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Notations

S#: the n-sphere.

E#: the n-cell.

I = 81 x .., xS (n factors): the n-dimensional torus.
~ homeomorphic.

~ homotopic, bijective equivalent, isomerphic.

T f# maps induced by f in homolegy, cohomology.

fs, [* maps induced by f in homotopy, cohomotopy.

Synopsis

In this paper I show that the cohomotopy groups of the n-dimensional torus 7% usually
are direct sums of homotopy groups of spheres. Further, I investigate homotopy classification
problems of continuous maps from 7% into other topological spaces — especially spaces with
’nice’” homotopy groups in the lower dimensions. The results are applied to some “reducibility
problems” for torus maps and almost periodic movements — in particular I find conditions for
almost periodic movements being almost periodically homotopic Lo periodic movements.
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Introduction

In 1954 H. TorNeHAVE [4] investigated the following problem: In
which topological spaces X is every almost periodic movement x = f(¢)
(te R = |-, =[, x € X) almost periodically homotopic to a periodic move-
ment?

A(lmost) p(eriodic) homotopy between two a.p. movements fo(¢) and
f1(t) means that there exisls a uniformly continuous family f(t,v), v € [0,1],
of almost periodic movements starting with fo(f) and ending with fi(¢).

Let % denote the class of metric spaces X which are “‘continuously
locally arcwise connected” (see p. 21). Because every CW complex is
“continuously locally arcwise connected”, % includes the class €’ of me-
trizable CW complexes. €’ includes the class %" of locally compact poly-
hedrons. Remark: In this paper 1 only look at confinuous maps between
topological spaces, though I do not explicitely write continuous everywhere.
Nordo I everywhere write that I assume my spaces different from the empty set.

A theorem ([4] p. 28) states thal every a.p. movement f(#) in a space
X € & corresponds to some rationally independent real numbers (81, . . ., fa)
and a conlinuous torus map f: R? » X (f is periodic in all the variables
with the period 27) in such a way that f(f) is almost periodically homotopic
to the almost periodic movement f(f1¢, . . ., Bal).

A small correction and generalization of Theorem 13 in [4] gives:

Lvery almost periodic movement in X € € is almosl periodically homotopic
to a periodic movement if and only if for every continuous torus map f (of any
dimension) into X there exists a number N € N so that fo (xN) is homotopic
to a torus map into a closed curve in X, where (xN) (u1, . . ., up) = (Nuz, . . .,
Nuy).

Because of this theorem it is natural to look at the following problem:
For which X is every torus map (of any dimension) into X homotopic to a
torus map into a closed curve in X? H. TorNenave had soine intuitive ideas
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of how to solve the new problem: he thought it was a necessary (and if all
the homotopy groups 7;(X,xo) are trivial for i > 1, sufficient) condition that
for all xo € X every abelian subgroup of the fundamental group m1(X,x0)
is cyclic. (This is not quite correct). In this paper I shall find a partial
solution of a more general problem.

Definition 1. Let X be a {opological space. An n-dimensional torus
map f: T® - X is called m-reducible iff it is homotopic to a continuous map ¢
through Tm, ie, T®" - Tm - X, where 1 < m < n are the only interesting
cases.

Definition 2. The space X is called n-dimensionally m-reducible iff
every n-dimensional torus map into X is m-reducible.

Definition 3. The space X is called m-reducible iff every torus map
into X (of any dimension) is .m-reducible.

Definition 4. An a.p. movement x = f(¢) in X is said to be of dimension
= n iff it is a.p. homolopic to some « = f(fut, ..., pul), where (B1, ..., Bn)
are rationally independent real numbers and [: T® - X is an n-dimensional
lorus map.

Definition 5. The a.p. movement x = f(f) in X of dimension = n is

called a.p. m-reducible iff it is a.p. homotopic to an a.p. movemenl of dimension
< m.

Definition 6. The space X is called a.p. n-dimensionally m-reducible
{f every a.p. movement in X of dimension < n is a.p. m-reducible.

Definition 7. The space X is called a.p. m-reducible iff every a.p.
movement in X is a.p. m-reducible.

We have the following theorem:
Theorem 16. Let the almost periodic movement x = f(t) in X € € be

a.p. homotopic to f(fit, ..., fal), where f: T* > X, (f1, . .., Bn) rationally
independent. Then

F(t) is a.p. m-reducible iff fo(xN) for some N is m-reducible.

I shall further study the following problems:
1) When is a given n-dimensional torus map m-reducible?
la) When is a given a.p. movement f(#) of dimension < n, a.p. m-reducible?

2) Which spaces X are n-dimensionally m-reducible?
2a) Which spaces X are a.p. n-dimensionally m-reducible?
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3) Which spaces X are m-reducible?
3a) Which spaces X are a.p. m-reducible?
The case m = 1 is of course of special interest.

My way through the problems is the following:

First I use obstruction theory in:dealing ,:withr’?extension problems and
homotopy classificalion problems of continuous functions from subspaces
of 7™ into topological spaces. I shall not go beyond the primary obstruction
because otherwise the problems get too complicated to be of use for my
original problems.

Next I look at the special case X = S?, the p-dimensional sphere. The
set of homotopy classes of torus maps 7% - S?, a2(T®), is called the p-
dimensional cohomotopy set. For some p and n the set #2(1™) is an abelian
group which is called the p-dimensional cohomotopy group of T%. I compute
the cohomotopy groups by means of the homotopy groups of the spheres
73(S™,50). Unfortunately, most of these homotopy groups are not yet known.

The homotopy groups of 77, on the other hand, are very simple: the
fundamental group is free abelian of rank n: m(7%1l) ~ Z*, and all the
higher homotopy groups s 17,ty)) (i > 1) are zero. — In general we know
that m;(X,x¢) ({ > 1) is an abelian group, while @ (X,ap) is a group, but
not always abelian.

The results obtained on the homotopy classification of torus maps into
X, are applied to the torus reducibility problems and this leads to results
on the a.p. reducibility problems. For some special topological spaces X
this gives simple results, but for further work on almost periodic movements
my method does not seem fruitful because the homotopy classification
problems soon become extremely complicated and the torus reducibility
problems turn out to be more complicated than the a.p. reducibility problems.

I shall state the principal results in a form independent of the choice
of basis point. The corresponding theorems in the paper will be stated only
for a fixed basis point.

