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Synopsis

This paper represents the second part of a study of the electromagnetic energy-momentum
tensor within a material medium. Similarly as in the first part, essentially a macroscopical point
of view is adopted, and emphasis is laid upon the comparison with experiments, both in the
case of static flelds and in the case of time-varying fields within bodies at rest and in relativistic
motion. For the main part the relative behaviour of Minkowski’s and Abraham’s tensors is
studied, but some attention is also given to the tensors introduced by Einstein and Laub, de
Groot and Suttorp, Beck and Marx et al. Deductive procedures are employed, characteristic
effects are studied, both within media at rest and in motion, and some attention is given to a
critical analysis of earlier treatments. Our main conclusion is that Minkowski’s and Abraham’s
tensors are equivalent in the usual physical cases, while the remaining tensor expressions seem
to run into conflict with experimental evidence.
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1. Introduction and Summary

In a previous paper®—hereafter referred to as I—we discussed the
application of MiNkOWSKI'S energy-momentum tensor in phenomenological
electrodynamics. The medium was assumed to be homogeneous, transparent
and usually also nondispersive. Since the essential differences between the
various competing tensor forms are present also in the most simple media,
the above restrictive assumptions were legitimate in relation to the main
purpose of the investigation, namely to examine whether MiNnkowskI's tensor
is appropriate to use in the most common and simple situations. And the
affirmative answer to this question made it just convenient to restrict the
freatment so as to incorporate MiNkOWSKI's tensor only.

In the present paper we shall consider also other tensor forms, so let us
first write down some expressions. The rest inertial frame of the medium
shall be denoted by K¢, while the inertial frame in which K° moves with the
uniform velocity o, shall be denoted by K. Minkowskr’s tensor reads

SM - —ED, - HB, +46,(E-D + H- B) (1.1a)

I

St = ((Ex H),, Sii—i(DxB),, SY=-4(E-D+H-B), (1.1b)

or, in covariant form,
s;;g = FuyHyy ~ 18, FupHop (1.2)

(for notation, see I).

Perhaps the main reason why MinkowskI's tensor often has been rejected
and instead replaced by some other tensor form is the asymmetry of the
former, which is present even within isotropic media. The symmetry re-
quirement is met by the following tensor, which we shall call ABRAHAM'S
tensor,

S50 = —3(E)D) + ESDY) — Y(HPBY + HYBY) + 16, (E®- D" + HY. B% (1.3a)

Sis = Sip = i(E" < H%),, 849 ~ — 1(E°-D°+ H"- B® (1.3b)
1*
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(here given in K9), although this symmetrized form of the stress tensor
§4% for anisotropic media seems to have been given first by H. HErrz®,
When the body is isotropic, the force density in K reads

n® - 10840
fAO :fM0+ Cz —ﬁr’ :1‘10 = fﬁlo, (14)

where n is the refractive index. We shall often be concerned with this tensor
in the following chapters. Its covariant form can be written as

% 1
Sﬁv = S/II% + ‘;(FM(ZFOC - czFOCFOCVll,)V?«” (1.5)

where % = (e — 1)/c? = (n? = 1)[c?, Fy = F,,V, and V,, = y(v,ic).
Another proposal was put forward by G. Marx and collaborators®.
They examined a simple radiation field travelling through an isotropic
medium, and came to the conclusion that Asranam’s tensor, describing the
electromagnetic field, must be supplemented with a mechanical tensor to
give the symmetrical ‘“‘radiation” tensor Sﬁ,, describing the total system:
radiation plus connected mechanical field. In K° the radiation tensor is

i b
given by . 1

S0 _ ~ gdA0 _ T ¢Mo S0 QS0 _ A0
Sz’k - 112 ik ngsik 4 S4’P - SM - S4v’ (1'6)

for all » between 1 and 4.* The covariant expression can be written
< 1 x ] . _
S = H_zslw + ILEE[VMFWFOC + 3V Vo (e Fy Iy + § Fog Fup)). (1.7)

A. EmnvstiEIN and J. Laur® have also examined the problem; by means of
simple examples they constructed an expression for the force density in K9
which corresponds to the following components of the energy-momentum
tensox SEO ~ _EODY - HOBY + 8, (E® + Ho2) (1.82)
SEY = SEY — i(E0 x HY),. - (1.8b)

The energy density component was not given.
The last tensors we shall mention here are due to S. R. pE GrooT and
L. G. Surrorp®. These authors have examined the problem from a purely
* I. BEck(!) has also introduced a tensor which, however, in the case of a radiation field

coincides with Marx’s radiation tensor. Therefore we shall not pay any special attention to
this form in the following sections.
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microscopical point of view, and published recently a series of papers on
the subject. (See also I, section 7.) They give two tensor expressions, de-
pendent on whether the total interaction between fleld and matter is taken
into account or not. In the case of an isotropic medium their first proposal
reads in KO

I

G0
St

SEY = SEY = i(E° x H%),, S5 = — L(E"™ + B%), (1.9b)

— EDY — HYBY + 6, (L E® + { B®” — MY. B") (1.92)

where M0 = B® — HO. It is apparent that for M°® = 0, the components (1.8)
of the EinsTEIN-LAUB tensor agree with the corresponding components of the
nE Groor-SurTtorp tensor (1.9).

The second tensor expression proposed by pe GrooT and SuTTORP: Was
defined as the difference between the total energy-momentum tensors with
and without external electromagnetic fields. This tensor thus corresponds to
taking the whole interaction between field and matter into account. By
omitling the variations of the material constants with density and temper-
ature, as we mainly do throughout our work, we find that their second field
tensor agrees with ABraHAM’s tensor within an isotropic body.

There exist also other proposals that have been put forward, and we shall
have the opportunity to comment upon some of them in the detailed con-
siderations later on. Mostly we shall be concerned with the relative merits of
ABRaHAM'S and MINKOWSKI's tensors, since these tensors, combined with
their appropriate interpretations, are found to be both adequate and equi-
valent in most of the simple physical situations considered.

Further introductions to the subject are given in the books by C. Mgt-
LER™ and W. Pavri®, and in the review article by G. Marx®).

The main task of the subsequent exposition can be conveniently divided
into three parts. Firstly, we want to apply some deductive methods in order
to see how the various tensors adapt themselves to the formalism. As in-
dicated already in I it must be borne in mind that the power of this kind of
method is restricted in the sense that the expressions one obtains are not
unique. Secondly, we wish to examine the applicability of the various
tensor forms to the description of definite phenomena. The description of
the experiments is here a crucial point. Thirdly, we shall spend some effort
to comment upon parts of the earlier literature. There has been published a
large number of papers on the subject, which are often mutually contra-
dictory and moreover scattered over a number of different journals. We find
it therefore of importance to point out some crucial poinis-in the various
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derivations as an attempt to find the deeper reason why the results are
seemingly incompatible.

Throughout this work we take a phenomenological point of view and
refer only occasionally to the simple microscopical treatment in I. This is
done for practical reasons, a thorough scrutiny of the microscopical aspects
would require a separate treatment. However, we think there is also a
reason of principle why it is sensible first to choose the macroscopical line
of approach in order to obtain a satisfactory description of the physical
phenomena: In the simple cases considered, the results obtained by means
of these macroscopic or semi-macroscopic methods are both consistent and
moreover fit the observed data in an excellent way. I'rom a pragmatic point
of view the macroscopical kind of method is therefore not only a possible
kind of approach but in fact the appropriate one as a first step, and micro-
scopical methods with their complicated formalism should properly be
considered to represent a later stage of the development.

Let us now review the subsequent sections. Section 2 is devoted to an
analysis of electrostatic fields. We considor again the variational method
which was employed in section 3 of I, and show how MiNgowskr's and
ABRAHAM'S tensors emerge from the formalism in an equivalent way. It is
found that, as far as a dielectric body is surrounded by a vacuum or an
isotropie liquid, no experiment testing electromagnetic forces or torques on
the body can decide between these tensors. The two tensors correspond
merely to different distributions of forces and torques throughout the body:
According to MiNkowsEI the torque is essentially a voluune effect, described
by the tensor asymmetry, while according to ABRaHAM the torque is described
completely in terms of the force density. We consider a typical example, in
which ABRaHAM’S torque naturally comes out as a surfuce effect.

In the remainder of section 2 we discuss to some extent the EiNsTEIN-
Laup (or the pE Groor-SurTorp) tensor. It is found that also in this case
no force or torque experiments on a body surrounded by a vacuum or an
isotropic fluid represent a critical test for the tensors in question. However,
there is actually one effect which represents a critical test, namely the pres-
sure increase in a dielectric liquid because of the field. In order to apply the
theory to this case it is necessary to extend the variational method mentioned
earlier (the HELMHoLTz method) so as to include also the electrostriction
effect, although we are otherwise ignoring this effect in our work. S. S.
Haxmv and J. B. HigHaM have tested the pressure increase experimentally,
and they found that the HeLmHOLTZ force describes the observed data very
well. On the contrary, the pressure increase predicted by the EiNsTEIN-LauB
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force (which is also called the Kervin force) was found to be in disagree-
ment with the experiment. _

In section 3 we continue the consideration from I, section 6 concerning
the propagation of an electromagnetic wave within an isotropic body at rest.
By means of the semi-macroscopic method that we are adopting, and by
taking the radiation pressure experiment due to R. V. Jones and J. C. S.
RicHARDS into account, we find that ABranam’s and MINKOWSEKI'S tensors are
equivalent in the following sense: ABranaM’s force density excites the con-
stituent dipoles of the material and produces a mechanical momentum which
travels together with the field. If we count this mechanical momentum
together with ABrarAM’S momentum as a field momentum, we obtain
Mingowskr's tensor. By considering the situation in the frame where the
mean motion of the constituent particles vanishes we find that, in the case of
an infinite medium, the energy-momentum tensor of the total system can be
written as the sum of ABRaHAM’S tensor and the mechanical tensor in the
absence of fields.

We continue section 3 by discussing an example in which the boundary
between two media is involved. Finally we consider alternative tensor forms,
and find that the radiation pressure predicted by the radiation tensor is in
disagreement with the JoNES-RICHARDS experiment.

In section 4 we discuss possibilities for torque experiments, especially
when MiNkOwskE's or ABRAHAM'S tensors are taken as field tensors. For a
stationary optical wave in interaction with a dielectric body we find that the
two tensors will always yield the same value for the torque. Thereafter we
propose an experiment involving a low-frequency combination of electric
and magnetic fields. This experiment should be appropriate for the detection
of ABRAHAM's force, which is hidden in the case of optical fields. Finally it is
concluded that the case of an optical field travelling through a dielectric body
immersed in a dielectric liquid should represent a possible means for a
further experimental check of the radiation tensor and the EinsTEIN-Laus
tensor.

Section 5 is devoted to a critical review of some parts of the earlier
literature, especially those parts which seem to run into conflict with our
own interpretations. We are otherwise commenting upon passages from
earlier treatments also in our ordinary exposition of various topics, but there
remain interesting arguments which cannot so naturally be dealt with in
the ordinary treatment. We think such a critical analysis is desirable in a
study of the present problem, since an important part of the task is just to
clear up a situation which is confused by mutually contradictory opinions.
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For the main part we discuss gedanken experiments which have been put
forward to support either Minkowskr's or ApranaM's tensor, and show how
these situations are to be explained with the use of the formerly rejected
alternative. In the remaining part of the section we mainly discuss some
aspects of the EinsTrEIN-LAUB paper.

In the subsequent sections we discuss topics connected with relativity,
and, except for the last section, limit the consideration to the case of isotropic
media. Section 6 is devoted to a study of the torque acting on a moving body
when an electromagnetic wave is {ravelling within it. We first calculate
ABraHAM’'S and MINKOWSKI's torque expressions when the body is assumed
infinitely extended, and show thereafter that both these expressions are
relativistically consistent. In this context we draw inlo consideration an
analogous situation encountered in relativistic mechanics: An elastic body
subjected to stresses in its rest system may in other inertial systems require a
torque in order to maintain steady motion. A similar situation is found to be
present also here in electrodynamics: We require stady motion of matter
plus field and find that there must then exist a rate of change of electro-
magnelic momentum which is just equal to the previously calculated torque,
with the opposite sign.

If the body is finite, we find that the most natural division of the total
angular momentum into a field part and a mechanical part is obtained with
the use of ABrRaHAM's tensor for the field.

Section 7 contains a discussion of various relativistic phenomena. We
begin by considering the velocity u = §/W of the energy in an optical wave.
In section 9 of I we found that « transforms like a particle velocity if Min-
ROWSKI's tensor is used. We now find that Apranam’s tensor cannot fulfil the
transformation criterion due to the fact that this tensor does not describe the
total travelling wave. We analyse the background for the transformation
criterion, and give a rather general form of a tensor that fulfils it. The radi-
ation tensor falls within this category.

Next we consider the relativistic centre of mass of a finite, but practically
monochromatic, field. In section 12 of I we found that the various centres
obtained with the use of MinkowskI's tensor in general do not coincide when
considered simultaneously in one frame. Actually, by considering in the rest
frame KO the centres of mass obtained by varying the direction and magnitude
of the medium velocity, we found that they are located on a circular disk
lying perpendicular to the inner angular momentum vector in K with centre
at the centre of mass in K% Now the various centres of mass are found to
behave in exactly the same way if the ABrRaHAM tensor or the radiation tensor
is adopted.
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The CErENkov effect is thereafter briefly analysed in the inertial frame
in which the emilting particle is at rest. From a study of the momentum
balance in this situation, 1. Tamm has given preference to MINKOWSKI'S
tensor. We show how the momentum balance appears with the use of Asra-
HAM's tensor. Section 7 is closed by some further remarks upon the literature.

In the last section we employ a variational method which implies the
application of curvilinear coordinates as a formal remedy. For a closed
system this method in general leads to a determination of the energy-momen-
tum tensor, but the method is shown to leave a certain ambiguity here due to
the fact that the LacraNGIAN leading to the electromagnetic field equations
corresponds to a non-closed physical system. Section 8 is rather detailed,
since this subject has caused some confusion.

Finally we consider again the Sagnac-type experiment due to C. V. HeEg,
J. A. LitrriLe and J. R. Buep, which was discussed in section 9 of I. We find
that this experiment, although it gives an excellent verification of the pre-
dictions of macroscopic electrodynamics, does nof represent a critical test
for MinkowskI's tensor, such as it was originally claimed. In fact, the ex-
periment is found to be explained equivalently also by ArRrRananM’s tensor and
the radiation tensor.

The Appendix gives in tabular form a summary of the behaviour of the
various examined energy-momentum tensors in some physical situations.

2. Static Fields

We begin with an examination of the various tensors applied to the
simplest physical case, namely the static fields. Actually, only electrostatic
fields shall be considered since, for the simple case with linear inductive
magnetization here considered, the corresponding vesults in the magneto-
stalic case can be taken over by analogy. In this section we first consider
the important point concerning the relative behaviour of MiNnkowsxkI's and
ABranam’s tensors, and show how they in general lead to equivalent experi-
mental results. Thereafter we consider various other tensor possibilities.
Since all quantities are taken in the rest frame, the superscript zero on them
shall simply be omitted.

Minkowski’s versus Abraham’s tensor

From (1.1a) and (1.3a) it is apparent that Minkowsxki's and ABrAHAM'S
tensors are equal in the electrostatic case for isotropic media. We therefore
generalize the situation and consider the same physical system as in 1,
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section 3, namely a dielectric, anisotropic medium containing an electric
field which is produced by some external devices. The linear relation
E, = 9y Dy is assumed to be valid. By varying the free energy

F = %jE-DdV (2.1)

and equating — d% [dt lo the rate of mechanical work ff-udV exerted by the
volume forces, we found in I f = f4, where
J* = 0E+1D;Dy vy — +0,(EDy — E, D). (2.2)
This corresponds to the stress tensor
S = —S(E; D, + E,D)) + 16, E-D. (2.3)

By comparison with (1.3a) it is thus evident that we have obtained ABra-
HAaM's tensor. However, by invoking the “‘dipole model”” and assuming the
existence of a forque density v = D x E with a corresponding extra con-
tribution f 7-(dp/dt)dV to the rate of mechanical work (g being the rotational

angle), we found instead MiNgOWsKI's result
SY = 0E+ 1D, D,V (2.4)
SM - ~E,D, + +6,,E-D. (2.5)

According to this description, the result is dependent explicity on the as-
sumption of an extra torque density.

In order to make a more dislinct comparison between the two tensor
forms, it is convenient to reformulate the balance equation in terms of the
rotational angle ¢ rather than the velocity # ~ ds/dt. Since f-s = (r x f)-¢
we have from (1,3.10,9)

[Ir < @B+ 4D,D, V01 -9aV + [ (D < B)-gav

(2.6)
- f(r xf)-qadeFf‘c'tpdV,
where f and 7 are as vet unspecified. As ¢ is arbitrary, we obtain
rxf+1=rx (QE+3+D,D,Vny)+ D < E. (2.7)

This relation is fulfilled directly with Minkowski’s tensor, and only then.
However, let us add the vanishing quantity
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1 f (E,D-n — E-nD,)s,dS, (2.8)

cond

taken over the external conductors that produce the field, and let us combine

f(DxE)-(pdV—%f (E,D'n — E-nD,)s,dS l
cond (29)
- —g-fak(ED,c — E,D)-sdV = —%,f[r x 0, (ED; — E,D)]-¢dV. ’
Then (2.6) is equivalent to
[[" * (@E + £ D; DV, — 3 0, (EDy, — EpD))|-9dV
‘ (2.10)

= f(r xf)-(pdV—l—frtpdV,

and we obtain now f=f4, 7 =0, i.e. ABRanaM’s tensor. In this case the
torque is described in terms of the force density, while in the former case it
was described by the asymmetry of the stress tensor. We must conclude
that, as far as the dielectric body is surrounded by an isotropic medium
(here vacuum), no unambigeous answer can be given for electrostatic systems.
And this result is connected with the fact that the total body torque is the

same for both tensors in this case: We may put the torque formula into the
form

No= [ wehi+ Su-Swav = - [ oosmoas, i

surface

where S,; = S;;n;. Thus the total torque can be evaluated from the vacuum
values of the field, and MiNkowskr’s and ABrRanaAM’s lensors must yield the
same result. Similarly, the total body force can also be put into a form
which involves the vacuum field values only; by starting from the balance
equation for total momentum we obtain readily for the total body force

F, - - f S¥ac gs, (2.12)
surface
in accordance with (2.11).

