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Synopsis
It is attempted to give a comprehensive theoretical account of the dynamics of statistica l

phenomena in physics . On the basis of merely a few simple constraints one arrives at equation s
of motion for a field, which field may be of type of a probability density . The basic equations of
motion are linear integro-differential equations . In § 3 we discuss the formal properties of solu -
tions of the equations of motion . Next, in § 4 we derive the family of degradation functions -
entropy being one example-which account for common properties of systems and for the ap-
proach towards equilibrium. In § 5 we treat the question of differential equations of motion.
We find a remarkable limitation of differential equations . Finally, § 6 contains a number o f
exact solutions of simple integral equations with divergent kernels .
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§ 1 . Introduction

In the following we shall study the general theoretical framework fo r

dynamical phenomena in statistical physics . We aim to discuss, on an abstract

basis, the behaviour in time of physical systems. If a system is describe d

by a time-dependent field within a generalized space, one can single ou t

a few properties which must be common to many, or to all, phenomena i n
statistical physics . These properties can be reformulated as a framework for
equations of motion of the field, in terms of integral equations or integro-
differential equations. Within this framework we derive a number of con -

sequences as to the possible behaviour of the field, which results are obtaine d
even before definite equations of motion are stipulated .

During our studies, the topic gradually separated into four distinct ,

though not unconnected, parts . One part is the question of linear equations
of motion, and their formal properties . Another concerns actual analyti c
solutions of simple cases . A third question is that of common properties o f

systems, accounted for by a family of degradation functions, of which en-

tropy is merely one example . The fourth part concerns differential equa-
tions, both as approximations and on their own . They turn out to hav e
a surprising limitation. As it will appear, our account of each subject i s
incomplete, but we hope that it is carried far enough to elucidate the mai n
questions in each instance .

As indicated, we enter on questions familiar from widely different field s
of research . It may well be that many of the results at which we arriv e

are discussed with greater precision and in more detail in texts dealing wit h
mathematical probability theory, with statistical mechanics, or with wave
mechanics . Our aim is merely to build up a simple, consistent framework .
We try: in particular to avoid concepts and structures, however admirable,
that are unnecessary for our purpose . The reader is therefore asked to tak e

much the same detached attitude as Gibbs in his discussion of statistica l
1*
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mechanics, and to consider primarily whether there is agreement between
the elementary premises and the conclusions .

Though abstract, these studies were in part prompted by a practica l

necessity. It arose in our previous investigations of a minor subgroup o f

phenomena, i .e . the integral equations occurring in atomic collisions wher e
a penetrating particle dissipates energy and exchanges momentum in a
substancel2, 13) . Characteristic cases are here, firstly, the multiple scatterin g

in angle of the incoming particle by a randomly distributed substance 3 , 18 ) ;

secondly, the distribution in energy of an incoming particle, as a functio n
of time, this being a one-way process with only decrease of energy ; thirdly ,

the quite complicated phenomena of changes of transverse energy in direc-

tional effects for fast charged particles moving through crystals 14 ) . We have
worked out a number of analytic solutions of the first two cases, with diver -

gent total cross sections (cf . § 6) . For directional effects there is a particula r

need of establishing the rules to be followed when introducing approxima-

tion procedures - like differential equations or perturbation theory - in at -
tempts to solve the equations of motion .

Another group of phenomena may he exemplified by the dynamics o f

a degenerate free electron gas where, by means of the dielectric description ,
one can study linear dynamic properties in considerable detail and follo w

the trend towards equilibrium .

It can be useful for the reader to take cases of the above kind as pos-
sible illustrations in the following . We might mention that although th e
problem of the behaviour in time and in phase space of an ensemble is

within the scope of the present discussion, the reader should hardly, in th e

beginning at least, consider the phase space ensemble as a representativ e
example (cf. § 5) .

§ 2. Basic Properties of System s

This chapter should serve two purposes . As a secondary purpose w e

introduce the terminology and concepts to be used in the following . Pri-
marily, however, we want to specify basic physical properties which char-

acterize various types of systems . The properties are introduced as si x

constraints, of which four are common to those systems that are of main in -

terest in this paper . Other constraints specify systems we wish to study
first, because of their simple basic properties or because they are of interes t

in applications. The results derived in the following chapters rely on a

varying number of constraints, to be specified in each case .
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The Basic Constraint s

We suppose that phenomena in statistical physics, e . g . of the kind men-

tioned above, can be described by a function, a(x,t), depending on a spa -

tial variable x, within a generalized space, and on a time variable, t . The state

of a system is completely specified at a time t if a(x,t) is given for all x .
The physical quantities that can be calculated within such systems will b e

discussed later .

The space variable x is usually considered as a continuum variable in
a space of one or several dimensions . 'When necessary, we write the spac e

variable explicitly as a vector, x. It may also be a discrete variable k = 1, 2 ,

3, . . . N, with N finite or infinite . The discussion is usually formulated for

continuum variables and is meant to include the discrete case .
We now introduce a number of constraints, specifying properties of th e

systems in question . The first constraint, supposed to be valid for all systems ,

is that the state of a system at a given time uniquely determines its state a t

any later time, o r

a(x,t) given for all x -~ a (x ' , t ' ) for all x ' and all t ' > t. (2 .1 )

We have introduced the variable t as a familiar time concept . The variable

t may, however, also represent other quantities with similar one-way pro-
perties, e.g. in atomic collisions the path length moved by a particle, o r
even the energy of a particle during slowing-down .

The second constraint corresponds to conservation of probability i n

simple phenomena . We demand that

J å
(x, t) dx = 0,

	

(2 .2 )

a
where å(x,t) = ôt a(x, t) . According to (2 .2) we may usually suppose tha t

fa (x, t) dx = const. and can be normalized to unity, which will be a standard
convention . Still, it occasionally becomes convenient to treat functions which
can not be normalized, even though (2 .2) applies .

The third constraint indicates that the field a(x,t) is not unlike a prob-
ability density . We assume that a(x,t) is real and non-negative ,

a(x,t) real,

	

a(x,t) > 0 .

	

(2 .3 )

This constraint turns out to have remarkable consequences .
The fourth constraint imposes superposition, thereby confining the phe-

nomena to a linear behaviour . We demand that if ai(x,t) and a2(x,t) are
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solutions of the equations of motion, then also .iai(x,t) +)1 2 a2(x,t) will be
a solution, or

a i(x,t) and a2(x,t) -> 2ia i(x,t) + Aza2(x,t) .

	

(2 .4)

To be more precise, and in view of the other constraints, the content of eq.

(2 .4) is : If al and a2 are solutions for t

	

to, and if Aiai(x, to) + A2a2(x, to )
is an allowed function, then Aiai(x,t) + 22a2(x,t), t

	

to, is a solution .

The constraint (2 .4) might seem to be a serious limitation of the scop e

of the treatment . It does, however, correspond to the basic cases one must

necessarily treat at first . Moreover, it should be remembered that in the

quite general cases of quantum theory or of dynamics of ensembles one i s

in fact concerned with linear equations of motion .

We next come to a useful limitation in many initial studies . In mechanics ,
for instance, it is often profitable to study first the case of a time-independent

Hamiltonian . One may then later, at least to some extent, study a time -

dependent Hamiltonian, e .g . in order to initiate and terminate the phenom-

enon in question . The fifth constraint limits the treatment to time-independ-
ent dynamics, or invariance of solutions towards displacement in time ,

a(x,t) -÷ a(x,t + r), any fixed real T .

	

(2 .5 )

For practical purposes one further simplification is often valid . The
sixth constraint concerns invariance of solutions towards displacement i n

space, or

a (x, t) -> a (x + , t), for any real $ .

	

(2 .6)

The displacement may be within a multi-dimensional space æ.

Equations of Motion

We construct next the equations of motion, as they emerge by successiv e

introduction of the constraints . We always assume validity of the first con-
straint, (2.1). Although it is possible to consider non-linear cases, we shal l

for the present disregard them, and apply the fourth constraint, (2 .4). From

the first and fourth constraints we therefore conclude that if the field a(x' , t' )
is known at time t' the n

a (x, t)

	

dx ' T (x, t ; x ' , t ' )a (x ' , t' ),

	

t > t',

	

(2 .7 )

or

ak (t) =

	

Tk;(t,t')ai(t'), Ti(t) = T(t,t')a(t') .

The quantity T will be called the propagator, having the property
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T(x,t ; x' , t) = å(x - x ') .

	

(2 .8 )

This way of stating the constraint is, however, somewhat indefinite at first ,

although it will be useful later . When we ask for the equations of motion ,

it is more profitable to summarize the first and fourth constraints as an ex -

pression for the time derivative of a(x,t), which must receive a contribution

from the point y, of type of P(x,y,t)a(y,t), so that

à (x, t) = f dyf(x, y, t) a (y, t),

	

(2 .9)

where the unspecified integral, as always, extends over the total system an d

may be multi-dimensional. Next, we apply the second constraint, (2 .2), de-

manding conservation . It implies that, in (2 .9), we must have

f dxf(x, y, t) = 0, for all y,

	

(2 .10)

for if (2 .10) did not hold, one could choose such functions a(y,t) in (2.9) ,

e .g. 8-functions, as would violate eq . (2.2) .

We may make a preliminary reformulation of (2 .10) . Outside the diag-

onal, i . e . for x $ y, we alternatively denote P(x,y,t) as G(x,y,t) . The equa-

tion (2 .10) is then formally fulfilled for any G(x,y,t) if P in (2 .9) is given by

P(x, y, t) = G(x, y, t) - å(x - y) f dx'G(x',x, t) .

	

(2 .11)

The third constraint, (2 .3), demands that a(x,t) remains real and non -

negative . Suppose that, in some point xo, a(.xo,t) = 0, whereas in other

points a(x,t) is arbitrary but non-negative . In the equation of motion, (2 .9) ,

we must then demand à(xo,t) > 0 . But this requires that P(x,y,t) is non-

negative for x

	

y, or

G(x, y, t) real,

	

G(x, y, t) ? 0 .

