculation . Effects of thermal
vibrations are included, but inelastic scatterin g
is not . Instead, the calculated increase in yield
has been multiplied by 0 .5 as in the previou s

figure (cf . also Fig. II.4) .

2 4,

{110} and {100} planes are regularly spaced . Finally, we note that the bea m
collimation was not sufficient to resolve the "wiggles" at high-order Bragg-
reflection positions . There are, however, slight indications of these wiggles ,
especially in the {1001 scan .

For selected directions of indicence, photographic exposures of th e
transmitted beam were taken . Two series of exposures are shown in Fig . I .5 .
The upper four exposures correspond to beam incidence at angles 30 B ,
20B, 0B , and 0 (left to right) relative to a {111} plane . In this case, the Bragg
angle is O B 0.1°, and the distance between the spots is 20 B N 0 .2° . The
spot corresponding to the incidence direction is the most intense one (secon d
from the right). Below are two exposures for beam incidence at an angle o f
0 B N 0.17° and parallel to a {110} plane, respectively . All spots in the figure
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have a pronounced tail . This corresponds to a low-energy tail of the beam -

energy distribution since electrons of lower energies are deflected slightl y

more by the earth magnetic field .
Scans through the <110> and <111> axes are shown in Figs . I.6 and I .7 .

The peaks are much stronger than the planar ones, rising by about a factor

of three over normal yield . The <110> peak is compared to the classica l

prediction derived in the Appendix . The theoretical curve is multiplied by a

factor of 0 .5 . The width and shape of the peak are then quite well reproduced .

Since the attenuation with depth is expected to be stronger than for planes ,

also the absolute agreement is reasonable .

The peak along the weaker <111> axis is compared to a many-beam
calculation, multiplied also by a factor of 0 .5, to correct roughly for inelastic

scattering (cf. Sec . II .7). The widths are in good agreement and signific-

antly narrower than predicted by a classical estimate . This qualitative dif-

ference between the two axes is also apparent in the diffraction patterns dis -
cussed below.

Film exposures of the transmitted beam for incidence close to an axi s

are shown in Fig . I .B. The exposures in the upper series are taken at tilts

of 0.6°, 0 .4°, 0 .2°, and 0° from the <111> direction . The series below cor -
responds to incidence angles of 0 .75°, 0 .50°, 0 .25°, and 0° relative to a <110 >

direction (from left to right) . The strongest spot, corresponding to the in-

cidence direction, is fairly easy to identify in the upper series . In the lower
series, the spots are very poorly resolved, but it is evident that quite a larg e

number of reflections are excited . Especially at the larger tilt angles to the

<110> axis, the scattering is clearly seen to be confined to a ring around the

axis, corresponding to conservation of transverse energy 5. In the terminology

of the theory of electron diffraction, the observed pattern is denoted the

zero-order Laue zone and corresponds to the intersection of the Ewal d

sphere with a plane in the reciprocal lattice 14

2 .8-pm crystal. Angular scans through the three major planes, {1111,

{110}, and {100}, are shown in Figs . I .9-I .11 . The peaks are much smaller

than those for the thinner crystal, indicating a strong depth dependence .

Once again, we may estimate the thickness corresponding to a reduction b y

1/e, assuming exponential attenuation . In this case it turns out to be - 0.4 lam,

in reasonable agreement with the estimate based on the thin-crystal result .

The assumption of exponential damping is obviously very crude . The peak

shapes are now quite different . The dips are relatively more pronounced ,
and the widths are narrower, especially for the {1111 plane . (cf . the discussio n

in Sec . 1I .7) .
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Fig. I.8 : Film exposures of the forward beam for the 0 .2-0.3 ,um sample . The upper series corres -
ponds to incidence angles of 0 .6°, 0 .4°, 0 .2°, and 0°, relative to a <111> axis, the lower series to

incidence angles of 0 .75°, 0 .50°, 0,25°, and 0°, relative to a <110> axis .
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Fig. I .9 : Scan through {111} plane for the
2 .8-um sample. The error flag on the upper
right-hand side indicates beam divergence an d

statistical uncertainty of the measurements .
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Fig. I .10 : Scan through {110} plane for th e
2 .8-,um sample . The error flag on the upper
right-hand side indicates beam divergence and
statistical uncertainty of the measurements .
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Fig. 1.11 : Scan through 11001 plane for th e
2 .8-pm sample . The error flag on the uppe r
right-hand side indicates beam divergence an d
statistical uncertainty of the measurements .
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Scans through the <111> and <110> axes are shown in Figs . I .12 and I.13 .
The peak heights are strongly reduced, and a lot of fine structure has devel -

oped. An angular width is difficult to define, but it is obvious that the peak s
are much broader than for the thinner crystal . No attempt has been made to
check the suggested conservation of the peak volume" 12 To calculate this ,

it would have been necessary to assume azimuthal symmetry of the pea k

which, for the present measurements, would have been altogether too bold .

The decrease in peak height is certainly to some extent counteracted by a
broadening of the peak. This is qualitatively different from the planar case,

which can be related to the fact that at least from classical estimates, th e

compensation of the peak for planes is concentrated in a narrow, negativ e
shoulder, whereas for an axis the compensation is shallow and stretches out

to angles of order 2a/d . In the present cases, 2a /d

	

4° .

Film exposures of the transmitted beam are shown in Fig . I.14 for in-

cidence parallel to the two axes <111> and <110> and the three planes {100} ,

{1101, and {1111. The quality of the pictures is very poor compared to the
beautiful Kikuchi patterns obtainable in electron microscopy, where a

wealth of lines are resolved 33 . It does, however, suffice to demonstrate two

qualitative features : (i) In contrast to Fig . I .5, the angular distribution of th e
electrons after their passage through a 2 .8-,urn crystal is determined by mul-

tiple (inelastic) scattering . (ii) In analogy to the star patterns observed for
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statistical uncertainty of the measurements .

protons transmitted through thin single crystals 27 , there are minima in the

intensity at angles associated with a high large-angle scattering yield and ,

conversely, there are maxima at angles associated with a low yield .

Fig . I.14 : Film exposures of the beam transmitted through the 2 .8 ,um crystal . The upper two
exposures correspond to beam incidence parallel to a <111> axis and a <110> axis . The lower thre e
exposures correspond to incidence along {1001, {1101, and {1111 planes . The small intense spo t

visible in all exposure is due to x rays produced in the gold scattering foil .
Mat.Fys .Medd .Dan.Vid .Selsk . 39, no. 10 .
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II. Wave-Mechanical Description

The calculations leading to the theoretical curves in some of the pre -
ceding figures (I .2-I.4 and I .7) are based upon the dynamical theory of
electron diffraction14 . Similar calculation have been published by severa l
authorsl3, 18-21 . A brief description was also given in connection with th e
measurements on positron channeling$ ' 9 . The following presentation is
intended to serve as a basis for the discussion of correspondence in the fol-
lowing chapter and therefore emphasizes the analogy with the classical de-
scription of directional effects 5 and uses the notation belonging to that
description. This is in accordance with the quantal treatment by LERVI G

et al . l0 , and we shall at first follow their development and discuss the deriva-
tion of the two-dimensional wave equation from the three-dimensional
Klein-Gordon equation . In this context, the `many-beam' formulation o f
the dynamical theory of electron diffraction then appears as an approxim-
ation procedure for solving by Fourier expansion the equation of motion i n
the continuum approximation .

11 .1 . Basic wave equation

First, we derive the basic wave equation for the transverse motion ,
following the procedure of LERVIG et al . Suppose the interaction between
particle and lattice can be described by a potential ,

V(R) = V(z,r) =Va(R -Ra),

	

(II .1 )

where R = (x, y, z) is the position of the particle and F = (x, y), while the
Ra ' s are atomic positions and Va the atomic potential . The z axis is paralle l
to an axis or plane, and the particle is assumed to move nearly parallel to
it . Since we are concerned with particles at relativistic velocities, we base th e
discussion on the Klein-Gordon equation for a particle of total energy E
and rest mass M°,
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ahc) 2 4R + [(E - V(z,r)) 2 - Môc 4]}y,(R) = O .

	

(II .2 )

By describing the interaction with the crystal by a potential (Eq . (II.1)) and
disregarding the degrees of freedom belonging to atoms, we have at firs t
neglected inelastic scattering by electrons and phonons, which leads t o
incoherence of the particle wave function. Furthermore, when the descriptio n
is based upon the Klein-Gordon equation rather than the Dirac equation ,
spin-dependent terms in the Hamiltonian are neglected .

The incident particle may be represented by a plane wave ,

vo(n) = eak • R , E2 = (hc) 2 k 2 +Môc 4

	

(IL3)

Since the scattering at high particle energies is strongly forward-peaked, the
interaction with the lattice only leads to transfer of rather small momenta i n
the x and y directions, the momentum in the z dirsction being approximately
conserved . The motion may therefore be separated into a transverse motion
in the x-y plane and a longitudinal motion in the z direction with constant
velocity vz N v = hk/1W, where M is the relativistic mass, M = E/c 2 . For the
transverse motion it is then natural to introduce time, t = zf v, as a para-
meter . The wave function is written a s

y,(R) = enko . u(z,f) .