Theorem 18", Let x = f(t) be an almost periodic movement in X € € corre-
sponding to the torus map f: IT™ - X. If ma(X, o) = . . . = wa(X,20) = 0 for all
xq € X, then a necessary and sufficient condition for f to be a.p. m-reducible
(1 £ m < n) is that f.m (T ), which is a finitely generated abelian subgroup
of m(X.f(t0)), has rank = m.

Theorem 19°. Let X € € and lel wi(X,xo) = 0 for all o€ X, 1 > 1.
Then a necessary and sufficient condition for X to be a.p. m-reducible (m > 1)
is that for all xy € X every abelian subgroup of 71(X,x¢) has rank = m.
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Remark: If m1(X,x0) is itself abelian, the above condition on w1( X, o)
is equivalent to: rank mi(X,x) < m.

Theorem 20°. A necessary and sufficient condition for X to be a.p. 1-reducible
is that, for all xo € X, every abelian subgroup G of mi(X,xo) has rank < 1
and that, for all n > 1, the condition that fe:9:0 (T 1) — m(X,x0) are
conjugate implies that for some natural number N the maps fo (xN), go (xN)
are homotopic.

Theorem 21°. Lel X € % be an H-space (for instance a topological group)
with 7i(X,x0) = . . . = mp1(X,x0) = 0 for all o € X. Then a necessary condition
for X to be a.p. m-reducible is that for all xo € X the rank of mp(X,xq) is = -

Theorem 22°. Let X € ¥ and let for all zg € X
mi(X,xo0) = . .. = mp-1(X,20) = wp+( X)) = .. . = aAn(X,x0) = 0;

then a necessary condition for X to be a.p. m-reducible is thal for all xy € X the
rank of wp(X,xo) is = () if p > 1, and that every abelian subgroup of m1(X,20)
has rank = m, if p = 1.

Chapter 1
The Functions F, G, and G’

Definition. Let X be a topological space with xy € X. Lel n E:N and
let 7t be a group (abelian for n > 1). I call X an m-space of type (z,n) (m € N U
{+ =}, m > n) when X is path-connected and its homotopy groups in dimensions
< m, except nu,(X,xp), are zero, while (X, 20) is isomorphic lo m.
A usual (7,n) space is then the same as my «-space of type (w,n).

Examples: 7% is an oo»spéce of type (Z7,1),
S™ is an n-space of type (Z,n).

For all n € N and all groups z (abelian if n > 1) there exists a topological
space X of type (7,n) ([3] p. 426).

We shall now look at maps Tn 5 X where X is path-connected and
xo € X. We know that f is homotopic to a map f': (T%,1) - (X,x0). Because
we are interested only in the homotopy classes of maps 7% - X we shall
ahways choose representatives g of the homotopy classes for which g(to) = o,
but we do not write this explicitely everywhere.

If we denote the homotopy classes of maps equivalent to f: 7% — X by
[f] and the set of these classes by [T7,X], then we know thal a function
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Fp: [T, X] - Hom(am(T?,to), 71(X,20)) | ~,

where ~ means conjugate, (if m1(X,xp) is abelian, then this group is iso-
morphic to mi(X,x)*) is defined by:

Fu[f] = {f.} (the conjugacy class of f,).

If we denote the homotopy class relative to to of maps (77,f) - (X,x0)
equivalent to f by [f];, and the set of these maps by [T7,1p; X,a0]s, then we
know that Fn'[f]; = [, defines a map

' [Tn’ to; X, xo]to - HOl’l’l(ﬂZl(T”, to), T (X, CE()))

If X is an H-space, we know that [T7,X] and [T%,,; X,xo]s, are groups
and that 71(X,xo) is abelian. In this case it is easy to see that F, and F,'
are homomorphisms.

As a cell complex T* = Six ... xS} consists of

1 0-dimensional cell {g,

n  1-dimensional cells S (circles), . . .,

() p-dimensional cells T% = S} x . .. xSt ...
and 1  n-dimensional cell T,

Let L be a subcomplex of T, and let i,: w1(L,t) - m1(T% o) be induced
by the inclusion map i: L — T% Because my(T™t) ~ m(Sib) @ ... @
71(Spte) = Z* we have that i,m1(L,f) is a direct summand in a1 (T, lo)
with rank equal to the number r of 1-cells in L. We also have z;(L.to) ~
Zay « . ..« Zay|~, where « denotes {ree product and ~ means that lwo generators
a; and a; commute when the corresponding 1-cells in L are sides of a 2-cell
in L.

a;

s

as; N aj
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A homomorphism h € Hom(z:(L,ty), 7w1(X,2x0)) is said to be extensible
over T iff there exists an A € Hom(w1( T, {p), m(X,a0)) with fi, = h.
The statements in the following theorem are proved in [2], VI.

Theorem 1. Let X be an m-space of type (w,1). Then Fy, and F,' are
surjective if m z n-1, and bijective if m =z n. Let L & O be a subcomplex of
T and let g: L - X be a given map. Then the following 3 statements are
equivalent for m > n-1:

(i) g is continuously extensible over T,
(ii) g, € Hom(m(L,t), m(X.x0)) is exlensible over T7;
(iii) g9.(m(L,to)) abelian.

If g, is extensible to h € Hom(a(T™,lo), 7(X,x0)), then we can find an
extension f of g with f, = h.

Lxamples. Let Pm denote the m-dimensional real projective space.
Because m(P™7,po) e Zz for m =z 2 and #my(P™,po) = 0 for 1 < i < m, while
wm(P™,po) « Z, we have the bijections

[T#,P7m] o £3 o [T, to; P, pol:, for n < m.
We also have
[T?,S7] o 0 = [T lp; S™,s0]:, for n < m,
and
[T#,Tm] o Zmon o [T lo; T7, tos,

where the two last bijections are group isomorphisms.

Remark. It is easy to see that F, surjective (injective) implies Iy,
surjective (injective) if m = n.

Let (I")™ denote the m-dimensional skeleton of 7% as a cell-complex.
The absolute and relative (with respect to subcomplexes) homology- and
cohomology groups of T7 and (17)™ are easily computed: With coefficients
in an abelian group G we have

T - (g) T .
Hp(T; G) = G o HH(T?; G),
ny_ .
Hp(Tr L 6) = 6971 H? (T, L; G),
[ AN
Hy((Tym, 13 @) o 697 o Ho((1mym, 175 @),

where i(p) and i'(p) denote the number of p-cells in L and L’. As generators
for the homology groups we can take the elements {07 & ¢}, ¢ € G, where




N1, 10 9

oy is a p-cell of 7w, Tn\L, (T7ym\ L’ respeclively corresponding to a p-dimen-
sional torus T% in T7. As generators for the cohomology groups we can take
the clements {f7}, where f? is the homomorphism determined by f4(0:) = ¢
and f¥(o;) =0, j = 1. ‘

Further, it is casy lo see that H#?(1" Z) as an algebra is the exterior
algebra over Z with n generators in dimension 1 corresponding to the
generators of H'(S}).

