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Notations

S n : the n-sphere .
En : the n-cell .
Tn = Sl x . . . x Sl (n factors) : the n-dimensional torus .

homeomorphic .
homotopic, bijective equivalent, isomorphic .

fp, f# maps induced by f in homology, cohomology .
f* f* maps induced by f in homotopy, cohomotopy .

Synopsi s

In this paper I show that the cohomotopy groups of the n-dimensional torus Tn usually
are direct sums of homotopy groups of spheres . Further, I investigate homotopy classification
problems of continuous maps from Tn into other topological spaces - especially spaces wit h
"nice" homotopy groups in the lower dimensions . The results are applied to some "reducibility
problems" for torus maps and almost periodic movements - in particular I find conditions fo r
almost periodic movements being almost periodically homotopic to periodic movements .
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Introduction

In 1954 H . TORNEHAVE [4] investigated the following problem : In

which topological spaces X is every almost periodic movement x = f(t )
(t E R = ]- co, x[, x E X) almost periodically homotopic to a periodic move -
ment?

A(lmost) p(eriodic) homotopy between two a .p . movements fo(t) and
fi(t) means that there exists a uniformly continuous family f(t,v), v e [0,1] ,
of almost periodic movements starting with fo(t) and ending with fi(t) .

Let denote the class of metric spaces X which are "continuously

locally arcwise connected" (see p . 21) . Because every CW complex i s

"continuously locally arcwise connected", rP includes the class r of me-

trizable CW complexes . V' includes the class W" of locally compact poly-

hedrons. Remark : In this paper I only look at continuous maps between
topological spaces, though I do not explicitely write continuous everywhere .

Nor do I everywhere write that I assume my spaces different from the empty set .

A theorem ([4] p . 28) states that every a .p . movement f(t) in a space
X E corresponds to some rationally independent real numbers (ßi, . . . , ß,z )
and a continuous torus map f : Rn - X (f is periodic in all the variables

with the period 2nc) in such a way that T(t) is almost periodically homotopic

to the almost periodic movement f(ßi t, . . . , ßnt) .

A small correction and generalization of Theorem 13 in [4] gives :
Every almost periodic movement in X E `C is almost periodically homotopi c

to a periodic movement if and only if for every continuous torus map f (of any
dimension) into X there exists a number N E N so that fo (xN) is homotopi c
to a torus map into a closed curve in X , where (x N) ( L ib . . ., un) (Nui , . . . ,
Nuv) .

Because of this theorem it is natural to look at the following problem :
For which X is every torus map (of any dimension) into X homotopic to a
torus map into a closed curve in X? H . TORNEHAVE had some intuitive idea s
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of how to solve the new problem : he thought it was a necessary (and if al l
the homotopy groups .7i (X,xo) are trivial for i > 1, sufficient) condition tha t
for all xo E X every abelian subgroup of the fundamental group n1(X,xo)
is cyclic. (This is not quite correct) . In this paper I shall find a partia l
solution of a more general problem .

Definition 1 . Let X be a topological space . An n-dimensional torus
map f: Tn ->- X is called m-reducible iff it is homotopic to a continuous map g
through Tm , i .e . Tn Tm -+ X, where 1 < n are the only interestin g
cases .

Definition 2 . The space X is called n-dimensionally m-reducible iff
every n-dimensional torus map into X is ni-reducible .

Definition 3 . The space X is called m-reducible iff every torus map
into X (of any dimension) is m-reducible .

Definition 4. An a.p. movement x = f(t) in X is said to be of dimension
<_ n if f it is a .p . homotopic to some x = M t , . . ., (3r,t), where (ßl, . . . , ßn)
are rationally independent real numbers and f : Tn - X is an n-dimensiona l
torus map .

Definition 5 . The a .p. movement x = f(t) in X of dimension

	

n is
called a .p . m-reducible iff it is a .p . homotopic to an a .p . movement of dimension
▪ in .

Definition 6 . The space X is called a.p. n-dimensionally m-reducibl e
iff every a .p . movement in X of dimension

	

n is a .p . m-reducible .

Definition 7 . The space X is called a .p . m-reducible iff every a.p .
movement in X is a.p. m-reducible .

We have the following theorem :
Theorem 16 . Let the almost periodic movement x = f(t) in X E

	

be
a .p . homotopic to f(ß1 . t,

	

. , ßnt), where f: Tn --> X, (ßl, . . . , ßn) rationally
independent . Then

7(1) is a .p . m-reducible iff fa (x N) for some N is m-reducible .

I shall further study the following problems :
1) When is a given n-dimensional torus map in-reducible ?
la) When is a given a .p . movement f(t) of dimension < n, a .p . in-reducible ?
2) Which spaces X are n-dimensionally in-reducible ?
2a) Which spaces X are a.p . n-dimensionally m-reducible?
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3) Which spaces X are rn-reducible ?
3a) Which spaces X are a .p. m-reducible ?

The case m = 1 is of course of special interest .

My way through the problems is the following :
First I use obstruction theory in ' dealingwith¢'extension problems and

homotopy classification problems of continuous functions from subspace s
of Tn into topological spaces . I shall not go beyond the primary obstructio n
because otherwise the problems get too complicated to be of use for my
original problems .

Next I look at the special case X = SP, the p-dimensional sphere. The
set of homotopy classes of torus maps Tn Sp, np(Tn ), is called the p -
dimensional cohomotopy set . For some p and n the set zp(Tn) is an abelia n
group which is called the p-dimensional cohomotopy group of Tn . I compute
the cohomotopy groups by means of the homotopy groups of the sphere s
ni(S'n ,so) . Unfortunately, most of these homotopy groups are not yet known .

The homotopy groups of Tn , on the other hand, are very simple : the
fundamental group is free abelian of rank n : an l(Tn,to) Zn , and all the
higher homotopy groups n i(Tn ,to) (i > 1) are zero . - In general we know
that 7ti (X,xo) (i > 1) is an abelian group, while ni(X,xo) is a group, bu t
not always abelian .

The results obtained on the homotopy classification of torus maps into
X, are applied to the torus reducibility problems and this leads to result s
on the a .p . reducibility problems . For some special topological spaces X
this gives simple results, but for further work on. almost periodic movements
my method does not seem fruitful because the homotopy classificatio n
problems soon become extremely complicated and the torus reducibilit y
problems turn out to be more complicated than the a .p. reducibility problems .

I shall state the principal results in a form independent of the choic e
of basis point . The corresponding theorems in the paper will be stated only
for a fixed basis point .

Theorem 18' . Let x = At) be an almost periodic movement in X E corre-
sponding to the torus map f : Tn - X. If nz(X,xo) = . . . = arq,(X,xo) = 0 for all
xo e X, then a necessary and sufficient condition for f to be a .p . m-reducibl e
(1 m < n) is that fx arl(Tn,to), which is a finitely generated abelian subgroup
of gi(X,f(to)), has rank m.