	

(II .4)

When this is inserted into Eq . (II .2) and we neglect a term V 2 compared
to 2EV and a 2 fåz 2 compared to 2ka/az, corresponding to scattering by small
angles only, an equation of a type of a time-dependent, non-relativistic
Schrödinger equation for the transverse motion is obtained ,

a
ih at u(t,r)

	

Hu(t,f )

h 2

H

	

2Mdr
+V(t,f) .

For a discussion of the corrections to the approximations leading to Eq .
(II .5), the reader is referred to LERVIG et al . i o

11.2 . Continuum approximation

Let the crystal surface correspond to z = vt = O . For t < 0, the potentia l
is zero, and according to Eqs . (1I .3) and (II .4), the transverse wave functio n
is then

2*
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u(t,f) = exp{ik•R -ikz} N exp{ikl •f - iEl tf$}

h2k2

El
2M

N E- [(hc) 2 kz + 4c4]i/ 2

k = (k.i ,kz) _ (kx ,ky ,kz ) •

At time t = 0, the potential changes suddenly . In the axial case, it is for
t > 0 a periodic function of t, with period r = dfv, where d is the spacing o f

atoms in the strings . In the continuum approximation, this time-dependent

potential is replaced by its time average,

1
V(f) = -

Jt+r V(t,f)dt,

	

t > O .

	

(II .7A)
r t

The question of the validity of this approximation was studied in detail b y

LExvIG et al . Also in the classical treatment of directional effects, this questio n

is crucial . For the axial case, the accuracy of the continuum descriptio n
may be assessed by the more accurate halfway-plane treatments, 10 . It turns
out that the continuum picture is obtained in the limit of high particle velo-

cities where the time interval r between collisions becomes short .

In the planar case, the continuum approximation is obtained by aver -
aging the potential along both the z axis (time average') and the transvers e

coordinate y parallel to the plane ,

V(x) = ~~Addd(vt)V(t,l) .

	

(II .7B)

The accuracy of this approximation has not been studied by a systemati c
approximation procedure like the halfway-plane treatment of the axial case .

In the classical descriptions, the continuum approximation was seen to brea k

down at distances from a plane of order a, the Thomas-Fermi screenin g
distance, even for very large particle velocities .

In the dynamical theory of electron diffraction, the continuum approx-

imation corresponds to a Fourier expansion of the lattice potential in one or

two dimensions, for the planar and axial case, respectively . It is argued"

that for high-energy electrons incident at a small angle to a plane (or an
axis), only reciprocal lattice points on a line (or a plane) perpendicular t o

the plane (or axis) are close enough to the Ewald sphere for the correspond -

ing reflections to be appreciably excited . The important question remains ,

whether scattering processes leading to nonconservation of transverse energy
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are weak enough to be treated as a perturbation . Such processes may be
either inelastic scattering, or elastic scattering corresponding to reciproca l
lattice points off the line (or plane) perpendicular to the plane (or axis) .
For the axial case, the importance of the latter type was assessed in Ref . 10 .

We shall base our discussion of correspondence in the following chapter
on the continuum picture, mainly because this leads to rather simple result s
in both classical and quantal treatments . In so far as the main difference
between the results consists of fine structure due to wave interference, th e
difference may be reduced by inelastic scattering leading to incoherence of th e
wavefunction .

11.3. Solution of wave equation

In order to solve Eq . (II .5) for t > 0, we consider the stationary wav e
equation corresponding to well-defined transverse energy El. For simplicity,
we restrict ourselves to the planar case,

[ 2

1A2 0 2

12 åx2
+V(x)~ uf(x) = Eu(x) ,

u f (t,x) = ul(x)e -2Et/
h

where uf(x) is the eigenfunction belonging to the eigenvalue Ei . The Hamil-
tonian is invariant under transformations x x + ndp, where n is an integer
and, consequently, u' (x) can be written as a Bloch wave ,

uf(x) = eåklx w f (x),

	

(II .9 )

where wf (x) is a periodic function, cof (x + ndp) = cof (x) . In order to fin d
solutions (II .9) to (II.8), we expand the potential as well as the wave func-
tion in a Fourier series,

V (x) = ~Vn e~ngx

n

co f (x) = ~ Cf e img x

m

where g is the length of the reciprocal lattice vector corresponding to th e
distance dp between neighbouring planes, g = 2n/dp .

If we insert (11 .1 0) and (II .11) in (IL8), and identify terms with th e
same exponential factor, we obtain for the coefficients CI,

2

2(k+ng)2 CnCnz Vn_m = Ei n .

	

(11 .1 2)
m



22

	

Nr . 1 0

This system of equations leads to approximate eigenfunctions when onl y
a finite number of terms in (II .10) and (II .11) are included . In the termi-
nology of diffraction therory, the term in (II .11) with n = 0 is the primar y
beam, whereas terms with n 0 correspond to diffracted beams . A cal-
culation including N terms in the expansions (1I .10) and (1I .11) is therefor e

denoted an N-beam calculation . The system of equations (II .12) then
reduces to an eigenvalue problem for an N x N matrix 4 given b y

Alm = Vn-m, n m
2

Ann _ 2M(k1 + ng) 2 +V0 .

In an N-beam calculation there are for fixed k1 N eigenvalues El correspond-
ing to N orthogonal wave functions u 3(x) given by (II .9) and (1I .11) . The
dependence of the exact eigenvalues and eigenfunctions on k1 is periodi c
with period g . For the solutions of a truncated matrix (11 .1 3), this periodicity
will only hold approximately within a limited range of k1 values. In practice ,
the number of beams is chosen to be large enough for this range to compris e
the interesting range of incidence angles .

11.4 . Scattering yield

At first we estimate the atomic scattering yield relative to the rando m
case, corresponding to an eigenfunction u'(x) . For large-angle scattering, th e

contributions from different atoms are incoherent due to the recoil . Clas-
sically large-angle scattering of energetic particles corresponds to collision s
with very small impact parameter, and the yield will therefore be proportional
to the particle flux at atomic positions . The classical picture applies whe n
the quantity x, defined in Eq . (I .2), is large compared to unity . In the opposite
limit of small x values, the scattering by a single atom may be calculate d
in the Born approximation . The yield is then proportional to the square o f
the matrix element <u l l Va l u5), where u5 and u l are the initial and final state s
of the projectile and Va is the atomic potential . For large-angle-scattering
corresponding to a transfer of a large transverse momentum 4k, the matrix
element receives its major contribution from distances < 1/dk from th e
the center of the atom . If the initial wave function does not vary significantly
over distances - 1/Ak, the yield will then also in this limit be proportional t o

the intensity 101 2 at the position of the atom. This result is therefore ob-
tained as a direct consequence of our basic assumption of predominance of
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small-angle scattering, which implies that in the matrix (Eq . (11 .1 3)), only
Fourier components corresponding to ng «( Llk need be included .

If the intensity distribution I uI(x) 1 2 varies only little over a distanc e
- 2, the R.M.S. vibrational amplitude perpendicular to the plane, the yield
nj is given approximately by the intensity at the equilibrium position ,

ni _ I
111 (0)1 2 =

	

(II .14)
n

Here, and in the following, we assume the coefficients Cn to be real, which
may always be achieved if the crystal has reflection symmetry . Also, for
simplicity, we have assumed that x = 0 corresponds to the position of the
atomic plane. The two assumptions are not always compatible as, e .g . ,
they are not for a {1111 plane in a diamond lattice (cf . Fig. I.2 and the
corresponding comment in the text) . In such cases, the appropriate phas e
factor must be included in Eq . (II .14), which is modified t o

~L• =

	

C' G9 ei(n-m)gxo ,m
n, m

(II .14a)

when the atomic plane is at x = x0 .
As in the classical descriptio n29 , the most important correction for therma l

vibrations is the modification of the yield ni due to displacements of the
scattering centers from the plane . When the intensity is averaged over a
Gaussian distribution of displacements, Eq . (II .14) is modified into

n, =

	

C' C' D,n n ,n ,
m, n

(II .15)

where Dnm are factors of Debye-Waller type ,

Dnm = exp{- s(n - m) 2 g 2 e 2 } .

	

(II .16)

A less significant effect of thermal vibrations is the modification of th e
lattice potential . Incoherence due to atomic recoil reduces the coherent
scattering, and this may be taken into account by multiplying the Fourie r
components of the potential by a Debye-Waller factor,

Vn ->- Vn Dno, (II .17)

where D. is given by Eq. (I1.16). The corresponding reduction of larg e
Fourier components may alternatively be interpreted as being due to th e
smearing of the planar potential which results from a convolution with th e
Gaussian probability distribution for the position of atoms relative to th e
plane .
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The corrections (II .15) and (II .17) only become important when th e
wave function contains Fourier components corresponding to transvers e
wave vectors ng 1/e . Since dp/e 30 this will only be the case when at
least 5-10 beams have to be included in the calculation .

11.5 . Surface transmission

The wave function for t > 0 may be expanded in terms of eigenfunctions ,

-iEitill

	

iklx

	

-lEltM
(11 .1 8)u(t,x) _ ajI

l u (x)e

	

= e

	

aj e

	

n egn"
j

	

j

	

n

where we have utilized that matching at the surface (t = 0) to the incoming
plane wave requires all eigenfunctions in Eq . (11 .1 8) to correspond to th e

value of kl determined by Eq . (11 .6) . Also the coefficients a j are determined
by this matching, and we obtain

	

a i CI, = S no .