The homomorphism

h: H((IT™ym, L', ) - Hom(Hy((T")™,L"); &)
defined by h{f}{c} = f(¢) is an isomorphism. Generators in Hom(Hy,((17)™,
L"); G) corresponding to the {f?} are the f{ themselves.
Dividing the p-cells ¢; into those in (7#)®\L and those in L I find that
Hyp((T™)™; G) 22 Hp((T")™L"; 6) © Hp(L',6)
Ho((Tmy™; ) ~ He((T™)y™ L'; G) @ H?(L',G).

Thus the homomorphisms

it e Hom(H?((T™™; G); H?(L',G)) and j# € Hom (H?((T?)™, L"; G,
He ((Tm)™; G))

induced by the inclusion maps i: L' - (IT™)™, j: (T")™ - ((T*)™,L") are
injective, and so are the corresponding homomorphisms between the homo-
logy groups iy and ju.

Now, let g: L’ - X be a given map. Suppose f: (T*)™ - X is an extension
of g and denote by [f];, the homotopy class relative to L’ of maps (IT?)7? - X
equivalent to /. By [(T®)™,L',g; X];, we denote the set of these maps. Then
there is a well-defined function

’

Gpomp* (T®ym L' g; X, - Hom (H,((T™ym™,L"); H,(X))

defined by Gy, ., o[flr; = fupl H((T%)™,L"). We observe that

(D-vw .,
Hom (Hp((T"y™,L'); Hy(X)) e § 27 il p=m
0 if p>m.

Lven if X is an H-space, G’ is not in general a homomorphism.
If X is a p-space of type (m@p,p) (;p abelian), we have the Hurewicz

H

isomorphism »: 7w, -~ Hp(X) and G, ,, ,, corresponds to



10 Nr. 10
Gromsp: [T L', g5 X1, ~ Hom (Hyp ((T™)™, L"), 75)

where Gu,m,p(fl, = #' o fup Hp((T™)™,L"). We know from the theory of
obstruction that mi(X,x0) = ... = #mp-1(X,x0) = 0 = f|(T?)P7! ~ 0, hence
we can choose a map [": (T7)™ > X with [ ~ fand f/[(T*)?! = xq. If o
denotes a p-cell in (7)™ \ L', then f'(00) = xo and f'|o represents an element
of 7wy = [S7,X]. Because x([f’|0]) = f#;p(a) = fu,(0) we have:

nmp (6) f|0

It X + 0 is also an H-space, we know that m1(X,x9) is abelian and that
the group structure in m,(X,x0) is defined by the multiplication map in X,
so that in this case the functions ¢ and ¢’ are homomorphisms.

Remark. G,: [T X]~ Hom(Hy(T"), Hp(X)) surjective (injective)
implies that G,,: [7™X] - Hom(Hy(T™), Hx(X)) is surjective (injeclive)
for m £ n.

From the above remarks and the results in [2], VI we gel:

Theorem 2. Let X be an (m-1)-space of lype (7p,p) (mp abelian). Then
we have [(T"y",L',g; X|;, + O and the functions G, ,, ., and G, . are sur-
Jective. Let X be an m-space of lype (mp,p) (7p abelian). Then we have [(T™)™,
L'.g; X],, = 0 and G, ,,, and G, , , are bijeclive.

Thus

AT
[(Tn)m,L’,‘(]; X:’L’ N np(p) ¢ (p)’
and, in particular

. . Yy ~i(p)
[In,L’g; A:’L jas) np(p) i)

n
(%, X] s [T% 13 X,20ls, = 0y P,

Remark. Let [(T®)m L',g;X] denote the set of homotopy classes of
maps f: (I")m > X for which f|;,, = ¢g. Then I[f];, = [f] delines a map
(Tmym L' g;X],, - [(T")™ L' ,g:X], which is surjective. The map

Goym,pt [(T%)™ L', g3X] ~ Hom(Hp((T%)™, L), Hy(X)),

~

where G, . [/] f#pl HL((T®)m L") is also well defined. From this we get
(Gn,m,p = G

Gpom,p SUTjective (injective) = G, ,, , surjective (injective).
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(2

Examples. [(Tn)yn.S5m] o Zm) [70,§0] o Z.
(Here ~ denotes bijection).

Now, let X be an H-space and a p-space of type (wp,p) (then mp is
automatically abelian). That X is an H-space means that we have a fixed
point xo € X, a continuous multiplication p: (XxX,xoxxg) — (X,ax0) for
which the constant map X = aq is a homotopy identity, ie. wo (c,1z) =

to(lge) o 1, relative to xp. From the above theorem we know that for
nzp

[(T")?~L,X] = 0 and [(T™)?,X] ~ Hom (Hp(( T™)?), 7p) = Hom (Hp(T™), 7p).
Hence every h € Hom(Hp(T"),75) correspondsto a continuous map ( 7%)? Lx

with f((T%)?~1) = xo and fg, = =h. Let f; denote the map

fire

Droj
T —T? —X.

Let / denote “one of the products of the f;’s’, for instance
po(laxpyo.  io(lgx ... xlgxu)o (f(n), cf).
»

Then itis easy to see that f is a continuous map T* — X with [ |(T#)? (r ip . f
o\ p—
i.e. f#p = fap = =h. Thus we have (n < p trivial):

Theorem 3. Let X be an H-space and a p-space of lype (mp,p). Then

for all n € N, G and G' are suwrjective homomorphisms; G: [T® X] —
n

Hom (Hy, (T"),mp) o= np(p), where G ([f1) = «fy, G: [T"X] -

1
Hom (Hyp(T7), Hp(X)) ~ np(p , where G'([f]) = j.
For p =1 we have the Hurewicz isomorphism %Tn: a(T?,l0) - Hi(T™)

and G([f]) = fuo /Z,;Z so that F, and Fy are surjective.

Chapter 2
The Cohomotopy Groups of T~

Definition. Let X be a lopological space and A a subspace of X. The
m’th (relative) cohomotopy set n™(X,A) of (X,A) (m € N) is defined fo be
[X,4; S™.50]4 and the m’th (absolute) cohomotopy set x™(X) of X is defined
to be [X,S™].
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A pair (X,A) is called n-coconnected if it satisfies the condition
HY(X,A; G) = 0 for every ¢ =z n and every coefficient group G.

