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Synopsis

With a view at certain applications in potential theory a general study is made of a capacity
c in the sense of a finite valued, increasing, and sublinear functional > 0 defined on the cone o f
all finite valued, continuous functions

	

0 of compact support on a locally compact space X .
It is shown that any such capacity e is representable as the supremum of the family of all

linear capacities (- positive Radon measures) majorized by c . Like in integration theory, c may
be extended to a lower capacity c * and an upper capacity c ' , both defined for arbitrary function s
on X to [0, + ø] . The main object is the investigation of certain function classes, closed wit h
respect to c * .
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Introductio n

T
he notion of capacity is usually that of a set function (having some o f

the properties of a measure) . For the investigation of the capacities i n

potential theory 1 have found it advantageous to view a capacity C pri-

marily as a functional (with some of the properties of an integral) rathe r

than a set function . Thus one avoids the separate consideration of several ca -

pacities with respect to different "weight functions" (usually hyperharmonic

functions or potentials), cf. § 6 .7 .

In the present paper we treat a rather general notion of capacity as a

sublinear functional . More precisely we begin (Chapter I) by considering a

capacity as an increasing and countably sublinear mapping C :

	

+ (X)

[0, + co] . Here 5+(X) denotes the class of all functions on a set X into

[0, + Go] . When X is a topological space we call C an upper capacity if, in

addition, the value C (f) for any f E +(X) is the infimum of C (g) for

g f and g belonging to the class g = g (X) of all lower semicontinuou s

functions g E +(X) .
Next we study (Chapter II), likewise under the name of capacity, an

increasing sublinear functional c : ~o(X) -> [0, + œ[, where Wo(X) denotes

the class of all continuous functions of compact support on a locally compac t

space X, and with finite values 0. As in the special (linear) case of a

Radon measure (cf . CARTAN [8], BOURBAKI [2]) such a functional (capacity)

c has natural extensions to a lower capacity

	

and an upper capacity c* .

The latter is also an upper capacity in the sense of Chapter I .

The main interest will be focussed upon the investigation of certai n

subclasses of +(X) . In addition to the above class g3 we have the class Le o
of all upper semicontinuous functions of finite values 0 and of compact

support . By a process of closure defined in terms of the (upper) capacit y

in question we arrive at the basic function classes g3* and :'t°o . In the specia l

case of a Radon measure on a locally compact space which is countable

at infinity, g* and

	

ô consist of those functions (in ,+(X)) which are

,u-measurable and ,u-integrable, respectively. In the general case the tw o

classes are unrelated,

	

being the class of all quasi lower semicontinuou s
1*
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functions in +(X) whereas the particularly important class ~Pô consist s
of certain quasi upper semicontinuous functions in 3 +(X), cf. § 2 .5 .

In § 5 it is shown by a standard application of the Hahn-Banach the-

orem that any capacity c : Wo(X) -* [0, + 0[ (in the sense of Chapter II)
is representable as the "upper envelope" (supremum) of a certain family
? of positive Radon measures on the given locally compact space X-a
result announced earlier by CROQUET [10] . This allows us (Theorem 6 .2 )

to characterize V* n APö as the class of those functions f e W* U ~På for which

ffdu is finite and continuous when considered as a function of ,u e Y, using
the vague topology . In the theory of the "energy capacity" with respect t o
a symmetric lower semicontinuous kernel G : X x X > [0, + oo]-a principal
domain of application for the present study-this result implies that G i s
consistent (cf. [14], [15] in the case of a positive definite kernel) if and only
if every potential G,u of finite energy fG,ud u is of class . (with respect t o
the upper energy capacity) . Brief indications of this and other potential
theoretic applications of the present study are given in §§ 3 .8, 5 .7, and 6.7 .
A systematic account of such applications is in preparation .

Notations

For any set X we denote by g (X) the set of all subsets of X, and by
(X), resp . Sr,+(X), the set of all functions on X with values in [- 00 ,

+ ø], resp . [0, + ø] . The indicator function for a set A is denoted by 1 A .
The symmetric difference between two sets A, B is denoted by A A B .

Furthermore, R and N denote the real and the natural numbers, respectively .
The usual lattice operations (pointwise supremum and infimum) o n

(X) or +(X) are often designated by the symbols v and A, respec-
tively, and we write f+ f v O, f- (- f) v O. Moreover, we write fn /r f

(resp . fn ' f) to signify that the sequence (fn ),, E N of functions fn E 3T(X)
is pointwise increasing (resp . decreasing) with the pointwise supremum
(resp . infimum) f.

All the usual indeterminate expressions involving extended real num -
bers are interpreted as 0 . For example ,

0•(+oc) = 0, (+co)+(-co) = 0

Thus the elementary algebraic operations with extended real numbers ar e
always well defined . Note that the triangle inequality

la-bi <_ la -cH+Ic -bl

holds for arbitrary a,b,c, E [-

	

+ oo] .



Nr .7

	

5

CHAPTER I

Capacity as a Countably Sublinear Functional on + (X)

1 . Capacity on an Abstract Space

In the present section X denotes a fixed set (without topology) .

1 .1 . Definitions . By a capacity on X we understand, in this chapter, a n
increasing, countably sublinear (= positive homogeneous and countably sub -
additive) mapping C of 5+(X) into [0, + cc] .

Thus we should have, for f, fi, f2, . . . E +(X) ,

Eh < f2] = [ C (f1) c(f2)l,
C(af) = a C (f) for a E [0, + co[ ,

	

C (

	

fn) <

	

C (fn) .
nEN

	

nE N

Note that C (O) = 0 on account of (C2) .
Given a capacity C on X we put, for any extended real valued functio n

f e

	

(x),

	

C (f) = C(Ifl) .

Taking into account our conventions regarding indeterminate expression s

(see Notations above) we obtain for f, fl , f2 E ,F(X) and a E ]- co, + co [

C (af) = IaI C (f) ,

C (fi + f2) C (fi) + W2) -

It follows that C (fl - f2) = C (I fl - f21) defines a pseudometric on (X)
(in particular on .+(X )), to which we shall refer as the C-metric on g- (X )
(resp.+(X)). Two functions fi, f2 E °-(X) are called C-equivalent (or

just equivalent) if C(I fl - f2 1) = O .

1 .2 . The associated set function . From the functional C on . +(X) we

derive a set function, likewise denoted by C, defined for all subsets of X b y

C(A) = C(1A) .

Thus our capacity C : +(X)

	

[0, + cc] induces an increasing and count-

ably subadditive set function C : g (X)

	

[0, + co] for which C(0) = 0 .
Explicitly we have, for A 1 ,A 2 ,

	

. c X,

	

[A l c A2]

	

[ C (A1) -̀- C (A2)] ,

C( U An)

	

C (An) ,

	

nEN

	

nE N
C(Ø) - 0 .

(C1)

( C 2 )
(CO
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A set function with these properties was studied in [17], likewise under th e
name of a capacity on X. Concepts and results from [17] will be carrie d
over freely to the present case of the set function associated with a capacity
in the sense of § 1 .1 above .

In particular, a property P[x] is said to hold quasi everywhere (q . e . )
in a set A c X if C({x E Al non P[x]}) = O . If A = X we may write simpl y
q. e . (in place of q . e . in X) .

1 .3 . Lemma : For functions f, f1 , f2 E ',F+(X) we have :

(a) [f(x) = 0 q.e .] -<=>- [ C (f) = 0] .

(b) [f1(x)

	

f2(x) q .e.] C=> [C((f1 -f2)+) = 0]

	

[ C (f1)

	

C (f2)] •

(c) [C(f) < + x]

	

[f(x) < +

	

q. e .] .

Proof. (a) Let E: _ {x E XI f(x) > 0} . Then

f

	

lE +1E -H . . ;

	

1E

	

f +f + . . . ,

from which the assertion follows by use of (C 3). As to (b), write f:

(fl - f2)+ , and apply (a). Next observe that f1

	

f2 + f, and hence by (C 1 ) ,
(C 3 ) : C (f1)

	

C (f2 + f)

	

C (f2) + C (f) = C (f2) if C(f) = C ((f1- f2) + ) = O .
To establish (c) let E t : = {x e XI f(x)

	

t} for any t E ]0, + x] . Then

t1 Et

	

f for every finite t, and hence by (C 1 ), (CO

C (E+ø)

	

C (Et) = t-'C(t1 Et)

	

t-1C (f) ,

from which the result follows for t -~ + co . I

Corollary 1 . Let f E g-+(X), t E ]0, + x [, A c X, and suppose tha t

f(x)

	

t

	

q .e. in A .
Then C(A) < t- 1 C(f) .

(In fact, I A < t- lf quasi everywhere . )

Corollary 2 . Two functions f1 , f2 E f (X) are C-equivalent if and only if

f1(x) = f2(x) q. e.

(Apply Lemma 1 .3 . (a) to f:

	

- 1'20

1 .4 . Quasi uniform convergence . A sequence of functions fn e Sr' (X) i s
said to converge quasi uniformly to a function f e g (X) if there exists for
every e > 0 a set co c X with C(w) < e such that fn converges uniformly

to f on Cw as n -> x . In the affirmative case we clearly have fn(x) -)- f(x)

pointwise q.e .
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Theorem. If a sequence of functions fn E .F(X) converges in the C-metric

to a function f E (X), then there exists a subsequence of (fn) which con -
verges quasi uniformly to f.

Proof. Passing to a suitable subsequence we may suppose tha t
C(Ifn - f I) < 4- n for n = 1,2, . . . . Writing

Mn : = {x E X II fn(x) - f(x)I > 2-n} ,

Np : = U Vln ,
n > p

we get, from Cor . 1 to Lemma 1 .3, C(Mn)

	

2nC(Ifn - fI) < 2-n, and hence

C (Np) <- 1 2- n = 2-P . Clearly fn(x) -~ f (x) uniformly on CNp for each p,
n> p

hence quasi-uniformly . I

1 .5 . The Banach space L(C) . Like in integration theory one might con -

sider the subset Y c (X) consisting of all f E . (X) with C, (If I) < +
(and hence If(x)I < +

	

q . e .) . The quotient space L = L(C) of Y with

respect to C-equivalence is a vector space (unlike Y itself), and the map -
ping C(I f I) of Y into [0, + cc[ induces a norm on L(C) . By the standard
Riesz-Fischer technique it can be easily shown that L(C) is complete in thi s
norm, i . e . L(C) is a Banach space . (This result, however, will not be use d
in the sequel . )

1 .6 . Souslin functions. Capacitability . Let :/t° denote a subset of +(X)

containing 0 and stable under countable infimum . By an Yf-Souslin func-
tion f E + (X) we understand a function which can be obtained from
functions of class ° by application of Souslin's operation (A) as describe d

e .g. in CHOQUET [11] (with the obvious changes caused by our considera-

tion of the function lattice +(X) instead of the lattice .9(X) of all subset s
of X) .

The class of all -Souslin functions is stable under countable supremum
or infimum and contains .

Consider now a capacity C on X, or equally well any increasing mappin g

C :

	

+(X)

	

[0, + ~] .

According to CHOQUET [12], a function f E +(X) is called (C,Yt )-capac-
itable if

C(f) = sup{ C(h)Ih

	

h

	

f} .

We quote the main theorem of capacitability in the present abstract case :
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Theorem (CnOQuET [12]) . Suppose that the increasing functional C :
,97-'(X) -> [0, + co] is sequentially order continuous from above on A', and
sequentially order continuous from below on all of +(X) :

[hn ' h, h,, E

	

]

	

[C(hn,/) ->- C(h)],
7[1n

	

f, fn e

	

[C l+(X)]

	

in) -. C(T)] .

