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Synopsi s

The i-representation of the system function S(p) = [1 + (p ro) I- "]
-ß i.e . Lhe general Deby e

function, has been determined in the general case of 0 < a,ß < 1 and 0 < ro as an infinit e
(C,1) summable series of Riesz distributions,
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It is established that a transformation T characterising a physical system and mappin g
an excitation f into a response r by r = T[f] B * f in spite of the singularities of the system
function S(p) possesses the six properties of (i) single valuedness, (ii) linearity, (iii) stationary-
ness, (iv) continuity, (v) passivity, and (vi) causality.

The main results required from the theory of distributions are presented in Lhe text .
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1 . Introduction

I
n the present paper the transformation of an excitation f into a response

r, T: f ->- r,, as effected by a physical system, is considered from a general ,

mathematical point of view. Only linear systems are treated .

Often, rather than describing the transformation directly, i . e . by giving

the t-representation, an integral transformation (Laplace transformation )

may be carried out, whereby the equivalent p-representation is obtained .

Whereas in the t-representation the information about the transformatio n
is inherent in the mathematical properties of the transformation, in th e

p-representation this information is contained in the properties of the syste m

function S(p), a complex valued function of a complex variable p .

As particular instances of a system function S(p) are discussed the

1
Debye function, -

	

, and the general Debye function, -

	

ß
,

1 + pro

	

[1 + (pro)1- 'r
where p e Cl , a, ß, ro E R1 , 0

	

a, fi

	

1, and 0 < ro . Inspection shows
that whereas the Debye function in the complex p-plane as its sole singu -

- 1
larity has one simple pole, viz . p = - , the general Debye function may

ro

possess branch point singularities which may be greater than one in numbe r

1
and which may be dense on the circle IpI =

		

Furthermore, the genera l
ro

Debye function may have a branch point at p = 0 .
Rather than as functions the excitations f and the responses r are treate d

as distributions, i . e . as elements of a topological, linear vector spac e

(over Cl) of continuous, linear mappings from a space of test function s
into the field Cl of the complex numbers .

In section 2 the main results required from the theory of distributionsl >

1) For a full treatment of the theory of distributions see ref .s (5), (14), (15), (16), and als o
ref.s (2), (6), and (13) .
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are indicated . In sections 3 and 4 the relationships between the propertie s

of a transformation T and the properties of the corresponding system func-

tion S(p) are studied. Section 5 treats the properties of the general Debye

function as system function and the properties of the transformation T cor -

responding to it . In section 6 the t-representation of the general Debye func-

tion as system function is determined .

The main results of the treatise are the theorems 5 .1 and 6 .1 .

2 . Distributions

Distributions 2) are essentially defined as elements of topological vecto r

spaces Ø' which are dual to certain other topological vector spaces Ø, th e

elements of which are termed test functions cp . The vector spaces an d

Ø' are defined over the field C l of the complex numbers . The test function s

99 are defined pointwise on sets of points, e . g . R', Cn , but only comple x

valued functions defined on RI will be required .

In what follows some important function spaces and their duals will b e

treated .
Let the vector space %'

	

be the space of all continuous, complex valued

functions, (p K : R1 -)- Cl, of one real variable, which have their support s

contained in the one compact set K, K

	

R 1 , supp T K .E K . The vector

space of all continuous functions q) with compact support is generate d

as the union of all the vector subspaces (K) as the compact set K varie s

over R1 . By defining the seminorms p(Tx) = sup' q7 K (x) I in the subspace s
xE K

(K) a topology of compact convergence is introduced on the spaces ' (K) .

A topology on ' is now defined as a set of neighbourhoods in such tha t

for each K the intersection of each neighbourhood and the space (K) i s

a neighbourhood in ' (K) under the above topology of compact convergence .

As K varies over R 1 this topology becomes the inductive limit topology o f

compact convergence, and the space with this topology is the inductiv e

limit of the spaces `ß(K) .

Definition 2 .1 %' = is the topological vector space over Cl of all con-

tinuous, complex valued functions, g) : R l -> Cl , of one real variable, x E R 1,

which have compact support . The topology on is the inductive limit topolog y

of compact convergence .

2) For a full treatment of the theory of distributions see ref .s (5), (14), (15), (16), and also

ref.s (2), (6), and (13) .
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Theorem 2 .1 A sequence {T,,} of functions in W, q E W, v

	

1,2,3 .

converges to a limit Ø in W, q) E `C, if and only if (i) there exists a space Zi (K )

such that 9),(6 E C(K), v = 1,2,3, . . ., and (ii) the sequence {cp„} converge s

to q) in the topology on 'e (10 .

Likewise, let the vector space g (K) be the space of all infinitely dif-

ferentiable, complex valued functions, q) K : Rl -; C', of one real variable ,

x E R', which have their supports contained in the compact set K, K

	

R' ,

suppq)K K . The vector space 2 of all infinitely differentiable functions q)
with compact support is generated as the union of all the vector subspaces
g (K) as the compact set K varies over R1 . By proceeding in a manner

quite analogous to the above a topology of compact convergence is define d

on the vector subspaces g(K) by defining the seminorms pj ((pK ) = sup
xE K

1 q) (
P (x)I, j = 0,1,2,3	 in the spaces g (K) . Again it is possible to define

in g a set of neighbourhoods such that for each K the intersection of eac h
neighbourhood in g with the space g (K) is a neighbourhood in g (K)

under the above topology of compact convergence, and the space g is thus

generated as the inductive limit of the spaces g (K) .

Definition 2.2 g = g x is the topological vector space over Cl of all in-
finitely differentiable, complex valued functions, q) : R' -~ C 1 , of one real var-

iable, x E R', which have compact support . The topology on g is the inductiv e

limit topology of compact convergence .

Theorem 2.2 A sequence {q)„} of functions in g, q, E g, v = 1,2,3, . . . ,
converges to a limit q) in g, m :E

g, if and only if (i) there exists a space

g (K) such that q), p. E gr (K), v = 1,2,3, . . . , and (ii) the sequence {(p,} con -

verges to q) in the topology on g (K) .

Finally is introduced the space .So of test functions of rapid decrease .

Definition 2 .3 ° _ .P i s the topological vector space over C' of all in -
finitely differentiable, complex valued functions, ip :R' --> C I, of one real vari-

able, x E R', with the property that xl k • l q ( I ) (x)» Ck a, k, l = 0,1, 2, . . . ,

with Ck a a positive, real constant . The topology on .92 is introduced by defi -
ning the seminorms pmn(q)) = sup Ixm q)(n) (x) I, m,n

	

. .
xER '

If Ø is a topological vector space over the field Cl of the complex num-
bers, the set of all continuous, linear mappings (p ' of Ø into C', q) ' :

	

C l ,
constitutes a vector space called the dual of

	

and denoted by d' . The
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value of the mapping 97 ' E W at the point Ø E Ø is denoted by 99'09)

<90%0 E Cl .
To introduce a topology on Ø' let a topology be defined on Ø, and let si

be a family of bounded subsets of Ø with the propertie s

(i) if A E si and B E si then there exists a C e d such that

AuBC,
(ii) if A E si and 2. is a complex number then there exists a B E Z

such that 2A B .

A topology on Ø' now is determined by defining a set of seminorms in

Ø' by p '(T') = sup 1 <(p ' , cp> j, A E Ø. In particular, two topologies on Ø' are
TE A

of importance. If si is the set sif of all finite subsets of Ø, the topology

defined on Ø' is called the weak dual topology a(Ø ' , Ø). If si is the set

si b of all bounded subsets of Ø, the topology defined on Ø' is called th e

strong dual topology ß(Ø', Ø). As df db it follows that o ß, i . e . that

the strong topology is essentially finer than the weak topology .

Definition 2 .4 The dual space W' of the space W is the topological vector

space of all continuous, linear, complex valued functionals, 9 9 ' : ' -- CI, de-

fined on W . This is the space of Radon measures on W . The topologies on W'

are the weak dual topology a and the strong dual topology P .

An important element in the space "' is the Dirac measure, the delta

functional .

Definition 2 .5 The continuous, linear mapping 8 : cp - g)(xo) of W into

Cl is the delta functional at the point xo E R'.

The weak topology a on the dual space Ø' is the topology of pointwis e

convergence in W A sequence of functionals {qw}, v = 1, 2, 3, . . ., converges in

the a-topology to the limit p ' if and only if the sequence of complex number s

{<rpv ,92>} converges to the complex number <cp ' ,cp> for every cp e Ø .

The strong topology ß on the dual space 0' is the topology of uniform

convergence on every bounded subset of the space Ø . A sequence of func-

tionals {Tv,}, v = 1 , 2, 3, . . . , converges in the ß-topology to the limit q, ' if

and only if the sequence of complex numbers {<qw, 9)>} converges to th e

complex number <92%0 uniformly on every bounded subset of Ø .

