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Synopsis

A synthetic account is given of a general treatment of large quantal systems, allowing of a
clear-cut characterization of the macroscopic level of description of such systems . The Lime-evolu-
tion of the density operator is given by a Liouville equation, which is written down in a superspac e
formed by the direct product of the Hilbert space with itself . It is shown how to construct a

projector ft in this superspace such that the subspace it defines contains the asymptotic time -
evolution of the density operator for time intervals very large compared with those typical fo r
atomic processes : this asymptotic subdynamics shows the characteristic features of macroscopi c
behaviour .

A quantitative criterium is formulated in superspace for the existence of a well-defined an d
unique macroscopic level in the sense just outlined of a separate sub dynamics governing th e
asymptotic behaviour of the system . This "condition of dissipativity" can be directly tested o n
the Hamiltonian of any given system .

In general, the subdynamics can only be formulated in superspace : it is not possible to

return from the ft subspace to a Hilbert space description of the system in terms of state-vectors .
Thus, the scope of the latter description is clearly limited, and a precise formulation is obtaine d
of the complementarily between the dynamical account of the system on the atomic scale and
its description at the level of macroscopic observation .

The epistemological problems of quantum mechanics receive from the present point of vie w
an especially transparent treatment. In particular, the consistency of the use of classical concepts
for the account of quantal phenomena is obvious, since the macroscopic description operate s

directly with probabilities, all quantal interference effects being eliminated from the ft sub -
space ; thus, the rule of "reduction" of the state-vector following a measurement performe d
upon an atomic system appears as an immediate consequence of the macroscopic character of
the measuring process .
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1 . Introduction

In a detailed discussion of the epistemological problems of atomic phy-
sics, where explicit reference to the conditions of macroscopic observatio n
is essential, 1 , 2 ) a decisive part is played by the analysis of the asymptotic
approach to equilibrium of material bodies consisting of a very large number

of interacting atomic constituents (and possibly also of a field of electro-

magnetic radiation) . In the first place, such an analysis serves in its ow n

right to establish the consistency of the atomistic description of macroscopi c

phenomena, by clarifying the relation of complementarity between the ir -

reversible character of the macroscopic behaviour of the large system an d

the time-reversal invariance of its dynamical description at the atomic level . 3 )
In the second place, applied to the process of observation of an individua l

atomic phenomenon by means of a macroscopic apparatus interacting wit h

the atomic object, it throws light on the conceptual foundations of quantum

mechanics . 4,5 )

Recent progress in the quantum theory of large systems allows us, a s

we intend to show in this paper, to treat these problems with more precisio n

and more completely than was hitherto possible . The method we use wa s
initiated by one of us' ) and developed in numerous publications by th e

Brussels group during the last decade . This method may be applied to

arbitrary systems but becomes especially interesting and fruitful in the limit
of large systems, whose energy spectrum is (at least in part) continuous .

It is then possible to follow directly the time-evolution of observables depend-

ing on a finite number of degrees of freedom through the time evolution
of the density operator, and in particular to study the asymptotic behaviour

of the system for times of macroscopic order of magnitude . It turns out that

this behaviour can be given a remarkably simple formal expression under

very general assumptions about the correlations between the constitutiv e
elements of the system : in physical terms these correlations should be o f

limited range and their effects should only persist for times of atomic order

of magnitude. The asymptotic density operator will then exhibit the expecte d
1*
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approach to equilibrium, provided that a further condition - playing her e

somewhat the same part as the condition of mixing in the theory of classical

systems - is fulfilled by the interactions . In contrast with the ergodicity and
mixing conditions for classical systems*) this condition of "dissipativity "
can be explicitly tested for typical systems of actual physical interest . Of

course, our method can also be applied to classical systems, for which it agai n
leads, in the limit of large systems, to a condition of dissipativity .

This condition plays a fundamental role in our theory, inasmuch as it s

fulfilment guarantees the existence of a well defined macroscopic level o f

description of a large system, besides its dynamical description on the atomi c
level . This new mode of description contains the usual phenomenologica l

account of the behaviour of the system in terms of thermodynamics, chemica l
kinetics and other macroscopic theories . Thus, the condition of dissipativity,
when fulfilled, establishes the possibility of introducing in a well define d

way two complementary levels of description of atomic systems .

To illustrate the significance of this remarkable result, let us conside r
the evolution of the temperature of a gas . We may proceed in two ways :
either we use the statistical definition of temperature and solve the dynamical

problem (which is possible, at least in principle, by means of an appropriat e

computer), or we use the Fourier equation of heat conduction . These tw o
quite different procedures, so far as we know, give results in agreement wit h
each other. This shows that the complete dynamical description contain s

elements which in fact are irrelevant for the evolution of such an observabl e
as the temperature. Now, our method, in the form elaborated in recent paper s
of the Brussels group, 9-18) allows us to define with precision the part of th e

dynamical description that is relevant and to discard in an unambiguou s
fashion the remainder .

As shown by PRIGOGINE, GEORGE and HENIN, 14) the evolution of a mechani-

cal system may be split into formally independent "subdynamics", charac-

terized by certain projection operators, as explained in subsection 2 .7 below .

One of these subdynamics, belonging to the projector 17 defined in subsection
2 .7, contains all the information about equilibrium and linear transpor t

properties, and the macroscopic level of description of a large quantal syste m
is accordingly defined as that entirely expressed in terms of the variable s

corresponding to this ft -subdynamics . The consideration of the macroscopic
level of a system thus entails an enormous reduction of its mode of descrip-

tion, since all the variables associated to the other subdynamics are exclude d

*) For a discussion of these conditions and their extension to finite quantal systems, se e
in particular refs .', 8Y.
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from it . In relation to the macroscopic description so defined, the conditio n

of dissipativity plays a fundamental part . For non-dissipative systems, suc h

as quantal systems with a discrete, non-degenerate energy spectrum, ther e

is no dynamical evolution in the ÎI -space, and a macroscopic level of de-

scription cannot be defined . The consideration of large dissipative system s

is therefore essential . There also exist large quantal systems, with continuous

spectrum, which are not dissipative (an extreme example would be a super -

fluid system at zero temperature) : for such systems there is no macroscopi c

description, in the above sense, of their dynamical evolution .

In the next section, we present a synthetic account of the formal frame -

work of our theory, leading to the concept of subdynamics and the definitio n

of the macroscopic level of quantum mechanics . Section 3 is devoted to a

discussion of the physical content of the theory, with special emphasis on th e

epistemological problems of the atomic theory of material bodies . In section

4 the theory is applied to the analysis of the observation of an individua l
atomic process and its bearing on the epistemological aspects of quantum

mechanics . This still leaves out of consideration a number of important prob -

lems upon which our approach throws new light, such as those related t o

transformation theory, the introduction of collective modes or quasiparticles ,
or the definition of unstable particles .') We hope nevertheless that the aspect s

discussed here are sufficient to show that the theory of large quantal system s

is an essential part of quantum mechanics, both by its physical applications

and its contributions to the questions of principle concerning the foundations
of atomic theory . Indeed, it makes possible an incorporation in quantum theory

of deep-lying, general properties of matter, which could not be achieved b y

means of the usual Hilbert space formalism of quantum mechanics .

*) A monograph by I . PmGOGINE, C. GEORGE and F . HENIN, dealing with these problems ,
is in preparation .



2 . Dynamics and asymptotic behaviour of very large systems

2 .1 . The Liouville equation in superspac e

The study of the time evolution of a quantal system can be performed

in either of two ways . One may represent the state of the system by a vecto r
y'(t)> in a Hilbert space and describe the change of the system in time a s

a rotation of this state vector, the rate of which is governed by the Hamilto-
nian H according to the Schrödinger equation. Alternatively, one may defin e

the density operator

e( t ) = 1 (t)><y(t ) I

whose time derivative e(t) is then given by the Lionville equatio n

1
1 e(t) ° - [H,e(t)] ,

where the right-hand side denotes h- 1 times the commutator of H and e(t) .

'With the help of the density operator, one can compute the expectatio n

value at any time of any quantity represented by a Hilbert space operato r

A as the trace of the operator e(t)A. This mode of representation of th e

dynamics of the system exhibits most directly the correspondence, in th e

limit h -- 0, with the classical formulation of the kinetic approach t o
statistical thermodynamics, and is accordingly generally adopted for th e

quantal treatment of the same problem .

Since the quantal density operator embodies both density distribution s

in given states of the system and correlations between pairs of states, it i s
natural to regard it as describing the evolution of the system in the produc t

space di' xi, which we shall call "superspace" (using the prefix "super-" ,

when necessary, to distinguish vectors and operators in it from those i n

Hilbert space) . Operators in Hilbert space are thus "supervectors", and th e

scalar product of two supervectors A, B is defined as the trace of the produc t

A+B, where A+ denotes the Hilbert space operator adjoint to the operator A .

The expectation value of the operator A in the state represented by th e

(self-adjoint) density operator e is then the scalar product tr (CA) of the two

supervectors e, A . We may now introduce linear superoperators 0 acting
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upon supervectors ; the adjoint Ot of the superoperator 0 is defined*) by the

condition

tr[A+(OB)] = tr [(OtA)+B] .

The transposition of a superoperator, i .e . its operating "to the left", denoted

as AO, is defined by requiring that tr [(A +0)B] = tr [A+(OB)] ; therefore ,

AO - (O t A + )+, or
(OA)+ = A+Ot .

Since, moreover, one has for the product of two superoperators 0, Q,

(OQ)t = Qt Ot ,

the adjoint of any expression involving products of superoperators and super -

vectors is obtained by the uniform rule of taking the adjoint of every super -

operator and supervector and inverting the order of factors in every product .
A frequently occurring type of superoperator, which we shall call fac-

lorizable, is defined by a pair of supervectors M, N as follows :

OA - MAN ;

we shall denote such a factorizable superoperator as 0 n MxN; its adjoint
is Ot = M+ xN+, its transpose is given by A(MxN) _ (NxM)A. The product

of two factorizable superoperators MxN, PxQ is again factorizable : (MxN)
(PxQ) = MP x QN. A unitary transformation U in Hilbert space, U+ U = UU+

= 1, gives rise to a linear transformation in superspace, which is represented
by the factorizable superoperator 2C = Ux U+ and is accordingly also unitar y

in superspace, in the sense that °e dit = 0?121 t - 1 x 1 = 1 . The invariance o f

the scalar product of supervectors for unitary transformations is immediately
proved :

tr[(21,A) + 21B] = tr[(etQQIA)+B] = tr[A+ B] .