It should be emphasized that in order to obtain MiNxowskl’s tensor in
the first procedure above, we had to take into account the existence of extra
body torques with the density D x E. In the second procedure, however,
the equivalence between Minkowskr's and ABraHAM's tensors was demon-



12 Nr. 13

strated simply by adding the vanishing term (2.8) in the energy balance.
The additional assumption concerning the torque D x E will thus lead to an
equivalent description with respect to observable effects for the whole
dielectric body, only the distribution of torques and forces within the body
will in general be different.

It is clear that the above reasoning will not be changed if we assume that
an isotropic, dielectric liquid fills the space between the body and the con-
ductors, since Minkowskr's and ABRAHAM'S tensors are equal in such a
liquid.

The arguments hitherto have dealt with the dielectric system considered
as a whole. If several insulators are present between the conductors, then
the torque acting on an individual insulator is still independent of which
tensor we use. That follows immediately from the fact that we obtain ex-
pressions like the last term in eq. (2.11) for each insulator in question.

An example

For the sake of illustration, let us consider again the same physical
situation as in I, section 3: A dielectric sphere is located in a homogeneous
electrostatic field such that the principal axes of the sphere coincide with the
coordinate axes. The external field is given as E° = (EY, EJ, EY). With the use
of MiNnkowskr’s tensor, we obtained in I for the single nonvanishing com-
ponent of the torque

N3t = f (S - SIHdv - f (D x E);dV = (p x E);, (2.13)
body body

where p = 3V[(e; — D EY (&1 + 2), (&5 — 1) ES(&y5 + 2),0],V being the volume
of the sphere. According to (2.13), it is natural to interpret the effect as a vo-
lume effect.

Let us now insert ABRAHAM'S tensor into the torque formula (2.11) so as

to obtain
Ng = [ @ fave [ rx (st - SpoLds l
body surface (2_14)
— [ rxspyas = (b < B, J
surface

The expressions (2.14) and (2.13) are equal, as they should be. But for
ABrapaM’s tensor the volume effect vanishes, as is apparent also from the
fact that f4 = 0 in the homogeneous field in the body. In this case it is natural
to interpret the effect as arising from the volume forces in the boundary layer.
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Olher tensor forms

Lelt us now examine the various other tensor proposals mentioned in
section 1. The radiation tensor due to MaRrx ef al is defined for radiation
fields within isotropic media only, and shall not be considered here. But
there remains the EinsTrIN-Laug tensor (1.8a) and the pE GrRooT-SUTTORP
tensor (1.9a), which actually are seen to be equal in the electrostatic case.
The force density is

f? = gE+ (P-V)E, (2.15)

which is different from both (2.4) and (2.2). This force is also called the
KerLvin force. The difference is expected to be connected with the fact that
the force densities (2.2) and (2.4) were obtained from a variational principle
based on the free energy in the form (2.1), which includes the interaction
energy between field and matter. And this energy is not directly compatible

with the energy , f E®dV following from (1.9b).

As regards the possibility for an experimental check of the force (2.15)
we have first to point out that, as far as the dielectric body is surrounded by
a vacuum, the total body force and torque obtained from SZ must both be
equal to those obtained from the two tensors considered earlier. That this is
so follows immediately from (2.11) and (2.12); the effects can be calculated
directly from the vacuum tensor. We therefore next have to consider the
situation where the body is surrounded by an isotropic liguid. There exist
certainly electrostatic effects for which the influence of a dielectric liquid is
essential; we may think of the rising of a liquid between two charged con-
denser plates partly dipped into the liquidd®, or the force acting on a
grounded metal sphere immersed in a liquid and surrounded by an in-
homogeneous field.

However, none of these experiments represent critical tests for the validity
of either MinkowskI's or EINSTEIN’s force. This can be seen in a simple way
by first noting that the force difference is a gradient term:

¥ = 3V(E-P)+oE+{D;D,Vny = $V(E-P) + fY. (2.16)

Compared to Minkowskr's tensor, EINSTEIN’s tensor thus gives rise to an
extra isolropic pressure

p*-p"
In accordance with (2.11) and (2.12) the total force and the total torque on
the solid body are determined by the values of §, in the liquid just outside
the body. We have

-~ 1E-P. (2.17)
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Sy = S tn(E-P), (2.18)

but the effect from the last term in (2.18) (acting outwards) is just balanced
by the extra pressure (2.17) which the liquid exerts on the solid. Hence
Minkowskr's and EINSTEIN's tensors give the same values for the body force
and torque. This compensation effect is the direct reason why a measurement
of the total force on a metal sphere in the liquid represents no critical test:
With EiNsTEIN'S lensor there are additional forces in the boundary layer of
the sphere which just counterbalance the additional forces in the liquid
tending to press the liquid into regions of higher field.*) If we suppose that
the system producing the inhomogeneous electric field (for instance a small,
charged metal sphere) is maintained at constant charge when it is surrounded
by the dielectric liquid, we find that the total force F¥ = F® on the test sphere
will drop in the ratio 1/e in comparison with the total force in the absence
of the liquid, F¥ = (1/&) F¥e°,

In the remaining example mentioned above, where two parallel con-
denser plates are partly immersed in a dielectric liquid, the main reason for
the equivalence is simply the compensating forces in the liquid itself: The
total electromagnetic force in the liquid between the condenser plates which
balances the gravity force at equilibrium is found by integrating the force
density over a volume which starts in a domain of the liquid where the
field vanishes and ends just above the surface where ¢ = 1. Thus the effect
from the gradient term in (2.16) vanishes, and a measurement of the height
of the liquid between the condenser plates cannot serve as a means to deter-
mine the validity of either f¥ or f¥. This point has been emphasized also by
S. S. Hagm @),

[As stated above, Minkowskr’s and EINSTEIN’S tensors must be equivalent
also with respect to the torque on the body. Actually, this latter kind of
equivalence can be seen already by inspection of the expressions (2.5) and
(1.8a). For the difference between the tensors is contained entirely in the
terms multiplying J;,, and the torque effect from such a term is found
simply by integrating — { E-D(r x n) and — }E%(r x n), respectively, where
the field variables refer to the fluid, over the body surface. If the body is a
sphere, it follows immediately that this torque effect vanishes, Further, the
same result also applies if the body does not have a spherical form: In this
case we may lay a fictitious spherical surface in the fluid outside the hody
so that » x # = 0 on the surface, and from the stability of the fluid it follows
that the torque exerted on the fictitious surface from the outside must be

* We are as usual assuming a rapid but continuous variation of ¢ across the boundary layers.
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equal fo the torque acting on the real body surface. In all cases the hody
torque is determined entirely by the first terms in (1.8a) or (2.5).]

While Minkowskr's and EINsTEIN's tensors thus lead to the same ex-
pressions for forces and torques, we shall now see that there actually exists
another effect which is measurable and which represents a critical test of the
two tensors, namely the pressure increase in a dielectric non-polar liquid
because of the field. Let us then first point out which electromagnetic forces
may produce this excess fluid pressure. MiNnkowskr's force density is, in
accordance with (2.4),

M = oE ~ {E?Ve, (2.19)

and so the only pressure-producing term within the fluid, where p = 0, is
the term — £ E2Ve. This term is of importance in the boundary region between
two media. We shall, however, in the following confine ourselves to situ-
ations where this term is of no importance, as for instance the situation
where a charged condenser is completely immersed in the liquid.*) The
condenser is moreover imagined placed horizontally, so that the gravity
effect can be ignored.

The next kind of force which may yield an increased pressure effect is
the electrostriction force. We have hitherto ignored the elecirostriction in our
work, it has usually no influence upon measurable quantities, but at this
point it is indispensable. We then start again from the free energy (2.1) and
carry through the variational procedure similarly as in sect. 3 of I, but now
with the inclusion of terms showing the dependence of ¢ on the mass density
0m- For definiteness we shall continue to call the expression (2.19) Min-

kowskr's force, while the complete force expression shall be denoted as
HerLumuoLTZ® force

F = 0E-1Eve+ 3y E2e, 2.20
0B~ 4BV e V| o " ). (2.20)
m

For the simple non-polar liquids here studied we may eliminate the mass
density be means of the Cravsius-Mossorti relation (¢ — 1)/(e + 2) = const.

0. and so (2.20) yields the following expression for the excess pressure,
produced by the field:

ApH = pH — p® — 1(e—1)(e+ 2)E2 (2.21)

* However, even in such a case Ve will not be exactly equal to zero; ¢ will increase some-
what in the domain between the condenser plates if the fluid pressure here increases due to
some other kind of force. With the simple non-polar liquids and moderate pressure changes
that we shall be considering (Ap of the order of one atmosphere), the influence from Ve on the
force is, however, negligible. See refs. 11, 12 or International Critical Tables.
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where p?is the fluid pressure when the field is turned off, thus corresponding
to a slightly diminished mass density.

Finally we turn our attention to the Einstein force (2.16). Since Min-
KOWsKI's force yields no pressure effect in the physical situations we consider,
it follows immediately from (2.17) that

Ap® = pf —p® = L (e - 1 E~ (2.22)

It is clear from eqs. (2.21) and (2.22) that an experimental detection of
the excess pressure represents a critical test of HELmuoLTZ and EINSTEIN’S
force expressions. Now this kind of experiment has actually been per-
formed by S. S. Hagmt and J. B. Hieram@2), They used an ingenious method
based on the fact that the excess pressure which the field produces gives rise
to a slight compression of the liquid and so increases its refractive index.
This increase was determined experimentally by means of a ToEeEpLER-
ScHLIEREN optical technique, i.e. by a measurement of the angular de-
flection of light rays passing through the liquid. The experimental results
were found to be in agreement with the formula (2.21) within limits of
accuracy of + 59/p, while they disagreed completely with the formula (2.22).

The Hakim-HicHam experiment thus yields the important result that the
fluid pressure p in the presence of the field can be identified with the HELm-
oLtz pressure p. Hence we can draw the coneclusion that the validity of
the HeLmMuoLTz variational method used above, based on the free energy
(2.1), is confirmed experimentally. It has sometimes been argued that one
has the freedom to define the force density f and the pressure p arbitrarily,
also in the electrostalic case, apart from the single restrictive condition that
the relation f = Vp must be satisfied. We think however that the experiment
clearly demonstrates that there is no room for this kind of arbitrariness in
the electrostatic case within a dielectric liquid: By an integration of the force
density over a volume element one must obtain the total electromagnetic force
on that element which is compensated by the external pressure force acting
on the surface. Since the excess pressure predicted by HermuorTz’ force
expression has been verified experimentally, one should not introduce
different definitions for pressure and force that would destroy this cor-
respondence.

We also refer to another, theoretical, work®! by Haxm in which the
HerLmuonTtz force is derived under essentially the same assumptions as
those inherent in the usual derivation of the Crausius-MossoTTI equation.
Further, Hakm was able to show that the EinsTEIN force runs into conflict
with the Crausius-MossorTi equation.
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Since the electrostatic contribution to the force consists in a gradient term
it follows immediately, as indicated above, that the electrostriction will
yield no observable effect upon the electromagnetic force or torque acting on
a test body. The gradient form implies that there is always a balance between
two equally large and oppositely directed forces at the body surface. For
this reason HerLmuoLTz  force can usually be replaced by MINKOWSKI'S
force, as we have done in our work.

It is instructive to give the expression for the total siress tensor Ty,
corresponding to both the liquid and the field:

Ty = pY¥ 0 — EDy + L E? 8. (& — 0,,de/dpy,) (2.23a)
— p°8;, — E, D, + 40, E-D, (2.23b)
0Ty = 0. (2.23¢)

These equations obviously do not apply to the domains in space wherein
external bodies have been placed. Note that the validity of eq. (2.23b) is
dependent on the fact that we have confined ourselves to systems for which
the excess pressure is due entirely to the electrostrictive force. If on the other
hand we had considered a situation in which also the term — }E?Ve in the
force had a pressure-producing effect (as for instance the situation where the
vertical condenser plates are partly immersed in the liquid), the fluid pres-
sure p¥ appearing in (2.23a) would no longer have been determined by the
simple equation (2.21).

Now we have considered the pressure as a function of the zero-field
pressure p® and the squared electric field E2. It is however possible to regard
the pressure as a function of the mass density g,, only, where the latter
quantity includes also the contribution from the compressional potential
energy set up by the electromagnetic forces. We can write the total free
energy density F™' as the sum of a mechanical part F™® and an electro-
magnetic part F = 1 E-D:

Ftot _ pmech(o ) 4 LE.D, (2.24)

where o, = ¢% + 4do,,, 05, denoting the zero-field value and Ap,, denoting
the increase on account of the field. The pressure is then derived according
to the familiar formula
d —1Fmech
— J&"_T_) . (2.25)
Oem
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Thus, although the amount of compressional potential energy transferred
to the material from the electrostrictive forces is very small, it is nevertheless
important to include also the electrostrictive contribution to g,, when deriving
the pressure according to (2.25). Otherwise, if the expression (2.25) is
calculated simply when the field is switched off, one will obtain the pressure
p°. Obviously it is not the electric field per se which is of main importance;
we may well assume that the field is absent in calculating (2.25), but then
we have to imagine the presence of some other kind of external force which
produces the same value of the density at each point.

We now turn to a comparison of the above results with those obtained
by pE Groor ef al. As mentioned already in section 1, pE Groot and Su7-
ToRP® have introduced also a second form of the electromagnetic energy-
momentum tensor, which is assumed to describe the whole interaction
between matter and field. This tensor form is in agreement with ABramaM’s
expression when the latter is supplemented with the appropriate electro-
strictive and magnetostrictive terms, and when the terms involving the der-
ivatives of the material constants with respect to the temperature are omitted
(these temperature-dependent terms being negligible in the case of non-polar
media). We then first note the interesting result that the second tensor
introduced by npE Groor and SuTTORP is In accordance with the Herm-
nortz force in the electrostatic case, and thus is in agreement with our
interpretation above. Now, since this tensor is assumed to describe the whole
interaction between field and matter, it is constructed as the difference
between the total (field plus matter) tensor in the presence of the field, and
the total tensor in the absence of the field but at the same value of the density
(and the temperature). This last statement is presumably to be understood
so that the total mass density g,, (including the contribution from the com-
pressional potential energy) is required to be kept constant, independent of
the field, the authors thus implicitly presupposing the existence of some extra
kind of force to maintain the compressional energy when the field is swit-
ched off. By looking at the theory in this way we find that their mechanical
stress tensor can be written as p? §;,, the force balance thus reading f# = vp¥,
in accordance with our result earlier ohtained.

However, in spite of this formal agreement between the results it turns
out that the two procedures are essentially different. (Apart from the already
cited papers by pE Groor and SurTorP, see also similar lreatments by
Mazur and pE GrooTd3: 10} Let us here therefore sketch some important
parts of the mathematical formalism. The authors employ the following,
rather unusual, balance equation for free energy per unit mass




Nr.13 19
d(@n' F*) = — pd(g,") + E-d(0,,' P). (2.26)

Here we have omitted a temperature-dependent term. We shall not penetrate
into the background of this equation, but mention that it is connected with
the adoption of }E? as the electrostatic energy density. Eq. (2.26) is inte-
grated at constant g,, to give

Ftot _ Fmech(gm) +4E-P, (2,27)

where F™¢! js the free energy density in the absence of the field, but at the
same mass density. The authors then invoke egs. (2.26) and (2.27) to
calculate the pressure

0 —llgtot d
p = {,(9(9&__1_)} =p +1§E-P—%E2@m—-8—. (2.28)
Om (oz1 P) do,,

This pressure p is now identified with the EinsTriN pressure p” and the
expression (2.28) is inserted into the force balance f¥ = VpZ. The force f#
can be expressed in terms of the field quantities by means of eqs. (2.16) and

(2.19), and by comparing with the expression (2.20) for the HeLMHOLTZ
force one sees that

d‘
fE = fH+%V(E-P~E29mEI—é>. (2.29)

Om,

Thus, by using eqgs. (2.29) and (2.28) the authors obtain that the force
balance ff =vVp® can alternalively be written fZ = vp#, as previously
mentioned. Correspondingly, the identification of the pressure p in eq.
(2.28) with the ENsTEIN pressure p” is in accordance with eq. (2.29).

At this stage it should be clear what in reality distinguishes the method
employed by pE Groort ef al from the method we have employed earlier in
this section. First, the expression (2.27) for the free energy density differs
essentially from the expression (2.24) and hence does not correspond to
the free energy density LE- D for the field. The latter density was used in the
variational principle based on eq. (2.1), and it must be equal to the work
exerted per unit volume in building up the field. Secondly, a relation of the
form (2.28) is incompatible with our earlier interpretation according to
which the pressure is a function of the total mass density alone, the field
playing only a secondary role in establishing the compressional force,
Instead of calculating the pressure as a partial derivative of the type (2.28)
whose physical meaning does not appear quite clear 1o us, we have instead

2*
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employed the usual method according to which the pressure gradient and
the electromagnetic fotce emerge from a variational principle wherein
respectively the mechanical free energy density F™" and the field free
energy density ¥ = +E- D are varied. Thus, after variation of the mechanical
part, the fluid pressure can be written simply as a partial derivative in the
form (2.25), but this quantity is not explicitly dependent on the field. If we
instead had inserted the total free energy demsity F*™' into the variational
integral we would have obtained the resulting force density equal to zero, in
accordance with the fact that the system consisting of matter plus field is a
closed system.

The results obtained in this section can be summarized as follows: The
variational method based on the energy (2.1) can lead both to MiNKOWSKI'S
and ABraHAM'S tensors, and as far as the dielectric body is surrounded by
an isotropic medium (vacuum or liquid), no experiments testing forces or
torques can decide between them. These tensors correspond only to different
distributions of forces and torques throughout the body. Within an isotropie
medium the tensors become equal, and the increased pressure effect predicted
in a dielectric liquid (ine¢luding the electrostriction effect) has been verified
experimentally.

The other proposal considered, but forward among others by EinsTEIN
and LauB (as well as pE GrooTr and SuTTORP in their first proposal), is
different from the above two expressions even in the isotropic case. The
extra pressure effect predicted by this tensor does not agree with experiment.