If a sequence of functionals converges in the strong ß-topology then i t

also converges in the weak a-topology .
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Definition 2 .6 The dual space g' of the space g is the topological vecto r

space of all continuous, linear, complex valued functionals, (p ' : -)- C 1 , de-

fined on g. This is the space of distributions on g. The topologies on g' are
the weak dual topology a of pointwise convergence in g and the strong dua l
topology ß of uniform convergence on every bounded subset of g.

Definition 2 .7 The dual space „9" of the space 2 is the topological vecto r
space of all continuous, linear, complex valued functionals, q)' : 2 -- C', defined
on Y. This is the space of tempered distributions on Y. The topologies on Y'
are the weak dual topology a of pointwise convergence in 2 and the stron g
dual topology ß of uniform convergence on every bounded subset of Y.

If Q is an open subset of R I and dx is the Lebesgue measure then

2P(Q) with p E R 1 , 1

	

p < Go, denotes the set of all measurable, com -

plex valued functions on R1 , f : R1

	

C', where fQ I f(x)Ip dx < Go . In par -

ticular 2 1 (D) is the space of all functions which are locally integrable in Q .
From this the topological vector space LP is defined as the quotient

space LP (12) = 2P(Q)/If E 9P(D) f ,Q I f (x)IP dx = 0} of equivalenc e
classes of functions which are equivalent modulo the relation "f = g ex-

cept on a set of measure zero " . The topology on LP is determined by de-

fining the norm I I f I I Lp = (fQ I f (x) I P dx)1/P .
The set of all continuous, linear mappings 91 of LP(Q) into C 1,

go' : LP(Q) -* C I (p E R', 1

	

p < Go), constitutes the topological vecto r

space (LP (Q)) ' (1 p < Go) dual to LP(Q) . The topologies on (LP) ' are

the weak dual topology a of pointwise convergence in LP and the strong

dual topology ß of uniform convergence on every bounded subset of th e
space LP(Q) .

If E and F are two topological vector spaces, a natural injection of E
into F with a dense image is a continuous, linear mapping, j : E --> F, such
that j(E) is dense in F. In diagram 2 . 1

g~

	

~Lp

	

(p E RI, 1 < p < ~0 ) (diagram 2 .1 )

the arrows indicate possible natural injections with dense images .
From all the images being dense it follows by application of the Hahn-

Banach theorem that all the transpose mappings, j' : F' -~ E ' , in diagram
2 .2 are injective,
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(LP)~ g'

	

(p R', 1 < p < co)

	

(diagram 2 .2)

Furthermore, if the two dual spaces E ' and F ' both carry the weak dual

topology a, or both carry the strong dual topology ß, then the transpose map -

ping, j ' : F ' -~ E ' , is continuous . This result may be applied to diagram 2 .2 .

Accordingly, all of the spaces in the diagram may be considered as sub -

spaces of the space of distributions g-'(D), i. e . all are spaces of distributions .

The spaces are all dense in ,g'(D) .
Again, let D be an open subset of R1 and let p E R', 1 <- p < co. Define

p' =	
P

for p > 1, and p '

	

co for p = i . Let the space LP'(D) carry the
p -

norm topology defined above, and let the space (LP(D))' carry the wea k

dual topology a or the strong dual topology ß. If a bilinear form on LP(D) x

LP'(D) is defined by

(f,g) - <f, g> = f2f(x) g (x) dx ,

	

(2 .1)

where the bar denotes complex conjugation, then it is an important result
from the theory of duality between topological vector spaces that an iso-

morphism exists between the spaces LP'(D) and (LP(D))', i .e . then a linear

mapping exists, i : LP ' (D) } (LP(D))', which is bicontinuous and bijective .

From this it follows that the spaces g (D), Y(D), W(D), and LP(D) (1 <

p < 0o) may all be considered as subspaces of the space of distribution s

g'(D), i .e . their elements may be considered as distributions . The spaces

of diagram 2.1 are all dense in the space .g '(D) .
Furthermore, the restriction of the continuous, linear form, L 1 (D) ---> C1 ,

defined by
cp-> fQ f(x)cp(x)dx, f E

	

(2 .2)

to the space Ø(D) defines f as a distribution in ,g'(D) . As finally 9-(2) i s

dense in L 1 (D) it follows that if fl and fz are different as elements of L 1 (D)
then they will also be different when considered as elements of g'(D), i . e .
as distributions .

Theorem 2 .3 Let D be an open, non-void subset of R', D R' . Let

p,p' E RI such that ? + 1 = 1 and 1 p,p'

	

co . Let f E LP'(D) and
P p

qJ E LP(D). Define a mapping by
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f - (m

	

<f,T> = f .Q f (x) T(x) dx) .

Then, (i) for 1

	

p < .0 and 1 < p'

	

0a the mapping is a bijective
isometry of Lp' (S2) onto (LP(Q))' ,

and (ii) for p = .0 and p ' = 1 the mapping is an injective isometry of
L1 (Q) into (L°° (D))' .

If a function f in L 1 (Q) exists, f E L1 (Q), such that the continuous ,
linear form (2 .2) defines a distribution Tf in 9-'02), Tf E 9-'(D), which by
theorem 2 .3 may be identified with the function, f = Tf , then the distribu-
tion Tf is called regular. If a distribution T, T e .g '(Q), is not regular, it
is called singular .

The space .g'(D) possesses a linear vector space structure, such tha t
addition of two distributions fi and f2 in g'(Q) is defined by

<fl + t> _ < 11,99> + <f2,0,

	

E g(D),

and multiplication of a distribution f in ''(Q) by a complex number Å i s
defined by

<f2 ,

	

_ < f, 99>,

	

9' E g(Q),

	

(2 .4)

where the bar denotes complex conjugation .
Multiplication as a bilinear, associative operation on two distribution s

fl and f2 from a distribution space and coinciding with the multiplicatio n
of two elements of L 1 (Q) (i .e . two locally integrable functions) in the cas e
of fl and f2 being regular distributions cannot be defined for arbitrary fi
and f2 . 3 )

However, the multiplication defined by

---> OCT,

	

a E ß°°(S2),

	

(2 .5)

where Q is an open subset of RI, is a continuous, linear mapping of .g (Q)
into itself,

	

(Q)

	

9-(D). Hence the transpose mapping is a continuous ,
linear mapping of g'(D) into itself, g'(Q) -~ ß '(S2), and this transpose
mapping is adopted as the definition of multiplication of a distribution in
g'(D) by the function a, a e

Definition 2 .6 If Q is an open subset of RI, a is a function in W °' (Q),
a E ' (Q), and T is a distribution in ''(S2), then multiplication of the dis-
tribution T with the multiplier a gives the distribution aT defined by <aT,(p> =
< T, åg,> .

3) This is a result due to SCHWARTZ . See ref. (14) .

(2 .3)
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The sets of multipliers in the test function spaces possess linear vecto r
space structures .

Theorem 2.4 Multipliers in the space 9.i(D) are all infinitely differentiabl e
functions of arbitrary support. Multipliers in the space ~(S)) are all infinitel y
differentiable functions s of slow increase, i .e. for which ls(k) (x)I = 0(14) ,
where k and I are integers, k, l

	

O .

The operation of differentiation of distributions may be defined in a n
analogous way .

Let f be a function, f : Rl -÷ Cl , which is differentiable n times, n =
0,1,2,3, . . ., with continuous derivatives in the open subset Q of R',
f E 'i n (D) . Hence f is also locally integrable, f E L l (D), and, as has been
expounded above, if cp is a test function in £(S)) then the continuous ,
linear mapping

-> fs-2 f(x)cP(.x)dx,

	

x E R',

	

(2 .6 )

defines in g'(Q) a distribution which may be identified with the function f.
Suppose a homeomorphic mapping of g'(Q) into 9 '(S)) is defined by

the formula

Dn : f

	

Dnf,

	

n = 0,1,2,3, . .

	

(2 .7)

Dn denoting the n ' th order derivative of f in the function sense. Then, a s
fD f (n) (x) cp (x,) dx = (- 1) n f f (x) rp (n) (x) dx, it is seen that <D n f, ç > =
(- 1)n <f,Dn99> . This leads to the following definition .

Definition 2 .8 If S) is an open subset of R', n is an integer, n = 0, 1, 2, 3 ,
. . ., and T is a distribution in g'(Q), then the distribution Dn T is defined
by <D n T,gv> _ (- 1) n <T,Dn ço> .

Notice that Dn is the transpose of (- 1)nDn .
Subsequently the concept of the support of a distribution T, supp T ,

will be of importance .

Again, Q is an open subset of R' .

Definition 2 .9 A distribution T in the space .g'(Q) is said to vanish in
an open subset U of D if <T, cp> = 0 for all test functions q E g (,Q) with
supp T E U .