The Liouville equation may now be written in the form

ié(t) = Le(t)

with the help of a Liouville superoperator, which is a sum of factorizabl e

superoperators :

L=_ ~{Hx1-1xH} .

*) The matrix representation of the superoperators defined in this subsection is given in
the Appendix.

(1)
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The solution of eq . (1) corresponding to an initial state e(O) is formally

expressed as

P( t) = e-¢LC °(O) ;

the time-evolution superoperator T(t) - exp (- iLt) is readily shown to b e
factorizable :*)

T( t) = e-iu = e-tHa/h x eiHtit

The Liouville superoperator is self-adjoint, and the time-evolution super -

op erator unitary .

Projection operators in superspace will play a fundamental part in th e

following argument, and we shall be led to generalize their usual definition .

Let us briefly explain what this generalization amounts to . Besides idem-

potency, the most essential property of a projection superoperator P must

be to make the projection of any density supervector e self-adjoint : (Po)+

= Pe, in order to ensure the physical interpretation of the projection a s
density supervector in the projected subspace, and above all the reality o f

the expectation value

<A>p = tr[(Pe)+A ]

of the quantity represented by the self-adjoint supervector A . A superoperator

0 satisfying the condition (OA) + = OA for any self-adjoint supervector A
will be said to be adjoint-symmetrical, or to have adjoint symmetry . (This
terminology is suggested by the special form ill xl'7+ which a factorizable

superoperator must have in order to satisfy the above condition.) If the
superoperator 0 is adjoint-symmetrical, its adjoint O t has the same property ;

this may be seen by considering the scalar product tr[B(OA) ], where A

and B are two arbitrary self-adjoint supervectors and OA = A0 1 : this product

may in fact be written tr AOtB as well as tr [A(O tB)+] . Now, in virtue o f

*) The proof is given here as an example of the calculus of factorizable superoperators .
Putting L 1 = - iLt/ti, Hl = i Hl/ti, we have
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the idempotency of P and P t , the expectation value <A»P may also be

written tr[ (P0) (Pt A) 1 : this shows that if we want to interpret it as that o f

the projected supervector PA, we must impose upon the projector the fur-

ther requirement of being self-adjoint . This is the case for the usual projector s
constructed from (self-adjoint) projection operators in Hilbert space Pm, Pm, :

P = [Pm x Pm, + Pm, x Pm ] Pm x Pm, ,

the symmetrization being necessary in order to satisfy the adjoint-symmetry

requirement . However, this further specification of the expectation valu e
will prove too restrictive for our purposes, and the physical meaning of th e

above definition of <A» P is perfectly clear and precise without it, provide d

that the adjoint-symmetry condition is fulfilled . Hence, we shall give up th e

requirement of self-adjointness for projectors in superspace, and consider a s
such the wider class of idempotent superoperators satisfying the condition

of adjoint symmetry .

Although the superspace representation is equivalent to the usual on e

might therefore appear as no more than a convenient formalism, it will tur n
out that it actually opens possibilities of description of fundamental physica l
properties, not adequately dealt with in the Hilbert space representation ,

because they essentially require the use of non-factorizable superoperators ,

in particular projection superoperators in the generalized sense just defined .

2 .2 . Energy spectrum and time-behaviour of large system s

The structure of the energy spectrum leads to a clearcut distinctio n
between two types of large systems : systems of finite degree of freedom and

finite extension, whose energy spectrum is discrete, and systems of infinit e

degree of freedom and infinite extension, but finite density of constitutiv e
elements : the latter have essentially a continuous energy spectrum, possibl y
combined with a set of discrete states . The spectral decomposition of the
Hamiltonian may be written as a Stieltjes integra l

H = h vk dP(k) ,

where the symbol k represents a set of appropriate quantum numbers, an d
hrx the energy eigenvalue corresponding to definite values {k} of this set .
According to eq. (2), the corresponding decomposition of the time-evolutio n

superoperator is

T(t) = S J
dP(k) x dP(k') e -2n i (vk - v k-)t

.
(3)
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Any discrete sequence of states, with eigenvalues l i) , will accordingly give
a contribution to T(t) almost periodic in time . This shows that finite quantal

systems, with discrete spectrum, cannot be expected to exhibit any irrever-

sibility in their asymptotic behaviour . Infinite systems, on the other hand ,

allow of a direct approach to their dynamical time-evolution .

Indeed, it follows from eq . (3) that the contribution to e(t) = T(t) e(0) ,
with e(0) = *o> <vo I, of a continuous part of the energy spectrum, has matri x
elements of the form

<kle( t)Ik ' > = <klwo>0wolk'>e-
27cifvk-vk') t

Now, an amplitude like <klio>, when continued analytically in the plan e

of the complex variable v k , is in general s) a multiva.lued function of this

variable, with branch-points on the real axis at various thresholds of exci-
tation, and its domain of uniformity of physical interest for t> 0 (owing t o
the time-reversal invariance of the evolution, it suffices to consider positiv e

times) consists of adjacent parts of Riemann sheets below the real axi s
limited by cuts issuing from the thresholds . The integrations occurring in the

calculation of an average tr e(t)A may be transformed so as to involve

integrations over the energy variables V k and vk, . The contour of integration i n
the plane of each variable may then be closed by a parallel to the real axi s

at infinite distance in the lower half-plane, with indentations along the cuts .

The "resonance" poles of the integrand inside this contour ,

27tvr = 27ter- Iiyr

	

(y r >0 ) ,

will yield exponentially decaying terms to the integral, to which is added a

"background" whose time variation is more complicated. The resonanc e
contributions to tr e(t)A have accordingly a time dependence of the form

exp [- 27zi(v r - vr.)t], corresponding to processes of frequencies Er - Er ., de-

creasing exponentially with decay times [2(yr+yr .)]-1 . These life-times var y

over a very wide range, extending from the time-scale characteristic o f

individual atomic processes to that of macroscopic relaxation times . In the

simplest case, in which only these two extreme time-scales appear, one ma y

expect that it would be possible, at least approximately, to separate the direct
effects of short-lived atomic processes from the slower evolution of the syste m

on the macroscopic time-scale .

Before pursuing this line of argument, we must mention another essentia l

difference between finite and infinite systems, which, as we shall see, is o f

relevance for their asymptotic behaviour : it concerns the invariants of the

*) Cf. on this point, e .g., refs .') and 19 )



system, i .e . those Hilbert space operators Ø which commute with the Hamil-

tonian, and accordingly satisfy the equation LØ = O . Whereas the invariant s

of finite systems are regular operators within the Hilbert space of stat e

vectors of finite norm, those of infinite systems are of two distinct types :
besides "regular" ones, there is an infinity of invariant operators which d o
not have the regularity property just mentioned .*) We shall discuss this point

in detail in subsection 2 .8 .

2.3 . Independent modes of motion and correlation s

In order to proceed further, we must introduce a more explicit charac-

terization of the constitutive elements of the system and the interaction s

between them, which would allow us to account for the continual chang e
of the system in the course of time as the result of transition processes brough t
about by such interactions . As usual, this is done by reference to an idealize d

"model system", susceptible of independent, non-interacting, modes of

motion, defining a complete orthogonal basis of representation in Hilber t
space. The interactions producing correlations between these modes are the n
defined as those which transform the model into the real system . The choic e

of the model system is dictated by physical considerations : for a dilute gas ,

the natural model will be a perfect gas, for a crystal, a perfect lattice sus-

ceptible of collective harmonic oscillations . The essential requirement is that
the basic modes should have some operational meaning, in the sense tha t
we can imagine situations conveniently represented by them . In any case,

all physical results of the theory, expressed as expectation values of suitabl e
operators, are of course independent of the choice of the model system, since

a change of basis is effected by a unitary transformation .

The total Hamiltonian H is thus decomposed into the Hamiltonian H(0 )

of the model system and a residual interaction Hamiltonian Ha) . The spec-
trum of the model Hamiltonia n

H (0) = h v:)) dP(m) ,

will generally be a continuum, in which a set of discrete states may b e
embedded ; the "Friedrichs model" 21) is of this type, with only one discrete
state . The collective index ni stands, as the case may be, for a set of quantum

*) The distinction between regular and singular invariants also applies to classical systems ;
the first mention of it occurs in a paper by P . Rssinois and I . PRIGOGINE,'°) devoted to classical
dilute gases . Cf. also refs) .
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numbers of single-particle states (properly symmetrized or antisymmetrized )
or for a set of occupation numbers . In superspace, a complete orthogonal
basis consists of the Hilbert space projection operators*) Pm = Im><ml ; the
corresponding orthogonal projectors in superspace are the factorizable super -

operators Pm x Pm, formed by all the pairs of supervectors Pm, Pm, .
With a view to distinguishing the effects of the correlations from the

behaviour of the model system, we now introduce a subdivision of the total
basis in superspace into two orthogonal and complementary subsets, define d
by two superprojectors Po, Pe with Po + Pe = 1 . Thus, for the Friedrich s
model, where we wish to study how the correlations H(') couple the discret e
state of the Hamiltonian H(O) with its continuum, we may take for the sub -

space Po that defined by the discrete state, and consequently Pc by th e
continuum.", 17 ) More generally, we shall include in Po all the projector s
PmxPm formed of pairs of identical states ; if the external conditions allo w

for a bulk flow of the system, we shall add to these the projectors Pm x P„L ,
for all the pairs Pm, Pm, representing the same internal physical state of th e

system ; the subspace Pe consists of all the remaining projectors Pm x Pm,, cor -
responding to those pairs of states between which transition processes tak e
place owing to the short-range, atomic correlations . Still other decomposi-
tions may prove useful for specific problems ; 18) for our general argument,
the precise mode of decomposition chosen is irrelevant, provided that i t
confines the short-range correlation effects to one of the two subsets .