As usual, we have in this section confined ourselves to the macroscopic
approach. It seems to be a rather common feature, however, that the micro-
scopic treatments that have been given in this field favour the force expression
which we have called EinsTEIN's force. Apart form the already cited papers
by Mazur and pE GrooT1®®, pE GrooT and SurTorP®), we may refer also
to a paper by Kaurman@¥, in which similar conclusions have been drawn.
We shall not, however, go into further considerations at this point.

3. Consideration of an Electromagnetic Wave in an Isotropic
Body at Rest

We now turn our attention lo simple time-varying fields within a dielectric
medium at rest. In the first part of the section we rely upon the semi-micro-
scopical arguments from I, section 6 to point oul the connection between
Minrkowskr's and ABraHAM's tensors for a plane wave travelling within an
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isotropic and homogeneous body; thereafter the considerations are illustrated
by an example where also boundaries are involved. Finally, we examine
alternative tensor proposals.

We recall the essential parts of the procedure for constructing the energy-
momentum tensor in I: The energy density was taken to be the sum of the
electrostatic and magnetostatic energy densities; correspondingly, the stress
tensor was conslructed as the sum of the electrostatic and magnetostatic
stress tensors derived by the usual energy variational method. From the
energy density in the form W = {(E-D + H-B) and from the fact that the
four-component of force, f;, vanishes within the dielectric., we deduced the
expression § = ¢(E x H) for the energy flux. Assuming the relation § = c%g,
expressing Pranck’s principle of inertia of energy, to be valid also for the
electromagnetic field, we further found the momentum density g = (1/c)
(E x H).

In accordance with (1.3) it is apparent that these components form
ArranaMm’s tensor. 1f the remaining part of the total system (the mechanical
part) is described by an energy-momentum tensor U,,, the present division
of the total system into electromagnetic and mechanical parts may be ex-
pressed by the equation

— 8,88, = f4 = 0,U,,. (3.1)

The covariant form of S/“}v is given in (1.5). ABRaHAM’s tensor has been
advocated by many authors, and we also agree that it represents a fully
adequate description of phenomenological electrodynamics. It must be
borne in mind that we are neglecting electrostriction and magnetostriction
elfects; these effects would lead to additional terms in the tensor components.
Actually we find, in the time-dependent case as well as in the static case,
that if Apramam’s tensor is augmented by the electrostrictive and magneto-
strictive terms the resulting expression is just equal to the second tensor
expression given by pe Groor and Surrorp (apart from terms involving
the derivatives of the material constants with respect to temperature).

It must be borne in mind however, that the present problem is to some
extent a matter of convenience, and the question arises whether there are
alternative tensors which can equally well be justified on the basis of (3.1).
Our next task is thus to examine the effect induced in the mechanical tensor
Uy, on account of the force f/‘f. According to (1.4) this force has only one
nonvanishing component, namely a fluctuating component in the divection of
propagation of the plane wave. We take this direction as the x-direction; if
the velocity of the constituent dipoles in the x-direction is denoted by uy,
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we found in I that the contributions to the components U, and U,, because
of this velocity component are at most of the order (u,/c)?, which are negligible
quantities. On the other hand, the components Uy, = Uy, = icgP*® = ico,, 1,
are of the first order in u;/c and may thus be appreciable. By invoking
the JoneEs-RicHarDs experiment® we actually determined the induced me-
chanical momentum density as

n? -1

c

mech _

g

(E x H) (3.2)

in the case of an optical wave. This mechanical momentum runs always
together with the field. Simply by including (3.2) in the field momentum
densily we obtained Minkowski's value g” = (1/c)(D x B). This is the total
electromagnetic and mechanical momentum density associated with a pro-
pagating optical wave. Further, this interpretalion means that the matter is
set into a small motion with the velocity u; when the field passes through it;
the flux of mechanical energy SP*® = — jcU,; = — icU;, being present be-
cause of this motion must naturally be included in the mechanical tensor.
Note that f, = 0 (ffu; being negligible), so that 4, U,, = 0.

If we suppose that the optical wave travels within an infinife medium,
so that there are no forces in the boundary layers fo cause stresses in the
material, the components U, of the stress tensor are equal to their values at
zero field. In more general cases, the components U, have to describe the
elastic stresses which are set up because of the electromagnetic forces at the
boundaries.

Further considerations on these topics are containeéd in I, section 6, but
we shall here write down the tensor scheme which pertains to MINKOWSKI'S
tensor: The field is described by

St SH+ Uy
Si = <SZA ’ o ) 8,54, - 0, ‘ (3.3)
ak a4

and if 7, is the energy-momentum tensor of the total system the mechanical
part is described by

Ugp, O
T, — S :( " ) (3.4)
wy v s
Upr Uy
where Uy = —g,c% The symmetrical and divergence-free tensor 7,, is

thus divided into two asymmetrical but divergence-free tensors describing
the electromagnetic and mechanical parts of the system. We emphasize
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Z

again that the reason why this kind of division is convenient lies entirely in
experience. Further, although the division of course does not affect the
angular momentum conservation law for the total system, the asymmetry of
the partial tensors gives rise to unfamiliar aspects for the angular momenta
of the two subsystems.

It is instructive to consider the system not only in the frame K9 the
original rest frame—but also in the frame K’ in which the mean velocity of
the matter is zero. In this frame all tensor components retain their old values
from K° except for the components U,, = U;, whose average values are
zero. Apart from fluctuating terms the above two kinds of splitting then
become equivalent: The field is described hy the same ABRaHAM tensor as
in the frame K9 and the remaining matter system is described by the tensor
UW which, in the case of an infinite medium, can be taken to be equal to the
energygmomentum tensor at zero field. If the medium is finile, the compo-
nents Uj, must describe also any mechanical stresses that may arise. With
the omission of electrostrictive and magnetostrictive terms we thus obtain in
the frame K' a division of the total energy-momentum tensor into an electro-
magnetic and a mechanical part in a way which is in agreement with the
division thal has been proposed by several other authors®. 16, 17 in the rest
frame. The new element of our analysis is essentially that this kind of division
is interpreted not to run into conflict with Minrkowsxkr’s tensor, due to the
fact that the experiments lead us to distinguish between the original rest
frame K% and the frame K’ in which the mean velocity vanishes.

Further, there is still another aspect which should be emphasized in
connection with the comparison between MiNnkowskr’s and ABRAHAM’S tensors :
ABraHam’s force density is the real force acting on a unit volume, i.e. the
force on the matter itself as well as on any charges and currents present
within the volume. This force is compensated by the mechanical stresses
plus the inertial force, in accordance with the relation

[ = 8, Uy, + (8)3t) gmeen, (3.5)

Minkowskr's force, on the other hand, amounts to counting the inertial force
together with the proper force:

[ = [ = @[ gre® = 8, Uy, (3.6)

and it has thus a less direct physical meaning than ABranam’s force. Min-
Kowskr's force does not contain any term which corresponds to the magnetic
force on the polarization currents, this term is hidden in the field momentum.
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The non-appearance of such a magnetic force term has represented an
obstacle for the acceptance of Minkowskr's tensor, as reflected for instance
in EmnsTeEIN and Laugr’s article.®

Example involving the boundary between two media

By the above analysis we have come to the important conclusion that
the propagation of an electromagnetic wave through matter is conveniently
described by Minkowskr's tensor in such a way that the rest of the system
(the mechanical part) may usually be ignored. In this subsection, however,
we shall examine the total momentum and motion of centre of mass for a
total system when boundaries are involved; in this case all kinds of momen-
tum and energy flows have to be taken into account.

Imagine a plane wave with E = Ee,sin(kyx—wt) that falls in from
vacuum towards an isotropic and homogeneous insulator at zero angle of
incidence. We take the boundary as the plane x = 0, and put for simplicity
e =y = n so that the reflected wave vanishes. We may consider a certain
part of the plane wave, say of length I, and cross section unity, and examine
the consequences of the application of different forms of the momentum
expressions. (The length [, is then required to be much smaller than the
width L of the body over which the field travels.) But it is more convenient
simply to consider the field as a wave parcel with length [, and cross section
unity, where [, {{ L, so let us look at the system in this way.

The total field energies in vacuum and in the body are equal, 5, = I, E5/2
= nlEZ(2 = #, where [ and # refer to the body. By taking the divergence

of ABraHaM’s tensor we obtain

n®-1
C

4 2 2 4

fA = —1E*We-1H Vpu+ 5 (B> H) (3.7)

(cf.(1.4)), valid also over the boundary if one assumes a continuous variation

of ¢ and u. We shall first use this force in a computation of the various

momenta. As E = H everywhere, the surface force during the penetration

period is (1 — n)E?, and so the total momentum component in the x-direction

transferred to the body on account of this force is
/e

G — —(a? - 1)E} fsinzwfdt =

0

o, (3.8)

C

where we have integrated over the penetration period.
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According to our earlier results, the effect of the last term in (3.7) is to
excite a mechanical momentum in the body:

[}

2 _ 1 2 1
gmeen - & JEde -t (3.9)
c ne
0
Finally, the electromagnetic part is
1

1 1
Germ = ~fEde = —. (3.10)

¢ ne

0

Collecting these terms the balance of total momentum can be checked:

a,

Gsurt | gmech | pmelm. J_{J — G (3.11)

c

where GV is the magnitude of the momentum of the incoming field. This
simple analysis exhibits the behaviour of the various momentum parts.

If we instead had started from MinkowskrI's tensor, the last term in (3.7)
would have been absent. In this case the momentum component G**f supplied
by the forces in the boundary layer, plus the field momentum G* = G**™ +
GP® — ni#'jc, would have added up to give the total momentum #/c.

Let us also examine the centre of mass velocity for the total system.
Denoting the coordinates of the centre of mass by X = (X, 0,0), we have

d ot dl 1 ¢( ic " 8
It = - et = - rStot 3.12
dl‘X dt [J{"totsm dV:' jftotSaxv(rSM)dV, (3.12)

since the contribution to (3.12) from » = 1,2,3 vanishes when the boundary
surface of the integration volume is chosen sufficiently far away. Hence

d c2Gvae H

a " %\Sm” = per T e © (3:13)
L)

corresponding to the fact that the parcel travels with the velocity ¢ before it
strikes the body. It should be noted that in (3.13) S*! includes also the
mechanical energy flux $™" due to the small motion of matter induced by
the field.

Since the body has a finite extension L in the x-direction then, during
the period when the wave parcel leaves the body, the effect on the body is
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equal and opposite to that during the entrance period. Further, the motion
of matter described by $™“! is considered to be absent when the wave has
left, so the body will stay at rest. Since the length of the parcel is small, it
can be considered to have remained a time 7 = Ln/c in the body. Let M and
¢ denote the total mass and displacement of the body in the x-direction; we
then find from (3.8), (3.9) and the relation Mé&jr = G571 + MR that § =
(A [Mc*)(n — 1) L.

The gedanken experiment above is one of those considered by N. L.
BaLazs8), We cannot agree to his conclusion, however, when he claims
the correctness of Sﬁv in contrast with Sl% by an analysis of the total momen-
tum and centre of mass. Let us apply his procedure to the above case: The
equation of momentum balance is given in the form

GV — G+ ME[z, (3.14)

where ' is the magnitude of the field momentum in the body which is to
be determined. Further, the law of conservation of the centre of mass velocity
is written as

Her = Herjn + McPE. (3.15)

From these equations he obtains G’ = 3 /(nc), which agrees with AsRaHAM'S
expression only.

But by comparison with our previous treatment it is apparent that the
balance equation (3.14) is incomplete. Eq. (3.15) is valid for both tensors,
and leads to the expression for & found above. But (3.14) implies that the
magnitude of the mechanical momentum be given by M&/t, which ,in
accordance with (3.15), (3.8) and (3.9), is equal to G + G™*D This is
an assumption which is compatible with AsranaM’s expression only; we see
from (3.14) that G' = G¥®¢ — G*WT — Mk — el when the balance equation
(3.11) is taken into account. V

Finally we should mention that in an examination of an example similar
to the one above, E. G. CuLLwick®® has claimed that ABrRagaM’s momentum
density is satisfactory while Minkowskr’'s momentum densily -leads to
inconsistencies with respect to the momentum balance. His argument is
essentially tantamount to saying that, in the situation above, the relations
g7 = g4, g"* # g™, determine the validity of the ABRAHAM expression.
It is however evident that in order to check the momentum balance over the
boundary one should integrate the equation 3,5, + 9¢,/0l = — f; in queslion
over a volume which includes a part of the boundary, and thus one must
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consider instead the momentum flow described by the components S .
Moreover, the surface force must also be taken into account. The paper has
been crilicised also by P. PENFIELD 20, 21),

Other tensor forms

It is convenient to collect the remarks on the alternative lensor forms in
this final subsection. First we recall that the pe GrooT-SuTTOoRP tensor (1.9)
must describe essentially another part of the total system than the part which
we have made to correspond to the electromagnetic energy—momentum
tensor. This follows from a comparison between the energy density (1.9b)
and the energy density W = 1 (E'D + H-B) on which we have based our
derivations (cf. also the Harkim-Hicuam experiment mentioned in seclion 2).
Next, the EmnsTEIN-Laup tensor (1.8) is in conformity with the expressions
(1.9) when g = 1. The most interesting alternative in relation to the topies
considered in the present section is the radiation tensor (1.6) introduced by
Marx and his collaborators; we recall that this tensor was defined for
radiation fields only. The essential point in the construction of the radiation
tensor can be visualized by an inspection of the equation (3.1): One assumes
that the effect of the force f4 is not to create a mechanical momentum, de-
scribed by the components U, but rather to form stresses, described by
the components U;; . Eq. (3.1) can then be written as 8,(S;}, + U;,) + 0g;1/0t = 0,
leading to U = (n”% — 1)S4., in accordance with (1.6). However, the
main reason why we have not constructed the theory in this way is simply
the result of the Jones-RicHarps experiment, to which we have already
referred repeatedly. As we pointed out in the rather detailed consideration
in I, section 6, it was essential for the validity of the derived formulas that
the electromagnetic energy—momentum tensor in question be a divergence—
free quantity in the interior of the body. Since the radiation tensor just has
this property, and since the relation between the momentum flow components
is S5, = = (1/r®)SY, it follows that the radiation pressure predicted by the
radiation tensor is equal to 1/n? times the Mingkowskr radiation pressure.
By a comparison with the observed data we are thus in a position to draw
the decisive conclusion thal the characteristic assumption inherent in the
derivation of the radiation tensor should be rejected. Note that the electro-
striction effect will have no influence on this result.

Although it should therefore not be of importance to go into a detailed
examination of the use of the radiation tensor in the example considered in
the above subsection, let us vet note the following points. The force density
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can no longer be written as (3.7), since this expression will violate the law of
conservation of momentum. This is so because the last term in (3.7) is no
longer associated with a mechanical momentum, and hence the total mo-
mentum after the wave has entered the body is G*" + GeI'™ 2z GY%, In
order to fulfil the momentum conservation law the force density must be
defined as fJ = - 8,55, where the stress components are not the sum of the
electrostratic and magnetostatic stress components. If we define S5 =
(1/n*(2))S¥ also in the spatially dispersive region in the boundary layer,
we find that the momentum induced by the surface forces is (G5)*f =
(1 - 1/n)# /c. The interesting aspect here is that the quantity (G°)*"" has
the opposite sign of the quantity G calculated earlier in eq. (3.8); while
the surface force following from the radiation tensor acts inwards to the
body the surface force following from ABramam’s and MINKOWSKI's tensors
acts outwards from the body surface. We are not, however, aware of a direct
experimental test of this effect (cf. the last part of the next section).

4, Discussion of some Possibilities for Experiments

In this section we examine experimental situations in which time—
dependent fields exert forques on dielectric bodies at rest. As usual we first
focus our attention on the relative behaviour of Minkowskr's and ABRa-
HaM's tensors. In the first class of experiments considered—the interaction
between a stationary radiation field and a dielectric body—the result is that
the two tensors lead to the same answers. Thereafter, an example is given
of a second type of experiments in which the difference can be measured.
Finally, we propose a critical experiment testing the radiation tensor and the
EiNsTEIN tensor.

Proof of equivalence

As an example of an experiment which traces the angular momentum
interaction between an electromagnetic wave and a dielectric body, the old
G. Barrow experiment@? should first be mentioned. He made a careful
measurement of the torque produced by a beam of light in oblique refraction
through a glass plate, and obtained good agreement with the theory. We
refer also to the famous R. A. BETH experiment®®, in which the existence of
angular momentum in a light wave was detected by letting the wave pass
through an anisotropic crystal. The latter experiment has more recently been
repeated by N. CArRRarRA®Y with the use of cenfimetre waves. These ex-




Nr. 13 29

periments  consisted in letting a stalionary wave interact with the body and
then measuring the deflection when equilibrium was established between
the electromagnetic torque and the mechanical torque exerted by a torsional
suspension. However, we need not go into detailed considerations of these
situations in order to test the relative behaviour of MiNkowskI's and ABRA-
HaM’s tensors, since we will find the torque N 4 = N¥_ just as we did in the
static case. Instead we present a simple argument which shows in general
that in a wave-dielectric body situation the two energy-momentum tensors
yield the same value for the torque.