Definition 2 .10 The support of a distribution T in g'(Q) is denoted by
supp T and defined as the complement of the largest open subset of D in whic h
T vanishes .



The subspace of g'(Q) which consists of all distributions with suppor t
on the non-negative real axis R+ = {a E R1 10 <-_ r < co} is denoted by

If 2 is a complex number, 2 e
x E R1 , and if q' is a test function
function x a cp is locally integrable,
mapping

Cl, such that Ret > - 1, if x is real,
in g (Q), q' E .9(D), then the product
x À p e L1 , and the continuous, linear

q' - <x , 99 > = fo xA q7(x) dx

	

(2.8)

defines the regular distribution x+ E

For Re72

		

-1 the limit lim fÉ x2gq(x)dx does not exist, i . e . xÀ'qp L 1 , and
e-->o +

therefore the integral may not be used to define a distribution .x+ . If ,
however, a sufficient number of terms are subtracted from the MacLaurin
expansion of the test function the integral is rendered convergent . Thus, if
-n < Re 2 < -(n-1), where n is a positive integer, n = 1, 2, 3, . . . , then
the integral

<Pfxa , m> = J o
xA (p (x) -

x
u	 99" 	

(p)
dx

r
(2 .9 )

n- 2

y= o

converges and is used to define the singular distribution Pfx+ E Ø+

	

ß'(S2) .
Distributions of this type are termed pseudofunctions and are characterise d
by the prefix Pf. This procedure of extracting a finite part from a divergen t
integral by subtracting the terms which cause the integral to diverge wa s
first introduced by HADAMARD4) , and the result is called the finite part,
Fin . P., of the integral .

For -n < Re < - (n -1), where n is a positive integer, n = 1,2,3, . . . ,
the singular distribution Pf

	

is defined b y

<Pf = Fin . P . fo°'' xa ~ (x) dx

f _ I

	

xNg(1~) (0)

J xA q' (x) -o

	

~ !

dx

Fc= o

n-2

(2 .10)

= lim f w

xA(p(x) dx +

	

£+ y+1q9(,u)(0 )

e->. od ~

	

p=o ,ui(R+,u +1)

where q, E 2(S2) .
For - 1 < Re), the continuous, linear mapping
4 ) See ref . (7).
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q,

	

<Pf x+,q,> = Fin . P . fo x ;- rp(x)dx

	

(2 .11 )

may still be used for defining the pseudofunction Pf , but no subtraction
in the MacLaurin series is required, so that the distribution defined become s

regular and the notions of Fin. P . and Pf superfluous ,

i = So' x), q, (x) dx.

	

(2 .12)

For Re), = -n and A + n, where n is a positive integer, n = 1,2,3, . . . ,
the singular distribution Pf x+ is defined by analytic continuation in the
complex A-plane from -n < Re), < - (n -1) . As for Re À = - n the integral

f:x 2'xn - 1 q, (x) dx diverges as e +- 0+, one more term must be include d

in the series to be subtracted in the integrand in order to obtain the finit e
part of the integral, Fin. P . f ô x)(p ( .x) dx .

Thus, for Re). = -n and 2 -n, where n is a positive integer, n

. . . , the singular distribution Pf x+ is defined b y

<Pf x+,912> = Fin. P . fô xA, q,(x)dx

ao

	

n-2
xi" q)" (O)

	

xn-lon-1)(0 )

o

	

L

	

u_o

	

/II

	

(n-1)!

	

(2.13)

r~

	

\
et+~,+1(p(,ß)(0)

	

en-`A9)(n-1)(0
)= lim'

J
x~(p( .x)dx +

n-2
+

where q, e g-(S2) .
For 2 = -1,-2,-3, . . . the above definitions of Pf 4 do not apply ,

essentially because in these cases the defining integrals diverge . Considered

as functions of A E C1 the integrals have poles at 2 = -1, -2, -3, . . . . As

q, is in g(Q), cp e .g (Q), an integration by parts shows that whereas th e
integral

J
°° 1
E

~q,(x)dx = - lne(p(0) - fs lnx(x)dx - o(1)

	

(2.14)

diverges as e -4- 0+ because of the term -ins 9 9(0), the integra l

r
1

Js x
99(x)dx+1ne9) (0) = f E -1 [q,(x)-9)(0)uo(1 -x)]dx

= - f 7 ln .xq,'(x) dx - o(1),

	

(2 .15 )

uo(x)
1 1 for x > 0

0converges ass -)- 0 + .

	

for x < 0



This leads to defining the singular distribution Pf
to the case = - 1 by

Nr.2

	

1 3

/1
corresponding

\x +

/
\

1

x +

	

= J o [4'(x) - T(0) uo(1 -X)] dxx
1

	

l (2.16)

= lim J f -q~(.x) d.x +1n e g9(0) .
o+j S x

	

}

It is of importance to consider such effects on a distribution which ste m
from a change of independent variable in a test function .

Let f be a function, f : R l Cl , which is locally integrable in an open
subset Q of R', f e L I ( .Q) . As has been expounded above, if 99 is a test func-
tion in .g (S2) then the continuous, linear mappin g

fQf(x)ço(x)dx,

	

x e R',

	

(2 .17 )

defines in ,g '(Q) a distribution which may be identified with the function f.
Suppose a homeomorphic mapping of .g '(Q) into g'(Q) is defined b y

the formula
ra : f(x) -~ raf(x) = f(x - a),

	

a,x e R .

	

(2 .18)

Then, as fnf(x-a)p(x)dx = fspf(x)T(x+a)dx, it is seen that (Taf,cp> _
<t, T_a 9 >. This leads to the following definition .

Definition 2 .11 If S2 is an open subset of R', a is a real number, a e R' ,
and T is a distribution in g'(Q), then the distribution raT is defined by
<raT,9'> = < T, T_a~> •

Notice that ra is the transpose o f
Likewise, let a homeomorphic mapping of .g '(Q) into 4''(Q) be define d

by the formula
xa : f (x) ->- y a f(x) = f(ax),

	

a, .x E R 1 .

	

(2.19)

Then, as fn f (ax) (x) dx = 1JQt(x)()dxit is seen that (af> _

dal
<f ya i ~>. This motivates the following definition .

Definition 2 .12 If SZ is an open subset of R', a is a real number, a E RI ,
and T is a distribution in g'(Q), then the distribution ya T is defined by

1
<xa T, qp> = lal < T, xa 1 92 > .

<Pt
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1

Notice that xa is the transpose of II xa 1 .
a

	

1

A linear change of scale, x -> ax, 1,x E R1 , in the distribution Pf (- 1
defined in (2.16) shows that

<Pf \x J ,T> = Jo xk(x)-Ø(0)uo(1
a~J

dx

= lim {a
J

£ ~ry(x)dx + aq~(0)1n~a~ } ,
E~O+ I

	

` jJJJ
i . e . that

I cc

	

/ 1

~

	

sx~
<Pf

	

,T> = <aPf - - alnaå,q> .

	

(2 .21 )
\x

	

\

In the light of this property it is now possible to define s) the distribution
Pf x~ also in the case when A is a negative integer .

Definition 2 .13 Let n be a positive integer, n = 1, 2, 3, . . . , 6) let A be a com-
plex number, A E Cl, and let T be a test function in

	

E

For -n < ReA < - (n -1) the distribution Pfx~ E ,g+ is defined b y

<Pf

= Fin . P . f ô x A q7 (x) dx

fo
n-2

	

.

=
E

	

+ n - 2
=0

E).+tu+1~(µ)(0 )

J ~~(x) dx +
-
li
~
m
0+

	

x

	

y!(A+p+ 1)
tt

For ReA = -n, A

	

--n, the distribution Pf

	

E .g+ is defined by

<Pf x 2' , ep >

= Fin . P . fô xA p(x)dx

= F-arc7 9~( x)

xlyt t)(0)

	

x. n-1on-1)(0)	 -	 dx

n- 2

=o
n-2

~µ.+A+ low	 (0)

	

En+A~(n -1)
	 ( 0)

	

J92(x)dx+,u!(l
.c +A+1 )
	 -+	

(n - 1)!(n +A)
µ=0

5) The last part of the definition is due to GüTTTNGER . See ref. (6) .
B ) For n = 1 see eq.s (2 .11) and (2 .12) and accompanying text .

= lime-> o+
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For A = - n the distribution Pf x+ E moi_ is defined by

<Pf

	

9o >

= Fin. P. f 0 x-n p (x) dx

n- 2~ x/.1 ~40 (0 (

	

x\xn-lq~(n-1)(0)=
Jccx_n(x)_~

	 - upl - -	 ldæ
o

	

L~!

	

a~

	

(n-1) !
= o

= lim j x- n q)(x)dx
o->-o+

	

E

sfc- n+1 T (,u)(0 )

	

In(sla) 99 (n-1)(0) l

Ic!(ic - n + 1) +

	

(n-1)!