The adopted decomposition effects a separation of the density supervec-
tor into two components :* )

Q(t) = eo( t ) + ec( t), eo( t ) = Poe( t ), ec( t ) = Pce( t) .

The density eo(t) represents an average distribution referred to the states
of the model system, whereas the supervector ee(t) accounts for the effects
of the fluctuating correlations among these states . Between eo and e~ we derive
from eq . (1) a set of coupled Liouville equations :

*) For a continuous spectrum, we define Pm = dP(m), where dPm = ~ m> dm <m 1 ,
a (ni)

and e(m) is an infinitesimal neighbourhood of m . We further interpret a summation over i n
as din . . . and the Hilbert space scalar product <ni 1n'> as the distribution å(m-m') . Then ,
the idempotency, orthogonality and completeness relations PmPan' = Pm åmm' and L'mPm = 1
hold for both the continuous and the discrete part of the spectrum .

**) From now on, we adopt the elegant formalism developed by M . BAUs, 10) of which w e
present a version improved in some important respects, and extended to take account of late r
progress . l '-' 17 ) Some mathematical aspects are discussed by J. RAx .11) Another general expositio n
has lately been given by BALnsco and WALLENI3OEN . 18 )
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ioo = Looeo + Locpc, (4)

ige = L co o, c -f- Leoeo, (5)
where

Loo = PoLPo, Lee = PeLPe, Loc = PoLPe, Leo = PeLPo .

We shall especially use the equivalent integrated form of eq . (5) ,

t

	

1i
ee(t)

= e-iLcct
l

p c(0) - i dZ e 2Lcct Lcoeo(r)

J

},

	

( 6 )

o

exhibiting the occurrence of the time-evolution superoperator

	

/

	

Te(t) e-iLcct = e-iPcLt Pc = Pc e-iLPct

	

( 7 )

which is going to play an essential part in our analysis .
The superoperator T5(t) describes a time-evolution proceeding entirely

by transitions between states of the correlation subspace ; we have called
such sequences of processes confined to the correlation subspace the "ir -
reducible dynamics" of the system : its explicit consideration is one of the
main points of our approach . s , 10) Indeed, in contrast with the total time-
evolution superoperator T(t), we may expect that the superoperator T5(t )
may have a simple asymptotic behaviour :*) in view of its exclusive depend-
ence on correlation effects, its time-variation may be dominated by decayin g
pole terms of atomic life-times . More precisely, we shall consider the pos-
sibility that the application of the superoperator Te(t) to any regular super-
vector which is not an invariant in the correlation subspace gives a resul t
which, in the asymptotic limit of positive values of the time of macroscopi c
order of magnitude, becomes of negligible importance . This condition may
be formally expressed as

lim T 5(t)A = 0 (if LP CA 0) ;
t + +

in terms of the Laplace transform
ø

g c(z) =
~

Te(t) e-Zt dt = - iPe

	

iz

	

1

	

= - i

	

_
iz

1

	

Pc,

	

(9)

	

LPe

	

PeL

an equivalent expression for it is

*) We must exclude from consideration in this respect the time-evolution superoperator
exp (-iLo o t) ; e.g ., for homogeneous systems, where P o = L' mPmxPm, one has L oo = O .

(8)
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lim z ,%c(z) A = 0 (if LPcA � 0),

	

(10)
z->+ o

implying that gJ c(z)A is a regular function of z in the neighbourhood o f

z = + 0 . If PEA is an invariant, one has instead zY,(z)A = P GA .
This analyticity condition may be used in principle for a classificatio n

of dynamical systems . It has indeed been shown that it is satisfied in th e
thermodynamic limit for large systems with short-range interactions, when a

perturbation expansion can be carried out with respect to a "small" physical
parameter, such as the coupling constant or the density . Moreover, it is seen

to be exactly fulfilled (independently of any perturbative approach) for solu-

ble systems such as the Friedrichs model .' 7 ) It is not the aim of the present
paper to investigate this question any further . We shall simply assume that
we are dealing with systems that satisfy the condition (8) or (10) : it is for thi s
class of systems that we shall arrive at a unique definition of a macroscopi c

level of description, complementary to the dynamical one . The assumption
(8) will indeed prove convenient for the derivation of simple asymptotic form s
for the density supervectors eo and ec . It must be stressed that the introductio n

of this assumption destroys the invariance of the description for time-reversal :
for in retrodicti.on the operator T~( - t) describes the buildup of the resonanc e
states of the system - an aspect of the evolution on the atomic scale which

is all but negligible . An interesting type of system from the physical poin t

of view is that in which the interactions between the constitutive element s
are such as to determine two characteristic time-scales of very different order s

of magnitude : on the one hand, any coherent processes involving states col-

lected in the subspace Po have relaxation times belonging to the macroscopi c
time-scale; on the other, the individual processes due to the finite-range

interactions between the basic modes of the model system, which occur be-

tween states of the subspace Pe, have decay times of atomic dimension . Sys-

tems for which no such separation of time-scales can be made may b e
discussed by more general methods .

2 .4 . Asymptotic density supervectors and evolution equation s

By means of the assumption (8), we will now set up solutions of th e

Liouville equations (4), (5) valid for large positive values of t ; these solu-

tions, which we shall denote as "eo(t), ee(t), will then be associated with th e

actual density supervectors po(t), ec(t) by an appropriate condition : this will

allow us to interpret 64t), ôo(t) as the respective asymptotic forms of eo(t) ,
eo(t) . Taking eq . (6) first, we neglect the first term on the right-hand side
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(which means, physically, that we assume the effect of any initial correla-

tions to be dissipated), and in the second term, re-written as

- iS
t
dr e-iLccT

Leo Oo(t r) ,

0

we replace eo(t - r) by the asymptotic solution e-o(t - r), since the integran d

is only important for small values of r; we thus obtai n

(i t
Pe(t) = - i dr e-iLccT Lco&(t - r) .

	

(11 )

0

Next, let us consider eq. (4) ; for large values of t, it becomes, on account

of eq. (11), an integro-differential equation for e' o :

t
iôo = Looeo - iLoc dr eiLccTLco [ o(t - r) .

0

Let us introduce) an asymptotic time-displacement superoperator 0 in the

Po subspace by the definition

idEt o = eQo dt,

or, alternatively,

'60(0 = e-iOt o(0) (for t> 0) .

	

(12)

Inserting this expression in eq . (11) yields the asymptotic relation

{ e -Loo + iLoc dr e-iLccT
Leo eiØT

'60(t) = 0 ,
l

	

J
0

which can be further modified, according to our assumption (8), by ex -
tending the integration over r to infinity . We thus obtain a functional equa-

tion for the superoperator 0 :
CA

6 = Loo- iLoe S dr e-i
LccT Leo eiØT

0

which may be solved by iteration,9, 18) starting from the ansatz 8 = 0 (which

would correspond to a stationary asymptotic distribution) . By defining a
time-independent superoperato r

*) The superoperator 0 was first considered by P . RÉsmois and further studied by C . GEORGE . 9 )
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iC

	

dz Te(2')Lco ei0i,

	

(13)

o

we may re-write the equation for 0 as

O = Loo+LoeC,

	

(14)

and treat the equations (13), (14) as a set of coupled equations for the
determination of 0 and C . The role of the latter appears when, returning to
eq. (11), we repeat on the right-hand side the preceding transformations ;
this gives the very simple result

~c(t) = CPo(t) .

	

(15)

According to its definition (13), C describes the effect of an infinit e
sequence of processes starting from a state in the subspace Po and leading
to a state of the correlation subspace Pe either directly or through inter -
mediate states : in other words, C describes the "building up" of the correlatio n
component 6ci as expressed by eq . (15). We therefore call C the "creation
superoperator" of correlations . It should be noted that one may derive fro m
the definition (13) of C, by partial integration, the identity

CO = Lee LeeC,

	

(16)

use being made once more of the assumption (8) . Combining this with eq .
(14), one obtains a non-linear equation for the determination of C :

CLoo + CLo C C = Leo + Le 0 C .

So far, we have defined the asymptotic supervectors ôo(t), '6e(t) by eqs .
(12), (15), as solutions of the "kinetic equations "

iôo = Oho, i~c = CO"o .

If, in these equations, we substitute for 0 and CO their respective expressions
(14) and (16), and take account again of eq . (15), we see that they becom e
identical in form with the Liouville equations (4), (5) : in other words, th e
asymptotic density supervectors are exact solutions of the Liouville equations .
It remains to be seen how they are related to the solutions eo(t), ec(t) which
describe the behaviour of the system on the atomic scale .

2.5 . Heisenberg representation and time-reversal

As a preparation to the elucidation of this point, it will be necessary t o
repeat the preceding considerations from the point of view of Heisenberg's
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representation. In the latter, any (time dependent) operator A(t) satisfies the

Liouville equation

iA(t) = -LA(t) ,

where the Liouville superoperator is, of course, time-independent . Let us

now define the time-inversion of any supervector or superoperator as the

transformation which consists in both changing the direction of time an d
taking the adjoint :

A(t) = A- ,-(-t), O(t) = 0 t(- t) .

Since the Liouville superoperator, which is self-adjoint, changes sign on

transposition, the time-inverse supervector A(t) obeys the same Liouvill e
equation

iA(t) = LA(t)

as the density supervector . The projectors Po, Pc being invariant for time-
reversal, we may define components

Ao(t) = PoA(t), Ae(t) = PcA(t)

and corresponding asymptotic components Ao(t), Ac(t), with a time-evolu-
tion governed by the superoperators 0 and C :

Åo(t) = e-0t A0(0), Ac(t) = CAo(t) .

In this context, these superoperators appear as the time-inverses of new

superoperators

~ =0, D=C,

determined by functional equations derived from eqs . (14), (16) and (13)

by time-inversion :

ri = Loo+DLco,

	

(17)

~JD = Loc + DLcc ;

	

(18)

iD =
~

dz e''7' Loc Tc (t),

	

(19)
o
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In contrast to C, the superoperator D, according to its definition (19), lead s
from a state of the correlation subspace Po to a state of the subspace Po :
it describes the processes leading to a " destruction" of correlations, and i s
called, accordingly, the " destruction superoperator" .

