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Synopsi s

In the theory of relativity Lhe thermodynamical state of a homogeneous isotropic body i s
determined by five independent variables . In the present paper it is shown that the thermody-
namical properties of the body are completely determined by relativistically invariant function s

and Y' of the state variables, which are the appropriate generalizations of the classical fre e
energies of Helmholtz and Gibbs . When the `potential' (or W) is given, all thermodynamical
quantities, such as the four-momentum, entropy etc., can be obtained by partial differentiations
of the potentials with respect to the state variables . Finally it is shown that the potentials
Ø and P. have a simple staListical interpretation in the relativistic generalization of Gibbs '
classical statistical mechanics, which allows to calculate the functions $ and when the mechan-
ical constitution of the system is known .
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1 . Introduction and Survey

I
n classical non-relativistic thermodynamics the thermodynamical potential s

-the free energies of HELMHOLTZ and GIBBS - play an important role .
When a potential is given as a function of the thermodynamical stat e
variables all state functions can be obtained by partial differentiation s

of the potential, i .e . the thermodynamical properties of the body in question

are completely determined by the potentials . For a homogeneous isotropi c

body at rest and in thermal equilibrium the state is determined by tw o
variables, for instance the volume V° and the temperature T°, and the fre e

energy of HELMHOLTZ is defined by

F° = H° - T°S°,

	

(1 .1)

where I-I° and S° are the energy and the entropy, respectively. When F°
is known as a function of To and V°, the entropy and pressure are given by

S° _-
aF°(T°, V°)

°

	

- aF°( T° , V° )

aT°

	

' P =

	

aV°

	

(1 .2 )

and by (1 .1) it follows for the energy

0E0( TO, V°)
H ° =F°T°	

a T°

In a relativistic theory, the relations (1 .2) must still be valid in the rest
system S° of the body, but there is no a priori reason that the same relation s
should hold in every system of inertia S . The principle of relativity require s

only that the corresponding relativistic relations must be covariant and mus t

reduce to (1 .2) in the rest system. Nevertheless, PLANCK in his classica l

paper [l.] tried to determine transformation laws for the thermodynamical

quantities in such a way that relations of the form (1 .2) remain valid i n
1 *

(1 .3)
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every system of inertia S . If v is the velocity of the body (or of S°) wit h
respect to S, we have

p= p°,

	

V = V°V1 -P 2 ,

	

ß= v/c .

	

(1 .4 )

The pressure is relativistically invariant, and the same is assumed for the
entropy, i .e .

S = S° .

	

(1 .5 )

In order that relations (1 .2) be valid also for the transformed quantities, w e
have then to accept PLANCK ' S transformation laws for the free energy an d
temperature in the for m

F= F°V1-ß z (1 .6)

Tp T°V1 - ß2, (1 .7)

In fact, from (1 .2 -7) one easily finds the relations

(1 .8)S
aF(Tp, V)

	

aF(Tp, V)

- aTp

	

' p

	

aV

which have the same form as the equations (1 .2) valid in the rest system .
By this argument PLANCK was led to introduce a temperature Tp relative

to the arbitrary system of inertia S given by the formula (1 .7) and his poin t
of view has been accepted again quite recently in a paper by R . BALESCU [2] .

However, in the meantime H . OTT [3] had given strong arguments for
introducing a different temperature To given by

To = T°/1/1 - ß2 .

	

(1 .9 )

In fact, this formula follows uniquely (see (1 .35)) if one wants the secon d
law for reversible processes to have the same for m

dS = dQrev

To

as in the rest system, where we have

d °
ds° =

Qre v
T o

(1 .10)
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The violent discussions in the literature following Ott's paper have made
it clear that the relativity principle alone does not lead to a unique concep t
of temperature relative to an arbitrary system S, for the transformation law
for the temperature will depend on which of the classical thermodynamica l
relations holding in the rest system, are assumed to retain their form unde r
Lorentz transformations . Beforehand it does not seem quite natural to bas e
the definition of temperature on the requirement of form-invariance of th e
relations (1 .2, 8) . Firstly, they refer to the rather special case of a homogene-
ous isotropic body and it would seem more natural to postulate the form -
invariance of the first and the second laws of thermodynamics which ar e
believed to be valid for any thermodynamic system . Secondly, in an arbi-
trary system of inertia the definition of the state of a homogeneous an d
isotropic body requires the fixation of five (not two) independent variables,
for instance besides TO and V° the three components of the velocity v .
This is also the case in the non-relativistic theory, but there the internal
thermodynamic properties are entirely separated from the external kineti c
properties of the body . This is not so in relativity theory since the inertia l
mass of the body depends on the internal state . Therefore it is to be expected
that the pertinent relativistic generalization of the equations (1 .2) will con-
sist of five equations which express five thermodynamical quantities as partia l
derivatives of the relativistic potentials with respect to five suitably chose n
independent state variables . These equations must of course reduce to the
two equations (1 .2) in the rest system S .

In section 2 of the present paper we shall see that these expectations ar e
fulfilled when we use the formulation of relativistic thermodynamics which ,
as was shown in a recent paper [4], is suggested by relativistic statistica l
mechanics. In the remaining part of the present section we shall give a shor t
account of the relativistic formulation of the first and the second law s
obtained in the just quoted paper .

In view of the above mentioned arbitrariness in the general definitio n
of the temperature, it was proposed to abandon the notion of a separate
temperature relative to the different systems of inertia . Therefore, when we
speak of the temperature of the body we simply mean the proper temperature
as measured by a thermometer at rest in the body . In any system of inerti a
S different from S° it appears more adequate to speak of a temperatur e
4-vector Ti as defined by AnzELIÈS [5] . If Vi is the four-velocity of the body
with components

Vi = {yv, ye},

	

y = (1 - ßz)-

	

(1 .12)
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the temperature vector is

Ti = T°Vi fc .