	

r
n-2

+

f1= 0

where a E R 1 .
Considered as a function of the complex variable A, A E C1 , the integra l

F(A) = <Pf x+ ,q)> is a complex valued function which is holomorphi c
everywhere in the finite A-plane except at the isolated points A = -1,-2,
- 3, . . . which constitute a set of simple poles . The function F thus is mer-
omorphic .

The residue at A = - n, where n is a positive integer, n = 1, 2, 3, . . . ,
is found to b e

Res F(A)
2.= -n

lim
À . - n +

,1->-n +
lim (A + n)	

;;2+

It!

	

dx

~

	

n-2

	

. . . _ _,

{{
pp

(A+n) J ~xÂ

0
f c = o

~

	

n 2
xFl g,(µ) (0) `

(x) -

	

~
\

	

ct=0

	

~

	

/ 0

co

(A + 1) (A + 2) ~' (x)

-

o

	

u !
E~ =

n
xÂ +2

	

~ xft ~(µ +1)(0)3

I1

	

r

	

xA +n- 1
+(-1)n

-2[(A + 1)(A +2) . . . (A
n-1)(9~(n-2)(x)-m(n-2)(0) )

xA + n
+ (-

1)n-l[(2
	 q~(n-1 ) (x)+1)(A+2)• •(A +n)

	

l o

	

a0

	

xA + n

	

+ (- 1)n f

	

0
(A + 1)(A + 2)

	

(A+ n )
	 go(n)(x)dx

(2.22)
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- 1

	

.

	

~ (2 .22)
_	

r

(n - 1)!

	

9'(n)
(x)

dx
0

1=	 m(n 1)(~)
(n - 1)!

	

\

(-
1)n 1<8(n

1) g
')(n-1)! \

	

J

The F-function as a function of the complex variable A + 1, 76 + 1 E C',

is meromorphic with isolated, simple poles on the negative, real axis jus t

like the function F : A - <Pfx+, 99> studied above . For the F-function th e

poles of F(A +1) are situated at A = - n, where n is a positive integer ,

n = 1, 2, 3, . . . , and the residues are

Res F(A + 1) =
A--n

	

(n - 1) !

For every A E C', F(A + 1) + O .

The Riesz distributions,' ) first introduced by M . Rir.sz, are defined from

the distributions P f x+ .

Definition 2 .14 Let x E R', A E Cl, and let F denote the F-function . The
x ï.

Riesz distribution R
+

E g
+

is defined as the distribution R+ = Pf	
(A+1 )

Because of the properties of the functions F(A) = <Pf ,Ti and P(A + 1) ,

x),"

	

F(A)
the integral of the Riesz distribution <Pf

I,(A 1) '

	

F(A +
1) considered

F(A)
as a function of A E C' is holomorphic in the finite A-plane, i. e .

	

-- is
F(A + 1 )

an entire function of A E Cl. In particular, the value of the function

F(A)
at the points where F(A) and F(A + 1) both have poles may b e

F(A+ 1 )
determined as the quotient of the residues . Therefore

x2
<R+ n , T> = lim <Pf

	

+

	

9 i

	

_3 n

	

r(A+1) '

	

= lim	
F(A)

A,_n I (A +1)

	

} (2 .24)

7 ) See ref.s (5), (6), (12), and (14) .

(- 1)n-i
(2 .23)
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Res F(2)
A--n

(2.24)

Res F(2 + 1 )
A=- n

( 1)n- 1

(n - 1) !

(_ 1)1 -

(n1) !

= T(n-1)(O )

<( - 1)n-1 mn -1) 97>

Hence the following result .

Theorem 2 .5 For 2 = - n, where î. E C1 , and n is a positive integer ,
n = 1,2,3, . . ., the Riesz distribution R+ is

RV' = lim Pf
- - (- 1)n-1å(n-l), R 1 .

A->-n

	

+ 1

In the particular case of 2 = - 1 the Riesz distribution is the delta distribu-
tion, R+ 1 = å .

3 . Properties of the Transformation T

In the following a physical system will be characterised by describin g
the way it responds to some physical stimulus, i . e . by describing it as a
transformation T of an excitation f from the domain of T, f E D(T), to a
response r in the range of T, r E R(T) . As to the physical nature of f and r
no description in more precise terms will be required . The test functions
will be defined on R1, q : R 1 - C', and though no physical interpretation
of the independent variable will be needed the notation and terminolog y
will agree with the case of the variable being real time . It will be assume d
subsequently that T is single valued, and therefore the transformation ma y
be written as the mapping T : f -> r . In general both D(T) and R(T) will
be considered as subsets of the space '(Q), where Q is an open subset o f
R', i . e . both f and r will be assumed to be distributions.

The transformation Twill be proposed to have the following six properties .
3• . (i) Single valuedness . To each excitation, f E D(T), the transformation

associates exactly one response, r E R(T) ,

T(f) = r .

	

(3 .1 )
Mat. Sys . Sledd . Dan.Vid . Selsk . 38, no . 2 .

	

2
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3 . (ii) Linearity . If a and ß are complex numbers, a, f3 E Cl , and fl and

f2 are two excitations, ft, f2 E D(T), then

	

T(afi + ßt2) = aT(fi) + ßT (f2)•

	

(3 .2 )

3 . (iii) Stationaryness . If fis an excitation, f e D(T), and -ea is the opera -

tor defined by definition 2 .11 then the property of stationaryness of T ma y

be stated as T(ra(f )) = za(T (f )), i . e . as the commutative property

Toza=zaoT,

	

aERI .

	

(3 .3)

3 . (iv) Continuity . The topologies on D(T) and on R(T) are the topologies

induced by the topology on °t?'(Q) . The transformation T is continuous i f

and only if to each neighbourhood V of T(O) in R(T) there corresponds a

neighbourhood U of 0 in D(T) such that T(U) V .

There is an important connection between the class of transformation s

which possess the four properties 3 . (i)-3. (iv) above and the class of trans -
formations which may be represented by a convolution in GJi '(Q) .

If t E R1 , z E R1 , and (t, z) E R 2, let gt , gr t , and be the test func-

tion spaces g of all infinitely differentiable functions with compact suppor t

defined on R', R', and R 2, respectively . Denote the corresponding dual

spaces by gt, fir , and g; ,r , respectively, and let the distributions in th e

dual spaces be marked by the corresponding indices, e .g . Ut , UT , and Ut,z ,

respectively .

Suppose cp : Rl x R l -.C l is a test function in the space ~t a defined on

R 2 . Then, evidently, the restriction of cp to cp : RI -~ Cl is a test function

defined on R', e .g . 99 E ~ t .

The tensor product of two distributions is a distribution defined as

follows .

Definition 3 .1 If t E RI and z E R', Ut and VT are two distributions in g ' ,

Ut e gt , and VT E ~Z , and 97 is a test function , then the tensor pro -
duct U® ® V. of the two distributions Ut and VT is a distribution in =O t T '

Ut ®Vt E gt z , defined b y

<U®®Vz,42(t,-0> = <Ut,<Vz,At,-0» .

The following two properties of the tensor product are of importance .

Theorem 3 .1 The commutative rule holds for the tensor product U® ®1~ E

Wit, of Ut E

	

and VT E

	

, i .e .
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< Ut ® Vr, (p(t,r)j = <Ut , < VT , q)( t , r)»,

< Vr ® Utm( t, r)i = <~å , <Ut , 9'( t, r)>i ,
and

<Ut ©VT , q'(t,T)>

	

<V., ® Ut, q'( t , r)> .

Theorem 3 .1 is Fubini's theorem in distribution theory .

Theorem 3 .2 The support of the tensor product of two distributions Ut and
VT equals the product of the individual supports of the factors, i.e .

supp ( Ut ® Vz)

	

(supp Ut) x (supp ITO) .

Suppose that t E RI and r E RI , and that q' E g, 93, : R l -> Cl , is a test

function defined on RI . From the fact that, for tp defined on R1 , 9) is a test
function in gi t , q' E 2t , i .e . q' is infinitely differentiable and has compact
support on R', it cannot be implied that q' extended to R2, q' : R2 - Cl , by

q'(t,r) = q'(t +T) is a test function in gt z , because even though q'(t,r) _
q'(t + T) is infinitely differentiable, it does not have compact support on R 2 .
However, if I is a compact subset of R2 , I c R2 , and the function oc E f co ,
a : R 2 -÷ R', is the characteristic function of I, i. e . equals one on a neigh-
bourhood of I and equals zero elsewhere, then the product functio n

CT : R 2 -> Cl is a test function, cop E g, defined on R2 .
It is now possible to define the convolution of two distributions in the

following cases .

Definition 3 .2 Let t RI and r E RI , let Ut E g-'t and VZ E gz be two
distributions, and let q' E g, q' : Rl - Cl , be a test function defined on R1 .
Let I be the intersection I = (supp Ut ) fl (suppV,) n (suppq'(t + r)) c R2 , and
let ccE e', a : R2 - R', be the characteristic function of the set I .

