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Synopsis

Channeling of 700-keV electrons in silicon has been investigated by measurements of the
large-angle scattering yield from thin single crystals as a function of incidence direction. The
peaks in yield for incidence parallel to low-index planes and axes are compared mainly to cal-
culations based upon the dynamical theory of electron diffraction. This description is reviewed in
a formulation emphasizing similarity to the classical theory of channeling. The relationship
between the two descriptions is discussed, and correspondence in the limit of large quantum
numbers is illustrated, partly by the example of a harmonic oscillator, partly by analytical results
for a simple model, derived within the WKB approximation. Estimates of the magnitude of the
quantum numbers associated with the transverse motion of channeled particles are derived
semiclassically from the available phase space for bound states in the transverse continuum
potential, and the importance of distinguishing between axes and planes and between positive
and negative particles, is pointed out. These qualitative considerations are supplemented with
results of numerical calculations, based upon the classical channeling theory and the dynamical
theory of electron diffraction, respectively. This comparison illustrates the transition to the
classical limit for increasing projectile mass and provides a quantitative test of the correspondence
criteria based on semiclassical estimates.
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Introduction

This study of electron and positron channeling may be seen as part of a
general investigation of the channeling of light particles which, during the
last decade, has been performed partly at the University of Aarhus, partly at
Bell Telephone Laboratories. Motivated by the strong channeling effects
found for heavy particles (protons, « particles, etc.)!:?, attemps were made to
look for similar phenomena for electrons penetrating single crystals®. The
basic features of the channeling effect for both positrons and electrons were
first established by Uggerhoj in a beautiful experiment?, where the angular
distribution of electrons and positrons, emitted by ®Cu embedded in a
copper single crystal, were studied simultaneously. The observation of an
axial dip in yield for positrons, and a peak for electrons, was in qualitative
agreement with expectations based upon the theory® of heavy-particle
channeling. The measurement was continued in order to obtain more
quantitative data, and the results were found to be in fair agreement with
estimates based upon classical mechanics®.

A basic difficulty in such emission experiments is the damage due to
implantation of the radioactive atoms. To avoid this problem, experiments
with external beams of electrons and positrons were initiated. A measure-
ment of the large-angle scattering yield as a function of direction for an
external beam is, in principle, equivalent to a determination of the angular
distribution of particles emitted from lattice sites (reversibilitys" or reci-
procity”).

Positron channeling in gold® and silicon® was studied with an external
beam. The general result was that positron channeling is adequately des-
cribed by the channeling theory based upon classical mechanics, although
for planar channeling some fine structure due to Bragg interference was
observed.

For electrons the situation is somewhat different'?, Owing to their negative
charge, electrons penetrate readily to the atomic scattering centers in the
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rows and planes. Incoherent multiple scattering will therefore be stronger
than for positive particles. Furthermore, it may be seen from semiclassical
phase-space estimates that the number of bound states in the transverse
potential is quite large in most cases for channeled positrons, while for
electrons it is considerably larger than unity only at relativistic energies.

The possibility of electron motion in bound states along rows of atoms,
describable to some extent by classical mechanics, was first studied theor-
etically by Linpaarp!!l. In an experimental study of electron channeling in
gold by UsGERrHgJ et al.'?, the interest was focussed on classical aspects of
axial channeling and on predictions from the classical treatment. ILater
the measurements have been extended!® to higher energies and to include
also planar effects and a detajled comparison to many-beam calculations.
Parallel to these investigations, the measurements to be reported here of the
channeling of 700-keV electrons in silicon were undertaken. Results on
axial channeling were included in the discussion by UcGerugs et al.?%13,

Electron channeling was approached independently on the basis of the
well-established theory for the phenomena observed in electron microsco-
py**. Angular variations of the electron-backscattering yield for incidence
close to a planar direction were predicted by HirscH et al.’® and found
experimentally by Duncoms!®. In the study by HaLL!? of the effect of lattice
structure on the yield of characteristic x rays, the main emphasis was on a
detailed description of the thickness dependence due to inelastic scattering.
Later HowiE et al.1® studied the emission of electrons from neutron-activated
thin crystals and compared to both classical calculations and calculations
based upon diffraction theory. It is a common feature of these experiments
that only planar channeling has been investigated. From the point of view
of diffraction theory, an axis is basically an intersection of a set of planes,
and nothing much but unnecessary complications is gained by studying
channeling close to an axial direction'®. In LinpHARD’s theoretical work on
channeling, however, the axial case is qualitatively different from the planar
case. For heavy positive particles, axial effects are stronger than planar
effects and therefore, from most points of view, more inleresting. Also, for
electrons and positrons, the quantum numbers associated with axial effects
are larger than for planar effects, and classical concepts may therefore more
readily be applied to the axial case.

The attempts?® mentioned?;earlier to relate the channeling phenomena for
electrons and positrons to classical channeling theory for heavy particles
were met with strong criticism. The possibility of understanding electron and
positron channeling on the basis of electron-diffraction theory was first
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pointed out by Howie2? and later argued strongly by peE WaMmes et al. in a
series of publications®'. The resulting, at times rather heated, discussion
greatly stimulated the interest in channeling of light particles and, more
specifically, in the problem of correspondence between classical and quantal
calculations related to channeling 22-25, For fairly recent reviews of the field,
and discussions of correspondence from different points of view, we may
refer to Refs. 26-28.

Correspondence between classical and quantal treatment of channeling
phenomena is the main theme of the present study. It is composed of four
parts. The first is a report on an experimental investigation of electron
channeling in silicon, performed at Bell Telephone Laboratories in 1968.
The main emphasis is on measurements of axial and planar peaks in yield
of large-angle scattering. While electron microscopy is based on wave in-
terference observed in transmission, the most interesting and useful phen-
omenon associated with classical channeling is the strong angular depend-
ence of the yield of processes which require a close encounter between
projectiles and target atoms.

The experimental results are compared mainly to calculations based
upon the dynamical theory of electron diffraction. This theoretical deseription
is in the second part reviewed briefly in a formulation which emphasizes
similarity to the classical description of channeling. Problems related to
incoherent scattering are discussed qualitatively, and examples are given
of the treatment in terms of an imaginary potential and scattering into plane-
wave slates.

Correspondence with the classical treatment is discussed in the third
part and illustrated partly by an analysis of the example of a harmonic
oscillator, partly by some simple calculations based upon the WKB appro-
ximation. This general analysis is followed in the fourth part by a derivation
from semiclassical phase-space arguments of estimates of the number of
bound states in the transverse motion of channeled particles, leading to
simple criteria for the applicability of a classical description. Differences
between positive and negative particles, and also between the axial and planar
cases, are discussed on the basis of two examples. The transition to the
classical limit is then investigated quantitatively by a comparison of classical
and quantal calculations for different electron and positron energies. At
high energy, where the number of bound states becomes large owing to the
increase in relativistic projectile mass, the quantal results approach the
classical predictions. These are for the planar case obtained from the
formalism developed for heavy positive particles?®. For negative particles,
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the axial case presents special problems, in particular concerning the appli-
cability of results obtained from the assumption of statistical equilibrium in
the transverse motion. These problems are discussed in the appendix, which
contains the derivation of a classical estimate of the axial peak in yield for
negative particles, based on statistical equilibrium.

1. Experimental Study of Electron Channeling in Silicon
1.1. Experimental procedure

Setup. A sketch of the experimental arrangement is shown in Fig. I.1.
The electron beam, with an initial energy of 800 keV, is scattered by a 30-um
gold foil. The current of eclectrons transmitted through the foil into the
Faraday cup is used to monitor the beam intensity. The electrons scattered
by 90° lose on the average ~ 100 keV in the gold foil, leading to a final beam
energy of ~ 700 keV, with a measured spread of 85-keV FWHM. The
angular spread of 0.05° full width is defined by a 1-mm collimator placed
immediately in front of the gold foil and a 0.4-mm collimator at the entrance
to the scattering chamber.

The beam is incident on a thin silicon crystal, mounted in a goniometer
with two perpendicular rotations. The scattering chamber contains three
different detection systems:

(i) Annular detector for electrons scattered through ~ 10-20° by the
crystal.

(ii) Movable detector (‘forward detector’) to scan the intensity distribution
in the forward direction. Both detectors are silicon surface-barrier
detectors.

(iii) Film to record photographically the angular intensity distribution in the
forward direction.

Crystals. The thin crystals were prepared by etching 0.15-mm thick
silicon wafers, cut perpendicular to a (110> direction. A thicker ring was left
at the edge for support. The crystals were mounted by sandwiching them
between aluminum and lucite plates with a 5-mm hole in the center. Mount-
ing the thinner crystals was a delicate operation, after which a careful
examination for wrinkles was necessary.

Resulis for two thicknesses are reported. From an «-particle, energy loss
measurement, the thicker crystal was estimated to be 2.8 pm thick. Un-
fortunately the thinner crystal was broken before a similar meassurement
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Fig. 1.1: Experimental arrangement.

could be made, but from the relative electron-scattering yield, its thickness
was estimated to be 0.2-0.3 um.

Measuring procedure. The orientation of the crystal was determined by the
standard technique known from proton channeling®®. The planes were
identified by an increase in yield of the scattering into the annular detector.
A stereogram was conslructed, and thus the rotation parameters corres-
ponding to various planar and axial directions could be determined.

Angular scans through major planes and axes were performed by
measuring the yield of scattering into the annular detector for a fixed accum-
ulated charge in the Faraday cup. In preliminary experiments, the “‘forward
detector’”” was used, positioned at some large angle to the beam direction.
Strong asymmeitries of the peaks in yield were observed, however, and these
asymmetries turned out to be dependent on the position of the detector.
Such effects are known also for proton channeling and are usually ascribed
to “blocking’ of the scattered particles. In this case, however, the solid angle
subtended by the detector was very large compared to the widths of the
channeling peaks. Also asymmetries were seen, depending only on the
detector being ‘to the left’ or ‘to the right’ of the heam direction. Rather than
investigate these phenomena in detail, it was decided to use an annular
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counter which is axially symmetric and averages over a very large solid
angle.

The forward detector was then used to scan angular distribution of the
beam after its passage through the crystal. Because of the small distance from
the crystal, the angular resolution was not very good. A better resolution
was obtained in the photographic exposures.