	

(11 .19)
j

If the eigenfunctions are normalized ,

1 cf. C c. = ajk ,
n

(II .20)

it is easily seen that

	

aj = Ci, .

	

(II .21)

Neglecting at first thermal vibrations, we then obtain for the yield P o f
large-angle scattering, combining (II .14) with (II .21) ,

P >(C o) 2 7Ej

	

(C o C n) 2 .
j

	

j

	

n

If thermal vibrations are taken into account, Eq . (II .14) is
(II .15), and we obtain

P - ~(Cô) 2 ~ Cn Cm Dnm
j

	

m, n

In Eqs. (II .22) and (II .23) we have added the contribution from differen t
eigenfunctions incoherently. The results therefore apply to measurement s
which are averages over a thickness large enough to correspond to large
variations of the relative phase of different eigenfunctions . This assumption
of random relative phases is analogous to the assumption of statistical equi-
librium in the classical treatment .
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The yield of large-angle scattering is determined by the spatial intensit y

distribution of the channeled particles . By a transmission measurement o f
the intensity of different Bragg spots, one may determine the distribution i n

momentum space 34 . The corresponding formulae may easily be derived ,
but we shall instead turn to the problem of incoherent scattering which, in
the theory of electron diffraction, plays a role very similar to that of de -
channeling by multiple scattering in the classical theory of channeling .

11 .6 . Incoherent scattering

An order-of-magnitude estimate of the total cross section for scatterin g

by atoms in a random medium was given in the previous chapter (Eq .

(I .1)) . For a wave function with high intensity at the atomic sites, there wil l
be a strong increase in scattering. On the other hand, for small scattering
angles, the intensity is mainly concentrated in the coherent Bragg peaks . A
cursory estimate of the corresponding reduction of in coherent scatterin g

may be obtained from the scattering law applied in the previous . estimates ,

d(0 2
da(0) a (~	

+ O'

	

(11 .24)

Here, 0o is given by the ratio of the electron wavelength X to the screenin g
radius a, 0 0 = it/a . Since the incoherent scattering is proportional to a factor
[1 - exp(- 002 fX 2 )], a rough estimate of the incoherent fraction i s

aine

J
f da(e)

atot

	

atot
_ [1 + a2f0] -1 •

e z /p > 1
(II .25)

In silicon this estimate leads to a rather small incoherent fraction ,
1/6 . In view of the rough approximations made in the calculation, thi s

number should be considered only as an indication of the importance o f
corrections for coherent scattering to the inelastic scattering cross section . If
the atomic scattering is strongly reduced, inelastic scattering by electrons may
play a significant role especially for low Z 2 . It should be noted, however,
that the enhancement of incoherent scattering (anomalous absorption )
corresponding to the increase in large angle scattering yield will be muc h
stronger for thermal scattering than for electronic scattering .

A considerable amount of work has been devoted to the problem o f
estimating inelastic scattering in connection with electron microscopy .
Recently, a review was given by HowrE and STERN 3s , which also may be
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consulted for further references . Usually, inelastic scattering is taken int o
account by adding an imaginary part to the potential . Such a simple treatment
will probably not suffice in the present connection . Since the inelastically
scattered electrons also contribute to the large-angle scattering yield, we ar e
concerned not only with the effect of inelastic scattering on the initial ,
coherent wave function - absorption - but also with the properties of th e
final states . Thus it may be complicated to introduce inelastic scattering eve n
in the comparatively simple two-beam ease l ' . As a first approximation, the
final states may be assumed to be plane waves 3G . For the thermal scattering ,
which involves rather large momentum transfers, this assumption may no t
be too bad. Since, however, for scattering by electrons, the cross section i s
strongly peaked at small momentum transfers, the wavefunction may not
change its symmetry even after several plasmon excitations", 35

In the axial case, the problem of incoherent scattering is particularl y
severe . The strong potential minimum should lead to fairly localized state s
and a large peak in scattering yield . Such states will be highly unstable, an d
the incoherent scattering cannot be treated as a small perturbation . A treat -
ment in terms of statistical concepts may then be more appropriatell, 37

11 .7. Numerical evaluation and comparison to experimen t

When only a small number of Fourier components (beams) are included ,
the many-beam formalism lends itself readily to numerical evaluation .
Planar peaks in scattering yield for 700-keV electrons along {1111 and {110 }
planes in silicon are shown in Figs . II .1 and II .2 . A fairly rapid convergence
with increasing number of beams is indicated . The number of beams
necessary in such a calculation depends on the strength of the planar potentia l
and the relativistic particle mass . In the present case, 7-9 beams are sufficient
for the most closely packed plane, the {1111 plane, whereas for the weaker
{110} and {100} planes, only 5-7 and 3-5 beams, respectively, are needed .

The relative excitation of different Bragg-reflected beams can be directly
observed in the photographic exposures of the transmitted beam (Fig . 1.5) .
For the {1111 plane, both second - and third-order reflections are quit e
important, and of the order of five beams are strongly excited . It may b e
noted that due to the already mentioned split of the {1111 plane in a diamond -
type lattice, the second-order Fourier component of the {111} planar poten -
tial vanishes. Thus the second-order beam can only be excited indirectly ,
and the very strong excitation indicated in Fig . 1 .5 shows the importance of
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peak for 0 .7-MeV e- on Si, including 3, 5, 7, peak for 0.7-MeV e- on Si, including 3, 5, an d

and 9 beams, respectively (static lattice) .

	

7 beams, respectively (static lattice) .

dynamical effects . The two exposures for the {110} plane indicate that fo r

this somewhat weaker plane, fewer beams are excited .

In the axial cases, a much larger number of beams are excited simulata-
eously, as may be appreciated by looking at the Bragg spot patterns in Fig .

I .8 . For the <111> axis, the number of spots is still fairly small, and a cal-
culation analogous to those for planar cases was therefore attempted (see

Fig. I .7). The convergence with number of beams is illustrated in Fig . II .3 .

For the <110> axis, the spot pattern in Fig . I .8 contains many, fairly weak ,
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Fig. I1.3 : Convergence of axial many-bea m
calculations for 0 .7-MeV e- on Si . The number
of beams included is indicated in the figure .
For the <111> axis, the equivalent number o f
beams for a {1101 planar calculation is given
in parentheses . In contrast to the calculation s
shown in the previous figures, the most
important reflections were selected independ-
ently for each angle of incidence. Incoherent
scattering is neglected, but other effects of
thermal vibrations are included (cf . Eqs .
(II.15) and II .17)) . The values of the character-
istic angle vi for classical channeling are 0 .75 °
and 0 .92° for the <111> axis and the <110>
axis, respectively .
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Fig. II .4 : Axial peak in large-angle scattering
yield for 0.7-MeV e-, derived from a 49-beam
calculation (cf . Fig. II.3) . The influence of
incoherent scattering has been estimated b y
including an imaginary component in th e
potential and assuming scattering into plane -
wave states . The magnitude of the imaginary
Fourier components of the potential has been
evaluated from an approximation to the result s
given in Ref. 38 . The peak derived from thi s
calculation is compared to that obtaine d
without absorption, multiplied by 0 .5, corres-
ponding to the correction for inelastic scatter-
ing applied in Figs . I .6 and I.7 (dashed curve) .
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reflections . This may be related to the complicated transverse arrangemen t
of <110> strings and explain the apparent lack of convergence in the many -
beam calculations for this case (see Fig . II .3) . Also, the <110> axis is some -
what stronger than the <111> axis, and the experimental results were there -
fore compared (in Fig . I .6) to a classical calculation . It is clear that for a
strong, narrow potential, two-dimensional Fourier expansion is basically a
very inefficient method .

Fig . 11 .5 : 20-beam planar calculation
for e- on Si . Effects of thermal vi-
bration are included according to Eqs .
(II .15) and (II .17), and the influence
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As mentioned in the previous section, inelastic scattering is normally i n
electron microscopy taken into account by adding an imaginary componen t
to the potential, and this treatment may be applied to measurements of large -
angle scattering if the final states are assumed to be plane waves . Example s
of results from such a procedure are given in Figs . II.4 and II .5 for the
<111> axis and the {111} plane, respectively . For the axis, the calculation
supports the simple estimate of a reduction by a factor of two, which wa s
applied in Figs. I .6 and 1 .7 . Also for the plane, the result for the thinner
crystal is in fair agreement with measurement, but for the thicker crystal,
the calculation does not lead to the narrowing of the peak observed experi-
mentally (Fig. I .9). It would seem that measurements of the type describe d
here could serve as a useful tool to test the description of inelastic scattering .

The main conclusion of the comparison between calculations and experi-
ments is, however, that for small depths, the dynamical theory of electro n
diffraction yields results in good agreement with experiments, at least fo r
planes and weaker axes . A similar conclusion was reached for experiments
with positrons 8 ' 9, and we may therefore in the following investigate th e
relation to channeling of heavy particles by studying the relationship of this
theoretical description with classical channeling theory .