	

(1 .13)

In the rest system this 4-vector has only the one non-vanishing componen t

T04 which is equal to the proper temperature T o. In an arbitrary system S

the fourth component T4 is equal to the Ott temperature (1 .9) .

In many thermodynamical considerations it is more convenient to intro -

duce the reciprocal proper temperatur e

B=1 / T°

	

(1 .14)

as a measure of the thermal state . Then, if we also introduce a functio n

00(00, V°) = 0°F° (1 .15)

(- Ø° is the so-called Planck potential), the relations (1 .2) take the form

åØ°(B°, V°)

	

1 00°(0°, V°)
H° =

	

åB°

	

, p° _-
6°

	

åV°
- .

	

(1 .16)

Since B° goes to zero with increasing temperature, TRUESDELL [6] has coined

the word coldness for the quantity B° . Instead of the temperature vector Ti ,

it is also convenient to introduce a " coldness vector" B i by

ei '= 0ovi

which in the rest system has the component s

BOi =Ô4 cB° = s4 c /TO .

(1 .17 )

(1 .18)

In an arbitrary system S the fourth component 0 4 is equal to c times the

reciprocal of the Planck temperature (1 .7) . In contrast to the V i , which

satisfies the relation

= - c2 ,

	

(1 .19)

the components B i of the coldness vector are four independent variable s

which may replace T o and v as state variables . Thus, for a homogeneou s

isotropic body the thermodynamic state is completely determined by the fiv e

variables (e i , V°) or (0 i, p) .

The coldness vector is a time-like 4-vector with the norm
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0(01) = V-0/c.

	

(1 .20)

From (1 .17-19) it follows that the value of the invariant 0 is equal to th e

coldness,
0 = 0 0

	

(1 .21 )

and that

Vi = 0 1 /0 .

	

(1 .22)

Thus, for given 0 1 the coldness and the four-velocity (and so v) are determ -

ined by (1 .21, 22) .

Now, as was shown in ref. 4, the appropriate relativistic expressions for

the first and second laws of thermodynamics are the following. For an

infinitesimal process we have

1. law : dG1 = dl1 +dQ¢

	

(1 .23)

2. law : dS > - O 1 dQ 1 .

	

(1 .24)

In (1 .23)

dG 1 = { dG, -dH/c}

	

(1 .25)

is the change of the four-momentum of the body

G 1 {G, -H/c},

	

(1 .26)

and

dQa = {dQ, -dQ/c}

	

(1 .27)

is the four-momentum of supplied heat in the process, i.e. dQ is the heat

energy and dQ is the momentum conveyed to the body by the heat supply .

Finally,

dl i _ {dI, - dA/c}

	

(1 .28)

is the `four-impulse' of the external mechanical forces, i .e . dl is the impulse

or the time integral of the total mechanical force acting on the body an d
dA is the work performed by these forces during the process .

In non-relativistic thermodynamics the first law is expressed by on e
equation only, the law of conservation of energy . Due to the symmetry

between momentum and energy in the theory of relativity, the first law ha s

to be supplemented by three other equations expressing the conservation o f

momentum. In general neither G1, dG 1 nor dl1 are 4-vectors, but the difference s

dQ 2 = dGi - dli

	

(1 .29)
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are the covariant components of a 4-vector for any process and for a n
arbitrary thermodynamical system [7] [8] [9] . This important result was ob-

tained first in the case of a fluid in ref. 7 . In ref.s 8 and 9 the proof was

given for an arbitrary thermodynamical system . For the validity of this the-
orem it is essential that dIi by definition includes the impulse and the work
of truly ` mechanical' forces only, i .e . the force acting on any infinitesimal

part of the body, combined with the rate of work, must form a usual Min-
kowski four-force .

For a reversible process it can further be shown [7] that the four-momen-

tum dQ ev of supplied heat is proportional to the four-velocity, i .e .

0
dQrev = dQ2v Vt .

	

(1 .30)
c

Since B i and dQ i are 4-vectors the right hand side of (1 .24) is an invarian t

which, on account of (1 .18, 27), has the valu e

0

	

°

-O idQi = - O°idQ° = - ~
1Q4

= rQ-o (1 .31)

Therefore, by (1 .5), the relation (1 .24) is equivalent to the relatio n

dQo
dS° ~ (1 .32)

T°

which is known to be valid in the rest system . Since the equality sign i n
(1 .32) holds for reversible processes only, it follows that also in (1 .24) the

validity of the equality sign means that the process in question is reversible .

For such processes dQrev is given by (1 .30), which for i = 4 give s

dQrev = dQrev ! V 1 -
ß2

	

(1 .33 )

on account of (1 .12, 27) . Thus, for a reversible process, (1 .24) become s

dS = - ØidQrev = dQrev = dQrev V 1 - Å 2 (1 .34)
To

	

T o

by means of (1 .31, 33) . This may also be written in the form (1 .10)

(1 .35)dS = dQrev
,To
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where To is the Ott temperature (1 .9). However, it should be noted that

(1 .24) for an irreversible process in general is not equivalent to

dS > dQ .
To

(1 .35 )

The latter relation is valid only for very special irreversible processes such

as in the case of pure heal conduction .