	

(2 .12)

The total result of the four constraints can now be written as a basic inte -

gral equation, superseding the preliminary equations (2 .11) and (2 .12)

(x, t) =
J

dy{G(x,y,t)a(y,t) - G(y, x, t) a (x, t», G(x, y, t)

	

0 .

	

(2 .13)

This equation is the starting-point of most of our further studies .

As to the behaviour of G(x,y), we generally consider it as a con-

tinuous function, but it may diverge for y - x. In fact, we allow tha t

f I x -yI > E dyG (y, .x) -~

	

for s - O. The permitted degree of divergence de-
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pends on the symmetry of the system, as mentioned in § 6 . The limit o f

G(x,y), or part of it, becoming infinitely narrow is discussed in connectio n

with differential equation approximations in § 5 .

In the majority of the cases to be studied here, we add the fifth con-
straint, (2 .5), so that solutions are invariant towards time displacements .
It follows from eq . (2A3) that then G(x,y,t + z) = G(x,y,t), for all x, an d

eq. (2.13) reduces to

(x, t) = I dy {G(x,y)a(y,t) G(y,x)a(x,t)}, G(x,g) ? O . (2 .14)

Finally, we occasionally invoke the special constraint (2 .6), concerning
displacement in space, according to which, apparently, in e .g. (2.14)

G(x, y) = G(x - y) .

	

(2 .15)

Classification of Systems

Consider time-independent systems, so that eq . (2 .14) is valid . We have

shown that G(x,y) = 0, but in regions of considerable size one can the n

have that G(x,y) = 0 . This may result in complete lack of connection, bot h

directly and indirectly, between some regions of x-space . Such systems mus t
be regarded as divisible into subsystems . We therefore define an elementary

unit, the indivisible system . To this end, consider two points, xi and x2 ,

within a system. Let first a(x,to) = å(x - xi), and if then the integral equa-
tion implies that a(x2, t) + 0 at some later time t > to, then x i is said. to
communicate with x2 . This communication is called direct if it occurs in

one step, i . e . if G (x 2 , xi) + O .

A system is now called indivisible if, for any set of points (xi , x 2 ) within
it, both xi communicates with x2, and x2 with xi . The system is indivisible ,

with direct communication, if G(x l , x2) $ 0 for all xi , x 2 within it. In the

following, we are mainly concerned with indivisible systems . Some charac-
teristic examples are discussed in the beginning of § 3 .

An opposite extreme to an indivisible system is, as indicated above, a

system which can be divided into completely unconnected subsystems . This
will be called a separable system .

In between these two extremes there is a considerable range of system s

with partial communication of varying type . Of these systems we shall only

be interested in one-way systems . They arc essentially one-dimensional
systems, and may for instance be characterized by the condition that xi

communicates with x2 if and only if xi < x2
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Projection s

The state of the system at the time t is given by the distribution in space ,
a(x,t), the integral of which is conserved in time . One may then calculat e
projections (or averages) of various functions . There are two types of pro-
jections .

Firstly, for a function f(x), depending on the spatial variable x, the
projection is

< f (x)> = J f(x) a (x, t) dx,

	

(2 .16)

and will in general be a function of time . Note that for discrete variables ,
f(x) ->- fk, a(x,t) -~ ak(t), this formula becomes the scalar product of tw o
vectors, < f> _ fk • ak(t) = fä (t) . It is thus the projection of a fixed vector

k
f on a time-dependent vector (t) . Obviously, the function f may also b e
allowed to depend explicitly on time, f = f(x,t) .

Secondly, instead of (2 .16), one may consider projections of another
kind of functions, i . e . functions depending on a ,

<q(a)i = f q(a(x, t)) a (x, t)dx,

	

(2 .17)

or 2q (ak(t)) a k(t) for discrete variables. The functions q (a) may be de-
k

noted as spectral functions . It is possible, but less common, to have pro-
jections of functions depending on both x and a .

Transformation of Spatial Variable s

Suppose that the one-dimensional spatial variable x is replaced by
z = z(x), and that z(x) changes monotonically with x, the latter in order
to have simple uniqueness of transformation . Since then

dx
a (x, t) dx = a (x, t)

dz
dz,

the distribution al(z,t) on the z-axis i s

a l(z, t) = a(x, t)
dx

dz
(2 .18)

where 1dx/dzl becomes the Jacobian in the general multi-dimensional case .
In all transformations the quantity

dP = a(x,t)dx = al(z, t)dz

	

(2.19)

remains invariant, as does its integral over space .
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Conjugate Field

When the integral equation of motion (2 .9) or (2 .13) is given for th e

field a(x,t), there exists immediately one other equation of motion, vali d
for a different field . In fact, introduce a field b(x,t), obeying the equation *

b(x,t) = - fdyb(y, t)P(y,x, t) = - f dy{b(y, t) - b(x, t)}G(y,x, t), (2 .20 )

or in matrix form = - LP. This equation of motion, which we call con-
jugate to (2.9) and (2 .13), is governed by the transposed P-matrix. We
describe the field b(x,t) as conjugate to a(x,t) . Note that we introduce a
minus sign in the time derivative in (2 .20) . This is so far a convention . Of

the conjugate field we know immediately that it has an equilibrium solutio n

b°(x) = const .,

	

b° = C 1,

	

(2 .21)

as is obvious from (2 .20) . We can evidently also conclude that, if b(x,t) i s

non-negative, the function b (x ' , t ' ) is non-negative at all previous time s
t' < t . In this backward sense, the conjugate field therefore fulfills the

third constraint, (2 .3) . We do not, however, know beforehand whether the

conjugate field obeys a conservation law .

It turns out that, in the discussion of solutions of the equation of mo-
tion for a(x,t), the conjugate field is often a useful auxiliary quantity .

The Curren t

For a quantity with conservation in space one can introduce a curren t

when the equation of motion is known . In one dimension this is straight-

forward . From knowledge of the transition rate G(x' , y) between any two

points one finds immediately that the total flow per unit time in the positive
direction past a point x will b e

j(x,t) = - I ~dx ' J dy{G(x',y)a(y,t) - G(y,x')a(x',t) },

	

(2 .22)
J

	

x

where the integration over y alternatively might be allowed to be between

the system boundaries . The current then fulfills the equation

å(x, t) = - ~x j(x, t) .

	

(2 .23)

* An equation of motion of type of (2 .20) is often called the backward equation, (2 .13 )
being the forward equation .

r
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Boundary Conditions and Sources

In the following we always discuss the behaviour of systems which ar e

isolated. There is then no current away from the system or into it. For

discrete systems with finite N this condition is obviously fulfilled by th e

equations of motion (2 .13) . For a continuum system defined in a finit e

closed region, i . e . including its boundaries, the demand of an isolated system
is also straightforward. When the system is infinite, however, the boundar y

conditions are less simple. For practical reasons, we usually consider a

finite but arbitrarily large interval, L . The system is then supposed eithe r

to have zero current at the boundaries, or to be periodic . The two condi-

tions are quite different, the former imposing a rest system and the latte r
allowing transformations to moving coordinate systems . These questions are
elucidated by an example in § 6 .

Note that when we introduce the conjugate field, as well as eigenfunc-

tions of the fields, the prescribed boundary conditions must be obeyed in
each instance .

An alternative way of analysing the dynamics of systems is to introduc e
sources of the field, depending arbitrarily on space and time. One then
adds a term S(x,t) on the right-hand side of e .g. (2 .14), and finds the forced
motion. This procedure is familiar from, for instance, the dielectric descrip-
tion of an electron gas . The method can be advantageous, but we shall no t
employ it .

§ 3. Properties of Solutions

In this chapter we derive a number of general properties of the solution s
of the integral equation . 'We first obtain the basic result that, for indivisibl e
systems, there is exactly one equilibrium solution, and it is everywhere pos-
itive. Next, the equations of motion arc transformed to normal coordinates ,

and the field is found to tend towards the equilibrium . Third, we treat sum-
marily the general question of eigenvalues and eigenfunctions of the fiel d
and of the conjugate field. The formalism embraces features known from
wave mechanics . Fourth, the field propagators are discussed, and are use d
to study reversibility in space .

Equilibrium Solutio n

By equilibrium we mean that ci(x,t) in (2 .14) is zero everywhere, with
the condition that the system is isolated in the sense mentioned above . An
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equilibrium solution, a°(x), therefore satisfies, for any x, and with zero

current through all boundaries ,

f dyr(x,y)a°(y)

	

f dy{G(x,y)a°(y)-G(y,x)a°(x)} = 0,

	

(3 .1 )

or T • d° = 0, in matrix notation . As indicated, we suppose that G is real
and non-negative . The integration in (3 .1) is the definite integral over th e

total system.
The original time-dependent function a(x,t) was assumed to remai n

non-negative . If it tends towards an equilibrium function*, the latter mus t

also be a non-negative function . In the present connection, however, we as k

for all possible solutions a°(x) of (3.1) . Equilibrium solutions a°(x) are

real functions of x, because G is real .

We must verify at first that there is at least one solution of (3 .1) . We
refrain from proving this for the widest possible groups of systems . The
proof would, at this stage, be more cumbersome than rewarding . We need
only demonstrate, by examples, that systems of interest have the require d

property. The general reason for this is seen easily for the group of finite

discrete systems, i . e . for a finite discrete matrix l' . In fact, conservation,

(2.10), implies that 1T = 0, so that the determinant IA = 0, and then eq .
(3 .1) must have at least one solution, irrespective of the symmetry propertie s

of G .