Consider then a stationary high-frequency wave interacting with a
dielectric body (in general anisotropic). The body is assumed so heavy that
no macroscopic motion needs to be taken into account. If the angular
momentum of the internal field in the body is denoted by M’ the torque N
can be written as

N = — dM™/dt - dM*/dl. (4.1)

It can readily be seen that each of the two terms on the right hand side of
this equation is the same for ABramam’s or MINkowskr's tensor. In both
cases the energy flux is given as c(E x H), therefore the direction and
velocity of the travelling field energy is the same, and it follows that the
first term on the right of (4.1) is also the same. Further, since we assume
that the field is stationary, we can simply put dM'/dt = 0. Hence N4 =
NM = — dM"™[dt: The two energy—momentum tensors are equivalent with
respect to torque effects since these effects are determined in terms of the
vacuum field. ’

(Alternatively, we may consider a wave packet in interaction with the
body during the time period t = 0 to { = T, during which the field is assumed
to be stationary. Then we can require on physical grounds that N be inde-
pendent of 7" at any time {, also in the small transient period when the field
leaves the body. We now assume only that dM?/dt must be equal to some
constant during the stationary interaction period, since each component is
proportional to the averaged energy density of the incoming wave. When
t > T, one has M* = 0, but then dM*/dt can be made arbitrarily large in the
transient period when the wave leaves the body, by choosing 7' large. These
features are incompatible with the condition (4.1), hence dM*/dt = 0 in the
stationary interaction period.)
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Proposal of an experiment

In the preceding we considered an electromagnetic wave in interaction
with a dielectric system. Now there exists the possibility of combining
electric and magnetic fields in a way which, in principle, makes it possibie
to bring out explicitly the effect arising from ApranaM’s force. We shall give
a proposal similar to one put forward by Marx and Gyoreyi®. A cylindric
dielectric shell of isotropic matter with large ¢ is suspended between the
surfaces of a cylindric capacitor so that, in the absence of fields, the shell
can oscillate about its axis (2) with a frequency w,. The internal surface of
the capasitor is then charged to the amount ¢ per unit length, and a homo-
geneous magnetic field Hye " is impressed parallel to the z-axis. We suppose
that the wavelength which corresponds to the frequency w is large compared
with the dimensions of the system, so that within the internal, massive
¢ylindric conductor, we may write V x H = oE/c, where o is the conductivity.
Taking into account that the penetration depth into the conductor is appro-

ximately equal to l/‘éz/coa, which is a large quantity when @ is small, and
putting # = 1, we obtain within the internal region of the conductor

. i .
H=Hye', E, - ;ZrHoe*mt. (4.2)

Within the dielectric shell E, = ¢/(2mer), while egs. (4.2) remain valid also in
this domain. Thus
g—1 e—1qgwH,

d
S —(E,H,) - —— i g
T : (91‘( +H, 2 mgp ST wl, (4.3)

when we take the real part. Hence the torque component is

. | e—1qH,V | )
Ny = \rfpdV = —— wsinw! = Kowsinot, (4.4)
e 2nc

where V is the volume of the body. We have ignored the surface forces since
these act in the same directions as — V¢ and hence have no influence on the
oscillations. The equation of motion can be written as

T W . S <
Pty + gy = ?wsmwl, (4.5)

where y is the damping constant and I the moment of inertia about the
z-axis. The largest oscillations occur when w = w, and are given by
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K
@ = —Ecoswot. (4.6)

This effect can in principle be measured. With a direct use of Minkowsk1’s
tensor one obtains no force that can account for these oscillations, and
Mivgkowskl's tensor is thus inappropriate in the present case. (It must be
emphasized that the previous derivation of Minkowskr's tensor for lime-
dependent fields in isotropic media applies properly only to the case of
radiation fields.)

As far as we know, the experiment has not been performed.

We emphasize the essential difference between this situation and those
considered in the above subsection: At a given instant, the force component
/';;‘ causing the torque does not vanish when integrated over the volume.
Further, it is now the total time oscillations themselves which are detected
and not, as in the previous situation, their effect after integration over a time
which is large in comparison with the oscillation period.

Other tensors

Let us consider again the system of a stationary wave field and a dielectric
body studied in the first of the subsections above, and first employ the
radiation tensor wa. This tensor has been derived for the case of isotropic
bodies only, so we shall accordingly assume the body to be isotropic. It is
immediately apparent that if the wave comes in from vacuum, interacts with
the body and then enters into vacuum again, we can apply just the same
argument as before to conclude that the radiation tensor yields the same
value for the torque as Minkowskr's and ABRanam’s tensors. But a simple
calculation shows that the direclion and magnitude of the surface force will
in general be different from what we obtained in the previous cases; it is
only the total torque itself that remains unchanged. (For instance, if an
appropriately polarised optical wave falls obliquely inwards to the body at
BrewsTER’s angle of incidence such that the reflected wave vanishes, it can
be verified that the surface force acts in a direction parallel to the surface,
instead of in a direction outwards along the normal vector, as obtained from
MINKOWSKI'S or ABRAHAM'S tensor.) It has sometimes been claimed that the
BarLow experiment®?) mentioned above, involving a measurement of the
torque exerted by a light wave on a glass plate, should actually provide an
experimental test of the direction and magnitude of the surface force. But
we think that this is not so, although BarLow himself interprets the effect in
a way corresponding to MiNkowskr’'s or ABRaHAM's tensor. The only thing
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measured is the total torque, which is explained equivalently by all tensors
in question.

However, an obvious generalization lies at hand in order to change for
instance the BarLow experiment into a critical experiment with respect to
the radiation tensor, namely, to immerse the body into an isotropic dielectric
liquid. The radiation tensor has a value different from the two other tensors
mentioned in the liquid, and so a torque measurement can be crucial. In
order to derive the appropriate torque expression it is convenient to write
the general formula (cf. (I, 1.7))

N = [ @t Su - Sipav (4)
body

in the following compact form:

; d
N= - f (r S};q)dS—&—t f (r x g)dV (4.8a)
surface R body
- f (r x SHayqs. (4.8b)
surface

For an optical wave the last integral in (4.8a) vanishes because the field is
assumed to be stationary and the body remains practically at rest, and the
surface integrals are taken in the liquid just outside the body. By means of
(1.6) and (4.8b) we find the result N = (1/n*)NM = (1/n*)N4, where n is
the refractive index of the liquid. The surface integral in (4.8b) can be
evaluated in the actual experimental situation with one of the tensors in-
serted, and one can thus check the tensors by a comparison with the observed
torque.

As the next point we consider the EinsTein-LAUB tensor Sﬁ,, applied to
the same situation. (For optical fields we can put 4 = 1, and it is then apparent
from (1.8) and (1.9) that the EinsTEIN-LAUB tensor and the pe Groort-
SutToRrP tensor are in agreement.) This tensor is defined also for anisotropic
media. We evaluate this case most simply by noting the following relation
in the liquid which surrounds the body:

§E =84 —tn(E-P), (4.9)
so that (4.8b) yields
Nf = N4+ f (r x n)E - PdS, (4.10)

surface
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where the surface integral is taken in the liquid. EINSTEIN’s tensor thus leads
to still another value for the torque, which might be tested experimentally.

The dielectric shell—experiment considered in the second subsection
above is not of direct importance for the radiation tensor since this tensor is
defined for radiation fields only. However, il can readily be seen that both
the radiation tensor and EinsTEIN’'S tensor lead to ABramam’s value (4.4)
for the torque. To this end we need only examine eq. (4.8a), where now the
last term is non-vanishing and where S}9 is replaced by $:* in vacuum
outside the shell. Since g% = g = g4 it follows that NS — NF — N4,
(Moreover, the value (4.4) can be checked by inserting the field values
(4.2) and the expression for E, into (4.8a).) This experiment is therefore
not a critical test of the relative behaviour of the three tensors mentioned.
In this case it does not seem either to be an appropriate generalization to
immerse the system into a dielectric liquid.

5. Some Remarks on the Literature

Together with the exposition of the various topics we have met up till
now—both in I and in the present paper—we have found it desirable to
include also some remarks pertinent to essential passages in earlier works on
the subject. The literature is however large, and there remain important parts
of it that could not naturally be considered or even touched upon in the
preceding exposition. We have therefore reserved the present section for a
critical review of some earlier (phenomenoclogical) treatments, especially
those which seem to be incompatible with the interpretations given above.
We think that this avenue is natural to follow, since the present problem is
not only a deductive task but also a matter of clarification of a confused
situation. Evidently we cannot give a detailed scrutiny of all the relevant
papers of phenomenoclogical nature, but shall rather be concerned with
illustrative examples. FFor a large part we shall be concerned with the analysis
of criteria. The present section represents the end of our nonrelativistic
treatment; from the next section on we concentrate upon topics connected
with relativity.

In the two first subsections we consider two gedanken experiments
which have been put forward. The idea behind these gedanken experiments
has been that by comparing with results obtained from physical conservation
laws, one should be able to decide which energy—momentum tensor is

correct. In both the cases we shall consider, MiNgkOwSKI's tensor has been
Mat.Fys,Medd. Dan. Vid.Selsk. 87, no. 13. 3
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claimed to be preferable, as a result of a study of the conservation equations
for momentum. We shall show how these experiments can be equivalently
described with the use of ABramaM’s tensor. In the subsequent subsection
some aspects of the CERENkoV effect are considered, and finally we mainly
dwell on arguments favouring other tensors than Minkowskr's and ABRaA-
HAM'S expressions.

Propagation of discontinuities

In two papers A. RuBinowicz@3 investigated the situation where electro-
magnetic discontinuities are propagated through an isolropic body at rest.
The conservation equations for energy and momentum are integrated over a
domain 2 in four-space bounded by the hyperplanes ¢, o, and oy; o
corresponds to the three-dimensional volume V, which at the time {, is
enclosed within the two-dimensional surface @; o, corresponds to the volume
V, at ¢ = i > {;, and oy is the connecting time-like hypersurface. The surface
@ is considered moving inwards with the velocity « = ¢/n in the direction of
Jits normal.

Then imagine a two-dimensional surface @#(¢) across which the field is
discontinuous:

E,~E H -H;E,- E+ JE H,- H+ AH. (5.1)

Here 1(2) denote the inner (outer) side of @*. For simplicity, we suppose
@* also to move together with the field, with the velocity u = ¢/n in the
direction of its normal.

Rusinowicz integrates the energy conservation equation over 2 and finds
that @* is associated with no source of energy when either of the two energy-
momentum tensors is inserted. We therefore turn our attention to the momen-
tum conservation equation written in the following form (our notation),
where the time derivative is taken along the moving volume element:

0 (Six — 94 ) + o (91 V)= =1 (5.2)

dVdt

and integrate over X
2}

[~ fl for ] c-omims = Jaswu 0

to D + P

The contribution from @* to the left hand side of (5.3) can be written in
vector form, according to RusiNowicz, as
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t &
2 _
f dtf[(Sn +gu); + (8, — gu)ldS = f dtfu[Ex AH + AE x H]dS. (5.4)
n
to @’k

to D*

Here, S, is a vector with components S,; = S;,17;, and = is taken to point
outwards from the integration domains; p is a number, such that p* = n?,
p? = 1. Hence Rusvowicz concludes that @+ is associated with no source
of energy or momentum as far as Minkowskr’s tensor is employed, in con-
trast to what is the case with Apranmam’s tensor, since (5.4) then is non-
vanishing. This feature is claimed to favour the former expression.

Let us, however, examine the case p = 1. We see that the contribution
(5.4) is not yet complete since the effect arising from g™*" has not been
incorporated. This effect is connected with the term (n® — 1)/c208/dt in f.
Hence, the amount on the left of (5.3) is to be augmented by

nf-1

d
5 HE(SidV) — V- (Siu) dV} dt

- “2;1[(\ }ﬁsgw fldt f Siu-ndS}.

Vi Ve te D+ P*

(5.5)

From (5.5) we see that the contribution from @* equals, in vector form,

2 b
n®—1

5 Jdl f(Sl~ Sy uds, (5.6)

to D*

C

which, together with (5.1) and (5.4), vields MiNkowsKkI's result. We see again
that the choice between Minkowskr's and ABramaM’s tensors is mainly a
matter of interpretation.

Induced motion of a ferromagnetic test body

Let us next examine the gedanken experiment recently considered by
Costa DE BEAUREGARD 38). The arrangement is rather similar to the one we
considered earlier in the second part of section 4: A ferromagnetic shell
with mean radius ry, thickness b and length « is subjected to forces arising
from a short current pulse in a rectilinear wire placed along the symmetry
axis (z) of the shell. Besides, the wire is charged to a constant charge ¢ per
unit length and hence gives rise to the radial electric field E, = q/(2nr),

3%
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when ¢ is put equal to 1. When the current is flowing, a tangential magnetic
polarization M ~ B — H is present, and when the current has decreased to
zero, there remains an amount AM = 4B in the shell which, together with
E, gives rise to a linear momentum in the z-direction. Costa DE BEAUREGARD
integrates the force component f; = — 094,/c0t over time and over the volume
of the wire, and obtains

f fdVdt = - qabAM. (5.7)
c

wire

If we use MinkowskI's lensor to calculate the remaining momentum com-
ponent in the z-direction when the current has left, we find

1 1 1 .
AGY = 24 f DBAV ~ - f EAMAV = -qabAM. (5.8)
C v C

bhody body

A corresponding calculation with ABRAHAM’S tensor yields

1
AGE = ~4 j EHAV = 0. (5.9)
c

body

Since (5.7) and (5.8) are obviously in accordance with the balance of total
momentum, CosTa DE BEAUREGARD concludes that Minkowski's expression
for the momentum density should be preferred.
Let us, however, continue (o consider ABraHAM'S tensor and write the
force density in the form
f4 =fM+[§t(gM—gA)- (5.10)

Hence, by integration over the total system

( f + f )/};“dth = f fé‘ldth + 4 f (gé”—g{f)dV
wire body wire body

(5.11)
- f 2avat+1a fI)BdV: 0,
wire ¢ body

in view of (5.7) and (5.8). Egs. (5.11) and (5.9) show how the momentum

balance must be interpreted in terms of ABranam’s tensor: Although the

electromagnetic ficld represents a non-closed system, eq. (5.9) shows that
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the electromagnetic momentum is conserved. (In the case of MINKOWSEIL'S
tensor this was not so, ef. eq. (5.8).) This conservation is carried into effect
by the fact that the action from the force on the wire is equal and opposite
to the action on the body, in accordance with (5.11). We note in passing that
only ABramam’s tensor leads to a mechanical force on the test body in the
z-direction, due to the fact that the surface forces on the body, which are
common for the two tensors, are directed in the radial direction. There are
also surface forces at the two end surfaces of the body, but these forces
compensate each other. With Minkowsxki's tensor, the presence of electro-
magnetic momentum is due to a momentum flow into the body.

Following Costa DE BEAUREGaRD we mention that the recent C. Gorr-
LOoT®7 experiment might be considered as a possible test of the theory. In
this experiment a translational motion of a nature similar to the one described
above was detected. However, although the qualitative features are similar,
Costa pE BEAUREGARD reports that the GoiLror effect is far too large to
correspond to the effect deduced from the electromagnetic energy-momentum
tensors. The effect of the experiment is presumably a spin effect®$). The
inapplicability of the above theory should be expected in this case, since
systems exhibiting remanent magnetization are very different from those
described by the simple phenomenological theory we are considering.

On the Cerenkov effect

The Cerenkov effect is a convenient means for a study of the various
energy-momentum tensors. We have touched upon this effect before, in
connection with relativistic considerations in I, section 10, and we shall take
it up again in the relativistic considerations later on in this paper, but here
we examine some of its implications when the medium is at rest. In this
kind of problem it is most convenient to use Minkowsxkr's tensor, and let us
also employ the phenomenological quantum theory (see, for instance, vef.
29 or ref. 30) according to which the four-momentum of the emitted photon
is hk, = h(k,iw[c). With Minkowskr’s tensor the balance equations for
energy and momentum for the photon plus its radiating electron with mo-
mentum p — p’, are

it

c]/’/p)g-:;;{g = ho+c L/p'z + m?c? (5.124a)

I

p = hk+p, (5.12h)

from which we obtain the well-known expression for the angle 0¥ between
p and k:
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c kh 1
cosf = — + C—<1 ——Z). (5.13)
p

Here u is the modulus of the velocity of the incoming electron, u = p/m(u).

From the point of view of Asramam’s tensor the above argument is only
slightly modified: The momentum of the emitted photon in this case is
Lik[n2, while the force f* gives rise to a mechanical momentum (n? — 1)
-Ek/n? which runs together with Lhe field. These two contributions together
yield the result iz which was used in (5.12b).

Concerning the literature on this subject we should first of all refer to
the clear discussion by G. Gyorevi®D). He shows the equivalence hetween
Minkowskr's and ABradaM’s tensors along similar lines as above. On the
other hand, there has recently appeared a paper by J. Acupin®® on the
CerENKOV cffect in which ABRAHAM'S tensor, but not Mingkowsxkr’s tensor, is
claimed to be in accordance with EinsTEIN'S mass-energy relation. Let us
therefore trace out the reason for this result, when we transform the formalism
to our notation and simplify the argument, which consists in a study of the
conservation equations for fotal energy, momentum and centre of mass-
velocity. Imagine that the initial electron moves along the x-axis with the
velocity u and that it emits a photon with mass m’ in the direclion 6 at the
time ¢ = f;. Afier the emission the eleclron moves with the velocity v’ =
p/m(u’) in the direction @. The energy balance is written as

m(u) = ho/c® + m(u'). (5.14a)

With ABraHAM's tensor the magnitude of the momentum of the emitled
photon is hk/n? = Aw/(nc), and the balance equation for the x-component of
momentum is written as

hw
m(uW)u = —cosh + P - m(u)u' cosep, (5.14b)
ne

where G™*™ is the momentum transferred to the medium.

Finally, Agupin introduces an equation expressing the cenlre of mass-
theorem. During the time period =0 to t=t,, where 0 < { < {,, the
centre of mass of the total system is displaced by a distance m(u)c?ut,/# ",
and the relation given by Acupin is equivalent fo writing

m(u)uty = o’ [utl + (%cos 9)(1‘2 - tl)ji ][ (5.15)

+ Gy — 1) + m(u) [uty + (4 cos@) (t, — 1)].
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By inserting eqs. (5.14) into (5.15), one finds that the latter relation is
fulfilled if m’ = Aw/c?, which is EnsTRIN'S mass-encrgy relation.

Considering MingOWwsKI's tensor, Acupin uses the same set of equations
as above with the single difference that the first term on the right hand side
of (5.14b) is multiplied by a factor n?. The new value for m’ one now obtains
shows an involved geometrical dependence which must be regarded as un-
physical. From this he concludes that ABranaM’s tensor is the one of the two
tensors that should be preferred.

Let us now examine the above argument from the point of view of our
earlier interpretalion. Since GP*°" in (5.15) refers to the small motion of the
medium induced by the photon, we must have G***® = ((n? — 1)/nc)hw cosf.
This value is in accordance with the value for G"**" appearing in equation
(5.14b), which is constructed on the basis of ABranam’s tensor. However,
with Agupin’s construction of the momentum bhalance in the case of Min-
KOWSKI's tensor the right hand side of (5.14b)is changed into (nfiew/c)cos 0 +
GP*M + m(u' )’ cosgp. Thus the two values of GP*® become different; in
(5.15) G2 remains unchanged while in the momentum balance GP® — 0,
This is the reason for the diverging result. It is instructive to recall that the
centre of mass-velocity for an arbitrary (limited) total system is given by
c2G™ A (ef. eq. (3.13)), which is a constant in view of the conservation
equations for energy and momentum. Applied to the present case this means
that the centre of mass-theorein can yield no more information than what
is contained in eqs. (5.14) We arc evidently free to assign a mass m’ = hw/c?
to the photon also in the case of MiNkOWSKI's tensor.