After this short survey of the general laws of relativistic thermodynamics ,

we shall in the next section give the appropriate relativistic generalizatio n

of the thermodynamical potentials and of the classical relations of the typ e

(1 .16) . Finally, in the last section the statistical interpretation of the relativisti c

potentials is given, which will allow us to calculate these quantities whe n

the mechanical constitution of the system is known .

2. Relativistically Invariant Thermodynamical Potential s

for Homogeneous Isotropic Bodie s

The thermodynamical system considered in this section is a fluid, containe d

in a vessel of rest volume V°, which exerts normal pressure only agains t
the walls of the container . In thermal equilibrium the four-momentum o f

the fluid has the following components in the Lorentz system S [10] :

Gi = { G,-Hie} = {(H° +p°V°)yv/c2,-(H° /32P°V°)y/c}

	

(2 .1)

where the superscript "0" refers to the rest system S° of the fluid . The G i

are not the components of a 4-vector . Nevertheless, Vi G i is an invariant ,
for we have in any system S by (1 .12) and (2 .1 )

ViGi = (H° + p°V ° )7,216 2 - (H° + N 2
1
,° V°)y2 ,

Vi G i = - H°.

Hence, - ViGi is equal to the rest energy .

Besides the four-momentum we shall consider two other quantities P i
and Ei which, in contrast to G i , are 4-vectors . The first one is defined by

(2 .2)

Pi = H°Vi/c2

	

(2.3)
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which would be the four-momentum of the system if it were a free system .

Following the terminology of LANDSBERG [11], we shall call Pi the inclusiv e
four-momentum . The second 4-vector Ei is defined by

Ei = (H° + p°V°) V i /c2 .

	

(2.4)

A comparison with (2 .1) shows that the spatial components E, are equal t o

the components of the momentum G. The fourth component is of the for m

E4 = -E/c (2.5)
with

E = - cE4 = (H°+p°V°)y = H+p°V°y(1 - ß2)

or, on account of (1 .4),
E = H + p V. (2 .6)

Hence, E is the quantity usually called enthalpy and therefore E, will b e
named four-enthalpy . Gi, Ei , Pi are obviously related by the equations

Ei = Pi + p°V°Vi/c2

Gi - Ei +8i4pV/c .

	

(2 .7)

where E° is the enthalpy in the rest system, an d

ViPi = Vi Gi = - Ho .

	

(2 .9 )

Differentation of the second equation (2 .7) give s

dG i = dEi + å i4d(pV) /c.

Therefore, the first law (1 .23) may also be written in the form

dEi = dJi + dQ i

	

(2 .10)

where

dJi = dli - ai4d(pV)/c = {dl,- [dA + d(pV)] /c}

	

(2 .11 )

on account of (1 .28) . In contrast to dli , the quantity dJi is a 4-vector. Thi s
follows at once from (2 .10) since both dEi and dQi are 4-vectors . Thus,
O idJi is an invariant with the value

From (2 .2-4) we get

ViEi = - (H° + p°V°) _ -E°

	

(2 .8)
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Q idJi = O° idJ° = c0°dJ° = - 0°[dA° + d(p°V°)] .

	

(2 .12)

Flere we have used (1 .18) and (2.11) . For a reversible process the wor k
dA° in the rest system is

dA° = -p°dV° .

	

(2.13)
Hence

o idJ?ev = -0°V°dp° -0 V°dp

	

(2.14)

on account of (1 .4, 21) .
By means of the first and second laws in the forms (2 .10) and (1 .24)

applied to a reversible process we get

dS = - Qi dQi
ev

= - O idE, + oidJ2ev

or, using (2 .14),

dS = - O idEi - oV°dp .

	

(2 .15)

On account of the relations (2 .7) between Ei , Pi and G i , this equation may
also be written in the alternative form s

and
dS = - o idPi +OpdV° (2.16)

04p

where

dS = - O idG i + 	 dV,
c

(2 .17)

04 = 0°yc = Qyc (2 .18)

is the fourth component of the coldness vector . Here we have used (1 .4 ,
12, 19), which imply

O i Vi = -oc 2 .

	

(2 .19)

Now, we define two invariant state functions Ø and ' b y

• = - O iPi -S (2.20)

• - O iE i - S. (2.21)

Since 0 i is proportional to Vi, (2.9) shows that

	

also may be defined as

• = - O i G i -S. (2.22)

On account of (2 .7, 18), (1,4), 0 and VI are connected b y
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W = Ø+OpV° .

	

(2 .23)

By differentiating the expressions (2 .20-22) and using the appropriate form s
(2 .15-17) of dS, one easily find s

dØ = - Pi dO i- OpdV ° (2.24)

dYf = - Ei dO i +OV°dp (2 .25)

dØ = - G i d0 i- 04pdV/c . (2.26)

For a homogeneous isotropic body of the type considered here th e

thermal equilibrium states are determined by five independent variables .

If we choose (0 i , V°) as state variables, every state function appears as a

function of these variables . In particular this holds for the quantity O . When
the function

	

(0i , V°) is given, we can calculate five other slate function s
by differentiations of

	

with respect to the five variables (0 i , V°). In fact

we get from (2 .24) for the inclusive four-momentum and the pressure

00(0 i , V°)

	

1 00(0 i , V° )
Pi = -

	

00i

	

P

	

0 - aV°

	

(2 .27)

Then, expressions for the remaining state functions follow from (2 .7, 20) .
For the entropy we get for instanc e

S = - Ø(0i,V°) +Oi
aØ(Oi, V°)

00i
(2.28)

On the other hand, if we choose 0 i and p as state variables we get from

(2 .25) the following expressions for the four-enthalpy and the rest volum e

aT(ei,p)

	

v°

	

1 a P(0i,p)Ei -	
a0i

	

0

	

ap

Finally, choosing 0 i and V as state variables, (2 .26) gives for the four-mo-

mentum and the pressur e

ai = - aØ(OZ,V)

	

p = -
c aØ(Oi,V) .