The systems of the second major group are the following ones, with
explicit solutions of (3 .1) . Suppose that the kernel in (3 .1) is symmetric ,
G(x,y) = G(y,x), or may be made symmetric by transformation of the spac e

variables . The symmetric kernel G(x,y) may then be taken outside th e

brackets in (3 .1), and an equilibrium solution is a°(x) = const ., or d°

C . T . This solution is valid for all symmetric discrete or continuum cases ,

irrespective of the interval within which the system is defined . The symmet-

ric case is analogous to a situation often met with in quantal or classica l

scattering . More precisely, the case of symmetric kernel G(x,y) will b e

referred to as microscopic reversibility in space . It may be noted that equi-

librium solutions can persist also in time dependent systems . If G = G(x,y,t) ,

and is symmetric, then a°(x) = const . is always an equilibrium .
A third simple group of systems consists of those with displacement

invariance in space, G(x,y) = G(x -y), cf . eq. (2.6). As to boundary con-

ditions, one possibility is that a system is periodic (like e . g . angular vari -

* Note that in infinite space the function a(x,i) will usually tend to zero everywhere, but
it can tend to an equilibrium function a°(x) in the sense that a(x,t)/a(x',t) -a a°(x)/a°(x') .
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ables), with repetition after a fixed, but arbitrarily long period . It is then

obvious that a°(x) = const . is a solution of (3 .1) for the system in question .

Beside the above group of systems one has a quite different group, con-
sisting of communicating systems . Of these, a well-defined subgroup is th e
set of one-way systems, where for a discrete variable (e .g. k = 1, 2, . . . , N,
and Gkj = C k • 8 k, j _ 1 ) a typical equilibrium solution is a? = 1, a° = . . -
a°°- = 0 .

Uniqueness of Equilibriu m

Having ascertained that there is at least one equilibrium for the system s
of interest, we propose to show the following result, valid for indivisibl e
systems . Any solution of (3 .1), if positive in one point, must be positive every -
where in x-space,

indivisible systems : a°(x) > 0 for all x .

	

(3 .2 )

Accept then that (3 .2) holds and suppose that there are two or more equilib -
rium solutions. Any linear combination of these is also a solution of (3 .1) .
But a linear combination can always be arranged to have both positive an d
negative values . This is in contradiction to (3 .2). We have thus shown tha t
(3 .2) implies that there is exactly one equilibrium solution .

Let us now complete the proof by showing the validity of (3 .2) . We
consider a system which is indivisible and isolated . Suppose that (3.2) i s
not fulfilled by a°(x), a solution of (3 .1) . Divide the space into region I
where a°(x) > 0, and region II where a°(x) < O . Integrate (3.1) over x
within the whole region II . This integral is called Q, and must be zero ac -
cording to (3 .1) . Now,

r
Q

= J
dx f dy{G(x, y) a°(y) - G(y,x)a°(x)}

(3 .3)

= f dx f dy {G (x, y) a° (y) G(y,x)a°(x)} ,

I I

because the symmetric part, where both y and x belong to II, is identically
zero . Since a°(II) < 0 we find by omitting the second term in (3 .3)

Q

	

f dx f dyG(x,y)a°(y) > 0.

	

(3 .4 )
II

	

I

The latter inequality follows because a°(y) is positive everywhere, an d
G(II,I) must be different from zero for some set (x,y) in an indivisibl e

II
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system. The resulting contradiction between eqs. (3.4) and (3.1) implies

that (3 .2) holds .
In the following we repeatedly use the result thai, for indivisible systems ,

a°(x) is positive and equilibrium is unique . As to the properties of other

systems, the communicating systems have not in general a unique equilib-

rium. In the special case of one-way systems there is uniqueness of equilib-
rium, but a°(x) = 0 except in one point, so that (3 .2) is not fulfilled .

Transformation to Normal Coordinate s

For indivisible systems, with a unique, positive equilibrium solutio n
a°(x), the quantity a°(x)dx = dz is a basic measure of a priori distribution ,

corresponding to phase space volume in statistical mechanics . It may then

be worth while to indicate how the equation of motion can be transforme d
to suitable variables, i .e . normal coordinates, where the basic density

measure is explicit . Still, it is not always necessary or convenient to mak e

this transformation.
When transforming to the normal coordinates we find

a(x, t)
a (x, t) dx =

a°(x) a°
(x) dx = a(z, t) dz .

	

(3 .5)

Hereby we have obtained an invariant measure of the field ,

a (x, t)
a(z, t) = a°(x) ,

	

(3 .6)

which function is well-defined, because a°(x) is positive . Usually, we con -

sider a as a function in the z-space, but we may as well regard it as a func-
tion of x. The equilibrium solution a°(x) contains an arbitrary factor . If

a°(x) is introduced as in eqs . (3.5) and (3 .6), then a is normalized to unity

because a is normalized .
The field equation fora is easily obtained . Define y and g by

r(x,g) =
a°(x) y(z,z'),

	

l

G(x, y) = a°(x)g(z,z'),

	

If (3 .7)

where z and z ' are the normal coordinates corresponding to x and y, re-

spectively . Again, we may sometimes consider y and g as explicit func-

tions of x and y .

According to (2 .9), (2.14), (3 .5) and (3 .7)

	

à(z, t) = f dz'y(z, z ' ) a (z ' , t) = f dz ' {g(z, z') 1(z' , t) - g (z ' , z) (z, t)),

	

(3 .8)
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where then, from conservation (2 .10) ,

f dzy (z, z ') = 0,

	

(3.9)

J dz'y(z,z') = f dz'{g(z,z')-g(z',z)} = 0,

	

(3.10)

corresponding to equilibrium being the uniform distribution .

As to the field conjugate to a(z,t), we denote it as ß(z,t) and can simply

introduce

and from (3 .1)

ß (z, t) = b (x, t),

	

(3 .11)

i .e . ß (z, t) dz = b
r

(x, t) a°(x) dx, so that from (2.20)

ß (z, t) = -
J
dz 'ß (z ' , t) y (z', z) =

	

J
dz ' {ß(z', t) - ß (z, t)} g (z' , z) . (3 .12)

Eqs. (3 .12) and (3 .8) show that ß(z,t) (or b(x,t)) is in fact the field con-
jugate to a(z,t), in the same way as (2 .20) is conjugate to (2 .13) .

It is apparent that, because a(x,t) has an equilibrium, the conjugate
field has conservation . In fact, according to eqs . (3 .12) and (3.10)

f a° (x) b (x, t) dx = Jdzß(zt) = O.

	

(3.13)

Trend towards Equilibrium

The trend towards equilibrium is easily found if, by means of (3 .10)

the equation of motion (3 .8)

r

is written in an alternative way ,

å(z, t) =
J

dz 'g(z, z '){(z ' , t) - a(z, t)} .

	

(3.8 ' )

Eq . (3 .8 ' ) is seen to be quite similar to (3 .12) . It follows from (3 .8 ' ) that

the largest value of a(x,t) must always decrease, whereas the smallest value ,
if any, must increase . This indicates a tendency towards equilibrium, cf .
also § 4 . The result remains valid if the function a in (3.8 ' ) is allowed to

be negative .

For the conjugate field already the original equation of motion (2.20)

implies that the largest value of b(x,t) decreases, and the smallest increases ,

as one goes backwards in time .

Eigenvalues and Eigenfunctions

The equilibrium solution a°(x) in (3 .1) is merely one of the stationar y
solutions of (2 .14), albeit the most important one . Consider now stationary
solutions in general, for isolated, indivisible systems . Make the ansatz tha t
a solution of (2.14) is of the type ai,(x) . exp (- 4t), i.e. the equation be -

comes

J
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Avav (x)

	

- f
dgr(x, y) a, (g) or Âvcrv =

	

. Ti;, .

	

(3 .14)

The equilibrium solution corresponds to 20 = O . In parallel to (3.14) we
may directly consider the invariant field a, wher e

% vav (z) = - f dz'y(z,z')av(z') = - f dz'g(z,z')(av(z') - av(z))

or

, = -V av .

The result obtained from (3 .8 ') proves, firstly, that for the non-equilib-

rium stationary solutions it must hold that

Re(Av) > 0,

	

(3 .16)

because for no function a(z,l) is there a tendency away from equilibrium .
Secondly, since a(x,t) is conserved, these eigensolutions obey the equation ,
for v + 0,

	

J a(x)dx = J(z)dz = ccv • 1 = 0 .

	

(3 .17)

The result (3 .17) is part of a more general orthogonality theorem . We prove
the theorem in two steps . First, we consider the limited, but common, case

of symmetric kernels (microscopic reversibility in space, cf . p. 19) . Next,
we give the proof in the general case .

Suppose then that Ÿ is symmetric, y(z,z') = y (z', z), and use matrix

notation for brevity . Prove first that the À.,, are real . The complex conjugat e

of eq. (3 .15) is 2 ;;4 = - Ÿ
~ÿ.

. Multiply (3 .15) by ~„* on the left

21, åti åv =

	

åv • • åv =

	

cv ÿT • åÿ = - å v •

	

åÿ = 2våv åv , (3 .18)

so that Ati = 2v , and therefore the eigenfunctions ccv = av(z) may be chosen

to be real .

Prove next, also for symmetric that eigensolutions belonging to dif-

ferent 2, are orthogonal . Introduce two eigenfunctions, åv and ål, . Multiply
(3.15) byåti ,

• åv = - cc~ Ÿ åv = - åv ÿT åF, =

	

• ccv ,

	

(3.19)

ÿT being the transposed matrix . It follows that

cc~ • ccv = 0 for 21L

	

if ÿT =

	

(3.20 )

In the symmetric case, the &E, may therefore form an orthonormal set .

For the purpose of studying the general orthogonality theorem we in-
troduce the conjugate field . We define its eigenfunctions as bv(x) • exp (2wt) ,
so that, corresponding to (3 .14),

3 .15)



Nr . 9

	

1 7

bv Av = - bv - T .