1.2. Results

Results from measurements on two samples of thickness 0.2-0.3 gm and
2.8 um, respectively, are reported. The thickness may be compared to the
mean-free path for scattering, defined as [ = (No¢)?!, where o is the total
atomic scattering cross section and N the density of atoms, N = 5 x 1022
cm? for Si. A simple estimate of ¢ is obtained in the Born approximation
for an exponentially screened Coulomb potential,

o = max?, (11

where a is the screening parameter and x» is defined as

27| Zoer

= - . (1,2)
Here, Zie and Z,e are the charges of the particle and the scattering nucleus,
and v is the particle velocity. While for » > 1, the collision may bhe described
“by classical mechanics®!, the Born approximation is valid in the limit of
»x < 1. In the present case, we have x? ~ 0.05. For the screening parameter a,
we way may insert the Thomas-Fermi screening radius, a = 0.8853 Z; /% q,,
where q, is the Bohr radius, @, = 0.53 A. This leads to a cross section of
0 =5 x 10-3 A2 and a mean-free path for scattering, [ « 4000 A. More
accurate calculations indicate that such a simple estimate is probably not
far off32. According to Eq. (I,1), [ depends on Z, approximately as [ « Z; %/
for fixed electron energy. The scattering length in gold will then be roughly
ten times shorter, in good agreement with the measured value of I ~ 400 A
for 1-MeV electrons?2, )

Thus the thickness of the thinner sample is comparable to the scattering
length, whereas the thickness of the thicker sample corresponds to about 71
The angular distributions of the transmitted electrons were in qualitative
agreement with these estimates. For the thinner sample, the distribution
consisted of an unscattered, central peak with tails due to single (or plural)
scattering, whereas for the thicker sample, no central peak was observed.
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Fig. 1.2: Scan through {111} plane for the Fig. L3: Scan through {110} plane for the

0.2-0.3-um sample. The crosses are experi- 0.2-0.3-um sample. This calculation includes

mental points, and the fully drawn curve is the  reflections of order up to + 3 (7 beams). The

result of a nine-beam calculation for a static  error flag on the upper right-hand side indi-

lattice. Bragg reflections of order up to + 4 are  cates beam divergence and statistical uncer-
included (9 beams). tainty of the measurements.

As mentioned above, the angular resolution in scans with the forward
detector was too poor for quantitative measurements. More direct information
on the scattering and its variation with incidence direction is obtained from
the yield of large-angle scattering into the annular detector.

0.2-0.3 um crystal. Scans through the three major planes, {111}, {110},
and {100} are shown in Figs. .2-1.4. The measured yields are normalized
to the yield in a “‘random’ (nonsyminetry) direction. The angle with the
plane is given in units of the Bragg angle, 6z = 2/(2dp), where 1 is the electron
wavelength and d, the planar spacing. We shall discuss the calculations in
more detail in the following chapter. Inelastic scattering is not included, and
thus the discrepancy in peak height, due to attenuation with depth, is to be
expected. If, for simplicity, exponential damping with depth is assumed, the
measurements indicate that the length corresponding to a reduction by 1/e is
approximately equal to the crystal thickness (cf. also See. 11.7).

The general peak shapes are rather well reproduced by the calculations.
For the {110} and {100} planes, the width is twice the Bragg angle, whereas
for the strongest plane, the {111}, the width is 4 to 5 times 5. The peculiar
shape of the {111} peak is due to the diamond structure of silicon. Each
{111} atomic plane is split into two planes with a separation of d,/4. The
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Fig. L4: Scan through {100} plane for the
0.2-0.3-ym sample compared with five-beam {100} si
calculation. The error flag on the upper right- el
hand side indicates beam divergence and
statistical uncertainty of the measurements.

o
-
W
1.0 xﬂ
o 7 X
a % g
I
3 s
@
o
=
&
ak
8g = .24°
2k
0 i ] 1 1 1 1
-3 -2 o o 1 2 3 4

/65

Fig. 1.5: Film exposures of the forward beam for the 0.2-0.3 ym sample. The upper series of four

exposures corresponds to the incidence angles of 36, 20g, and 0, and 0 with respect to a {111}

plane. The lower two exposures correspond to incidence angles of 6 and 0 wilh respect to a
{110} plane.
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Fig. L7: Scan through a {111y axis for the
0.2-0.3-um sample. The experimental results
are compared to the peak in yield obtained
from a 49-beam calculation. Effects of thermal
vibrations are included, but inelastic scattering
is not. Instead, the calculated increase in yield

on the upper right-hand side indicates beam
divergence and statistical uncertainty of the
measurements.

has been multiplied by 0.5 as in the previous
figure (cf. also Fig. 11.4).

1110} and {100} planes are regularly spaced. Finally, we note that the beam
collimation was not sufficient to resolve the ‘‘wiggles” at high-order Bragg-
reflection positions. There are, however, slight indications of these wiggles,
especially in the {100} scan.

For selected directions of indicence, photographic exposures of the
transmitted beam were taken. Two series of exposures are shown in Fig. 1.5.
The upper four exposures correspond to beam incidence at angles 30p,
20g, 05, and 0 (left to right) relative to a {111} plane. In this case, the Bragg
angle is 0g ~ 0.1° and the distance between the spots is 265 ~ 0.2°. The
spot corresponding to the incidence direction is the most intense one (second
from the right). Below are two exposures for beam incidence at an angle of
65 = 0.17° and parallel to a {110} plane, respectively. All spots in the figure
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have a pronounced tail. This corresponds to a low-energy tail of the heam-
energy distribution since electrons of lower energies are deflected slightly
more by the earth magnetic field.

Scans through the (110> and {111} axes are shown in Figs. [.6 and I.7.
The peaks are much stronger than the planar ones, rising by about a factor
of three over normal yield. The (110> peak is compared to the classical
prediction derived in the Appendix. The theoretical curve is multiplied by a
factor of 0.5. The width and shape of the peak are then quite well reproduced.
Since the attenuation with depth is expected to be stronger than for planes,
also the absolute agreement is reasonable.

The peak along the weaker {111) axis is compared to a many-beam
calculation, multiplied also by a factor of 0.5, to correct roughly for inelastic
scattering (ef. Sec. II.7). The widths are in good agreement and signific-

“antly narrower than predicted by a classical estimate. This qualitative dif-
ference between the two axes is also apparent in the diffraction patterns dis-
cussed below.

Film exposures of the transmitted heam for incidence close to an axis
are shown in Fig. I.8. The exposures in the upper series are taken at tilts
of 0.6°, 0.4°, 0.2° and 0° from the {111) direction. The series below cor-
responds to incidence angles of 0.75°, 0.50°, 0.25°, and 0° relative to a {110}
direction (from left to right). The strongest spot, corresponding to the in-
cidence direction, is fairly easy to identify in the upper series. In the lower
series, the spots are very poorly resolved, but it is evident that quite a large
number of reflections are excited. Especially at the larger tilt angles to the
{110> axis, the scattering is clearly seen to be confined to a ring around the
axis, corresponding to conservation of transverse energy®. In the terminology
of the theory of electron diffraction, the observed pattern is denoted the
zero-order Laue zone and corresponds to the intersection of the Ewald
sphere with a plane in the reciprocal latticel?.

2.8-um crystal. Angular scans through the three major planes, {111},
{110}, and {100}, are shown in Figs. 1.9-1.11. The peaks are much smaller
than those for the thinner crystal, indicating a strong depth dependence.
Once again, we may estimate the thickness corresponding to a reduction by
1/e, assuming exponential attenuation. In this caseitturns outto be ~ 0.4 um,
in reasonable agreement with the estimate based on the thin-crystal result.
The assumption of exponential damping is obviously very crude. The peak
shapes are now quite different. The dips are relatively more pronounced,
and the widths are narrower, especially for the {111} plane. (cf. the discussion
in Sec. 11.7).
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Fig. I.8: Film exposures of the forward beam for the 0.2-0.3 wm sample. The upper series corres-
ponds to incidence angles of 0.6°, 0.4°, 0.2°, and 0°, relative to a {111 axis, the lower series to
incidence angles of 0.75°, 0.50°, 0,23°, and 0°, relative to a (110> axis.
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Scans through the (111> and {110} axes are shown in Figs. .12 and 1.13.
The peak heights are strongly reduced, and a lot of fine structure has devel-
oped. An angular width is difficult to define, but it is obvious that the peaks
are much broader than for the thinner crystal. No attempt has been made to
check the suggested conservation of the peak volume':1% To calculate this,
it would have been necessary to assume azimuthal symmetry of the peak
which, for the present measurements, would have been altogether too bold.
The decrease in peak height is certainly to some extent counteracted by a
broadening of the peak. This is qualitatively different from the planar case,
which can be related to the fact that at least from classical estimates, the
compensation of the peak for planes is concentrated in a narrow, negative
shoulder, whereas for an axis the compensation is shallow and stretches out
to angles of order 2a/d. In the present cases, 2a/d « 4°.

Film exposures of the transmitted beam are shown in Fig. 1.14 for in-
cidence parallel to the two axes (111> and {110} and the three planes {100},
{110}, and {111}. The quality of the pictures is very poor compared to the
beautiful Kikuchi patterns obtainable in electron microscopy, where a
wealth of lines are resolved?®. It does, however, suffice to demonstrate two
qualitative features: (i) In contrast to Fig. 1.5, the angular distribution of the
electrons after their passage through a 2.8-um crystal is determined by mul-
tiple (inelastic) scattering. (ii) In analogy to the star patterns observed for
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protons transmitted through thin single crystals?’, there are minima in the
intensity at angles associated with a high large-angle scattering yield and,
conversely, there are maxima at angles associated with a low yield.

Fig. 1.14: Filin exposures of the beam transmitted through the 2.8 um crystal. The upper two

exposures correspond to béam incidence parallel to a {111 axis and a {110} axis. The lower three

exposures correspond to incidence along {100}, {110}, and {111} planes. The small intense spot
visible in all exposure is due to x rays produced in the gold scattering foil.
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II. Wave-Mechanical Description

The calculations leading to the theoretical curves in some of the pre-
ceding figures (I.2-1.4 and 1.7) are based upon the dynamical theory of
electron diffraction!®. Similar calculation have been published by several
authors'®. 1821 A brief description was also given in connection with the
measurements on positron channeling® ®. The following presentation is
intended to serve as a basis for the discussion of correspondence in the fol-
lowing chapter and therefore emphasizes the analogy with the classical de-
scription of directional effects® and uses the notation belonging to that
description. This is in accordance with the quantal treatment by Lervie
et al.1% and we shall at first follow their development and discuss the deriva-
tion of the two-dimensional wave equation from the three-dimensional
Klein-Gordon equation. In this context, the ‘many-beam’ formulation of
the dynamical theory of electron diffraction then appears as an approxim-
ation procedure for solving by Fourier expansion the equation of motion in
the continuum approximation.