Theorem 19' . Let X and let ari (X,xo) = 0 for all xo E X, i > 1 .
Then a necessary and sufficient condition for X to be a .p . ln-reducible (m 1 )
is that for all xo E X every abelian subgroup of ni(X, .xo) has rank <- rn .
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Remark: If acl(X,xo) is itself abelian, the above condition on 7cl(X,xo)
is equivalent to : rank r i(X,xo)

	

m .

Theorem 20' . A necessary and sufficient condition for X to be a .p . 1-reducibl e
is that, for all xo E X, every abelian subgroup G of r i(X,xo) has rank 1
and that, for all n > 1, the condition that fM ,g : rcl(Tn ,to) --a rci(X,xo) are
conjugate implies that for some natural number N the maps fo (x N), go (x N)
are homotopic .

Theorem 21' . Let X E

	

be an H-space (for instance a topological group )
with ni(X, .xo) = . . . 7cp-1(X,xo) = 0 for all xo e X. Then a necessary conditio n
for X to be a .p . in-reducible is that for all xo E X the rank of 2-cp(X,xo) is (p) .

Theorem 22' . Let X E and let for all xo E X

ri(X,xo) = . . = 7tp-1(X,xo) = uLp+l(X,xo) _ . . . _ rm(X,xo) = 0 ;

then a necessary condition for X to be a .p . m-reducible is that for all xo E X the
rank of rp(X,xo) is (p) if p > 1, and that every abelian subgroup of rcl(X,xo)
has ranks m, ifp = 1 .

Chapter 1

The Functions F, G, and G'

Definition. Let X be a topological space with xo E X. Let n e N and
let z be a group (abelian for n > 1) . I call X an m-space of type ( :z,n) (m e N U
{+ c}, m n) when X is path-connected and its homotopy groups in dimension s
< m, except rcn(X,xo), are zero, while rcn(X,xo) is isomorphic to a .

A usual (rc,n) space is then the same as my oo-space of type (rc,n) .

Examples : Tn is an oo-space of type (Zn,1) ,
Sn is an n-space of type (Z,n) .

For all n E N and all groups 7c (abelian if n > 1) there exists a topologica l
space X of type (r,n) ([3] p . 426) .

We shall now look at maps Tae L X where X is path-connected and
xo e X. We know that f is homotopic to a map f ' : ( Tn ,to) .+ (X,xo) . Because
we are interested only in the homotopy classes of maps Tn - X we shal l
always choose representatives g of the homotopy classes for which g(to) = xo ,
but we do not write this explicitely everywhere .

If we denote the homotopy classes of maps equivalent to f: Tn -x X by
[ f ] and the set of these classes by [Tn,X], then we know that a function
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F?z : [Tn,X] - Hom(ni(Tn,to), ni(X,xo) )

where - means conjugate, (if ni(X,xo) is abelian, then this group is iso-
morphic to ni(X,xo) n ) is defined by :

Fri [ f] _ {f,} (the conjugacy class of f,) .

If we denote the homotopy class relative to to of maps (Tn,to) - (X,xo)
equivalent to f by [P in and the set of these maps by [Tn ,to ; X,xo] ta , then we
know that Fn' [ f ]t o = f, defines a map

F. : Tn , to ; X,xo]t° > Hom(ni(Tn to), ni(X,xo)) •

If X is an H-space, we know that [Tn,X] and [Tn ,to ; X,xo] to are group s
and that ni(X, .xo) is abelian. In this case it is easy to see that F. and Fn '
are homomorphisms .

As a cell complex TB =Six . . . x Sn consists of
1

	

0-dimensional cell to ,
n

	

1-dimensional cells Sz (circles), . . . ,
(p) p-dimensional cells Tp

	

S2 x . . . xSIp ,
and 1

	

n-dimensional cell Tn .

Let L be a subcomplex of Tn , and let i : n i(L,to) -÷ ni(Tn ,to) be induced
by the inclusion map is L > Tn . Because ni(Tn ,to) ni(SI,to) Q+ . O+
ni(Sni , to) N Zn we have that i n i (L, to) is a direct summand in nl(Tn , to )
with rank equal to the number r of 1-cells in L . We also have ni(L,to)
Zal * . . . x Zarb-, where * denotes free product and - means that two generator s
ai and aj commute when the corresponding 1-cells in L are sides of a 2-cel l
in L .

a i

\
i

aj /

	

\ a j

a i
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A homomorphism h E Hom( ,t 1 (L,to), rci.(X,xo)) is said to be extensibl e
over Tn iff there exists an E Hom(ni(Tn ,to), ri(X,xo)) with Ki, = h .

The statements in the following theorem are proved in [2], VI .

Theorem 1 . Let X be an m-space of type (r,1) . Then Fn and Fn ' are
surjective if m n-1, and bijective if ni n. Let L =1= Ø be a subcomplex of
Tz and let g : L -~ X be a given map . Then the following 3 statements ar e
equivalent for m � n-1 :

(i) g is continuously extensible over Tn ;
(ii) g x E Hom(ri(L,to), i(X,xo)) is extensible over Tn ;
(iii) g(x l(L,to)) abelian .

If g„ is extensible to h E Hom(ai(Tl, to), n1(X,xo)), then we can find an
extension f of g with f,, - h .

Examples. Let Pm denote the m-dimensional real projective space .
Because ni(Pm ,po) N Z2 for m 2 and m(Pm,po) = 0 for 1 < i < m, whil e

znZ(P m ,po)

	

Z, we have the bijections

[Tn,Pm ]

	

Z2

	

[ Tn , t o ; Pm ,po]t0 for n < m.
We also have

[Tn ,Sm ] cv 0 cv [Tn,to ; S m ,so]to for n < m ,
and

[ Tn, Tm ]

	

Zm n = [ Tn, to ; Tn , to ]

where the two last bijections are group isomorphisms .

Remark. It is easy to see that Fn surjective (injective) implies Fm
surjective (injective) if rn

	

n .
Let (Tn)m denote the ni-dimensional skeleton of Tn as a cell-complex .

The absolute and relative (with respect to subcomplexes) homology- an d
cohomology groups of Tn and (Tn ) m are easily computed : With coefficients
in an abelian group G we have

n
Hp(TZ ; G) G p N HP(Tn ; G) ,

Hp(Tn,L ;
G)

	

G(P)-i(p)

	

HP(Tn,L
; G) ,

IIp((Tm)'n,L' ; G) , G(p)-i'(P) N Hp ((Tn )m L' ; G),

where i(p) and i '(p) denote the number of p-cells in L and L ' . As generators
for the homology groups we can take the elements {o 9 g}, g e G, where

Nr . 10
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o is a p-cell of T12, Tn \L, (Tn )m`L' respectively corresponding to a p-dimen-

sional torus Tp in Tn . As generators for the cohomology groups we can tak e

the elements {fg}, where fg is the homomorphism determined by Ma i) = g
and fg(a;) = 0, j ~ i .