It is important to notice that in applying the time-inversion transforma-
tion to the right-hand side of eq . (13) in order to obtain eq . (19), one ha s
to leave the integration variable z unchanged, but change the interval of
integration over r to (0, - co) . This clearly shows that the change of the
direction of time can affect seemingly time-independent superoperators like
C and D which are defined through an asymptotic time-limiting procedure .
A comparison of the expressions (13) and (19) for C and D, together with
eqs . (14) and (17), shows that the time-inversion transformation, for such
superoperators, consists in taking the adjoint and inverting the sign of L .
The time-inversion may obviously be performed in the same way for op-

erators depending explicitly on the time variable, since this time dependenc e
may always be expressed as a functional dependence on iLt ; one may there-
fore consider the transformation just defined as equivalent to time-inversion .

According to this definition, it is clear that time-reversal invariance o f
a superoperator depending on L does not in general imply its self-adjoint-
ness : this is only the case if its functional dependence on L is not affecte d
by a change of sign of L - in particular (trivially), if the superoperator does
not depend on L . Thus, time-inversion appears as a natural generalization o f
adjointness for superspace operators, and time-reversal invariance as a
natural generalization of self-adjointness . The adequacy of this generaliza-
tion with respect to the requirements of physical interpretation is guarantee d
by the simple, but very important fact that the superoperator iL, and con-
sequently any superoperator which is a functional of iL, is adjoint-symme-
trical. The equality (iLA)+ iLA for any self-adjoint supervector A follows
indeed immediately from the self-adjointness of L and its transposition
property LA = -AL . The superoperators C, iO as well as D, as appears
from eqs . (13), (14), (17), (19) which define them, offer examples of super-
operators which are functionals of iL, and accordingly adjoint-symmetrical .
It will soon turn out that the time-dependence (in the extended sense jus t
introduced) of all density supervectors of physical interest (such as e(t) an d
ô(t)) can be expressed in the general form eo(t) O[1L] e, where o is the
initial density supervector and O[iL] an appropriate superoperator which i s
always a functional of iL : these time-dependent density supervectors ar e
therefore self-adjoint, as well as their time-inverses, and the expectatio n
value of any self-adjoint supervector A, which can accordingly be written
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tr e o (t)A, or equivalently*) tr o o( - t) A, is always real - a property essential

for its physical interpretation .

The functional equations for 0 and n, given by the combination of eqs .

(14), (13) and (17), (19), respectively, can be put into a more compact form :

0 = Loo - i dr 11(r) eier , i = Loo - i dret'Izilf(r),

	

(20)

o

with the help of the superoperato r

T(t) = Loc Tc(t)Leo .

The superoperator W(t) represents a transition from the subspace Po t o
the same subspace exclusively through states of the correlation subspace ; it

is therefore called the " irreducible collision operator " . The formulae (20 )

show how the asymptotic superoperators 0 and ri essentially arise from

sequences of interaction processes belonging to the " irreducible" dynamic s
of the system. The interaction superoperator Yf(t), or its Laplace transfor m

1
Ty(z) = Loc g-c(z)Leo = zLoe

	

Po ,P~, - iz

has an important function, as we shall soon see, in the formulation of a
general characterization of the asymptotic behaviour of infinite systems.

An explicit relation between 0 and at is readily derived from eqs. (14) ,
(16) and(17), (18) :

Nob = nNo, with No = 1 +DG ;

	

(23)

according to eqs . (13), (19) and (21), one may writ e

No = 1- ~ dr
J
dr' el' TO' + r') ei6-r'

	

(24)

0

	

0

*) Such time-dependent expectation values are conserved under a group of time-dependent
transformations U[iL], defined in such a way that the transforms A ' , e ' (t) of A, e(t) are, respect-
ively,

A ' = U[iL]A,

	

«'(t) = U[ - iL] e(t) ,

and characterized by the condition

U[iL] U[iL] = U[iL] U[iL] = 1 .

This condition indeed ensures that tre'( -t) A' = tre( -t) A . This is a generalization of the grou p
of unitary transformations, in which adjointness is replaced by time-inversion . It has bee n
considered under the name of "star-unitary" group in previous papers of the Brussels group ;
see especially the second paper of ref . 15 ) . In contrast to the unitary transformation superoperators ,
the star-unitary ones are not factorizable : they belong specifically to the superspace .

o

(21 )

(22 )

2*
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In general, No will have an inverse, and the relation (23) between 0 and

will then take the form

ai NoONo- 1, 0 = No-ly1No .

	

(25)

2.6 . Relation between asymptotic and dynamical behaviou r

Let us now return to the asymptotic density supervector '6 0 (t) and its
time-evolution (12) . From the relation (23) we see that this evolution ca n
be expressed by means of the superoperator rt as follows :

No"6o(t) = No e- iOtPo(0) = e-`''ItNo~o(0) ;

	

(26)

in other words, the time-evolution of Noôx(t) is governed by the superoperator
f. On the other hand, it follows from eqs . (17) and (18) that

n(Po + D) = (Po + D)L .

	

(27 )

This remarkable commutation property implies that the time-evolution o f
the supervector (Po+D)g(t) is also given by the superoperator n :

i(Po + D)P = (Po + D)Le = n(Po + D)e .

	

(28)

Hence, if we choose at any "initial" tim e

&(O) = Nô-1 [0x(0) +Dec(0)],

	

(29

this relation will subsist at any future time and thus ensure the interpretatio n
of Mt) and "do(t) as the asymptotic form of the dynamical density supervector s

eo(t), eo( t ) .

2 .7 . Projection onto orthogonal subspaces and "subdynamics "

The relationship just established is part of a set of similar ones, whic h
it is interesting to present systematically. According to eq . (15), the asymptotic
density supervector = ôo + ôx is contained in a subspace defined by th e
idempotent superoperator Pa = Po + C :

p(t) = Paô(t) .

Being also adjoint-symmetrical, the superoperator Pa is a (generalized) pro-
jector . Let us consider the subdivision of the superspace into the orthogona l
subspaces determined by the projector Pa and its orthogonal complement :

Pa=Po+C, Pb - Px- C,

	

(30)



Nr. 12

	

2 1

as well as the similar subdivision by means of the time-inverse projector s

Pa- = Po -1- D, P b
-

= Pc - D .

	

(31)

Besides the superoperator No defined by eq. (23), we introduce another one ,

No :
No = 1 + DC, No = 1 + CD, (32)

and we readily verify the relation s

PaPa = PoNo = NoPo, PbPb = PcNc = NcPc . (33)

Further, we note that

PaPo = Pa, PoPa = Pa ; PcPb = Pb, PbPc = Pb . (34)

We already know the mutually time-inverse superoperators

(35)0 = PoLPa,

	

7p = PaLPo ;

they satisfy the relation (27) and its time-inverse, i .e .

(36)PaO = LPa,

	

)7Pa = PaL,

from which eq . (23) follows at once . We may now introduce a further super -

operator ç and its time-inverse A :

= PoLP b , A = PbLPc ;

	

(37 )

they satisfy the relations

	

Pbs = LPb, 2Pb = PbL .

	

(38)

Hence we have, together with eq. (23), an analogous relation involving C ,

2 and Ne :

	

NoO = i?No, Nc~ = 2N d .

	

(39)

With this notation the results of the preceding subsection, expressed by

eqs . (12), (15 and (29), take the compact form

	

ô(t) = "(t - to) e( to),

	

(40)
with

	

E(t) = Pa e10t No-1Pa = PaN0-1

	

e ` itPa,

	

( 4 1)

the last form for i'(t) following from the first on account of eq . (23) ; the

equivalence of these two forms shows that the superoperator ~'(t) is invarian t
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for time-reversal. Eq. (40) expresses the general correspondence betwee n

the asymptotic density supervector ô(t) at any time t and the dynamic super -

vector O(to) at any former time t o . By using eqs . (33) and (34) one readily

verifies that the superoperator E(t) has the semi-group property

E(tl) 2(t2 ) = ±(tl + t2) (t1, t2> 0) .

	

(42)

Taking the limit to --~ t in eq. (40), we obtain from it a relation betwee n

the asymptotic and the dynamic density at the same time :

ô(t) = Ilo(t),

	

(43)

where the superoperator
H - PaNo

-1Pa

	

(44)

is a projector in superspace, since it is adjoint-symmetrical and, according
to eq. (42), idempotent . We have, moreover, in virtue of eq. (42),

E(t) = X(t)H = IIL'(t),

	

(45)

and therefore also, by combining eqs . (40) and (43) ,

'6(t) = 2(t-tovta) .

	

(46)

Finally, eqs . (36), (39) and (44) allow us to write

PaBNô-lPa = LEI = IIL = PaNo-1 7/Pa

	

(47)
and consequently

E'(t) = e- iLt17 = II e-iLC . (48 )

We thus arrive at the remarkable conclusion* ) that the asymptotic density
supervector is a solution of the Liouville equation, characterized as the

projection of the dynamical solution onto a subspace IT of the Hilbert super -

space, and that the asymptotic time-evolution is entirely contained in thi s

"asymptotic subspace" .

The orthogonal complement of the subspace H is susceptible of an equ-

ally simple characterization, by means of the superoperato r

II = PbNo- 1Pb .