A cellular pair (X,A) is a pair of a finite cell complex X and a sub-
complex 4.

We need the following theorem ([2], VII, Theorem 5.2).

Theorem 4. If (X,4) is a (2m-1) coconnected cellular pair, we can
define a certain abelian group structure + in n™(X,A) with the class of the
constant map as the neutral element. In this case n"(X,A) is called the m’th
cohomotopy group of (X,A).

Remarks. 1) Every map [: (X,4) - (Y.B) induces a transformation
f¥r a™(Y,B) - am(X,4). If both (X,4) and (Y,B) are (2m-1)-coconnecled
cellular pairs, then f* is a homomorphism ([2], VII, prop. 5.4).

2) When the cohomotopy group structure is defined in #™(8%,s0) (thus
n < 2m-2), then the bijection z™(S%,s0) o 7(S™,s0) is an isomorphism
([2], VII, prop. 12.1).

We now try to compute the cohomotopy groups of 7™ by means of some
exaclt sequences for the pairs [(T7)m, (Tn)m 1]

If 1 2 )7( + 1, where for areal ) (= min,cz {plp = o}, then ws((T™)™)
and #t((T)™,(T7)»1) have the cohomotopy group structure.

From Theorem 2 we have the bijections (p > m)

o 0 p>m
(T, (") —— = ((T)™) =3 (ny
N 1 Z" p=m,
where i* is a homomorphism for p = )3(+ 1, ie. p > 1.
If X,Y are spaces with basis point, X V Y denotes their one point union.

If p denotes the map

(Tn)m . (T‘)z)m/(Tn)m—l ~ 8”17' V...V SZ’Z'Z)

PrEA STV VST s0) > (T, (7))
m.

is a bijection and for i = )%(-F 1 an isomorphism. It is easy to see that

there is a bijection

then

0
A (STV.. .V Sq(nn ,50) Q:’ti(sm,so)(m).
m

Let i’ denote the inclusion ST V... VST > STV .. . VSTV ..V ST and

I
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p’ the projection ST V... VS > 8TV ... VS% When { 2)Z(+ 1 we get
the following split exact sequences of abelian groups and homomorphisms
because n? is a functor:

) P g3
0+at(STV...V S;n_l,so)ajn‘(S”f V... VST, So) ~at (S, s0) > 0.
An induclion thus gives us the isomorphism
At (ST V. VST, s0) 0wt (ST,50) D ... D w(S™, s0).

Because of the isomorphism a%(S™,50) ~ 7m(S%,50) we have that the bijection

TRy, (THYm=5) 5 73S 50) )

is an isomorphism for i = )7 (+ 1.
We have the following long exact cohomotopy sequences ([2], VII, 6.-9.)
of abelian groups and homomorphisms except the first set and the first

map in the first sequence and the two first sets and the two first maps in
the second sequence.

1) m = 2q z 2.

5%
(17T
2
_)nq+1((Tn)9Q(Tn)2g I)J‘Z'H q+1((Tn)ZQ) q+l q+1((1~n 2g— 1) aqﬁl
R - 211
*},L,"q 1((Tn)2q (T?L)Zq 1)‘]2(1 1 Zq 1((Tn)2(I) 2q 1(<Tn)2q 1)
+2g .
(T, ey Py
2) m = 2¢g-1 = 3.
2g—1 2g—-1 62(1 1

AT (T T ety L ey 2
20 —1 2q 1 62q—1
B (e e e e A (A s K
*2g—1 2q 1 62q—l
_>n2q72((Tn)2q—l’(Tn)2z_zf2 ]24 2 2 2<<Tn)2q 1) log— quz((Tn)Zq—2)ﬂ*_2>

2 — qu—l
. anfl(( T'IL)ZQ—I’ (Tn)Zg—Z) .]Zq—l 7.62q~1((T1z)2(I—1) ﬂi 0

All maps i, j are induced by inclusions, and the §'s are connecting
“homomorphisms’’,
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We know that every finitely generated abelian group & is isomorphic
to a direct sum of cyclic groups. If (b1, . .., bs) are generators of the cyclic
groups in such a decomposilion, then they are weakly linearly independent
in the sense that pibi+ ... +ppby = 0 implies pib1 = ... = pab, = 0. We
shall call (b1, ..., by) a basis of G.

We now choose basis elements for the finitely generated abelian groups
7i(S?,s0) represented by g%, A generator of #/(7TY) is represented by the
projection p;: T7 = TI|(T7y 1 ~ S/, We then look at the elements of #i((T%)™)
represented by

prog B Pi . 9% .
(Twym == ™1 ng —>8==8 j=m pell, ..., (D}
By means of induction on m we prove:

For all i,n,m in N with n > m such that #{((T7)") is a cohomotopy
group, i.c. i = )% (+ 1, the following short exact sequence is split exact,

0 — jrai((T)ym, (Tym=1) — Fi((T?)™) % m((T™ym=1) - 0, and a basis
for a¥((T™)y™) c a¥((TH)m 1y © jeat((T™)™, (T7)™ 1) is represented by the
elements g5 ; o pj o projj, ; except that the long exact sequences are not long
enough to the left to allow us to decide whether ¢3; 4 ;0 pai2 o projﬁzi*z,%_2 is
homotopic to 0 or not.

The start of the induction is trivial by the long exact sequences.

Let the above be true for m-1. We see that all the elements g7, o p;o

projb” 1,; of 71((1’")’”_1) where f e{l , (P} and j < m-1, have trivial
extensions to (T%)™: g% 0 pjo plOJm i Whlch proves that % = i is surjective.
Further,

o i ~ o ~ o i ~
95:°P;° plOng_l,j non= () < 95 p; ponx 0 < g7:°p;° l)ro]gm non = (.

From the isomorphisms 7%(S7) «~ =¥(S7,50) = 7;(S%s0), J < 2i-2, we see for
p e Z that p(95,°f) = (pgj“Z) f: X > 8 - S% when =% X) and =%S/) are
cohomotopy groups (f* is a homomorphism =% S7) - % X)). From this we
see that pg% ;o p; o prot][gz _1,7 and its extension to (T™)™: pg7 o p;o proygz j are
zero homotopic at the same time. This and the fact that the elements g%, o
pje projgl;l’j (when not zero homotopic) represent a basis for z¢(77)™1)
gives us a well defined homomorphism h: zi((T®)™ 1) — =z (T?)™) such that
i*o h = 1z7i((T)m1), This and the exactness of the long cohomotopy sequence
proves that the sequence above is split exact. Thus

mH((TRY") s ((TYm0) @ (T, (T ),
where j*z¥((T?)™), (T*)™1) is generated by
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G © P o DROjfy s (TM)™ > Ty > S™ = S5, (8" € {1, ..., (D).