I1.1. Basic wave equation

First, we derive the basic wave equation for the fransverse motion,
following the procedure of LERvig et al. Suppose the interaction between
particle and lattice can be described by a potential,

V(R) = V(zF) =ZVG(R—R¢), (IL.1)

where R = (x, y, z) is the position of the particle and 7 = (x, y), while the
Ry's are atomic positions and V, the atomic potential. The z axis is parallel
to an axis or plane, and the particle is assumed to move nearly parallel to
it. Since we are concerned with particles at relativistic velocities, we base the
discussion on the Klein-Gordon equation for a particle of total energy E
and rest mass M,
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{(he)2 A3 + [(E —~ V(z2,F)? - Mgt} w(R) = 0. (11.2)

By describing the interaction with the crystal by a potential (Eq. (I1.1)) and
disregarding the degrees of freedom belonging to atoms, we have at first
neglected inelastic scattering by electrons and phonons, which leads to
incoherence of the particle wave function. Furthermore, when the description
is based upon the Klein-Gordon equation rather than the Dirac equation,
spin-dependent terms in the Hamiltonian are neglected.

The incident particle may be represented by a plane wave,

wo(R) = eik-R, E% = (hic)2k? + M3ct. (11.3)

Since the scattering at high particle energies is strongly forward-peaked, the
interaction with the lattice only leads to transfer of rather small momenta in
the x and y directions, the momentum in the z dirsction being approximately
conserved. The motion may therefore be separated into a transverse motion
in the x—y plane and a longitudinal motion in the z direction with constant
velocity v, « v = hk/M, where M is the relativistic mass, M = E/c% For the
transverse motion it is then natural to introduce time, ¢ = z{v, as a para-
meter. The wave function is written as

p(R) = etkz. u(z,r). (I1.4)

When this is inserted into Eq. (I1.2) and we neglect a term V? compared
to 2EV and 9%/0z% compared to 2k0/dz, corresponding to scattering by small

angles only, an equation of a type of a time-dependent, non-relativistic
Schrédinger equation for the transverse motion is obtained,

0
ih Y a(t,F) = Hu(t, 1)
\ (11.5)

h
H = —— A-+ V(7).
oM T ( )

For a discussion of the corrections to the approximations leading to Eq.
(I1.5), the reader is referred to LERrviG et al.10.

I1.2. Continuum approximation

Let the crystal surface correspond to z = vt — 0. For ¢ < 0, the potential

is zero, and according to Egs. (I1.3) and (IL.4), the transverse wave function
is then

2%
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u(t,r) = exp{ik-R—ikz} o exp{ik, -7 - iE t/h} l

E e E k2 + MEAP 11.6
I oM S [(hc) e T OC] J ( . )
k= (1-{‘1_,]{'2) = (kx!ky’kz)'

At time ¢t = 0, the potential changes suddenly. In the axial case, it is for
t > 0 a periodic function of ¢, with period 7 = dfv, where d is the spacing of
atoms in the strings. In the continuum approximation, this time-dependent
potential is replaced by its time average,

1 i+t
V(@) = ;L V(t,F)dt, t=>0. (IL.74)

The question of the validity of this approximalion was studied in detail by
LERvIG et al. Also in the classical treatment of directional effects, this question
is crucial. For the axial case, the accuracy of the continuum description
may be assessed by the more accurate halfway-plane treatment? 1°. It turns
out that the continuum picture is obtained in the limit of high particle velo-
cities where the time interval v between collisions becomes short.

In the planar case, the continuum approximation is obtained by aver-
aging the potential along both the z axis (‘time average’) and the transverse
coordinate y parallel to the plane,

V(x) = %fAdyd(vt) V(5. (I1.7B)

The accuracy of this approximation has not been studied by a systematic
approximation procedure like the halfway-plane treatment of the axial case.
In the classical description®, the continuum approximation was seen to break
down at distances from a plane of order a, the Thomas-Fermi screening
distance, even for very large particle velocities.

In the dynamical theory of electron diffraction, the continuum approx-
imation corresponds to a Fourier expansion of the lattice potential in one or
two dimensions, for the planar and axial case, respectively. It is argued™
that for high-energy electrons incident at a small angle to a plane (or an
axis), only reciprocal lattice points on a line (or a plane) perpendicular to
the plane (or axis) are close enough to the Ewald sphere for the correspond-
ing reflections to be appreciably excited. The important question remains,
whether scattering processes leading to nonconservation of transverse energy
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are weak enough to be treated as a perturbation. Such processes may be
either inelastic scattering, or elastic scattering corresponding to reciprocal
lattice points off the line (or plane) perpendicular to the plane (or axis).
For the axial case, the importance of the latter type was assessed in Ref. 10.

We shall base our discussion of correspondence in the following chapter
on the continuum picture, mainly because this leads to rather simple resulls
in both classical and quantal treatments. In so far as the main difference
between the results consists of fine structure due to wave interference, the
difference may be reduced by inelastic scattering leading to incoherence of the
wavefunction.

I1.3. Solution of wave equation

In order to solve Eq. (IL.5) for f > 0, we consider the stationary wave
equation corresponding to well-defined transverse energy E,. For simplicity,
we restrict ourselves to the planar case,

k2 02 ) o
- J = YTy
[ T + V(oc)} w(x) E d(x),

) (11.8)
. —iB) tin

w(tx) = w(x)e L
where /() is the eigenfunction belonging to the eigenvalue EJ. The Hamil-
tonian is invariant under transformations © — x + ndyp, where n is an integer
and, consequently, o’ (x) can be written as a Bloch wave,

W(x) = 1%l (x), (11.9)

where o’ (x) is a periodic function, o’ (x +ndy) = o/(x). In order to find
solutions (I11.9) to (IL.8), we expand the potential as well as the wave func-
tion in a Fourier series,

V(x) = > Vyeings (I1.10)
Wi (&) =3 Cl, cimoe (IL.11)
m

where g is the length of the reciprocal lattice vector corresponding to the
distance dp between neighbouring planes, g = 27n/d,.

If we insert (I1.10) and (II.11) in (I1.8), and identify terms with the
same exponential factor, we obtain for the coefficients CJ,

12 . o
2—ﬂ{(kl+ng)2C§Z+%Cann_m - (. (11.12)
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This system of equations leads to approximate eigenfunctions when only
a finite number of terms in (I1.10) and (I1.11) are included. In the termi-
nology of diffraction therory, the term in (IL.11) with n = 0 is the primary
beam, whereas terms with n # 0 correspond to diffracted beams. A cal-
culation including N terms in the expansions (I1.10) and (I1.11) is therefore
denoted an N-beam calculation. The system of equations (I1.12) then
reduces to an eigenvalue problem for an N x N matrix 4 given by

Anm =Vn—m, n #

A2 (IL.13)
Ann = 27‘4(1(‘1. -+ Ilg)2 -+ Vo.

In an N-beam calculation there are for fixed k, N eigenvalues EJ correspond-
ing to N orthogonal wave functions u/(x) given by (IL.9) and (II.11). The
dependence of the exact eigenvalues and eigenfunctions on k, is periodic
with period g. For the solutions of a truncated matrix (I1.13), this periodicity
will only hold approximately within a limited range of k| values. In practice,
the number of beams is chosen to be large enough for this range to comprise
the interesting range of incidence angles.

I1.4. Scattering yield

At first we estimate the atomic scattering yield relative to the random
case, corresponding to an eigenfunction u/(x). For large-angle scattering, the
contributions from different atoms are incoherent due to the recoil. Clas-
sically large-angle scattering of energetic particles corresponds to collisions
with very small impact parameter, and the yield will therefore be proportional
to the particle flux at atomic positions. The classical picture applies when
the quantity », defined in Eq. (1.2), is large compared to unity. In the opposite
limit of small » values, the scattering by a single atom may be calculated
in the Born approximation. The yield is then proportional to the square of
the matrix element {u!|V,.| />, where w/ and u! are the initial and final states
of the projectile and V, is the atomic potential. For large-angle-scattering
corresponding to a transfer of a large transverse momentum FAk, the matrix
element receives its major contribution from distances < 1/4k from the
the center of the atom. If the initial wave function does not vary significantly
over distances ~ 1/4k, the yield will then also in this limit be proportional to
the intensity [u/|? at the position of the atom. This result is therefore ob-
tained as a direct consequence of our basic assumption of predominance of




Nr. 10 23

small-angle seattering, which implies that in the matrix (Eq. (11.13)), only
Fourier components corresponding to ng { 4k need be included.

If the intensity distribution [w/(x)|2 varies only little over a distance
~ g, the R.M.S. vibrational amplitude perpendicular to the plane, the yield
7y is given approximately by the intensity at the equilibrium position,

my = WO = (3 Ch) (IL14)

Here, and in the following, we assume the coefficients C?,; to be real, which
may always be achieved if the crystal has reflection symmetry. Also, for
simplicity, we have assumed that & = 0 corresponds to the position of the
atomic plane. The two assumptions are not always compatible as, e.g.,
they are not for a {111} plane in a diamond lattice (c¢f. Fig. 1.2 and the
corresponding comment in the text). In such cases, the appropriate phase
factor must be included in Eq. (I1.14), which is modified to

o= 2, CI CI gbm—m g, (I1.14a)
n,m

when the atomic plane is at @ = x,.

As in the classical description?®?, the most important correction for thermal
vibrations is the modification of the yield z; due to displacements of the
scattering centers from the plane. When the intensity is averaged over a
Gaussian distribution of displacements, Eq. (I1.14) is modified into

m; = > CLCI D, (11.15)
m,n
where D, are factors of Debye-Waller type,

Dyp = exp{—+(n - m)*g2e?}. (IL.16)

A less significant effect of thermal vibrations is the modification of the
lattice potential. Incoherence due to atomic recoil reduces the coherent
scattering, and this may be taken into account by multiplying the Fourier
components of the potential by a Debye-Waller factor,

Va = VaDyo, (11.17)

where Dp, is given by Eq. (I1.16). The corresponding reduction of large
Fourier components may alternatively be interpreted as being due to the
smearing of the planar potential which results from a convolution with the

Gaussian probability distribution for the position of atoms relative to the
plane.
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The corrections (11.15) and (I1.17) only become important when the
wave function contains Fourier components corresponding to transverse
wave vectors ng X 1/o. Since dpfo X 30 this will only be the case when at
least 5-10 beams have to be included in the calculation.