Further, it is easy to see that HP(Tn ,Z) as an algebra is the exterio r

algebra over Z with n generators in dimension 1 corresponding to th e

generators of H1(S) .
The homomorphis m

h : HP((Tn)m,L' ; G) - Hom(Hp(( Tn) m ,L' ) ; G)

defined by li{f}{c} = f(e) is an isomorphism . Generators in Hom(Hp((Tn ) yr',
L ' ) ; G) corresponding to the {f'} are the f2 themselves .

Dividing the p-cells a i into those in (Tn )m \L and those in L I find tha t

Hp(( T2)m ; G) Hp((Tn)m,L' ; G ) C Hp(L',G)

HP(( Tn) m ; G) N HP((Tn)m,L' ; G) ) HP(L',G) .

Thus the homomorphism s

E Hom(HP((Tn ) m ; G) ; HP (L' ,G)) and ,j # E Hom(HP ((Tn)m,L' ; G) ,

TIP ((Tn)m ; G))

induced by the inclusion maps i : L ' -~ (Tn)m , j : (Tn)m -÷((Tn)m,L') are

injective, and so are the corresponding homomorphisms between the homo -

logy groups i# and j# .
Now, let g : L' -> X be a given map . Suppose f : (Tn)m i Xis an extension

of g and denote by [ f ] L . the homotopy class relative to L' of maps (Tn )m X
equivalent to f . By [(Tn)m,L',g ; X] L . we denote the set of these maps . Then
there is a well-defined functio n

G n' ma, : [(Tn)m,L',g ; X]L, Horn (Hp((Tn)yn,L') ; Hp (X))

defined by G.= f#pIHp((Tn ) m,L' ) . We observe that

=Hom (Hp (( Tn)m , L' ) ; Hp(X))

	

(Hp (X))(p) "1)) if p m

0

	

if p p m.

Even if X is an H-space, G' is not in general a homomorphism .
If X is a p-space of type @cp,p) (7rp abelian), we have the Hurewicz

isomorphism x : arp -> Hp(X) and G,2 m p corresponds to
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Gn,m,p : [Tn,L',g ; X] L, -+- Hom (Hp(( Tn)m , L ), 7cp )

where Gn,m,p[f] L , _

	

o To IHp((Tn)m,L') . We know from the theory o f
obstruction that r1(X,xo) - rp_1 (X,xo) = 0 f (Tn ) p-1 0, hence
we can choose a map f ' : (Tn)m .->X with f' f and f ' I(Tn)p-1 = xo. If o
denotes a p-cell in (TZ )m \L', then f'(ao) = xo and no. represents an elemen t
of Zp c) [S9,X] . Because %([f ' jo]) = f# p(a) = ffp(a) we have :

Gn,m,p[f]L'(a) - [f a a ] •

If X + Ø is also an H-space, we know that nl(X,xo) is abelian and that
the group structure in np(X, .xo) is defined by the multiplication map in X,
so that in this case the functions G and G' are homomorphisms .

Remark . Gn : [Tn,X] -* Horn (Hp(Tn), Hp(X)) surjective (injective )
implies that G,n : [Tm,X] ->-Hom(Hp(Tm), Hp(X)) is surjective (injective )
for in

	

n .
From the above remarks and the results in [2], VI we get :

Theorem 2 . Let X be an (ni-1)-space of type (scp,p) (acp abelian). Then
we have [(Tn)m,L',g ; X] L. + Ø and the functions G0, ,n,p and Gn' ,mn,p are .sur-
jective . Let X be an ni-space of type (np,p) (rzp abelian). Then we have [(Tn)m ,

L ' ,g ; X] L, + Ø and Gn,m,p and G1L,m,p are bijective .

Thus

[(Tn)m,L',g ; )(]u = ~
p(p)~'i (p )

and, in particular
n

[ Zn,L,g ; X]L

	

np(p) -L(p )

[Tn ,X] ca.)_ [Tn , t 0 ; X, xo]t a ` otp(p) •

Remark . Let [(Tn)m,L',g ;X] denote the set of homotopy classes o f
maps f: (Tn ) m -> X for which f I L. = g . Then I[f]L' = [fl defines a map
[(Tn)m,L',g ;X]L,

	

[(Tn)m,L',g ;X], which is surjective . The map

Gn,m, p : [(Tn)m,L',g;X] -> Horn(Hp (( Tn)m, L' ), Hp (X)) ,

where Gn ,m,p [f] = f##p1Hp((T'n)m,L') is also well defined. From this we ge t

(Gn,m, p = Gn,m, p 01) :

G n,1.n,p surjective (injective)

	

Gn,m,p surjective (injective) .



Examples . [(Tn)m,Srn]

	

z(m), [Tn,S n ]

	

Z.
(Here N denotes bijection) .

Now, let X be an H-space and a p-space of type (np,p) (then nu i s
automatically abelian) . That X is an H-space means that we have a fixe d
point xo E X, a continuous multiplication h : (Xx X,xo x xo) --> (X,xo) fo r

which the constant map X - xo is a homotopy identity, i .e . ,u o (c,lx)
p o (1x,c)

	

1x relative to xo. From the above theorem we know that for
n p

[(Tn)p-1 X] = 0 and [(Tn)p,X]

	

Hom (Hp(( Tn)p), np) Hom (Hp(Tn), np) .

Hence every h E Hom(Hp(Tx),TCp) corresponds to a continuous map (Tn) p - X
with f((Tn )p- 1 ) = xo and f#p = xh. Let b denote the ma p

~,n2?ro~

	

{

Tp	 IITp X.i

Let f denote "one of the products of the ft's", for instance

~,G o (lxxp) o . . . o (lxx . . . xlx < p) o (f(np)	 fl) .

Then it is easy to see that f is a continuous map Tn -> X with I (Tn)p

	

f,
(Tn)p-1

i .e . f#p = f#p = sch . Thus we have (n < p trivial) :

Theorem 3 . Let X be an H-space and a p-space of type (Tcp,p) . Then
for all n e N, G and G ' are surjective homotnorphisms ; G : [Tn,X]

Horn (Hp(Tn ),Vip)

	

np() where G ([f]) = r 1 f#p, G ' : [Tn,X ]

(Hom(Hp(Tn),Hp(X))

	

Zp p) , where G'([f]) = f#p .
For p = 1 we have the Hurewicz isomorphism r ln : ~1(Tn,to) H1(Tn )

and G([f ]) = f* o iTn so that F,L and F. are sm jective .

Chapter 2

The Cohomotopy Groups of T n

Definition . Let X be a topological space and A a subspace of X . The
m'th (relative) cohomotopy set 7-c m(X,A) of (X,A) (ni E N) is defined to b e
[X,A ; Sm,so] A and the m'th (absolute) cohomotopy set nm(X) of X is defined
to be [X,S m ] .
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A pair (X,A) is called n-coconnected if it satisfies the condition
Hg (X,A ; G) = 0 for every q n and every coefficient group G .

A cellular pair (X,A) is a pair of a finite cell complex X and a sub -

complex A .

We need the following theorem ([2], VII, Theorem 5 .2) .