	

(49)

Indeed the latter is immediately recognized to be a projector orthogonal t o

*) This result was first derived by I. PRIGOGINE, C . GEORGE and F . HENIN.14, 15)
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Ti ; it is actually = 1 -H, since the idempotent operator 1 -(11+ Ti) has zero

trace, according to eqs . (33), and is therefore = O . The Lime-evolution of the

sup ervector

6(t) He(t) 2(t) -ô(t)

	

(50)

is given, according to eqs . (38) (39), by the superoperator

X (t) = Pb e_i~tN~lPb = PbNe- 1 e -~Rtpb

	

(51)

which has the same semi-group property as L(t) and satisfies the similar

relations

E(t) = e-tLtH = II e åL t

In other words, the time-evolution of the supervector tî(t), which describes

the fluctuations of the system on the atomic scale,'') is entirely contained i n

the "fluctuation subspace" H, orthogonal to the asymptotic subspace H.
Both components ô(t), 0(t) of the dynamic density supervector e(t) are, like
the latter, solutions of the Liouville equation : they receive their respective

characteristics - asymptotic irreversibility, atomic-scale fluctuations - exclu -

sively from the projection onto the corresponding subspaces . One may say
that the asymptotic evolution results from a "subdynamics " of the system,`* )

unfolding itself on the macroscopic time scale in the subspace H.

2 .8 . Invariants of the syste m

Let us finally examine the relation of the subdynamics with the invariant s

of the system ; as already mentioned in subsection 2 .2, this relation is an

important aspect of the theory of large systems . If we decompose the invariant
qi into its components Øo, Øc, the invariance conditions take the form

L o o Øo+Loecc = 0,

	

(53)

*) Clearly, the density distribution ô "(t) includes only those fluctuations that cannot b e
detected under the given conditions of observation . For instance, the usual fluctuations aroun d
the thermodynamic equilibrium state can be derived from the corresponding asymptotic distri-
bution density ô(oo) and are therefore contained in the asymptotic subspace H.

**) In the preceding argument, we have started from the construction of an asymptoti c
solution of the Liouville equation and shown that it corresponds to a "subdynamics" . A differ -
ent point of view may be adopted : 22 , 23 ) we may first study the conditions enabling us to separat e
the density supervector into two components evolving independently, and then discuss unde r
which conditions one of the components represents an asymptotic solution of the Liouville
equation . The conception of subdynamics may be extended to relativistic dynamical systems, fo r
which R . BALESCU and L . BRENIG 2 ') have shown that the projector IZ commutes with the ten
generators of the Poincaré group .

(52)
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Leo Øo+LcoO, = 0 .

	

(54)

Multiplying eq . (54) on the left with - iTe(t) and integrating over t yields

ti dtTo(t)Lcoco+[To(t) - 1] Øc = 0. (55)

If Øo is a regular supervector, not itself an invariant, our fundamental asymp -

totic assumption, expressed by eq . (8), ensures that lim t oc To(t) 0o = 0 and
that the supervector C(0) Øo, with

x

C(0) ° i S dt Te(t)Loo,

	

(56)

o

exists . Eq. (55) thus becomes, in the limit t -> oo,

Øc = C(0)Øo ;

	

(57)

inserting this expression for Øo into eq . (53), we get

[Loo + LocC(0)] Øo = 0 .

	

(58)

As a comparison with eqs . (13), (14) shows, this mean s

0Ø=0

	

(59)

(and therefore also, by time-reversal, Ø7p = 0) . Making use of the notatio n

(30) for Pb = Po- C(0), we may re-write eq . (57) as Pbf = 0, and therefore ,

according to eq. (49),

HO = 0 :

	

(60)

the invariant is contained in the asymptotic subspace H .
The above argument could be formulated with the help of the Laplace

transform Yo(z) of To(t) and the related superoperator '(z) = -i<%o(z)Lco :

instead of eq. (55), one could start fro m

ß'(z)Ø0 + [ zflc(z) -1] Øo = O .

	

(61)

The assumed properties of Øc imply, according to eq . (10), lim n,+o zYo(z)Ø 0
= 0 as well as the existence of limz,+o W(z)O, = C(0)Øo . Eq. (58) may the n

be written, in terms of the Laplace transform (22) of the interaction super -

operator,
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Loo-i F 0)] Ø = 0,

	

(62)(

- an equation equivalent to eq . (59), but of a more convenient form fo r

concrete applications of the theory . This limiting process is not permissible

if Øc does not have the two properties assumed in the preceding argument ;

but one may always combine eq . (61) directly with eq . (53) to obtai n

[Loo-i

	

(z)]Ø+iz,g(z)Øc = 0,

	

(63)
where

g(z) = - iLoc . c(z) .

	

(64)

If Øc is a regular invariant, one has (as pointed out in subsection 2 .2 after

eq. (10)) limz,+ o z „07-e (z)Øc = cI and therefore limz+o zg(z)Øo = 0 : in thi s

case, eq . (62) is still valid . If 1ic is a singular supervector, the limit of z,g(z)Øc

for z -4- +0 exists, but does not vanish, and eq . (62) does not hold . This

discussion shows, therefore, that eq . (62) and the equivalent equation (59 )
are characteristic for the regular invariants . Moreover, it is readily seen that
any supervector obeying these equations is an invariant if it belongs to th e

asymptotic subspace. Indeed, it follows from eq. (36) that the relation

OF = 0 implies LPaF = 0, i .e. the invariance of the supervector PaF, and
consequently the invariance of F if F = PaF; but according to the definitio n

(44) of H the equations F = HF and F = PaF are equivalent. We thus arrive

at the remarkable conclusion that the asymptotic subspace 11 contains all

the regular invariants of the system and only those ; the validity of eq. (62)

is a criterium for deciding whether any supervector of the asymptotic subspac e
is a regular invariant .

A further simple result can be obtained if the projectors Po,P0 can be

adequately chosen in such a way that Loo = 0, as is the case, in particular ,
for homogeneous systems . Then, those systems for which the superoperator s

Ÿfß( + 0) and, equivalently, 0, 77, vanish identically are such that all super -

vectors contained in their asymptotic subspace are invariant . The behaviour

of systems of this class is strictly dynamical : in the asymptotic subspace ,
the density supervector, as well as, in the Heisenberg representation, al l

supervectors contained in this subspace, are stationary ; all processes occur

in the subspace 1L, in an entirely reversible way. The systems exhibiting the

normal thermodynamic irreversibility are therefore characterized by the ex-
istence of a superoperator O or Ti which does not vanish identically : we
call 13 , 14, 15ß such systems dissipative, and the condition just formulated " con-

dition of dissipativity" . Especially in the form
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(+ 0)

	

0,

	

(65)

this condition offers a convenient criterium to decide whether a given system

has the normal asymptotic behaviour . Thus, the Friedrichs model, for which

explicit calculations can be carried out completely and rigorously, 17) offers
in this context a very precise picture : if the coupling between the discrete

state and the continuum preserves the former (leading for instance to a boun d

state), the superoperator 0 vanishes identically ; if the coupling destroys th e

discrete state, the system is dissipative.

Among the regular invariants one distinguishes the important set of thos e

which KHINTCHIN has called " controllable", because their values can be fixe d
by the external conditions of observation. Besides the Hamiltonian, this set

consists of the operators defining the infinitesimal transformations of th e

groups with respect to which the system is invariant : space translations and

rotations, for instance, with which the components of the total momentum
and the total angular momentum are respectively associated . In the theory

of classical finite systems, the controllable invariants determine the manifold

in phase space on which the ergodicity condition can be formulated : the

other invariants do not lead to any reduction of the dimensionality of thi s

manifold. In the case of infinite systems, as we just have seen, only the regula r

invariants are retained at the macroscopic level of description, whereas th e

singular ones play no part in the definition of this level or of the asymptoti c
time-evolution taking place in it ; in simple examples, such as that of a gas

of weakly coupled particles or the more general Friedrichs model, one find s

that the regular invariants are just the controllable set . 17) This clear-cu t
discrimination of the set of invariants which enter into the description of the

irreversible macroscopic behaviour of the system is paralleled in the accoun t

of phase transitions : here also it is in the limit of infinite systems that a sharp
distinction becomes possible between the regular points of an isotherm and

those singular points at which a phase transition occurs .



3 . Epistemological problems of the atomic description of

macroscopic phenomena

3 .1 . The historical backgroun d

The epistemological problems raised by the attempt to base the descrip-
tion of the directly observed phenomena on the atomic constitution of matte r

have forced themselves on the attention of physicists since the pioneerin g

work of MAXWELL and BOLTZMANN, but they could only be clearly formulated

after the dynamical behaviour of the atomic constituents had found its defi-

nitive expression in quantum mechanics and the conceptual foundations of

this theory had been elucidated . In the perspective of XIXth century physic s

it was natural enough to assume that the dynamics of the atoms was the sam e

as that of large bodies, and accordingly to interpret the quantities charact-

erizing the properties of these bodies as suitable averages over quantitie s

pertaining to the constituent atoms . This averaging process seemed so far

from being problematic that in the early papers of CLAUSIUS and BOLTZMANN

it was not even mentioned explicitly .

However, the apparent contradiction between the irreversible evolutio n

of macroscopic bodies and the time-reversal invariance of their descriptio n

as atomic systems soon led MAXWELL and his follower BOLTZMANN to their

still fundamental analysis of the role of statistical causality in atomic physics .

Of course, sharing the universal belief in determinism as the ultimate causa l

pattern of natural laws, they regarded any recourse to statistics as a pis-aller,

but they correctly insisted on the fact that such a recourse was dictated by

the very conditions of macroscopic observation. This point was variously

elaborated both by GIBBS and by the EHRENFESTS ; the former forcibl y

pointed out that irreversibility at the macroscopic level results from the cir-

cumstances defining the corresponding mode of observation, while the latte r

introduced the notion of " coarse-grained" distribution as a mathematical

expression for a mode of observation not reaching down to the dynamica l

determination of the atomic system . On the other hand, it was clear t o

MAXWELL and BOLTZMANN that the equilibrium distribution had to arise

naturally from the dynamics, and they had the correct intuition (albeit in -

correctly formulated) of ergodicity as the dynamical property primarily
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responsible for fixing the form of the asymptotic distribution . GIBBS wanted t o
express the same physical conception by his "mixing" simile, which, how -
ever, turned out to be a stronger dynamical requirement than ergodicity .*)

The development of quantum mechanics cannot affect the specific epi-

stemological problems arising from the atomistic structure of matter, but i t

makes it easier to cope with them, by supplying us with adequate mathe-
matical and logical tools for handling statistical averages of atomic quantitie s
and probabilities of atomic processes . The statistical form of causality is now

prevailing both in the account of individual atomic processes and of macro-

scopic phenomena ; it is essential, however, to maintain a sharp distinctio n
between these two forms of statistical causality, which are logically independ -
ent : the former has its origin in the existence of the quantum of action ,

the latter depends on the degree of freedom of the systems investigated, which

may be characterized by some critical parameter, such as Avogadro's num -
ber, defining the order of magnitude we call "macroscopic" . The formalism

offers us uniform rules for dealing with both types of statistics and the rela-

tions of complementarity associated with each of them. In particular, as
pointed out in the preceding section, the quantal density operator determine s

both the average distributions and the correlation coefficients of any syste m

of interacting constituents, and accordingly yields a unified formal basis fo r
the discussion of the two aspects of the asymptotic time-evolution - existence

of the asymptotic distribution and "mixing" effect of the correlations .