If I is compact then the convolution product U t * Vz of the distributions Ut

and VT is a distribution in Y+T and is defined by

<Ut *17,, ço ( t , r)> = < U®®Vz, a(t, r) q'( t + r)> .

Let the sum of sets (supp Ut ) + (supp VT) be understood to be the set of

points which may be written as the sum of a point t in supp Ut, t E supp Ut ,
and a point r in supp VT., T E supp VT . The following statement holds abou t
the support of a convolution product .

Theorem 3.3 Let the convolution product Ut * Vz E gt+z of U t E Yt and
V~ E Q~ be defined. Then (supp(Ut * VT)) (supp Ut ) + (suppVx) .

The following theorem is a corollary of theorem 3 .1 .
2*
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Theorem 3.4 The commutative rule holds for the convolution produc t

Ut *V2 E gt +i. of Ut c gt and jr E

	

, i .e . Ut *VZ = V.r *Ut .

It is of importance to establish sufficient conditions under which th e

convolution product of two distributions may be defined as above . Only

the following two cases will be needed .

Theorem 3 .5 Let t E R I and z E R 1 . (i) If at least one of he two distribu-

tions Ut E gt and VT E g, has compact support then the convolution produc t

Ut *Vz e gt_FZ may be defined . (ii) If both distributions Ut E gt and Vz E

have their supports bounded and closed to the left then the convolution produc t

Ut * Vz E g.t+z may be defined .
In both cases the intersection I = (supp Ut ) n (suppVZ ) n (supp p(t + z)) is

compact and hence the convolution product well defined by <U,* VT , cp(l, z)>

< Ut Ø Vi , a(t, z)cp(t + r)> .

Such distributions as were encountered in the case (ii) above, i . e . which

have their supports on R 1 bounded and closed to the left, are termed right -

sided distributions . The set of all right-sided distributions in g' is denoted

by gR

Definition 3 .3 gR g' is the topological vector space of all right-sided

distributions . The topology on gR is the inductive limit topology of compac t

convergence inherited from the space g'.

The space YR possesses the following important property .

Theorem 3 .6 The space gR is a commutative algebra with convolution a s

rule of composition and with the delta distribution as unit element .

Notice that the space g+ is a particular instance of a space ~R . Thus,

from theorem 3.3 and theorem 3 .6 it follows that the convolution product

of two distributions in og

+

is again a distribution in g+ .

The transformations T which may be written as convolutions are o f

particular interest . Suppose that only distributions in gR are considered a s

excitations, f e R , and suppose there exists in gR a distribution B, B E gR ,

such that the response r produced by the excitation f may be written as the

convolution
r = T(f) = B*f,

	

f E gR, B E YR .

	

(3 .4 )

The domain of T is

	

, D(T) = 9R, and as the excitation f traverses

D(T) = .9R the response r also traverses gR , i . e . the range of T is likewise

~R, B(T) g'R .
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It is readily established that if a transformation T is defined by the con -
volution (3 .4) then it possesses the four properties 3 . (1)-3 . (iv) of single

valuedness, linearity, stationarynes, and continuity . The validity of the

converse assertion has been demonstrated by SCHWARTZ . For the spe-

cial case of the excitation being right-sided, f E gR, the proposition

states that if a transformation T has the whole subspace gR as its domain ,

D(T) = , and possesses the four properties 3 .(i)-3.(iv), then it is a con -
volution transformation over YR , i . e . then there exists a unique distributio n
B E gR' such that (3.4) is fulfilled . It was seen above that also the range
of T will be gR, R('l) =

	

.

The two propositions for right-sided distributions may be stated as a
necessary and sufficient condition for the transformation T to be a con-
volution transformation over YR as follows .

Theorem 3 .7 A unique, right-sided distribution B, B E R, exists such
that transformation T may be defined as the convolution r = T(f) = B* f
for f E YR if and only if T has gR as its domain, D(T) gR, and the trans-
formation possesses the four properties of single valuedness, linearity, stationary-
ness, and continuity .

The transformation T will be proposed to possess the two further prop-
erties of passivity and causality . In this connection the following operation s
on distributions will be required .

Definition 3 .4 Let U E g ' and (p E G°Zr . Then

(i) U E g' is defined by <U,cp>

	

<U,(TO, where the bar denotes complex
conjugation ,

(ii) U E g' is defined by <Û, q7> = < U,qi>, where q0(t) = 92(- t) ,
and (iii) Ü E gi ' is defined by <Ü,T>

	

<U,(p>, where i(t) = q'(-t) .

Also the next theorem, which essentially informs that the transpose o f
convolution in g with the distribution is a convolution in g' with the
distribution V, is called for .

	

Theorem 3.8 Let U E R' , V

	

and q~ E g. Then the convolution
product U* V is defined, U* V E gR, and <U* V, p> = <U, V' *0 .

Suppose that both the excitation f and the response r are elements in
g, f,r E g (D), where Q is an open set in Rt. Then the transformatio n

T : f

	

r,

	

f,r E g (Q),

	

(3 .5)



is said to be passive if

fQ[f( t)f( t)- r ( t ) r ( t)]dt = fQ [If( t )I 2

	

Ir(t)I 2]dt ? O .

	

(3 .6 )

Using distribution notation together with definition 3 .4 equation (3 .6) be -

comes

<f, f> <r,r>

	

0,

	

f,r

	

g (Q) .

	

(3 .7)

Hence, in the case of f,r E g (Q) the transformation T is said to be passiv e

if equation (3 .7) holds . If only right-sided distributions are admitted as ex-
citations, D(T) = gR, and if the transformation T is supposed to have the

properties 3 . (i)-3 . (iv) of single valuedness, linearity, stationaryness, and con-

tinuity, then according to theorem 3 .7 a unique right-sided distribution B
exists, B E gR , such that the transformation may be written as

r

	

T (f) = B*f,

	

f,r,B E gR .

	

(3.8)

As f E

	

and r E g implies that f e gR and r

	

respectively ,

equation (3 .7) with f,r e g may be restated a s

<f f> - <r,r> = <6 *f,f> - <B*f,B*f >

= <6,f*f>-<B*B,f*f>

	

<6-B*B,f*f>

	

(3 .9)

0,

	

f,re2l .

Here f E g, and it follows that ! E g and that f*1' E g. Distributions with

the property of (3 .9) carry a special name .

Definition 3 .5 Let S2 be an open subset of R 1 , let U E g'(Q), and le t
e g (Q) . If <U, qp * cp>

	

0 then the distribution U is called positive semi -
definite .

For transformations T which have D(T) = gR' and which may be de -

fined as convolutions by equation (3 .8) and which therefore according to

theorem 3 .7 possess the properties 3 . (i)-3 . (iv) the property of passivity i s

stated as follows .

3 .(v) Passivity . The transformation T, which by equation (3 .8) is char-

acterised by the distribution B E gR, possesses the property that

	

<6-B*B,q7*4~>

	

0,

	

9) E ,

	

(3 .10 )

i. e . the distribution S - B * B is positive semi-definite .
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3 . (vi) Causality . Let .f2 be an open set in R1 , and let to e R1 . The property

of causality is expressed by stating that if fi and f2 are two excitations i n

g,' (Q), f., f2 E s '(Q), such that their difference fl - f2 vanishes for t < to
then this shall imply that T(fl -f2) likewise vanishes for t < to, i .e .

supP (fl - f2) = {t e Rl ~ to

	

t }

implies that

supp T(fi - f2 )

	

{ t E Rl ~ to _<- t} .

For the particular cases when T may be described as a convolution th e

following theorem is of importance .

Theorem 3 .9 Let T be a convolution transformation with D(T) _ gR ,
such that r = T(f) = B* f, where f,r,B E ØR . The transformation T is
causal if and only if suppB E {t e R1 10

	

t} .

It may be shown that if the transformation T possesses the first five

properties 3 . (0-3 . (v) of single valuedness, linearity, stationaryness, continu-

ity, and passivity, then it also possesses the sixth property 3 .(vi) of causality .

In view of theorem 3.7 this assertion may be stated as the following suf-
ficient condition for causality .

Theorem 3.10 Let T be a convolution transformation with D(T) gr R ,
such that r = T(f) = B* f, where t;r,B e gR, and let T be passive, then i t
is also causal .

4. Laplace Transformation of the Transformation Equatio n

By reference to theorem 3 .7 a transformation T for which D(T) =
and which possesses the four properties 3 . (i)-3 . (iv) may be completely

described as a convolution transformation b y

r= T(f) =B *f,

	

f,r,BE,9R .