	

(2 .30)
a0 i

	

0 4

	

0V

(2.29)
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A relativistically invariant state function which is a function of tensoria l
state variables can only depend on invariant combinations of these variables .
The only invariant combination of the O z is the norm 0 defined by (1 .20) .
Thus, since also V° is an invariant, the function Ø( 0 i , V°) must be of the for m

Ø(O l ,V°) = t(O,V°) ,

	

(2 .31 )

where f is an invariant function characteristic of the material system in
question. Similarly, since also p is invariant, we must have

W( 01 ,p) = g(O,p)

	

(2 .32)

where the function g(0, p) is connected with f(O,V°) by he relation

g(O,p) = f(0,V°)+OpV°

	

(2 .33)
following from (2 .23) .

Obviously, any state function which only depends on (0, V°) or (0, p )
is relativistically invariant, i .e . velocity-independent . From (2 .27, 29) and
(2 .31, 32) we get

1 af(O,V 0
)

	

1 ag(0, p)

p-	 V°=-	
0 aV°

	

0 ap

Thus, p and V° are functions of (0, V°) and (0, p), respectively, in accord-
ance with the invariance of these quantities . It is easily seen that also the
right hand side of (2 .28) is a function of 0 and V° only, in accordance with
the invariance of the entropy . For, by (2 .31), (2 .28) becomes

s = - f(O,V°)Oi 00

aei -

af(e,V°)

ae

and, by differentiation of O in (1 .20) with respect to

	

we get

(2.34)

(2.35)

00
= - O i / 20

a e

0ioi
= -oieileC 2 = O .

(2.36)
a0i

However, as a function of the variables (0 1 ,V), )(O i , V) does not only depend
on 0 and V, but also on the fourth component 0 4 of the coldness vector .
In fact, since
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V° =
VØ 4

(2 .37 )yV
CO '

we get from (2 .31)
4

Ø(Ø i , V) = t Ø, co

	

. (2.38)

By differentiating this equation with respect to Ø i (for constant V) and using

(2 .30) and (2.27) we get back the relations (2 .7) .

Multiplication of the equations (2.8, 9) by 8 = 0 0 gives

BiEi = - Ø°(H° + p °V ° )

Ø iPi = Ø iG-i = - Ø°H° .

This discloses the physical meaning of the invariant functions

	

and P.

defined by (2 .20, 21) . Obviously we have

=

	

(2 .40 )
where

= Ø°H° _SO = Ø°F°(Ø°, V°)

	

(2 .41 )

is the classical potential (1 .15) obtained by multiplying the free energy o f

HELMHOLTZ by the coldness . Similarly we have

= tjJo (2 .42)

where
Y10 = Ø°(H° + p°V°)- S° = Ø°G° (2 .43 )

and

G° = F°+p°V° (2 .44)

is the classical free energy of Gibbs .

Thus, Ø and Ti are the natural relativistic generalizations of the classica l

thermodynamic potentials	 the free energies of Helmholtz and Gibbs . They

have all the properties which, as mentioned in section 1, should be require d
of relativistic potentials . By the equations (2 .27-30), all state functions ar e

expressed in terms of partial derivatives of the potentials with respect t o

the variables which determine the state . In the rest system, three of th e
five equations (2.27) simply express the vanishing of the momentu m
and the two remaining equations are identical with the classical equations

(1 .16) which are equivalent to (1 .2). In contrast to the equations (2 .27-30) ,
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which comprise the transformation properties of all thermodynamic state
functions under Lorentz transformations, the Planck relations (1 .8) are
rather trivial transcriptions of the equation (1 .2) in the rest system. In exces s
of (1 .2), (1 .8) only contains the transformation properties of S, p and V .
The function F(Tp, V) does not determine all thermodynamic properties of
the system. For instance, there is no equation analogous to (1 .3) by which
the energy H is determined, not to speak of the components of the momen-
tum G . Thus, the free energy F(Tp,V), as defined by (1 .6), does not have
all the properties of a thermodynamical potential .

From (2 .31, 32) and (2.40-44) we get, since 0 = 0° and p = p °

Ø° - f(0 °, V°) = 0 °F°(0°,V °)
TO = g(0°, p°) - 0°G°(0°, p°) .

The functions F°(0°, V°) and G°(0°, p°) can in principle be determined by
usual thermodynamical experiments in the laboratory performed on bodie s
at rest . Then, by (2 .45), also the functions f(0°, V°) and g(0°, p°) are known
functions of the state variables, and by replacing 0° by 0 and p° by p in
these functions we get the expressions (2 .31, 32) for the relativistic poten -
tials 0(0, V°), T(0 1 , p) . Also the function Ø(0 i , V) of the variables (027, V)
is then determined by (2.38) and, by means of (2.27-30), we can calculate
all thermodynamical state functions in an arbitrary system of inertia .

3 . Statistical Interpretation of the Relativistic Potential s

Historically, statistical mechanics was developed with the aim to provid e
a ` rational explanation' of the thermodynamic laws and thereby obtainin g
a means of calculating the thermodynamical state functions from the know -
ledge of the mechanical structure of the system in question. In non-relativi-
stic mechanics the statistical methods developed by GIBBS supplied the most
general solution of this problem. In the paper quoted in reference [4], a
relativistic generalization of Gibbs' classical theory was given which, as w e
shall see now, supplies an immediate interpretation of the relativistic thermo -
dynamical potentials introduced in section 2 .