	

(3 .21 )

We multiply (3 .14) by N and obtain

• d v = -

	

• P ~x;, = 21 ,b t,, Civ .

	

(3 .22 )
It follows that

• å„ = 0 if Al, + Av .

	

(3.23)

This result is quite general . It is independent of the previous results in thi s
chapter, such as a°(x) > O . It is valid not only for the original equation s
of motion (2 .14) and (2 .20), but even when G(x,g) is allowed not to b e
real and positive . In fact, (3 .23) is a consequence of merely the first, fourth ,
and fifth constraints, i . e . (2 .9) with P = P(x,y) .

According to eq . (3 .23) the eigenfunctions av(x) do not in general form
an orthonormal set . They do it when, as in eq . (3 .20), å = bv .

If we can normalize and may assume non-degeneracy, we obtain from
(3 .23)

f b 1,(x) a,,(x)dx = å 12 , .

	

(3 .24)

For a function f(x) the coefficients of an expansion

f(x) = lcvav(x),

	

(3 .25)
v

are according to (3 .24)

cv = f bv(x)f(x)dx .

	

(3 .26)

Although it would be easy, we shall at this point not enter into further
details of the formulation by eigenfunctions, as based only on eqs . (2 .1) ,
(2 .4) and (2.5). It is apparent that the present formalism is quite as i n
quantum mechanics, the latter being in fact embraced by the former . As
an example one might consider stationary perturbation theory . Perturba-
tion theory is useful when one knows exact solutions of many cases o f
equations of motion, the neighbouring cases being then easily approximated .
The examples of analytic solutions discussed in § 6 can in this respec t
serve as a basis, both for indivisible systems and for, e .g., one-way systems .

Propagator s

We introduced in (2 .7) the propagator T(x,t ; .x ' , t ' ) as an expression
for the integrated equation of motion, such tha t

a(x, t) = f dx ' TÇr,, t ; x ' , t ' )a(x ' , t ' ),

	

(3 .27 )

Mat . Fys . Medd. Dan . Vi d . Selsk . 38, no . O .
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where, for t = t ' , T = å(x -x') . The propagator is defined for t

	

t ' , but
not necessarily for t < t ' .

The equations of motion for the propagator are obtained from (3 .27 )
by differentiation with respect to the time variables . Differentiate first (3 .27)
with respect to t, and find from (2 .9), since a(æ', t ' ) may be chosen arbi-
trarily,

ät
T(x, t ; x', t') = f dyr(x, y, t) T(y, t ; x', t'),

	

(3 .28)

or
ôt

TY, t ' )

	

T(t) . T(t, t '), i . e. again the equation of motion (2 .9) . Simi-

larly, we differentiate (3 .27) with respect to t ' and obtain

at'
T(x, t ; x', t') _ - f dyT(x, t ; y, t')P(y, x', t') .

	

(3 .29)

We have hereby seen the significance of the equation of motion for the

conjugate field, (2 .20), the latter being identical to (3 .29) .
The above concerned the propagation of a field, cf . (3 .27) . The propa-

gation of the conjugate field is evidently determined b y

b(x ' ,t ') = f dxb(x,t)T(x,t ; x ' ,t'),

	

(3 .30)

or b (t ') = b (t) . T (t, t ' ) .
If we specialize to the case of time-independent equations of motion ,

i .e. the fifth constraint, or (2 .14), we get from (3 .27 )

T = T(x,x ' ,t - t ' ) = T(x,x',r),

	

(3 .31 )

the propagator being dependent on only the time difference r = t - t ' , and
defined at least for r

	

O . It follows that the n

åT
T (T) = T= (r) • P =

	

T (T) _ ; [ Ter) • 1, +

	

T (T)],

	

(3 .32)

the change of T being determined by its anticommutator with P.
The equation of motion of the transposed T-matrix i s

aT T
T `T) =

2
[TT . T T (T) + T T (T) .r T ] ,

being thus governed by the transposed P-matrix .

(3.33)
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Reversibility in Space

Let us consider transitions in space during finite times . For definiteness ,

suppose that at time t 1 the field is a(x,t i) = å(x - x i ) . Ask for the field

at time 1 2 in the point X2, a(x2 , 12 ), and call this field the transition rat e

Pa(x i -} x2 , t l t2 ) . According to (3.27) the transition rate is given by the

propagator

Pa(xl - X2, 11 -- t2) = T(x2, t2 ; xl, t l) ,

and analogously for the conjugate field, cf . (3.30) ,

Pb(Xi > x2, 11

	

t2) - T(x i, t1 ; X2, 12) .

It follows that

Pa(x i -~ x2, t i ~ 12) = Pb(x2 -3 x l , 12. -)- t 1 ) .

	

(3 .34)

The formula (3.34) is in fact of quite general validity, in that it states : I f

Pa is defined for a transition, then P b of the opposite transition is also defined
and equal Lo it .

Consider next time-independent equations of motion. According to

(3.31), eq. (3 .34) becomes

Pa(xi

	

x2, r) = P1,(x2 -+ xi,-r) = T(x2, x i, r),

	

(3.35)

where r = t2 - 11 .

Finally, we suppose that there is microscopic reversibility in space, i . e .

we are concerned with z-space, where y(z l , z2 ) = y(z2 ,zl) . The a- and b -
fields in z-space are called a and ß . It is now observed that since ÿ T = ÿ ,

the equations of motion (3 .32) and (3 .33) for T (r) and T l' (r) are identical .

Since the initial value is symmetrical, T (0) = T 2'(0) = å(z2 zi), it follows

that f(r) = FT(-c), or from (3 .35)

Pa(zi -- z2, r) = Pa(z2 - z i ,r)

	

(3 .36)

and this again is equal to Pß (z2 zl , - r) = Pß(zl -} Z2, - r). Eq. (3.36)
states that if there is microscopic reversibility in space, then macroscopic
reversibility in space follows . The result is valid in the same strong sens e
as (3.34) . A transformation of (3 .36) to arbitrary coordinates yield s

Pa(xl -)- x2,r)

	

Pa(x2 ->- xl,r)
(3 .36 ')

a°(x2)

	

a°(xl)

so that transition rates are weighted by the equilibrium distribution .
2*
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§ 4 . Degradation Function s

The concept of entropy and the properties of entropy are familiar fro m
statistical mechanics and from thermodynamics . The present integral equa-

tions contain main features of statistical mechanics . One might therefore b e
tempted to introduce entropy as a recipe, without further ado, thus obtainin g
a measure of the degradation of the field within a system . This is in fact a

possible procedure . It appears the more plausible since entropy also play s
a central role in the mathematical theory of informations, 19) .

But in the present discussion we need not rely on concepts derived fro m
applications. It seems therefore worth while to attempt independently a

general formulation of the concept in question . We shall do this in th e
beginning of the present chapter . We arrive at the noteworthy result that

entropy represents merely one choice within a family of degradation func-

tions . Next, we briefly discuss the use of degradation functions as describin g
the trend towards equilibrium . It appears that entropy often is not the mos t

convenient choice of degradation function .

Basic Requirements

We ask for a universal quantity characterizing the state of a system . A
quantity of this kind we call a degradation function . We make the following

two demands, to be explained presently in more detail :

1. A degradation function must be unique, invariant, and common t o
indivisible systems .

2. A degradation function must have a well-defined rule of compositio n

for a system consisting of two completely independent systems .

Consider the first demand. The stipulation of uniqueness has a straight-

forward meaning. As to invariance, this means that a degradation functio n
remains unchanged, whatever transformation is made of the spatial co -
ordinates of a system. Thirdly, we express the desired universality of the

degradation function by requiring explicitly that it is common to indivisibl e

systems . Indivisible systems form an exceedingly wide group, with th e
property of unique and positive equilibrium distribution . It may turn out

that degradation functions apply for a still wider group of systems, but we
need not mince matters by going beyond indivisible systems .

A degradation function must be of type of the projections introduce d

in § 2 . They are of two kinds : projections of spatial functions, <f(x)> in

(2 .16), and projections of functions of the field, <q(a)> in (2 .17) . In these



Nr .9

	

2 1

integrals the differential dP = a (x, t) d.x is invariant, and thus f(x) and q(a)
must be invariant too .

It is not particularly difficult to ascertain that projections of spatial function s
do not fulfill the above demands . Without going into detail, we may briefly indicat e
some of the main aspects . One would expect that f(x) is a function given beforehand ,
independently of the equations of motion of the system in question . Now, sinc e
f(x) is invariant, it may be expressed by the invariant b-field, i .e . in terms of it s
complete set of eigenfunctions Mx) . But if f(x) is to be independent of the equa-
tions of motion, there remains only the uninteresting choice f(x) = bo(x) = const .
On the other hand, if f were allowed to depend on the equations of motion, it coul d
not be unique and common to all systems within discrete or continuum spaces .

Let us turn to functions of the field . In order to secure invariance w e
must introduce the invariant field a = a(x,t)/ao(x), defined in (3 .5). It
exists for any indivisible system . The only quantities fulfilling the first
demand are therefore, expressed in normal coordinates ,

D(t)

	

<q(a)> =
J

dza(z,t)q(a(z,t)),

	

(4 .1 )

where q(a) is arbitrary, so far .

Introduce now the second demand . Suppose that the physical quantity
in question is D1 and D 2 for two independent systems, and that it is D1 2

for the two taken together . The demand is then that there is a weal-define d
rule of composition,

D12 = G(D1, D2) .

	

(4 .2 )

This demand is often implicitly made by introduction of physical variables ,

sometimes as a more incautious statement of additivity or superposition .
Before applying (4 .2) we consider the notion of independent systems .