III . Correspondence

III .1 . General considerations

The main objective of this investigation of electron and positron chan-
neling has been to study the limits for applicability of classical mechanics
in the description of channeling phenomena for light particles, and i n
particular the relation between the theory of electron diffraction, as formul-
ated in Chapter II, and classical channeling theory. In the papers by LIND -
xARD 5 and LERVIG et al . 12, the validity of classical orbital pictures in th e
description of collisions with an isolated string was studied in detail wit h
emphasis on the case of heavy particles (protons, a paticles, etc .) . For thi s
case it was concluded that in the limit of high particle velocities, a collisio n
with a string of atoms remains classical although classical mechanics doe s
not apply to scattering by a single atom since the quantity x, defined in Eq .
(I .2), becomes small compared to unity .

For channeling of light particles (positrons and electrons), an analysis o f
the interaction with the lattice in terms of scattering of a wave packet by
isolated strings or planes may not be appropriate, as the requirements o f
localization in space and angular spread smaller than a characteristic angle ,
which for axial channeling is of order' °

(

4Z172 e2 / 1/2
pod

may be mutually exclusive.
Decisive for this question is the magnitude of the number of bound

states in the transverse potential minimum . Semiclassically this number may
be obtained from the available phase space for transverse energy below th e
potential barrier. If there are no bound states the scattering is determine d
by simultaneous interaction with many strings or planes, and no similarit y
with classical results can be expected . In the limit of many bound states, o n
the other hand, the classical picture is approached .

y1 =
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In the case of axial channeling, positively charged particles with trans -
verse energy below the barrier for penetration through strings are not boun d
to one channel but may move freely between strings except at very lo w

transverse energy ( 'proper channeling') . Still, the number of states per unit
cell in the transverse plane (or per string), with transverse energy below th e
barrier for penetration into strings, is an important quantity . Qualitatively
it may be seen from the fact that many states per unit cell are required to
form a wave packet which is well localized within this area . More directly, it
follows from the quantal treatment in Ch . II . The stationary wave equation
(two-dimensional analogue of Eq . (II .8)) may be reduced to one unit cel l
with periodic boundary conditions, and the conclusions reached in the
following concerning the behaviour of the solutions of this equation ma y
therefore be expected also to apply to the axial case for positive particles ,
with the definition given above for ` the number of bound states' .

Al this point it may be appropriate to discuss the special quantal pheno-
mena caused by the lattice periodicity . Indeed the strong diffraction pheno-
mena observed for electrons and positrons constitute the most strikin g
deviation from classical behaviour. The interference due to transverse
periodicity with period dp may be described as a quantization of transvers e
momentum transfers in bits of 8p1 = 27cß./dp, corresponding to an angular
deflection of twice the Bragg angle . This quantization was explicitly dis -
regarded by LERVmG et al . on the ground that for particles heavy compared to
the electron, 8p1 is very small . In point of fact, for p1 = py' l , we have 1 0

/

	

1/2

	

1/ 2
(6P11

= \a0

	

(mol (Z1Z2) 1/2 «« 1 for M »» m 0 ,

	

(1II .2 )
Pl //

	

dp/ ` Ml

where M and Z 1 are the mass and charge of the incident particles .
Should we not then, as the essential criterion for classical behaviour ,

require that the transverse momentum quantum åp1 be small compared to
the transverse momentum corresponding to the potential barier E b , p1 =

= (2MEb ) 1 / 2 Y Although this is a necessary condition, it is not sufficient .
Also the width of the potential minimum is important since, together wit h
the barrier height, it determines the number of bound states .

The interference structure may be smeared by incoherent scattering
or poor collimation . This, however, only leads to classical results if the
phase-space criterion is fulfilled such that the quantal description leads t o
a classical envelope with fine structure due to diffraction . In this transition
region, deviations from classical results due to tunneling may also be expected .
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Channeled positive particles are prevented from penetrating into the cente r
of atoms by the transverse potential barrier . The probability of close en-
counters with atoms is thereby strongly reduced for incidence parallel to a n
axis or plane, and the magnitude of this reduction may be sensitive to th e
probability of tunneling into the classically forbidden regions . Cursory
estimates of tunneling probabilities for strings and planes, based upon th e
WKB approximation, were given in Ref . 10 .

We may conclude these general remarks by considering some charac-
teristic lengths, the relative magnitude of which governs the approach to -
wards the classical picture of channeling. The transverse wavelength Ai ,
which corresponds to a transverse kinetic energy equal to the potential bar -
rier Eb, is given by 2 th f(2ME6 ) 1 / 2 , where M is the relativistic mass of th e
particle . This length may first be compared to the width of the potentia l
minimum which, for electrons, is a few times the Thomas-Fermi screenin g
distance a and for positrons is of the order of d, the lattice spacing. When Ai
is small compared to the width, the phase space is large, there will be man y
bound states, and the quantization of transverse energy may be disregarded .

Second, the importance of the quantization of transverse momentum de -
pends on the relative magnitude of Ai and the characteristic lengths for lattic e
periodicity, which again is of order d . If the phase-space criterion is ful -
filled, Al will be small compared to d, and we may expect interference du e
to periodicity to lead to fine structure only .

Third, penetration into potential barriers is small if the width of th e
barrier is large compared to Al. For positive particles, the barrier widths
are of order a or a few times a . Tunneling may therefore lead to importan t
modifications of classical results, even if the phase space is relatively large .
In Ref. 8 it was concluded, however, that the influence of tunneling i s
strongly reduced by the smearing of the distribution of atoms, due to therma l
vibrations .

111 .2 . Analogy between quantal and classical descriptions

In the following we shall try to describe in some detail how the quanta l
description of channeling approaches the classical description and illustrat e
the importance of the phase-space criterion . In this connection it is importan t
to specify the type of measurement we are considering. We shall be con-
cerned only with predictions of the dependence on incidence direction of th e
yield of a close-encounter process such as large-angle scattering or inner -
shell excitation. This simplifies the problem considerably since we need not
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consider in detail the validity of classical orbital pictures in describing particl e

trajectories 25 but only the ability of classical mechanics to predict th e

distribution of particles in the transverse direction or plane . A quantal

treatment was discussed in the previous chapter and for the classical

description, we may refer to Lindhard's original treatments. Numerical
estimates based upon the two formulations are compared in Ch. IV. In the
Appendix, an example is given of an analytical calculation based upon th e
classical description .

The physical situation we are concerned with is an external beam o f
particles incident on a single crystal at an angle p to a major plane (or

axis), and we ask for the probability P(p) for particles to come close to th e
center of crystal atoms, as manifested in the yield of a close-encounter

reaction . Many similarities are apparent between the classical and the quan-

tal treatments of this problem. Owing to the predominance of forward scat -

tering, the motion of the particles may be separated into a longitudinal mo-

tion with nearly constant velocity and a transverse component, which ma y

be described as motion in an averaged potential with approximate conser-
vation of the transverse energy E1 ('continuum approximation') . The pro-
bability P(y) is then determined in two steps :

First, the probability n(E1) for a particle with transverse energy El to

have a close encounter with an atom is calculated . In the classical treatment,

this involves finding the probability distribution in transverse space as a
function of El, based on statistical arguments. In the quantal treatment, El
is quantized. The eigenfunction uj(x) belonging to an eigenvalue Ei may be
calculated from Eqs. (11 .8), (11 .9), (I1.11), and (I1 .12) . The probability

density in transverse space is given by the square of this eigenfunction . I n
both cases, the reaction yield is assumed to be proportional to the density at
atomic positions .

Second, the population of transverse-energy levels is determined by

surface transmission. Classically, a particle hitting the crystal at a distance x
from a plane acquires a potential energy V(x), leading to a total transvers e
energy

E1 = Eyp 2 + V(x) .

	

(11I .3)

Since the intensity of the beam is uniform over the crystal surface, th e
distribution in transverse energy is then given b y

W(E)1

	

f dx8(E1 - Ey,2 - V (x)) =

Mat .Fys.bledd .Dan.Vid.Selsk. 39, no. 10 .
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where the xi 's are solutions to Eq . (III .3) . Formulae analogous to (III .3)
and (III .4) hold for the axial case .

In the wave-mechanical formulation, the population of energy levels i s

determined by a matching of the total wave function at the crystal surface to
the incident plane wave, which yields the coefficients (Eq . (II .21)) of dif-

ferent eigenfunctions . In the expressions for the total probablility density i n

the transverse plane, interference between different eigenfunctions is neglect -

ed. In the planar case, this corresponds to the assumption of statistica l

equilibrium in the classical calculation and should be valid for not to o

small thicknesses . Problems related to the assumption of statistical equili-

brium for axial channeling are discussed in Ch . IV and, in more detail, in

the Appendix . Deviations from equilibrium close to the surface have been

studied extensively for heavy-particle channeling 27 and recently also for

electron channeling37, 39 .