I1.5. Surface transmission
The wave function for # > 0 may be expanded in terms of eigenfunctions,

—iE_fL 2

i
u(t,a) = Sall(z)e e S TS ol eimoe, (1118)
i i

n

where we have utilized that matching at the surface (¢ = 0) to the incoming
plane wave requires all eigenfunctions in Eq. (II.18) to correspond to the
value of k, determined by Eq. (I1.6). Also the coefficients «; are determined
by this matching, and we obtain

éajcz,, = 8,,- (11.19)
If the eigenfunctions are normalized,
S CLCE = 6y, (11.20)
n
it is easily seen that
a; = Cl. (11.21)

Neglecting at first thermal vibrations, we then obtain for the yield P of
large-angle scattering, combining (I1.14) with (I1.21),

P = 3(ChyPm; = S(CL3 Ch) (11.22)
J g n

If thermal vibrations are taken into account, Eq. (II.14) is replaced by
(11.15), and we obtain

P = Z(Cjo.)z 2 CgrbCZnDnm' (11.23)
i m,n

In Eqgs. (I1.22) and (I11.23) we have added the contribution from different
eigenfunctions incoherently. The results therefore apply to measurements
which are averages over a thickness large enough to correspond to large
variations of the relative phase of different eigenfunctions. This assumption
of random relative phases is analogous to the assumption of statistical equi-
librium in the classical treatment.
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The yield of large-angle scattering is determined by the spatial intensity
distribution of the channeled particles. By a transmission measurement of
the intensity of different Bragg spots, one may determine the distribution in
momentum space®’. The corresponding formulae may casily be derived,
but we shall instead turn to the problem of incoherent scattering which, in
the theory of electron diffraction, plays a role very similar to that of de-
channeling by multiple scattering in the classical theory of channeling.

II.6. Incoherent scattering

An order-of-magnitude estimate of the total cross section for scattering
by atoms in a random medium was given in the previous chapter (Eq.
(1.1)). For a wave function with high intensity at the atomic sites, there will
be a strong increase in scattering. On the other hand, for small scattering
angles, the intensity is mainly concentrated in the coherent Bragg peaks. A
cursory estimate of the corresponding reduction of in coherent scattering
may be obtained from the scattering law applied in the previous estimates,

d(0%)

da(@)am.

(11.24)
Here, 8, is given by the ratio of the electron wavelength 4 to the screening
radius a, 04 = A/a. Since the incoherent scattering is proportional to a factor
[1 — exp(— p%0%/1*)], a rough estimate of the incoherent fraction is

Cine

R

Otot Otot

= [1 +a?fe?]"". (11.25)
0842 > 1
In silicon this estimate leads to a rather small incoherent fraction,
~ 1/6. In view of the rough approximations made in the calculation, this
number should be considered only as an indication of the importance of
corrections for coherent scattering to the inelastic scattering cross section. If
the atomic scattering is strongly reduced, inelastic scattering by electrons may
play a significant role especially for low Z, It should be noted, however,
that the enhancement of incoherent scattering (anomalous absorption)
corresponding to the increase in large angle scattering yield will be much
stronger for thermal scattering than for electronic scattering.
A considerable amount of work has been devoted to the problem of
estimating inelastic scattering in connection with electron microscopy.
Recently, a review was given by Howie and STeErR~®, which also may be
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consulted for further references. Usually, inelastic scattering is taken into
account by adding an imaginary part to the potential. Such a simple treatment
will probably not suffice in the present connection. Since the inelastically
scattered electrons also contribute to the large-angle scattering yield, we are
concerned not only with the effect of inelastic scattering on the initial,
coherent wave function — absorption — but also with the properties of the
final states. Thus it may be complicated to introduce inelastic scattering even
in the comparatively simple two-beam case!”. As a first approximation, the
final states may be assumed to be plane waves®®. For the thermal scattering,
which involves rather large momentum transfers, this assumption may not
be too bad. Since, however, for scattering by elecirons, the cross section is
strongly peaked at small momentum transfers, the wavefunction may not
change its symmetry even after several plasmon excitations!4. %,

In the axial case, the problem of incoherent scattering is particularly
severe. The strong potential minimum should lead to fairly localized states
and a large peak in scattering vield. Such states will be highly unstable, and
the incoherent scattering cannot be treated as a small perturbation. A treat-
ment in terms of statistical concepts may then be more appropriate!? 37,

I1.7. Numerical evaluation and comparison lo experiment

When only a small number of Fourier components (beams) are included,
the many-beam formalism lends itself readily to nwmerical evaluation.
Planar peaks in scattering yield for 700-keV electrons along {111} and {110}
planes in silicon are shown in Figs. II.1 and I1.2. A fairly rapid convergence
with increasing number of beams is indicated. The number of beams
necessary in such a calculation depends on the strength of the planar potential
and the relativistic particle mass. In the present case, 7-9 beams are sufficient
for the most closely packed plane, the {111} plane, whereas for the weaker
{110} and {100} planes, only 5-7 and 3-5 beams, respectively, are needed.

The relative excitation of different Bragg-reflected beams can be directly
observed in the photographic exposures of the transmitted beam (Fig. 1.5).
For the {111} plane, both second — and third-order reflections are quite
important, and of the order of five beams are strongly excited. It may be
noted that due to the already mentioned split of the {111} plane in a diamond-
type lattice, the second-order Fourier component of the {111} planar poten-
tial vanishes. Thus the second-order beam can only be excited indirectly,
and the very strong excitation indicated in Fig. 1.5 shows the importance of
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Fig. I11.1: Many-beam calculations of the {111}
peak for 0.7-MeV e on Si, including 3, 5, 7,
and 9 beams, respectively (static lattice).

Fig. IL.2: Many-beamcalculations of the {110}
peak for 0.7-MeV e on Si, including 3, 5, and
7 beams, respectively (static lattice).

dynamical effects. The two exposures for the {110} plane indicate that for
this somewhat weaker plane, fewer beams are excited.

In the axial cases, a much larger number of beams are excited simulata-
eously, as may be appreciated by looking at the Bragg spot patterns in Fig.
1.8. For the (111} axis, the number of spots is still fairly small, and a cal-
culation analogous to those for planar cases was therefore attempted (see
Fig. 1.7). The convergence with number of beams is illustrated in Fig. I1.3.
For the (110} axis, the spot pattern in Fig. 1.8 contains many, fairly weak,

1ot

Fig. IL.3: Convergence of axial many-beam
calculations for 0.7-MeV e- on Si. The number

iy stam I S0 of beams included is indicated in the figure.
For the {111) axis, the equivalent number of

6 L | beams for a {110} planar calculation is given
in parentheses. In contrast to the calculations

s NO OF BEAMS NO OF BEAMS shown in the previous figures, the most
60 (9) 60 important reflections were selected independ-

. ?; Z)) ?; ently for each angle of incidence. Incoherent

scattering is neglected, but other effects of
thermal vibrations are included (cf. Egs.
e (IX.15) and 11.17)). The values of the character-
istic angle y, for classical channeling are 0.75°
i and 0.92° for the (111> axis and the {110)
axis, respectively.

05 1
oy,
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Fig. IL4: Axial peak in large-angle scattering S
yield for 0.7-MeV e-, derived from a 49-beam
calculation (ef. Fig. IIL.3). The influence of
incoherent scattering has been estimated by
including an imaginary component in the
potential and assuming scattering into plane-
wave states. The magnitude of the imaginary
Fourier components of the potential has been
evaluated from an approximation to the results
given in Ref. 38. The peak derived from this
caleulation is compared to that obtained
without absorption, multiplied by 0.5, corres-
ponding to the correction for inelastic scatter- \
ing applied in Figs. 1.6 and 1.7 (dashed curve). 1 A

Si am
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reflections. This may be related to the complicated transverse arrangement
of (110} strings and explain the apparent lack of convergence in the many-
beam calculations for this case (see Fig. I1.3). Also, the (110> axis is some-
what stronger than the {111} axis, and the experimental results were there-
fore compared (in Fig. 1.6) to a classical calculation. It is clear that for a
strong, narrow potential, two-dimensional Fourier expansion is basically a
very inefficient method.

-5

Fig. I11.5: 20-beam planar calculation T T T T I E— T T
for e on Si. Effects of thermal vi-
bration are included according to Egs.
(IL15) and (IL.17), and the influence
of incoherent scattering has been
estimated as described for the pre-
vious figure.
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As mentioned in the previous section, inelastic scattering is normally in
electron microscopy taken into account by adding an imaginary component
to the potential, and this treatment may be applied to measurements of large-
angle scattering if the final states are assumed to be plane waves. Examples
of results from such a procedure are given in Figs. II.4 and IL5 for the
{111> axis and the {111} plane, respectively. For the axis, the calculation
supports the simple estimate of a reduction by a factor of two, which was
applied in Figs. 1.6 and I.7. Also for the plane, the result for the thinner
crystal is in fair agreement with measurement, but for the thicker crystal,
the calculation does not lead to the narrowing of the peak observed experi-
mentally (Fig. 1.9). It would seem that measurements of the type described
here could serve as a useful tool to test the description of inelastic scattering.

The main conclusion of the comparison between calculations and experi-
ments is, however, that for small depths, the dynamical theory of electron
diffraction yields results in good agreement with experiments, at least for
planes and weaker axes. A similar conclusion was reached for experiments
with positrons®?, and we may therefore in the following investigate the
relation to channeling of heavy particles by studying the relationship of this
theoretical description with classical channeling theory.



‘ II1. Correspondence
1I1.1. General considerations

The main objective of this investigation of electron and positron chan-
neling has been to study the limits for applicability of classical mechanics
in the description of channeling phenomena for light particles, and in
particular the relation between the theory of electron diffraction, as formul-
ated in Chapter II, and classical channeling theory. In the papers by Linp-
HARD® and LERviG et al.’®, the validity of classical orbital pictures in the
description of collisions with an isolated string was studied in detail with
emphasis on the case of heavy particles (protons, « paticles, etc.). For this
case it was concluded that in the limit of high particle velocities, a collision
with a string of atoms remains classical although classical mechanics does
not apply to scattering by a single atom since the quantity », defined in Eq.
(L.2), becomes small compared to unity.

For channeling of light particles (positrons and electrons), an analysis of
the interaction with the lattice in terms of scattering of a wave packet by
isolated strings or planes may not be appropriate, as the requirements of
localization in space and angular spread smaller than a characteristic angle,
which for axial channeling is of order?

47, 7 ,e2\M?
Y1 = —plT s (IIL.1)

may be mutually exclusive.