Let there be two systems, described in normal coordinates by the fields

a1(z1, t) and a2(z2, t) . The systems are independent if a1(z1, t) and a2 (z2 , t)
separately account for their future behaviour . The two systems can also be

considered as one system with a field a(zl ,z2 ,t), if

0C (z1, z2 , t) = a1(z1, t)a2(z2, t),

	

(4 .3 )

where the fields are normalized to unity .
The second demand, (4 .2), can now be formulated by means of (4 .1 )

and (4.3). For the total system one ha s

D12 = <q(a(z 1, z2, t))> = f dzi f dz2a(zi, z2, t )q (a ( z i, z2, t)),

	

(4 .4)

and for the individual systems
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D1 = <q( ai (z1, t))i1 = f
dzial(z1, t ) g (a i(z i, t)) ,

D2 = <g(a2(z2, t))~2 = f dz2a2(z2, t ) q (a2(z 2, t)) '

The solutions of eqs. (4.2), (4 .3), (4 .4) and (4 .5) may be readily guessed. Let
us indicate a more systematic procedure . Put a2 (z 2 ,t) = = const . in one regio n
of z 2-space, and a 2 = 0 outside this region . Eq. (4.2) then becomes, according to
eqs . (4 .3), (4 .4), and (4 .5),

(q ( al))1 = G((q(al))1, g($)) .

	

(4.6 )

In eq. (4.6) we next vary a 1(z 1 ), retaining normalization of al and keeping q(al)) i
constant . Since G is then unchanged, also (q($a1) ) 1 must remain unchanged . In-
troducing Q(a) = a(aq(a))/aa, one obtains, by variation of al , the functional equa-
tion Q(al) = Ci($)Q(ai) -I- C 2(0, which may he solved (Q(a) x c + an or c + toga) .
A precise discussion of the functional equation is given in ref . 2 .

The solutions for q are the n

q(a) = Can and q(a)

	

- Clog a,

	

(4 .7)

the latter solution being due to the normalization condition for a, i . e . to conserva-
tion of the field . We have in (4 .7) omitted a spurious solution, q(a) = Ca- 1 toga ,
for which the projection often diverges, in particular within an infinite system .

We have thus arrived at the family of functions satisfying the two de-

mands . We call them degradation functions, writing

D(n)(t) = f dza(z,t)[a(z,t)J n ,

	

(4 .8)

and denoting by S the familiar entropy,

S(t) fdza(z,t)1oga(z,t), (4 .9)

where the arbitrary constants in eq . (4 .7) are omitted . The number n in

eq. (4 .8) is the order of the D-function . If one limits the order to be n > 0 ,
convergence is always secured .

The value n = 0 in (4 .8) is the trivial normalization . Note here tha t

the entropy, (4 .9), which arose from conservation of the field, is the deriv-

ative of a D-function,

(4.5)

li.

a
S = - 	 D(n )

an
= - 1 log D(n )

n

D O' ) = 1

n
n=0

(4 .10)
n --> 0

Entropy is thus a degradation function of order zero .
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It follows from eqs . (4 .9) and (4.8) that when a system is composed

of independent systems, then the entropy is additive, as is also the logarith m

of the D-functions,

IogD12) = logDln) + logD2n') ,

S12 = Sl -I- S2 .

Strictly speaking, only the changes of the quantities in (4 .11) are well -

defined. This is because they contain an arbitrary additive constant in a

continuum description, arising from an arbitrary factor in the definitio n
of z, whereas adz is invariant. The arbitrary constant is removed in th e
case of a discrete variable with finite N . This contrast is well-known for
entropy in classical statistical mechanics as compared with quantal statis-
tical mechanics .

The likeness between entropy and the D-functions, as contained in eqs .
(4 .11) and (4 .10), may be further elucidated by introducing a set of func -
tions S (n) ,

1
S(n) = - - IogD( n ) .

n
(4.12)

According to eq . (4 .10), S (0 ) = S . Moreover, consider the example of a
discrete variable, k = 1, 2, . . . , N, with equilibrium a.° = a2 = . . . = 4 =
1/N. In an initial state, where one ak is unity, the others zero, we find tha t
all functions in (4.12) are S(n) = 0 . In the final equilibrium they are al l
S (n) = logN. Between the two extremes the different functions attain quit e
different values . The equality of the functions at the extremes is only du e
to the freedom in selection of origin and in unit of degradation . The like-
ness may, however, be one reason why attempts at deducing degradatio n
functions from general principles have led only to the entropy, omittin g
the D-functions .

Monotonic Change in Time of Degradation Function s

We now apply the linear integral equations of motion, in order to fin d
the time behaviour of the degradation functions . It will be shown that fo r
indivisible systems the D-functions always decrease, when the field deviate s
from the equilibrium solution . According to (3 .8) and (3 .10) we can writ e
the equation of

r

motion as

å(z, t) =
J

dz'{g(z,z')a(z', t) - a(z, t)(Cg(z',z) + (1 - C)g(z,z'))}, (4.13)

where C is an arbitrary constant.
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The time derivative of the function D( n)(t) is therefore, according to
(4.8),

(4.14)

- Can+1(z t) - (1 - C.)an+l(z,t)} .

In this equation we can choose the constant to be C = (n + 1)- 1 . Next we
introduce an auxiliary functio n

fn($) = (n+1)($-1)+1- n+1

	

0 < <

	

(4.15)

with the property fn(1) = 0, while fnO < 0 for $ + 1 and n > O .
In eq. (4 .14) the function an -+1(z,t) is taken outside the brackets, so that

at
D(n)(t) = JdzJdz'g(z,z')+1(z, t)fn ~ 	 a~z ~)

	

(4 .16)

Within the family of degradation functions, the time behaviour of the first
order D-function is particularly simple for linear equations of motion. We

specify (4 .16) in this cas e

atD (1)(t) = - JdzJdz'g(z,z '){(z, t) - (z ' , t)} 2 ,

	

(4 .16 ' )

where we can replace g(z,z') by g s(z,z') (g(z,z') + g (z ', z))/2 . Moreover ,

D(' ) itself has a simple geometric interpretation, D(') = cc cc, being thus th e

square of the vector cc, for which 1 • cc = 1 .
It can be readily concluded from eq . (4 .16), because of the propertie s

of WO, that for indivisible systems, and for n > 0,

-D(n)(t) < 0, unless

a

(z

,

t)
= 1 for all z, z' .

	

(4 .17 )
( )

In fact, suppose that D(n)(t) = O . Consider an arbitrary point za, wher e

a = a(za,t) . According to eq . (4.16), all points z j for which gs(za,zi) + 0
must have a(z,, t) = a(za, t) . The points z l communicate directly with other

points z 2 which must have the same value of a . Since the system is indivis-

ible, the arbitrary point za must communicate in this way with any other

point Zb, such that a(za, t) = a(z b , t), from which follows eq . (4.17) .

We have thus proved that all D-functions decrease monotonically to -
wards their equilibrium value . The monotonic behaviour of entropy is als o

a consequence of (4 .17) . To be precise, the time derivative of entropy i s

a

	

r

	

r

at
D( n) (t)

	

(n + 1)
J

dz
J

dz'g(z,z'){a(z',t)an(z,t)
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according to (4 .10) obtained from (4.16) by division with n, letting n } 0 ,
whereby, in the integrand, fn/n - f = - 1 - $logs, i .e. one obtains th e
auxiliary function of Gibbs 7 ) .

Several conclusions may be drawn from (4 .17) . It follows, for instance ,
that any non-uniform function in z-space, normalized to unity, has a highe r
value of D(n) than the normalized uniform distribution, for any n > O .

Further, we have proved previously that there is only one equilibrium o f
the linear equations of motion . It does, however, also follow from (4 .17 )
that there could be no equilibrium solution other than the uniform distribu-
tion, because OD(n)/at $ 0 for all other distributions .

§ 5 . Connection to Differential Equations

We consider differential equations of first order in time and of first o r
higher order in space . Such differential equations have merits on their own ,
and can be considered as possible equations of motion obeying the con-
straints . Apart from this, they are often useful approximations to integra l
equations, and in diffusion phenomena they even lead to quite accurat e
solutions . The familiar approximation involved in a differential equatio n
is that G(x,y) is negligible unless Ix - yI is small . By expansion one may
then obtain a differential equation in x, usually of second order .

We briefly discuss the limitations put on a differential equation by the
constraints in § 2 . It turns out that differential equations can be of, at most ,
second order in space . The differential equations imply a trend toward s
equilibrium, with the notable exception of first order equations . We finall y
study the symmetry properties of the diffusion equation, and its use as an
approximation to the integral equation .

Basic Structur e

When trying to find the possible structure of differential equations, on e
might start from the basic integral equation, (2 .13) . We prefer to use th e
equivalent procedure of introducing the initial four constraints of § 2 . In
order to have simplicity of notation we consider the one-dimensional case .
According to the first and fourth constraints, (2 .1) and (2 .4), we deman d
that, if the derivatives åna(x,t)/axn are given, then the time derivative
ä(x,t) is known, being linear in the spatial derivatives . To finite order, N,
we therefore find

	

N

	

an
et (x, t) =

	

Rn(x, t)	 n a (x, t) .

	

n=0

	

ax
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In order to retain conservation explicitly, i . e . the second constraint, (2 .2) ,

we introduce 6(x,t) as minus the divergence of the current density, (2 .23) ,

a
a(x,t) = -

ax j(x' t) '

expanding the current in spatial derivatives of a(x,t) ,

N-1

	

an
j(x,t) _ -

	

An(x,t)	 a(x,t) .

	

(5 .3 )
n=0

	

ax n

The number of independent functions in (5 .2), (5 .3) is one less than in
(5.1), giving the condition on the

An(x, t) _ x 11 .n(x, t) + An 1(x , t) ,

with AN = 0 .

The freedom in the above scheme is strongly reduced by the third con-
straint, (2 .3), demanding that a non-negative a(x,t) remains non-negativ e

at all later times . Suppose therefore that a(x,t) = 0, and accordingly

a'(x,t) = 0, a"(x,t) 0 . It should then follow that 6(x,t) >_ 0 . This places
no restrictions on Ao(x,t) or A 1(x,t), but A2(x,t) must remain non-negative ,
A 2(x, t)

	

0 .