The ergodic approach leaves unanswered the question as to which physi-
cal characteristics of a dynamical system are decisive for its exhibiting a
thermodynamic behaviour on the macroscopic time-scale ; for the condi-

tions of ergodicity and mixing are mere mathematical formulations of prop-

erties characteristic of such behaviour, but not explicitly related to th e
physical structure of the system . One lacks here, for distinguishing system s

which allow of a thermodynamical description from those that do not, a

criterium linking this property more directly to the Hamiltonian .

3 .2 . Kinetic approach vs . ergodic theory

Even from the formal point of view, the extension of classical ergodi c
theory to quantal systems is far from straight-forward : the stumbling block

is the difficulty of finding a representation of the conditions of macroscopic
observation of comparable simplicity to the classical concept of coarse-

graining. In classical theory, it is permissible to replace a coarse-graine d

*) See, e.g ., ref . 7) .
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distribution, referred to some arbitrary subdivision of phase space into finite

cells, by an idealized continuous distribution, and thus to make it independ-
ent of the mode of subdivision adopted. It is certainly possible, as the Italian

school has shown, 8) to introduce a "cell" subdivision of the Hilbert spac e

of state vectors and to arrive at certain quantal generalizations of the ergodi c
and mixing properties of classical theory, but both the enunciation of thes e

results and the algorism leading to them - so long as one insists on mathe-

matical rigour - are very cumbrous .

It must be observed, however, that the use of a coarse-grained cell sub -
division is a consequence of the cyclic character of the time-evolution of th e
closed, finite systems dealt with in ergodic theory : in the classical case, thi s

cyclic character is expressed by POINCARÉ ' s theorem ; in the quantal case ,

the discreteness of the energy spectrum leads to an almost periodic tim e

dependence of the density operator . As a result, the idealized definitions o f
macroscopic quantities can only use averages taken over an infinite time ,

and it is then the object of the theory to express these as statistical averages ,

necessarily coarse-grained in view of their physical meaning. The time -
evolution of infinite systems, on the other hand, is, as we have pointed ou t
in subsection 2.2, radically different : the classical Poincaré cycle becomes

of infinite duration, and the quantal energy spectrum, being continuous ,

allows of no almost-periodicity in time; but the correlations may lead to

the occurrence of states idealized, as is usual in the theory of aperiodi c
processes, by (non-normalizable) state vectors with amplitudes decaying o r

building-up exponentially in time . This makes it possible, as we have seen ,

to study directly such one-sided effects of the correlations over long, bu t
finite time intervals : the asymptotic form the density operator takes after

a time of macroscopic order of magnitude can then be immediately inter-

preted as representing the conditions of macroscopic observation, without

any need for the explicit consideration of coarse-graining. In this kineti c
approach, the part of coarse-graining is played by the projection into the

asymptotic subspace of our Hilbert superspace ; besides its simplicity, thi s

operation has the advantage of clearly exhibiting the fact that the macro-
scopic mode of description is uniquely fixed by the dynamics of the system .

3 .3 . Main features of the macroscopic aspect of the kinetic theor y

The form given to the kinetic theory in section 2 has several noteworthy

features . The most prominent is doubtless the clear-cut separation it effects ,

through the projection just mentioned, between the level of macroscopi c
Mat.Fys .Medd.Dan.Vid .Selsü . 38 . no . 12 .
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observation, contained in the asymptotic subspace 17, and the fluctuatin g
atomic behaviour of the system, which is fully accounted for by the densit y
operator e(t) describing the dynamical behaviour in the total superspace .
If the system is initially in a pure state, its density operator at any time ca n
be factorized as a dyadic product of state vectors : in the asymptotic sub -

space 11, however, no such factorization is possible, no analogue to a stat e

vector can be defined. Indeed, the function of the projector 17 is to sort out
the part of the density operator that subsists after time intervals long enough
to "wipe out" all initial phase relations between state vectors responsible fo r
the fluctuations at the atomic level . In the asymptotic subspace, therefore,
no "interference" of probability amplitudes occurs, but the asymptotic densit y
operator ô(t) embodies the description of any correlation effect observabl e
at the macroscopic level .

Indeed, the formalism is not restricted to the study of the approach t o
thermodynamic equilibrium, but is applicable as well to systems presentin g
kinematic properties of macroscopic order of magnitude . It is important for

the completeness of the theory that it should contain a formal criterium
allowing us to recognize the type of asymptotic behaviour we may expec t
for a given system. This criterium is supplied by the condition of dissipativity ,
which gives a simple characterization of the class of systems exhibiting a n
irreversible approach to equilibrium . It is important to note that the dissi-
pativity condition is amenable to explicit evaluation at least in simple cases ,
such as the Friedrichs model, and relates the dissipative character of th e
system directly to the structure of its energy spectrum .

For dissipative systems, a particularly clear picture is obtained of th e
origin of the irreversibility observed in their macroscopic behaviour . The

projector 17, effecting the subdivision of the superspace into the subspace s
which are the respective seats of the macroscopic and atomic evolution o f
the system, is invariant for time-reversal : this subdivision applies indeed t o
all systems, whether or not they are dissipative . The time evolution operato r

E(t) in the asymptotic subspace is also time-reversal invariant ; its form (48) ,
if we use the spectral decomposition 5 A dP(2) of the superoperator L, just

amounts to a Fourier integral representation exp (- ilt) dP(A)17 of the time-

evolution . The expressions (41) for L(t) illustrate more explicitly how th e
asymptotic time-evolution starting from any given initial state proceeds b y
sequences of processes of "creation" and "destruction" of correlations be-
tween the elements of the system . The time direction in which one con -
siders these processes is fixed by the choice of the conditions under which
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we want to observe the behaviour of the system : on the information supplie d

by observation at a single instant, we normally base expectation of futur e

behaviour ; but the symmetry in time of the two equivalent forms (41) o f

E(t) shows what retrodiction we can also make, on the basis of the saine

information, about the evolution of the system, on the macroscopic time -

scale, most likely to have led to its observed state : the sequences of creations

and destructions of correlations appear inverted when, so to speak, we loo k

back in time, and for dissipative systems we arrive at the well-known situa-

tion discussed by EHRENFEST in connexion with the H-theorem .`)
The collision superoperator ¶y(+ 0) does not only govern the condition

of dissipativity ; it also clarifies, as we have seen, the role of the dynamica l

invariants . In particular, it allows us, by eq. (62), to characterize the regular

invariants (which, at least in typical cases, coincide with the controllabl e

ones) . This solves one of the main riddles of the kinetic theory : it was
indeed never clear why the " collision operators" occurring in the usua l

formulations of the theory, such as the Boltzmann operator, were only i n

simple relation with the controllable invariants, independently of the possibl e

existence of other invariants . At the same time, we see how decisive in thi s
respect is the distinction between regular and singular invariants, - a dist-

inction which can only be made for infinite systems .

Finally, it must be stressed that the macroscopic description we arriv e

at by projection into the H subspace is not the " classical" one : it still con-

tains Planck's constant wherever quantal effects occur on a macroscopi c
scale, as in the spectral distribution of electromagnetic radiation in thermal

equilibrium, or in superconductivity and superfluidity . The laws of classical

physics only appear as a limiting case of this macroscopic description i n
which all quantal effects are neglected, i .e . formally where h is treated as
infinitesimal .

Nevertheless, it would be a serious logical error to imagine that the

procedure we have been following - starting from the quantal description o f

the system, obtaining by the projection H its macroscopic description, an d
letting in the latter h tend to zero - would be a deduction of classical physic s

*) It must be observed, in this connexion, that while both '(t) and e(t) appear as functions
of the same Lime variable t, and in fact as solutions of the same Liouville equation, their tim e
variations may be extremely different : p(t) exhibits variations at the rate of atomic processes ,
whereas the variations of ô(t) may look quite smooth in comparison . This circumstance may b e
made quite explicit, as shown by L . LANZ, L . A . LUGIATO and G . RASIELLA, 25) at the unavoidabl e
cost of formal complication : one must then renounce using the asymptotic time-displacemen t
superoperator 0 acting aL any time, but introduce a similar superoperator, whose action is only
defined for an arbitrary finite sequence of separate instants .

3 *
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from quantum mechanics . For we must not forget that the quantal descrip-
tion from which we start has to be made in terms of the very concepts of
classical physics . All we have done, therefore, is to prove the logical con-
sistency of the rules by which a connexion is established between the mathe -
matical formalism and the classical description, upon which our account o f
macroscopic observation must ultimately rest . Obviously, there can be no
question of any formal axiomatization of such a scheme : it must be base d
upon some set of classical concepts (e .g. space-time localization and mo-
mentum-energy) which remain unanalysed and are treated as "primitive" .
These concepts (and these only) must be explained by processes of measure -
ment, i .e . prescribed manipulations of specially designed apparatus, entirel y
describable in classical terms . Typically quantal concepts, on the other hand ,
like Planck's constant or the electron spin, cannot be related directly to suc h
purely classical measuring apparatus, - but the occurrence of quantal phe-

nomena at the macroscopic level allows us to establish indirect connexions ,
involving more than one classical measurement, between quantal parameter s
and classical quantities, and thereby to determine with arbitrary accurac y
the numerical values of the quantal parameters .* )

*) Thus, Millikan's determination of Planck's constant from the study of the ejection o f
electrons from metallic surfaces by light of various frequencies involves essentially two meas-
urements : that of the light frequency and that of the corresponding kinetic energy of the ejecte d
electrons .