Then every AP-Souslin function f

	

is (C,YP)-capacitable .

2 . Some Basic Classes of Functions

In the sequel X denotes a Hausdorff' ) topological space . Writing 1.s .c .
and u .s .c . for lower and upper semicontinuous, respectively, we shall consider
the following subclasses of the class +(X) of all functions f : X -4- [0, + 00] :

(_ g(X))

	

{f e +(X) I f is 1 .s .c .} ,
AP = {f e +(X) If is u .s .c . and finite} ,

= {f E

	

I f has compact support} ,

W-1-

	

g' (1 Yé' = {f e g+(X) I f is continuous and finite} ,
ro = g n o = {f r+ 1 f has compact support} .

2 .1 . The closed classes .

	

At', Al . Let C denote a given capacity on X
in the sense of § 1 .1 . We denote by

	

At'', and A'ô the closures of g, AP ,
and APo, respectively, in the C-metric topology on 36--'(X) . Thus we have ,
for f E +(X), [f e g*] r> [inf.{ C(1f - ml)19) E g} = 0] ,

and similarly with i or o in place of g (and ` or

	

in place of g*) .

Clearly dPô c A'". Every function of class * is finite q . e . Each of the

3 classes is a convex cone which is saturated with respect to C-equivalenc e
(§ 1 .1 .) within ,F+(X) .

2 .2 . Theorem . g * is stable under countable supremum and finite infimum .
A' and' are stable under countable infimum and finite supremum.

Proof. Follows easily from the corresponding properties of

	

, A°o in
view of the inequalitie s

(sup fn - sup gon l
n

	

n

	

G_ sup l fn Tn( - ~ (1n - 99 n 1
linffsz-infg7nl

	

n

	

n
n

	

n

for finite or infinite families (fn) and (<pn) of functions of class

	

i -(X) . 1

1) The Hausdorff separation property is needed only in contexts involving compact subsets
of X, e . g . in connection with functions of compact support, thus in particular for the classe s

,

	

and
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2 .3 . Lemma . If g E g*, h E ", then

(g - h)+ E ,

	

(h - g)+ E

Similarly withô in place of A*.

Proof. Follows easily from the corresponding properties of g and X'
(resp . Ye'o) in view of the inequality

I(g-h)+-(m-~v);I < Ig -~I- Ib I h - v I

for functions g, h, g), y) of class

	

+(X) .

2 .4 . Lemma, Let A c X. Then A is quasi open (quasi closed) if and onl y

if I A E g* (I A E A") . Moreover, A is quasi compact if and only if 1 A E Al .

Proof. As to the notions quasi open, etc ., see [17, § 2], to be applied her e
to the set function C(A) = C(l A) associated with the given capacity func-
tional C : +(X) -> [0, + Go] as described in § 1 .2 . The "only if" part of
the lemma is obvious since

[A open (closed)]

	

[1 .4 E g (1 A E Ye)] ,

[A compact]

	

[lA E X) o] .

Conversely, let I A E JP'` (resp . ), and choose 9) E Ye (resp . moo) so that
C(Il A - 991) < e. The set E : = {x E X p(x)} is closed (resp . compact) ,
and 11 A - cp1 ? z on A AE, that is ,

1Å4E < 21l Å

Consequently, C(A AE)

	

2C(11A - g 1) < 2e. The proof is quite similar in
the case I A E g* . I

2 .5 . Theorem . Let f E +(X) . Then

(a) f E g * if and only if f is quasi l .s .c .

(b) The following propositions are equivalent :

(i) f Ep .
(ii) f is quasi u .s .c . and has a majorant of class ö
(iii) f is quasi u .s .c ., and inf { C ((f - h)+) l h E 0'o} = 0 .

Proof. As to the notions of quasi continuity and quasi semicontinuity,
see [17, § 3] . Any function f of class g* (resp . A*) is by definition a limit
in the C-metric topology (§ 1 .1) of a sequence of functions of class g (resp .

Ye), and hence f is quasi l .s .c . (resp . quasi u.s .c .) according to Theorem
1 .4, because the quasi uniform limit of a sequence of quasi l .s .c . (resp .

quasi u .s .c .) functions is a function of the same kind ([17, th . 3 .2]) . This
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establishes the "only if" part of (a) and the implication (i)

	

(ii) (even

with

	

in place of too) .

Next suppose that f is quasi 1 .s .c. For every n E N the function fn : _
fA n is quasi l .s .c. and bounded . We propose to show that fn E

	

for al l

n E N, and consequently that f = sup fn E

	

according to Theorem 2 .2 .
n

By definition there are sets w of arbitrary small C(w) such that fn is I .s .c .

relatively to Cw . Since 0 s fn s n there is a 1 .s .c . function T. such that
0 <_ 9)n n which agrees with fn on Cw .2) Clearly C(I fn -9)nl) nC(w) is
as small as we please .

As to (b), the implication (ii)

	

(iii) is obvious (even without quasi

u.s .c .), since for any g E .

	

such that g f and for any h E .moo

(f - h)+ --5= (g - h)+

	

lg - hl .

Finally suppose that (iii) holds . Since (f - h)+ = f - fA h, this implies that
f may be approximated in the C-metric topology by functions of the for m
fA h with h E Yeo . Since fA h is quasi u .s .c. and s h E o, it suffices t o
prove that any quasi u .s .c . function f E +(X) having a majorant h E moo ,
is of class Ye° . By definition there are sets w of arbitrary small CO)) such

that the restriction of f to Co) is u .s .c. The u .s .c . envelope cp of f • lc, is h,

hence 9o E Ado, and agrees with f on Cw . Since h, and hence f, is bounded ,
says a, we find that C(If -9)1) = C(l wlf - 92 1)

	

aC(w) is as small as we
please . I

Definition. A function f E , (X) is called semibounded if

infC ((IfI - t)+) = 0 .

f

t > 0

Corollary . A function f e g'+(X) is of class ''o* if and only if f is quas i

u .s.c ., semibounded, and has the further property

inf{C(f•1cK)IKcompact} = 0 .

This follows by use of (iii) of the above theorem since any h e .YPo ha s

a majorant of the form t . l K with t e [0, + ce[, K compact; and since any

such function t • 1 K is of class Yi'o .
Note also that the above condition in.f C (f • 1 c K) = 0 is (necessary and)

sufficient for a function f E YP" to belong to .74' . This appears from the
estimate

2 ) For instance take for 9)n the 1 .s .c . envelope of the function which equals fn in Cw, an d
n in w .
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If- h .1 KI

	

f lex+If- h l

with h E l~, K compact, and hence h• 1 K E o .

Remark . In the case of an upper capacity C (§ 3 .1 below) on our Haus-

dorff space X, any function of class ,Pô, and more generally any functio n

f E g (X) such that inf{C (I f l • lcK ) I K compact} = 0, has in particular the

quasi limit 0 at infinity, in the sense that there are open sets w c X with

C (w) as small as we please such that the restriction of f to Cco vanishes at

infinity in the closed, hence locally compact, subspace Cw . This follow s

from [17, § 3 .6.] since any function f as stated is the limit in the C-metri c

topology (hence also the quasi uniform limit) of a sequence of function s

of compact support .

Similarly, any function f E and more generally any semibounde d

function f e (X), is in particular quasi bounded in the sense that ther e

are sets w c X with C (w) as small as we please such that f is bounded on

Cw . Note also that any function f e (X) such that C(If I) < + co, is quasi

bounded, and that any quasi bounded function is finite quasi everywhere .

(This follows from the proof of Lemma 1 .3 (c) . )

2 .6 . Theorem. Let f E +(X), and consider the following statements :

(i) f E Ø*.

(ii) f is quasi u .s .c . and has a majorant of clas s

(iii) f is quasi u .s .c ., and inf{C((f - h)+ ) Ih E

	

} = 0 .

(iv) T ie e .C'ô for every 99 E Ye() (or just for every 9 E ro, or every 99 = 1 1c

with K compact) .

Then (i) = (ii)

	

(iii)

	

(iv) . Conversely (iv) implies (i) if X is locall y

compact and countable at infinity .

Proof. For the implications (i) (ii) (iii) see the correspondin g

parts of the proof of Theorem 2 .5 . For any cp E moo, say with (p < a, the

estimate

(Tf - Th)+ = cP
. (f - h)+ < a (f - h)+

allows us to conclude from (iii) that 99f E ßl'å (by use of (iii) of Theorem

2 .5 .) because q~h E o (when 9 E o and h e 'A'), and pf is quasi u.s .c .

along with f (when (p is u .s .c .) . Finally, the validity of (iv) for all 9) = 1 K

with K compact implies the same for any 99 E o (thus in particula r

for any Ø E rå) because the relation cpf = (p • (lxf) (with K = the com-

pact support of cp) shows that 91 is of class Ye° as product of cp E o and
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1 Kf E M . Thus it remains to prove that f is of class whenever
cpf E :Yt'o (or equivalently q7f E AP*) for all q' E n, assuming that X i s
locally compact and countable at infinity . It is well known that ther e
exists on such a space a partition of unity (qn)n E N of class n with the
property that every compact subset of X meets the support of at most finitel y
many

	

For given s > 0 choose functions hn E A° so that C (I pnf - h nI) <
s/2n . Clearly we may assume that 1in vanishes outside the support of Tn .
The function h :

	

h. is then likewise of class ' because the sum is finit e
nE N

in any compact neighbourhood of a point of X . For f- h =

	

(epnf - hn)
we find C(If h < s. I

	

n E N
- I )

Corollary . On a locally compact space X which is countable at infinity a
function f e +(X) is of class * if and only if f is quasi u .s .c . and locally
semibounded in the sense that f . 1 K is semibounded for every compact set K
(or equivalently for some neighbourhood K of every point of X) .

3 . Upper Capacity

3 .1 . Definition. By an upper capacity on a topological space X we under -
stand a functional C : ,'+(X) ->- [0, + co] which, in addition to (CI), (C2) ,
(C3) of § 1 .1, has the following property for every f E +(X) :

(C4) G(f) = inf{C(g)Ig e g, g

	

f} .

The associated set function C : Ø(X) - [0, + ø] (§ 1 .2) is then an
outer capacity in the sense of [17, § 1 .5] because

C(A) = inf{C(G) I G open, G A}

for every set A c X. In fact, let g E g, g

	

I A , and let 0 < t < 1 . Then
G :

	

{x E X I g (x) > t }

is open and contains A . According to Cor . 1 to Lemma 1 .3 (or directly) ,
C(G) t- 1 C(g), and here the right hand member may be taken as clos e
as we please to C(1 A) = C(A) by virtue of (C 4)

In the sequel we always suppose that C : (X) --> [0, + co] denotes an
upper capacity, and moreover that the topological space X is a Hausdorff

space (at least in contexts involving compactness) .

3 .2 . Lemma. In the case of an upper capacity C we have, for an y

f e . +(X) :

[f E

	

g
.*]

r> [inf{C ( c' - f) I q' E -= f} = 0] ,

[f E ` ] [inf{C(f - q') I T E SP, 9' < f} = 0] ,

[f E Pà] [inf{C(f - q') IT E moo, f} = 0] .
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Proof. By definition (§ 2 .1), the implication holds (for any capacity) .
Conversely, let f e g:x and s > 0 be given. Choose y e g3 so that C(If - yl) <
8/ 2, and next g E g with g > If- yl so that C(g) < e/2. Then we may us e

( = z p + g (E g) since c p y + I f

	

f, cp - f = g + (y - f), and hence

G(99-f) <
C (g)+ C (I y - fl) < e .