Decisive for this question is the magnitude of the number of bound
states in the transverse potential minimum. Semiclassically this number may
be obtained from the available phase space for transverse energy below the
potential barrier. If there are no bound states the scattering is determined
by simultaneous interaction with many strings or planes, and no similarity
with classical results can be expected. In the limit of many bound states, on
the other hand, the classical picture is approached.
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In the case of axial channeling, positively charged particles with trans-
verse energy below the barrier for penetration through strings are not bound
to one channel but may move freely between sirings except at very low
transverse energy (‘proper channeling’). Still, the number of states per unit
cell in the transverse plane (or per string), with transverse energy below the
barrier for penetration into strings, is an important quantity. Qualitatively
it may be seen from the fact that many states per unit cell are required to
form a wave packet which is well localized within this area. More directly, it
follows from the quantal treatment in Ch. II. The stationary wave equation
(two-dimensional analogue of Eq. (11.8)) may be reduced to one unit cell
with periodic boundary conditions, and the conclusions reached in the
following concerning the behaviour of the solutions of this equation may
therefore be expected also to apply to the axial case for positive parlicles,
with the definition given above for ‘the number of bound states’.

At this point it may be appropriate to discuss the special quantal pheno-
mena caused by the lattice periodicity. Indeed the strong diffraction pheno-
mena observed for electrons and positrons constitute the most striking
deviation from classical behaviour. The interference due to transverse
periodicity with period dp may be described as a quantization of transverse
momentum transfers in bits of dp, = 2nhi/dy, corresponding to an angular
deflection of twice the Bragg angle. This quantization was explicitly dis-
regarded by LErviG et al. on the ground that for particles heavy compared to
the electron, dp, is very small. In point of fact, for p, = py,, we have'®

5}) a 1/2 m 1/2
(—l) = :w(—0> (J> (ZLZ )21 for M) my, (I11.2)
P d M

D

where M and Z, are the mass and charge of the incident particles.

Should we not then, as the essential criterion for classical behaviour,
require that the transverse momentum quantum Jp, be small compared to
the transverse momentum corresponding to the potential barier Ep, p, =
= (2MEy)1/2? Although this is a necessary condition, it is not sufficient.
Also the width of the potential minimum is important since, together with
the barrier height, it determines the number of bound states.

The interference structure may be smeared by incoherent scattering
or poor collimation. This, however, only leads to classical results if the
phase-space criterion is fulfilled such that the quantal description leads to
a classical envelope with fine structure due to diffraction. In this transition
region, deviations from classical results due to tunneling may also be expected.
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Channeled positive particles are prevented from penetrating into the center
of atoms by the transverse potential barrier. The probability of close en-
counters with atoms is thereby strongly reduced for incidence parallel to an
axis or plane, and the magnitude of this reduction may be sensitive to the
probability of tunneling into the classically forbidden regions. Cursory
estimates of tunneling probabilities for strings and planes, based upon the
WKB approximation, were given in Ref. 10.

We may conclude these general remarks by considering some charac-
teristic lengths, the relative magnitude of which governs the approach to-
wards the classical picture of chanmneling. The transverse wavelength 17,
which corresponds to a transverse kinetic energy equal to the potential bar-
rier Ep, is given by 2nA/(2ME})'/?, where M is the relativistic mass of the
particle. This length may first be compared to the width of the potential
minimum which, for electrons, is a few times the Thomas-Fermi screening
distance a and for positrons is of the order of d, the lattice spacing. When l’i
is small compared to the width, the phase space is large, there will be many
bound states, and the quantization of transverse energy may be disregarded.

Second, the importance of the quantization of transverse momentum de-
pends on the relative magnitude of A2 and the characteristic lengths for lattice
periodicity, which again is of order d. If the phase-space criterion is ful-
filled, 22 will be small compared to d, and we may expect interference due
to periodicity to lead to fine structure only.

Third, penetration into potential barriers is small if the width of the
barrier is large compared to A%, For positive particles, the barrier widths
are of order a or a few times a. Tunneling may therefore lead to important
modifications of classical results, even if the phase space is relatively large.
In Ref. 8 it was concluded, however, that the influence of tunneling is
strongly reduced by the smearing of the distribution of atoms, due to thermal
vibrations.

IIL.2. Analogy between quantal and classical descriptions

In the following we shall try to describe in some detail how the quantal
description of channeling approaches the classical description and illustrate
the importance of the phase-space criterion. In this connection it is important
to specify the type of measurement we are considering. We shall be con-
cerned only with predictions of the dependence on incidence direction of the
yield of a close-encounter process such as large-angle scattering or inner-
shell excitation. This simplifies the problem considerably since we need not
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consider in detail the validity of classical orbital pictures in describing particle
trajectories®® hut only the ability of classical mechanics to predict the
distribution of particles in the transverse direction or plane. A quantal
treatment was discussed in the previous chapter and for the classical
description, we may refer to Lindhard’s original treatment’. Numerical
estimates based upon the two formulations are compared in Ch. IV. In the
Appendix, an example is given of an analytical calculation based upon the
classical desecription.

The physical situation we are concerned with is an external beam of
particles incident on a single crystal at an angle v to a major plane (or
axis), and we ask for the probability P(y) for particles to come close to the
center of crystal atoms, as manifested in the yield of a close-encounter
reaction. Many similarities are apparent between the classical and the quan-
tal treatments of this problem. Owing to the predominance of forward scat-
tering, the motion of the particles may be separated into a longitudinal mo-
tion with nearly constant velocity and a transverse component, which may
be described as motion in an averaged potential with approximate conser-
vation of the transverse energy E, (‘continuum approximation’). The pro-
bability P(¥) is then determined in two steps:

First, the probability #(E,) for a particle with transverse energy E| to
have a close encounter with an atom is calculated. In the classical treatment,
this involves finding the probability distribution in transverse space as a
function of E|, based on statistical arguments. In the quantal treatment, E,
is quantized. The eigenfunction w/(x) belonging to an eigenvalue E} may be
calculated from Eqs. (11.8), (11.9), (IL.11), and (11.12). The probability
density in transverse space is given by the square of this eigenfunction. In
both cases, the reaction yield is assumed to be proportional to the density at
atomic positions.

Second, the population of transverse-energy levels is determined by
surface transmission. Classically, a particle hitting the crystal at a distance x
from a plane acquires a potential energy V(x), leading to a total transverse
energy

E, = Ey? + V(x). (111.3)

Since the intensity of the beam is uniform over the crystal surface, the
distribution in transverse energy is then given by

-1

(I1T1.4)

i

oV
W(E), o f ded(E, — Ey? — V(x)) = 3 | —
0 |z = z;
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where the x’s are solutions to Eq. (I1L.3). Formulae analogous to (IIL.3)
and (II1.4) hold for the axial case.

In the wave-mechanical formulation, the population of energy levels is
determined by a matching of the total wave function at the crystal surface to
the incident plane wave, which yields the coefficients (Eq. (I1.21)) of dif-
ferent eigenfunctions. In the expressions for the total probablility density in
the transverse plane, interference between different eigenfunctions is neglect-
ed. In the planar case, this corresponds to the assumption of statistical
equilibrium in the classical calculation and should be valid for not too
small thicknesses. Problems related to the assumption of statistical equili-
brium for axial channeling are discussed in Ch. IV and, in more detail, in
the Appendix. Deviations from equilibrium close to the surface have been
studied extensively for heavy-particle channeling?’ and recently also for
electron channeling®’ %9, .

In the following we shall analyze both of these steps in detail for the one-
dimensional case. In the quantal treatment in Ch. II, the problem of determin-
ing eigenfunctions for the transverse Hamiltonian was reduced to solving the
Schradinger equation (I1.8) in a finite interval [0,dp], with periodic bound-
ary conditions according to Eq. (I1.9). In order to gain insight into the prop-
erties of such solutions, we consider a simpler analogous problem where the
particle is confined by infinite potential walls. For the general qualitative
conclusions concerning the importance of the magnitade of quantum num-
bers, the difference in boundary conditions should not be of any importance
and, furthermore, the boundary conditions are for strongly bound states
determined by the local potential minimum and not by periodicity (cf. also
Sec. IV.2).

I11.8. Harmonic oscillator

First, we treat the familiar example of a harmonic oscillator. For many
physical problems, this is a basic example, which may be solved by analytical
methods. In fact, the spatial probability density for a particle bound in a
harmonie potential is used as a standard textbook illustration of correspond-
ence with classical mechanics in the limit of large quantum numbers??,
According to the general discussion above, evaluation of this density is the
first task to be performed.

Spatial density. With the potential V(x) = I Mw2x? the eigenvalue
equation becomes
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Fig. I1L.1: Spatial density for harmonic-oscillator eigenfunctions corresponding to n =4 and

n = 12, respectively. The classical turning points are indicated by dot-and-dash lines, and the

classical spatial probability (Eq. (111.9)) is given by the smooth solid curve. The oscillating solid

curve corresponds to the exact distribution |u%(ac)[2 (Eq. (II1.7)) and the dashed curve to the
density obtained from the WKB approximation (Eq. (II1.22)).

h? g?
{— ogigae %szxi u(x) = Eu(x). (I11.5)
Here, and in the following, the transverse energy is denoted simply by E.
This equation has the well-known solutions

En = lio(n+3), (I11.6)
and

un () = Nan(oca:)e“l/szz, (I11.7)

where «? = Mw/h, H, is the n’th Hermite polynomial, and N, is a normal-
ization constant,

Nu = Vaj(fm2rnnre, (111.8)

The probability density, |u(x)|?, is in Fig. II1.1 compared to the classical
distribution,

=}

Mo\ 12
x) = E — 1 Mw2a®)-1/2, I11.9
Dy 2

for two values of n. For moderately high. n, the distributions are very similar
except for the rapid oscillations of the quantal density.
3*
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Surface transmission. Corresponding to the case where particles are
incident on a crystal at an angle ¢ to a major plane, we now ask for the
population of the harmonic-oscillator eigenstates for u(x, ¢ = 0) = eths,
where filr denotes the transverse momentum, related to the total momentum

p by ik = pp. The classical result is
ov\~1 9 \l/2 B2ge\ 12
W(E) = 2{ =~ E—-— . I11.10
@ -(3) v (5G] - o

In order to find the quantal distribution, we have to evaluate the matrix
element

V=E—§*k*/(3M) (

(iy | etk2y = N f docHy (o) e™ 12 &2 pike, (I11.11)

This integral may be evaluated by repeated partial integration when the
following represention of the Hermile polynomial is used,

2 an 2
Hn(x) = (— l)nex %e—x 5 (11112)
and the result is

1 — 2 2
(g | €2y — ~Np |/ 2 (= i) e ¥/ @) H, (kfar). (111.13)
[24

Since Eq. (III.11) is essentially the momentum representation of the n’th
state, this result, except for a phase factor, also follows directly from the

d
symmetry between x and E in the Hamiltonian.
x

The population of the n’th energy level is given by the square of this
matrix element,
P(E . @ 72 — ko ry2
(En) = (Mw)ll\".e H; (kjx). (I11.14)
When this expression is divided by the spacing of levels, hw, the relation
to the classical energy distribution (III.10) is the same as the relation be-
tween the quantal and classical spatial densities except for the fact that the
expressions are now compared as functions of E (cf. Fig. II1.3).