Theorem 4. If (X,A) is a (2m-1) coconnected cellular pair, we can.
define a certain abelian group structure + in 7s m(X,A) with the class of the
constant map as the neutral element . In this case m'n(X,A) is called the m'th

cohomotopy group of (X,A) .

Remarks . 1) Every map f : (X,A) i (Y,B) induces a transformatio n

f * : nm(Y,B) ->- n m(X,A) . If both (X,A) and (Y,B) are (2m-1)-coconnecte d

cellular pairs, then f" is a homomorphism ([2], VII, prop . 5.4) .

2) When the cohomotopy group structure. is defined in rr m(Sn ,so) (thu s
n 2m-2), then the bijection nm (Sn,so) 7tn,(Sm ,so) is an isomorphism
([2], VII, prop . 12.1) .

We now try to compute the cohomotopy groups of Tn by means of som e

exact sequences for the pairs [(Tn)m (Tn)m-l] .

If i )7( + 1, where for a real) a ( minee z { p! p - a}, then n1 ((Tn)'n )

and m ((Tn)m,(Tn)m-1) have the cohomotopy group structure .

From Theorem 2 we have the bijections (p ? m)

f0

	

p> m

np((Zn)m (Tn)rn-lJ)	 I-	 ~ 7Lp (( Tn)m ) v

	

(n)1

	

z nz

	

p - rrl ,

where i' is a homomorphism for p ? )2(+ 1, i .e . p > 1 .

If X,Y are spaces with basis point, X V Y denotes their one point union .
If p denotes the map

(T'n)m (1n)ml(Tn)m-1 - ST V . . . V
S (~n )

then

p* : ni(S ï V . . . V S~nn)'so) -->- nz((Tn)m (Tn)m-l )

is a bijection and for i > ) 2 (+ 1 an isomorphism . It is easy to see that

there is a bijection

7bi (S 1 V . . . V S
(m)'

so) N YZz (Sm , so) (m )

Let i ' denote the inclusion Si V . . . V Sm -} ST V . . . V Sm V . . . V S7 and
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p ' the projection ST V . . . V S'' - ST V . . . V S . When i >_) z (+ 1 we get
the following split exact sequences of abelian groups and homomorphism s
because nz is a functor :

p ' *

	

i ' *
0 +- (ST V . . . V S q 1 , so) ~ z i (S '1 V . . . V S g, so) ~ 7r i (Sg, So) ~ O .

p'*

An induction thus gives us the isomorphis m

n2 (S'l V . . . V Sq, so) N n2 (S'', so) Q+ . . . 0 nz (S q , so) .

Because of the isomorphism nz(Sm ,so)

	

nm(Si ,so) we have that the bijection

n~CCTn)m (Tm)m-1) nm(S z , so) Cm )

is an isomorphism for i ?) 2 (+ 1 .
We have the following long exact cohomotopy sequences ([2], VII, 6 .-9 . )

of abelian groups and homomorphisms except the first set and the firs t
map in the first sequence and the two first sets and the two first maps i n
the second sequence .

1) n1=2g =>2 .
å oq

nq((Tn)2q-1)

	

2q

	

i 2q

	

S 2 q
- Zq+1((Tn)2q (Tn)2q - 1) ~g+ Ÿ ~g+1((Tn)2q) q+1

Zg+1(( In)2q-1)	 q~ . . .

	

2q

	

i 2 q

	

2 q
-> n2q-((Tn)2q (Tn)2q-1) .%2q1 2g-1((Tn)2g)	 2 g 1 2g 1((I,n)2q 1) a2q-1

- ~2g C( Tn)zq, (Tn)2q-1)
J 2q :72q ((I,n)2q) i2g; 0 .

2) In =2g-1? 3 .
2q-1

	

•2q- 1

	

a2q- 1
g((Tn)2q-1 (Tn)2q-2) .]	 q_± ,77.g((Tn)2q-1) 	 g ng((Tn)2g 2)	

•2q- 1

	

2q- 1
nq-Fl((Tn)2q-1 (Tn)2q-2) i + xq+l((Tn)2q 1) 	 q+1Z q+l((Tn)2q 2) ~ 'H-1-

2q-1

	

2q-1

	

å2q- 1
- n2q-2((Tn)2q-1 (Tn)2q-2) i	 2q-2 7r2q-2((Tn)2q-1)	 2q-2 n2q-2((Tn)2q-2)	 2q-2

2q-1

	

i 2q- 1

	

n2q-l((Tn)2q-1 (Tn)2q-2) î2q-i n2q-l((Tn)2q-1)	 2q-1 0 .

All maps i, j are induced by inclusions, and the å's are connectin g
"homomorphisms" .
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We know that every finitely generated abelian group G is isomorphi c
to a direct sum of cyclic groups . If ( h i , . . ., b,L ) are generators of the cycli c
groups in such a decomposition, then they are weakly linearly independen t
in the sense that pi b i + . =pnbn = 0 implies pibs = . . . = pnbn O. We
shall call (bi, . . . , bn) a basis of G .

We now choose basis elements for the finitely generated abelian group s
ri(S i ,so) represented by qa,i . A generator of zj(Ti) is represented by the
projection p i : Ti > T/(T)j- 1 Si . We then look at the elements of 7r i((Tn)m)

represented by

(Tn)m Proj -,1 Tß	
Pi , S~ g5,1 S i ;

	

j

	

m, ß E {1, . . . , (j)} •

By means of induction on ni we prove :
For all i,n,m in N with n m such that n i((Tn ) m ) is a cohomotop y

group, i .e . i > )1(-h 1, the following short exact sequence is split exact ,
0 > j* 7ri((Tz)m (Tn)m-1)

	

Zi((Tn.)m) zi((Tn)m-1) > 0, and a basi s
for ni((Tn)m) ni((Tn)m-1) j*ni((Tn)m (Tn)m-1) is represented by th e
elements ga i o p i o proj ß,3 except that the long exact sequences are not long
enough to the left to allow us to decide whether 822 _2 i o p 2 i-2 o proP2i-2,2i-2 is
homotopic to 0 or not .

The start of the induction is trivial by the long exact sequences .
Let the above be true for m-1 . We see that all the elements ga,i o p~ o

proj a' 1 of zi((Tn)m-1) where ß' ell, . . . , ( 3Z')} and j m-1, have trivia l
extensions to (Tn)m : ga22 o pi o projL, which proves that i* = i : is surjective .

Further,

914 o p, o projßZ-1,j non= 0 -<=> 91,i o pj non= 0

	

g9,i o pl o pro,,, non ^' 0 .