In the case f e YtP'r (or ~Pö), proceed similarly, now with y E

	

(or ro),
and take p = (y) - g)+ . I

3.3 . Theorem. In the case of an upper capacity C on a locally compac t

space X, g * n <IPö is the closure of g n .iPo = Wo in the C-metric topology on
g'+(X) .

Proof. We shall prove that any function f E g. (1 ./tPö can be approx-
imated in the C-metric (§ 1 .1) by functions cp E ro. For any s > 0 ther e
exist, by the preceding lemma, functions g E g and h E ,Po such that
h < f < g , C(g - f) < 8/2, C (f - h) < 8/2, and hence C(g - h) < e . Ac-

cording to Lemma 3 .4 below there exists q9 E

	

such that h < 99 < g. I t
follows that If- 991

	

g h, and hence C (I f - 99 1) < s . I

3 .4 . Lemma . On a locally compact space X, let g E g, h E YPo, and sup-

pose that h

	

g . Then there exists 9) E Wo such that h < q) < g .

Proof. This follows from the "between theorem", due to H. Hahn in
the metrizable case (for a simple proof see HAUSDORFF [18]), and to H .
TONG [20] in the most general case, viz . that of a normal space. The be-
tween theorem asserts that, if h is u .s .c . and g is l .s .c . on a normal space ,
and if h <- g, then there exists a continuous function <p such that h < q < g .
In the special case of a compact space X a simple direct proof can easil y
be given (cf . BOURBAKI [1, 1 . ed., exert . 27, p. 72]), and this leads to th e
above lemma by compactification as follows (in the non-compact case) :

Let X = XU { co} be the 1 point compactification of the locally compac t
space X, and define extensions g, fi of g, h from X to X by putting 4(00 _
Îi ( = 0. Then is l .s .c. ., and ii is u .s .c . According to the between theorem
for the compact space X there exists a continuous function q' on X such
that h

	

< g (hence ry >_ 0) . Let 99 denote the restriction of to X, and
put a = suph(x) (< + 00) . Replacing if necessary cp by 99A awe may suppos e

ZE X
cp finite . Since h E ;Yeo we may achieve that 99 has compact support, hence
Ø E n, replacing if necessary cp by 99g), where y E n(X) is so chosen that

= 1 on the support of h, and 11'

	

1 everywhere . I
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Remark . The assumption that the space X be locally compact is easily

shown to be necessary in Lemma 3 .4 as well as in Theorem 3 .3 .

3 .5 . Definition . An upper capacity C : +(X) -- 10, + Do] will be called lo-
cally finite if it has one of the following equivalent properties :

(i) C({x}) < + co for every point x E X.

(ii) Every point of X has a neighbourhood of finite capacity .
(iii) C(K) < + co for every compact (or quasi compact) set K c X.
(iv) C(h) < + cc for every h E o (or X'*o) .

3 .6 . Theorem . Suppose that X is locally compact, and that the upper
capacity C is locally finite . Then

(a) For any downward directed family of functions ha E o

C (inf h a ) = inf C (ha ) .
a

	

a

(b) The same holds with Yfo replaced by the larger class of all u .s .c . functions
of class . ô .

(c) For any decreasing sequence of functions h.n e <Pô

C(infhn) = infC(hn) .
n

	

n

Proof. (a) Let h = infh a . For any t > CO) there exists by (C 4), g e

such that g h, C(g) < t . For such a function g, the downward directe d

family of functions (ha - g)+ E Yeo converges pointwise to O . According to

Dini's theorem the convergence is uniform. For every e > 0 there is, there -
fore, an index a such that (ha - g)+ < s everywhere . We may take a > ß

where ß denotes a fixed index . Denoting by K the compact support of hß ,
we obtain ha s g + e • 1 K, and hence

	

C (ha)

	

C (g + e -1K) <- C(g) + eC (K) < t

by suitable choice of e and next of a > P . This implies infC(ha) < t, and

	

consequently infC(h a)

	

C(h). The converse inequality is obvious .

(b) In the slightly more general case where each ha is u .s .c . and of class

ô we choose for some fixed index ß and for any e > 0 a function 99 E .�é20

99 < hß, so that C(hß - 99) < e . Since ha n go E? 0 o decreases to h n 9, (where

again h : = infaha), we obtain from (a)

C(hn q?) = infC(ha n q*
a
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and hence there is an indexa > ß such that

C(ha Aq') < C(hAq')+E

	

C(h)+6 ,

C (ha)

	

C (ha A q') + C ((ha - q')+) < C (h) + 28 .

(c) Given r > 0 choose qq n E dro so that qq n

	

hn and C (hn - q'n) < e/2n

(Lemma 3 .2), and put

fn : = 991 A . . . A q'n, f :

	

inf qp n = inf fn .
n

	

n

Then (fn)n e N is a decreasing sequence of functions of class AP o, and

f infhn . According to (a) above ,
n

C(fn) < C(f) + s

	

C(infhn) + E
n

for all sufficiently large n . Since (h)n E N is decreasing, we have for ever y

n E N

0

	

hn fn

	

sup (hp -(pp) <

	

(hp q'p) •
P~ n

	

P ~ tt
Consequently ,

C (hn)

	

C (fn) + C (hn - fn)

	

C (fn) + r

	

C(infhn) + 2r
n

for n sufficiently large . I

3 .7 . Use of the quasi Lindelöf principle (cf . DooB [13], FUGLEDE [17]) .

Suppose now that the Hausdorff space X has a countable base of open sets ,

and that the capacity C is sequentially order continuous from below (on
-F-(X), cf. Theorem 1 .6). Further let there be given on X a new topolog y

r, compatible with C in the sense of [17, § 4 .3] (more precisely : compatible

with the quase topology determined by the set function Al->- C(A) : = C(1 A)

associated with A) .
Under these hypotheses we have established in [17, § 4 .4] the validity

of the "quasi Lindelöf principle" of DooB [13] . Formulated for functions i t
states that any family (fa) of xc-l .s .c . (resp . -r-u .s .c .) functions fo, E (X)
contains a countable subfamily (fan)n E N whose pointwise supremum (resp .

infimum) equals that of the given family quasi everywhere .-If (fa) is up-

ward (resp . downward) directed, we may of course achieve that the se-
quence (fan) becomes increasing (resp . decreasing) .

Theorem. Under the hypotheses specified above we have (a) C (sup fa) =

sup C (fa) for any upward directed family of t-l .s .c . functions fa E +(X) .
a



16

	

Nr . 7

(b) If moreover X is locally compact and C a locally finite, upper capacity ,
then C(inffa) = infC(fa) for any downward directed family of r-u .s .c . func-

a

	

a
tions fa having majorants of class

	

and hence being themselves of class YPö) .

Proof. The functions fa are quasi l .s .c ., respectively quasi u.s .c . (and hence
of class' by Theorem 2 .5), by virtue of the required compatibility be-

tween the new topology r and the quasi topology determined by C, se e
[17, Lemma 4 .3] . In view of the quasi Lindelöf principle stated above ,
statement (a) now follows from the assumed sequential order continuity of
C from below, and (b) from Theorem 3 .6 (c) .

3.8 . Example . The first results of the type of Theorem 3 .7 were establishe d
by BRELOT [5], [6] in the framework of classical or axiomatic potentia l
theory, the new topology r being here the fine topology of CARTAN [9], that
is, the coarsest topology on X such that every function in the cone °I of all
superharmonic functions 0 on X becomes continuous . The space X is
now a "harmonic space", satisfying the group of axioms (A l) in Brelot' s

axiomatic theory of harmonic functions [4] . It was proved by BRELOT [5] ,

[6] that3 >

Rinff« = mfRfa ,
a

	

a

Rsup f« = supRf« ,
a

	

a

or in the equivalent integrated form

fRinff« dm = inf f Rf« dm ,
a

	

a

f Rsupf« dm = supf Rf«dm .
a

	

a

Here (fa ) denotes an upward (resp . downward) directed family of finel y
l .s .c . (resp . finely u.s .c .) functions 0 on the harmonic space X. In the

second case the finely u .s .c. functions fa should, moreover, be majorize d
by a semibounded potential V. 4 ) The measure rn may be any harmonic

3) For any function f E , +(X), Rf denotes the infimum of (u E ol/ u > f} in the
complete lattice Ql„ = Wt.) {+ ø} of all hyperharmonic functions > 0 on X. Explicitly, th e

infimum infu « of any family of hyperharmonic functions ua E off „ in this lattice q' o, is the

1 .s .c . envelope of the pointwise infimum infu« (from which it differs only in some polar set ,

that is, a set contained in {x E XIu(x) = ± oo} for some u E O) . In particular, Rf is the
1 .s .c . envelope of the pointwise infimum Rf of (u E Qe u > f} .

4) IL is known that any finite valued potential is semibounded . In the classical case of a
Green space X with the Green kernel G, a potential V = GA of a measure A > 0 on X is semi -
bounded if and only if A does not charge the polar sets and GA $ +
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measure, or more generally any positive Radon measure (+ 0) such tha t

fudm < + ø for every u e ' .

These results of Brelot may be viewed as a particular case of Theore m

3 .7, corresponding to the locally finite, upper capacity C defined b y

C(f) = fÊf drn,

	

f E +(X) ,

with m as specified above . This capacity C is known to be sequentially

order continuous from below (in case (A l) of Brelot's axiomatic theory) .

According to BRELOT [7] the fine topology on X is compatible with the

quasi topology determined by the set function A --> fRl dm associated with

C (see also [17, § 5.6]) . Hence it is easily shown by application of Theorem

2 .5 that a finely (hence quasi) u .s .c . function f > 0 on X is of class A'ô

(with respect to the above capacity C) if and only if f is majorized quasi

everywhere by some hyperharmonic function V of class ô (the smallest

such V being Pi) . And in view of the corollary in § 2 .5, a hyperharmonic

function V 0 is of class :it°ô if and only if V is a potential which is semi -

bounded in the sense of BRELOT [6], or equivalently in the sense of Def .

2 .5 above (with the capacity f 1--> C(f) = f Rf dm) .

3 .9 . a-finite sets . A set A c X is called a-finite with respect to a capacity

C : ,+(X) [0, + 00] if A can be covered by a sequence of sets A. such

that C (An) < + 00 . When C is an upper capacity the sets An may of course

be taken as open sets .

Lemma . A set A c X is a-finite with respect to an upper capacity C if and

only if there exists a function g E ' such that C(g) < + ø and g(x) > 0
for allxeA.

Proof. If g has these properties then A is covered by the sets An : _

{x E X I g(x) > l fn), and C (An) nC(g) < + .0 . Conversely, any coverin g

(An) as stated gives rise to a function f : Z2- nC (An)- 1 1 An E T +(X) such

that C(f) < + 00 and f > 0 in A. Since C is an upper capacity there exist s

g E g, g

	

f (> 0 in A) such that C(g) < + co .

3 .10 . Use of a weight function . Let C : Y-+(X) -~ [0, + .0] denote a ca-

pacity in the sense of Def . 1 .1, and let a function f E+(X) be given. The

set function Cf : Ø(X) - [0, + co] defined by

CA(A) = C (f' 1A)

is then a capacity in the sense of [17] (cf. § 1 .2 above for the particula r

case f = 1) .
Mat. Fy s . Medd . Dan.Vid . Selsk. 38, no . 7.