	

(4 .1 )

This means that if only excitations f which are elements in the space

gR considered as a convolution algebra (cfr . theorem 3.6) are admitted ,

f E .9R, then T is completely characterised by the element B E .9R, i.e . by
giving the t-representation of the transformation T. If the distributions f, r,
and B of (4.1) all possess Laplace transforms then the transformation T
and the corresponding physical system are completely characterised by th e

(3 .11)
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Laplace transform of B, YB = S(p), i .e . by giving the p-representation o f

the transformation T . The function S : Cl E D (S) R (S) E Cl is a com-

plex valued function of a complex variable, p E C 1 . It is called the system

function ) . The distribution B in (4.1) is called the t-representation of th e

system function .

Definition 4.1 Let F be a subset of R1 , and let x e R 1 and a E R1 . Th e

topological vector space ,9 (P) is the space of all distributions Ux E .gx such

that C" Ux e 9x for a e P. A sequence {141, v = 1,2,3, . . . is defined t o

converge to the limit U in the topology on ,9'x' (P) if and only if for every

a e F the sequence {eQx UV}, v 1 , 2, 3, . . . converges to the limit eox U in

the weak dual topology a on Yx .

It may be shown that F is convex and hence in the present case o f

P E R1 , if F is not empty, I' is an interval on the real axis, finite, semi -

infinite, or infinite .

A sufficient condition for the Laplace transform of a distribution t o

exist is that the distribution is an element of the space "'(P) .

Definition 4 .2 Let 1' be a convex subset of R1 , let x, a, w e R 1 , let Bx E max ,

and let a e a : R1 ~ R I , be the characteristic function of suppBx . If

Bx e ,9'x' (P) then the Laplace transform of B, YB, is defined a s

18B = < Bx, a (x) e vx e Ez> = <Bx, a (x) e ''x> S(p) ,

where

	

p E r + iRl R 1 + iR 1 = C1 .

The following theorem establishes a very important connection betwee n

the properties of a distribution B and the properties of its Laplace transform .

In the theorem the same notation is used as in the definition 4.2 above .

Theorem 4 .1 Let r be an open, convex subset of R' . If S : C 1 I' + iR1 C 1

is a function which is holomorphic in the open strip r + iRl , and if IS(p)l, where

p = a + iw E I'+ iRl R 1 +iR 1 = C', on each compact subset K of P, K P,

is majorised by a polynomial in 1w1 depending on K, IS(p)l gx(lWl), then

a unique distribution B in Y'(P) exists, B E 9''(F), such that °B = S(p) .

Conversely, if B is a distribution in /7'(P), B E 92'(F), then a unique function

exists, S : C1

	

r + iRl -~ C1 , which is holomorphic in the open strip P + iRl,

which on each compact subset K of K

	

1', is majorised by a polynomia l

in lo) I, IS(p)l ~x(lwI), and which is the Laplace transform of B, S(p) = YB.

8) See ref .s (10) and (11) .
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If a complex valued function is known to be the Laplace transform of a

distribution then information about the support of the distribution may b e

obtained from the following theorem .

Theorem 4 .2 . Let xo E R 1 , and let r be the open, convex half line r =
{a E R 1 j xo < a} c R 1 . If S : C 1 P+ iR l -> C I is a function which is
holomorphic in the open half plane P+ and if IS(p)i, where p = a + iw e

P + iR l c Ri + lR1 = Ci, on each ;compact subset K of P, K P, is ma-
jorised by the product of a function e ° 6 and a polynomial in IwI'depending

on K, IS(p)I < ex°° x(Iwi), then a unique, right-sided distribution B in
9'(P) n gR exists, B E 5'(P) n ØR , such that its support is bounded to th e
left by xo, suppBx {a E Ri I x'1 < a} r, and such that 2'B = S(p) . Con -
versely, if B is a right-sided distribution in Y'(r) n .gR, B E Y'(r) n YR ,
such that its support is bounded to the left by xo, suppBx

	

{a e R i loco

	

a}
= I, then a unique function exists, S : Ci P+ iR i which is holomorph-
ic in the open half plane r + iRi , which on each compact subset K of P, K
c P, is bounded by the product of a function e-x° a and a polynomial in Iw o

depending on K, IS(p)i <_ e- x° 6'Øx(lwl), and which is the Laplace transfor m
of B,S(p) = 'B.

For transformations T which may be written as convolution transforma-

tions according to theorem 3 .7 the following theorem is important .

Theorem 4 .3 Let r be an open, convex subset of and let f, r, B E Y ' (P) .
The Laplace transforms Yf = (p), 2B = S(p), and £°r = R(p), where
p e r + UPI c R l + iR l = Cl, are holomorphic functions in the open strip
P+ LW . If r = B* f then also Æ(p) = S(p),F(p) .

The particular instances of Laplace transforms given in the next tw o
theorems will be required .

Theorem 4.4 The Laplace transform of the 6-functional is one, 2'b = 1 .

Theorem 4.5 Let 2,p E Cl . The Laplace transform of the Riesz distribution
-1

	

R- 1

Pf
I'(~)

e Y' n .gR is YPf	 (~) = '
19

Certain symmetry properties in the distribution B are reflected in th e
properties of its Laplace transform YB.

Theorem 4.6 Let r be an open, convex subset of Ri , let B E Y'(P), and
let iB = S(p), where p E P-H iRi

	

R I +

	

= Ci .
Mat.Fys.Medd .Dan.Vid .Selsk.38, no . 2 .
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Then (i) ~B = S(p) ,

(ii) ..rB = S(- p)
and (iii)

	

= S(- p)

The distribution B which characterises a convolution transformation T

in (4.1) will be supposed to be real . Compare with the definition 3 .4 of the

complex conjugate of a distribution .

Definition 4.3 Let Q be an open subset of R', and let B be a distributio n

in .g'(Q), B E .9 ' (Q) . B is defined to be a real distribution if and only if B =
on D.

The Laplace transforms of distributions which are real possess the fol -

lowing property .

Theorem 4.7 Let r be an open, convex subset of R', let B E ''(F), and

let 2'B = S(p), where p e I'+ iRl Rl + iRl = CI. The distribution B is
real, B = B, if and only if S(p) = S(p) .

The following result is a consequence of the theorems 4 .4, 4 .5, and 4.6 .

Theorem 4.8 Let B be as in theorems 4 .5 and 4 .6 . Then 2)(6

	

B* B) =-
1 - S(p)S(-p) .
1 - S(p)S(- p).

If furthermore B is real,

	

B = B, then 2'(å - B * B) _

Finally, in order to state the theorem of BOCHNER and SCHWARTZ 9) which

will be needed subsequently the concept of a positive, tempered measure

must be introduced .

Definition 4.4 Let Q be an open subset of R1, and Iet m be a test function

in the space (Q), such that (p(x) E RI and q,(x) ? 0 for all x e D. Let ,a
be a measure in the dual space, ,a E W '(Q) . The measure ,a is defined to b e

positive if and only if <y, q)>

	

0 for all such q7 .

Definition 4.5 Let r, A E R1, let Q be an open subset of R1, and let th e

measure ,s ''(Q) be positive . The positive measure ,a is defined to be a positive ,

tempered measure if and only if an integer 1 exists, 1

	

0, such that f,. < A IdUI =

O (Al) as A -- CO

As indicated in 3 .(v), if the transformation T is a convolution, so that

r = T (f) = B* f, then T is defined to be passive if the distribution å - B* B

9 ) The theorem, initially stated by BOCHNER, ref. (1), has been generalised by SCHWARTZ,

ref.s (5) and (14) .
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is positive semi-definite . In this connection the following theorem due t o
BOCHNER and SCHWARTZ iS of importance as it presents a criterion t o
establish if a distribution is positive semi-definite .

Theorem 4.9 Let I' be an open, convex subset of R 1 , I' c R 1, let B e Y'(T') ,
and let 2'B = S(p), where p = a+ iw e I' i- jR l c Rl + iRl = Cl. The dis-
tribution B is positive semi-definite if and only if the restriction of the Laplac e
transform to the imaginary axis .TB IQ o = S(iw), is a positive, tempered
measure .

5 . The General Debye Function as System Functio n

When measurement of dielectric relaxation of physical systems is car -
ried out the p-representation of the transformation T, which maps the ex -
citation E, the electric field in the dielectric, into the response D, the dis -
placement field in the dielectric, is determined as the system function

s(P)
= E(p) -	 E~

	

p E Cl ,
Es - Eao

where p is the complex frequency, p = a' + iw, e(p) is the complex dielec-
tric constant, and where es and E c,, are the limit values es = lim e(a + ico )

w-> o +
and e. = lim e(a + iw), both of which are real .

co -- w

The assumption that the response of the dielectric, the displacemen t
field D, displays exponential decay to a delta functional excitation in th e
electric field E is equivalent to the assumption that the system function S
is of the form

S(p) = e(p) -	 Eø

=
Es -Eco

1

1 +pro
p E Cl,

	

ro E Ri.