From the isomorphisms yr 2(Si)

	

z 2(S?,so) N 7c)(Si ,so), j 2i-2, we see for
p e Z that p(ga 2 o f) (pq,i) o f: X > Si > S i when 7z i(X) and g.r i (SO are
cohomotopy groups (f* is a homomorphism r i(Si) > n i (X)) . From this we
see that pga,i o p5 o proj_1 and its extension to (Tn )m : pga 2 o p, o proj, are
zero homotopic at the same time . This and the fact that the elements ga,2 o

p i o projßt_4 5 (when not zero homotopic) represent a basis for Tci((Tn)m-1)
gives us a well defined homomorphism h : ni((Tn)m-1) ai((Tn)m) such that
i *o h = 17ri((Tn)m-1) . This and the exactness of the long cohomotopy sequenc e
proves that the sequence above is split exact . Thu s

A z (( Tn)m) N ai((Tn)m-1) j*ni(( Tn)m (Tn)m-i) ,

where j"`~zi((Tn)m), (Tn)m-1) is generated by

	

1
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gm,i ° pm ° projLn : (Tn)m

	

Ingi, -y Sm -> S i , 03 ,E
E {1, .

	

, ( m)}) .n

If m = 2i-2 we do not know whether g"i i ° pm ° projß, m N 0 or not .
If m < 2i-3, we get from the above that j7 is injective, because i~7z 1 i s

surjective and the sequence exact . The following proof is valid also if m =
2i-3. Because all the generators ga,i 1 °pi o proj i;;,-1j : (Tn)m 1 > Si< of .Y --'
((Tn)m-1) have extensions to (Tn)m : ga,i_1 ° pi ° projß

,5
: ( Tn ) m , Si-1, the

exactness gives us :
bit1([ga,i o pi ° pre1, j ]) = 0 8m 1 = 0

	

injective, i .e . for m < 2i-2
we have gri((Tn)m)

	

~yi((T"zlm-1\ C i((Tn)m (Tn)m-1) and a basis for
nI((Tn)m) is represented by all the

	

v\\

	

g 5,-t ° P~ ° proJ~z,7

	

(l3 E {1, . . . , (7)} ;

	

mj

	

) .

Theorem 5 . The cohomotopy groups 7L i (( Tn ) m ) are finitely generated and
for 2i > m + 3 we have

J O ifi> m
7r2((Zn)"n)

	

g2(SZ,sa)(Z) O
?Li+l(Sz,SO)(i+1) O . . .

	

zm(S",so)(m) if i

	

rn

and the last expression is valid for m = 2i-2, if the last factor is replaced by
a suitable factor group .

Forrn=nweget :

Theorem 6 . For 2i n + 3 we have

;z 2 (Tn ) n
r (S1,so) a)

	

ni +1(Si,so)(i+1) )

	

. . .

	

nn(S ' ,so) if i

	

n

and the last expression is valid for n = 2i-2 if the last factor is replaced b y
a suitable factor group .

It is known that arm(Sn ,so) is zero for m < n, Z for m = n and a finite
abelian group for m > n, except r4i_I(S2i ,so) which is the direct sum of Z
and a finite group . This group is not a cohomotopy group and so it has no
influence on the cohomotopy groups of (Tn )m . Hence :

Corollary. ~t i( Tn ) is the direct sun g of Z(i) and a finite abelian group ,
when i >_ ) In ( + 1 (i .e . rank 7r i (Tn) _ a)) .
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Chapter 3

Elementary Properties of Tor i

Before I discuss the problems of reducibility mentioned in the intro-

duction, I deduce a few elementary results :

Lemma 1 . The homotopy classes of homeomorphisms (T'fz , to) --> (Tn ,to )

are in one to one correspondence with the unimodular n xn matrices .
Proof. [A unimodular nxn matrix A has elements in the integers Z and

determinant +1] . The lemma follows easily from the isomorphism Fn :
[Tm ,Tn ] -> Hom(n1(T n ,to), 2-cl(Tf,to)) in Hom(Zn,Zn )

	

ZZ E defined by

Fn[f] = f.. .

Lemma 2 . The homolopy classes in Tn of Tm 's imbedded in Tn for which

Tn = Tm x X are in one to one correspondence with the direct summands o f
ni( Tn ,to) of rank m .

This follows easily from Lemma 1 .

Theorem 7 . f : Tn X is m-reducible iff f is homotopic to the projectio n
of Tn onto a Tm imbedded in Tn = Tm x Y (possibly after a shift of coordinate s

in Tn), followed by a map Tm X.

Proof . Obviously, "if" is trivial. We shall prove "only if" . It is enough
to show that every map f : (Tn,to) > (Tm,to) can be projected through a Ti
imbedded in T . Because 7C1(T m ,to) is free, f,,(ni(Tf,to)) is also free and s o

f*(n1(Tn,to)) is a direct summand in n 1(Tn,to) of rank m ' < m . Let G ~cl

(Tn,to) be a direct summand in z l(Tn,to) of rank ni including the isomorphi c
image of f,(rl(Tn,to)) . From Lemma 2 G corresponds to a TT imbedded in
Tz = TT x Y (possibly after a shift of coordinates of Tn) . Thus f is homotopic
to the projection in new coordinates of TL onto TT followed by the ma p

fI TT : TT -> Tn .

Chapter 4

Remarks about Finitely Generated Abelian Groups

We know that there is an isomorphically unique decomposition of a
finitely generated abelian group G as a direct sum of cyclic groups Zn e Zni

r+J . . .0+ Znp, where ni divides ni-1 .
The number n is the rank of G and the ni 's are called the torsion

coefficients of G .
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We know that every subgroup of a free abelian group F Zm of rank

rn is a free abelian group of rank m ' < m. A finite abelian group G ' has in

general many decompositions as a direct sum of cyclic groups, but we can

define a dimension of a finitely generated abelian group G a s

dim G = the smallest number of generators of G .

The usual proof of the theorem above starts with m generators . . . ,

gm of G and then shows that there exists an r < rn and e l , . . . , Cr with

r I ci_i so that G is isomorphic to Zm-r Z6 1 C) . . . +O Zs,,, where Zi = 0 .
This gives us that

dim G = rank G + the number of torsion coefficients of G .

The dimension of G has the following properties :

1) dim G=rn Vq<_m2G ' cG : dim G ' = q .
2) If f E Hom(Zn ,G),

	

a group, then f(Zn) is a finitely generated abelian
group with dim f(Zn) < n .

3) G ' c G dim G ' < dim G .

Chapter 5
Torus Reducibility Problems

Let X 0 be a topological space, xo E X a fixed point of X. Lookin g

at torus maps Tn -* X, we always assume, them, as already mentioned ,

continuous, and if Xis path connected, we assume that to is mapped into xo.

We are interested only in the homotopy classes of maps Tn - X. We know

that no(X,xo) is the set of path components of X with the path component
including xo as 0-element, that, for all i > 1 and all xo,xi e X in the sam e

path component, r (X,xo) is isomorphic to n i(X,x l) and that Try itself is path
connected. Hence a theorem about torus mappings into path connected
spaces under some conditions on the :ti(X,xo)'s for fixed xo can be translated

to a theorem about torus mappings into spaces not necessarily path con-
nected, under the same conditions on the n . (X,x i)'s for all xi E X. In the
following I therefore assume the spaces X path connected even if this is no t
written explicitely .