	

2
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Theorem . Suppose that the functional C : .+(X) -+ [0, + 00] is an upper
capacity on a topological space X, that the weight function f is of class '*,
and that the set Xo : {x E XI f(x) = 0} is a-finite . Then the above set func-
tion Cf is an outer capacity :

CA(A) = inf{Cf(G) I G open, G A}

for every set A

	

X.

In establishing this latter relation for a specified set A, it suffices to as-

sume that A n Xo, rather than all of Xo, be a-finite. Note that, for f = 1 ,
the theorem was obtained in § 3 .1 . As to the notion of outer capacity in
general see [17, § 1 .5] .

Proof. We may suppose that Cf(A) < + co . Consider functions h e
and gi , g2 E with C (g2) < + .0, such that

h

	

f

	

gi - f- IA ,

g2 > 0 on {x E Alf(x) = 0}

(cf . Lemma 3 .9) . Let e > 0, and writ e

g :

	

(1 + e)gi + egg .

Then g e W, g > f on A, and hence the se t

G :_ {x E XI g (x) > h (x»

is open and contains A . Since g > h • 1 G , we obtain

CA(G) = C(f•la)

	

C(h 1 G)+C(f-h)

C (g) + C (f -h)
< (1 + e)C(g i) + eC(g2) + C(f -h),

which may be taken as close to C (f • 1 A ) = Cf(A) as we please by appropriate
choice of h, gi. , and e > O .

Remarks. 1) Note that Xo is a-finite if f > 0, or if C is locally finite and
X is of class tea . Simple examples show that the a-finiteness hypothesi s
in the above theorem cannot be dropped . Also the hypothesis f E './e'* can-

not be replaced by f quasi u .s .c. and quasi bounded (cf . § 2.5) .
2) Under the same hypotheses as in the above theorem the functiona l

Cf defined by CO) = C(fp), 9 E +(X), is an upper capacity . (The proof
is similar) .
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CHAPTER I I

Capacity as a Sublinear Functional on ro
Throughout this chapter, X denotes a locally compact (Hausdorff) space.

4. Extension to a Lower and an Upper Capacity

4.1 . Definition. By a capacity on a locally compact space X we understand ,
in this chapter, an increasing, sublinear functional c defined on n, = ro(X)
(the cone of continuous functions on X to [0, + co[ of compact support) and
with finite values

	

0 .
Thus we should have, for T, Tl , cp2 E

	

and a E [0, + co[, the followin g
properties

(01)

	

[991 < m2] u [c (4p1)

	

e(p2)] ,
(c2)

	

c(acp) = ac(q,) ,

(C3)

	

e (99 1 + Ç 2 )

	

e (901 ) + C(g72) ,

and furthermore 0

	

c(T) < + co . Note that c(O) = 0 on account of (c 2 ) .

4 .2 . Extension to Yeo and g. Given a capacity c on X, we define for
hEA'oandgE

c(h) = inf{c(cp)I T E

	

h} ,

c (g) = sup{c(T) I T, E W-0', (

	

g} .

This is permissible and leads to a well-defined extension of c to g U o
because g n

	

o = '̀o, and c is increasing on 'o by (cl) . Note that
c(h) < + co for every h E moo . This extension of c to ' U Yeo is likewise
increasing, the only non-trivial case being the implicatio n

[h E o,gE g',hg] [c(h) c(g)], ( 1 )

which is an immediate consequence of the "between theorem" in the form
given in Lemma 3 .4 .

4 .3 . Theorem . (a) For any upward directed family of functions g a E

c(supga) = supc (ga) •
a

	

a

(b) For any downward directed family of functions ha E o

c(infha) = inf c (ha) .
a

2*
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Proof. (a) Write g : = sup ga . Since g E g, there exists for any number

t < c(g) a function *p E

	

such that çc g and c(p) > t. Choose y, E W o

so that y = 1 on the compact support of 9), and p 1 everywhere . Since
the downward directed family of functions (go - ga)+ E di% converges point-
wise to 0, the convergence is uniform by Dini's theorem . Denoting by ß a
fixed index, there exists for any e > 0 an index a >- ß such that (go - ga)+ < e
everywhere . It follows by our choice of y that go ga + eye everywhere .
From this inequality we obtain 5 )

c(9,) < c(ga) + ec (y,) .

Choosing e > 0 small enough so that ec(y)

	

c(go) -t, we have now estab -
lished the existence of an index a such that c(ga)

	

t, and we have thu s
obtained the non-trivial inequality c(g)

	

sup c (ga) .

The case (b) is analogous and even simpler, cf. also the similar proof
of Theorem 3 .6 (a) . Actually (b) follows from Theorems 3 .6 (a) and 4.5 . I

4 .4 . The lower capacity c :fi and the upper capacity c" . These are defined
for arbitrary f e g-+(X) by

c :.(f) = sup{c(h) I h E 'o, h

	

f},

c,(f) = inf{c(g) Ig E g, g

	

f} .

The functionals c : , c* : +(X)

	

[0, + n] are evidently increasing, and we
get from (1), § 4 .2 ,

for every f E +(X) . A function f E F+(X) such that c:H (f) = c*(f) is called

capacitable (with respect to the capacity c), or c-capacitable . For any capac-
itable function f we shall allow ourselves to write simply c(f) in place of

c,(f) or c"(f), and to call c(f) the capacity of f. This is permissible (an d
leads to our ultimate extension of the original functional c on `'+) on ac -
count of the following lemma .

Lemma . Every function f of class or o is capacitable, an d

c*(f) = c*(f) = c(f) .

Proof. If f E o we have

c*(f) < c(f)

	

c*(f) .
5 ) In fact, (92- ey)+ e rô , (q~ - ey,)+

	

g e,, and hence c(rp) < c((g9 - np)+) + c(ev) < c(g ,, )
+ ec(4p) .

c,=(f) < cÄ(f) (2)
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Here the inequality follows from the definitions of c"'(f) and of c (f) (for

f E .1(o) because 6 n.-The case f E g is quite analogous . I

4.5 . Further properties of c:r and c* . It is immediately verified that c K and

c* are positive homogeneous (just like c itself on n), that is ,

c* (af) = ac*(f), c*(af) = ac*(f )

for f E +(X), 0

	

a < + co . Moreover, c* is countably subadditive :

c*(

	

fn)

	

eV.) (fn E -
C

+(X)) .

	

(3)
nEN

	

nE N

The proof of this is easily reduced to the case fn E 6', in which case Theore m

4.3 (a) allows us to reduce further to the case of a finite sum, or, by recur-

rence, to a sum of just 2 functions of class 6 . Approximating each of thes e

two functions by the upward directed family of all its minorants of clas s

ro, and applying Theorem 4 .3 (a) once again, we have finally reduce d

(3) to the subadditivity of c on ro as stipulated in (c 3) of Def . 4 .1 .

Next we propose to show tha t

c.(fi + f2)

	

c* (fi) + c*(f2)

	

(4)

for all fl , f2 E F+(X). Let h E ,'t°o, h

	

h. + f2 , g E , g

	

f2 . Then
(h g)+ E °o (h - g)+ < f1, and hence, by (3) and Lemma 4 .4 ,

c(h)

	

c ((h - g)+ ) + c(g)

	

c, (fi) + c(g) .

This establishes (4) because c(h) and c(g) may be taken as close as w e

please to c (fl + f2 ) and c'(f2 ), respectively .
In view of (3) we have established, in particular, the following theore m

serving to justify our use of the name upper capacity for c* .

Theorem . For any capacity c : ro(X) - [0, + cc[ (in the sense of Def.
4.1) on a locally compact space X the associated upper capacity c* : g+(X) ->
[0, + co] is an upper capacity in the sense of Def. 3 .1 . Moreover, c* is locall y

finite (Def. 3.5) . A function f E+(X) is c-capacitable (c*(f) = ca,(f)) if and
only if f is (c*, moo)-capacitable in the sense of § 1 .6 .

Remarks. 1) In order that a locally finite, upper capacity C : F+(X)
[0, + co] (in the sense of Def. 3.1) on the locally compact space X have the

form C = c'' for some c as above, it is necessary and sufficient tha t

C(g) = sup { C (T)I9' E ~̀0,

	

g}

	

( 5 )
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for every g E g. In the affirmative case c is of course uniquely determine d
as the restriction of C to ~o. Note also that, according to the between theorem

(in the form given in Lemma 3 .4 above) it suffices to verify the apparently

weaker condition derived from (5) by replacing ro by .moo (in other words
the (C, .°o)-capacitability of any g e g) .

If X has a countable base, and if C is sequentially order continuou s
from below, then (5) holds because any g E g is representable as the point -
wise supremum of an increasing sequence of functions of class ro.

2) If c* is sequentially order continuous from below (on . +(X)), it
follows from Choquet's theory that every '°o-Souslin function is c-capacitabl e
in view of Theorem 1 .6 above because c' is order continuous from abov e
on .YPo according to Theorem 3 .6 (a) or Theorem 4 .3 (b) .

3) In view of the above theorem we may of course freely use the con-
cepts and results from Chapter I, and also from [17], taking C = C ., the
upper capacity associated with a given capacity c : Wo(X) > [0, + co[ . In
particular, we have the closed classes 6*,~Pö, etc . The expressio n
quasi everywhere (q. e .) means : everywhere except in some set E such that
c*(E) = 0. (We put c"(E) = c*(I E) for every set E c X, cf. § 4.7 . )

4 .6. Lemma . The capacitable functions f E +(X) form a closed subset of

+(X) in the c*-metric topology . In particular, every function of class g * or
ô is capacitable, in the latter case with finite capacity .

Proof. Let f E F+(X), and suppose that there corresponds to any e > 0
a capacitable function q) E g-+(X) such that c*(j f - < e. Since f s q~ +

(f- gyp)+, and vice versa, we obtain from (3) and (4), § 4 .5 ,

c :(f) < cß (9)) + c --((f - 0+) < c,.(4') + s,

cr(9)) < ca_(f) + c ((9' - f)+) 5 c (f) + e,

and hence c*(f)

	

c.t (f) +2e . The last assertion follows now from the fi -
niteness of c on .Po .

4.7 . Capacity with respect to a weight function . Let c : ~ö(X) > [0, +
denote a capacity in the sense of Def. 4.1 on a locally compact space X .

For any compact set K c X we pu t

c(K) : = c(lK) .

More generally, let a function f E

	

be given, and define for any compac t

set K

cf(K) : = c(f•1K) .
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This makes sense because f• l K Eô by virtue of Theorem 2.6 (iv), and

hence is c-capacitable by the above lemma . Clearly cf is finite valued, in-

creasing, and subadditive, and cf(Ø) = 0 .
It will be shown in the theorem below that the set function Cf , defined

on the class .Y1 ' = ./C(X) of all compact subsets of X, is "continuous from

the right", and hence is a capacity in the sense of CHOQUET [10, § 15] .

We call this set function of the set function, or capacity, with the weight

function f e Ø'' associated with c. In the case f = 1, where we write c l(K) =
c(K), we simply speak of the associated set function .

From the finite and increasing set function cf :

	

(X) -3 to, + co] (where

f E *) we derive in the usual way inner and outer set functions cf* ,cf
.9(X)

	

[0, + co] :

cf ,(A) : = sup (cf(K) ~ K compact, K c A} ,

cf (A) : = inf{cf * (G) ~ G open,

	

G ~ A}.