Consider next the possibility of a differential equation of finite order N ,
i.e . (5 .1), with N > 2 . We may suppose that, at a given time t = 0,

(x + G` NxN-1) 2 + x2N - 2
a(x,t =0)=

	

.

This function is normalizable and it is positive everywhere, except at th e

origin, where a(0,0) = 0, a 01) (0,0) = 2CN •N!, all lower spatial derivatives ,

except a"(0,0) = 2, being zero. Therefore å(.x = 0, t = 0) = A 2 . 2 +AN 2CNN! ,
and since CN may be chosen arbitrarily, the coefficient AN in (5 .1) must b e

AN 0, in order to fulfill always 6(0,0) - 0 . The differential equation (5 .1 )

therefore cannot be of higher than second order, if it obeys merely the firs t

and third constraints. If we assume conservation, (5 .2), we can only b e

concerned with the diffusion equation, or Fokker-Planck equation,

iï

x

(5 .2 )

(5.4)

1 + c 2x2N
(5.5)

a (x, t) =
ô-
D (x, t)

~
a (x, t)

O
	 w (x, t) a (x, t),

	

(5 .6)
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with the current j (x, t) = - D (x, t) a ' (.x, t) + w (x, t) a (x, t), and where
D(x,t)0.

In the case of multi-dimensional space the proof is completely analogou s
to the above one. The result is that one can only permit the following equa-
tion

a (x , t)

	

a
Dik(x, t)

a
a (x, t) -

	

a wi (x, t) a (x, t) .

	

(5 .7 )
i,k axi

	

axk

	

i axi

where the matrix Dik at any space-time point has non-negative eigenvalues ,
like D in (5 .6), because d must be non-negative when a = 0. Note that
we can always choose the matrix to be symmetric, Dik(x, t) = Dki(x, t) .
With this choice there is a unique separation between the two terms in (5 .7) .

The impossibility of spatial derivatives of higher than second order i s
rather remarkable . It does not seem to be explicitly noted in connectio n
with derivations of diffusion approximations . On the contrary, it is some -
times stated that higher order terms in an expansion are small and can b e
disregarded5) , or it is attempted to introduce explicitly a term of highe r
orderlo) (cf. also ref . 18, p . 238) .

The above result shows that differential equations are not very flexible ,
and can hardly be expected to represent even the main general features of
the basic integral equation . Quite apart from this conclusion, the actual
kernels G(x,g) with which we shall be concerned (cf. § 6) will often de -
crease comparatively slowly for Ix - yI -> 00, leading to e . g . a divergent
moment <x2> of the distribution . This does not fit in with a diffusion equa-
tion .

The equation for the conjugate field corresponding to (5 .7) is easily
obtained from (3.27)-by differentiation with respect to t'-

b (x, t ) = -

	

aa i Dki (x , t ) aak b (x , t)

	

w i (x, t) as 2 b (x, t) . (5 .8)

The first operator in (5 .8) is equal to minus the first operator in (5 .7) if
Dik is symmetric . The second operator in (5 .8) is equal to the second on e
in (5 .7), provided div = 0 .

Let us finally note that Lhe diffusion equation may be considered as a singular
operator to be added to the integral equation, because it only results from an in -
tegral equation by a limiting process . The integral equation (2 .13), with a continuou s
G(x,y,t), we denote as å = 0i (t)a . Similarly, the diffusion equation (5 .7) is å =
Od(t)a . Within the present context the most general equation of motion, obeyin g
the first four constraints, is å = Od (t)a + O d (t)a.
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Trend towards Equilibrium; Reversibility

We have previously shown, in §§ 3 and 4, that all systems with one

equilibrium a°(x) > 0 Lend towards this equilibrium if, in the integra l

equation, G (x, y) does not vanish for all y +x . The diffusion equations

constitute a somewhat singular limiting case. Let us consider the trend

towards equilibrium by means of the degradation functions .

We may suppose, without essential loss of generality, that in (5 .7) the
equilibrium function a°('x) is a constant, corresponding to normal coor-
dinates,

a ° (x) = const ., i . e . divw(x) = 0 .

	

(5 .9)

The latter equation shows that a(x,t) corresponds to 11îe density of an in -

compressible liquid .

From (5 .7) and (4 .8) we find directly in a space of m dimensions ,

a

	

' mô

t

D (n )(t) =
a

dx)(a(x,t))n + l

((

	

II

	

at~

	

l
_ (n+1)dx)an(x,t)

	

a
Dik(x,t)	 a a(x,t) >

ô
wi(x,t)a(x,t))~ (5 .10)

Ç
JJ

	

ll~ k ax i

	

ax k

	

~ ax~

	

J

(na)

	

t) Oa(x, t )
= - (n + 1)n di an - 1 (x, t)Dtik(x, t)

	

0 ,
i , k

	

axi

	

axk

where we use that the current vanishes at the boundaries, or that the syste m

is periodic. The equality sign in (5 .10) holds only in equilibrium for an

indivisible system, for positive eigenvalues of Dik .
The proper diffusion equation is thus irreversible, like the integral

equation . Still, there remains one singular exception since, if Dik = 0 every-

where, all degradation functions remain constant . The remaining reversibl e
first order equations, fulfilling (5 .9) for indivisible systems, ar e

(X, t) = - div[w(x,t)a(x,t)], divw(x,t) = 0 .

	

(5 .11 )

It follows from (5 .8) that the conjugate field also obeys (5 .11) . The eigen -

values An of (5.11) are purely imaginary and, as mentioned, all degrada-

tion functions are constant in time .

Eq. (5 .11) is just of the kind with which one is concerned in a Hamil-
tonian description of the motion of an ensemble in classical phase space ,

with x = (xi, . . . , x2N) = (qi, . . . , qN, pl, . . . , pN) . The: Hamiltonian

equations of motion are inconveniently singular, in the sense that the leas t

deviation from (5 .11) brings about irreversibility .

li
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It may be noted that the first order equation of motion (5 .11) is the only pos-
sible one, if the first constraint is tightened . In fact, when the first four constraint s
are valid, the general equations (2 .13) follow. Suppose here that the first constraint
(2 .1) is modified by the demand that a(x',t') is determined by a(x,t) not only fo r
t' > t, but also for t' < t . It follows that for x y the kernel G(x,y,t) is both non-
negative (from t' > t) and non-positive (from t' < t) . We are then left with the
singular case of infinitely narrow G, i . e . the differential equation (5 .7) . But here ,
again, the eigenvalues of Dik must be both non-negative and non-positive . There
only remains first order equations, i .e . (5 .11) if, e .g., the system is indivisible.

One-dimensional Diffusion Equation

Let us study the one-dimensional diffusion equation, (5 .6). It is worth

while to consider this case in detail, although it lacks some of the features

belonging to multi-dimensional spaces .
We assume that D and w are independent of time, and that D > 0 every-

where within the system. Suppose that the boundary conditions demand

zero current at the boundaries . The equilibrium then corresponds to zer o
current throughout, or D(s)e(x) w(x) a°(x) . We transform to normal
coordinates and obtain, with dz = a°(x) dx ,

a

	

a
cc (z, t) = az g (z)-a (z, t) ,

where

.g (z) = D(x)(a°(x))2, a°(x) = exp {
J

dx'w(x')ID(x') } .

The term containing w has thus disappeared, and the equation of motio n
for ß(z,t) is according to (5 .8) given by (5 .12), with opposite sign. One may
easily verify that the eigenvalues 2,, are real . Moreover, we have found, in

(5.10), that (5 .12) tends towards equilibrium .
Show next that (5 .12) leads to reversibility in space, in the sense state d

in (3.36) . The propagator T defined in (3 .27) is T(z i , t1 ; Z2,12)
= T (z i , z 2 , 11-12) . Therefore the equation of motio n

T(zi, Z2,T ) =

	

a	 of (zl)	
a

+
Ô

g(z2)	
a

T(zi, z2, T)aT

	

z
0.4

	

azi

	

az2

	

az2

is symmetric in zl and Z2 . Since T (z l , z2 , 0) = å (zl - z2), one finds macro-
scopic reversibility in space

(5.12 )

Pa(zl -->z2,T) = T(z2, zl,r) = T(zi , z2, r) = Pa(z2 3 zl, r) . (5 .13 )

Note that (5 .13) and the previous conclusions drawn from (5 .12) are valid

also in the multi-dimensional case if i = 0 and Dik = D ki in (5.7) .
Mat . Pys . Sledd . Dan .v id . Selsk . 38, no . 9 .
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The equation (5 .12) is therefore so far in accord with an integral equa-
tion with microscopic reversibility in space, g(z,z') = g (z ' , z) . If g(z,z') i s

asymmetric, eq . (5.12) becomes a less appropriate approximation .

In (5 .12) we considered a system with closed boundaries, and therefor e

the w-term disappeared . If the system instead has periodic boundary con-
ditions, the w-terni in (5 .6) does remain and is connected with the antisym-

metric part of g(z,z ' ) . A diffusion approximation to a one-way integral equa-
tion is mentioned in § 6, cf. (6.19) and Fig. 3 .