We start with some trivial remarks concerning the definitions 1-3 i n
the introduction :

For f: (Tn , to) - (X, xo) we have : If f is in-reducible, then dim

f., (7Ti(Tn , to)) m and dim f#r,(Hp(T'n)) < (p) for every p E N, where
âital . Fys. Medd . Dan. Vid. Selsk . 38, no . 1.0 .

	

2
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f, e Horn ( 7cl ( Tn , to), zl(X, xo)), f#p e Horn (Hp (PI), Hp (X))
and

n1 (Tn, to ) Zn , Hp( Tn ) N Z (p )

The map F,n+i : [Tm+ l ,X] Hom(m(Tml ,to), 761(X,xo))/ " defined by

Fm+i[f ] {f,} is surjective iff every homomorphism h : Z1(Tm+l , to )
(X,xo) is induced by some map f: (Tm+l ,to) -> (X,xo) . From Theorems 1 and
3 it follows that this happens when X is an m-space of type (ac,1) and when
X is an H-space .

Theorem 8 . If F„L+1 is surjective, and X is [n dimensionally (n > m) ]
rim-reducible, then every finitely generated abelian subgroup of r (X,xo) has
dimension m.

Remark. If acl(X,xo) is itself a finitely generated abelian group, the n
the above condition is equivalent to dim ni(X,xo) < rn .

Proof of Theorem 8 . Suppose 7ri(X,xo) has a finitely generated abelian
subgroup of dimension greater than rn, then ri(X,xo) also has a subgroup G
of dimension m+1 . Because 7r 1(Tm +l , to) Zm+1, we have a surjective
h e Hom(n i(Tm+l , to), G), which because of the assumption corresponds t o

an f: Tm + l X with f = h. If we define f ' as Tn ~r Tm+m > X, then dim

f a1(Tn,to) = dim h(z l(Tm+l,to)) = nm+l . Thus f ' is not rn-reducible .

Theorem 9 . Suppose Fn : [Tn,X] -> Hom(rc1(Tn ,to), ni(X,xo))/ ^- defined
by Fn[f] = {f,} is bijective . (From Theorem 1 we know that this is the cas e
when X is an n-space of type (7cl , l )) . Then

f : (Tn,to) ->(X,xo) is nm-reducible iff f,(r i(Tn,to) )

(an abelian group of dimension n) is of dimension

	

rn .
Proof. We have already proved "only if" . If dim f:,7c 1(Tn ,to) < rn, then

f, can be factorized through 7r1(Tm,to) N Zm so that we can choose h E
Horn (ni(Tn,to), -ci(Tm,to)) and g e Horn (n1(Tm ,to), ni(X,xo)) such that
f,. = ° fl . Because Fn surjective implies that F. is surjective for m n
there exists a g : Tm --> X with g,. = g, We also have an h : Tn -- Tm with

h, = h . Thus g, o h, = f,. or g o h f ; i .e . f is m-reducible .
This gives us the following theorems :

Theorem 10. Let F. be bijective . (This is the case when X is an n-spac e
of type (i1 ,1)) . Then X is n-dimensionally m-reducible (1 < m < n) iff the
dimension of any finitely generated abelian subgroup of :7ri(X,xo) is

	

nm .
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Remark. Instead of "Fn bijective" we could write "Fn injective and

Fm+i surjective" .

Theorem 11 . Let Fn be bijective for all n > m . (This is the case when
X is a space of type (ßc1 ,1)) . Then X is m-reducible iff the dimension of any
finitely generated abelian subgroup of m, (X,xo) is

	

m .

We now show

Theorem 12 . X is n-dimensionally 1-reducible (n > 1) iff every finitely
generated abelian group of 7r1 (X,xo) is cyclic and Fn is injective .

Corollary . Let ßri(X .xo)

	

O . Then X is n-dimensionally 1-reducibl e
(n > 1 )iff[TnX ] = 0 .

Proof of Theorem 12. Because F2 is always surjective, it follows from
the remark above that it only remains to show that Fn injective is a necessar y
condition .

Let f,g : Tn X be given such that f,

	

gr. (i .e . fI(Tn ) 1

	

gI(Tn ) 1 ) . We
suppose that X is n-dimensionally 1-reducible and then want to show tha t
f g . Because f and g are 1-reducible and

[Tn,S1]

	

Hom(m1( Tn , t o), m 1(Sl , so)) ,
[S1 ,X] N Hom(7rl(S 1 ,so), 2-t1(X,xo)) /

we can choose the factorizations Tn h> S 1 -gam̀ X and Tn E S1 X of f
g such that giy i(S',so) = fßcl(Tn ,to) and g 2 ,,(ri(S1 ,so)) = g .,r l( T72 , to)
hlr = hay . Then h i N h 2 and gi g 2 . Thus

fNg l ohl Ng2 0 li 2 Ng .
This gives u s

Theorem 13 . X is 1-reducible iff every finitely generated abelian sub -
group of nl(X,xo) is cyclic and every Fn is infective .

Theorem 14 . Let X be a p-space of type (rcp,p) with a l, abelian. Then
we have :

1) If in n < p, we have [Tn,X]

	

[Tm,X] N 0 so X is trivially n -
dimensionally m-reducible .

2) If in < p < n, we have [Tm,X] = 0, but [Tn,X] is non trivial if lip
is non trivial, so a necessary condition for X to be n-dimensionally m-reducible
is that ip=0.

2 *

and

and
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3) If p m < n and Gm+i : [Tm+ 1 ,X] > Hom(Hp(Tm +l), n) defined b y
Gm+j.[f ] = %-1t 7, is surjective (which is the case when X is an m-space of typ e
(mp,p) or when X is an H-space of p-type (np,p)), then a necessary conditio n
for X to be n-dimensionally m-reducible is that the dimension of any finitely
generated subgroup of ÿcp is G) = dim Hp(Tm ) .

The proof of 3) is analogous to the proof of Theorem 8 because of th e
remark p . 17 .

Corollary . Let X be a p-space of type (rp,p) with rp abelian . Then we
have :

1) For m < p a necessary condition for X being m-reducible is np = O .

2) For nt p and Gm+1 surjective a necessary condition for X being
m-reducible is that the dimension of any finitely generated subgroup of :rcp
is M.

Examples . 1) Because the fundamental groups of the complex an d
qualernionic projective spaces are zero but not all the homotopy groups ar e
zero, these spaces are not 1-reducible .

2) Sn(n > 1) is not m-reducible for m < n.