Clearly these set functions are increasing, and take the value 0 at the voi d

set Ø . Moreover cf ,(A) cf(A) for any set A c X. We call a set A capac-

itable with respect to cf , or cf-capacitable, if cf ,(A) = 4"(A) . In that case
we may write simply cf(A) for the common value . This is justified becaus e
compact sets are cf-capacitable in view of the following theorem . (It i s

trivial that open sets are cf-capacitable . )

Theorem . For any f E

	

'. and any set A c X we have cf*(A) = c ., (f 1A) .

If moreover {x E A I f(x) = 0} is a-fnite with respect to c* then 4:(A)
c*(f • 1 A) . The sign of equality subsists here if, in addition, f E W* .

Proof. Ad cf; (A) . For any compact set K c A we have f . l K E

f• l K

	

f• 1 A , and hence

cf(K) : = c (f • 1 K)

	

c*(f -1A) •

This shows that cf*(A)

	

c,(f • 1 A ) . Conversely, let h E moo, h < f• 1A, and
write

Kn : = {x E X I h (x) > 1 /n}

for n E N. Then K. is a compact subset of A, and so cf(Kn)

	

cf*(A) . De -

noting by K the compact support of h, we have

	

I2

	

n -1 1 K +f•lKn ,

and hence from the sublinearity of c "

	

c(h)

	

n lc(lK) + cf(Kn) .
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Since c(l K) < +

	

and cf(Kn)

	

cf*(A), we conclude for n -> + co that
c (h)

	

cf*(A), and consequently c* (f • 1 A) < cf*(A) .

Ad cf*(A) . According to Theorem 3 .10 ,

	

c x (f•1 A) = inf{c(f•1 G)G open, G

	

A} ,

and hence c*(f • l A )

	

c;(A) because c*(f • l G) ? c * (f • l G ) = cf*(G) . This ar -

gument shows, moreover, that c*(f .1 A) = fc(A) holds provided that c`(f' 1 G)
= c*(f . 1 0, that is, if f • 1 G is c-capacitable for every open set G . And this i s
the case, in particular, if g E g*, for then g- 1 G e g for every open set G .
(For another case where f • 1 G is capacitable for all open sets G see Remark

1 below.) I

Corollary . Let f e A° F . The inner capacity cf .,, with the weight function f
is countably sub additive on universally measurable sets . The outer capacity cf

is countably subadditive .

The former statement follows from Theorem 7 .1 below in view of th e
identity cf , .(A) = c *(f . 1 A ) . The latter statement follows easily from the former
applied to open sets .

Remarks. 1) Suppose that the upper capacity c* is sequentially order con-
tinuous from below (on arbitrary functions X -+ [0, + cc]) . Suppose further
that either (i) f E

g : nand {x E XI f(x) = 0} is a-finite ; or (ii) f E * ,

and X has a countable base . Then

	

c(A) = c*(f' 1 A),

	

cf*(A) = c*(f' l A )

for arbitrary sets A c X. It follows that the outer capacity cf with respect
to the weight function f is sequentially order continuous from below on
arbitrary sets, and hence, by Choquet's theory, that any K-analytic set
A c X is cf-capacitable (CHOQUET [10, § 30], see also SroN [19]) .

As to the proof of the equality c:;(A) = eV-1 A ) in the remaining cas e

(ii) we merely have to note (cf. the end. of the proof of Theorem 4 .7) that
f • 1 G is c-capacitable for every open set G ; and this is clear also in case (ii)
since f• l G is then equivalent to a function of class (ß°o) 6 and hence c-
capacitable because c is sequentially order continuous from below . (In

fact, the open set G is of class Or, here, and f E A'* is obviously equivalen t

to a function of class

	

(7 . )

2) Consider a function f e W* n such that {x E XI f(x) = 0} is a -

finite with respect to c'" . For any cp e Wo we have fØ E Y ö by Theorem 2 .6 .
Hence a new capacity cf (in the sense of Def . 4.1) is defined b y

cf(w) : = c (f9P)

	

(9' E

li
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By the same method as in the proof of the above theorem it can be show n

that the associated lower and upper capacities are given b y

cp,.(T) = c.(f9)),

	

c;(99) = c''(fm)

	

(9) E

	

+(X)) •

4 .8 . Let us now return to the principal case of the weight function f = 1

and the set function c : > [0, + co[ associated with the given capacity

functional c : `Pô > [0, + co[ by the definition c(K) = c (1 K) . This set func-

tion is finite valued, increasing, subadditive, continuous from the right (in

the sense of CHOQUET [10, § 15], that is, c*(K) = c(K) for all K E ~C) ,

and c(Ø) = 0 . Not every set function c : > [0, + ø[ with these propertie s

is associated in this way with a capacity in the sense of Def . 4 .1 . As observed

by CHOQUET [10, § 53.7] a simple necessary condition on the set functio n

c is that
2c(AUBUC) c(4UB)+c(BUC)+c(CUA )

for arbitrary compact sets A, B, C, and this condition is not always ful-

filled . 6) It seems difficult to obtain a simple necessary and sufficient condi-

tion. As shown by CHOQUET [10, § 54 .2] it is sufficient that c be strongly

subadditive in the sense that

c (A U B) + c (A n B) c (A) + c (B )

for arbitrary compact sets A, B. This condition, however, is not a necessary

one, as it appears say from the usual capacity associated with a kernel

(cf . e .g. [16]) . And if c is strongly subadditive (on compact sets) there may

exist several extensions to a functional capacity in the sense of Def . 4 .1 . 7 )

5 . Representation of a Capacity by a Set of Measures

We show (Theorem 5.3) that every capacity c : no(X) -> [0, + may

be obtained as the supremum of a family Y of linear capacities (that is ,

positive Radon measures) ,u : Wo(X) -> [0, + œ[ ,

c (f) = sup ,u (f),

	

f e ro.
Pe g'

The largest such family is the set Y, of all positive Radon measures dirt such

that ,u < c (that is, ,u (f) <_ c(f) for all f E n , ) . Conversely, for any vaguely

6 ) Example : Let X consist of 3 points ; let c(K) = 1 for any set K e X consisting of 1
or 2 points ; and let c(X) = 2 (and c(0) = 0) .

') Take for c the newtonian capacity c l (as a functional on (eo , see § 5 .7 below) . The re-

striction of c l to (indicator functions for) compact sets is then strongly subadditive as shown
by CHOQUET [10, ch . 2], but the extension of this latter set function constructed in CHOQUE T
[10, § 54 .2] is not equal to the functional e l .
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bounded set J' of positive Radon measures the above supremum clearly
defines a capacity c . We show (Theorem 5 .4) that 9' is the hereditary
convex closure of 9'.

5 .1 . The strong topology on 6o . The vector space Wo = Wo(X) of al l
finite real valued continuous functions of compact support on the locall y
compact space X has a well known locally convex separated topology calle d

the strong topology. If X is compact, the strong topology on Vo(X) W(X)
is simply the uniform topology defined by means of the uniform nor m
f i--> maxlf(x)I, f E `'o(X) . If X is locally compact, but not compact, th e

xE X

strong topology on 'o(X) is defined as the inductive limit of the uniform
topologies on the subspaces `'o(X,K), where K ranges over all compact
subsets of X. Here Wo(X,K) denotes the set of all functions f E Vo(X) van-

ishing outside K. The topology on ro'(X) induced by the strong topology

on ` 'o(X) is called the strong topology on Wo(X) . We refer to BouRBAK I

[3, ch. II, § 4, no. 4] .

Theorem . Any capacity c : Wo(X) -+ [0, +

	

on a locally compact spac e
X is continuous in the strong topology on Wo(X) .

Proof. We extend c from ''o to fo by defining

a"(f) : = c(Ifl)

	

(f E ro) .

	

(6)
Clearly is homogeneous, that is ,

J(af) = la I (f)

	

(7)

for any real number a and any f e 'o . Since c is subadditive and increasing
on ro, we have

f(fi + f2)

	

ê(f1) + ß(f2) .

	

(8)

If]]

	

If l

	

e (f1)

	

E(f2)

	

( 9 )
for all f1, f2 E Vo . The properties (7), (8) together with the finiteness of c

amount to saying that c" is a seminorm on Vo . In particular, for f1,f2 E Wo ,

I ? (f1) - e (f2)I

	

c (fi - f2) .

	

(10)

For functions f E Wo(X,K) we have I f I

	

a • 1 K with a : = max I f(x)I ,
and hence xE K

J(f) = c (IfI)

	

a•c(K).

Applying this to f = fi -f2 with fi, f2 e Wo(X,K), we obtain from (10)
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(c(fi) - ê(f2)I s c(K) max lfi(x) - f2(x ) l
xE K

This inequality shows that c is indeed continuous relative to each Wo(X,K)

with the uniform topology, and hence continuous on all of Wo(X) with th e

strong topology according to BOURBAKI [3, ch. II, § 4, prop . 5] because c
is a seminorm . I

5 .2 . Measures and integration . We give a brief exposition of the theory

of Radon measures (integrals) on a locally compact space (cf . BOURBAKI

[2], CARTAN [8]), noting that such a measure may be identified with an

additive capacity .

By a (real valued Radon) measure ,u on a locally compact space X i s

understood a (strongly) continuous real linear form tc on Wo(X) . The vector

space = ./&'(X) of all measures on X is thus the dual space of Wo . The

value of a measure ,u E Æ at a function f E W 0 is denoted by

lu (f) = f fd,u .

The weak*-topology on the dual space is called the vague topology on

tel . A set <P c .Æ is relatively compact (in the vague topology) if and only

if Y is vaguely bounded in the sense that the linear form y i-~ ,a (f) is bounded

on Y for every fixed f E Wo .

We shall mainly consider positive measures p, that is, measures such

that ,u(f) 0 for every f E ~ô . The set of all positive measures on X is a

convex cone denoted by + = 4l+(X) . The restriction of a positive measur e

,u to n is a capacity on X in the sense of Def. 4 .1, but with the further

property of being additive (not just sub additive) . Conversely, it is well know n

that any additive capacity c on X has a unique extension to a positive Radon

measure it on X, viz .

	

,a (f) = It
(f+) _ FL (f)

Having thus identified a positive measure , t (or rather its restriction to

Wo) with an additive capacity, we note that the integral f help = ,u(h) of

a function h Eo and the integral (BDURBAKI : upper integral) f gdu = ,u(g )

of a function g E gs) coincide by definition with the capacity of h and g,

respectively, as defined in § 4 .2 .

Furthermore the lower and the upper integral of an arbitrary functio n

f E-'-(X) with respect to ,u are precisely the lower and the upper capacity

of f, respectively, as defined in § 4 .4 :

f * fd,u = ,u * (f) = sup{f hdulh E A'o, h

	

f} ,

f *fdp = i e(f) = inf{f gdu g E g, g

	

f} .
$) See § 2 for the classes y(o and g.
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Conforming with our general convention we shall allow ourselves to write

simply f fd,a = ,u(f) for these two integrals whenever they coincide, that is ,

when f is capacitable with respect to the measure ,u .
It is well known that the upper integral l is sequentially order con-

tinuous from below : 9 )

[fn / f, fn E +(X)]

	

[K(fn) P (f)]•

	

(11 )

Moreover ,u"' is countably subadditive (special case of (3), § 4 .5) .
The lower integral y, is known to possess similar properties when con -

sidered only on ,u-measurable functions . Thus

[fn

	

f]

	

[MA)

	

ii*(f)] ,

	

( 12)

fn)

	

P ,(fn),

	

(13)
nEN

	

nE N

for any sequence of ,u-measurable functions fn E +(X) .
Recall also that a ,u-measurable function f E i (X) is ,u-capacitable

provided that {x E XI f(x) > 0} is a-finite with respect to ,u . Finally, a func-

tion f E +(X) is ,u-integrable if and only if 1u*(f) _ ,u * (f) < + co .
The quasi topological notions discussed in [17], and the classes g '', M''* ,

Pô introduced in § 2 reduce to well known concepts in the present case o f

the upper capacity ,u* (the upper integral) associated with a positive measur e
,u . Thus „Pô consists of all non-negative ,u-integrable functions . If the spac e
X is countable at infinity, quasi continuity (or quasi semicontinuity) wit h
respect to ,u* reduces to measurability with respect to ,u . In particular, g*

is then the class of all non-negative ,a-measurable functions, and .e* the

class of all non-negative locally ,u-integrable functions (cf . Theorems 2 . 5
and 2 .6) .