Consider a system consisting of n particles of proper mass m which, in
a certain system of inertia S°, are acted upon by forces derivable from a
timeindependent mechanical potential

	

tÎ 0 0

	

0

	

9 (xi , 	 xn, al)

I (2 .45)

(3.1)
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Here, the al are invariant parameters describing the configurations of th e
external systems which may influence our system . Ug will contain the inter -
action U°(x°,ai ) of the separate particles with outside systems (for instanc e
the walls of a container) as well as the interaction W°(x°, . . . xn) between
the particles . Thus, we assume that the forces acting on the particles ar e
derivable from a potential of the for m

Ug° _ 2 U°(x°, al)+W°(x°, .xn) .
r 1

This assumption restricts somewhat the applicability of the theory, for in
relativity theory it is generally not possible to describe the interaction be-
tween the particles in this simple way. In general the interaction has to be
described by an intermediary field which has to be treated as a separat e
physical system with an infinite number of degrees of freedom . However ,
for a gas of particles of nucleonic mass, the relatio n

	 «( 1, (k = Boltzmann's constant)

	

(3 .3 )

is very well satisfied, which means that the system may be treated non-
relativistically in S . In fact, if in is the mass of a nucleon, the proper tem-
perature To would have to be of the order of 10 13 °K in order to make the
left hand side of (3 .3) of order unity and, as far as we know, temperature s
of this order of magnitude are reached nowhere in our present universe .
A violation of the condition (3 .3) will occur only for electrons under very
special circumstances . Excluding these rare cases from our consideration, it
has a good meaning to describe the interaction in S° by a potential of th e
form (3 .2). As regards the mutual interaction of the particles the treatmen t
is then only approximate (although in practically all cases an extremel y
good approximation), but for a system of non-interacting particles, wher e
W° = 0, the detailed treatment given in reference [4] is exact .

In the following development, the potential U° will be regarded as a n
invariant scalar which means that we, in any Lorentz system S, introduc e
a function Ug(x i , . . . ,x i ) of the space-time coordinates of the particles define d
by

Ug (xi, . . . xir , . . .x in ,a) = Ug (xi,	 xn,a),

	

(3 .4 )

where x;. { x,., ctr } and x° are connected by the Lorentz transformatio n
leading from S° to S. Thus, Ug is obtained from Ug° by eliminating the

(3 .2 )

kT°

mc 2
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arguments xr in the latter function by means of the Lorentz transformation .
If we put all the time-coordinates equal to t in this function ,

1 1 =t2 = . . . . = tn=t,

	

(3 .5 )

we arrive at a definite function of the space-coordinates xr and the time
variable t :

Us(xl , . . . xr, . . . xn, t, a) .

	

(3 .6 )

This function will of course depend on the external parameters (a), but it
will obviously also depend on the parameters of the Lorentz transformation ,
in particular on the relative velocity v of S° and S . Thus, for a special
Lorentz transformation, wher e

x.° = y(xr -vtr), y° ° yr, z° = zr ,

	

(3 .7 )

the function (3 .6) i s

Ug(	 xi.,ilr,zr, . . .,t,a) = UU( . . .,Y(xr-vt),y,.,zr, . . .,a) .

	

(3 .8 )

Nov let us assume that our system (the gas of n particles) is in a state o f
thermodynamical equilibrium which in a Lorentz system S is described by
the state variables (0,a) . In this situation we do not have a precise knowledg e
of the mechanical state, which is defined by the 6n `coordinates '

(,u) = (PI,xl, . . .,pr,xr, . . . .pn,xn)

	

(3 .9 )

of the points in the phase space '(S) of the system in S . According to the
developments in reference [4], the situation in question is statistically de -
scribed by the following ` canonical' probability density 13( ,,) in Z(S) :

$($) = exp{(Ø+eiP1(,a))lk}

	

In

	

r (3 .10 )
Pi =

	

Pi+UU(x l ,	 xn ,t,a)Vilc2

	

J
r= 1

(cf . Eqs. (4 ; 7 .1, 2) in section 7 of reference [4]) . In (3 .10), p2' = {pr, -Er ic }
is the `bare' four-momentum of the r'th particle, V i is the four-velocity o f
S° relative to S, and the quantity

	

is defined by
Mat.Fys .Medd .Dan.vid .selsk. 37, no . 4 .
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f

	

$(Ode = 1 ,

6 n

=
II =1

(3.11 )

or

exp {- Ø(0~, a)/k}
= f

. .5 exp { 0 °PN,a)/k1d .

	

(3.12)

A comparison of (2 .22) with (4 ; 5.38) in reference [4] shows tha t

the statistical quantity i in (3 .10) may be identified with the relativisti c
thermodynamic potential introduced in section 2 of the present paper .