3) Pn(n > 1) is not rn-reducible for rn < n :

We have the covering projection p : Sn -> Pn and a map pm : Tn > Sn
which is not 0-homotopic . pn is not m-reducible, nor is pn o (xN). : Tn --->
Tn > Sn in-reducible . We now look back at p o pn : Tn > Sn > Pn . The map
p o pn o (x N),L is not 0-homotopic since p is a covering projection . If p o pn
were rn-reducible for some m < n, i . e . p o pn N g o h : Tn - Tm g Pn , then ,
since [Tr,Pn ] Hom(Zm,Z2), we would obtain

popno(x2)n g o h. o(x2). = [go(x2)m]oh N0oh = 0

(we assume h linear because [Tn,Tm ] Horn(i1(Tn,to), ni(Tm,to)), contra-
dicting p o p,Z o (x 2)n non

	

0. Thus p o Pn is not m-reducible .

4) From the computation of the cohomotopy groups of Tn and the
results in this chapter one can get further results about the reducibility o f
spheres ; for instance :

If 2i n=3, i < n and ncn(S i , so) 0 then we get from Theorem 6 that
the map gn,i o pn : Tn > Sn -> Sï with gn,i non 0 is not homotopic to zero .
This map f is algebraically trivial, i .e . its induced homomorphisms between
the homology and cohomology groups are trivial . If f were i-reducible, then
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Theorem 7 would give that f could be projected through a T i(Tn = T i x T"-i ,

perhaps after a shift of coordinates) . Thus f would be homotopic to a

composed map

Tn -h> Tn pry Ti - S i

where g non 0, and h is a change of basis. Because [T i,S i ] Hom(IIi (Ti ) ,
Hi(Si)) Hom(Z,Z), q #i 0 and so g o proj o h would not be algebraicall y

trivial, contradicting f g o proj o h . Thus if 2n > 2i n=3 and zn(S i , so) 0 ,

then S i is not i-reducible .

5) In an analogous way we get :

S2 is not 2-reducible ,

because the map T3 S3 4 S 2 , where p is the Hopf fibration, is known to

be non ~ 0 when p 3 non ' 0 .

Chapter 6

Almost Periodic Movement s

Definition . A topological space X is called continuously locally arcwis e
connected when to every compact subspace K of X there exists a neighbourhoo d

0 CKxK of the diagonal AK in KxK and a continuous map Ø : 0x1 -~ X so

that Ø(.x,x,t) = x, 0(x,y,0) = x, 0(x,y,l) = y .

For metric spaces this is equivalent to the definition (for metric space s

only) used in [4] .

Remarks. 1) When X is a metric space for which any two point s
x and y whose distance remains below a certain number can be connecte d

by a geodetic arc which depends continuously on x and y, then X is con-

tinuously locally arcwise connected. 2) Any CW-complex is continuousl y
locally arcwise connected . Indeed it satisfies the following :

There exists a covering (Ui f j E J) of X with open sets and a continuous

function 0 : O x I -+ X, where 0 = J Uj x Uj, such that 0(x,x,t) = x, $(x,y,0) =

x, 0(x,y,1) = y . This can be shown by induction : Assuming (Uj) chosen
and 0 constructed on the n-1 skeleton Xn-1 of X, it can he shown that the

definitions can be extended to Xn , which is obtained from X'n-1 by adjoining

n-cells and which has the topology coherent with )0- 1 and the n-cells .

Definition . A continuous movement in a metric space X is a continuous
function x = f(t), t E R, x e X. A number -r = rf(e) is called a translation
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number of f(t) corresponding to e > 0 if the condition dist (f(t), f(t 1-0) e
is satisfied for all t e R . The movement x = f(t) is called almost periodic if
the range of f(t) lies in a compact subset of X and the set {TAO} is relatively
dense for every s > 0 (i .e . there exists an I > 0 so that every interval of length
1 contains at least one of the rf(c)'s) .

Definition . A function x= f(t,v) ; t E R, v E [0,1], x E X; is called a
uniformly continuous family of almost periodic movements when 1) the range
of f(t,v) lies in a compact subset of X, 2) for all vo e [0,1] f(t,vo) is almos t
periodic, 3) to all e > 0 and all vo E [0,1] corresponds a neighbourhood U8(vo)
of vo such that for all t E R, all v E UE(vo) : dist(f(t,vo), f(t,v)) <_ e .

Remark. Tornehave's definitions are the same except that he does
not demand that the ranges lie in compact subsets . Instead he is mainly
interested in complete metric spaces and he shows that the closure of th e
range of an almost periodic movement f(t) in a complete metric space X

is a compact subspace. In the same way it can be shown that the closur e
of the range of a uniformly continuous family of a .p . movements in a
complete metric space is a compact subspace . This gives us that the de -
finitions coincide for complete metric spaces, and this is all I need. With
the new definitions Tornehave's results about complete metric spaces ca n
easily be extended to arbitrary metric spaces . The new definition can b e
extended further to arbitrary topological spaces because it is possible t o
introduce one and only one uniformity structure on compact spaces .

Let denote the class of metric spaces which are continuously locally
arcwise connected . Then includes the class W ' of metrizable CW complexes ,
which again includes the class W " of locally compact polyhedrons .

Definition. Two almost periodic movements x i - fi(t) and x 2 - f2(t)
are called a(Imost) p(eriodicallq) homotopic iff there exists a uniformly con-
tinuous family x = f(t,v) with f(t,0) = fl(t) and f(t,1) = f2(t) .

This relation is obviously an equivalence relation in the set of a .p .
movements in X and it leads to a subdivision of this set into a .p. homolopy
classes .

Remark . A continuous function f : Rn -* X which is periodic in all the
variables with the same period r E R (called a torus map by TORNEHAVE )

corresponds to torus maps Tn --~ X (we can look at T'n as Rn /(grZ) n , q E Z) .

The function g : Rn --a X : g(t) = f (pt), p E R has period p and corresponds
to the same torus maps as %' (we can look at T'' as Rn/(p Z) n , q e Z). Usually
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I think of T n as Rn /Zn and I call the variables (ui, . . . , un) with ui E [0,1] .

If (ß l , . . . , ßn) are real numbers and t is also real, and f: Tn -~ Xis a map,

I write . . . ,W i t, ß , Z t) for f({ß 1 t} , . . . , {ßnt}), where {ßt} is the (one of the )

u e [0,1] for which ßt u (mod 1 ) . It is well known that x = W i t , . . ., ßnt)
is an almost periodic movement in X. In the opposite direction we get fro m
[4], p . 28 :

Theorem . Every almost periodic movement x i = f(t) in X e is a .p .
homotopic to a certain x2 = g(ß l t, . . . , ßnt) with g : Tn - X and (ßl, . . . , ßn)
rationally independent real numbers (i .e . independent as vectors in a Q-vector
space) .

The following theorem is [4] lemma 22 with a correction s) .

Theorem 15 . Let T (t) and g(t) be two almost periodic movements in
X E W . In order to investigate whether f and are a .p . homotopic we choos e
a common set of n rationally independent real numbers (ßl, . . . , ßp) and toru s
maps f ' ,g ' : Tp - X such that [0) is a .p . homotopic to f '(ßlt, . . , /3;0 and
g(t) is a .p . homotopic to g '(ß l t, . . , ßpt). Then f

ap

	

iff there exists a. .
natural number N, such that f' o (x N) N g' o (xN), where xN: Tp -} Tp is
defined by (xN)(u i , . . , up) _ (Nu l , . . . , Nup) .

I shall now discuss the notions introduced in definitions 4-7 in th e

introduction .