If m = 2i-2 we do not know whether g ;o py o projfgq:m = 0 or not.

If m < 2i-3, we get from the above that j7 is injective, because i, is
surjective and the sequence exact. The following proof is valid also if m =
2i-3. Because all the generators g%, 4 o pso projo, .2 (T™)" L & 871 of 7t
((T™™?) have extensions to (7%)": 9% i1 opjoprojﬁ;j: (Tnym - §+1, the
exactness gives us:

0% ([g5 400 pse projfg;'_l,j]) = 0= 07, = 0= j7 injective, i.e. for m < 2{-2
we have wi((T™)™) « ai((T™)m 1) @ =i((Tr)ym, (T*ym-1), and a basis for
a¥((T®)™) is represented by all the

9% iopso proj/gl,j Be{l,....(O} j=m.

Theorem 5. The cohomolopy groups ni((T™)™) are finitely generated and
for 21 > m + 3 we have

l() if i > m
ni((Tn)m) o n n n
lﬁi(si,30)<i) ® m+1(8i,So)(“+1) @ ... 0 am(S, 80)(m> ifi<m

and the last expression is valid for m = 2i-2, if the last factor is replaced by
a suitable factor group.
For m = n we get:

Theorem 6. For 2i =z n + 3 we have

0ifi>n
./Z.TW‘Q
T S ® @ w5t s o
1z 3 0) @nz—l—l(S,SO) @... @%(S ,So) If 1=n

and the last expression is valid for n = 2i-2 if the last factor is replaced by
a suitable factor group.

It is known that mm(S%,s0) is zero for m < n, Z for m = n and a finite
abelian group for m > n, excepl m4;-1(S%%,5) which is the direct sum of Z
and a finite group. This group is not a cohomotopy group and so it has no
influence on the cohomotopy groups of (7%)". Hence:

"
Corollary. =¥(T%) is the direct sum of Z<”) and a finite abelian group,
when i 2 )in( +1 (i.e. rank (T = (%)).
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Chapter 3
Elementary Properties of Tori

Before I discuss the problems of reducibility mentioned in the intro-
duction, I deduce a few elementary results:

Lemma 1. The homotopy classes of homeomorphisms (T%, o) - (T%,10)
are in one to one correspondence with the unimodular nxn matrices.

Proof. [A unimodular nxn matrix A4 has elements in the integers Z and
determinant +1). The lemma follows easily from the isomorphism Fy:
[Tn,T] -~ Hom(mi( 1", ty), m(T™ty)) ~ Hom(Z",Z*) ~ Z»' defined by
Fulf1 = f..

Lemma 2. The homolopy classes in T* of T"'s imbedded in T® for which
T = T™mx X are in one to one correspondence with the direct summands of
(T t0) of rank m.

This follows easily from Lemma 1.

Theorem 7. f: T® - X is m-reducible iff [ is homotopic to the projection
of T® onto a T™ imbedded in T? = T™x Y (possibly after a shift of coordinates
in T%), followed by a map T% - X.

Proof. Obviously, “if”" is trivial. We shall prove “only if”. It is enough
to show that every map f: (T%,t) - (T™,1y) can be projected through a T7
imbedded in 7", Because w1(7™,t) is free, f.(smi(T7,1p)) is also free and so
fulm1(T™10)) is a direct summand in 71(T%,4y) of rank m’ < m. Let G € my
(T7,ty) be a direct summand in w1 (7%,ty) of rank m including the isomorphic
image of fi{m1(1™,tp)). From Lemma 2 G corresponds to a 77 imbedded in
T? = TP x Y (possibly after a shift of coordinates of 7%). Thus fis homolopic
to the projection in new coordinates of 7% onto T7 followed by the map
1T T - Tm™.

Chapter 4
Remarks about Finitely Generated Abelian Groups

We know that there is an isomorphically unique decomposition of a
finitely generated abelian group G as a direct sum of cyclic groups £ @ Zn;
®. .. D Zny, where n; divides nj—1.

The number n is the rank of G and the n;'s are called the lorsion
coefficients of G.
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We know that every subgroup of a free abelian group F o Z™ of rank
m is a free abelian group of rank m’ < m. A finite abelian group G’ has in
general many decompositions as a direct sum of cyclic groups, but we can
define a dimension of a finitely generated abelian group G as

dim G = the smallest number of generalors of G.

The usual proof of the theorem above starts with m generators g1, . . .,
gm of G and then shows that there exists an r < m and ¢, ..., & with
giler1 so that G is isomorphic to £ & Zeax @ ... @ Ze, where Z; = (.
This gives us that

dim G = rank G + the number of torsion coefficients of G.
The dimension of G has the following properties:

1) dim ¢ = m = Vg <m 3G <G: dim G’ = q.

2) If fe Hom(Z",G), G a group, then f(Z") is a finitely gencrated abelian
group with dim f({Z"?) < n.

3) G'SG=» dim G < dim G.

Chapter 5
Torus Reducibility Problems

Let X & 0 be a topological space, xp € X a fixed point of X. Looking
at torus maps Ty —+ X, we always assume them, as already mentioned,
continuous, and if X is path connected, we assume that to is mapped into a.
We are interested only in the homotopy classes of maps 77 - X. We know
that mo(X,x0) is the set of path components of X with the path component
including xo as 0-element, that, for all i = 1 and all xp,x1 € X in the same
path component, 7(X,xo) is isomorphic to 7;(X,x1) and that 77 itself is path
connected. Hence a theorem about torus mappings into path connected
spaces under some conditions on the 7r;(X,xp)’s for fixed axo can be translated
to a theorem about torus mappings into spaces not necessarily path con-
nected, under the same conditions on the my(X,x1)’s for all x;1 € X. In the
following I therefore assume the spaces X path connected even if this is not
written cxplicitely.