In the `rest' system S°, (3 .10) reduces to the canonical distribution o f
GIBBs

= exp{(o° - 0°*Ik}, (3 .13)
where

=Ø ,
and

n

(3 .14)
r= 1

is the Hamiltonian in S° . Further, in S° the equation (3 .12) becomes

exp { -Ø°(0°,a)/k} = f • . fexp{-o°'),,°/klde, (3.15)

which in the usual. way gives us 0°(0°,a) as a function of (0°,a) .
In section 7 of reference [4] we have calculated the functions Ø and Ø °

in (3.12, 15) . According to (4 ; 7,53, 54, 33, 35, 41) we hav e

P(0I ,a ) = f(0 , a ),

	

0°(0 °,a) ° f(0°,a),

	

(3 .16)

where f(0,a) is a function of the norm 0 and (a), defined by

f(0,a) = fß,(0) + fq(0,a),

	

(3 .17 )

exp {- fp(0) /k} = f f exp { -OE° /k}dp° . . .dpn
r

	

(3 .18)
n

	

ZZ2I7Z2Ck

	

l n_ ` f exp {-OE°/k}dp°	 	 i0	 H.z 1 ~(imc z 0 /k){ ,
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exp {- fq(B,a)/k} = J . . Jexp{_6U°(x . . .x°,a)/k}dx° . . .dx° . (3.19)

For non-interacting particles the latter expression reduces to the n'th powe r
of the expression (4 ; 7 .41). In the case considered here, where (3 .3) holds ,
the argument in the Hankel function in (3 .18) is very large and we ca n
substitute this function by its asymptotical expansion . Then (3 .18) become s

2acmk
exp {- fp (BA } =	

0
	 exp { -nmc 20/k}

	

(3 .20)

in accordance with the corresponding formula in non-relativistic statistica l
mechanics . From (4 ; 7 .56, 57) we get

a0(0Z , a)

	

<4>°
Pi = -	 =

	

V
a0~

	

c 2

which is the statistical expression for the inclusive four-momentum of th e
system defined by (2 .3) .

We shall now in particular consider the case where the interactio n
between the particles and the walls of a container are the only externa l
forces on the particles . Then, U°(x°, a) is zero inside the container an d
increases rapidly to a very high value when the particles approach the walls .
Let us for simplicity assume that the container has the form of a cylinde r
with the axis lying in the direction of the x°-axis of the system S° and with
the endwalls placed at x° = 0 and x° = I°, respectively . If the latter wall is
a movable piston we may change the volume V° by moving the piston i .e .
by changing 1°, for we have

(3.21 )

VO = F°1° (3.22)

where F° is the (constant) area of the endwalls . With this arrangement the
only way in which the system (the gas) can be influenced mechanically by
the external world is by changing the position of the piston . Thus, in this
case there is only one external parameter a for which we can choose 1° or V°

and
fq(B , a ) = fq(0 , 1 °) = fg(0,V°)

	

(3 .23 )

is a function of 0 and 1° or V°. For non-interacting particles, where W° = 0
and U°(x°,a) has the property mentioned above, we get from (3 .19)

2*
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exp{- fq/k} _ (Fo1o)n = Von

fq = - knlu(F°I °) = knlu V° .

Thus, for an ideal gas fq is a function of 1° or V° only, but for interactin g
particles fq (and f) will in general depend on both Ø and V°. Therefore ,

in our case, (3 .16) gives

0(0'1 , V I)) = f( o , V°),

	

Ø°(0°,v°) = f(s ° , V°)

	

(3 .24)

and the equations (3 .21) become identical with four of the thermodynamica l
equations (2 .27) . Further, if we identify the mean value of the force p per

unit area exerted by the piston on the fluid with the thermodynamic pres -

sure p, we get from (4 ; 7 .15)

p = <p>

1 af(0°,V°)

	

1 a0°(Ø°,V ° )
p° = <p°~°_ 0°

	

aV°

	

0 0

	

aV°

in accordance with the last equations (2 .27) and (1 .16) . This identification is

justified, since the ratio of the fluctuation to the mean value of the piston
force is proportional to n-112 and therefore generally speaking extremel y

small for a ponderable amount of matter, where nis of the order of Avogadro' s

number. In the rest system the equations (3 .21) reduce to the single equation

<
4 >

o

	

af(Øo
, V°)

	

300(0 0 , V o )
=

	

a0°

	

=

	

ae °

The statistical mean value equations (3 .21, 25, 26) are in complete agreement

with the thermodynamic equations (2 .27) and (1 .16) .
Thus, relativistic statistical mechanics provides an immediate interpreta -

tion of the thermodynamic potential 0 and the relations (2 .27) and, by mean s

of (3 .12) (with a = V°), we are now also able to calculate 0 = f(Ø,V°) when
the mechanical potential Uo is given . However, in accordance with th e
remarks at the end of section 2, it is not necessary to perform the calcula -

tion of Ø in the general system S for, by (3 .16-19), the function fis already

completely determined by the equation (3 .15) holding in the rest system S° .
Now we turn to the question of the statistical mechanical interpretatio n

of the relativistic potential l'(0 1 ,p) introduced in (2 .21) . Just as in the case

1 aØ(Ø i ,V°)

	

1 af(Ø,V ° )

Ø aV°

	

0 aV°
(3 .25)

(3.26)
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of it is sufficient to give an interpretation of the function Y°(Ø°,p°) in the
rest system. In the preceding considerations it was found that 0(0 1 ,V°)
appears as an essential quantity in the canonical distribution (3 .10) corres-

ponding to a situation where the thermodynical variables 0 and V° have
well-defined values . In S° this means that the piston is fixed in a definite
position at :c o = l° and that the gas has been brought in thermal contact
with a heat reservoir of coldness 0° . Thermodynamically, fixed values of 0 °
and V° correspond to definite values of H° and p° for the energy and the
pressure as given by the equations of state, for instance in the form (1 .16) .
Therefore, we can eliminate V° and define the state by (0°,p°) instead of by
(0°,V°) and the potential 7° is then given by the relation (2 .23), i .e .