In the following we shall analyze both of these steps in detail for the one -

dimensional case . In the quantal treatment in Ch . II, the problem of determin -

ing eigenfunctions for the transverse Hamiltonian was reduced to solving th e

Schrödinger equation (II.8) in a finite interval [0,d2,], with periodic bound-

ary conditions according to Eq . (II .9). In order to gain insight into the prop-

erties of such solutions, we consider a simpler analogous problem where the

particle is confined by infinite potential walls . For the general qualitative

conclusions concerning the importance of the magnitude of quantum num -

bers, the difference in boundary conditions should not be of any importanc e

and, furthermore, the boundary conditions are for strongly bound states

determined by the local potential minimum and not by periodicity (cf . also
Sec. IV.2) .

111.3 . Harmonic oscillator

First, we treat the familiar example of a harmonic oscillator . For many

physical problems, this is a basic example, which may be solved by analytical

methods . In fact, the spatial probability density for a particle bound in a
harmonic potential is used as a standard textbook illustration of correspond -

ence with classical mechanics in the limit of large quantum numbers"

According to the general discussion above, evaluation of this density is th e

first task to be performed .

Spatial density . With the potential V(x) = Hcw 2x 2 , the eigenvalue

equation becomes
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Fig. III.1 : Spatial density for harmonic-oscillator eigenfunctions corresponding to n = 4 an d
n = 12, respectively. The classical turning points are indicated by dot-and-dash lines, and th e
classical spatial probability (Eq. (III .9)) is given by the smooth solid curve . The oscillating soli d
curve corresponds to the exact distribution I un(x)l a (Eq . (II1.7)) and the dashed curve to th e

density obtained from the WKB approximation (Eq. (III .22)) .

h2 a2

-

	

+ i lllw 2x2 u(x) = Eu(x) .

	

(III .5 )
2M ax2 2

Here, and in the following, the transverse energy is denoted simply by E .
This equation has the well-known solutions

En = hw(n + 2),

	

(III .6)
and

un(x) = NnHn(ax)e 1/2
(III .7 )

where a 2 = Mw/h, H. is the n'th Hermite polynomial, and Nn is a normal-
ization constant,

Nn = V a /(6 2nn!)h/2 •

	

(I11.8)

The probability density, u(x) 1 2 , is in Fig . III .1 compared to the classica l
distribution,

(NIw 2) 1 /
2

(x)

	

2n2

	

(E - zMco 2x2 )- i/ 2 ,

	

(IIL9 )

for two values of n . For moderately high n, the distributions are very simila r
except for the rapid oscillations of the quantal density .

1 .2

i
1 .0

3*
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Surface transmission . Corresponding to the case where particles ar c

incident on a crystal at an angle 99 to a major plane, we now ask for th e

population of the harmonic-oscillator eigenstates for y'(x, t = 0) = e2kx,

where fik denotes the transverse momentum, related to the total momentu m
p by fik = pip . The classical result i s

W(E) = 2 (åx
)

1
	 )112(E h 2k2 1/ 2

- -
v=E a'x° 1(2M)

	

(M
2
co 2

	

21Y1
(II1 .10)

In order to find the quantal distribution, we have to evaluate the matri x
element

<LIn I e2kx)

	

Nn f ~ dxHn (a.x) C112 as xa e2kx

	

(111 .11 )
J

This integral may be evaluated by repeated partial integration when th e

following represention of the Hermite polynomial is used ,

Hn(x)

	

(- 1)n exs an e-
Q

,

axn

and the result is

(111 .1 2 )

(Un I
eikx> = 1Nn V 2TC (- i)n é k'l(2a') Hn(kla) . (111 .1 3 )

Since Eq. (111 .1 1) is essentially the momentum representation of the n't h
state, this result, except for a phase factor, also follows directly from th e

a
symmetry between x and	 in the Hamiltonian .

ax
The population of the n'th energy level is given by the square of thi s

matrix element,

P(1=n) - 2701/ ltn ék1a4 Hn(k/a) .
(

	

(III .14)
Mw

When this expression is divided by the spacing of levels, hw, the relatio n

to the classical energy distribution (111 .1 0) is the same as the relation be-

tween the quantal and classical spatial densities except for the fact that the

expressions are now compared as functions of E (cf . Fig . III .3) .
Since the main purpose of these considerations is to illustrate the cor -

respondence qualitatively, we shall only for a special case prove that th e

quantal result approaches the classical one in the limit of large quantum

numbers . Consider the energy distribution (III .14) for k = 0, corresponding



Nr . 10 3 7

Fig . I1I .2 : Comparison of quantal (Eq .
(I1I .5)) and classical (Eq . (111 .10) )
energy distributions for k = 0, cor-
responding to incidence parallel to a
plane. The two distributions have
been multiplied by 1/2(Mw 2 liiw) 1f 2
Here n denotes the level number, i .e. ,
En = (n+1/2)x . o, and the staircase
distribution gives the population fo r

n even .
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for the channeling case to zero angle of incidence with a plane . Only state s
with even parity are then populated, and we may compare the classical den-
sity (Eq. (III .10))toP(E2n)1(2hco) . Using the relation H2n(0) _ (- 1)n (2n)!In !
we obtain

2

	

1/2

	

1

	

sz 1/2

	

(2n) !

P(E2n)1(2ha,) =	
NIw2

	

(hw )1/2 (2)

	

22n(n!)2 .

For large n, we may evaluate the factorials by Stirling's formula ,

n ! N J/2nn . e- n nn

	

(111 .16)
and obtain

2

	

1/2

	

1
-P(E2n)I(2hw) N	 	 (111 .1 7 )

This result is essentially identical to Eq . (111 .1 0) for k = O. The distribution s
(III .10) and (111 .1 5) are compared in Fig. II1 .2 .

111.4 . WKB approximation

The general approach to the classical description for large quantu m
numbers may be seen more directly in the WKB approximation . This
semiclassical description offers a convenient stepping stone from a quanta l
formulation to the classical treatment (cf . also Ref. 25) .

Spatial density. A stationary solution to the Schrödinger equation with a
potential V(x) may be written

(111 .1 5 )

v(x, t) = C exp{i(s(x) - Et)lpl },

	

(111 .1 8)
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where the phase function s(x) satisfie s

1

	

a 2

	

ih ô 2

231
åxsl - [E V (x)] -

2Max2s =
O .

The WKB approximation obtains the first two terms of a formal expan-

sion of s in powers of h . In classically allowed regions, (E > V(x)), the

general solution in this approximation is 40

rx
uE (x) = Ak(x)- 1 / 2 exp i f k(x)dx' ~ +

.1 xo

	

JJJ

+ Bk(x)- 1 / 2 esp{ - i
J

x k(x')dx '
JJJ
} .

t

	

xa

where we have introduced the local wave vector

1
k(x)

	

~(231(E - V(x))) 1/2 .

Apart from oscillations due to interference between the two amplitude s

corresponding to opposite directions of the particle velocity, we have lu(x) 1 2 cc

a (E - V(x))- 1 / 2 as for the classical spatial distribution (cf. Eq. (III .9)) .
The condition for the validity of the WKB approximation is that the fractiona l
change in wavelength be small over a distance of one wavelength . Except

for the regions close to the classical turning points (V(x) N E), this is in th e

case of a potential minimum equivalent to a demand for many nodes in th e
wave function or a large quantum number n .

Surface transmission . Consider for simplicity a symmetric potential
V(x) = V(- x) increasing monotonically to infinity for x -~ co with V ' (x) ~ 0
for x O. When the solution (Eq . (111 .20)) for V < E is matched to th e
WKB solutions in the classically forbidden regions (V > E), the wave
function becomes 4 o

uE (x) = Ak(x) 1 / 2 cos( x k(x')d.x` -
4

) .

	

(111 .22 )
JJJ a

Matching to the solution for V > E at the turning points, x = + a, leads t o
quantization of the energy, determined by 4o

(111 .1 9)

(III .21 )

-a
k(x)dx = (n +1) .7, n = 0,1,2, . . .

	

(111 .23)



Nr . 10

	

3 9

In order to determine the population of eigenstates corresponding to a n

initial wave function y(x, t = 0) = ezk° x , we consider again the matrix
element

< uE(x)

	

= A
f

k(x)- 1 / 2cos(J x k(x')dx - ~l e zk° x dx . (III .24)
a

	

f

This integral we may evaluate by the stationary-phase method . First, the

wave function uE (x) may be written as a sum of two amplitudes correspond-

ing to opposite directions of the velocity (cf . Eq. (II1.20)) . A stationary
phase, determined by

rx

dx(
,

f_
a k(x')dx' +

4

+kox = 0,

	

(111 .25)

is obtained only for the amplitude corresponding to the velocity directio n

given by the sign of ko . For 0 < ko < k(0), Eq . (111 .25) is fulfilled for two
values of x, .x = + xk , determined by

k(+ xk) = ko .

	

(I1L26)

The contributions from the two x values are then approximately given by th e
expression

A

	

rf x

kk(xk)- 1 / 2 exp - i
J

_a k(x)dx ~ ikoxk
4

x

(111 .2 7 )

x f dxexp {i
MV ' ( f xk)

2 l

2i ~i.k o

in which the phase has been expanded to second order around the point s
x = + xk . When the result (c > 0 )

F exp ( + icx 2)dx = 1/ -'z (1 + i)

	

(111 .28)
2 c

is applied, the magnitude of the two contributions may be evaluated, and w e
obtain

2nh
P(E) = I< uE (x) I ezk°x> 12 = MV	

(xk)
A 2 co s 2(J o k (k (x) - ko) dx - 4 j, (I1I .29)

where the argument of the cosine corresponds to half the relative phase o f
the contributions from x = = xk . As for the harmonic oscillator we obtain
an energy population which oscillates as a function of energy, and we have
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now seen that this behaviour is caused by interference between the amplitude s
corresponding to the two points x xk , at which the velocity of a particle
with energy E matches the well-defined velocity for t = o, v = Izko/M.