	

(5 .2 )

Here ro is a positive number, ro > 0, the relaxation time .
The function

S(p) °
1

1 + pro
(5 .3)

is called the Debye function. It is holomorphic in the open half plane l' + iR 1 ,
where I' = {a E R1 J - 1/ro < al, and it maps the half line Ld in the p-plane

3*
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- 1
L,o = {uo + icw E R1 + iR l l 0

	

cro >
ro

,

	

(5 .4)

into the semi circle in the S(p)-plane

1

	

1
A6o = S(p) E Cl I S(p) - 2(1 + Gozo)

	

2(1 + aozo)
,

(5 .5 )
- 1

ImS(p)

	

0 },

	

oo >	
zo

the Cole-Cole semi circle. A special instance is the case of Eo = 0, when

S(iw) _
e(iw)

	

1

es-e,0

	

1 +iwro
(5 .6)

and the half line Lo is mapped into the semi circle Ao ,

Ao = {S(p) E C1I IS(iw) - 2 I = 2 , ImS(p) <_ 0} .

	

(5 .7 )

In many cases, however, e . g . of dielectric systems, there has been re -

ported experimental evidence that the half line Lo in the p-plane is no t

mapped into a semi circle Ao in the S(p)-plane, but rather into various forms

of continuous arcs, circular arcs, skew symmetric arcs, etc . All of this ev-
idence indicates that the primary assumption of the response of the dielectric

system displaying an exponential decay characterised by the sole paramete r
zo, the relaxation time, to a delta functional excitation, cannot hold i n

general .
This has led to attempts to alter the system function S to a form justifie d

by its compatibility with experimental observations, i . e . a phenomenologica l

form.
The functions

1
S(p)

	

+ (p zo)1- a E C 1 , oc, ro e R 1 (COLE-COLE), 10)

	

(5 .8)

and
1

S(p)

	

P ,To
+ pzo]ß' p E

Cl, ß,zo E Rl (DAVIDSON-COLE), 11)

	

(5 .9 )

where 0

	

a, fl

	

1, both have been used to characterise dielectric systems .

A few years ago the still more general functio n

1°) See ref . (3) .
11) See ref . (4) .
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1
S(P) _ [ 1 +(pro)1- a]ß' P E C 1 , a , ß, io E R1 (HAVßILIAK-NEGAMI), 12 ) (5 .10)

where again 0 <- a, ß < 1, was proposed as system function to characteris e
certain polymer dielectric systems, the proposal being justifiable by the
ensuing agreement with the experimental observations .

The function (5 .10) is called the general Debye function. It is a comple x
valued function of a complex variable, S : Cl a D (S) i R (S) c C1. In'con -

1
trast to the Debye function (5 .3), S(p) =

	

	 , which as its sole singu -1 + pro
larity has a first order pole at p = - 1/To, the general Debye function (5 .10) ,

1
S(p)

	

[1 + (pzo)1 a]ß' possesses singularities which may be essential .

5 .(i) a, ß, ro e R 1 , a = 1, 0 <_ ß <_ 1, zo > O .

In this case the function (5 .10) becomes

1
S(p)

	

2ß,

	

(5 .11)

which is a holomorphic function in the entirep-plane, and IS(p)I is bounded b y

1
< IS(P)1=

	

1 .2

	

213
(5 .12)

The domain of holomorphy includes the open half plane P+ iRl, where
P = {a E R 1 10 < a}, and it follows from theorem 4.2 that a unique right-

sided distribution B t exists, B t E 9'(P) n a'R , such that 2'B = 2ß , and

which has its support bounded to the left at t = 0, supp B t . {I E R 1 10 <_ t} .
An application of theorem 4 .7 shows that B t is real . It is seen immediately

1
that B

= 2ß
S .

5 .(ü) a,ß,roER', 0 <= a<1, 0<ß<1, ro>0 .

In this case the function (5 .10) is many valued and has discrete branch

pointspk , which maybe dense on the circle !pi =
1

-, and which are situated at
ro

12) See ref .s (8) and (9) .



Fig. 5 .1 .

1

	

1+2 k
pk = -exp

	

, k = 0, ± 1, + 2, f 3, . . .

	

(5 .13)
io

	

1 - a

In addition, a branch point is situated at p = O .

Each of the branch points pk is of infinitely high order if and only i f

1
ß is irrational . The branch points pk are dense on the circle !pl = -, and

To

the branch point p = 0 is of infinitely high order if and only if a is irrational .

However, the branch points pk are situated on different sheets of the Rie -

mann surface . In fig . 5 .1 the sheet of the Riemann surface corresponding

to the principal branch of the function (5 .10), i .e . corresponding to the

branch which contains the set {S (p) E Cl I Arg S (p) = 0}, is indicated .

The sheet contains the open half plane {p e C 1 I0
<

Ipl /-. IArgpl <

which may be continued to the sector {p e C1 I 0 < Ipl « I Argpj < nß(1 - a)}

and even further, compare fig . 5 .1 . The mapping

1
S : p ;

~1 - (pro) 1 a]ß

	

(principal branch)

	

(5.14)



Nr.2

	

3 1

from this sheet of the Riemann surface to the principal branch of (5 .10)
is holomorphic .

Let a branch cut in the p-plane be introduced along the negative, rea l
axis from p = 0 to the point at infinity . Then the mapping (5 .14) is holo-
morphic in the entire p-plane except on the negative, real axis, the se t
{a e R 1 I e 0}. As this domain of holomorphy includes the open half
plane P + iRl , where P = {a E R 1 10 < e} and a s

I S(p )I

	

1 ,

	

(5 .15)

it follows again from the theorem 4 .2 that a unique, right-sided distributio n
B t exists, B t E 9'(P) n , such that 2B = S(p), where S(p) is under -
stood to be the principal branch of the function (5 .14), and which distribu -
tion has its support bounded to the left at t = 0, suppB t

	

{t E R1 10

	

t} .
As S(p) = S(p), it follows from theorem 4 .7 that Bt is real .

Analogous considerations may be applied to the function Son, where n
is the mapping

n : p~ p,

	

pEC l .

	

(5 .16)

If a branch cut in the p-plane is introduced along the positive, real axi s
from p = 0 to the point at infinity then the function Son is holomorphic
in the entire p-plane except on the positive, real axis, the set {a E R 1 10 <-_ a} .
Consequently the function 1 -S(p)S(-p) is holomorphic in the two open
half planes R I + iP and RI - iP, where P = {a E R1 10 < a} . In particular ,
the function 1 - S(p)S(-p) is holomorphic on the imaginary axis with th e
point p = 0 excluded, iRl\{0} . At the point p = 0 the functio n
1 - S(p) S(-p) is continuous .

The restriction of the function 1 - S(p)S(-p) to the imaginary axi s
iR l is

1 - S(ico)S(- iw) = 1 - IS(ioo)1 2 E Rl

	

(5 .17)

for which

01 - IS(ico)I 2 1,

	

0a,ß

	

1,

	

0 <To .

	

(5 .18)

From theorem 4 .9 (Boom*Ex-SCHWARTZ) it follows that the distr ibution

ô - B *B, where PB =	 +	 (pT	
1
	 O)1	 «]ß (principal branch), is positive

semi-definite .

The situation is summarised in the following theorem .
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Theorem 5.1 Let T be a convolution transformation with D(T) = .gR ,
such that r = T(f) = B*f, where f;r,B E gR . Let a,ß,To E R', with
0

	

a,ß

	

1, and 0 < To, and let 2B = S(p), where S(p) is the principa l

1
branch of the function S(p) = [1 +

(pro)1-ajß
Then the transformation T: f -)- r possesses the six properties of (i) singl e

valuedness, (ii) linearity, (iii) stationaryness, (iv) continuity, (v) passivity, an d
(vi) causality .

6. The t-Representation of the General Debye Function

According to the results in sections 5 . (i) and 5. (ii) the function

1
S(p) _ [1 +

(pTo )1-a
1 ß

(principal branch),

	

(6 .1 )

where p E Cl , and a, ß, To E R1 with 0 a, ß 1, 0 < To, is holomorphic i n
the open half plane P + iRl where P = {a e R Z I 0 < a}. In the rest of sec-
tion 6 when referring to the function (6 .1) only the principal branch is
considered .

If 1 < lpI and hence also if p is in the open half plane Pl +

	

p e Pl +
To

	

1
iRl, where Pl

= la
E R Z - < a}, the function (6 .1) may be expanded

To

in an infinite binomial series . For a, ß, To E R1 , with 0

	

oc, fl

	

1, and
0 < To, the expansion is

(pro)(1-a) (ß+n)

-1)n P(ß + n)

	

1

n=0
n!

	

P(ß)

	

(pro)
(1-a) +n) '

where P denotes the P-function and where the identit y

P(ß)P(i - ß) _ (- 1) nP(ß + n)P[1 - (ß + n)], n = 0, + 1, ± 2, . . .