To = Ø° + B°p°V° . (3 .27)

However, in the statistical mechanical description, fixed values of 0 0 and
V° do not correspond to exactly defined values for the energy and the pres -
sure and the thermodynamical equations of state are valid only for th e
mean values of the energy and the external force. As often emphasized by
NIELS Boxa [12], this circumstance constitutes an instructive example o f
complementarity in classical physics . Energy and pressure are complement-
ary to temperature and volume, respectively, in much the same way a s
momentum and position of a particle in quantum mechanics . It is true that ,
for systems of ponderable size where n is very large, the complementary
character of the mentioned quantities is usually not apparent, but in prin-

ciple, and in special cases also in praxis, the recognition of this comple-
mentarity is of importance for the understanding of the properties of thermo-

dynamical systems .

As in quantum mechanics, the complementarity of the mentioned ther-
modynamical quantities is due to the fact that the experimental arrangements
which allow the fixation of definite values for the quantities in question ar e
mutually exclusive. For instance, in order to give definite values to th e
coldness B° and the volume V° we have, as already mentioned, to brin g
the gas in thermal contact with a large heat reservoir for a sufficiently lon g
time during which the piston is fastened in a fixed position . When thermal
equilibrium is reached, any previous knowledge of the energy and the piston
force will be lost, and our knowledge of the mechanical state of the syste m
after this procedure is adequately described by the canonical distributio n
(3.13, 15) with a = V°, according to which the thermodynamical relations
(1 .16) are valid for the mean values of the energy and pressure only.
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On the other hand, if we want to assure definite values for the coldnes s
0° and the pressure p°, we have to unfasten the piston and subject it to a

constant external force

Kp° = F°p° (3 .28)

instead of keeping it in a fixed position . After thermal equilibrium is reached ,

this situation is again adequately described by a canonical distribution

(3 .13, 15) but now applied to the system (g +p) consisting of the gas plus
the piston . The latter can be treated as a particle of macroscopical mass M

which can move freely along the x°-axis . Thus, if n is the number of degree s

of freedom of the gas, the corresponding number for the system (g +p) i s
n + 1, and the coordinate 1° of the piston and the volume V° given by (3 .22)

do not have exactly defined values in this situation . The constant external

force (3 .28) is derivable from a potential up() ;

	

K°

	

_ r7Up( 1 ° ,p° )

	

P

	

a1°
with

Up(1°,p°) = 41 1° = p°F°l° = p°V° = Up(V°,p°),

	

(3.29)

and as external parameter a for the system (g +p) we may choose the pres -
sure p° .

If we use V° instead of 1° as `generalized' coordinate of the piston, it s

(non-relativistic) kinetic energy is

T°p = MV 0212F° 2
= , ~° _

~V
°

dt°
The corresponding canonical momentum is

dT°
pp =
	 p

= 1ti1V°IF, °2
dV °

Now, the mechanical potential of the system gas + piston i s

U9± p) = U~(x ° , . . .xû,V°)+ Up° (V° ,p°)

and its Hamiltonian (disregarding the rest energy of the piston )

k:,(
p)

=.
S~g

°

+p°V° +F 02pp2 /2M.

Thus, the probability density (3 .13) of the system (g +p) is

(3.30 )

(3.31 )

(3 .32)

(3.33)
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+p) = exp{(Ø(s+p) - 0°,(g+p))!k} .

	

(3 .34)

It is a function of the phase-coordinates (f0) of the gas and the canonical
variables pp and V° of the piston, and Ø(s+p)) is determined by the equatio n

f ' .f

	

= 1 .

	

(3 .35)

We may now calculate the mean values of quantities referring to the ga s
and the piston . According to the equipartition theorem, the mean value o f
the kinetic energy of the piston is kT° and the velocity of the piston will b e
of the order vp - (kT°/M) u12 For M of the order of a gram, vp is therefore
extremely small which means that the piston will practically always be foun d
at rest in spite of its being unfastened . By integration of (3 .34) over pp from
-co to +co we get the probability density $'(°, Vo) of finding the gas at a
point W) in its phase space and with a volume V°, irrespective of the mo -
mentum of the piston . Obviously

	

is of the for m

$* = exp{(ŸJ0 - 00 *)/k}, (3 .36 )
where

vg(e°,V°)+p°V° (3 .37 )

and W 0 is a function of 0° and p° given b y

f
. .fV,d °dV o

	

Jfexp{(Wo_ o o *( o,v o ,p o))/k}deodvo = 1 . (3 .38)

Further integration of $* over (E°) gives us the probability density W(V°)
for the gas having the volume V°. By means of (3.36, 37) and (3 .15) (with
a = V°), we get

W(V°) = exp{(Ÿ' o - 0(0 0 , V O ) _ 0 °pOV o)/k} ,
oo

	

f f
W(V°)dV°

	

exp{ ŸJ0(0°,p°)Ø(0°,V°)-0°p ° V OA} dV° = .

The latter equation may also be writte n

exp{- IIJO /k}
= J

exp{-(Ø(00 ,V0) - -O Op°V°)Jk}dV °,

	

(3 .41)
0

(3 .39)

(3 .40)
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which allows to calculate b0(0 0, p°) when the function Ø0 (0°,V°) in (3.24)

is known. The most probable value V o of V° is determined by the equatio n

dW(V°)

	

_W(V°)(aT(Oo,Vo )
0°p°

dV°

	

aV o +
(3 .42)

aØ(0°, V°)

aVo
	 +0 0p°=0.