Since the main purpose of these considerations is to illustrate the cor-
respondence qualitatively, we shall only for a special case prove that the
quantal result approaches the classical one in the limit of large quantum
numbers. Consider the energy distribution (1II.14) for & = 0, corresponding
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T — 2 Fig. I11.2: Comparison of quantal (Eq.
L i (I11.5)) and classical (Eq. (IIL.10))
i energy distributions for k =0, cor-
responding to incidence parallel to a
plane. The two distributions have
been multiplied by 1/2(Mw?hw)ise,
Here n denotes the level number, i.e.,
Eyn = (n+1/2)iw, and the staircase
distribution gives the population for
n even.

for the channeling case to zero angle of incidence with a plane. Only states
with even parity are then populated, and we may compare the classical den-

sity (Eq. (111.10)) to P(E2s)/(2hiw). Using the relation Hya(0) = (— 1)#(2n)!/n!
we obtain

2 \'* 1 [a\2 (an)
P(EZn)/(Qhw)=(sz oy 2) el (111.15)

For large n, we may evaluate the factorials by Stirling’s formula,

n! o }f2an-e-n.nn (111.16)
and obtain
9 \u2 1
P(Es)/(2h0) = — 111.17
Ea)lho) (o) o (1IL17)

This result is essentially identical to Eq. (I111.10) for k = 0. The distributions
(111.10) and (II1.15) are compared in Fig. 111.2.

HI.4. WKB approximation

The general approach to the classical description for large quantum
numbers may be seen more directly in the WKB approximation. This
semiclassical description offers a convenient stepping stone from a quantal
formulation to the classical treatment (cf. also Ref. 25). -

Spatial density. A stationary solution to the Schrédinger equation with a
potential V(x) may be written

p(a, )y = Cexp{i(s(x) — EO/R}, (111.18)
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where the phase function s(x) satisfies

Loy [E - V(x)] - - o (111.19
— ~-[E-V(x)] - ——5 =0, i
oM\ ox ( oM da? )

The WKB approximation obtains the first two terms of a formal expan-
sion of s in powers of K. In classically allowed regions, (E > V(x)), the
general solution in this approximation is*?

o) - e[ s

&

i (111.20)
+ Bk(x)*l/zexp{ - if ]c(x')doc'}.
Za
where we have introduced the local wave vector
1
k(x) = ;(2114(E —- V(x)))2 (111.21)
f

Apart from oscillations due to interference between the two amplitudes
corresponding to opposite directions of the particle velocity, we have |u(x)|? e
o (E—V(x))~1/2 as for the classical spatial distribution (cf. Eq. (II1.9)).
The condition for the validity of the WKB approximation is that the fractional
change in wavelength be small over a distance of one wavelength. Except
for the regions close to the classical turning points (V(x) = E), this is in the
case of a potential minimum equivalent to a demand for many nodes in the
wave function or a large quantum number n.

Surface transmission. Consider for simplicity a symmetric potential
V(x) = V(- x) increasing monotonically to infinity for  — « with V'(x) = 0
for x = 0. When the solution (Eq. (II1.20)) for V < E is matched to the
WEKB solutions in the classically forbidden regions (V > E), the wave
function becomes*?

up(x) = Ak(x)- 12 cos(j

T

k(x')dx' — g) (111.22)

—&

Matching to the solution for V > E at the turning points, x = + a, leads to
quantization of the energy, determined by*?

o
J- k(x)yde = (n+§5)m, n=01,2,... (111.23)
-
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In order to determine the population of eigenstates corresponding o an
initial wave function w(x,t = 0) = %% we consider again the matrix
element

) = AN
(ug(x) | ey = Afk(x)—llzcos(f k(x")dx' — I)e”“xdx. (111.24)
—a
This integral we may evaluate by the stationary-phase method. First, the
wave function uy(x) may be written as a sum of two amplitudes correspond-

ing to opposite directions of the velocity (cf. Eq. (1I1.20)). A stationary
phase, determined by

d z ., T
—| & f k(xyde' £~ + ko] = 0, (111.25)
dx —a 4

is obtained only for the amplitude corresponding to the velocity direction
given by the sign of k. For 0 < ky < k(0), Eq. (111.25) is fulfilled for two
values of x, x = + x, determined by

k(& ) = ko. (111.26)

The contributions from the two x values are then approximately given by the
expression
+@

A . k . in
Ek(:ck)—lﬂexp{— lf k{x)dx + ikoxy — Z} X
-

MV'( %
X jdac exp iM le,
21k, |

(111.27)

in which the phase has been expanded to second order around the points
x = + xp. When the result (¢ > 0)

j " exp(a ieat)du ]/ 21 (1+1) (111.28)
® c

is applied, the magnitude of the two contributions may be evaluated, and we
obtain

P(E) = [{ug(x)|e™®)|? 2T e st ka(lc( Y= koydz — 2, (111.29)
1) = Uy(x)je™® = — cos X) — Kp)dx — —|, .
B MV’ () 0 ° 4

where the argument of the cosine corresponds to half the relative phase of
the contributions from x = + a;. As for the harmonic oscillator we obtain
an energy population which oscillates as a function of energy, and we have
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now seen that this behaviour is caused by interference between the amplitudes
corresponding to the two points x = & xj, at which the velocity of a particle
with energy F matches the well-defined velocity for t = o, v = hky/M.

In order to compare with the classical energy population,

W(E)dE = 2V’ ()~ 'dE, (111.30)

we must evaluate the normalization constant A and furthermore divide
P(E) by the splitting AE between eigenstates. The normalization is de-
termined by,

a T
A2 f k(a:)—lcos2(f k(') da’ —g>dx ~ 1. (111.31)
- a

If the condition for the WKB approximation is fulfilled, the potential varies
only little over one wavelength, and we have approximately

A2 o 21‘1““ ]c(.r)—ldx}_l. (111.32)

The quantization of energy is given by Eq. (II1.23). At high quantum
numbers, we may evaluate the splitting AF from

d 13
AE»m—E<j_ak(x)dx) o 7. (111.33)

With the definition (III.21) of k(x), this leads to

AE fﬂjj—z{f Ic(a:)—ldx}—l. (111.34)

Combining Eqs. (111.32) and (I11.34) with Eq. (II1.29), we obtain
: g 7T
P(EY/AE = (4]V'(xz)) Cosz<f (k(x) — ko)dx - I) (111.35)
0

When averaged over the oscillations, this expression is idential to the classical
result in Eq. (1I1.30).

It should be noted that the method of evaluation used here is limited to
energies somewhat larger than classical minimum energy, E = V(0) +
+ R2k2[(2M). Also, for large values of I, the method breaks down because
the stationary points + ap are too close to the classical turning points, where
the expression (II1.22) for the wave function cannot be applied. In these
regions, we way instead expand the potential to first order around x = + «
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L L L B Fig. IIL.3: Population of levels in
harmonic oscillator for y(x, { =0) =
12k | exp(ikr), with a value of k corres-
ponding to (Mk)?/(2M) = 4.5 hw.
This lower limit for the -classical -
energy population is indicated by a
dot-and-dash line, and the classical
distribution (Eq.(I11.10)) is given by
the smooth solid curve. The solid
staircase distribution corresponds to
the exact population (Eq. (IIL.14)
divided by Jiw), while the result
obtained from the WKB approxim-
ation (Eq. (IIL.35)) is indicated by
the dashed lines. Normalization and
notation as for Fig. III.2.
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and represent the wave function by an Airy function. For £ =0, a result
analogous to Eq. (IIL1.35) is then easily obtained, with the cosine replaced
by 0 or 1 for odd and even parity, respectively.

We shall not go into the details of such estimates since the main purpose
of this chapter is to provide some general insight into the correspondence
between classical and quantal results. Such insight is more readily gained
from analytical treatments of simple examples than from more realistic
numerical calculations, as presented in Ch. IV. For this purpose, the WKB
approximation is particularly helpful, yielding basically classical results
modulated by oscillations due to interference between different amplitudes.

We conclude this chapter by an assessment of the accuracy of the WKB
approximation for the harmonic oscillator, which was treated exactly in the
previous section. Figure III.3 shows the population of different energy
levels for a plane wave with a k value corresponding to (ik)?/2M = 4.5hw.
The smooth curve is the classical energy distribution given by Eq. (1I1.10),
while the staircase distributions correspond to the exact quantal result (Eq.
(111.14), fully drawn) and the WKB approximation (Eq. (II1.35), dashed).
Only close to the minimum energy do the two distributions differ enough to
be drawn separately. It should be noted that for the harmonic oscillator, Eq.
(I11.23) reproduces the exact energy quantizalion. For the spatial density
distribution, shown in Fig. III.1, the accuracy of the WKB approximation is
similar, and appreciable deviations from the exact results occur only close to
the classical turning points. For small values of o, the distributions deviate
by less than one percent.



IV. Applicability of Classical Calculations to Electron and
Positron Channeling

In this chapter, we first apply the general quantative results of the previous
chapter to obtain approximate criteria for the applicability of classical
concepts to channeling of electrons and positrons from estimates of the
number of bound states in the transverse continuum potential According to
Eq. (11I1.23), this number may be obtained approximately as the available
phase space divided by Planck’s constant i (or by hA? in two dimensions).

Second, the {ransition to the classical limit at high quantum numbers
is studied quantitatively by a comparison of classical results for the direc-
tional dependence of the large-angle-scattering yield with results obtained
from the many-beam description reviewed in Ch. 1I. The calculations also
provide a check of the formulas for the number of bound states derived from
semiclassical estimates.

IV.1. Number of bound states

The following estimates correspond closely to those given in previous
work®-1%, Also in the review by GeEMMEL?, such estimates were given. FFor
the planar case, our results are essentially in agreement, apart from a
trivial mistake by a factor of two in his formulas. For axial channeling of
negative particles, there is a more important difference in method as well as
result.

Planes. The planar potential is illustrated in Fig. IV.1 for positive particles.
We base the estimates of the phase space upon Lindhard’s standard potent-
ial, which for a particle with one positive charge, leads to the planar potential.