Finally we note that the Cerenkov effect provides a convenient op-
portunity to examine also the radiation tensor (1.6). If we in this case con-
struct the energy and momentum balance similar to (5.12) the only difference
is that the term hk in (5.12b) has to be replaced by hk/n2; the radiation
tensor is divergence-free and there is no force present to give rise to a me-
chanical momentum. Thus we find the following expression determining the
angle 6% between p and & in this case:

g e kh 1
cos @ =~ % L——] (5.16)
u  2p n?

Since kI <{{ p this equation leads to unphysical values for 65. It seems
therefore that there are even formal difficulties for the application of the
radiation tensor to situations where both particles and fields are present.
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Final remarks

So far we have limited ourselves to a study of previous Ireatments
advocaling the validity of either MiNkOWwSKEI'S or ABRaHAM’S tensors. In this
subsection we discuss briefly, without going into detail, some papers in
which diverging tensor expressions have been given preference.

The tensor (1.8) introduced long ago by Einstriny and I.auB was en-
countered already in section 2, in connection with electrostatic phenomena.
We recall the important result that the excess pressure effect in a dielectric
liquid predicted by this tensor does not fit the HaxiM-Hicuam experiment.
Let us yet write down the complete force expression in the time-varying
case:

fE = QE+(P-V)E+(M'V)H+%(]'>< H)+%(P>< H) 4—%(E><M). (5.17)

It should be noted that according to (5.17) the magnetic force density acting
on a stationary current distribution, for instance in the interior of a wire, is
equal to (1/c)(j x H), instead of the usual (1/¢)(j x B) following from
ABranAM’s or Mingowskr's tensors. Now, in order to support their force
expression, EinsTEIN and Lavus analyse in their paper® two examples
involving the presence of stationary currents. The second example considered
is the following: An infinitely long, rectilinear wire carrying a stationary
current J is assumed to prossess a magnetization M in a direction per-
pendicular to the wire. When no external field is present, it is clear that the
electromagnetic force on the wire vanishes. FiNsTEIN and Lave verify by a
direct calculation that their tensor leads actually to a vanishing force F;
per unit length in a direction ¢ perpendicular to the wire. We must point out
however, that this result is nof peculiar for the EiNsTEIN-LAUB tensor and
thereby does not represent any particular support for this tensor. In fact,
any of the actual tensor expressions will lead to this result, as an immediate
consequence of the relations

F, = — f 0,5,;,dV = ~j TR ng,dS, (5.18)
unit
length

where the value of the last integral goes to zero when the integration surface
is takken sufficiently far away from the body.

Concerning the remaining terms in (5.17) we mention that the argument
for introducing the term (1/c) (P x H) was that there must be no distinction
in principle between external currents j and polarization currents P (cf.
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also our remarks in connection with eqs. (3.5) and (3.6)). The magnetic
terms in (5.17) were introduced by analogy considerations.

EmnsTEmN and Laus’s paper was criticized by R. Gans®3. He employed
the force expression corresponding to MinkowsKI's tensor, al least for para-
and diamagnelic media, and made an explicit calculation of the transversal
force on a conductor which carries stationary current and is surrounded by
an external magnetic field. Ferromagnetic media were considered separately.
In all cases the force was found to vanish when the external field is zero, in
accordance with our statement above,

One remark is called for, regarding Gans’ claim that the EinsTEIN-LaUB
expression comes into conflict with the energy balance. In his argument he
uses assumptions that are valid for Mingkowskr's tensor only, viz. that the
energy flux vector is given as & = ¢(E » H) also when the velocily of the
medium is different from zero. The other tensor expressions will lead to an
explicit appearance of the velocity in the energy flux expression.

The use of thermodynamic methods in the present problem represents a
special kind of approach. We have already employed such a method in this
paper, although in a very simple form, in section 2. In this context we should
refer to the work by pe Sa®¥ and to two papers by KLulITENBERG and
pE Groor®)., KLurTENBERG and DE GrootT postulate a certain relativistic
Grsss relation and assume the material energy-momentum tensor to be
symmetric; they obtain from these assumptions a symmetrical electro-
magnetic tensor which in the rest system is in accordance with eqs. (1.9),
apart from a difference in the energy density component. Further, they
claim that the formalism yields ABranaM’s tensor as an equivalent result, il
appropriate new definitions for the hydrostatic pressure and the internal
energy are imposed. Concerning this latter statement, however, we must
point out that the formalism must always be chosen so as to conform to the
observed effects, and the Haxim-Hicram experiment does not seem to leave
the room for ambiguities in the definition of pressure in the electrostatic
case (cf. section 2).

The papers by G. Marx, G. Gyoreyr and K. Nagy®, 36, 87 3% (with
further references) contain a series of arguments of different kinds, and
represent together one of the most extensive macroscopic treatments of the
problem that has been given. We are considering elements of their papers
at various places in our work, for instance in the examination of the radiation
tensor. Their main conclusion is that ABranam’s tensor is the basic electro-
magnetic tensor, while the radiation tensor (instead of MiNkowski’s tensor)
is claimed to be the result of a combination with the excited matter induced
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by a propagating field. Since in this section we consider fields within malter
at rest, we should mention that the difficulty they claim to exist for Min-
KOWSKI's tensor in explaining the propagation of the centre of mass for a
limited radiation field within an isotropic dielectric, is cleared up of one
observes that the time derivative of the quantity ($¥/c® — g™), integrated
over the total volume, is equal to zero.

As we have noted, the absence of terms containing polarization and
magnelization entities in MiNkowskI’s force has represented an obstacle for
the acceptance of this expression (cf. also the book by Fano, CHu, ADLERG9),
In a series of papers published recently®®, P. Poincerot took the full
consequence of the opposite point of view and proposed the introduction of
all kinds of polarization and magnetization terms in the force on an equal
footing with the free charge and current terms, viz.

i
f=(@-V-P)E+ (j+P+cV=xM)xB (5.19a)
c
fo= SE-(j+ P4 ey x M), (5.19b)
C

The tensor corresponding to the force (5.19) can be expressed in terms of
E and B in the same form as the electromagnelic tensor in the vacuum-field.
However, although (5.19) cannot be rejected on purely formal grounds, we
cannot find any argument of convenience or experimental evidence that sup-
ports this expression.

6. Angular Momentum in Arbitrary Inertial Systems

In the remaining part of our work we shall be concerned with topics
connected with relativity. To some extent we shall have the opportunity to
return to a study of situations which were considered already in I, chapter
IV, in connection with MiNgowsEkI’s tensor. From the preceding it should be
clear that in a relativistic theory the lalter tensor is convenient to use, in
order to obtain information about the direction and velocity of the pro-
pagaling field energy. But it is instructive to consider also the behaviour of
the allernative tensors (especially ABraHaM’s tensor) in arbitrary inertial
systems, since such an anlysis will exhibit characteristic differences between
the tensors. In this section we assume that the medium is homogeneous and
isotropic, and let as usual K denote the inertial system in which the rest
system K¢ moves with the velocity v along the x-axis. .
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Evaluation of torques within an infinite medium

Let us image a finite radiation field within a large (infinite) dielectric
medium. The angular momentum quantities 3, are in general defined by
the integral

M = [ @ugs = gV, 1)

taken over the whole field, in any frame K. Let us further imagine that for
each of the electromagnetic tensors in question we insert the appropriate
expression for g, into the integral in (6.1) and calculate M, . In this context
it should be emphasized that in each case g, is considered as a field quantity,
M, thus being considered as a field angular momentum. This definition is
the natural one and we have used it throughout, in I as well as in the present
paper, although we have repeatedly pointed out that in the MiNnkowskr case
the momentum density gﬁf in reality includes also a mechanical part which
is responsible for the asymmetry of Mingowskr's tensor. In other words,
Minkowskr's angular momentum Mﬁ’;’, contains in a strict sense also a con-
tribution from the mechanical part of the total system. To call M, !f‘,{ a field
angular momentum is obviously just tantamount to calling fo a field linear
momentum. If on the other hand we take the distinction between the two
parts of Gi‘:" explicitly into account and exclude the mechanical part of g%
from the expression for field angular momentum, we obtain instead ABRrA-
HAM'S expression Mﬁ,,, since that part of g% which pertains to the electro-
magnetic field is just gﬁ. The different ways of dividing the lotal angular
momentum into a field part and a mechanical part obviously have no in-
flucnce upon the conservation of total angular momentum, which is a
consequence of the symmetry and the zero divergence of the total energy—
momentum tensor. Thus, in each case we obtain the mechanical angular
momentum by inserting that part of the total momentum density which is
not counted as a field entity.

As regards MinkowskI's tensor it scems appropriate to recall from I,
section 11 that the quantities M%, are equivalent to the angular momentum
quantities one can most simply construct on the basis of NoETHER’s theorem.
This is in accordance with the general property of Minxowskr’'s tensor that
it readily adjusts itself to the Lagranagian procedures. We recall also that
My, is in general not a tensor.

For a comparison between the various tensors it is however not the
angular momentum itself which is of primary interest in each case, bul
rather its time derivative, i.e. essentially the body torque. The torque is
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defined as N = — dM/d!, and we shall in the present subsection start to perform
a direct calculation of the torques corresponding to ABrauam's and Min-
EOWSKI's tensors. It will turn out that the two values so obtained in general
are different from each other. This difference is what we should expect,
since the momentum densities g and g™ are themselves essentially different
in direction and magnitude.

The last point requires some further explanation. In all electrostatic (or
magnetostatic) cases and also in all high-frequency electromagnetic cases
considered up till now we have found that ABramam’s and MINKOWSKI'S
tensors vyield just identical expressions for the torque on a test body im-
mersed either in a vacuum or in a dielectric fluid. The reason for this equal-
ity can be understood in a simple way by observing that in those cases the
torque could be evaluated as a function of the ficld stress tensor taken in
the domain just oufside the surface of the body, wherein the equality S& = SX
is valid. (Cf. eqs. (2.11) and (4.8b) for the electrostatic and electromagnetic
cases, respectively.) In the situations considered in the present section there
is however no similar reason why the torque expressions should be the
same; we have to lean directly upon the formula (6.1) and evaluate it over
the field region within the body. In the Minkowsxkr case the torque can be
looked upon as a consequence of the asymmetry of the mechanical energy-
momentum tensor (this fact having represented as an objection to the
acceptance of MiNgkowskI's tensor), while in the ABramam case the torque
arises because of the force density.

In spite of this difference between the two torque expressions obtained
within an infinite medium we shall nevertheless in the next subsection see
that the torques are relativistically equivalent from a physical point of view,
since both of them are compatible with uniform motion of the physical
system in K. In this context we shall draw into consideration the analogous
situation encountered in relativistic mechanics of elastic media: An elastig
body subjected to stresses in the rest frame will in general require a torque
to maintain steady motion in another inertial frame.

Let us now start with ABraHaM’s tensor and perform the calculation.
From (6.1) it appears that the torque N4 = — dM“/dt in K is given by

N4 - J(r < FAdV. (6.2)
At first sight it seems that one will meet a difficulty in the evalualion of this

integral. This difficulty is connected with the non-invariance in four-space
of the world lines corresponding to Anramam’s energy flux 84 (¢f. the next
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section). On the other hand we pointed out in I, section 9 that the ray velocity
u#, which is the velocity of propagation of the wave energy and which may
be written as u# = S$¥/W", transforms like a particle velocity. From this it
follows that the world lines corresponding to MiNnkowskI's energy flux §¥
really have the property that they remain invariant in four-space upon a
LorenTz transformation. Now it is clear that in order to obtain a picture of
the wave propagation in K one has to transform the total wave, i.e. one must
include the elfect also from the produced mechanical momentum g™mech?
in K9 This feature resolves the apparent dilemma in connection with the
evaluation of the integral in (6.2): Even though $* is different from §¥
both in direction and magnitude we have to integrate over that part of space
where the field is actually present, i.e. across the world lines corresponding
to S

It is now convenient to assume that the field travels parallel to the xy-
plane in such a way that any wave vector k which is contained in the wave,
makes an angle ¢ with the x-axis in K. It can readily be verified that the only
non-vanishing component in (6.2) is the z-component, the other components
fluctuate away. We evaluate the integral in (6.2) over the domain AB, i.e.
over the hypersurface ¢t = 0 (cf. I, Fig. 2). We obtain

Ni =y U~ b+ et iy av. (6.3)
AB

This integral is to be transformed into an integral taken at constant lime in
K9, and similarly as in I, section 12, we choose the domain CD for which
{® = 0. The world lines determined by $* will each intersect AB and CD in
two points with coordinates (a! (4B), {°(AB)) and (2 (CD), 0) in K°, such that

x23(CD) = xY(AB) —% t9(AB)cos ¥ = x‘;(AB)<1 + f cosﬂ“>

B (CD) sin#”
n + feosd®

(6.4)

23(CD) = x3(AB) - Ic—lt"(AB) sind® = a2(AB) +

23(CD) ~ 22(AB), *(AB) = —éacg(AB).

The calculation is carried out in a similar way as in section 12 of I, so we
abstain from a detailed exposition. The relation between the volume element
dV and the element dV?9, taken al constant time in K9, is given by (I, 12.9).
We find
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) ml( 1+ (BIn)sind® ) — (1 + (B/n) cos ) a AP
Ny = f (1 + (B/n) cosd?)? v (6:5)

CcD

Since 4 = [(n2 ~ 1)/nc]dW0/0t%, a representative term in (6.5) can be
transformed as follows:

1
f v = o gingo L [ 5| 30 f °W°dV°} -

-1
Hsin®’cosd®. (6.6)

ne n°

In the second term we have herc used the fact that d/di®[ | = (¢/n)cos®9,
the centre of mass-velocity in the x%-direction. By a similar trealment of the
other terms in (6.5) we find
-1 sind®cosd®

n® (1 +(B/n)cosd®)?

1
N = - p? HO. (6.7)
Thus there results a non-vanishing torque also with the symmetrical ABra-
HaM tensor. So far we have considered only the casc where the domains AB
and CD are placed at f = 0 and % = 0 respectively; however, the same result
applies also when AB and CD are placed at arbitrary constant times in K
and K° due to the fact that the force density fluctuates away when integrated
over space. So the expression (6.7) is constant in time.

Let us now consider Minkowski’s tensor. From (6.1) we find

NM - f(sg _s¥yav. (6.8)

Now S — 8% = [(n® — 1)/n]ByWOsind9, and the integration in (6.8) can
be carried out in the same way as above. We get
n® -1 sin®°

Y~ g # .
BE P n 1+ (B/n)cosd® (6.9

We see that the expressions (6.7) and (6.9) in general are different from each
other, although they both vanish in the rest frame as they should. It is
therefore natural to ask whether it is possible to single out one of these
these expressions as preferable. As we shall now see this is not so in the case
of an infinite medium, since the torque expressions (6.7) and (6.9) may be
looked upon as representing relativistic effects of the same nature as the non-
observable effect encountered in ordinary relativistic mechanics of an
elastic body possessing stresses in its rest frame.
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A relativistic effect

Let us first recall the following situation from mechanics: If an elastic
body is subjected to stresses in its rest frame it may in other frames exhibit a
momentum component at right angle to the direction of motion. Conse-
quently, the body will require a torque in order to maintain its uniform
motion.

We find it desirable to go into some details. Let 3 be the mechanical
stress tensor of the elastic body in K° The mechanical torque in K is

N - f(r < F)dv. (6.10)

Then make the explicit requirement that the body remain in steady motion
in K. This means that we can put dg/dt = 0, where g; = — it,/c and the
time derivative is taken along the volume elements dV which follow the
body. Thus, the body experiences a change of angular momentum equal to

M f @ av 6.11
= - x .
di ar g4 (6.11)

since also (d/dt)dV = 0. Inserting dr/dl = » we oblain
aM
il f(v xg)dV =vxG. (6.12)

If the torque (6.10) is equal to the amount (6.12) which the body actually
requires in order to preserve stationary motion, then the scheme is con-
sistent, and we have an example of a situation where the existence of a
torque is not followed by a rotation. We have to stress the difference between
the calculations that led to (6.10) and (6.12): In the first case, the velocity
of the body was required to be equal to », and we can imagine thatl this
requirement is fulfilled at a certain time in K just after the LorenTz trans-
formation from K° has been performed. But in the latter case, the body
velocity was required to be the same at an arbilrary instant afterwards,
corresponding to the fact that the directions of the world lines of the body
were required to be unaltered.

It appears from the text-books (M. von Lavre®l, R. Becker®?) that the
equivalence between N and dM/dt has been verified in certain special
cases. But the equivalence can also be shown quite generally for an elastic
body, by the.following simple consideration.
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Let us calculate a typical component of the torque in K, say the z-
component. We readily find by an insertion into (6.10)

Ng ~ f[y(fﬁ vt f3 — gy ily Ve = ( (v Palfs —apfD)dV®.  (6.13)
AB cD

Using now the fact that f? = 897, we can write

J. (y Pairy, — 237)y) npdS® - B2 f W dV® = 2 f T dV?,  (6.14)

cD cD

since the surface integral is performed over a surface outside the body
where 79, vanishes.
IFurther, by means of the relation 7,, = iByry, we readily obtain by an
insertion into (6.12)
dM
—dt—3 - p? f 0, d V. (6.15)

cD

Eqs. (6.14) and (6.15) show the consistency in the case of an elastic body:
The body is acted upon by a torque which is equal to the change of momen-
tum required in order to maintain steady motion.

After this digression let us return to the radiation field. The torque on the
body is defined as

Ny = [ G- wuli+ Se - Se)av, (6.16)

where ik, are cyclic. (Actually, the expression (6.16) has been derived
indirectly as N, = — dM,,/dt; however, the coordinate dependent terms in
(6.16) appear similarly as in (6.10), and the two last terms in (6.16) must
vield the appropriate torque contribution from the tensor asymmetry, cf. for
instance the considerations in section 4 of I.) The expressions for N, that
we need here have been derived in (6.7) and (6.9).