By partial differentiation of (3 .40) with respect to 0°, we get in the usual wa y

/k = 0 ,

Ç(o(00,

p°) a(0°,V °)

	

oVol W(V°)dVo
= 0

00 0

	

ao°

	

fJ

or
0 (3 .43)

aT°(0°,p°)
=

< aØ(0°,V°)~ °
+p° <V°> ° .

ae°

	

ao °

Further, by differentiations of (3 .40) with respect to p° ,

1 aT°(0°,p° )
< V°>° = -

	

,
0°

	

ap o

k

a2

0( o po)

	

k < °>°
a2{Vo}

	

<(V0_ <V°>°)°>° = -
002

	

4,02

	

a

aP o
	 ,

	

(3 .45)

where °-2 {V°} is the square of the fluctuation of the volume around it s
mean value <V°>° . Since both <V°>° and o 2 {V 0 } are proportional to n, the
ratio R of the fluctuation to the mean value of V° is proportional to n 1/2 :

R(0°,po) - 6{V°}
= 0(n-112 ) .

	

(3 .46)
< Vo> o

a<V o > o
Apart from very special cases where	

a °

	

is exceptionally large (like at
p

transitions from one phase of the gas to another), the fluctuation of V° i s
completely negligible for a ponderable amount of gas where n is of the order
of Avogadro's number . Therefore, in such cases < V°)° may be identifie d
with the thermodynamical variable V°, and the relation (3.44) between

(3 .44)
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volume, coldness, and pressure must be identical with the relation (3 .25) .
Moreover, the most probable volume V° given by (3 .42) must be equal
to the mean value in this case, i .e .

V° = < V°>°,

	

(3 .47)

in accordance with the result of a comparison of (3 .42) with (3 .25) . This
means that the function (3.39) (for fixed 0 0 and p°) must have a very steep
maximum at V = Vo < V°> 0 with a mean breadth equal to R(0 0 , p°) .
Thus the integral in (3 .40) becomes equal to the maximum value W(V°)
times R, and we . get from (3 .40 )

R(0°,p°) exp{(W0 (00,pO) - 0(00 , Vo) 00p 0 V O )fk} . = 1

	

(3 .48)
or

T 0(0°,p o ) = Ø°(0°,V°) + 0 0p O V o -klnR . (3 .49)

Since Y10 , 00 and V° are proportional to n while InR only contains the loga-
rithm of n, we may neglect the last termin (3 .49) in the case of large n wher e
(3 .47) holds .

Hence
(3 .50)

A comparison of this equation with the thermodynamical relation (3 .27 )
shows that the statistical quantity TJ° entering in (3 .36) may be identifie d
with the thermodynamical potential Yb0(00po) .

The quantity 5-* defined by (3 .37) is equal to the energy of the gas plus
the potential energy (3 .29) of the piston in the external field. By partia l
differentiation of (3 .38) with respect to 0° we get for the mean value of H*

aIIJ°(0°, p°)

	

aØ°(B°,v°) ><~*> =

	

ae°

	

_ <

	

ae°

	

p0< V0>°

	

(3 .51)

e°,V °)on account of (3 .43). According to (3 .26), 11Ø0(110°
	

is the mean value of

the energy s of the gas in a canonical ensemble with a fixed value V° o f
aØ°( 0o , V°)the volume . Hence, <	

aV °
	 >0 is the mean value of H° in the ensemble

with varying V° described by (3 .34). This is in accordance with the relatio n
obtained by taking the mean value of the equation (3 .37) over the ensembl e
(3.34)

To (0°, p°) = Ø O(00, <
vo > °) + 0°p°< vo > 0 .
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< ,v>o = < 4>°+10°<V°>° . (3 .52 )

The equations (3 .51, 52) are exact for all n . However, for large n, where
the function W(V°) has a steep maximum and (3 .47) holds, (3 .51) become s

aß0 (0°, v')<~° =

	

â00

	

+ p°V° .

	

(3 .53 )

A comparison with the first equation (1 .16) shows that the first term on the
right hand side of (3 .53) must be identified with the thermodynamical energ y
H° of the gas and, taking account of (2 .8), we come to the conclusion that
Wj° in (3.51, 53) must be the statistical analogue of the thermodyna-
mical enthalpy E° of the gas in the rest system . The (exact) mean valu e
equations (3 .44, 51) are obviously the statistical analogues of the thermo-
dynamical relations (2 .29) which, in the rest system S°, reduce to the two
equations

	

V°
- 1 a T./ °(0°,p°)

	

E°
_ a tiro (Oo,

p°)

0°

	

ap°

	

'

	

a0°

Thus, the statistical quantity ŸJ° given by (3 .38) or (3 .40) has all the pro-
perties of the thermodynamical potential YJ ° . It is closely connected with
the Ø°-function for the system gas + piston (if we disregard the rest energ y
of the piston) . From the definitions (3 .38, 35) of T 0 and 0(y+v) one easily find s

V2s-rMk/0 0To
(9+p)

	

Y10 -kln

	

Fo

	

(3.55)

Since Ø° and Ÿ10 are proportional to n, we may neglect the last term on th e
right side of this equation for a ponderable amount of gas . Thus, for large n,

Øé9+v)(0°
po) = Y'°(0°, p°) .

	

(3.55)

In an arbitrary system S, the corresponding potential YJ(0i, p) is obtained
from Y'0(0°, p°) by replacing 0° and p° by the norm 0 and p, respectively .
These considerations lead to the following physical interpretation of th e
four-enthalpy Ei in an arbitrary system S . The quantities E 1 , as defined b y
(2 .4) or (2 .29), are equal to the components of the inclusive four-momentu m
of the system (g +p) minus MVi where M is the proper mass of the piston .

The Niels Bohr Institut e

and NORDITA
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