We start with some trivial remarks concerning the definitions 1-3 in
the introduction:

For f: (T7,to) - (X,x0) we have: If f is m-reducible, then dim
fo(m (T, t0)) < m and dim fy, (Hp(T")) < (%) for every p € N, where

Mat. Fys. Medd. Dan, Vid. Selsk. 38, no. 10, 2
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f. e Hom(m (T7, {0), 71(X,xo)), f4p € Hom (Hp(T"), Hp(X))
and

n
(T, 1) o 20, Hyp(T") 0 Z).

The map Fpri: [T, X] - Hom(m(T™1, k), m1(X,20))/ ~ defined by
Fmialf] = {f.} is surjective iff every homomorphism h: my(T7*1l5) - m
(X,mo) is induced by some map f: (I™1,fp) + (X,x0). From Theorems 1 and
3 it follows that this happens when X is an m-space of type (z,1) and when
X is an H-space.

Theorem 8. If Fyy1 is surjective, and X is [n dimensionally (n > m)]
-reducible, then every finitely generated abelian subgroup of m(X,xo) has
dimension = m.

BRemark. If m1(X,xo) is itself a finitely generated abelian group, then
the above condition is equivalent to dim m1(X,x0) < m.

Proof of Theorem 8. Suppose @1(X,xo) has a finitely generated abelian
subgroup of dimension greater than m, then 71(X,x¢) also has a subgroup G
of dimension m+1. Because m(7™+1,t) ~ Z™*+1, we have a surjective
h € Hom(m(T™,ty), ), which because of the assumption corresponds to
an f: I™tl - X with f. = h. If we define f as Tn 2% pmar L X, then dim
fo (T bo) = dim h(m(T™+,t)) = m+1. Thus f’ is not m-reducible.

Theorem 9. Suppose Fu: [T%,X] - Hom(m( T 1), m(X,x0))/ ~ defined
by Fulf] = {f.} is bijective. (From Theorem 1 we know that this is the case
when X is an n-space of type (71,1)). Then

I (T, by - (X,xo) 1s m-reducible iff f.(m(T™,t0))

(an abelian group of dimension = n) is of dimension = m.

Proof. We have already proved “only if”’. If dim fm(7T7,) < m, then
f» can be factorized through 11(Tm to) ~ Zm so that we can choose A e
Hom (m(Tﬂ to), m(T™,t)) and g € Hom (mi(T™,t), n1(X,x0)) such that
fo = g o h. Because F, surjective implies that Fyp is surjeclive for m < n
there exists a g: 7™ — X with g, = ¢, We also have an h: T% > T™ with

= h. Thus gooh, = foor goh ~f ie. fis m-reducible.

This gives us the following theorems:

Theorem 10. Let Fy be bijective. (This is the case when X is an n-space
of type (m1,1)). Then X is n-dimensionally m-reducible (1 < m < n) iff the
dimension of any finitely generated abelian subgroup of m(X,xo) is = m.
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Remark. Instead of "I, bijective” we could write /", injective and
Fipy1 surjective’”.

Theorem 11. Let F, be bijective for all n > m. (This is the case when
X is a space of type (wy1,1)). Then X is m-reducible iff the dimension of any
finitely generated abelian subgroup of mi(X,xe) is £ m.

We now show

Theorem 12. X is n-dimensionally 1-reducible (n > 1) iff every finilely
generated abelian group of mi(X,xo) ts cyclic and Fy is injective.

Corollary. ILet mi(X,xo) = 0. Then X is n-dimensionally 1-reducible
(n>1)if [T.X] = 0.

Proof of Theorem 12. Because Fz is always surjective, it follows from
the remark above that it only remains to show that £, injective is a necessary
condition.

Let f,g: 7% — X be given such that f, ~g. (i.e. fI(T") = g|(T™)L). We
suppose that X is n-dimensionally 1-reducible and then want to show that
[ = g. Because [ and g are 1-reducible and

[77,51] == Hom(au: (T, t0), 71(S%,50)),
[$L,X] o Hom(m1(S,50), 71(X,x0))/ ~,

- h g n g
we can choose the factorizations 7% = S1 = X and 77 = S! 2 X of f and

g such that g1.7i(S1,5) = fim(T%,t) and ga.(m(SLs0)) = g7 (T, ) and
Iy, = he,. Then Iy = hp and g1 = go. Thus

foogrohy c0ogaohy g.
This gives us

Theorem 13. X is 1-reducible iff every finitely generated abelian sub-
group of nmi(X,xo) is cyclic and every Fy is injective.

Theorem 14. Lel X be a p-space of type (mp,p) with =y abelian. Then
we have:

1) If m<n<p, we have [T?X] [T X] 0 so X is trivially n-
dimensionally m-reducible.

2) If m <p = n, we have [T™X] = 0, but [T X] is non trivial if mwy
is non trivial, so a necessary condition for X to be n-dimensionally m-reducible
is that my = 0.

2*
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3) If p2m<n and Guer: [T7X] » Hom(Hp(T™Y), 7p) defined by
Gmiilf] = #7fy, is surjective (which is the case when X is an m-space of type
(7p,p) or when X is an H-space of p-type (7p,p)), then a necessary condition
for X to be n-dimensionally m-reducible is that lhe dimension of any finilely
generated subgroup of mp is = (') = dim Hy(T™).

The proof of 3) is analogous to the proof of Theorem 8 because of the
remark p. 17.

Corollary. Lel X be a p-space of lype (mp,p) with mnyp abelian. Then we
have:

1) For m < p a necessary condition for X being m-reducible is 7y — 0.

2) For m=p and Gpi1 surjective a necessary condition for X being
m-reducible is that the dimension of any finitely generated subgroup of m,
is = (%)

Examples. 1) Because the fundamental groups of the complex and
quaternionic projective spaces are zero but not all the homotopy groups are
zero, these spaces are not 1-reducible.

2) S™(n > 1) is not m-reducible for m < n.
3) P*»(n > 1) is not m-reducible for m < n:

We have the covering projection p: $* -~ P? and a map pp: T? - S*
which is not 0-homotopic. p» is not m-reducible, nor is pyp o (xN)y: T -
T" - 5" m-reducible. We now look back at p o ps: T% - S - P». The map
p o pae (xN)y is not 0-homotopic since p is a covering projection. If p o py
were m-reducible for some m < n, i.e. popyp ogoh: T A om g P7, then,
since [T™,P*]| > Hom(Z™,Zy), we would obtain

Poprno(x2)p 0goho(x2)y = [go(x2)m]oh 20ch =0

(we assume h linear because [T7,T™] ~ Hom(mi(T"t), 71(T™,t)), contra-
dicting p o pp o (x2)s non ~ 0. Thus p o ps is not m-reducible.