In order to compare with the classical energy population ,

W(E)dE = 2V ' (x k)- ldE,

	

(III .30)

we must evaluate the normalization constant A and furthermore divid e
P(E) by the splitting JE between eigenstates . The normalization is de-
termined by,

	

r
A2 1 a k(x)- l cos 2 (j k(x ') dx ' - )dx

	

1 .

	

(III .31 )
JJJ a

	

J a

If the condition for the WKB approximation is fulfilled, the potential varie s
only little over one wavelength, and we have approximately

aA 2 N 2k{ J k(.x)-ldx}-1 .

	

(III .32)
l

	

a

	

J11

The quantization of energy is given by Eq . (111 .2 3) . At high quantum
numbers, we may evaluate the splitting AE from

ra

	

AEE(J k(x)dx

	

n .

	

(III .33)

With the definition (III .21) of k(x), this leads to

2 f a

AE N	

t

	

k(x)- l dx

	

(III .34)
M -a

Combining Eqs . (III .32) and (III .34) with Eq. (111 .29), we obtain

P(E)/4E N (4/V ' (x k))cos 2 (I o (k(x) - ko)dx 4l .

	

(III.35 )

When averaged over the oscillations, this expression is idential to the classica l
result in Eq . (III .30) .

It should be noted that the method of evaluation used here is limited t o
energies somewhat larger than classical minimum energy, E = V(0) +
+ h 2 k 2/(2M). Also, for large values of E, the method breaks down becaus e

the stationary points ± Xk are too close to the classical turning points, wher e
the expression (111 .2 2) for the wave function cannot be applied . In these
regions, we way instead expand the potential to first order around x = ± a
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Fig. I11.3 : Population of levels in
harmonic oscillator for y'(x, t = 0) =
exp(ikx), with a value of k corres-
ponding to (lik) 2 /(2M) = 4.5 he) .
This lower limit for the classical
energy population is indicated by a
dot-and-dash line, and the classical
distribution (Eq .(I1I .10)) is given b y
the smooth solid curve . The soli d
staircase distribution corresponds to
the exact population (Eq. (111.14 )
divided by kw), while the result
obtained from the WKB approxim-
ation (Eq . (111 .35)) is indicated b y
the dashed lines . Normalization and
notation as for Fig. I11 .2 .

and represent the wave function by an Airy function . For k = 0, a result
analogous to Eq . (III .35) is then easily obtained, with the cosine replace d
by 0 or 1 for odd and even parity, respectively .

We shall not go into the details of such estimates since the main purpose
of this chapter is to provide some general insight into the correspondenc e
between classical and quantal results . Such insight is more readily gaine d
from analytical treatments of simple examples than from more realisti c
numerical calculations, as presented in Ch. IV. For this purpose, the WK B
approximation is particularly helpful, yielding basically classical result s
modulated by oscillations due to interference between different amplitudes .

We conclude this chapter by an assessment of the accuracy of the WK B
approximation for the harmonic oscillator, which was treated exactly in the

previous section . Figure II1.3 shows the population of different energy
levels for a plane wave with a k value corresponding to (hk) 2 /211I = 4 .5hcu .
The smooth curve is the classical energy distribution given by Eq . (111 .1 0) ,
while the staircase distributions correspond to the exact quantal result (Eq .
(111 .1 4), fully drawn) and the WKB approximation (Eq . (I1I .35), dashed) .
Only close to the minimum energy do the two distributions differ enough t o
be drawn separately . It should be noted that for the harmonic oscillator, Eq .
(111 .2 3) reproduces the exact energy quantization . For the spatial density
distribution, shown in Fig. III .1, the accuracy of the WKB approximation is
similar, and appreciable deviations from the exact results occur only close to
the classical turning points . For small values of ax, the distributions deviat e
by less than one percent .
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IV. Applicability of Classical Calculations to Electron and
Positron Channeling

In this chapter, we first apply the general quantative results of the previou s
chapter to obtain approximate criteria for the applicability of classica l
concepts to channeling of electrons and positrons from estimates of th e
number of bound states in the transverse continuum potential According t o
Eq. (111 .23), this number may be obtained approximately as the availabl e
phase space divided by Planck ' s constant h (or by h 2 in two dimensions) .

Second, the transition to the classical limit at high quantum number s
is studied quantitatively by a comparison of classical results for the direc-
tional dependence of the large-angle-scattering yield with results obtaine d
from the many-beam description reviewed in Ch . II. The calculations also
provide a check of the formulas for the number of bound states derived from
semiclassical estimates .

IV.1 . Number of bound state s

The following estimates correspond closely to those given in previou s
work s-13 . Also in the review by GEMMEL 27 , such estimates were given . For
the planar case, our results are essentially in agreement, apart from a
trivial mistake by a factor of two in his formulas . For axial channeling of
negative particles, there is a more important difference in method as well a s
result .

Planes . The planar potential is illustrated in Fig . IV.1 for positive particles .
We base the estimates of the phase space upon Lindhard's standard potent-
ial, which for a particle with one positive charge, leads to the planar potential .

V(x) = 2rZ 2 e 2 Ndp[(x 2
+ C2a2)1/2-

	

(IV.1)

where Ndp is the density of atoms in the planes, dp being the planar spacing .
The width of the potential maximum is approximately 3Ca, where a is the
Thomas-Fermi screening distance and C a potential parameter, C y3 .
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Fig . IV.1 : Si {1101 planar potential
for positrons . The potential from a
single plane is represented by the
dashed curve (Eq . (IV.1)), while the
solid curve is obtained by adding the
potential from the neighbouring plane .
The phase-space estimates are based
on the latter potential.

The number of bound states in the potential is given b y
d

vp

	

fov (2M(Vmax - V ))1/2 dx ,

where M is the relativistic particle mass .
From a numerical integration of (IV .2), we obtain for negative particles a

result corresponding approximately to a square-well potential with dept h
V(0) given by Eq . (IV.1), and width - 3Ca ,

vp N

(1112(4

adp
)[Nd

3
p] 12 '

	

(IV.3)

where mo is the electron rest mass and ao the Bohr radius, as - 0 .53 Å. For
positive particles, the potential minimum is wider by a factor of dp/(3Ca) ,
and Eq. (IV.2) leads to

( M

)

1/ 2vp

v
7•2/3

	

[Nd'1 1 / 2
I21 a

The ratio of these two numbers is approximatel y

v+p/vp

	

Z21/3

Even for strong planes, the estimate (IV .3) leads to a number of bound state s
of the order of unity, vp - 1 for electrons of not too high energy . In contrast ,
for positrons, the potential minimum between planes may often contain quite
a few bound states . We shall return to a more detailed comparison of negative
and positive particles below .

(IV.2)

(IV.4)

(IV.5)
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Strings . For negative particles, the number of bound states in a strin g

potential is given by

v s

	

z z
l

J d2 r J d2P1

	

4r h

	

Ei < o ,

where E1 = pif(2M) + U(f), and we have assumed that the continuu m

potential vanishes far from strings . Performing the integration over transvers e
momentum, we obtain

v3

	

M
N

	

d e r l U(P) I .
2hh 2

(IV.7)

Again we may introduce the standard potential, which for strings leads t o

U(r) r - Z2e2log
Ca

2 + 1

	

(IV.8)
d

	

((r)

	

)

d

	

(IV .6)

where d denotes the spacing of the atoms in the siring . This corresponds to

a rotationally symmetric potential inside the area, 7U = (Nd)- 1 , belonging

to one string. Subtracting the value U(ro) from Eq. (IV.8), we obtain from

Eq. (IV.7)

v~

	

M Z2e 2

	

0
	 (Ca)' log

ro 2

2h 2 d

	

Ca

Since normally the log term in (IV .9) is of order 3-4, we obtain l l

vs
(4a)

\mo)Z2J3 .

By partial integration, the formula (IV.7) may also be expressed in terms o f

the average square radius of the atoms,

	

<R 2> = ZZ i I 4nR4 e(R)dR,

	

(IV.11)

0

where e(R) is the electron density belonging to one atom . The result i s

M Z 2 e 2vs

	

2h2 •	 d. s <R2j .

For the somewhat more realistic Lenz-Jensen potential, the average-squar e

radius becomes <R 2) 15a 2, which again leads to (IV .10) . For 1-MeV electrons ,

this formula gives a number of bound states vs - 4-10 for a major axis .

(IV.9)

(IV.10)

(IV.12)
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For positive particles, the accessible area per string is - zro . If the
effective transverse-energy barrier is - pvyi, corresponding to a critical
angle' o ,

(4Z2 e2\'t.a

= pod J (IV.13)

we obtain for the number of bound states (or rather states per string with
energy below the barrier, cf . sec. I1I .1) .