The trace y A of a measure ,u E + on a ,u-measurable set A c X is
defined by

IIA(T) = 599 . 1 Adu

	

(q E w0
+
)

(Observe that q • l A is ,u-integrable .) The total mass of y A is

,u A(X)

	

,a*(A) .

A measure ,u E .11+ is said to be concentrated on (or carried by) a set A i f
CA is locally a-negligible, or equivalently if A is ,u-measurable and ,uA = ,u .
It follows then that ,u (X) = ,u * (A) . If A is closed, or if e .g . ,u*(A) < + oo ,

9) Not every capacity c has the property that c k is sequentially order continuous from
below, cf . § 5 .6 below . On the other hand the capacities encountered in potential theory do hav e
this property under very general circumstances .
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then /2*(CA) = 0, that is, CA is ,u-negligible . A measure ,u is, therefore, con-

centrated on a closed set A if and only if supp,u A. Here supp,u denotes
the (closed) support of ,u (the smallest closed set carrying /) . Finally note

that, for any measure ,u E d i+ and any ,u-measurable set A, the trace ,Q A i s

concentrated on A .

Definition. A set 9' c „/&'-h of positive measures is called hereditary (fro m
above) if

y,u E 9' Vv E4'+ : [v < ,u] = [v 9P] .

5.3 . The representation theorem . Returning now to the case of an arbi-

trary capacity c on X in the sense of Def . 4.1, we write

Yc : = {y E °.//l+ y < c},

	

(14)

where to

	

c means y (f)

	

c(f) for all f e ~o.

Theorem .1 0 ) Every capacity c : n(X) -)- [0, + co[ is representable as th e
upper envelope c = sup p of the associated set Ye of all po>itive measure s

/ E,9'c

,u

	

c . More precisely, we have for every f E n,

c(f) = max ,u(f) .

P E ~c

Proof. For every fo E n we shall prove the existence of a measur e

tc E 9c such that ,u(fo) = c(fo) . According to the Hahn-Banach theorem ,
applied to the locally convex space Wo with the strong topology (§ 5 .1) and
the continuous semi-norm defined in (6), there exists an extension of the
linear form t fo I .+ t c (fo) (on the 1-dimensional subspace generated by fo)

to a continuous linear form 2 on Vo such that 12(01 s 'Of) for all f E W o .
Thus 2 is a (Radon) measure on X. The positive part u : = 2-, of 2 has the
desired properties . In fact, y

	

A, and hence

,u (fo)

	

A (fo) = c (fo) = c (fo )

because fo O . On the other hand, for every f E n,

F4 (f) = sup{A(h)lh E moo, h

	

f} c(f)

since 2(h)

	

'JO) = c (h)

	

c(f) . I

The set 9, c

	

+ defined in (14) is evidently hereditary (cf . end of

§ 5 .2), convex, and vaguely compact .

10) This result is mentioned in CHOQUET [10, § 53 .7] .
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5 .4 . On the other hand, for any set ,P of positive measures, the functiona l
c defined on n as the upper envelope of Y,

c (f) = sup , u (f)

	

(f E ~ô)

	

(15)
Fs E y

is evidently increasing and sublinear . Thus c is a capacity in the sense of
Def. 4 .1 if and only if c is finite valued, or equivalently if .P is vaguely
bounded (that is, vaguely relatively compact) .

Theorem. For any vaguely bounded set .P c JZ+ the upper envelop e
c = sup ,u is a capacity. The associated set Y e of all positive measures ,u

	

c
yE ,

is the hereditary convex closure of 5° . 11 )

Proof. It remains to establish that the hereditary convex closure Y o f
coincides with Ye . Since Ye is hereditary, convex, and closed, and sinc e
Y, D 99, we have Y, D Y. To prove that .P, c i we use the duality
between .Æ and Wo determined by the bilinear form (u,f) -~ ,u (f) = f fd u .
The polar Yo c `Co of .%(c di) consists by definition of all f E `ßo such

that

	

y (f) s 1

	

for every ,u E Y.

	

(16)

Similarly, the bi-polar Yoo c

	

consists of all ,u E Æ such that

	

,u(f) <_ 1 for every f E Yo .

	

(17 )

Since Y is convex, closed, and contains 0 (being hereditary), it is know n
that Y00 = (BOURvAKI [3, ch. II, § 6, th . 1]) . In order to prove that
Ye c Yoo we consider any measure yo E <P, and propose to verify (17 )

with ,u = ,uo . It suffices to consider positive functions f E .Yo because Y
is hereditary. In fact, for any f e Yo we have f+ E Y0,12) hence ,uo(f)
,uo(f+) 15. 1 because f ▪ f+ and yo 0 . Consider, therefore, a function f >_ 0

in Yo. Since Jam' D <P we infer from (16) that ,u(f) < 1 for every E Y,
or equivalently that c(f) <= 1 according to (15) . When yo E Ye we conclud e
from (14) that ,uo(f) ▪ c(f)

	

1, and so ,ao E ~-oo = Y. I

Corollary . A vaguely bounded set of positive measures determines the sam e
enveloping capacity as its hereditary convex closure .

u) By the hereditary convex closure of a set y c J(+ is meant the smallest hereditary,
convex and vaguely closed subset of

	

+ containing bP .
r2) For any i E Y the trace v of p. on (x E XI f(x) > 0} belongs to y since y is he-

reditary . For f E go we thus obtain f + E Yo because ,u(f+) = v(f) < 1 for every Fi E Y.
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5 .5 . Representation of the lower capacity . Let 9 denote a vaguely com-

pact set of positive measures on the locally compact space X, and let c

denote the enveloping capacity as defined in (15) .

Theorem . For any function h E JP we hav e

c(h) = max f hdu.

	

(18)
lLE92

For any function f e +(X)
c :,: (f) = sup f * fdu,

	

(19)
,LE Y

cf(f)

	

sup f
* fdu .

	

(20)

PE Y

Proof. When h e :/t'o, the mapping pti-->- f help of di+ into [0, + co[ i s

u .s .c . in the vague topology, being the lower envelope of the family of vaguel y

continuous mappings ,u 1-->. f Opt as q) ranges over the downward directed

family Ø of all functions E ~o with 9) >= h . Hence this mapping has a

greatest value c '(h) on the compact set Y c .Æ+. For any u E <P we hav e

f hdu

	

f cpd,u

	

c(92) for all 92 E Ø, and hence f hdu

	

infc(cp) = c(h) by

Def. 4 .2. This shows that c '(h)

	

c(h) .

To prove the converse inequality c '(h)

	

c(h) we denote for every

E Ø by ,uqp a measure in .f such that ,u4,(g9) = c(92) . Since is vaguely

compact, there exists a cluster point ,u E ,92 for the net (,uq,)9, E Ø . For any

y e Ø we obtain along Ø

c(h) = lim c (Ø) = lim,up(c2)

	

lim inf,uq,(y)

	

,a (y)

	

because we may restrict the attention to functions cp

	

yp in O. It follows

that

	

c(h)

	

inf{() Iv e Ø} = ,u (h) < c'(h) .

Next we obtain for any f E ~+

c :;: (f) = sup{c(h)Ih E YPo, h < f}
= sup sup f hd,u = sup sup f hdu

li <flLE Jrp

	

!ICY h f
= sup f :,: fd,u .

P,f

c*(f) = inf{c*(g)lg E g, g

	

f}
= inf sup f: gdu sup inf f gdu

9?fµE~

	

pey g > 1

= sup f * fdu . I

Note that the sign of equality need not hold in (20), cf . § 5 .6 .
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Remark. If the vaguely compact set ? c 4'+ is hereditary (Def. 5.2),
the lower capacity c : (f) of f E ,+(X) is even the supremum of f> fd,u as
,u ranges over the smaller set consisting of those measures ,u E whose
support is compact and contained in

A :_ {x E X j f(x) > 0} .

In fact, for any t < (f) there exists h E J~o such that h

	

f, c(h) > t ;
and hence there exists u e Y such that f hdu > t . The sets

K. : {x e X f h (x)

	

1/n }

are compact and contained in A . The trace ,un of ,u on K. belongs to .P

when ? is hereditary. Clearly

f* fdun >_ f hdun = f hdu -> f hdfu > 1
K n

as n ->-x . Hence f. fdun > t for n sufficiently large .

5 .6 . Example . Let X = R2 = the xy-plane ; Y {mx l x E R}, where mz
denotes linear Lebesgue measure on the line fx} x R . The enveloping ca-
pacity c is given by

c(h) = max f h(x,y)dy,

	

h E n(R2 ) ,
xE R

and similarly for the extension of c to o in view of (18) . Now put f = IA ,
where A denotes the union of the compact set s

Ao = {0} x [1,2],

	

An = {1/n} x [0,1 ]

for n = 1, 2, . . . . Then we obtain from (19) in view of Theorem 4.7 (with
the weight function 1 )

cy:(A) = c,(f) = sup f:f : f(x ,y) dy = sup m(An) = 1 .
xER

	

n> O

Any open set G D A contains Ao and hence also the segment {1/n} x [1,2]
for some n E N. Thus G

	

{1/n} x [0,2] for some n, and so c :(G)

	

m([0,2])
= 2 . It follows that

c*(A) = c"(f)

	

2

	

sup f*f(x,y) dy (= 1) .
xE R

The set A of class cr is, therefore, not capacitable with respect to c (although
A is universally measurable) . It follows that c is not sequentially order

continuous from below. This also appears directly since A is the union



of the increasing sequence of compact sets Kn = Ao U Al U . . . U An with

c(Kn) = 1, whereas c*(A)

	

2 (actually, c *(A) = 2) .

5 .7 . Example (Newtonian capacity) . Let X = R3 , and consider the new-

tonian kernel
1

	

G (x, y)

	

,

	

.x, y E X.
Ix - y l

The potential GA of a measure ,u u .11+ is defined by

G,u(x) = f G(x,y) du(y),

	

x E X.

The energy of ,u E + is defined as f GAdy. Let

Y={y E 4'+ IfGydu5_ 11 ,

5° 1 = {,u E i/l+ I G,u

	

1 everywhere} .

Then 9 and Y l are hereditary, convex,13> and vaguely compact . The

enveloping capacities
c = sup ,u,

	

c1 = sup ,u

are called the newtonian energy capacity, resp . the ordinary newtonian

capacity . The associated upper capacities c* and c are both sequentiall y

order continuous from below (CHOQUET [10] in the typical case of sets) .

It is a well known consequence of the maximum principle for newtonia n

potentials that

	

c (K)2 c l(K)

	

for every compact set K.