4) From the computation of the cohomotopy groups of 77 and the
results in this chapter one can get further results about the reducibility of
spheres; for instance:

If 21 > n+3, i <n and 7@.(S%s0) # 0 then we get from Theorem 6 that
the map gy ;o pn: T® - S® > §% with gf ; non ~ 0 is not homotopic to zero.
This map f is algebraically trivial, i.e. its induced homomorphisms between
the homology and cohomology groups are trivial. If f were i-reducible, then
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Theorem 7 would give that f could be projected through a Ti(T? = TixTw i,
perhaps after a shift of coordinates). Thus f would be homotopic to a
composed map

N P A

where g non ~ 0, and h is a change of basis. Because [T%,5!] ~ Hom(H;(T?),
Hiy(SY)) «« Hom(Z,Z), g4 # 0 and so g o proj o h would not be algebraically
trivial, contradicting f = g o proj o h. Thusif 2n > 2{ = n--3 and 7,(S%s0) = 0,
then S? is not i-reducible.

5) In an analogous way we get:
82 is not 2-reducible,

because the map 732 $32% S2 where p is the Hopf fibration, is known to
be non ~ 0 when pz non =~ 0.

Chapter 6
Almost Periodic Movements

Definition. 4 topological space X is called continuously locally arcwise
connected when fo every compuact subspace K of X there exists a neighbourhood
O S K=K of lhe diagonal Ag in KxK and a continuous map @: OxI - X so
that O(x,x,t) = x, P(x,y,0) = z, D(x,y,1) = y.

For metric spaces this is equivalent to the definition (for metric spaces
only) used in [4].

Remarks. 1) When X is a metric space for which any (wo points
x and y whose distance remains below a certain number can be connected
by a geodetic arc which depends continuously on x and y, then X is con-
tinuously locally arcwise connected. 2) Any CW-complex is continuously
locally arcwise connected. Indeed it satisfies the following:

There exisls a covering (Uj[j € J) of X with open sets and a continuous
function @: OxI - X, where O = LJJ U;x Uy, such that @(x,x,t) = x, P(x,y,0) =
x, P(x,y,1) = y. This can be shown by induction: Assuming (U;) chosen
and @ constructed on the n-1 skeleton X1 of X, it can be shown that the
definitions can be extended to X», which is obtained from X*1 by adjoining
n-cells and which has the topology coherent with X* % and the n-cells.

Definition. A continuous movement in o metric space X is a continuous
function x = f(t), t e R, x € X. A number v = v4(8) is called a lranslation
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number of f(¥) corresponding to & > 0 if the condition dist (f(t), f(t+7)) < ¢
is satisfied for all t € R. The movement x = f(t) is called almost periodic if
the range of f(t) lies in a compact subset of X and the set {7s(€)} is relatively
dense for every ¢ > 0 (i.e. there exists an | > 0 so that every interval of length
[ contains at leqast one of the t7(e)’s).

Definition. 4 function = = f(t,v); t e R, v € [0,1], x €X; is called a
uniformly continuous family of almost periodic movements when 1) the range
of f(Lv) lies in a compact subset of X, 2) for all ve €[0,1] f(t,v0) is almost
periodic, 3) to all ¢ > 0 and all vy € [0,1] corresponds a neighbourhood U (vo)
of vo such that for all t e R, ol v € Uw): dist(f(t,v0), f(t,0)) < e.

Remark. Tornchave’s definitions are the same except thal he does
not demand that the ranges lie in compact subsets. Instead he is mainly
interested in complete metric spaces and he shows that the closure of the
range of an almost periodic movement f(f) in a complete metric space X
is a compact subspace. In the same way it can be shown that the closurc
of the range of a uniformly continuous family of a.p. movements in a
complete meiric space is a compact subspace. This gives us that the de-
finitions coincide for complete metric spaces, and this is all I need. With
the new definitions Tornehave’s results about complete metric spaces can
casily be extended to arbitrary metric spaces. The new definition can be
extended further to arbitrary topological spaces because it is possible to
introduce one and only one uniformity structure on compact spaces.

Let € denole the class of metric spaces which are continuously locally
arcwise connected. Then % includes the class €’ of metrizable CW complexes,
which again includes the class €'’ of locally compact polyhedrons.

Definition. Two almost periodic movements a1 = fi(t) and x2 = fa(f)
are called a(lmost) p(eriodically) homotopic iff there exists a uniformly con-
tinuous family x = f(t,v) with {(1,0) = fi(t) and [({,1) = f2(1).

This relation is obviously an equivalence relation in the set of a.p.
movements in X and it leads te a subdivision of this set into a.p. homotopy
classes.

Remark. A continuous function ]7 R?* » X which is periodic in all the
variables with the same period r € R (called a lorus map by TORNEHAVE)
corresponds to torus maps 7% - X (we can look at 7% as R%/(qrZ)", q € Z).
The function ¢: R* - X: gN(t) = f(pt), p € R has period 1—2 and corresponds
to the same torus maps as f (we can look at 7™ as R“/(% Z)r, q € Z). Usually
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I think of 7% as R#/Z" and I call the variables (uy, . . ., uy) with u; € [0,1].
If (f1, . . ., =) are real numbers and ¢ is also real, and f: T - X is a map,
I write f(Bul, . .., Bat) for f({fat}, . . ., {Bnt}), where {ft} is the (one of the)
u € [0,1] for which ¢ = u (mod 1). Ttis well known that x = f(fit, . . ., fal)
is an almost periodic movement in X. In the opposite direction we get from
4], p. 28:

Theorem. Every almoslt periodic movement x1 = f(t) in X € € is a.p.
homotopic to a certain oz = g(fit, . . ., fut) with g: T* - X and (f1, . . ., fu)
rationally independent real numbers (i.e. independent as vectors in a Q-vector
space).

The following theorem is [4] lemma 22 with a correction?).

Theorem 15. Let f(t) and §(t) be two almost periodic movements in
X e %. In order lo investigate whether | and § are a.p. homotopic we choose
a common set of n rationally independent real numbers (4, . . ., [)’p) and torus
maps [',g": TP -~ X such that [ (t) is a.p. homotopic to ['(fit, ..., 1) and
g(t) is a.p. homotopic to g'(il, ..., Byt). Then ]‘Nazp g iff there exists a
nalural number N, such that "o (xN) o g’ o (xN), where xN: T? - T? js
defined by (xN)(w1, ..., up) = (Nug, ..., Nup).