4. Observation of individual atomic processes

4.1 . The consistency problem of quantum mechanic s

Quantum mechanics presents essentially two epistemological problems .
The one, just recalled, concerns the consistency of the rules of interpretation

by which the formalism is brought into relation with macroscopic observa-

tion, the other the relations of complementarity between different condition s

of observation . There is nothing to add to Bohr's analysis of these relations ,

and we shall therefore confine ourselves to a comment, from the point o f

view developed in this paper, of the consistency problem . Briefly restated ,

this problem arises from the fact that the basic concepts used in the formula-

tion of the laws governing individual atomic processes necessarily belong to

the classical modes of description of direct macroscopic observation, whic h
it is the aim of atomic theory to relate to the very laws of atomic behaviour .

This means, as mentioned above, that these basic concepts must be regarded ,

from a strictly logical point of view, as "primitive" . However, there is nothin g
to prevent us from describing on the atomic scale the process of measure -

ment by which a value of the physical quantity denoted by any of thes e

concepts is ascribed to an atomic system, as a dynamical process involving

interactions between the atomic system observed and all the atomic consti-
tuents of the measuring apparatus, and obeying the laws of quantum mecha-

nics . Such an analysis will only lead to the same conclusion as that resultin g

from the direct application of the rules of interpretation of the formalism i f
these rules are consistent . A test of this consistency is especially desirable with

respect to the rule usually designated as the " reduction" of the wave function

representing the initial state of the observed atomic system, i .e . its replace-
ment after the measurement by another wave function expressing the infor -

mation obtained by this observation. Although such a rule is obviously

consonant with the statistical form of causality inherent in quantum mecha-
nics, its relation with the dynamical process of measurement can only be
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elucidated by a careful consideration of the specific function of the measuring
apparatus and its implications for the course of the measuring process .

The decisive step was made by N. Boxx,' ) who pointed out that any

measurement is essentially the codified registration of some characteristic

signal arising from the interaction between the observed atomic system and

a suitable recording device of macroscopic dimensions . Indeed, he em-
phasized that the very definition of a phenomenon must. contain a specifica-

tion of the experimental conditions under which it is observed, including th e
apparatus recording some kind of permanent mark allowing us to identif y

the process observed . Until the process has not been terminated by the

registration of its permanent record, we have no basis for the use of th e

classical concepts corresponding to such record, and accordingly no possibil-
ity of giving any well-defined account of the process . In other words, it i s

precisely the recording by the apparatus which establishes the necessary lin k

between the behaviour of an atomic system and its description in terms o f
concepts referring to our possibilities of observing it. Now, it is clear tha t

the formation of a permanent mark on a recording device is an irreversible

macroscopic process, retaining no other trace of the original state of the

atomic system than the specific feature corresponding to the construction o f

the apparatus ; this information modifies the conditions of observation upon

which statistical predictions about the behaviour of the atomic system mus t

henceforth be based, and it is precisely this modification which is expresse d
in the formal language of the theory by the assignment to the atomic system ,

according to the rule of "reduction", of a new wave-function, appropriat e

to the new conditions of observation .
Once it is realized that the wave-function of the atomic system after the

measurement is a component factor in an expression representing the asymp-

totic state of the whole system including the measuring apparatus, it ca n
hardly be doubted that it will have the form prescribed by the reductio n

rule, since the latter precisely corresponds to this asymptotic situation . As

already mentioned, we are only concerned with the consistency of the us e

of the small set of classical concepts we have called " primitive" . In quantum
mechanics, these are the complementary sets defining space-time localization

and momentum-energy exchange ; the completion of the above argument i n

this case only requires, as Boxn showed, the consideration of simple disposi-
tions of fixed or moving diaphragms . It is sufficient to discuss these, as h e

did, by the methods of classical optics, since the latter use an idealized re -

presentation of diaphragms which directly accounts for the irreversible modi-
fication of a wave pattern arising from its interaction with such material
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bodies .*) In this connexion, it must be remembered that, although the appa-

ratus fixing the conditions of observation, like any other macroscopic bodies ,
may in principle be described as large quantal systems, they must be kept
outside such a description in order to fulfil their special function (otherwise ,
they would become themselves objects of observation) ; it is for this deep -

lying reason that their intervention is represented in the formalism of quan-
tum mechanics by parameters denoting "external" forces and prescriptions
for the selection of appropriate solutions of the fundamental equations -
among them the reduction rule . Disregard of this circumstance is the mos t
frequent source of misunderstanding concerning the foundations of quantu m
mechanics .

The general theory of large quantal systems obviously offers anothe r
possibility of dealing with the consistency problem : one has only to apply
this theory to the system formed by the atomic system under observatio n
and the measuring apparatus described as a large assembly of atoms . This
was done by the Italian physicists 4) on the basis of the form of quantal er-
godic theory they had previously developed :8) **) their result is, of course ,
in full harmony with Bonn ' S argument') The kinetic approach outlined i n
the preceding sections allows us to discuss the issue in a more direct an d
simpler manner and to throw further light on the role of the measurin g
process in the epistemological analysis of physical theory .

4.2 . Discussion of the measuring proces s

In order to analyse the course of a measuring process, we may use th e
schematization discussed in detail in ref . 5 ) . The main point is to arrive at a
sufficiently simple and general formulation of the restrictions that have to b e
imposed upon the structure and dynamical behaviour of a macroscopic bod y
in order that it may fulfil its function of measuring a specific property of a
given atomic system. Its mode of interaction with the atomic system must b e
such as to bring it into a state observable at the macroscopic level and uni-

quely related (at least approximately) to the specific atomic state of interest .
Without loss of generality, we avoid unessential complications by assumin g

*) Somewhat less elementary is the case of quantum electrodynamics, owing to the necessit y
of taking account of all retardation effects in the measurement of a field component ; in thi s
case also, the consistency of the formalism could be established by a detailed analysis,') in whic h
advantage was taken of the smallness of the coupling between electro-magnetic fields and distribu-
tions of electric charge and current .

**) More recently, they have given some consideration to the problem from the point o f
view of their own kinetic theory, but made no attempt at a detailed examination of the issues
involved . 26 )
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that the interaction between the atomic system and the measuring apparatus

only lasts for a time short enough to allow us to disregard any dynamica l

change of the atomic system as a result of this interaction . The apparatus ,
on the other hand, reaches, at the termination of the interaction, a dynamica l
state which must be such as to fix the ultimate outcome of the measurement .

For from the moment the interaction ceases, the two parts of the total syste m
evolve independently, and we expect the apparatus to settle down, at the ma-

croscopic level of observation, into a situation providing a "permanent" re -

core) of its specific interaction with the atomic system . This requirement
imposes essential restrictions upon the constitution of the measuring appa-

ratus and upon the interactions of its constituent elements with the atomi c
system under investigation. If the aim of the measurement is to ascertai n

whether the atomic system is in an eigenstate Icps) of the operator representing
some physical quantity attached to the system, there must exist a complete

orthogonal basis Ism> of dynamical states of the measuring apparatus suc h

that (i) only a definite set { sm> of such states (denoted by a common index
s) interacts with the atomic system when the latter is in a definite state 1 pp s> ;

(ii) the correlations between any two states Ism), Is'm' ) are much weaker

when they belong to different such sets (s s ') than when they belong to

the same set (s = s'). (As an example, we may think of the formation of a
particle "track" in a bubble chamber or a photographic emulsion . **) )

In order to show how these conditions ensure the desired functioning o f

the measuring device, let us examine the asymptotic time-evolution of it s

density supervector in its own superspace . We define the subspace Po by
the projector

	

Po =

	

Po (s), Po( s)
= ' Psm X Psm ,

s

	

m

and, accordingly, the correlation subspace by the projecto r

Pe = ,Pc(ss ), Pc lss) =

	

PsmX Ps,m, ,

	

ss'

	

nun '

the summation 1' extending over all values of m and m ' if s s ' and al l

different values of m and m ' if s = s ' . The superoperator T(t) given by

eq. (21) and the asymptotic superoperators 0, i derived from it by eqs . (20)

*) By "permanent" we do not imply that the state in question is one of actual thermodyna-
mic equilibrium, but only that it lasts long enough for macroscopic observation .

**) The interaction of a particle with the medium gives rise at a certain point (correspondin g
to a state ITs) in which the particle has a definite "position") to a local fluctuation (represente d
by the set Ism») around which a bubble or a spot develops (leading to the asymptotic density
"s( M)(t) defined on p . 37) . The condition (ii) expresses the requirement that the successive bubble s
or spots formed by the passage of the particle through the medium be sufficiently distinct fro m
each other for a recording of the corresponding positions of the particle .
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will essentially effect transitions from any subspace Po (s ) to the same sub -

space : for other transitions, on account of the condition (ii) above, will be

much less probable . Moreover, if we consider the mutually orthogonal sub -

spaces defined by the projectors P( s s ' ) = Po s) àss, +PASS') the leading terms of the

superoperators of destruction and creation of correlations will be those lin-

king any subspace P (ss) with itself (i .e . the subspace Po(s) with the correlatio n

subspace Pe (ss) ) ; next in importance will be the links between subspace s

P (ss' ) and P(88 " ) for values of s' and s" in a small interval around s . Therefore ,

if we start from any initial density supervector e (M) of the measuring appara-

tus, and only retain the leading terms, the asymptotic time-evolution of its

projection P( ss' ) @( M ) will take the form

(t)p(ss')e(M) = Sss P(ss)'ö(M)(t) = (5ss,~sM)(t) :

	

(66)

this formula expresses a clear-cut asymptotic trend of the measuring syste m

towards definite states (s (M)(t) uniquely associated with the eigenstates l(ps>

which are the objects of the measurement .* )
After this preparation, the discussion of the measuring process is readily

performed. Let the initial state of the atomic system be represented by a
superposition D c s l (p,> of the eigenstates I qq s> ; the resulting density super -

vector
)
(s)