This quantity is the classical capacity of K. There is of course a simila r

relation between the inner, resp . outer, capacities (of arbitrary sets) as-

sociated with c and c l . For the potential Gy e g of a measure u E M+ we

have
c (G,u) 2 = f G,udu,

	

c l(G,u) = f dit .

We refer to a forthcoming general discussion of these two types of capacit y

(energy capacity and usual capacity) for very general kernels G . (See also

[14], [15], [16], and § 6 .7 below . )

6 . More about the Classes g* and ô

In this section Y denotes a hereditary (see end of § 5 .2) and vaguely
compact set of positive measures, and c

	

sup ,u the enveloping capacity
P E f

13 ) The convexity of ,,99 follows from the positive definite character of the kernel G .

âïat .Fys . Medd . Dan .V id. Selsk . 38, no . 7 .

	

3



34

	

Nr . 7

as defined in (15), § 5 .4 . According to the representation theorem (§ 5 .3)

the results obtained are of course applicable to any capacity c (in the sens e
of Def. 4 .1), taking for Y e .g. the set e of all measures ,u c . We shall

continue the study of the classes g ` and *o as defined in § 2 .1, now with
C = c*, the upper capacity associated with c . (See also Lemma 3 .2 . )

6.1 . Lemma . For any measure ,u E ,92 the ,u-integrable (resp . ,u-measurable ,

or ,u-capacitable) functions X [0, + co] form a closed subset of -+ (X) in

the c*-metric topology .

Proof. It is well known that each of these 3 subsets of +(X) is closed
in the p*-metric topology determined by the (pseudo)distance f* Ifi f2ldu
between functions fl ,f2 E ..."+(X) . (In the case of the ,a-capacitable functions ,

that is, functions f E ,+(X) such that f: ,, fd,u = f ` fdu, this fact is also a

special case of Lemma 4 .6 .) Hence the present lemma follows from (20) ,

§ 5 .5, according to which the ,u*-distance is majorized by the c *-distanc e

when ,u E Y :
.f*

k
Ifi f21 du

	

c (lf1 -f2I) •

Corollary . Any function of class g* is ,u-measurable and ,u-capacitable for

every E Y. Any function of classô is ,u-integrable for every ,u E Y.

In fact, the functions of class g are l .s .c ., hence universally capacitable

and universally measurable, and the functions of class Ye'o are universall y

integrable, that is, integrable with respect to every (Radon) measure on X.

6 .2 . Theorem. If f E g' :ß, (resp . f e

	

o) then the mapping ,u i-+ f fd u of

into [0, + co] is l .s .c . (resp . u.s .c . and finite valued) . The converse implica-
tion is valid under the additional hypothesis that f Eô (resp . f E W*) .

Proof. For the applications of the converse implication in potential
theory (cf. § 6.7 below) the second case f Eô is of particular importance ,

and so we shall give the proof for this case, the case f E c.Ç* being quit e

analogous .

First suppose that f E and choose for any e > 0 a function h E .loo

so that h <- f and c*(f h) < e (Lemma 3 .2) . For every ,u E Y we obtain

from (20), § 5 .5, since f and h are ,u-integrable (Cor . to Lemma 6 .1) :

f hdu s f fdy = f hdp + f (f - h)d,u

<_ f hd,u+c*(f-h) < fhd,u+e .

The mapping pt .- - f fdu of Y into [0, + ø[ has thus been approximated

uniformly on 5 by mappings

	

f hd,u with h E moo, and these latter
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mappings are finite and u .s .c. (on all of mil+) as observed in the beginnin g

of the proof of Theorem 5 .5 .

Conversely, suppose that f ga and that the (upper) integral f fdy is

a finite valued u .s .c. function of ,u E Y. (Note that f E g* is indeed ,u -

measurable and ,u-capacitable for every lc e Y, again according to Cor .

to Lemma 6 .1 .) Given e > 0, there exists according to Lemma 3 .2 a func-

tion g E g' such that q f and c*(g -f ) < e . Denote by Ø the upward

directed family of all functions n E Wo such that cp <_ g . Considered a s

functions of lc E Y, the integrals f Tdy, cp E 0, form an upward directed

family of finite valued continuous functions on the compact space Y. I t

follows e.g. from Theorem 4 .3 (a) applied to y that

sup fipdu= fgdu f fdy

q~E Ø

for every y e Y. By hypothesis the function ,u i- f fdy on .P is finite valued

and u.s .c . It follows from Dini's theorem that there exists rp c 0 such that

f pd,u > f fdy - e for all y E 9, and hence

ca((f

	

= sup $(f_ T)+du

	

e 14 )

in view of (19), § 5 .5. Nov f E g *, and (E Wt, c c Al . Thus it

follows from Lemma 2 .3 that (f - (p) + is of class W* and hence capacitabl e

(Lemma 4.6). We conclude that c"((f -Ty) <_ e and hence c*(If - (pi) < 2e

because
If-ml = (f-~)++((f)+ < (f-~)++(g-t) •

Consequently, f' belongs to the closure of Wt, in the c*-metric topology on

	

+(X), in particular f E

	

by definition (§ 2.1) . I

Remark . Actually, the latter part of the proof shows that g '` f1ô is

contained in the c`-metric closure of and this is the non-trivial part o f

Theorem 3 .3 (for the case C = c") .

Corollary . For any quasi closed set H

	

X the set of all measures ,u e Y

carried by H is vaguely compact .

In fact, f : lcH E (Lemma 2 .4), and so {,u E 9l f fdy = 0} i s

vaguely closed, hence vaguely compact, on account of the first part of th e

theorem (for the case f E g*) .

14) This inequality follows from the fact that, for any

	

the trace v of p, on th e
measurable set {x E XI f'(x) > (p(x))- belongs to ,90 because 99 is hereditary . Hence we obtain

5(f cp)+dµ = S(f - m)dv < E.

3*
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6 .3 . Theorem . For any function f E .Po* we hav e

c(f)=rnax f fdu<+ø .
FLE,9'

The class "(f) of all measures ,u E 99 such that f foly = c(f), is vaguel y
compact . It is convex if 99 is convex .

Proof. The- functions of :Yf"o'' are c-capacitable (Lemma 4 .6) and
,u-integrable for every ,u E 99 (Cor . to Lemma 6.1). Since 99 is compact i t
follows from the first part of Theorem 6 .2 that the supremum c(f) = c:,: (f)
in (19) of Theorem 5.5 is indeed attained and finite, and that .P(f) is com-
pact . If 9P is convex then any convex combination ,u of measures
,ul,,u2 E Y(f) belongs to 9' and gives the maximal value f fdu = c(f) . I

6.4 . Lemma. Consider a decreasing sequence of functions fn, E

	

and
choose corresponding maximizing measures ,un e 99(fn). Then every vague
cluster point for the sequence Can) belongs to 99(inf fn) .

n

Proof. Write f = inffn, and let ,u denote any vague cluster point fo r
n

(Ln) . For any nu E N we have by Theorem 6 . 2

f fmdy lim inf f fmd,an ? lim f fnd,un = lim c(f.) = c(f) .
n

	

n

	

n

It follows that ,u E Y(f) because ,u E Y and

f fd,u = inf f fmd,u

	

c(f) . I
m

Remark . There is a similar result for any downward directed family

(fa)el of u.s .c . functions fa of class Po (cf . Theorem 3 .6 (b)) . The proof
is quite similar . In both cases the method of proof actually leads to a slightly
stronger formulation . Thus, in the latter case, any vague cluster point ,u fo r

the filter on 99 generated by the "sections " U `9(fa ), ß E I, belongs t o

9'@nf f ,)•

	

« ' ß

6.5 . We shall call the given hereditary (and vaguely compact) subse t

99 of t+ strictly hereditary if, for every E .P and every v E i'K+ with

v s ,u, v

	

,u, there exists a number t > 1 such that tv E 99 .

Lemma . Let f E J~ö . There always exist measures ,u E 9(f) concentrated
on {x e XI f(x) > 0} . If 99 is strictly hereditary and if c(f) > 0, then every
measure ,u E 99(f) is concentrated on this set .
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Proof. Let ,u E 'U), and let v denote the trace of it on A : {x E X f(x)

> 0}. Then v e Y(f) because Y is hereditary and f fdv = f :, f • 1 Adu = ffdu .

Suppose now that Y is strictly hereditary and that c(f) > 0 . For every

t > 1 we then have

f fd(ty)

	

t f fdv = tc(f) > c(f) ,

and hence tv Y. Consequently ,u = v, that is, u is concentrated on A . I

6 .6 . The case of sets . We shall now specialize some of the results of th e

present section to the case of (indicator functions for) subsets of X . In that

case the compactness of Y' can be weakened to closedness at the expens e

of a single precaution to be observed . This will appear from the followin g

discussion which is largely independent of the preceding theory, but con-

tained therein as a special case whenever Y is compact .

Thus let .So denote any hereditary and vaguely closed subset of .Æ+ . For

any compact set K X define the capacity c(K) by

c(K) = sup ,u(K) = sup{/(X) J,u e Y, supp,u c K} .
t~ E 5°

The identity between these two suprema follows from the assumption tha t

Y be hereditary (cf. remark to Theorem 5.5). Clearly each of the two

suprema is attained provided that c(K) < + ce (this is the precaution

alluded to above .) Note that ? is compact if and only if c(K) < + GO for

all compact sets K c X. In that case the above definition of c(K) agree s

with (18), § 5 .5, applied to h = 1 K E . o .

We denote by = ..l'(X) the class of all compact subsets of X. The

mapping c :- [0, + c] defined above is increasing and order continuous

from above. The latter assertion means that

c(fl Ka) = infc(Ka )
a

for every downward directed family of compact sets Ka . 15) Since X is locall y

compact it follows that c is continuous from the right and hence is a capacity

in the original sense of CI-IOQuET [10, §15] . Moreover, this capacity c : -~

[0, + 00] is subadditive, and c(0) = 0 .

15) To prove this, let t < infc(K,,). For each a let,ua E y, supppo, c Ka , and pa(X) > t .
Replacing, if necessary, 1 by (t/pu(X))u,, (which belongs toy since , is hereditary) we ma y
assume that pa(X) = t. Denoting by y any vague cluster point for (u a), we obtain supp/ c K .
for each ß, and hence supptc c (1Ku . Since fis closed, iC follows that ,s E „90, and we con-
clude (taking a fixed index ß) tha t

c(flKÇ) > µ(X) = ;u(Kß) > liminf,,,u„(Kß) = t
because the mapping v H v(K)g) is u .s .c ., and y ,,(KO = fe(X) for a ? O .
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With the capacity c we associate in the usual way the inner capacity c :g

and the outer capacity c* defined for arbitrary sets A

	

X by

cr(A) = sup{c(K)fK compact, K c A} ,

c*(A) = inf{c:,: (G)IG open, G D A} ,

and we may write c(A) in place of c*(A) or c*(A) whenever A is capacitable ,

that is, c : (A) = c*(A) . Compact sets and open sets are capacitable . As in
the proof of (19), § 5 .5, we obtain the following representations of the inner

capacity of a set A c X :

c ::: (A) = sup{,u* (A) j,u e 9}

	

}
1 (21 )

= sup{i (X) I,u E 9, supp,u compact and c A} .

Again the identity between these suprema follows from the assumption tha t

<P be hereditary . Using the former representation (21) we see that the inne r
capacity c : is countably subadditive on .-measurable sets, and sequentiall y

order continuous from below on such sets (cf . the analogous proof of

Theorem 7 .1 below) . It follows that the outer capacity c* is countably sub -

additive . In particular the quasi topological notions and results of [17] ar e

available .
Any quasi compact set A is capacitable (cf . the proof of Lemma 4 .6) .