I shall now discuss the notions introduced in definitions 4—7 in the
introduction.

Theorem 16. Let X = f(#) be an a.p. movement in X € €. Let f: Tn - X
be one of ils corresponding torus maps (i.e. f(fit, ..., Bal) o 7 () and
(B, - . ., Bu) are rationally independent). Then [ is a.p. m-reducibel iff f o (xN)
is m-reducible for some natural number N.

Proof. We may assume m < n. We shall first prove “only if”’. Let f be
a.p. m-reducible. We choose g: T —» X and rationally independent numbers
(¥1, - . ., ym) such that

gt ymt) Z T D 2 F(Bits - fud),

We now look at the vector space Vover Q spanned by (81, .. .. fn, ¥1, - - . ,¥m)-
Then p = dim V > max{m,n}. We supplement (fi,...,8s) to a basis
(B -y Bas Bar1r -5 By) with ﬁ,, =f, v=1,...,n Then the y;’s are
rational linear combinations of (§;). Thus there exists a natural number M

1) TorNeHAVE told me about this mistake. He overlooked the possibility of the factor (x N)
such that his condition is too strong. The examples proving the existence of non-trivial a.p.

movements are never the less correct, because the relevant obstructions belong to infinite cyclic
groups.



24 Nr.10

so that the My;’s are integral linear combinations A;, i = 1, ..., m of (,3])
We now define a map fi: T2 = T? - X by fu(u, - . ., Un, Upal, o . ., Up) =
f(Mug, ..., Mus) and a map g1: 72 - 1" > X by gi(u1, . . ., up) =
g(A1(u), . . ., An(w)).

Because f(fif, ..., fat) azp g(yit, . . ., ymt) we have

F(MBit, ..., MBat) = fi(Bit, ..., Bob) = gyt . Mymt) = gi(Bit, ..., Byt

(and (B, ..., ﬁ;,) are rationally independent). Theorem 15 tells us that
there exists a natural number N; such that fi o (xN1) =2 g1 o (xN1). Then the
restrictions to the 7% < T2 corresponding to tps1 = ... = up = 0 are homo-
topie, i.e.

fi(N, ..., N1tan,0, ..., 0) = f(MNquz, ..., MN1us) e g2(Nua, ..., N1ug,0, ..., 0)
= g(Nidg(uar, .., wp,0, .., 0), .., Nidp(u, ..y ug,0, ..., O)).

Denoting by h: T® - T the map defined by

(ug, . .. ) > (Nida(ag, - o ug,0, 000, 0), ., Nidp(un, ..., s, 0, .. .,0))

we have fo (xN1M) « goh, where h: T7 - T™ and g: T™ -+ X, so that
f o (xNiM) is m-reducible.

Next, we shall prove “if”. Suppose f’' = fo(xN) is m-reducible. We
bhave f'(Bil, - .., B = F(t), where (8y = Bi/N, ..., B, = pa/N) are
rationally independent. Because [T, T™] ~ Hom(swi (1™ ty), 7i(T™ 1)) we
can choose h: I" — T™ linear (corresponding to Am,») and g: T7™ - X so
that f’ =~ g o h. If we put

pr) A

: = Am,n 3

(B tBn)
then

FO 2 [t B = g o h(BUL - o) = g(BiL, ., B,
so that fis a.p. m-reducible.

Remarks. 1) (f o (xN)). = Nf., so rank fmi(T?ty) = r ifl there exists
a natural number N such that (fe (xN)) 21 (T?, ) ~ Z.

2) (fo(xN))yp = N¥fy,, so rank fu, Hp(T™) = rilf there exists a natural
number N such that (fo (xN))g, Hp(T?) o Z'.
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Statement 2) follows immediately from the expression of elements of
Hy(T?) as cross products of elements from Hi(S'). The remarks and
Theorem 16 gives us that the theorems from chapter V can be changed to
theorems about almost periodic movements in X € ¢, by translating “‘dim”
to “‘rank”. Let %, denote the class of path connected spaces in %.

Remark. Let = = f(#) he an a.p.-movement in X € %y corresponding
(for some (1, ..., Bx)) to f: T - X If f(t) is a.p. m-reducible, then rank
fom(T™,t0) < m and rank fg, Hy (T%) < () for every p.

Theorem 17. Suppose that Fpi: [T™,X] > Hom(mm(T™+, 1), (X, x0))/~
is surjective and that X € € (e.g. X is an m-space of {ype (m1,1) or an H-space).
If, further, X is a.p. m-reducible, then the rank of any abelian subgroup of
m(X,xo) is = m.

Theorem 18. Suppose thal Fp: [T" X] - Hom(z1(T" 1), 71(X,x0))/~
is bijective and that X € €y (e.g. X is an n-space of lype (m1,1)). Then an
almost periodic movement corresponding to f: 1" - X is a.p. m-reducible iff
rank f.(m(T%,k)) = m.

Theorem 19. Let Fp: [T7,X]| -~ Hom (71 (T7,fo), (X, x0))/~ be bijective
for every n > m (e.g. X is a space of type (m1,1)), and let X € €. Then X is
a.p. m-reducible iff the rank of every abelian subgroup of mi(X,xo) is £ m.

Theorem 20. A space X € %y is a.p. 1-reducible (i.e. every a.p. movement
in X is a.p. homotopic to n periodic movement) iff the rank of every abelian
subgroup of mi(X,xo) is = 1 and for every nafural number n every pair of
maps f,g: T* - X salisfying Fu(f] = Falg] also satisfies the condition fo (xN)
@ go(xN) for some natural number N.

Theorem 21, 22. Let X € %y be a p-space of type (mp,p) with my
abelian. Then

1) if X is a.p. m-reducible for some m < p, then rank sy = 0,
2) if p=m and Gua: [T™X] > Hom(Hy(T™1), mp) defined by

Gmlf] = sy, is surjective (e.g. X is an m-space of type (wp,p) or X is an
H-space of p-type (@p,p)) and X is a.p. m-reducible, then rank my = (37).

Examples. 1) Because the fundamental groups of the complex and
quaternionic projective spaces are zero and the first nontrivial homotopy
groups arve isomorphic to Z, these spaces are not a.p. 1-reducible.
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2) S* (n > 1) is not a.p. m-reducible for m < n (wa(S%,s0) ~ Z).

3) P* (n > 1) is not a.p. m-reducible for m < n (proof analogous to
the proof p. 20).

4) S§2is not a.p. 2-reducible ([73,53] ~ Z).
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