V(x) = 27Z,e2 Ndp[(x? + C2a®)V/? - x], (Iv.1)

where Ndj is the density of atoms in the planes, d, being the planar spacing.
The width of the potential maximum is approximately 3Ca, where a is the
Thomas-Fermi screening distance and C a potential parameter, C ~ /3.
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Fig. IV.1: Si {110} planar potential
for positrons. The potential from a
single plane is represented by the
dashed curve (Eq. (IV.1)), while the
solid curve is obtained by adding the
potential from the neighbouring plane.
The phase-space estimates are based
on the latter potential.
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The number of bound states in the potential is given by
1 [
Vp —f (2M(Viax ~ V)2 dx, (Iv.2)
ahlJo

where M is the relativistic particle mass.

From a numerical integration of (IV.2), we obtain for negative particles a
result corresponding approximately to a square-well potential with depth
V(0) given by Eq. (IV.1), and width ~ 3Ca,

ar\1/2
vy Q(%> (%“")[Nd;]m, (IV.3)

I, »

where m, is the electron rest mass and a, the Bohr radius, a, = 0.53 4. For
positive particles, the potential minimum is wider by a factor of ~ dp/(3Ca),
and Eq. (IV.2) leads to

M 1/2
N Z;/E’(E‘) [Nd3]'2, (IV.4)
]

The ratio of these two numbers is approximately
Vi, e Z3°B, (IV.5)

Even for strong planes, the estimate (IV.3) leads to a number of bound states
of the order of unity, », ~ 1 for electrons of not too high energy. In contrast,
for positrons, the potential minimum between planes may often contain quite
a few bound states. We shall return to a more detailed comparison of negative
and positive particles below,
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Strings. For negative particles, the number of bound states in a siring
potential is given by

_ L . _
v, ™ 4n2hzjd2r fdzpl (IV.6)
where E, = p?/(2M) + U(F), and we have assumed that the continuum
potential vanishes far from strings. Performing the integration over transverse
momentum, we obtain

E <0,

M

v e ﬁfdzfl U@)|. (IV.7)

Again we may introduce the standard potential, which for strings leads to

Z el Ca\?
JORSEES 10g<(7> + 1), (IV.8)

where d denotes the spacing of the atoms in the string. This corresponds to
a rotationally symmetric potential inside the area, mrl = (Nd)~1, belonging
to one string. Subtracting the value U(ry) from Eq. (IV.8), we obtain from
LEq. (IV.7)

c oo M2 g T2 (1V.9)
vV, o — ogy — 1 . .
*=on g Y ¥\ Ca

Since normally the log term in (IV.9) is of order 3-4, we obtain!

dag\ [M
v (—a") : <—)Z;/3. (IV.10)
d Iy

By partial integration, the formula (IV.7) may also be expressed in terms of
the average square radius of the atoms,

(R = Zglfw4nR4Q(R)dR, (IV.11)
0

where p(R) is the electron density belonging to one atom. The result is

_ M Z,e® .
’Vs = E{é . *d— . g(l{ > (IV.12)
For the somewhat more realistic Lenz-Jensen potential, the average-square
radius becomes® (R%> ~ 15q%, which againleads to (IV.10). For 1-MeV electrons,
this formula gives a number of bound states ¥ ~ 4-10 for a major axis.




Nr. 10 45

For positive particles, the accessible area per string is ~ zrd. If the
3 r . . 1 2 - A
effective transverse-energy barrier is ~ pvyy, corresponding to a critical

anglel?,
47 ,e2\'/?
wl = 3 (IV.lS)

pod

we obtain for the number of bound states (or rather states per string with
energy below the barrier, ef. sec. IIL.1).

v o 1—(£> (54—) Zy(Nd*)- 1. (IV.14)

T\ aef \my

This number is normally quite large, ¥/ ~ 102 for 1-MeV positrons.

Comparison of different cases. The relationship between the four es-
timates, Eqs. (IV.3), (IV.4), (IV.10), and (IV.14) is illustrated in Table IV.1
for 1-MeV electrons and positrons along a {110} plane and a {110) axis,
respectively, in silicon and gold.

Table IV.1.
Number of bound states for 1-Mev e*, e~ in Si and Au.
Silicon Gold
et e et e~
110> 34 4 286 9
{110} 2.5 1.1 9 1.5

These examples clearly indicate the importance of distinguishing bet-
ween positive and negalive particles as well as between axial and planar
cases. The difference in magnitude of the number of bound states for axes
and planes is, to a large extent, due to the fact that the axial potential is two-
dimensional, while the planar potential is one-dimensional. It might therefore
be argued that the number of bound states in the planar potential should be
compared to the square root of the corresponding number for strings. This,
however, would not change the qualitative conclusion drawn from Table
IV.1, that classical concepts may be applied more readily to axial than to
planar motion. This difference is strongest for high values of Z, where also
the difference between electrons and positrons is most pronounced.

Mat. Fys.Medd.Dan.Vid.Selsk. 39, no. 10. 4
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IV.2. Comparison of classical and quantal calculations

Although the approach towards a classical description is basically
governed by the magnitude of quantum numbers, as derived semiclassically
above, it must be borne in mind that the validity of classical estimates may
depend strongly on the specific phenomenon under observation. In this sec-
tion, we shall compare directly quantal and classical caleculations of the di-
rectional dependence of close-encounter vields3%. The quantal calculations
are based on the many-beam description, reviewed in Ch. II, which was
seen to describe the experimental results fairly well, at least for planes.
From such calculations, also the transverse energy levels are determined,
and first we shall compare the number of bound states with the semiclassical
estimates.

Bound states. The transverse energy levels for electrons and positrons
moving along a {110} plane in silicon are shown in Fig. IV.2, as functions
of projectile energy. Zero on the ordinate scale corresponds to a transverse
energy equal to the potential maximum (cf. Fig. IV.1). The levels are shown
for incidence parallel to the plane as well as for an indidence angle equal to
the Bragg angle. For negative fransverse energy, corresponding to a bound
state, the levels become independent of incidence angle because the compo-
nents of the wave function belonging to different planar channels no longer
communicate. Owing to the difference in shape of the potentials (cf. Fig.
IV.1), this happens more rapidly with decreasing transverse energy for
electrons than for positrons.

In Fig. IV.3, the number of bound states is shown compared to the es-
timates, Eqs. (IV.3) and (IV.4), derived in the previous section. Also shown
in the figure are results obtained for electrons moving along a <{111) axis,
compared to the estimate in Eq. (IV.10). For this axis, the many-beam
caleulations were in Sec. I1.7 shown to converge reasonably well with number
of beams for an electron energy of 0.7 MeV, but for higher energies, the
convergence is more doubtful, and the number of bound states may be
slightly underestimated. In any case, the agreement is quite good for the
axial as well as for the planar cases, considering the approximate nature of
the semiclassical estimates. In particular, the predicted differences in both
absolute magnitude and energy dependence are clearly confirmed.

Close-encounter yield. For the comparison between calculations of the
yield of a close-encounter process such as large-angle scattering, we con-
centrate on the planar case. First, the many-beam calculation is technically
simpler and more reliable in this case, owing to the rapid convergence with
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+10 —r . T T - Fig. IV.2: Transverse energy levels for
e~ and et incident along a {110} plane

0 ; . \\_% in Si, as a function of projectile energy.
— \ The results are obtained from 20-
o= 3  beam calculations with a thermally
€ averaged (Eq. (IIL17)) Molié -
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corresponds to ‘the maximum of the

Moliére planar potentials (similar to
the potential shown in Fig. IV.1).
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number of beams. Second, the classical limit 1s less well-defined in the axial
case, at least for electrons. The classical result derived in the Appendix is
based on statistical equilibrium on an energy shell in transverse phase space.
In the planar case, this assumption simply leads to results corresponding to
an average over depth of penetration, and it is equivalent to the assumption
in the quantal calculation of random relative phases of eigenfunctions. For
axial channeling, the assumption is based on more subtle arguments, as dis-
cussed in the Appendix.

Results for planar channeling of electrons and positrons along a {110}
plane in silicon are shown in Figs. IV.4 and IV.5. A rapid convergence to-
wards the classical result is indicated, but in contrast to the expectation
based on the number of bound states shown in Fig. IV.3, the classical results
seem to be somewhat more accurate for electrons than for positrons. In
particular is the interference structure at Bragg angles considerably stronger
for positrons. This may, however, not be so surprising when we consider the

7 T T T T

7 Fig. IV.3: Comparison of the number

WANY BEAM of bound states derived from Fig. IV.2

= SEM! CLASSICAL with the semiclassical estimates (Egs.

(IV.3) and (IV.4). Also shown are re-

_______ sults for a (111) axis derived from a

,,,,,, 60-beam calculation and compared to
- : Eq. (IV.10).
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Fig. 1IV.4: Comparison of classical and quantal calculations of the peak in large-angle-scattering
yield for electrons incident on Si along a {110} plane. The classical yield is derived from formulas
analogous to those given in Ref. 29 for positive particles, with a thermally averaged Molidre
planar potential*, including the contributions from the neighbouring plane (cf. Fig. IV.1). The
quantal resull is obtained from a 20-beam calculation (Eq. (I1.23)), also with the Moli¢re potential
and including effects of thermal vibrations (Eqs. (I1.15) and (IL17)). The classical result scales
with the planar characteristic angle wp =y, (Ca/d)' %, where d is defined through Nd2dp = 1
(Ref. 29). For each projectile energy, the magnitude of the Bragg angle Op is indicated (classical
calculations: dashed curves; quantal calculations: solid curves).

fact that the close-encounter yield is proportional to the intensity of the trans-
verse wave function at the atomic positions. For negative projectiles, lattice
atoms are situated in a potential minimum, while for positive particles they
arc at potential maximum. In the latter case, the results therefore depend
on the intensity of wave functions close to or inside classically forbidden re-
gions, where the strongest deviations from classical behaviour occur. (Note
also that for silicon, the difference in number of bound states between e+
and e~ is small (cf. Table IV.I).

In spite of the difficulties for axes mentioned above, it may be of interest
to compare the quantal and classical calculations also for this case. A set of
calculations for electrons incident along a {111} axis is shown in Fig. IV.6.
At the higher energies, the agreement is, in fact, rather good. It should be
noted that neither of the calculations need correspond very closely to reality.
The neglect of inelastic scattering is for axial channeling of negative par-
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Fig. IV.5: Comparison of quantal (solid curves) and classical (dashed curves) results for positronss
incident along {110} plane in Si. For details of the calculations, see Fig. IV.4.
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Fig. IV.6: Axial peaks in large-angle-scattering yield for elctrons incident along a {111} direction
in Si. Quantal resulis obtained from 60-beam calculations with Moliére potential (formula anal-
ogous to Eq. (I1.23)) (solid curves). Classical results derived in the Appendix (Eq. (A21)), with

the standard potential (Eq. (IV.8)) (dashed curves).
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ticles hardly justified even at rather shallow depths since the collisional
broadening of closely bound states will be very large. But a statistical treat-
ment is obviously much simplified if classical concepts may be applied, and
this should be justified when the volume in phase-space available to bound
particles is large enough to correspond to many quantum states.