If c(A) < + co the former supremum in (21) is attained by some measur e
u E Y concentrated on the quasi compact set A. Thus

c(A) = max{,u(X)I,u E Y, ,u conc. on Al .

The set ,9'(A) of all maximizing measures is vaguely compact (and conve x
if Y is convex) .

To prove this, note that the mapping ,u (A) of Y into [0, + x] i s

finite valued and u .s .c . when A is quasi compact. (This is easily reduce d
to the case of a compact set, cf. the proof of the first part of Theorem 6 .2 . )
Similarly, the mapping ,u (B) of .' into [0, + x] is 1 .s .c . for any quasi

open set B . When applied to B = CA this latter observation implies tha t

those measures ,u E Y which are concentrated on A form a vaguely close d
subset of. f+ when A is quasi compact (or just quasi closed), cf . Cor . t o
Theorem 6 .2. Finally, this vaguely closed set of measures is vaguely bounded ,

and hence vaguely compact, because

p (X) ,u (A) c(A) <

for every measure in the set .
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6 .7 . An application . We return to the example in § 5 .7, the newtonian

energy capacity c . Denote by e+ the class of all measures A E + such that

f GAdA < + ø . It was proved by CARTAN [9, p. 2381 that, for each A E

the mapping y l->- f GAdu of Y

	

{,ec E di+ I f Gpdu

	

1} into [0, + co] i s

vaguely continuous (and finite valued) . Since GA E

	

c W*, this result, by

Theorem 6.2, is equivalent to stating that Get E o* for every A E e+ .

Consider now a function f E A'ô . It follows from the energy principl e

(the strict positive definite character of the newtonian kernel G) that Y(f)

consists of precisely one measure ,u . By the Gauss variational method it i s

shown that the measure A : = c (f ),u is characterized within e+ by the fol-

lowing two properties

(a) GA

	

f q . e .

(b) Ga. = f almost everywhere with respect to A .

Moreover, R is concentrated on { .x E XI f(x) > 0} (Lemma 6.5), and f fdA =

f GAdA = c(f) 2 . This measure A _ Af is called the capacitary measure for the

function f
Next it is shown that, for any function f E +(X), we have the following

dual representation of the upper energy capacity :

c*(f) = inf{(j GAd42 I A E e+, G~ >= f q. e . } .

This allows us to deduce that the quasi u .s .c . envelope f* of f (which exist s

and is uniquely determined q . e . according to [17, Theorem 3 .5]) is of class

if and only if c*(f) < + co. In the affirmative case we have c (f*) = c '(f ) ,

and the above infimum is attained by precisely one measure, viz . the ca-

pacitary measure A = Al* for f We call this measure the upper capacitary

measure for f. (Its potential is also characterized as the smallest, R f, among
all potentials majorizing f quasi everywhere . )

Specializing to the case f = 1 A , the indicator function of a set A c X

with c*(A) < + co, we thus obtain the outer equilibrium measure A = ). A* ,

characterized within e+ by the properties that A is concentrated on the (quas i
compact) quasi closure A* of A, and that

(a) Gî. = 1 q. e . in A (even in A*) ,

(b) GA <- 1 everywhere (by the maximum principle) .

Moreover, A(X) = f GAdA = c*(A) 2(= c(A`) 2 ) .

A further important case is that of the outer balayage of a given measure
u E + on a set A c X. Here we take f = Gy • l A and assume again tha t
c*(f) < + co (e .g . ,u E e+ ) . Since Gu is always quasi continuous, we have
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again

	

= G,u • l Ax Eô . We thus obtain the outer swept-out measur e
2.Gµ .lA* of ,u on A, characterized within 6'+ by the properties that A is

concentrated on the quasi closure A* of A, and that

(a) GA = G,u q. e . in A (even in A*) ,
(b) GA < G/2 everywhere (by the domination principle) .

Moreover, f Gydti = f G2dA = c*(G,u . 1 A ) 2 .
In view of the compatibility between the " quasi topology" and the fin e

topology e .g. in the present newtonian case (cf. [17, §§ 4,5]), the result s
mentioned above for the two particular cases (outer equilibrium and oute r
balayage) coincide with those obtained by CARTAN in his fundamental
treatise [9] of the newtonian potential, except that our method is limite d
to the case c*(A) < + ø, resp . c*(G,u • 1 A) < + ø. On the other hand th e
present method is applicable to a very large class of kernels (consisten t
kernels), see [14], [15], and a comprehensive exposition to appear .

7 . More about the Lower Capacit y

We continue the study of a capacity c represented as the upper envelope

of a hereditary and vaguely compact set Y of positive measures on the
locally compact space X. According to Theorem 5 .5 the associated lower

capacity c* is given by

c*(f) = sup f* fdy

	

(19)
ttE Y

for every f E +(X) . By the remark to this theorem it suffices here to le t
,u range over the set of all measures ,u E 9 of compact support containe d

in fx e XI f(x) > 0} .

For brevity we shall say that a function f, or a set A, is Y-measurabl e
if it is ,u-measurable for every u e Y.

It is possible to develop a theory for the lower capacity c : analogous to

that of Chapter I for the upper capacity C = c* . In particular one may
study the closed classes g* , gi°* , and moo :,:, replacing the c*-metric by th e

analogous c :, : -metric on ,S°-measurable functions . We shall, however, limit

our attention to those properties of the lower capacity which are relevan t

for the potential theoretic applications we have in mind .

7 .1 . Theorem. The lower capacity c, : is countably subadditive and sequen-

tially order continuous from below on Y-measurable functions, that is,
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cx ( G fn)

	

c, : (fn) ,
nEN

	

nE N

	

[fn /Y f]

	

[c>:(fn)

	

c:l : (f) ]

for any sequence (f.),, E N of ?-measurable functions fn E g+(X) .

Proof. By application of (19), the proof is easily reduced to the cas e

c = u of a single measure ,u e ./t+, considered in (12), (13) of § 5 .2 . I

Corollary . For any sequence of Y-measurable sets An ,

c :( U An)

	

c:, :(An) ,
nEN

	

nE N

[An / A] = [ c: k(An) -~ c,,(A )] •

7 .2 . Exceptional sets determined by cn . In addition to the sets E c X

with c*(E) = 0, the wider class of sets E such that c*(E) = 0 plays a certain

role in developing potential theory . According to the above corollary, th e

class of all V-measurable sets E with c*(E) = 0 is stable under countabl e

union. In view of (19) we have for any set E X

	

[c: ;: (E) = 0]

	

[,u*(E) = 0 for all

	

E Y] ,

(and similarly for a function f E +(X) instead of the set E) . If E is Y-

measurable, then c*(E) = 0 holds if and only if E is locally ,u-negligibl e

for every u E Y.

Definition . A property P[x] is said to hold nearly everywhere (French : à

peu près partout) in a set A e X (abbreviated : n .e . in A) if c* ({x e AI no n

P[x]}) = O .
The following lemma is an immediate consequence of the precedin g

observations .

Lemma. If a property P[x] holds locally almost everywhere with respec t

to every measure ,u E Y, then it holds nearly everywhere . The converse im-

plication is valid provided that the exceptional set E : = {x e XI nonP[x]} is

?-measurable .

7 .3 . Lemma . Let f E +(X) . In order that f(x) = 0 n.e. it is necessar y

and sufficient that c: (f) = 0 and that moreover f be v-measurable for ever y

v E Y of compact support contained in {x e Xj f(x) > 0} .

Proof. Writing E : = {x E X I f(x) > 0}, we have (as in the proof of

Lemma 1 .3 (a))
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f1E+1E+ . . . ;

	

lE<=f+f4- . . . .

	

(22)

If f, and hence E, is Y-measurable, these inequalities serve to establish
that f(x) = 0 n. e . is equivalent to c*(f) = 0 in view of Theorem 7 .1 .

For any f E +-(X) such that f(x) = 0 n.e. let h E ..C'o, h f Then
h(x) = 0 n .e., and so c(h) = O . It follows that c> : (f) = O. Moreover, the
stated measurability condition is trivially fulfilled because the only measur e
v in question is v = 0 since c;,(E) = 0, cf. (19) or (21) .

Conversely, suppose that c :;: (f) = 0, and that f is v-measurable for every
v E Y of compact support contained in E . The second inequality (22) then
shows that f:! : 1 Edv = 0 for any such v because f:: : fdv = O. Hence c* (E) _
c :}:(lE) = 0 according to (19) or (21) . I

7 .4 . Theorem . Let fi , f2 E +(X), and suppose that f2 is SP-measurable .
Consider the following statements :

(i) fl(x) s f2(x) nearly everywhere ,

(ii) cN :((fi -- fz)+) - 0,

(iii) f 9 fidy

	

f > f2d,u for every ,u E Y.

Then
(ü)

	

(iii)

	

[ e*(fl)

	

c:+ :(f2)l ,

the implication (ii) (i) being valid under the additional hypothesis that
fi be SP-measurable, or just v-measurable for every v E 99 of compact suppor t
contained in {x E XI fi(x) > 0} .

Proof. The implication (i) ~- (ii) holds without any assumption on
f2 E ;-(X) and follows, like its conditional converse, from the precedin g

lemma applied to f = (fi - f2 )+.
To derive (iii) from (ii) let h e o , h

	

h . Then

c5((h - f2) + )

	

c,:((fi -I2)+) = 0,

and hence f Ï (h - f2)+dp = 0 for every ,u e ,P according to (19) . Since

(h -h)+ is ,u-measurable and majorized by the ,u-integrable function h, it
follows that f * (h - f2 ) +du = 0, and

f My f9f2dp +f*(h-f2)d,u = f9:f2da

on account of (4), § 4 .5, applied to the measure p . Consequently, f$: hdu

f fed t .
Conversely, suppose that (iii) holds, and let h E'o, h s (fi - f2 )+ .

For any ,u 7 of compact support contained in {x e X I fi ( .x) > f2 ( .x)} we
have h + f2 <_ fi almost everywhere with respect to p, and hence
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f hdu + f :F fadf~ = f * (h + f2)dt `= f r: fidf~

	

f* fedu

by hypothesis . If f2da < - I- cc, this shows that f hdu = O . The same hold s

in general. In fact, the trace ,an of ,u on the ,a-measurable set En : =

{x E X 1 f2(x) n e N, has the same properties as required above fo r

,u, and in addition f:,: f2dun < + .0 . Hence f hd,un = 0, and consequently

f hdu = 0 because the sets En, n E N, cover {x E X I h (x) > 0} (since

f2 (x) < + cc for every x with h (x) > 0) . Having thus proved that f hd,rc = 0

for every h E , o such that h < (fi - f2)+, we conclude that f,. (fi - f2)+d 2

= 0, and finally, by varying ,u, that c,,: ((fi - f2 )+ ) = O .

Clearly (iii) implies that c : (fl)

	

c: ,: (f 2) without any hypotheses o n

fi f2 . 1

Corollary 1 . Let f e +(X) be Y-measurable, and let 0 < t < + 00 . If

f(x) >_ t n .e. in some set A c X, then c(A)

	

t- l c ;(f) .

In fact, t' 1 5 f n.e ., hence tc : (A) = c:f,(t • lA )

	

c>:(f ) .

Applying this result to A = {x e XI f(x) = + co}, we obtain for t - + co :

Corollary 2 . Let f E ~±(X) be 1-measurable with c, ;,(f) < H- c . Then

f(x) < -!- cc n.e .
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