	

(6 .3)

1
S(p) _ [1 + (pro)1-alß

P(1 -16 )
n!P(1 - ß - n)

1
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has been used. If p is in the intersection of 1 < !pi and the open half plane
zo

l' +

	

e . for p E {z E Cl 1 < IzI

	

z E PH- iRl} where F = {a E R1 10 < a} ,
zo

the series (6 .2) is (C,1) summable on the set {(a,ß) E R2 10 a < 1 ". 0 <--_
ß < 1} and uniformly convergent on the subset {(a, ß) E R2 10

	

a < 1
0<_ß<1} .

The function (6 .1) S(p)
_ [1 + (pzo)1 a7ß

(principal branch) is th e

analytic continuation to the open half plane JF + iR l , where F = {a E R1

0 < a}, of the function which for p E {z E Cl 1 < lzI

	

z E f + iR l } is
represented by the infinite series (6 .2) .

	

zp

	

J
From theorem 4 .5 it follows that the n'th term of the series (6.2) is the

1 (-1)n .r(ß + n)
Laplace transform of the Riesz distribution (Bt)n =

(t/

	

T(ß))( -a)(ß+n)-1

	

zo

	

n !

yf\I'[(1 - a)(ß + n)]

	

i . e .

B t n =

	

1 (-	 1)n j (ß + n)
P

( tizo)+-a)
(ß+n)- 1

( )

	

zo

	

n!

	

r(ß)

	

f r [(1 - a)(ß + n)]

(- 1)n T(ß + n)

	

1

	

(6 .4 )

n!

	

T(ß)

	

(pzp)(1- a) (ß+n)

For p E {z E Cl 1 < IzI

	

z E F+ iR 1 }, where F = {a E R l I0 < a} ,
t

	

To

	

JJJ
termvise application of the result (6 .4) to the series (6 .2) yields the infinite
series of Riesz distributions

Bt =

	

(Bt)n
n=o

(-	
1)n

r(ß +n) P (tizo)
- a)(ß +n) -1

n!

	

I'(ß)

	

~I' [(1 - a)(ß + n)] .

1
According to theorem 4 .2 the function (6 .1) S(p) =

[1 + (pzo)1 a]ß

(principal branch) determines a unique distribution Bt , which is right-
sided and is an element of 9t (F) where F = {a E R 1 10 < a}, B t E ~R fl
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which has its support bounded to the left at t = 0, suppB t

{t e R1 I0

	

and which is such that YB t = S(p), where S(p) is the
function (6 .1). The series (6 .5) does not converge in the topology on

,9
t (I') ,

but in the coarser topology on Y'; (Fl), where I'1 = { a E R1 1 < a }, the
2 0

series (6 .5) is (C, 1) summable on the set {(a, ß) E R2 j 0 < a <-_ 1 - 0

	

ß 1 }
and convergent on the subset {(a, ß) E R210 <- a < 1

	

0

	

< 1) .
It is of interest to indicate the series for B t and for S(p) in the four

special cases of (a,ß) = (1,1), (1,0), (0,1), and (0,0) . In all four case s

1

	

l
p e z c C 1 - < Uzi

	

z E F+ 1R1 }, where I' = {o- e R 1 ~0 < e}, and 0 < ro .
T0

	

JJJ

6 .(i) a = 1, ß = 1 .

~2o)+1-a
) (ß+n)- 1- 1)n

	

r(ß + n) pf•( t
/

. F(fl

n!

	

l'(ß)

	

I'[(1 - a) (ß + n)] =
ß=1

(6.6)

(6.7)

n

S

= u

-
2

Vt .

S(P)

	

[ 1 + (pTo)
1-ar

6.0) a=1, ß=0 .

1

a t .

( 1 )n r(ß + n) ( tN)+- «)(ß+- 1

n!

	

I'(ß)
pi

I'[(1 - a) + n.)] =
ß= 1

B t =

1
S(p) = [1 +

(pro)
1-alß (6.9)
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6 . (iii) a = 0, ß = 1 .

Bt = >
1 (- 1)n P(ß+ n ) ( t Iro)! x	

a) (ß+n) 1

(6.10)

(6.11)

ro

	

n!

	

P(ß) Pf P[(1 - a) (ß + n)]
n=0

	

1

	

/

	

t
= uo -ekp -

	

\ZOI ZO

	

` r0

S(p)
1 1

+ (p .t, o)1-alp ot _o

	

1 +pro

6.(iu) a = 0, ß = 0 .

( -1)n P (ß+ n) (tfro)
+-a)(ß +n> - 1

Bt __ _
~

	

o
n=o

n! P(ß)
	 Pf

P[(1 - a)(ß -I- n)l o
ß= 0

=
TO

StIzo

_ 6t .

n
1 np (	 )+

1

	

) fP(n + 1 )
n =

00

(6 .12)

S(p)

	

[1 +- (pro)1 a~ß
= 1 .

	

(6 .13)a= 0
ß= 0

The whole situation may be summarised in the following theorem .

	

Theorem 6.1 Let p E Cl , and a, ß, ro E R1 with 0

	

a, P

	

1, and 0 < ro .

Let P = {a E R 1 10 < a} and Pl = { a E R l 1 < a} . Let B t E ~t (P) (l
l

	

ro

	

)))
be the unique distribution such that 2Bt = S(p), where S(p) is the principa l

branch of the function S(p) =
[1

(pro )1 a
P

Then, (i) the distribution B t has its support bounded to the left at t = 0 ,
supp B t

	

{t E R'10

	

t} ,
and (ii) the distribution B t is determined brt the infinite series of Riesz

distributions

1 (-1)n P(ß+ n) (t/ro)+i-a) (ß+n)- 1

ro

	

n!

	

P(ß) Pf P[(1 - a)(ß + n) ]

1

Bt =
n= 0
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In the topology on 9 (f1) the series is (C,1) summable on the

set {(a,/3) E R2 10 <_ a <_ 1 " 0 <_ ß 11 and convergent on th e
subset {(a, ß) E R2 10 <_ a< 1' 0 5 ß< 1}.

7 . Acknowledgement s

My sincere gratitude is due both to professor ERIK BENT HANSEN of

Laboratoriet for Anvendt Matematisk Fysik (Laboratory of Applied Math-

ematical Physics), Danmarks Tekniske Højskole, for his suggesting a

series expansion of the system function, and for several instructive discus-

sions, and also to professor HANS TORNEHAVE of Matematisk Institut (Math-

ematical Institute), Københavns Universitet, for clarifying a point con-

cerning the passivity property, for drawing my attention to certain problem s

of convergence, and for much helpful and instructive advice in general .

The present work was initiated while I was a research fellow in 1966 -

1967 at Loughborough University of Technology, Loughborough, Leicester -

shire, England. I wish to thank ,,Statens Teknisk Videnskabelige Fond"

for a fellowship during that year .

Afdeling Tor Teoretisk Kem i
(Kemisk Laboratorium III) ,
H. C . Ørsted Institutet,
Kobenhavns Universitet .



Nr. 2

	

3 7

8. References

(1) S . BOCHNER, Vorlesungen über Fouriersche Integrale, Leipzig 1932 .
(2) N. BOURBAKI, Espaces vectoriels topologiques, Paris 1966, 1967 .
(3) R . H. COLE and K. S . COLE, J . Chem . Phys . 9, 341 (1941) .
(4) D . W . DAVIDSON, J . Chem . Phys . 1S, 1417 (1950) .
(5) I . M . GELFAND und G . E. ScHILOw, Verallgemeinerte Funktionen, vol.s I, II ,

and IV, Berlin 1967, 1962, 1964.
(6) W. GÜTTINGER, Fortschr . d . Phys . 14, 483 (1966) .
(7) J . HADAMARD, Le problème de Cauchy et les équations aux dérivées partielle s

linéaires hyperboliques, Paris 1932 .
(8) S . HAVRILIAK and S . NEGAMI, J . Polymer Sel . C 14, 99 (1966) .
(9) S . HAVRILIAK and S . NEGAMI, Polymer 8, 161 (1967) .

(10) J. R. MACDONALD, Rev. Mod . Phys . 2S, 393 (1956) .
(11) J. R. MACDONALD and C. A . BARLOw, Rev. Mod. Phys . 35, 940 (1963) .
(12) M . RIEsz, Acta Math. 81, 1 (1949) .
(13) A. P . ROBERTSON and W. ROBERTSON, Topological Vector Spaces, Cambridge

1966 .
(14) L . SCHWARTZ, Théorie des distributions, Paris 1966 .
(15) F . TREVES, Topological Vector Spaces, Distributions, and Kernels ,

New York, London 1967 .
(16) A . H.LEMANIAN, Distribution Theory and Transform Analysis ,

New York 1965 .

Indleveret til Selskabet den 17 . september 1969 .
Ta:rdig fra trykkeriet den 5 . november 1970.