Theorem 16 . Let X = f (t) be an a.p. movement in X E W . Let f : Tn -> X
be one of its corresponding torus maps (i .e. f(ß i t, . . . , ß,ßt)

	

1(t) and
a .p .

(ßi, . . . , ßn) are rationally independent) . Then 7 is a .p . rn-reducibel i ff f o (x N)
is m-reducible for some natural number N .

Proof. We may assume m n. We shall first prove "only if" . Let 7 be

a .p. m-reducible . We choose g : Tm -~ X and rationally independent number s

(yl, • . , yin) such that

g(y l t, . . . , ynat) a -p

	

( t) ap f(ßlt, . . . , ßnt) .

We now look at the vector space V over Q spanned by (ßi, . . . , ßn, yi, . . . ,ym) •
Then p = dim V max{m,n}. We supplement Of, . . . , ßn) to a basis

(ßl, . . . , ßn, ß,L+1 , . . . , ßp) with ß„ = ß, , v = 1, . . . , n. Then the yi 's are
rational linear combinations of (ß;). Thus there exists a natural number M

TORNEHAVE told me about this mistake. He overlooked the possibility of the factor (x N)
such that his condition is too strong . The examples proving the existence of non-trivial a.p .
movements are never the less correct, because the relevant obstructions belong to infinite cycli c
groups .
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so that the Myi's are integral linear combinations Ai , i = 1, . . . , m of (ß) .
We now define a map fi : TP - Tn - X by fi(ui, • . . , un, un+l, . . . , up )

f(Mui , . . . , Mun) and a map gi : TP -> T'n ,x by gi(ui, . . . , up) _

g(A1(u), . . . , Am(u)) •
Because f (ß 1 t, . . . , ßnt)

	

g(yi t, . . . , ymt) we have
a .p .

f(Mßlt, . . . , Mßnt) = fl(ßlt, . . . , )3pt)
a .p .

g(lliyit, . . . , Mym t ) gl(ßlt, . . . , ßpt)

(and (ßl , . . . , ßp ) are rationally independent) . Theorem 15 tells us that

there exists a natural number Ni such that fl o (xNi) N g l o (x Ni) . Then the

restrictions to the Tn ç TP corresponding to un_1_1 - . . . = up = 0 are homo -
topic, i .e .

fi(Ni .ui, . . ., Niun,O, . . ., 0) = f(MNl u1, . . . . JWNlun)

	

gi(Niul, . . ., Nlun,O, . . ., 0)

= g(NiAi(ui, . . , un,O, . . . , 0), . . . , N1Am(ui, • • , un,O, •

	

, 0)) .

Denoting by h : Tn Tm the map defined by

(a l , . . , un) -/ (N1A1(ui, . . . , un,O, . . . , 0), . . , N1Am(ul, . . , un, 0, . . .,0) )

we have f o (x N1M) g o h, where h : Tn -4- Tm and g : Tm -* X, so that
f o (xNiM) is m-reducible .

Next, we shall prove "if" . Suppose f ' = f o (xN) is in-reducible . We

have f'(ßlt, . . . , ßn t) a;p f (t), where (ßl = ßl/N, . . . , ßn = ßn/N) are

rationally independent . Because [Tn,Tm ] N Horn(@i(Tn,to), ii(Tm,to)) we
can choose h : Tn -÷ T'n linear (corresponding to Am,n) and g : Tm -> X so
that f'

	

g o h. If we put

then

f (t) a-p f '(ßl1, . . . , ßn t) a-p g o h(ßlt, • • • , ßnt) - g(ßit, . . . , ßmt) ,

so that f is a.p. m-reducible .

Remarks . 1) (f o (xN)), = NfM , so rank f'iri(Tn,to) = r ifl there exists

a natural number N such that (f o (xN)),_nl(Tn,to)

	

Zr .

2) (f o (xN))#p = Npf#p , so rank f#p Hp(Tn) = r iff there exists a natura l

number N such that (f o (xN))#p Hp(Tn ) Zr .
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Statement 2) follows immediately from the expression of elements o f

Hp(Tn) as cross products of elements from H1 (S l ) . The remarks and

Theorem 16 gives us that the theorems from chapter V can be changed t o

theorems about almost periodic movements in X E W, by translating "dim"

to "rank" . Let Wo denote the class of path connected spaces in W .

Remark. Let x j' (t) he an a .p.-movement in X E Wo corresponding

(for some (ßl, . . . , ßn)) to f : Tn > X. If T (t) is a.p. rn-reducible, then ran k

fni(Tn ,to) m and rank fo p Hp (Ti') < (m) for every p .

Theorem 17 . Suppose that Fm+i : [Tm+1 ,X] --> Hom(n i(T'm+l ,to), ni(X,xo))/ -

is surjective and that X E Co (e .g . X is an m-space of type (n i,l) or an H-space) .

If, further, X is a .p. m-reducible, then the rank of any abelian subgroup o f

ni(X,xo) is

	

ni .

Theorem 18 . Suppose that Fn : [ Tn , X] -~ Horn(ni (Tn , to), n i (X, xo)) f-

is bijective and that X E Wo (e .g . X is an n-space of type (n1 ,1)) . Then an

almost periodic movement corresponding to f : Tn aX is a .p . m-reducible iff
rank f(m(Tn ,to)) m .

Theorem 19 . Let Fn : [Tn,X] -- Hom(ni (Tn ,to), ni(X,xo))f' be bijectiv e
for every n > m (e .g . X is a space of type (ni,l)), and let X E Wo . Then X is

a .p . m-reducible iff the rank of every abelian subgroup of ni(X,xo) is

	

ni .

Theorem 20 . A space X c Wo is a .p . 1-reducible (i .e . every a .p . movemen t

in X is a .p. homotopic to a periodic movement) iff the rank of every abelian
subgroup of ni(X,xo) is 1 and for every natural number n every pair o f

maps f,g : Tn -> X satisfying Fn[f] Fn[g] also satisfies the condition f o (xN)
g o (xN) for some natural number N.

Theorem 21, 22 . Let X E Vo be a p-space of type (np,p) with np

abelian. Then

1) if X is a .p . m-reducible for some m < p, then rank np = 0 .

2) if p m and G,n+1 : [Tm+1 ,X] -~ Hom(Hp(Tm+1), np) defined b y

Gm±i[f ] = x- if# is surjective (e .g . X is an n1-space of type (np,p) or X is an

II-space of p-type (np,p)) and X is a .p . m-reducible, then rank np (p) .

Examples . 1) Because the fundamental groups of the complex an d

quaternionic projective spaces are zero and the first nontrivial homotop y

groups are isomorphic to Z, these spaces are not a .p . 1-reducible .
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2) Sn (n > 1) is not a .p. rn-reducible for nt < n (rtn(Sn ,so)

	

Z).

3) Pn (n > 1) is not a .p . n7-reducible for rn < n (proof analogous to
the proof p . 20) .

4) S2 is not a .p. 2-reducible ([T 3 ,S 3 ] v Z) .
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