	

~e(ev,

	

c)ssi = cs cs, I Ts i <Øs' i
se

exhibits the correlation between the states I cps) arising from definite phase

relations between the coefficients c s , cs, . The initial form of the density
supervector of the total system formed by the atomic system and the appara-

tus (i .e., let us recall it, the form this supervector takes immediately after

the two constituents of the total system have interacted) is easily set up i n
conformity with our condition (0 : to each component ess? there corresponds
a component P( ss' )e( M ) of the apparatus density supervector . The total density

supervector is thus initially

*) It should be stressed that the approximation (66) is sufficient for the analysis of th e
most general measuring process of physical interest . The case envisaged by Wigner's theorem") ,
in which the system formed by the atomic object and the measuring apparatus has an additiv e
invariant, only occurs if the quantity to be measured is precisely such an invariant, o r
commutes with it, and an idealization of the type (66) is then in accordance with th e
theorem . If, however, the quantity to be measured does not commute with the additive invar-
iants, Wigner's theorem has no relevance, for it is an obvious physical requirement that an y
sueh invariance should be destroyed by coupling the apparatus to a suitable external syste m
of infinite extension . For instance, while a momentum measurement of infinite accuracy ma y
be performed by means of an elastic collision of the atomic object with a freely moving test-body ,
the spatial localization of the object requires the test-body to be rigidly attached to some bod y
of infinite mass serving as a spatial system of reference . It is worth pointing out how well adapte d
the h' -space representation is to a concise and general account of the process of measurement .
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~ es) ' P(ss )e(M)
ss'

and each factor evolves independently in its own superspace : the time-
evolution of the atomic system is governed by its Liouville superoperator

T(s )(t) = exp { - iL( s) t} ; as to the apparatus, we are interested in its evolution
at the macroscopic level, described in its asymptotic subspace by the super -

operator .'(t). Adopting the idealized situation expressed by eq . (66), we

therefore obtain at time t the total density supervecto r

T(s)
( t ) ass)

. ~s (M >(t) .
s

From this expression a density supervector making explicit reference only
to the atomic system may be derived by averaging it over the apparatu s

superspace, i .e. by taking its trace with respect to the apparatus basis ; we
may simply ascribe the same limiting value to all the tr (J8 (1)(t) and normaliz e

it to unity :

lim tr ''s (M)(t) = 1 .
t-c

This gives us for the density supervector of the atomic system, after a tim e

sufficient for the recording of a permanent mark on the apparatus, th e

expression

I c s( t )I 2 IsPs><99s1 ,
S

from which every explicit reference to the apparatus has disappeared, an d
whose form agrees with the prescription of the reduction rule .

The way in which this result has been derived makes its meaning quite

clear . In the first place, it is essentially an asymptotic result, and there i s

no question of its contradicting any consequence of the time-dependent
Schrödinger equation. Secondly, the only interactions involved in the whol e

process are the specific interaction of short duration between the atomi c

system and the apparatus and the long sequence of interactions it triggers

off between the constituent atoms of the apparatus ; there is no question
whatsoever of any non-physical intervention of any kind upon the atomi c
system : the whole measuring process is a purely automatic registering opera -

tion, obeying only the laws of quantum mechanics, and its outcome is accord -
ingly in full harmony with these laws . Let us here emphasize again that the

treatment of the measuring apparatus as a quantal system we have performe d

has no other purpose than exhibiting the consistency of the conceptual frame -

work of quantum mechanics, in which formalism and rules of interpretatio n

in terms of classical concepts form an inseparable whole . Thirdly, the differ-

ence between the "reduced" density (67) and that of the system before th e

(67)
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measurement simply reflects the change in our information about the syste m

brought about by this measurement ; the occurrence of such a difference i s

no peculiarity of quantum mechanics (though the particular form it take s

is of course a specifically quantal one) - it is common to all statistical situa-

tions and in fact an essential component of the concept of probability .

4.3 . The role of the observe r

Statistical causality has often been misrepresented as implying the intru-

sion of a "subjective" element into the description of the phenomena ; this

epistemological error (which was not made by the founders of the theory o f

probabilities) arises from an insufficient analysis of the conditions under

which knowledge of the phenomena is obtained. The inclusion of a specifica-

tion of the conditions of observation into the account of the phenomena i s

no arbitrary decision, but, as we have insistently stressed, a necessity impose d

by the very laws governing the course of these phenomena and the mechan-

ism of their observation, and thereby an indispensable part of their objective
description, since it ensures that such a description will be common to al l

observers placed in the specified conditions . It is in order to make this object-

ivity quite apparent that we have analysed, in the preceding subsection, th e

observation process as a purely physical one, limited to the automatic re-
gistration of a record, which need not even be read .

Obviously, such an analysis touches only one side of the process o f

acquisition of objective knowledge . This process is not complete until a

reading of the record has actually occurred, i .e . until the information it con -
tains has been stocked into the brain of some observer . This "psychological"

side of the cognitive process is obviously just as objective as the other, sinc e

it is the saine for any conceivable observer, but the question arises whethe r

it can legitimately be separated as sharply as we have done from the purely

physical registration process . It would seem that our understanding of th e

fundamental biological processes has now reached a stage allowing us t o
give a definite answer to this question .

We must above all realize that there is a large class of physical and

chemical dissipative processes, occurring far from the thermodynamic equi-

librium conditions, which present structural inhomogeneities quite foreig n
to the familiar physical phenomena observed at or near equilibrium, bu t

analogous to typical features of biological systems .29, 29) It has been shown ,

for example, that chemical reactions essential for the metabolism of livin g

systems, as well as for the regulation of genetic and evolutionary processes ,
can be treated in detail in terms of usual chemical kinetics, and involve

branches of the solution of the non-linear kinetic equations which do not
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belong to the classical thermodynamic description of near-equilibrium situa-

tions, but only appear under conditions far from equilibrium .3o, 31) Now,
thermodynamics, both in its classical and its more general form just men-

tioned, is a mode of description adapted to the behaviour of macroscopi c

systems in the asymptotic H subspace ; indeed, it has been explicitly estab-

lished32 > that the thermodynamic description can be derived from the kineti c

equation associated with the time-evolution operator E(t) . It is natural to

conclude from these considerations that the distinction between "living" and

"non-living" systems appears to be part of their description in H-space, an d
accordingly cannot be based on any quantal description on the atomic scale .

An analogy which may perhaps clarify the significance of this remark is the

distinction between laminar and turbulent motion, which correspond to tw o
types of solution of the Navier-Stokes equation : as this equation belongs to

the macroscopic level - it is a consequence of the kinetic equation - we can-

not characterize the difference between these two types of flow by means of th e

formalism of quantum mechanics. Likewise, it would seem that the charac-
teristics of "life" cannot be formulated at the atomic level but are essentially

macroscopic . Incidentally, this circumstance is sufficient to dismiss all "para -

doxical" situations (such as the famous example ascribed to Schrödinger )
which one would allegedly encounter when attempting to treat living systems

by the methods of quantum mechanics. In such cases, just as in the general

problem of observation, a correct epistemological analysis can only b e

developed at the macroscopic level of description .
If we accept this general inference from our present knowledge of biology ,

we do not see any special role to be attributed to a "living" observer in th e

discussion of the consistency problem of quantum mechanics : the only con -

dition the intervention of such an observer has to fulfil is to be amenabl e

to physical description at the macroscopic level . Now, we may confidently

assume that the sense organs of an animal register signals from the physica l

environment in essentially the same way as material apparatus, and that
the storage of these signals and their incorporation into sensory-motor scheme s

is also the result of physical and chemical processes of the type commonly

observed in biology.'> Since all the organs involved are of macroscopic orde r

of magnitude, their activity can in principle be entirely described in th e

asymptotic subspace 11 of the appropriate superspace, like the functioning

of any physical measuring apparatus .

*) Of great interest in this respect is the experimental evidence showing that the memor y
of a specific sensory-motor scheme can be stored in the form of a coded macromolecule .

If



5. General conclusion

Perhaps the most significant general result of our approach is the intro-

duction of generalized projection superoperators, made possible through the

consideration of superspace . This generalization involves the concept of time -

reversal invariance which replaces the usual one of self-adjointness, t o
which it reduces in the absence of dissipation . These new projectors allow

us to give a precise characterization of the macroscopic level of descriptio n

of general quantal systems, and to formulate quantitatively the condition s
under which a given system will exhibit the properties belonging to this level :
a formulation obviously susceptible to experimental test (for example, we

may verify whether a system is in thermodynamical equilibrium) . These

questions actually amount to an extension of the scope of quantum mechan-

ics, which has only been outlined in this paper and deserves a more detaile d

treatment . In a sense, the question of the definition of a macroscopic level
of quantum mechanics may be considered as a simple illustration of thi s

general method, which applies as well to a large class of other problems .
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Appendix

Matrix representation in superspace

Although we have not made use in the text of any explicit matrix repre-

sentation of supervectors and superoperators, such a representation might

be helpful in concrete applications . We therefore collect in this appendi x

simple practical rules for writing down such matrix components .

A supervector A is represented by its matrix elements in the for m

A = PmAPm'

	

<m I A l m') Pmm'
mm '

	

mm '
where

P.m, = I m> < m' 1, Prom' = P.,. -

In this notation, any superoperator 0 is a sum of factorizable superoperators :

O = Omm' nn' Pmn x Pn'm' ,
min '
nn '

and with the adopted order of the indices one ha s

<H OAIm'> =

	

Omm',nn' <nIAln'> ,
nn '

(OQ)mm' ,nn' =

	

0mm' , pp' Qpp' ,nn ' .
p p '

The components of the adjoint superoperator are

O mm',nn' - Onn',mm '

and the transposition give s

<mIAOIm'> = <nIAIn'> On n m m
nn '

The adjoint symmetry of the superoperator 0 implies the relation s

Onam',nn' = Om'm,n'n
between its components .

Indleveret til Selskabet den 5 . oktober 1971.
Færdig fra trykkeriet den 14 . september 1972 .