~(o)(I
) l2(Nd3)-1 . (IV.14)ys cv

This number is normally quite large, vs - 10 2 for 1-MeV positrons .
Comparison of different cases . The relationship between the four es -

timates, Eqs . (IV.3), (IV.4), (IV.10), and (IV.14) is illustrated in Table IV . 1
for 1-MeV electrons and positrons along a {110} plane and a <110> axis ,
respectively, in silicon and gold .

Table IV.1 .
Number of bound states for 1-Mev e+, e- in Si and Au .

Silicon

	

Gold

e+ e- e+ e-

<110> 34 4 286 9
{110} 2 .5 1 .1 9 1 .5

These examples clearly indicate the importance of distinguishing bet-
ween positive and negative particles as well as between axial and plana r
cases . The difference in magnitude of the number of bound states for axe s
and planes is, to a large extent, due to the fact that the axial potential is two -
dimensional, while the planar potential is one-dimensional . It might therefore
be argued that the number of bound states in the planar potential should b e
compared to the square root of the corresponding number for strings . This ,
however, would not change the qualitative conclusion drawn from Tabl e
IV.1, that classical concepts may be applied more readily to axial than to
planar motion . This difference is strongest for high values of Z2 where als o
the difference between electrons and positrons is most pronounced .

Mat .Pys .M'edd .Dan .Vid.Selsk. 39, no . 10 .
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IV.2. Comparison of classical and quantal calculations

Although the approach towards a classical description is basicall y
governed by the magnitude of quantum numbers, as derived semiclassicall y
above, it must be borne in mind that the validity of classical estimates may
depend strongly on the specific phenomenon under observation . In this sec-
lion, we shall compare directly quantal and classical calculations of the di-
rectional dependence of close-encounter yields 34 . The quantal calculation s
are based on the many-beam description, reviewed in Ch . II, which was
seen to describe the experimental results fairly well, at least for planes .
From such calculations, also the transverse energy levels are determined ,
and first we shall compare the number of bound states with the semiclassica l
estimates .

Bound states . The transverse energy levels for electrons and positrons
moving along a {110} plane in silicon are shown in Fig . IV.2, as function s
of projectile energy. Zero on the ordinate scale corresponds to a transvers e
energy equal to the potential maximum (cf . Fig. IV.1) . The levels are shown
for incidence parallel to the plane as well as for an indidence angle equal to
the Bragg angle. For negative transverse energy, corresponding to a boun d
state, the levels become independent of incidence angle because the compo-
nents of the wave function belonging to different planar channels no longe r
communicate . Owing to the difference in shape of the potentials (cf . Fig .
IV.1), this happens more rapidly with decreasing transverse energy fo r
electrons than for positrons .

In Fig . IV.3, the number of bound states is shown compared to the es-
timates, Eqs. (IV.3) and (IV.4), derived in the previous section. Also show n
in the figure are results obtained for electrons moving along a <111> axis ,
compared to the estimate in Eq . (IV.10) . For this axis, the many-bea m
calculations were in Sec . 11 .7 shown to converge reasonably well with number
of beams for an electron energy of 0 .7 MeV, but for higher energies, th e
convergence is more doubtful, and the number of bound states may b e
slightly underestimated . In any case, the agreement is quite good for the
axial as well as for the planar cases, considering the approximate nature o f
the semiclassical estimates . In particular, the predicted differences in bot h
absolute magnitude and energy dependence are clearly confirmed .

Close-encounter yield . For the comparison between calculations of the
yield of a close-encounter process such as large-angle scattering, we con-
centrate on the planar case . First, the many-beam calculation is technically
simpler and more reliable in this case, owing to the rapid convergence with
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Fig . IV .2 : Transverse energy levels for
e- and e+ incident along a { 110 }plan e
in Si, as a function of projectile energy .
The results are obtained from 20 -
beam calculations with a thermally
averaged (Eq. (III.17)) Molière po-
tential 01 . The levels indicated by solid
and dashed curves are obtained fo r
projectile incidence parallel to th e
plane and at the Bragg angle, re-
spectively. Zero on the ordinate scale s
corresponds to the maximum of th e
Molière planar potentials (similar t o

the potential shown in Fig . IV .1) .

number of beams . Second, the classical limit is less well-defined in the axial
case, at least for electrons . The classical result derived in the Appendix is
based on statistical equilibrium on an energy shell in transverse phase space .
In the planar case, this assumption simply leads to results corresponding t o
an average over depth of penetration, and it is equivalent to the assumptio n
in the quantal calculation of random relative phases of eigenfunctions . For
axial channeling, the assumption is based on more subtle arguments, as dis -
cussed in the Appendix .

Results for planar channeling of electrons and positrons along a {110 }
plane in silicon are shown in Figs. IV.4 and IV.5 . A rapid convergence to-
wards the classical result is indicated, but in contrast to the expectatio n
based on the number of bound states shown in Fig . IV.3, the classical result s
seem to be somewhat more accurate for electrons than for positrons . In
particular is the interference structure at Bragg angles considerably stronger
for positrons . This may, however, not be so surprising when we consider the

Fig . IV.3 : Comparison of the number
of bound states derived from Fig . IV . 2
with the semiclassical estimates (Eqs .
(IV .3) and (IV .4) . Also shown are re-
sults for a (111) axis derived from a
60-beam calculation and compared to

Eq. (IV.10) .
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Fig . IV .4 : Comparison of classical and quantal calculations of the peak in large-angle-scatterin g
yield for electrons incident on Si along a 1110} plane . The classical yield is derived from formula s
analogous to those given in Ref . 29 for positive particles, with a thermally averaged Molière
planar potential41, including the contributions from the neighbouring plane (cf. Fig. IV .1) . The
quantal result is obtained from a 20-beam calculation (Eq . (II .23)), also with the Molièrc potential
and including effects of thermal vibrations (Eqs . (II .15) and (II .17)) . The classical result scale s
with the planar characteristic angle ipp = ip 1 (Ca/d) 1 '2, where d is defined through Nd 2dp = 1
(Ref. 29) . For each projectile energy, the magnitude of the Bragg angle BB is indicated (classical

calculations : dashed curves ; quantal calculations : solid curves) .

1 2

fact that the close-encounter yield is proportional to the intensity of the trans -
verse wave function at the atomic positions . For negative projectiles, lattic e
atoms are situated in a potential minimum, while for positive particles the y
are at potential maximum. In the latter case, the results therefore depen d
on the intensity of wave functions close to or inside classically forbidden re-
gions, where the strongest deviations from classical behaviour occur . (Note
also that for silicon, the difference in number of bound states between e +
and e- is small (cf. Table IV.I) .

In spite of the difficulties for axes mentioned above, it may be of interes t
to compare the quantal and classical calculations also for this case . A set o f
calculations for electrons incident along a <111> axis is shown in Fig . IV.6 .
At the higher energies, the agreement is, in fact, rather good . It should be
noted that neither of the calculations need correspond very closely to reality .
The neglect of inelastic scattering is for axial channeling of negative par -
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titles hardly justified even at rather shallow depths since the collisiona l

broadening of closely bound states will be very large . But a statistical treat-
ment is obviously much simplified if classical concepts may be applied, an d

this should be justified when the volume in phase-space available to boun d

particles is large enough to correspond to many quantum states .

Finally, for axial channeling of positive particles, the number of "hound"

states is very large (cf . Eq. (IV.14) and Table IV.1), and therefore the number
of beams needed in a many-beam calculation becomes prohibitively large .

However, a comparison of experimental results for positrons and protons in-

dicates8 ' 9 that for this case, a classical treatment should be justified .
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Appendix: Classical Estimate for Axial Electron Channeling

In this appendix we shall derive the expression for the axial peak i n
yield for negative particles, which was used in Chapter IV for comparison
with results from "many-beam" calculations . The calculation is based on a
classical description of the particle motion . The transverse energy of the

particles is assumed to be conserved, and for fixed transverse energy, their

trajectories are assumed to fill out the transverse four-dimensional phase -

space uniformly. We shall not discuss the validity of these assumptions i n
detail, but to put the results in perspective it may be useful to review briefly
the situation for channeling of positive particles, which has been studie d

much more thoroughly .
Conservation of transverse energy for channeled particles is the basis o f

the channeling phenomenon and was discussed in detail by LINDHARD 5 .

At large depths of penetration, the distribution in transverse energy is mod-
ified due to multiple scattering by electrons and by the small lattice irregular-
ities introduced by the thermal motion of lattice atoms. The effect of thes e
"dechanneling" processes may be calculated with reasonable accuracy from
a diffusion equations, 42, 4 3

Statistical equilibrium, on the other hand, will be established onl y

after a finite depth of penetration. The trend towards equilibrium wa s

studied by LINDHARD 5 . It was shown that when strings are assumed to b e
randomly distributed in the transverse plane, scattering of the channele d
particles by these strings leads to a rapid approach towards equilibrium i n
transverse-momentum space, the characteristic length being much shorte r
than that corresponding to dechanneling. At smaller depths, results based o n
equilibrium may often be interpreted as corresponding to simple average s

over azimuthal angle of incidence with respect to a string, and averages ove r
oscillations with depth. As emphasized mainly by BARRETT44, 45, such an
interpretation may not hold in special cases, for example, for the yield o f
close-encounter reactions for incidence parallel to a string, which at small
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depths is higher than estimated from equilibrium by an average factor of 2
to 3. This is a consequence of the regular lattice arrangement of strings ,
which introduces additional approximately conserved quantities, namel y
transverse energy with respect to planes (or strings of strings) . This will
hinder the approach towards equilibrium . A treatment in terms of equi-
librium in restricted regions of phase space seems, however, straightforwar d
but has not yet been carried out in detail 46 .