Diffusion Approximation

The diffusion approximation is not completely well-defined . Let us

indicate one way of deriving its coefficients . We suppose that G(x,x') is
given in eq . (2.14), but that the equilibrium need not be known . The as-
sumption belonging to a diffusion approximation is that the kernel G must

decrease rapidly when 1x - x ' I increases, whereas G varies slowly with

change of Ix + x I . We therefore introduce new variables, = (x +

	

and

= x - x ' , writting G(x,x') = Q() . Since Q =

	

we may ex-
pand in powers of in the former coordinate which varies slowly wit h

= x j/2 . In the integral equatio n

å(x,t) = ~ d Om ' 17 ~Q(x - -ij1 2 ,~> a (x ~,r)-Q(x-n12, -~) a (x, t ) }

we then expand, to second order in 17

.//

The result is eq . (5 .7) with

Dix(x) = 2 d(m)n G(x + - ,x - 2 'rii 'ri k

-*m(x) = d(m)nGI x+ ~,x- 27)->
, where G(x+r~j /2,x -4/2,X = Q(x,~) •

The approximation (5 .14) appears acceptable, but it usually does not lea d

to the exact equilibrium distribution, a°(x) . Thus, consider a one-dimen-

sional integral equation and suppose that a°(x) = const. with zero current

at the boundaries . If G is symmetric, one does obtain (5 .12) from (5 .14) ,

but if G is not symmetric there appears a w-term, as implying a non-unifor m

equilibrium distribution in the diffusion approximation .

5 .14)
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§ 6 . Examples of Analytic Solution s

This chapter is devoted to exact solutions of the simplest integral equa-

tion for continuum variables . The advantages of these examples are three -
fold. They correspond to typical cases within atomic collisions . They allow
solutions of neighbouring equations by perturbation methods . But, fore-

most, they give a direct insight in the integral equations, showing for in -
stance the similarities and dissimilarities to differential equations .

We consider mainly two extremes . One is symmetric kernels of indivis-

ible systems, as exemplified by multiple scattering at small angles . The
other concerns one-way systems, connected with energy loss distribution s
of energetic particles. Finally, we solve an example of multiple scatterin g
with inclusion of large angles .

Elementary Basic Systems

The simplest kind of continuum systems is the one with displacemen t
invariance in space, cf . eq. (2 .6), corresponding to validity of all of the si x
constraints in § 2. It follows that g(x,y) = g(x - y), and the equilibrium
solution is in fact à° = const . for g = g(Ix- yI) . Note here that we consider
primarily the one-dimensional case and, in order to secure simplicity o f
the analysis, we impose the mild condition of periodicity with an arbitrar y
long period L . The integral equation is, with g (y) real and non-negativ e

&(x, t) =
J

dyg(y){a(x y, t) - a(x, t)}

	

(6 .1 )

and that of the conjugate field

ß(x, t) =

	

f dyg(- y){ß(x - y, c) -ß(x,t)} .

	

(6 .2)

Because of displacement invariance the eigenfunctions of the field are plan e
waves

Gk(X) exp (+ ikx), ßk (x) = exp (- ikx),

	

(6 .3 )

where k = 2mn/L . The eigenfunctions obey fdxß k(x) a l (x) = L • åk,I , and

ßk = 0C-k •
The eigenvalues are, according to (3 .15) ,

2(k) = f dyg (y)( 1 - e''i) .

	

(6 .4)

Apparently, if g (y) is symmetric, i .e . g (y) = g(-y), the eigenvalues ar e
real and 2(k) _ A(-k) . If there is asymmetry, the eigenvalues are complex

3*
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numbers, and A.(k) = 2'(-k) . The case k = 0 corresponds to equilibrium ,

with A(0) = 0 . The other eigenvalues have a real part greater than zero .
As to asymptotic behaviour, it is apparent that g(n) must decreas e

faster than fyl~-1 for NI 00, in order that the 2 k converge. Similarly, fo r

n i -4- 0, the symmetric part of g (n) must diverge less than Inj- 3 , whereas
the asymmetric part must diverge slower than H- 2 . The fundamental solu-

tion of (6.1) is the propagator, T(x,t), which for t = 0 is T(x,O) = 6(x) .
According to (6 .1), (6.3) and (6 .4) we find for t > 0 ,

T(x, t) =

	

eikx e-R(k)t .

L Ic

In the solutions in the following we consider L as infinitely large in (6 .4) and
(6 .5). We replace the summation (6 .5) by an integration ,

((
co

T(x,t) =
1-1

dkeikx e -7(k) t .
2~c

co

The seemingly innocent transition from (6 .5) to (6 .5') is not without consequence s
for the properties of some systems, because the properties depend on the boundar y
conditions . When (6.5) is applied exactly, the field will return through the periodi c
boundary, and there will always be an equilibrium a o = 1/L . If g is asymmetric,
the equilibrium has an internal current in the system, and even a one-way syste m
becomes indivisible . If we use (6 .5'), however, the field does not return, and the
system is an open one . In this case there is uniform equilibrium for a symmetri c
g, but not for one-way systems . This feature, together with a Galilei transformation
of one-way systems, is discussed on p . 39, cf . (6 .20) . Although one thus finds note -
worthy differences between (6 .5) and (6 .5'), it should be remembered that in prac-
tice the solutions of (6 .5) and (6 .5') do not differ for finite times t and large L.

The simplest choice of g is the power law

en
(6.6)gn(n)

=

We distinguish between the symmetric cas e

gn(n) = gn(- ~) - g n (n), 0 < n < 2, (6 .7)

the possible range of n being indicated, and the asymmetric one-way case

gn(n), y/ > 0 ,

gn(n) =

	

0 < n < 1 .

	

(6 .8)

0,

	

n < 0,

(6 .5 )

(6.5 ' )



Nr . 9

	

33

We can now derive .l (k), so that it only remains to integrate (6 .5 ' ) . I n
the symmetric case we obtain from eqs . (6.6), (6.7) and (6 .4) 8 )

~n(k) =

	

An = 2C n
P(1

-n) cos-n = Cn

	

~

	

, (6 .9 )
n

	

2

	

r(n + 1) sin2n

where 0 < n < 2 . Correspondingly, in the asymmetric case, from eqs . (6 .6) ,
(6 .8) and (6 .4), for k > 0,

F(1 -n)

	

/i7c
g(k) = Ikl nAn, An = Cn---

	

• exp -n ,

	

(6.10)
n

	

\ 2

where 0 < n < 1, and g (-k) _ (.1n(k))'- .
The simple structure of solutions for power law kernels may be obtaine d

directly from dimensional arguments . In fact, note that since Cn in eq .
(6.6) has the dimensions xn t-1, the corresponding propagators must be o f
type of T(x,t) = fn(x''tCnt)x- 1 . The semi-group formed by such propagator s
is thus a stable one s ) . Stable semi-groups are familiar in the mathematical
literature, and among the examples to be presented below at least severa l
are well-known in e . g . probability theory 6 ) .

At this point we may illustrate the formulae by an example . Suppose that an
energetic ion moves a small distance through a substance, losing a relatively small
amount of energy by successive collisions . The distance, or the time elapsed, may
represent t in the above equations . The differential cross section times the density
of atoms is equivalent to g(g)dn . In the case of multiple scattering g is symmetric ,
cf. also p . 39 . The x-component of the scattering angle in a single collision is 1 x x ,g ,
the x-component of the total angle being y x œ x . It is assumed that y)x (( 1 and
39,x (( 1 . A particle with initial angle 0 has therefore, at time t, the distributio n
(6 .5') . The formulae (6 .6) and (6 .7) are then power law scattering 15 ), where Ruther-
ford scattering is the limiting disallowed case at small angles, n = 2 . In fact, eq .
(6 .6) corresponds approximately to classical scattering in repulsive power law po-
tentials a R- 8 , with n = 2/s, so that 1 < s < cc is equivalent to the conditio n
(6 .7) .

Next, consider the energy loss distribution of the ion . The individual energy
loss, 32, has a one-sided distribution given by (6 .8) . The total energy loss, x, is then
distributed according to (6 .5') . The above power law angular distribution corre-
sponds to n = 1/s, so that, again, Rutherford scattering is the upper limit n = 1
in (6 .8), and 1 < s < co is the allowed region in (6 .8) .

Thus, at low angles and for small relative energy losses the power law formul a
(6 .6) serves as a useful basis . In practice, the above formalism without (6 .6) has
been used in numerical studies of the more complicated case of multiple scatterin g
by Thomas-Fermi type screened Coulomb potentials by MoLtERE 17 ), cf . also
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SCOTT18) and MEYER 16 ) . An energy loss distribution was studied by LANDAU 11 ) ,

in the important but again more complicated case of Rutherford scattering (n = 1
in (6.8)) with a cut-off at low energy losses .

Symmetric Distribution, n = 1

It is evident that the simplest distributions T(x,t) will result if, in eq .
(6.6), n is an integer or a fraction of low order . The symmetric case with

n = 2, i . e . Rutherford scattering, is divergent, but would have led to a

Gaussian distribution in (x/t l / C), according to eqs . (6 .5 ' ) and (6 .9). It is re-
placed by the second order diffusion equation in § 5 . Similarly, the asym-
metric case with n = 1 is again Rutherford scattering and divergent . In its

place appears the first order differential equation in § 5 .

For integer n we are left with the symmetric case and n = 1 . This i s
apparently multiple scattering with s = 2, i . e . closely corresponding t o

scattering by a repulsive R- 2-potential . From eq . (6 .9) we get 21(k) - IklCire,
and by integration of eq . (6 .5 '), for t > 0 ,

Ti (x, t)
x2 + 7L 2 C i t2

. (6 .11 )
C i t

This distribution occurs in numerous connections . It is known as the Cauchy

distribution> . In physical problems it is particularly familiar as a Breit -

Wigner formula . The width of the distribution (6.11) increases proportion -

ally to time. If x »» 7rC i t, the propagator is C l tx- 2 , i .e . determined by

a single scattering process from the origin . The system is indivisible with

uniform equilibrium, according to eq . (6.1) . Correspondingly, we find that ,
for arbitrary x i and X2, T (xi , t)fT (x2 , t) -- 1 for t -->- co .

We find that eq . (6 .11) obeys a second order differential equation o f

Laplacian type

(a2

	

1

	

0 2 1

ax e + n2 C 2 ate Ti(
.x, t) = 0,

	

t > O .