Next, require explicitly steady motion in K. The necessary and sufficient
conditions are: (1) The body velocity v = (v,0,0) = constant; (2) dr/dt =
u = S¥/WM along the moving wave clements dV. From these conditions it
follows that U, is a four-vector and that the world lines remain invariant in
four-space. Moreover, it follows that dg/dt = 0 along the wave trajectories,
since g, (for any field tensor) is proportional to the energy density W9,
which is a function of the invariant wave phase ¢, ¢ being constant along the
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trajectories. Thus, taking the time derivative of the field angular momentum
we obtain in the two cases

dM2|dt = (u x Gy, dMM|dt = (u x GM),. (6.17)

If we here insert the appropriate values for #, G4 and G¥ we will find the
expressions (6.7) and (6.9) respectively, with the opposite sign. If now
ABraHAaM’s or MINKOWSKI's tensor is taken to describe the field, it follows
from the conservation of total angular momentum that the rate of change of
the mechanical angular momentum is given by the expression (6.17), with
the opposite sign. In both cases we therefore find that the scheme is con-
sistent in the same way as it was found to be in the situation considered
previously (cf. (6.14) and (6.15)): The body is acted on by a torque which
is just equal to the rate of change of mechanical angular momentum being
necessary in order to prevent rotation.

At this place we should make a comment on an assertion put forward
by vonN Lave in § 19 of his book®D, concerning a verification of the principle
of conservation of total angular momentum if Minkxowskr's tensor is used
for the field. This is actually one of the arguments von LAUE presents in
favour of Minkowskr's tensor. He first writes the rate of change of field
angular momentum similarly as the last of egs. (6.17), by taking the time
derivative along the moving wave elements. Thereafter, and this is the crucial
point, the z-component of the torque on the body is claimed to be given by

J(xla,csgfc - 2,0, SM)dV = f(si‘g _sMyav. (6.18)

Since it can be shown that (# x gM); = $¥ — S}, vo~ Laur concludes that
the conservation of total angular momentum is verified in the present case.
We cannot find, however, any reason why this torque component should
be given by the left hand side of eq. (6.18). Moreover, one cannot find
expressions for the rate of change of the field angular momentum and the
body torque independently of each other, and thereafter check the angular
momentum balance. Instead, the torque is found by just requiring the

angular momentum balance to hold, such that N be given by the relation
N = — dMjdt.

Finite bodies

Hitherto we have restricted ourselves to a consideration of very large (or
infinite) dielectric bodies. The case of finite bodies is important, however,

since it reveals characteristic features of the angular momentum balance.
Mat. Fys.Medd. Dan. Vid.Selsk. 37, no. 13. 4



50 Nr.13

Let us therefore consider this case, and for definiteness assume that an
optical wave passes through an isotropic and homogeneous glass plate, for
instance at BREWSTER's angle of incidence in K9 The electromagnetic
forces are present only in the boundary layers, and we shall assume that an
external mechanical surface force F®*'° just counterbalances the surface
force FO caused by the field, in such a way that the field is not disturbed.
The consequence of the last assumption is that the mechanical angular
momentum of the body is conserved in K°, N4 = N™' — — N0 and that
the presence of extra mechanical stresses due to the external forces is avoided.

We now consider the system in the frame K, and adopt ABRAHAM’S
tensor as the field tensor. From (6.16) it is apparent that the torque is given
as r x f4, integrated over the internal volume, plus r x F4, integrated
over the surfaces. We readily find that the contribution from the first term
is zero, and as the electromagnetic surface force F* transforms similarly as
the external force F®' we can write

N4 - — dMA4)dt = — N°*, (6.19)

Thus we obtain the satisfactory explanation that the net torque acting on
the body is still zero. If, however, Minxkowskr's tensor is adopted for the
field, the situation is changed. We see that f¥ = 0 in the interior domain and
that FM = F* so that the confribution from the forces is the same, but there
appears an extra volume effect in the torque because of the asymmetry of
the siress tensor S)2. According to the theory the body is thus acted upon by
a net torque in K, although the motion is uniform and although no account
has to be taken of the influence from elastic stresses in K° We find this
property to be rather inconvenient. It does not mean, however, that Min-
KOWSKI's torque expression should simply be rejected. For we may carry
through an analysis of the same kind as in the previous subsection, where
now the time derivatives are to be taken along the moving body elements,
and will find that also now the Minrowskl torque is compatible with the
requirement of steady motion. The peculiar property of MinkowsKI's torque
is obviously a consequence of the fact that the momentum density g™
contains both a pure field quantity g*° and a mechanical quantity g™,
cf. also the remarks in the beginning of this section. In conclusion, the study
of the case of finite bodies reveals the characteristic effect that the most
natural division of the total angular momentum into a field part and a
mechanical part is made when one adopts ABraHAM’S expression for the
field. On the other hand, in the case of infinife bodies we saw in the previous
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subsection that no preference could be assigned to either of the two torque
expressions.

At this place a remark is in order, in connection with a comparison with
the situation where an electromagnetic wave passes through a finite, aniso-
tropic body at rest. Such a situation was considered in section 4, and we
recall that the equation N4’ = NM* was found to hold in gencral. Now our
present situation resembles the wave-crystal situation from section 4, since
an isotropic body in K® becomes anisotropic in K. We may note that the
total angular momentum in the vacuum field when the wave has left the
body is independent of which energy-momentum tensor is used for the field,
since the direction of the wave propagation in either case is determined
from SM. Yel we have found that N4 in general is different from N¥ when
g +0.

To point out the dilference between these two cases let us once again
examine the lorque balance (4.1):

N - — djdtM"™ - d|dtM", (6.20)

where now the time derivatives are taken along the moving body. In ad-
dition to the assumption of the independence of M¥*® we could, in the case
considered in section 4, require on physical grounds that N be independent
of the interaction period 7' (assumed a stationary field during this period),
expecially in the small period when the field leaves the medium. The crucial
point here is that this latter requirement can no longer be upheld when the
body moves. Consequently, dM/dt is in general different from zero, i.e. the
torque depends in this case also on the internal field. We note that dM*/dl + 0
also with ABraHAM’S tensor.

As mentioned above the purpose of assuming F® = - F®*'0 was to obtain
a situation in which no complication will arise because of extra mechanical
stresses set up in K9 Let us now briefly consider how the situation is changed
if we let the same value of N®*t? be obtained by external surface forces which
do not compensate the electromagnetic forces at each surface element. In
this case there will appear mechanical stresses in K9, described by the
mechanical stress tensor zJ,. These stresses may lead to non-vanishing
momentum components at right angle to the velocity » in K, and thus be

connected with the torque Nj™* = — (i/c)6,;, f v; Ty dV which follows from

the requirement of steady motion. This amount is equal to the resulting

torque exerted by the forces, so that we obtain instead of eq. (6.19) the

equation NA 4 Next _ pgstress (6.21)

4%
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So far we have considered only Asranam’s and Mivkowsgr's tensors.
Let us finally for a moment consider the radiation tensor S,iw which is
symmetric and divergence-free within an isotropic medium. In the situation
considered in the first subsection above it follows immediately that N5 = 0,
so that according to the radiation tensor the angular momenta of the field
and the body are conserved separately. If the body is finite, the radiation
tensor behaves similarly as ABranaM’s tensor in the sense that the torque in
K is determined by the surface forces only. It should however be borne in
mind that the radiation tensor yields already in the rest frame a surface
force with another direction and magnitude than ABranam’s surface force,
although the torques are the same (cf. section 4).

7. Further Considerations on Relativity

In this section we continue the investigation of relativistic phenomena.
Only effects involving special relativity will be considered. FFor the main
part we shall be concerned with topics that were studied in chapter IV of I
in connection with Minkowskr’s tensor, and shall relate the phenomena to
the other tensors. In the following two subsections we study two subjects
that are closely related to each other, namely the velocity of the energy in an
electromagnetic wave and the behaviour of the relativistic centre of mass.

Transformation of the energy velocily in a light wave

Consider a plane light wave within an isotropic and homogeneous
insulator moving with the uniform four-velocity V, in the frame K. Similarly
as in I, section 9, the ray velocity # is defined as the velocity of propagation
of the light energy. The ray velocity is in general different both in magnitude
and direction from the phase velocity. We recall that it is shown in M@LLER’S
book () that the ray velocity transforms like the velocity of a material particle,
and further that this transformation property is verified experimentally in
the F1zeau experiment, at least to the first order in p/c.

If now an energy-momentum tensor S!«W shall describe the whole travelling
wave, it must be possible to relate the ray velocity » to the components of
this tensor by the equation # = §/W. For such a tensor the quantity §/W
must therefore transform like a particle velocity. To investigate whether S,
behaves in this way is tantamount to examining whether the quantities

U, - SIw fe %) (7.1)
“o (1/1 _SEWD Y1 S (@wP) '
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constitute a four-vector. As stated already in I, MgLLER has shown that the
sufficient and necessary condition for U, being a four-vector is that
1

S, U, U, = 0 (1.2)

By = Sun+ 3Spm

in some inertial system.

We recall that by inserting Minkowskr's tensor one really finds R%,o =0
in the case of a most general plane wave. This circumstance thus provides a
further support for our general assertion that Minkowskr's tensor describes
the whole travelling wave. In particular, if a ray travels parallel to the
direction of the medium velocity, one obtains immediately by means of
Minkowskr's tensor the well known formula, to the first order in v/c,

SM ¢ 1
Ll=W—~M=-—+Ul~—2. (73)

n n

This formula was verified in the Frzeau experiment.

After this summary of the results obtained in section 9 of I, we inve-
stigate how the situation looks from the point of view of AsraHaM’s tensor.
In this case one readily finds that R;};: + 0 in general, so that the equation
(7.2) is not fulfilled and $4/W+4 does not transform like a particle velocity.
Correspondingly, the last of egs. (7.3) is replaced by

¢ 1
WZ = ; + 217(1 — ;75), (74)

which is essentially different from (7.3). This kind of behaviour is what we
should expect: ABraHAM’S tensor leaves out of consideration the influence
from the produced mechanical momentum g™ in K9, and thus $4/W4
cannot be expected to be equal to the ray velocity. The non-compatibility
between the transformation criterion and the ApranaMm tensor evidently does
not represent a real difficulty for this tensor.

Let us now follow a more general line of approach and try to find a set
of reasonable conditions under which the quantity §/W, obtained from some
energy-momentum tensor S,,, actually obeys the transformation criterion.
To this end it is advantageous first to recall the essential assumptions in-
herent in M@LLER’s proof (in § 24 of his book(™) about the transformation
character of the ray velocity #: In the first place, the equation for the wave
front of an elementary spherical wave in K° being emitted from the origin at
the time {0 = 0 is written as
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02 402
r- - _2[ = 0. (75)
n
In the second place, the corresponding equation for the wave front in K is
obtained by means of point transtormations of each term in (7.5), so that the
world lines are assumed to remain invariant in four-space upon a LoRENTZ
transformation. By means of these conditions MeLLeRr derives that =
transforms like a particle velocity.

Our task is now lo transform the above conditions into equivalent
conditions imposed on the tensor S,,. In accordance with (7.5) we shall first
require that the magnitude of the velocities of propagation of energy and
momentum is equal to ¢/n, as expressed by the equations

i
Sgk = ‘1“182432, Sgk = - S?dle?c’ (7.6)

i
n
where e is the wave normal for the plane wave. Note that these conditions
actually mean also that the field is closed, i.e. 8}5), = 0, since each frequency
component of the plane wave depends on the wave phase (k-0 — ©010) so
that ¢20} may be replaced by — nd/(cdt9). If we now insert the conditions
(7.6) into the expression (7.2) for R,,, we really find that R, = 0.

So far we have only shown that the conditions (7.6) are sufficient to
satisfy the transformation criterion; we have not verified that they are
necessary. In fact, if we merely maintain the single restriction that Sj, be
proportional to S%eb, we find that the relation

i|8°

L ) (7.7
iIs necessary to yield R&v = 0. Evidently eq. (7.7) becomes equal to the last
of eqs. (7.6) when |S9/W? = ¢/n. Note that the weak condition (7.7) does
not even imply that S?“, be divergence-free. We think that this condition is of
minor physical interest, however, since it is preferable to construct the
theory so as to conform to the equation (7.5) (or the wave equation) in a
simple way, i.e. one should always take |S°]/W9 = ¢/n.

It has been pointed out by G. Marx ef al® that the radiation tensor Sﬁ,,
also obeys the transformation criterion. This feature can be explained on the
basis of eqs. (7.6), since the radiation tensor satisfies these equations. On
the contrary, both Asranam’s tensor and the pE Groor-SuTToRrP tensor (1.9)

are incompatible with the condition (7.7) as well as the transformation
criterion R, = 0.
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Centre of mass

Let us now assume that the interior domain of the radiation field can be
taken as a part of a monochromatic plane wave with wave vector k. Similarly
as in section 12 of I we further assume that the small boundary layer—in
which the usual plane wave relations between the fields do not hold—
contains negligible field energy and momentum.

The spatial coordinates X,(K) of the centre of mass of the field in K are
defined by

1
X, (K) = %fxﬂdeV, (7.8)

whatever energy-momentum tensor is employed. Similarly as in the previous
section it must however be borne in mind that in any case the localization
of the field in K is determined by MiNnkowsKI's tensor, i.e. one integrates over
the volume of the field by integrating across the world lines corresponding
to M. :

Let us first study the velocity of propagation of the centre of mass in K.
From (7.8) we readily find the relation

4 (K) - flfs dv [CX“'(K)J AV + icf av 7.9
di i()*%p i - # fa 07 x; f,dV, (7.9)

which in general shows a complicated behaviour for a non-closed system.
Inserting AsrAnaM’s tensor into the right hand side of eq. (7.9)—and as-
suming that corresponding world points in K and K° are connected by the
invariant (Minkowskr) world lines—we find however that the two last lerms
in (7.9) fluctuate away. Moreover, since the field is homogeneous, we find
from (7.9) the simple relation

SA.

d o4

th (K) = WA (7.10)
By taking into account the result obtained in the previous subsection, we
thus find that the velocity dX*(K)/dl is different from the velocity of pro-
pagation of the total field, i.e. the ray velocity ». This feature severely limils
the validity of the centre of mass as a representative point if ABrRamam’s
tensor is used.

With the radiation tensor we get immediately

S

d AY
“X5(K) = — = u, 7.11
i B = s (711
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in accordance with the general equivalence between the radiation tensor and
the MINkOWSKI tensor with regard to wave propagation properties.

So far having studied the velocity of propagation of the centre of mass
we now turn our attention to its localization. From the sudy of MINKOWSKI's
tensor in I, we recall that the different centres of mass we obtain by varying
the reference frames K, do not in general coincide when considered simul-
taneously in one frame. In fact, we calculated the difference X™(K) — X™,
where X denoted the simultaneous position in K of the proper centre of mass.
The proper centre was defined as the centre of mass in the rest frame KO,
i.e. XM(K0) = X™°, Let us write down again the formula (I, 12.21)

u oM v 1 Bx E°
a’(K) = X¥(K)- X" = Pk R (7.12)
where we now have added a superscript M.

Just the same procedure can now be applied to calculate the position
X4(K) when ABrRaHAM’s tensor is used for the field. In this context we stress
that corresponding field points in K and K° are required to be connected by
the MiNkowskl world lines, i.e. we simply ignore for a moment the above
result dX4(K)/dt + u. Since the proper cenires coincide in K0, X*° = X™",
we evidently have also X4 = X” in K. We do not give the details of the
calculation since it is just similar to the calculation carried through in I,
section 12. The result is

al(K) = X4(K) - X4 = a"(K), (7.13)

showing that ABranaM’s tensor yields the same position for the centre of
mass as Mingkowskr’s tensor, X4 (K) = XM (K), if we integrate across the world
lines determined by SM.

The radiation tensor exhibits very simple features with respect to the
centre of mass. Since aa(arMng—vafw) =0 it follows that the angular
momentum quantities My, constitute a tensor, and by calculating My in K
at { = 0 we readily find that

X5(K) = - feMiy _ XY (K) (7.14a)
¢ A5 t ‘
a’(K) = a¥(K). (7.14b)

The equivalence we now have established between the three energy-
momentum tensors with respect to the centre of mass is not accidental. It is
connected with the fact that in (I, 12.12) we introduced the radiation tensor
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as a formal remedy in order to extend certain volume integrals, taken over
the internal, plane part of the field, into integrals taken over the whole field.
In the case of the radiation tensor we could just take advantage of the tensor
property of Mfw. It does not seem, however, that the equivalence could easily
be foreseen.

The last point we shall dwell on in connection with the study of the
centre of mass is a comment concerning a result obtained in a bhasic paper by
C. MgrLLer®3), On the basis of some definite assumptions, MgLLER showed
that the concepl of mass cenire for a non-closed system in general is incom-
patible with the equations of motion. This result seems to run into conflict
with the result obtained in the present section, where we have defined the
centre of mass even for the Amramam field. However, there is no real
discrepancy between the results, since one of the assumptions inherent in
MgLLER’s proof does not apply to the present situation.

Let us point out in detail the mathematical reason for this circumstance.
At an arbitrary point of the world line of the proper centre (with proper
lime 7) M@LLER assumes that the following relation can be written:

1 d
gfswda,, =My Xy, (7.15)

where the integration is taken over a hyperplane ¢ which is normal to the
world line. The surface pseudo four-vector do, is given by do, = — i0,,4,dx,,
dxsAxy, 01934 = 1, where da,, dx, and dx, are four-vectors lying on o. If o
is orthogonal to the x;-axis, we choose the latter three vectors so that the
non-vanishing component of do, is do, = — idV, when the outward normal
lies in the direction of the positive x,-axis. In (7.15) M, = My(z) is a
proportionality constant.

If we now insert ABrRaHAM’S tensor into (7.15) in the frame K* where
the wave is at rest, we find for g = 4 the relation #4% = M c?, while for x = i
we find that M, becomes infinite. This discrepancy shows that an equation
of the form (7.15) does not apply here. Hence M@LLER’S proof does not come
into conflict with the above results in this section. Nor does MiNkowsKI's
tensor satisfy the velation (7.15) ,while the radiation tensor does satisfy it.