Thus for positive particles, the approximations of conservation of trans -
verse energy and statistical equilibrium are consistent and provide a goo d
starting point for a treatment of channeling phenomena . Deviations from thes e
assumptions may then be treated as corrections to the basic picture . For
negative particles, however, the situation is less clear . First, multiple scat -
tering is stronger than for positive particles since the atomic scattering center s
are situated at a minimum of the transverse potential . Second, the peak i n
yield is largely due to particles bound in an axial-potential minimum . Such
particles interact with only one string, and since the potential is nearly
symmetric around the string, angular momentum with respect to this strin g
will be approximately conserved (Rosette motion47 ) . Multiple scattering may ,
however, be strong enough to provide a trend towards equilibrium. In fact ,
the scattering is strong enough to make the description of the most strongl y
bound states somewhat uncertain . In the following we disregard thes e
problems and base our treatment upon conservation of transverse energy an d
statistical equilibrium . The calculations can at least serve as an illustratio n
of the classical treatment, which was discussed in Sec. III .2 and may, as for
positive particles, provide a useful standard for comparison, also of experi-
mental results6 . 13 (see also Fig . I .6) .

Emission

The derivation is analogous to that in Ref . 5 of the dip in yield for positiv e
particles in the continuum approximation . We use the same notation an d
also consider emission of particles from a lattice atom, i .e ., blocking rather
than channeling. The two cases are related by reversibility 5 or reciprocity' .
If electrons with momentum p and velocity v are emitted isotropically fro m
an atom at a distance r from a string, their distribution in transverse energy,
El, is given by

r

	

1 for Ej. > U(r )
~(El ,r) = I d(Ecp 2)å(El - U(r) Ery 2 ) =

	

1

	

(Al )
J

	

0 for El < U(r)
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5 3

Here, E = 1/2 pu = 1/2 Mu e , where M is the relativistic mass (cf. Cll . II) .
The angle with the string is denoted p so that Ecp 2 is the transverse kinetic
energy. The transverse potential energy is determined by the average string
potential U(r) . In the following calculations, we once more apply LINDHARD 'S

standard potential,
2

U(r) = - Eyilog Ca + 1 ,
r

where y l is the characteristic angle for axial channeling (Eq . (IV.13)), a
the screening distance, and C N 1/3 .

The probability of different displacements r is determined by thermal
vibrations and denoted dP(r) . For the distribution in transverse energy
averaged over displacements, we obtain

	

r
gr(El) =

	

- U(r) - E gp 2) =
J

dP(r)

	

. (A3)
U(r)<E 1

By inserting into this formula the standard potential and a Gaussian dis -
placement distribution, LINDHARD obtained a simple analytical estimate o f
the dip in yield for positive particles .

Surface transmission

When the emitted particles pass the crystal surface, the transvers e
potential energy is lost and the angle y) with the string after transmission i s
determined by Eyp2 = E1 - U(r) . For the distribution in angle outside the
crystal, we may write

P(Ey 2) =
J

dE1T(E1 ,Ey 2)n(E1), (A4)

where T(E1 , Ep 2)d(Ep 2 ) is the probability for a particle with transverse energy
El in the crystal to leave the surface at an angle p to the string . This pro -
bability is determined by the spatial probability density of particles wit h
transverse energy El . In statistical equilibrium, the density in two dimension s
is uniform in the allowed area, and we obtain

r

	

2
T (El , Ey,2 ) =

J
o	 ~)) å (Ey~ 2 - E1 + U(r)) .

	

(A5)

Here we have, as usual, approximated the area per string in the transvers e
plane by a circular disc of radius ro, related to the spacing d of atoms in
the string through 1crô = (Nd)- 1 , where N is the density of atoms in th e
crystal . The radius i of the accessible area is given by

(A2)
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U(r") = E1 for El < U(ro)

	

1 (A6)
î = ro

	

for El > U(ro)

	

j

By combining (A4) and (A5), we obtai n

	

P F 2

	

ra
	 d(r2)	 ,c(Ey~ 2 + U(r)) •

	

(A7)( yJ )
J

î2 (Ey2 + U(r))

While for positive particles the difference between the distributions P(Eyp2 )
and x(E1) implied by (A7) is important for Eyp2 - 0 only29, the surfac e
transmission is of major importance for negative particles . The two distri-
butions are completely different . The function r(E1) defined by (A3) is
below unity for all values of El and has a tail stretching to El - -
while P is only defined for Eyp2 > 0 and has a strong increase above unity at
Eye ? 0. This peak contains the particles which inside the crystal hav e
negative transverse energy, i .e ., which are bound in the string potential .

Inserting into (A7) the emission distribution (A3), we obtain

	

1 (Eye 2 J 	

	

)

= I

	

d(r2)

	

I
dP(~ ')

	

-J

o
î.2(E2 + U(r))

	

U(r') <Ey'+U(r)

	

(A8)

From this expression it is seen that P 1 . Thus the peak in yield at smal l
angles y is not compensated for by a descrease below unity at larger angles .
This lack of compensation is a characteristic feature of the continuum string
approximation 5 . In the refined treatment by halfway planes, negativ e

` shoulders' stretching out to angles - 2a/d compensate for the excess yield a t
small angles .

Peak height
From formula (A8), we may calculate the peak height P(0) ,

P(0)
frn d .2 z)

' dP(r ' ) .

	

(A9)
0

	

0

By inserting a Gaussian distribution,

2
dP(r ' ) _ r

v d(i2)

	

P « ro,

	

(A10)
P

d(r2)	 r2_
Jr

	 	 o	 	 dP(r') .

o rô î2 (Ey,2 + U(r)) J
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we obtain by partial integration

rô

	

d(r2)

	

/ r
P

	

r er2IQ' log

	

logly (All )(O) N

J

	

2) ,P2
J

	

2

	

=

where y is Euler's constant, y = 1 .78 . This estimate may be compared t o
the corresponding estimate in Ref. 11 for the standard potential with a
cut-off,

U(r) _ - Eyllog Ca r < C a

0

	

r> Ca
leading to

P(0) N 1 +log
((Ca)2r)

for Ca >>

	

(A13)

While (All) leads to P(0) - 5-6, formula (A13) predicts a value of P(0) - -
2-3. Since the potential decreases very rapidly and is essentially flat at larg e
distances, the implicit assumption in the derivation of (All) of an attractiv e
potential at all distances r may not be valid at distances r ro . The cut-off
at r = Ca in the potential (A12), however, is probably at too small a distanc e
Thus the two values may reasonably be regarded as upper and lower limits ,
respectively .

Angular dependence
With the potential (A12) it is easily seen that the excess yield in (A13 )

is multiplied by a factor exp(-2Ey2 fEyi) for particles incident at an angl e
y to the string,

2
P(Ey~ 2) N 1 + e-2Ey~'J(Elp>) log

( Ca) y

	

for Ca >>

	

(A14)
P

as given in Ref. 11 .

In order to obtain a reasonably simple analytical estimate with th e
standard potential (A2), we replace the Gaussian displacement distributio n
(A10) by

(A12 )

(A15)

Inserting this distribution into (A9), we obtain for the peak height
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2r
P(0) = 1 + log 2 . (A16 )

0 0

In order to reproduce the result (All), we choose

0 20 = 02

	

e
•- = 1 .53 0 2 . (A17)

With the distribution (A15), the integration in (A8) is straightforward ,

I'(E2) =

	

f rl d(r2)

	

rd(r2)

	

d ( r2 ) (A18 )
Sr(E~J

	

y~ 2 + U(r)) + J r a

	

rô

where r1 and r2 are determined by

U(r i ) = ](go)- ETp 2
U(r 2 ) = U(ro) - Ey2 . J (A19 )

The two first terms correspond to bound particles with a maximum distanc e
to the string not exceeding eo and ro, respectively, while the third ter m
corresponds to unbound particles . All integrations are elementary, and w e
obtain,

P(Ezp 2 ) = 1 + e-27V`I'Pi log(r2fri)

	

(A20 )
or inserting the value (A19) for r 1 and r2 ,

P(Ep2 ) = 1 + e 2ya/~P=log 1(r/o, )
[[ (Ca

a 2

	

g
)2 + , e 2v'( G) + ro] e ~ v_ - ro (

	

(A21)

This formula is rather similar to (A14) for not too small angles . As might
be expected, however, the inclusion of the outer shallow part of the potentia l
leads to a steep increase in yield at small angles . In fact, the peak height i s
larger by a factor of - 2, and the full width at half maximum is therefore sig-
nificantly smaller than the value 4v = 1/2log 2 y i derived from Eq . (A14) .

0
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