	

(6.12)
i

The integral equation in the present case thus picks out one solution of a

second order differential equation in time .

It may finally be noted that the propagator corresponding to (6.11) is

readily found in a space of dimension v > 1 . The propagator is in fact

proportional to Cit •(r2 + n2 C1t 2)-
v	

2
i

j''
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1/2, (6 .15), normalized t o

x/(4C =t a) for n = 1/2 .

1, the simplest case

Ikl2C2(27)(1 +i) ,

Fig . 1 . Symmetric stable distributions for n = 1, (6 .11), and n =
unity . The abscissa is chosen as y = x/(Cita) for n = 1, and y

One-way Distribution, n = 1 /2

In the asymmetric one-way case, where 0 < n <

must ben = 1/2 . According to eq . (6 .10) one obtains )

k > O. By integration of eq. (6 .5 ' ) ,

C t_ nC zt2Ta(x,t) =	 exp
x~

	

x

For large x, the distribution is - Cttx2, and therefore alr eady the first

moment, <x>, diverges . The distribution has a maximum at xp = 27tC2 t2 /3 ,

moving with an acceleration g = 4 rC2/3 . The distribution (6 .13) is shown
in Fig. 2 together with. (6.16) .

The propagator (6 .13), when considered as an energy loss distribution ,

as described previously, corresponds to s = 2 . It thus represents an energ y
loss distribution associated with the multiple scattering distribution (6 .11) .

3 *

x>_ 0 .

	

(6 .13)
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0

	

1

	

2

	

3

	

y
Fig. 2. Stable one-way distributions for n = 1/2, (6 .13), and n = 113, (6 .16), normalized to

unity . The abscissa is chosen as g = x/(zaC=1z) for n = 1/2, and y = const•x/(Cl)3 for

n = 1/3. The scaling for n = 1/3 is arbitrarily chosen to give equal heights of the two curves .

Symmetric Distribution, n = 1 /2

The symmetric distributions are, as it seems, less simple than the asym-
metric ones with the same index n . For n = 1/2, the symmetric propagato r
becomes of type of Fresnel's integrals (cf . ref. 1) . In fact, the Fresnel g -

function is defined a s

g(z) = [
2
- C(z)] cos 617-2 + r2 - S(z)] sin

2
z2

\

C(z) = cos 9 y2 dy,

	

S(z) = 1sin (2)du .
/

The g-function is a smoothly decreasing function . It is tabulated in ref. 1 ;
a crude estimate is g(z)

	

(2 + 4z + r2z3)-1 .
The symmetric propagator for n = 1/2 becomes, in terms of the Fresnel

g-function,

2C lt ~ 2

lxlz

	

C, t
T

z
(x, t) _	 ~ g 1

-	 2,Ixly
.

	

(6 .15)

(6 .14)

li
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This function is shown together with eq . (6.11) in Fig. 1 . Like eq. (6.11) ,

it tends towards a uniform distribution for t

	

and the tails of T1 cor -
respond to single scattering .

One-way Distribution, n = 1 / 3

The index n = 1/3 for the asymmetric distribution implie s

= IkIl C' x(2/3)(3` + î)3J2. The one-third power of Ikl indicates con-
nection with Airy functions, and a somewhat lengthy calculation yields in
fact, for x > 0,

C t
T1(x,t) =

x4
Ai

	

6 .16)
2

C = Ci 3l F(2/3) = CA/Ai (0) ,

Ai(z) being the Airy function s ) . The distribution is shown in Fig . 2. Its
general behaviour is somewhat similar to eq. (6.13), but the x-coordinate s
expand as 13 .

Apart from the above examples a comparatively simple further case i s
TI(x,t), which must decrease as 'x1-5/2 at large 'xi . It is intimately con-
nected with the so-called Holtsmark distribution 4), but we shall not study
it here .

One-way Distribution, n = 1/2, with Screenin g

The power law scattering (6.6) is a quite special example of displace -
ment invariance . For one, the moments, such as <x 2>, are divergent . It i s
then not easy to compare with a diffusion equation approximation . Next ,
one-way distributions with finite <x> have a constant average velocity, an d
the corresponding transformation to moving coordinates is of interest . In
many practical cases, like energy loss distribution, there will in fact be an
upper limit beyond which g(n) = 0 .

Let us therefore briefly study a simple example of screened power la w
distribution, where g(/) in (6.1) is the one-way distributio n

C
g (n) =

	

e_a2 ,

	

7p ~ O .
'17 z

This corresponds to the case (6 .8) with n = 1/2, as studied above, but no w
with screening given by the constant a . Transform to dimensionless vari-
ables and z in place of x and t,

(6 .17)
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0
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4

Fig. 3 . Screened one-way distribution, (6 .18), and its diffusion approximation (6 .19), as func-
tions of space, f, and time, -r . The asymmetric curves are the exact screened distributions ; th e
symmetric curves represent the diffusion approximation . The two full-drawn curves correspond
to time t = 1/2, and the dashed curves correspond to time t = 3/2 . The exact distribution

always intersects the diffusion distribution at its maximum .

e=xa,

	

r=Ct .(7ra) .

By integration of (6.4) and (6 .5 ') we get from (6 .17)

2

7 (e, r)	 	 exp

	

(r	 )

	

(6 .18)

The distribution (6 .18) is shown in Fig. 3 for two values of the time vari-
able, r = 1/2 and r = 3/2 . The average velocity of the distribution is con-

stant, and in fact <e> = r . The average square deviation increases wit h
time as <C 2> - < e> 2 = r/2. The most probable point at a given time is ep(r) _
= - 3/4 + (9/16 + r2 )1/2 , and is initially accelerated but tends towards having

constant velocity, ep(r) -~ r - 3/4 .

The diffusion approximation (5 .14) to the integral equation is determine d

by the above two moments . The solution of the diffusion equation is a travel -

ling Gaussian distribution ,

rdiff(s~, r) = 1 exp I -	
- r)2}

.

	

(6 .19 )
Jr'- r 2

	

/I
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The diffusion approximation (6 .19) is shown together with (6 .18) in Fig . 3 ,

for the same values of r . The deficiencies of Tdiff are not merely that, fo r

small r, a substantial part of the function is in the disallowed region $ < 0 ,

but it does not show the skewness of (6 .18), for which the maximum p
remains a distance 3/4 behind the maximum of Tdiff, asymptotically .

Although there is displacement invariance, and a(x,t) = const. is a

solution of eq . (6.1), this is not an equilibrium solution . That is becaus e

(6 .7) is a one-way system, and a = const . corresponds to a constant cur-

rent through the system, which therefore is not isolated . In fact, the ratio
T(l,r)/T(E2,r) at any two fixed points, 1 < 2, tends to zero for r - x .
It is, however, natural to transform to a coordinate system moving wit h
the above constant velocity, i . e. ' = - r. In the $ '-coordinates the solution
a = const. has no current . We have in fact an isolated indivisible system .
In these coordinates both (6 .18) and (6 .19) tend towards the equilibrium .

The general equation (6 .1) can thus be transformed to an isolated res t
system

(x', t) = Jdg(){oc(x' - t) - a(x', t) + ax, a(x', t)},

	

(6 .20)

provided the velocity iv = fd7pg(1)7t is convergent . Note that the transforma-
tion (6 .20) is applicable both for a periodic system and for an open in -
finite one .

Angular Distribution, n = 1

The previous examples of symmetric systems, if applied to multiple
scattering, are limited to small angles . Let us show, by means of an ex -

ample, how the treatment may be extended to large angles . We still suppose

that the energy loss of the particle is small within the distances in question .
This means that cross sections are time-independent . If v, N and da are
velocity, density of atoms and differential cross section, we can writ e

vNda = dQS (b9) .

	

(6 .21)

Here the differential solid angle is dQ = dOcos '9., and 79 the angle of de-
flection, while Ø is the azimuthal angle . The angular distribution of current
is SO), depending only on the angle of deflection .

We ask for the propagator T(y,,t), i .e. the angular distribution at tim e
t, if the angle is y = 0 at t = 0 . It obeys the integral equation
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a

	

27t

	

+ 1

ät
T(y~,t)

	

f
ô

~~ d(cos?A)S(~){T(y~',t)-T(y~,t) }

where y' is given by

	

(6.22)

cosy' = cos ycos + sin ysi n 'Osin Ø .

We expand T in Legendre polynomials, which are the eigenfunctions of th e
problem. Hereby the integration over 99 leads to a factorization, and w e
obtain finally

~
2 7cT(y',t) =

	

(v+ ;)Pv(cosy)exp( - tA„), (6 .23)
v! o

where the eigenvalues A, are

r
= 2~cJJI

	

d(cosi9')SO) {1 - P,,(cosD) } . (6 .24)
1

As to S('9), we ask for an extrapolation of power law distributions (6 .6) .

Let us consider merely the simplest case, corresponding to n = 1, and pu t

C12-2
S(z9)

	

(1 - cosh) 2
.

	

(6 25)

In fact, for 19' « 1, this becomes S(z~) -> (C i/2) •t93 , where

	

_ (fix + vy) i/2 ;

integrating over 19 .,j we obtain exactly the one-dimensional scattering (6 .6)
with n = 1 .

From eqs . (6 .25) and (6 .24) one gets easily Av = .zvC 1 and, finally per -

forming the sum (6 .23)

1 - e 2~c,t
~T ~V, t)

	

4~[(1 - e - .~c,t)2 + 2e-~c,t (t - cos 11)13/2 .

	

(6.~6)

When C,t « 1, the main part of T(p,t) is within small angles, an d

T (Ci t/2)(n20 2 + y2)- 3/2 , i .e . it becomes the two-dimensional version of
eq. (6 .11) . For large values of t, the distribution (6 .26) tends to the unifor m
distribution, in agreement with eq . (6.22) being an indivisible system, with

equilibrium T = (47)-1 .
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