The Cerenkov effect

As we already have noted, a study of the CeEreEnkov effect is very in-
structive for a comparison between the various energy-momentum tensors,
In section 5 of the present paper we studied the CErExkOV effect in the case
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that the emitting particle moves within a medium at rest, and in section 10
of I we considered the emitting particle in its own rest system from the point
of view of MiNnkowskI's tensor. The reason why we shall here consider the
CerENKOV effect once more, it that we wish to point out how the relativistic
theory looks if Anramam’s tensor is used for the field. This kind of analysis
is desirable, since I. Tamum in his famous paper®) on the CERENKOV effect
studied the balance of momentum in the rest frame of the particle and came
to the conclusion that Minkowskr's tensor, but not ABrRanaM’s tensor, is able
to give a satisfactory description. We shall thus discuss the momentum
balance in the ABrAHAM case, since according to our general interpretation
Minkowskr's and ABraHAM'S tensors ought to be equivalent in such a case.

Consider then the same situation as in I: An electron is moving along
the x-axis with a uniform velocity which in K¢ is larger than ¢/n. The rest
frame of the particle is denoted by K; as shown by Tamm, H = 0 in K, so
that there is no MiNgkowsKI energy currenl in this frame. We integrale the
differential conservation law for momentum over a volume which contains
the electron and which is enclosed by a cylindric surface S of small radius and
infinite length such that the axis of the cylinder coincides with the x-axis.
Since the field is stationary in K, one can thus write, in the case of Min-
KOWSKI'S tensor,

fs%nkds - fffiMdV, (7.16)

which is the same as (I, 10.3).

As Tamm points out, Minkowskr's force must in any case represent the
force acting on the electric charge, because the terms which are added to
Minkowskr's tensor in order to form Amranam’s tensor will correspond to
additional forces acting on the medium ilself, and not on the electric charge.
The total force on the electron as given by the right hand side of (7.16) can
thus be found by transforming the total force from K° using the usual
transformation formulas. Now TaMmum evaluates the integral on the left hand
side of (7.16) and wverifies that the two sides of the equation are equal.
Further, since S% =+ S% for i =1 and k = 2, 3, he concludes that a symme-
trical ““Ansatz’ for S, would give a different result in disagreement with the
force expression on the right hand side of (7.16).

Let us now apply ABranam’s tensor to the present case. It is instructive to
write the momentum balance in the form

[ Stenpas + [t - pyav = - [prav, (7.17)
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and so it appears that the second integral on the left may represent a source
(or sink) of eclectromagnetic momentum which also has to be taken into
account. Since the force on the matler cannot make up an appreciable
magnitude in a small volume element just enclosing the electron, we can
exclude this element from the second integration in (7.17) and thus obtain

JS{‘knde+flfg‘dV - [rrav, (7.18)

’
where f means integration over the remaining part of the volume. However,

also the second term on the left in (7.18) vanishes due to the rapid oscillation
of the integrand, so that eqs. (7.18) and (7.16) become identical, i.e. §¥ = §4.
In fact, the relation SY¥ = S4,, valid for all combinations of i, k that occur in
(7,18), can be checked directly by expressing S¥ and S, in terms of the
tensor components in K9 Note that it is just the latter relation that represents
the main reason why the (macroscopic) descriptions corresponding to
MinkowskIr's and ABRaHAM’s tensors are identical in this case; properties of
symmetry or asymmetry of the energy-momentum fensors are of no direct
importance.

In the remainder of the present section we shall be concerned with a
study of the so-called *‘principle of virtual power’’. Before embarking upon
this subject, let us however pause to make the following brief remarks in
connection with the topies considered in I: In sections 4 and 5 in I we gave
two sets of conditions from which we showed that MiNkOwSKI's tensor is
uniquely determined. It should be clear that both these sets of conditions
automatically exclude from consideration the alternative tensor forms that
we have been studying: The first set because eqs. (1, 4.1) and (I, 4.2) require
the tensor to be asymmetric and divergence-free; the second set essentially
because eq. (I, 5.1) requires the tensor not to contain the four-velocity V,
explicitly (cf. (1.5), (1.7) and the fact that also Sﬁv will contain V, in a
complicated way).

In section 10 of I we discussed the negative field energy which appears
with the use of MinkowsKI's tensor in a certain class of inertial systems due
to the space-like character of the four-momentum Gﬁ’. This property is
peculiar to MiNgkowskr's tensor and is not shared by the other tensor forms.
We may check by direct calculation that W4 > 0 and W¢ > 0 in any K,
while the result W* > 0 follows immediately from the fact that the four-
momentum G/‘j is time-like. If a plane wave moves parallel to the x-axis we
may conveniently write the total energy density of matter and field as
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WO = 92(1 + 2nf + FHYWA 1 2 pmeen’, (7.19)

. - . . 0
where the contributions arising from $4

40, g2 and §™°™° are collected in
the first term.

Principle of virtual power

Quite recently, P. PEnriELp and H. A. Haus published a book®®) on the
electrodynamics of moving media which is a synthesis of work they per-
formed with various collaborators; especially the earlier article$) by Cuu,
Havs and Pexrierp is of particular interest to us. The authors adopt a
phenomenological point of view. In addition to employing the usual form-
ulation (I, 1.1) of MaxwgLL’s equations in a moving medium (the Min-
kOowsKI formulation), which we also have employed throughout our work,
they consider the so-called Cuu formulation introduced in the book by
Faxo, Cru and ApLer®9). It is outside the scope of our work to go into a
study of the Cru formulation. What really is of interest to us, is that the
authors, within the frame of the MiNkowskr formulation, derive an expression
for the electromagnetic energy-momentum tensor which is equal to AprAHAMS
expression in an isotropic fluid, while Minrkowskr’s tensor is claimed not to
describe the electromagnetic system in a meaningful way. We find it there-
fore of interest to trace out the reason why the authors have arrived at this
result. The keystone of the derivation presented is the “‘principle of virtual
power”’, invented by the authors, so let us first sketch how the principle
looks in the present case. An isolropic fluid is considered, where the fluid
velocity u(r,t) may be a nonuniform function of the position at a certain
time. We simplify the formalism (thereby ignoring the dependence of the field
energy on the material density), and transform it to our notation.

Consider an arbitrary space-time point and denote by K° the inertial
frame in which the velocity of a fluid element around this point momentarily
is zero. Thus #° = 0 for the element, but one assumes that virtual deform-
ations can be applied to the material to produce arbitrary values of d,ul and
oul/ot.

Then let K denote the frame in which K? moves with a small veloeily .
To the first order in u/c we have

S; = S+ u, Sy, + W (7.202)

1
W= W' iug+SuS° (7.20b)
C
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and these equations are introduced into the energy balance
V -8+ 0W/ot = icf,. (7.21)

The authors then let K approach K° so that terms containing # (but not the
derivatives of %) vanish. The resulting equation is

1 ou® oW?° 0u®

V-8 580 — — + WOV - def] = = Sh0,u) - g —  (7.22

2 a1 Y, fa w0ty — & ot ( )
(note that the differential operators @, are not transformed). The es-
sential point is now that a knowledge of the physical quantities appearing
on the left hand side of (7.22), i.e. of 8% W? and f3, is claimed to be sufficient
to provide a determination of the remaining tensor components S and g°
appearing on the right hand side of (7.22). The following expressions are

chosen:
80 = c(E° x H% (7.232)
AW/t = E°-9DO/dt + HO - 9BYdt (7.23b)
W = L(E°- D"+ H°- B, fi=0. (7.23¢)

The authors now argue that it is convenient to express the fields E° D° HO,
B0 appearing in (7.23) in terms of the fields pertaining to the inertial frame
K before inserting (7.23) into (7.22) (note again that K° means the frame
where the fluid element momentarily is at rest). By inserting (7.23) into the
expression on the left hand side of (7.22) they thus obtain

o ag P g 0B
. >< + .___+ -
v ( ) at ot
(7.24)
1 ou
+ (B Dy + HyBy ~ 10(E D + H B)|oyu,——(Ex H) - .
C

The three first terms add up to zero because of MaxwELL’s equations. By
letting K approach K9, identifying (7.24) with the right hand side of (7.22)
and taking into account the arbitrariness of the derivatives of 9, the authors
finally obtain

Sy = —EXDY — HYBY + 16, (E*- D° + H" - B%) (7.252)

1
g0 = —(E® x HY). (7.25b)
[
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This is ABraHaM’s expression. (Actually, the expression given in ref. 46,
containing the detailed derivation, was somewhat different from (7.25) but,
according lo a private communication by the authors, this difference is due
to a printing error.)

If we now proceed to examine this principle of virtual power, we ought
first to note that one must distinguish between the derivatives of the relative
velocity v between the frames K9 and K, and of the fluid velocity u. The
formulas (7.20) relate the lensor components in the frame K to the tensor
components in the momentary rest frame K° moving with the constant
velocily o with respect to K; although v = u at the space-time point considered
the corresponding equality between the derivatives is generally not true.
Thus each of the factors 0,u® in (7.22) should properly be replaced by
d,0°% which is zero. In facl, by performing the transformation K — K° the
only result one can obtain is the covariant properties of the conservation
equations 9,5, = — f,. By starting from the relation (7.21), and assuming
the velocity v to be small, one will thus end up with the same relation written
in KO. If we really subtract the equation V8% -~ dW?0/dt — icf} = 0 from eq.
(7.22), we see that obvious inconsistencies will appear in the remaining
equation if arbitrarily adjuslable terms 8 ,u° are present.

However, the above remark does not elucidate the essential reason why
a deflinite form of the electromagnelic energy-momentum tensor was ob-
tained. To this end let us in the following simply assume the validity of eq.
(7.22) as it stands. The essence of the principle of virtual power seems in
reality to be that one starts from the energy balance (7.21) in K, then trans-
forms the field quantities to K9 and inserts some physical information in
this frame, and finally transforms back to K. Within the frame of the physical
information inserted in K¢ the formalism can therefore, if it is carried
through consistently, yield only a mathematical identity. The reason why
the authors instead obtained Abraham’s expression in (7.25) is that they
implicitly introduced into the formalism a physical assumption which is
compatible with Abraham’s tensor, but not with Minkowski’s tensor. Let
us go into some detail at this point. It is then necessary first to focus our at-
tention on the force component f; in (7.21). In the conventional theory f,
transforms like a four-vector, so that, in the limiting case of small u, f, = f3.
This equation was used by the authors in the construction of eq. (7.22).
In particular, if f$ = 0, as assumed in (7.23¢), one should obtain f, = 0
also in K. However, if we use the covariant expression for S,, and calcu-
late f, in K according to the basic equation f, = — 3,5,,, we may obtain
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a different result. For example, both in the Abraham case and the Min-
kowski case we know that f} = 0, while the covariant expressions (1.5)
and (1.1) vield

f4 =0, [¥ = ~i®-1)(ExH) 0ulit (7.26)

to the lowest order. In the Minkowski case there is thus a conflict; it is in-
correct to transform f‘)f as if it were a four-vector.

Due to this peculiar transformation property of fi (which evidently is
closely connected with the covariance problem of the conservation equa-
tions discussed above), it follows that fi should properly not have been re-
placed by f9 in (7.22) but should rather have been retained unchanged.
Accordingly, it follows that eq. (7.24) implies the relation f4 = 0. This is a
choice which, according to (7.26), implicitly singles out Abraham’s tensor.
The appearance of Abraham’s expression in (7.25) is therefore what we
should expect. It is also possible to make Minkowski’s tensor emerge from
the formalism; to this end we must insert the explicit expression for f%,
given by (7.26), into (7.22). Generally speaking, the introduection of a spe-
cific expression for fy implicitly implies the acceptance of a specific tensor,
the remaining formalism thus effectively expressing an identity.

8. Analysis by Means of Curvilinear Coordinates

In connection with the study of the canonical procedure in section 8 of I
we mentioned that it is possible, in the case of a closed field, to make the
canonical energy-momentum tensor complete by means of a symmetrization
procedure. Now it is well known that in the presence of a gravitational
field one can obtain the complete energy-momentum tensor directly, without
having to perform a symmetrization, by means of a variational method
involving the variation of the metric tensor. Actually, and it is this case
which is of interest to us, the variational method can be applied also in the
absence of a gravitational field. Then the transilion to curvilinear coordinates
occurs formally as an intermediate step in the calculation.

Curvilinear coordinates have been used rather extensively in earlier
studies of the electrodynamics of material media, although one here is
confronted with a non-closed field. Incorrect use of the variational method
caused a great deal of confusion in the literature some years ago. The
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ambiguity inherent in the calculation seems first to have been pointed out by
J. I. HorvATH®? (see also ref. 48). However, we think that it is still of
interest to give a careful analysis of the electromagnetic field in terms of
these coordinates, to point out the detailed reason why the power of the
variational method is restricted, and to supplement with remarks pertaining
to alternative variational methods. The main part of the present section is
devoted to this task. Tn the last subsection we shall study again the Sagnac-
type experiment from section 9 of I, in connection with an application of the
various tensor forms. The cavity frame in this experiment is evidently
non-inertial.

A variational method

Let us now leave out the imaginary x, coordinate and work with the real
coordinates x!, a2, x2, x9 = ¢f. The square of the line element is ds? =
gm,da:'“dx” (4, v running over the numbers 1, 2, 3, 0), whence in GALILEAN
coordinates

= = =1, = ~1
911 = G22 = Y33 oo (8.1)
g = detg,, = -1, g, = 0 for u +v.
Further, in GALILEAN coordinates,
E - (Fio, Fyy, F3), B = (F23:F31,F12) } (8 2)
D - (HIO’HZD’HSO)’ H - (H23,H31,H12),
and the connection between field and potentials is in general
FW = V,4, - vaM = BNA,, - 6VA#, (8.3)

as the covariant derivative V, can be replaced by the ordinary derivative
when F, is antisymmetric.
For a radiation field MaxweLL’s equations take the form

VAF;W + VMF”& -+ vvF/llu = BlFm, + aval + 3,,F;w =0 (8.4a)
1 /,,,,
V,HY = —3,()/ —gH*) — 0. (8.4b)
V-9
We have here assumed arbitrary coordinates where the 9 are given
functions of the coordinates. Then proceed to determine the constitutive
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relations. We shall keep the formalism so general that it includes the case of
an anisotropic dielectric medium, but we shall assume magnetic isotropy
with g = 1. (The procedure runs similarly, however, also if u,; is a tensor.)
Introdueing in the small region around each point a local rest system of
inertia K with the metric tensor given by (8.1), we may write

o

H‘iU = E?ﬁko. (8.5)

Moreover, in K we introduce the quantities
§=8=00=12230 (8.6)

and let in the arbitrary coordinate system the symmetric tensor ¢ be
defined in such a way that ils mixed components in K coincide with &

given by (8.5) and (8.6). The constitutive relations written in covariant form
are then

1 1
HW = P 4 (P! = fF )V = 5 (F* ~ & F) V¥, (8.7)

where F, = aﬁVﬁ, and VP is the four-velocity of the medium. In isotropic
media eq. (8.7) can be written

H™ = F¥ _ o (FEVY — VB, w0 = (e~ 1)/c2, (8.8)

This relation between (8.7) and (8.8) can readily be verified, since for an
isotropic body in K

BHEf P - GgUF - 3 (8.9)

Here g% is the metric tensor in GarLiLean form and £ is the dielectric constant
in K. Note that & = 0 according to (8.6) while §3 = 1; however, this does
not matter, since F®= 0. Writing (8.9) covariantly as &F, — 8F¥, we
obtain (8.8) from (8.7). Thus, while ¢** in (8.7) is a tensor, the trans-
formation (8.9) in the case of isotropic media causes the dieleciric constant
in (8.8) to be treated as a four-dimensional scalar.
It can be verified that an appropriate LAGRANGIAN is
L = — +F, H"

Py

i v 1 3 1 uy ’ " (8'10)
= i Fu P~ Py P P F, = Lyt L4 L

Mat.Fys.Medd.Dan.Vid.Selgk. 37, no. 13.
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Multiplying with the pseudo-invariant [/?—z; dr = [//iig dxldr?dxdda® and inte-
grating over a region X in four-space lying between two space-like surfaces
and extending to infinity in the space directions, we get the action integral

J = fL(x)V?_gdx - f,sﬁ(x)dx. (8.11)
z X

Since (8.10) corresponds to the field and its interaction with the matter, a
variation of (8.11) with respect to the potentials will yield the field equations
(8.4b). However, we are primarily interested in the invariance property of J
under coordinate transformations.

Let an infinitesimal coordinate transformation be given by a'# = o +
ox# = x# + &, where the & are small, but arbitrary functions of the coor-
dinates, so that terms quadratic in {* may be neglected. The corresponding
change of (8.11) is

07 = [ £ @yt - fz(x)dx. (8.12)
x’ 2

By transforming this expression and using the assumption that & vanish on
the boundary, we obtain®

o1 = [0 L @)ax = 0, (8.13)
z

where *%(x) = #'(x) — £ (x) is the local variation. Eq. (8.13) has the form
of a variational principle even though L does not correspond to a closed
system; only it must be remembered that all variations are generated by the
infinitesimal coordinate transformations.
We proceed then to calculate these variations. By a vector trans-
formation we find
V') = 0,2V (x) = (¥ + 0,V (x), (8.14)
whence
Vi (x) = V'(x)0,& - 0, VE(x) = VPV, & - &y, VE, (8.15)

Here we have for example v, V¥ = 9, V# + I't) V¥ where I'Y, is the CaRrIsTOF-
rer symbol. It appears that 6*V# is a four-vector, as should be the case,
since this variation is the difference of the values of two four-vectors at the
same point. Correspondingly for the potentials

S A, () = —A,V,E — 2V,4,. (8.16)
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The g will also be affected by the coordinate transformation, and we have
g"uv(x') - g“ﬁ(x)aaa:waﬁxw - g‘uv(x) + guaaa§v+gvo¢aa§#_ (8.17)
Thus

§*gh () = g (x") — gh" (x) - E0, 9" (x) = VHE +VIEL (8.18)

Similarly
Ol = My &+ Oy E - E2 e (8.19)
The part J; of the action integral corresponding to L, in (8.10) is to be
varied with respect to 4, and ¢g*”. This term is present also in the case of an

electromagnetic field in vacuum. One obtains after some calculation (for
details, see Fock®9), §8§ 47, 48)

- . I~
oJy = - %J‘(F,uchva - }Tg,quaﬁFaﬁ)‘Shguv‘/ —gdx

- (8.20)
- fvvF/”(S‘*‘AM]/— gde,
Here use has been made of the relations (S”[/j—g= —%[/——_ggmé*g/“',

9% Gy = ~ gud*g"”. By virtue of (8.18) the first term in (8.20) can be
transformed, so that

87, = fv,,(FWF”“— }gZFaﬁF“ﬁ)é‘“l/ngx~fV,,F'“”5*Aﬂ|/t?]da:. (8.21)

We shall now give the detailed calculation for the action term J’ corres-
ponding to L’ in (8.10). Variations are here to be taken with respect to

A", g and V¥, Let us first calculate the contribution from the potentials and
write

7 1 a - 1 " —
d,J = - C—ZfF'“V"‘cS'*'FmC V—gde = — C—ZfF'“V“(aﬂé*Aa - 00(6*14“)1/* gdz,
since 0, and 6* commute. By partial integrations then
’ 1 4 ; —
g0 = — C?J-V,,(F”V” ~ F*V ”)6*AM[/— gdx, (8.22)

where we have exploited the antisymmetry property of the expression in the
parenthesis.