Finally, for axial channeling of positive particles, the number of “*bound”
states is very large (cf. Eq. (IV.14) and Table IV.1), and therefore the number
of beams needed in a many-beam calculation becomes prohibitively large.
However, a comparison of experimental results for positrons and protons in-
dicates®: ? that for this case, a classical treatment should be justified.
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Appendix: Classical Estimate for Axial Electron Channeling

In this appendix we shall derive the expression for the axial peak in
vield for negative particles, which was used in Chapter IV for comparison
with results from ‘““many-beam’ calculations. The calculation is based on a
classical description of the particle motion. The transverse energy of the
particles is assumed to be conserved, and for fixed transverse energy, their
trajectories are assumed to fill out the transverse four-dimensional phase-
space uniformly. We shall not discuss the validity of these assumptions in
detail, but to put the results in perspective it may be useful to review briefly
the situation for channeling of positive particles, which has been studied
much more thoroughly.

Conservation of transverse energy for channeled particles is the basis of
the channeling phenomenon and was discussed in detail by LiNpDHARD®.
At large depths of penetration, the distribution in transverse energy is mod-
ified due to multiple scattering by electrons and by the small lattice irregular-
ities introduced by the thermal motion of lattice atoms. The effect of these
“dechanneling” processes may be calculated with reasonable accuracy from
a diffusion equations. 4% 13,

Statistical equilibrium, on the other hand, will be established only
after a finite depth of penetration. The trend towards equilibrium was
studied by Linpaarp®. It was shown that when strings are assumed to be
randomly distributed in the transverse plane, scattering of the channeled
particles by these strings leads to a rapid approach towards equilibrium in
transverse-momentum space, the characteristic length being much shorter
than that corresponding to dechanneling. At smaller depths; results based on
equilibrivin may often be interpreted as corresponding to-simple averages
over azimuthal angle of incidence with respect to a string, and averages over
oscillations with depth. As emphasized mainly by BARRETT* %5, such an
interpretation may not hold in special cases, for example, for the yield of
close-encounter reactions for incidence parallel to a string, which at small
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depths is higher than estimated from equilibrium by an average factor of 2
to 3. This is a consequence of the regular lattice arrangement of strings,
which introduces additional approximately conserved quantities, namely
transverse energy with respect to planes (or strings of strings®). This will
hinder the approach towards equilibrium. A treatment in terms of equi-
librium in restricted regions of phase space seems, however, straightforward
but has not yet been carried out in detail?®.

Thus for positive particles, the approximations of conservation of trans-
verse energy and statistical equilibrium are consistent and provide a good
starting point for a treatment of channeling phenomena. Deviations from these
assumptions may then be treated as corrections to the basic picture. For
negative particles, however, the situation is less clear. First, multiple scat-
tering is stronger than for positive particles since the atomic scattering centers
are situated at a minimum of the transverse potential. Second, the peak in
yield is largely due to particles bound in an axial-potential minimum. Such
particles interact with only one string, and since the potential is nearly
symmetric around the string, angular momentum with respect to this string
will be approximately conserved (Rosette motion?”). Multiple scattering may,
however, be strong enough to provide a trend towards equilibrium. In fact,
the scattering is strong enough to make the description of the most strongly
bound states somewhat uncertain. In the following we disregard these
problems and base our treatment upon conservation of transverse energy and
statistical equilibrium. The calculations can at least serve as an illustration
of the classical treatment, which was discussed in Sec. 1I1.2 and may, as for
positive particles, provide a useful standard for comparison, also of experi-
mental results® 1% (see also Fig. 1.6).

Emission

The derivation is analogous to that in Ref. 5 of the dip in yield for positive
particles in the continuum approximation. We use the same notation and
also consider emission of particles from a lattice atom, i.e., blocking rather
than channeling. The two cases are related by reversibility® or reciprocity”.
If electrons with momentum p and velocity v are emitted isotropically from
an atom at a distance r from a string, their distribution in transverse energy,
E , is given by

1 for E, > U(r)
a(E,.0) - [ d(By)o(E, - UG) - By -

0 for E, < U(r)’ (A1)
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Here, E = 1/2 pv = 1/2 Mv?, where M is the relativistic mass (cf. Ch. II).
The angle with the string is denoted ¢ so that Eg? is the transverse kinetic
energy. The transverse potential energy is determined by the average string
potential U(r). In the following calculations, we once more apply LINDHARD'S
standard potential,

U(r) = — éEw%log((CTa)z-l— 1), (A2)

where y, is the characteristic angle for axial channeling (Eq. (IV.13)), a
the screening distance, and C ~ }/3.

The probability of different displacements r is determined by thermal
vibrations and denoted dP(r). For the distribution in transverse energy
averaged over displacements, we obtain

w8 - [ar@) [aEr s, - vo- B - [are)

By inserting into this formula the standard potential and a Gaussian dis-
placement distribution, LinpHARD obtained a simple analytical estimate of
the dip in yield for positive particles.

(A3)

Ur)<E,

Surface transmission
When the emitted particles pass the crystal surface, the transverse
potential energy is lost and the angle v with the string after transmission is

determined by Ey? = E, — U(r). For the distribution in angle outside the
crystal, we may write

P(Ey?) - f dE,T(E, ,Ey*)n(E,), (A

where T(E , Ey*)d(Ey?) is the probability for a particle with transverse energy
E, in the crystal to leave the surface at an angle y to the string. This pro-
bability is determined by the spatial probability density of particles with
transverse energy E| . In statistical equilibrium, the density in two dimensions
is uniform in the allowed area, and we obtain
B, By [ 26D : ; 5
@,y - | iy OBV = B+ UG, (A5)
0 1

Here we have, as usual, approximated the area per string in the transverse
plane by a circular disc of radius ry, related to the spacing d of atoms in
the string through =rj = (Nd)~1, where N is the density of atoms in the
crystal. The radius 7 of the accessible area is given by
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U(#) = E, for E, < U(r
(f) = E, L < Ulro) (46)
f=ry, for E >U(ry
By combining (A4) and (A5), we obtain
S d(r?) ,
P(Ey?) = ——— g (Eyp*+ U . A7
v = [ e T Y U6 an)

While for positive particles the difference between the distributions P(Ey?)
and w(E|) implied by (A7) is important for Ey? ~ 0 only®®, the surface
transmission is of major importance for negative particles. The two distri-
butions are completely different. The function =(E,) defined by (A3) is
below unity for all values of E, and has a tail strelching to E, - — «,
while P is only defined for Ey? > 0 and has a strong increase above unity at
Ey? =~ 0. This peak contains the particles which inside the crystal have
negative transverse energy, i.e., which are bound in the string potential.
Inserling into (A7) the emission distribution (A3), we obtain

peyy - [ 1O apan -
ol (Ey? + U(r)) Uy < Ep + U (1) (A8)
) frn d('rz) J fdp(l‘,)
0 rg FA(Ey? + U(r)) 0 ’

From this expression it is seen that P = 1. Thus the peak in yield at small
angles p is not compensated for by a descrease below unity at larger angles.
This lack of compensation is a characteristic feature of the continuum string
approximation®. In the refined treatment by halfway planes, negative
‘shoulders’ stretching out to angles ~ 2a/d compensate for the excess yield at
small angles.

Peak height
From formula (A8), we may calculate the peak height P(0),

oN| O ;dPo-')- .. 49

By inserting a Gaussian distribution,

e A (72
dP(ry = &8 »(I—), e < ro, (A10)

92
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we obtain by partial integration

i 2\ d(r? 2
P(0) @f e Ie log [ -2 @ _ tog (7, ), (A11)
0 r?) o e

where y is Euler’s constant, y = 1.78. This estimate may be compared to
the corresponding estimate in Ref. 11 for the standard potential with a
cut-off,

Ca

—Ey;%logl, r< Ca
Ur) = r , (A12)

0 , r>Ca

leading to
C 2
P(0) > 1 +log(( az V) for Ca ) . (A13)
0

While (A11) leads to P(0) ~ 5-6, formula (A13) predicts a value of P(0) ~
2-3. Since the potential decreases very rapidly and is essentially flat at large
distances, the implicit assumption in the derivation of (A11) of an attractive
potential at all distances r may not be valid at distances r ~ ry. The cut-off
at r = Ca in the potential (A12), however, is probably at too small a distance
Thus the two values may reasonably be regarded as upper and lower limits,
respectively.

Angular dependence
With the potential (A12) it is easily seen that the excess yield in (A13)

is multiplied by a factor exp(-2Ey?/Eyp]) for particles incident at an angle
o to the string,

I Ca)?
P(Ep?) 0o 1 + ¢ 2BYEY) 1og (@) for Ca )y o (A1d)
e

as given in Ref. 11.

In order to obtain a reasonably simple analytical estimate with the

standard potential (A2), we replace the Gaussian displacement distribution
(A10) by

an . _
dP(r') = g2 ° Qo ' (A15)

0 , >0

Inserting this distribution into (A9), we obtain for the peak height
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2
r
P(0) = 1 +log 5 (A16)
‘ Qo
In order to reproduce the result (All), we choose
of = 0% = 1.53¢2 (A17)
Y

With the distribution (A15), the integration in (AB) is straightforward,

O S (€ W . (€0 ")
1(E1/J)~f0 2 +fr:f2(Ew2+U(r))+ e (A18)

where r; and ry are determined by

U(r) = Ulgy) ~ Ey?

A19
Ulrg) = U(ry) - Ey2 } ( )

The two first terms correspond to bound particles with a maximum distance
to the string not exceeding g, and ry, respectively, while the third term
corresponds to unbound particles. All integrations are elementary, and we
obtain,

P(Ey?) = 1 4 ¢ ®¥'M¥ilog(r2/r?) (A20)
or inserting the value (A19) for r; and r,,
[(Ca)* + gg] ™™ — of
[(Ca)® + rg] ¥ Wi — 13 |

P(Ey®) = 1+ W 108‘{(1'3/93) (A21)
This formula is rather similar to (A14) for not too small angles. As might
be expected, however, the inclusion of the outer shallow part of the potential
leads to a steep increase in yield at small angles. In fact, the peak height is
larger by a factor of ~ 2, and the full width at half maximum is therefore sig-
nificantly smaller than the value Ay ~ |/2Iog2 y, derived from Eq. (A14).
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