The variation with respect to the metric tensor is handled in the same
way, and we get by means of (8.18)

5#
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7 1 T g —
0" = — Tcszqu(l/— 9o g =3 - g9 g,50% ) da

il

1 N . —
- ;2J.(FMF —%guFﬁFﬁ)Vaé" ]/-— gdx (8.23)

l

1
- [ F = v Ep e

— Vo (F F* — Lg% FgFPY 8% = g de.

Since the first term in this expression involves the covariant derivative of the
product of a scalar and a four-vector, we can write this term as

1 —
—C—ZJ‘OM[I/—g(F#F“~{;gZFﬁFﬁ)§”]dx (8.24)

and transform into an integral over the boundary. Therefore this term
vanishes. It remains

1 I
0,J" = Eva(FMFV_%'gZF&Fa)‘EMV— gdzx. (8.25)
Finally we consider the variations connected with the velocity. By means
of (8.15) we have
1 —
opyJ = — *ZJ‘FWF“(V”VvE'“ - &V,VH) - gdu. (8.26)
c
Performing a partial integration we obtain, apart from an integral similar to
(8.24)
’ 1 ~ -
Opd’ = — Zéf[v,,(le* V)4 FOV, V) gy — gda. (8.27)

Similarly we can evaluate the contributions from the term L” in (8.10).
We give the results:

1 —_—
S " = vav [(e42V? — &* VEYF,] MA/LV_ gdx (8.28a)
C
’” 1 of o/
8,J" = Y V(5P F Fg)é V— gdx (8.28b)

r 1 & v “a
O = - Ef[v,,(a PFuFgV?) + aaﬂ_p‘”FﬁvﬁtV 18— gda (8.28¢)
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r 1 P ]
8,J" = - 5?f[zvv(emr«uzrm) R Fv, @y —gde.  (8.28d)

In the last equation we have made use of (8.19).
Now we are able to write down the total variation 4., where 6 = §, +

d, + 0y + 0,. We obtain

. .
0 = 68J = 0Jg+08J +8J" = — jvv{F/“’ Fg(P =YV

1 _
G s”“Fa)VM]a*AM/— gdx + f[vv(FMaH”“ ~LghF,gH™) | (3.29)

1 , 1 I
- ?Fm(F“ - e"‘ﬁFﬁ)V“V” - é}FvFavﬂaw} g - gdx.

In this relation ¢*4, and £ are not independent, but related through (8.16).
However, we do not have to express 6¥4, by & in (8.29) since we know
that Z is the Lacranaian for the field in interaction with the medium. There-
fore the coefficient of 64, must be equal to zero, as we also see by virtue
of (8.7) and (8.4b).

Now the &* are arbitrary at each point. This means that during the
displacement period the dielectric in general will not move as a rigid body,
but the bulk density will vary throughout the body. However, even under
this deformation process the LaGrancian (8.10) is permitted, since Max-
WELL’s equalions are assumed to be valid within the body also when it
becomes inhomogeneous, with the small velocity changes that appear
because of the deformations. So MAXWELL’s equations do nol restrict the
variations &, and we obtain from (8.29)

M 1 1
v,S, = :zlv‘m(F“ ~ P Fp)V, VY + @FWFKVMEW, (8.30)
where .
M

8,0 = FoH"™ ~ g, F g H

is MiNngowsxkr's tensor. We now introduce GALILEAN coordinates and use
that d,V” = 0 for the undisturbed body, whence

M 1
0,8, = 55 FuFady e (8.31)
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We should like to mention the possibility of requiring the body to move
as a rigid body under the deformation period in some coordinate system.
Then the variations of one world line can be chosen arbitrarily, but the
variations on the surface ¢ = constant will now be determined by the metric
tensor. Because of the relativity of simultaneity however, deformations will
in general occur in another coordinate system. Besides, this type of variation
does not lead to the strong result (8.30). To see this, let us confine ourselves
to GALILEAN coordinates, in which the restriction reads & = constant on an
arbitrary hypersurface ¢ = constant in some inertial system. If we let y,
mean the difference between the left and the right sides of (8.31), we can
write (8.29) as '

0 = fxué'“dw = fdx”&“fdamxﬂ, (8.32)

from which we can only conclude that the volume integral fd% Au = 0.

Let us now return to the main result (8.31) emerging from the formalism.
It should be clear that this result is only a certain combination of MaxwELL’s
equations. We could equivalently write eq. (8.31) in terms of ABRanHAM's
tensor, or any other expression. Apart from the statement of the LAGRANGIAN
(8.10), the subsequent calculation is of merely mathematical nature.

The present behaviour arises from the fact that the Lacrancian (8.10)
does not describe the total physical system. If the LacranciaN had been
complete, then we could further have reduced the expression for the
variation of the action integral in view of the mechanical equations of
motion, and would have been left with the total energy-momentum tensor as
a result of the remaining variations. In some earlier treatments the elec-
tromagnetic energy-momentum tensor was claimed to be determined simply
by the variation of the action integral with respect to the metric tensor. As
mentioned above, HorvATH*7, 48} has emphasized the ambiguity of such a
procedure. Further, H. G. Scuopr®® has objected against certain calcul-
ational inconsistencies in the earlier attempts. The works of HorviTun and
ScaOPF contain references to the preceding literature.

In the treatment up till now we have generated all variations from
coordinate transformations, since this seems to be the simplest kind of
approach. However, one will commonly find another method used in order
to calculate the variation of the velocity ©.50.51), Namely to preserve the
relation

V,VE =~ (8.33)
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also after the variation, one introduces LLAGRANGE variables o (A=1,2,30)
to describe the medium, where a® = p is an arbitrary invariant parameter of
the nature of a time. Then, writing

cdat|op
V= gap 0a*jopazPlop

VE

(8.34)

the relation (8.33) is identically satisfied. But when evaluating the variation
of V# given by (8.34), the change in the gop must also be taken into account.
In this way the & are considered as arbitrary. However, we see that this
procedure is necessary only if the LaGraNGIsN obeys an action principle
with respect to the x”. In the case of an electromagnetic field in vacuum
interacting with incoherent matter, as treated by Fock®® for example, the
given LAGRANGIAN corresponds to the total system and must therefore yield
the equations of motion of matter when the arbitrary &*-variations are taken
in a fixed system of reference. Therefore one must take the restriction given
by (8.33) into account, for instance by the parametrical representation
(8.34). Another method has been given by L. INFELD®2, 53); the method
consists in introducing a LaGraNciaN multiplier A to take care of the degree
of freedom being lost by (8.33).

In our case, the LacraNciaN L given by (8.10) obeys an action principle
only with respect to the potentials; the & -variations are consequences of
coordinate transformations which preserve the condition (8.33) auto-
matically. Therefore no attention was paid to the restriction (8.33) in the
calculation above. But it is not incorrect to use the representation (8.34).
We then obtain instead of (8.15) the velocity variation

) 1
OIVI = VIV S - ETVE - S VIV, YT, (8.35)

when the change in the 9up 1s taken into account. However when evaluating
the §,-variations, we vary also the 9up in (8.34), so that

* 1 * 1
VI = = SV V89 = VY,V Y,e, (8.36)

where (8.18) has been inserted. We see that in the total velocity variation
(8™ + 8)V# the expression (8.36) compensates the last term in (8.35), so

that we end up with a certain combination of MaxwELL's equations, as
before.
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Similarly, by using INrFELD’s method, the multiplier 4 drops out of the
calculation.

We mention that in the case of isotropic media (fluids) some at-
tempts®4 500 have been made to complete the LLAGRANGIAN so as to make
the system closed. In such a case the LacranGIaN has to obey a variational
principle also with respect to coordinate variations, so that one may use the
representation (8.34). In this way the total energy-momentum tensor has
been found to be given by ABraHaM's tensor plus the hydrodynamical tensor.

The consistency of such a procedure may be illustrated by the following
consideration. We first tentatively write the LaGrangiaN density for the
total system as

P
Lt = = Fy FI® 4 F, F¥ - 6,2 (8.37)
where » = (n? ~ 1)/c%, F), = F,,V”, and §,, is the invariant rest mass density
of the fluid. If we now perform coordinate variations (for fixed meiric) and
evaluate the contribution to the action integral which arises from the second

term to the right in (8.37), we find the expression | f4£*)/— gdx due tothe
P I Y

velocity variations (8.35). Here fﬁ means ABRAHAM's force density written
in general coordinates. Therefore the coordinate variations, which effect
only the two last terms in (8.37), lead to the hydrodynamical equations of
motion with AsraaaM’s force as the external force. This result is compatible
with the interpretation we found in section 3, and this is the crucial point,
since it permits the adoption of (8.37) as the correct LacranciaN density
for the total system. If we then perform an infinitesimal coordinate irans-
formation so that the action integral remains invariant, we see that the
coefficients in front of 6%4 u and &* vanish in view of the field equations and
the equations of motion, so that we are left with a divergence-free total
energy-momentum tensor in front of 0*¢* which is equal to the sum of
ABRAHAM'S tensor and the hydrodynamical tensor.

Note that the present direct connection between the variation of the
metric tensor and the energy-momentum tensor, and between the remaining
variations and the equations of motion, is lost if we employ our first method
and generate all variations from coordinale transformations. Thus, if we
use the LaGrangian (8.10), a variation of the action integral (8.11) with
respect to the mefric tensor leads to ABranHam’s tensor only if both (8.18)
and (8.36) are taken into account. However, in order to analyse how the
conservation equations emerge from the formalism when (8.10) is used, our
first method is simpler.
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Final remarks on the Sagnac-iype experiment

The last task that we shall take up in our work is to give an extended
analysis of the recent Sagnac-type experiment due to HEer, LirTLE and
Bupp®3 which we considered in sect. 9 of I in connection with MINEOWSEI's
tensor. We shall examine how this experiment is explained by the other
tensors. »

Let us briefly recall the essential features of the experiment. The
apparatus is a iriangular ring laser giving rise to two travelling electro-
magnelic waves in the cavity, one circulating clockwise’ and the other
counterclockwise. A dielectric medium is placed in the light path. When the
system is at rest the photon frequencies in the two wave modes are equal.
If the cavity is set into rotation with an angular velocity £, the photon
frequencies of the two beams become different from each other and the
beams interfere to produce beats which are counted. With MiNkOWSKI'S
tensor the energy density W™ for one of the modes in the noninertial cavity

frame is related to the energy density W for this mode in an instantaneous
inertial rest frame by

1 X
WY - WO —Q-[rx(Ex H), (8.38)
- ‘

where the fields refer to the mode considered, and are evaluated for 2 = 0
since only effects to the first order in £ are investigated. Further, within this
approximation the total field energy in the cavity frame is a conserved

quantity, so that we obtain the formula (I, 9.6) for the relative frequency
shift

(Av>M 4Q-J.r><(E><H)dV

= — . (8.39)
v Cf(E-D+H-B)dV

In the plane wave approximation the agreement between (8.39) and the
observed data is excellent, and the authors conclude that their experiment
supports the asymmetric MINKOWSKI's tensor.

As we shall see now, the above conclusion should be somewhat modified
The experiment represents a nice verification of the predictions of pheno-
menological electrodynamics, but it is not a critical test of the convenience of
MinkowSsKI's lensor as compared to all other tensor forms. In fact, both
ArranaM's tensor and the radiation tensor give an equivalent description of
the experiment. For we have in any case, to the first order in £, the following
formula for the energy density in the cavity frame:
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W= wo Tk (8.40)
a4

where g, is the metric tensor in the cavity frame and the superscript zero
refers to the instantaneous rest inertial frame. Since the tensor components
S;” are equal for Minskowskr's and ABRAHAM’s tensors and also for the radi-
ation tensor, we must obtain the same value for W. Therefore, in any of
these cases, we can put the conserved total field energy of each mode propor-
tional to the corresponding photon frequency, and obtain again the funda-
mental formula (8.39).

Note that the equivalence of the above three tensors with respect to the
energy balance in the cavify frame holds for all participating terms. The
energy balance reads in general

1 @ —
VoS = [/)—:gb—x_"(l/* 98" — Ty 8% = — fu, (8.41)

but it can be verified that the term involving the CHRisTOFFEL symbol
yields no contribution to the first order in £. Moreover, by performing a
coordinate transformation between the inertial frame and the cavity frame
we find that f, = 0, even in the ABraHAM case, and that the components S;*
take on common values. In all the three cases considered we can thus write
the energy balance as 0,S;” = 0, with common values for the tensor
components.

Finally we note that with the pe Groor-SuTTORP tensor (1.9), complic-
ations arise because the expression for W0 is changed. In this case the force
component f; is different from zero, yet the total field energy is a conserved
quantity in the cavity frame since f, fluctuates away when integrated over
the volume. However, we do not now obtain the expression (8.39) for the
relative frequency shift; in fact, if we put the total energy proportional
to the photon frequency for each mode we find the formula (4v/v)® =
(M| A (Avjv)M, in disagreement with experiment. This tensor seems in
general not to be suitable for the description of propagating waves, since in

an inertial rest frame the magnitude of the quantity $%/W€¢ is different
from ¢/n.
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Appendix

The table below gives a summary of the behaviour of the various energy-
momentum tensors in those examined physical situations which are of
experimental interest. References are given to those sections of Part I or
Part II where the actual subject has been investigated. Cf. also the summaries
in the introductory sections of I and II.
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e) de
¢) Radiation tensor d) Bin- | Groot-
Situation considered a) Minkowski b) Abraham (Marx et al; Beck) stein Suttorp
— Laub (first
version)

Dielectric isotropic
or anisotropic hody
surrounded by a va-
cuum or isotropic li-
quid and acted upon
by an electrostatic
field: Measurement
of force or torque.

‘Within an anisotro-
pic body the tensor
asymunefry is of main
importance for the
torque. I, sect. 3; I1I,
sect. 2.

Torque always de-
scribed in terms of
the force.

II, sect. 2,

No experimental distinction possible. II,

sect. 2.

Not defined in this
case.

Same experimental
result as in the cases
a) and b). IT, sect. 2.

ExXxcess pressire pro-
duced in a dielectric
liquid by an electro-
static field: Hakim-

Higham experiment.

In this case the electrostrictive terms
must be taken into account. Thereby one
obtains a tensor which yields Helmholtz’
force, and which is in agreement with the

second tensor form

put forward by de

Groot and Suttorp. Good agreement with

experiment. II, sect.

2.

Not defined in this
case.

Force density equal
to Kelvin’s force.
Disagreement with
experiment. II,
sect. 2.

Radiation pressure
exerted by an elec-
tromagnetic wave
travelling through a
dielectric liquid :
Jones-Richards ex-
periment.

Good agreement with
experiment. Simple
interpretation. I,
sect. 6; II, secl. 3.

Equivalent to case
a), when the appro-
priate interpretation
is imposed. 11, sect. 3.

Disagreement with
experiment. II,
sect. 3.

Inconvenient,

Dielectric isotropic
or anisotropic bhody
surrounded by a va-
cuum and acted upon
by a high-frequency
field: Measurement
of force or torque
(Barlow experiment,
Beth experiment,
ele.).

No experimental distinction possible. IT,

sect. 4.

Defined for isotropic
media only. Same
experimental result
as in the cases a) and
b), although the
direction and magni-
tude of the surface
force in general are
different. 1I, sect. 4.

Same experimental
result as in the cases
a)-c).

Dielectric isotropic
or anisotropic body
surrounded by a li-
quid and acted upon
by a high-frequency
field: Measurement
of force or torque
(experiment not per-
formed).

No experimental distinction possible. II,

sect. 4.

Experiment of the
Barlow type should
represent a critical
test. II, sect. 4.

Experiment of the
Barlow type should
also here be critical.
The torque formula
is different from the
formulas correspond-
ing to the cases a)-c).
11, sect. 4.
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Situation considered

a) Minkowski

b) Abraham

¢) Radiation tensor
(Marx et al; Beck)

77

e) de
d) Ein- Groot-
stein- Suttorp
Laub (first

version)

Low-frequency vari-
ation of electric and
magnetic fields: Mea-
surement of oscilla-
tions of a suspended
dielectric shell (expe-
riment not perfor-
med).

Does not predict
oscillations.

Predicts oscillations.

The equivalence between the tensors does
not apply to this case. An experimental
distinction should be possible. 11, sect. 4.

Same behaviour as
secl. 4.

in the case b). II,

Cerenkov effect.

Good agreement with | Equivalent to case Leads to unphysical | Inconvenient.
the experiments. a), when the appro- | value for the Ceren-
Simple interpreta- priate interpretation | kov angle. I1, sect. 5.
tion. I, sect. 10; II, |isimposed. I, sect. 5
sect. 5 and 7. and 7.
Velocity of the ener- | Good agreement with { Equivalent to case Same behaviour as Inconvenient.
gy of an optical wave | the experiments. The | a), when the appro- |in the case a).
in a uniformly mov- | von Laue-Maller priate interpretation
ing body: Fizeau transformation cri- |isimposed, I, sect.7.
type experiments. terion is fulfilled. I,
sect. 9; IT. sect. 7.
Sagnac-type experi- Good agreement with experiment. I, sect. 9; II, sect. 8. Inconvenient.
ment performed by I1, sect. 8.

Heer, Little, Bupp.
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18.
19.
20,
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.

31.
32,
33.
34.
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