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Synopsis

Computer programs have been developed to calculate numerically the dips in yield alon g
low-index directions and planes of energetic positively charged particles emitted isotropically
from substitutional sites in a crystal lattice . The calculations are based on Lindhard's theoretica l
treatment of directional effects and include effects of thermal vibrations of the emitting atoms .
The obtained intensity distributions also give the nuclear reaction yield as a function of th e
direction of an incident beam .
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Introduction

During the last few years, directional effects connected with the passage

of swift charged particles through a crystal lattice have been studied inten -

sively in a number of laboratories, both experimentally and theoretically .

Perhaps the most interesting effect observed is the almost complete extinc-
tion of nuclear reactions for positively charged particles incident on a singl e
crystal parallel to a low-index direction s) or planet) . This shadow phenome-

non has already been shown to be a very useful tool in solid state investi-

gations 3) . The present work contains numerical evaluations of some of th e
related formulas derived in the comprehensive theoretical treatment 4) * given
by LINDHARD . Although the main purpose is to give quantitative theoretical

estimates, the results of the numerical calculations may also serve as a n

illustration of the fundamental qualitative aspects of Lindhard's theoretica l

treatment .
The calculations to be presented in the following are directly concerne d

with the emission of positively charged particles from lattice sites . The

obtained probability distributions for the direction of emergence of th e

particles from the crystal, however, also give the probability for particle s
incident on the crystal to hit a lattice atom as a function of the directio n

of incidence . This may easily be verified by direct calculation, but may als o

be regarded as a consequence of the reversibility rule discussed in I, § 5 .
The first two paragraphs contain the formulas on which the calculation s

are based. The reader is referred to I for derivation and further discussio n

of these formulas .

§ 1 . Emission of Particles from a String

The basic approximation in I is that of an isolated string of atoms, i .e .
the interaction of a particle moving at a small angle to a low-index directio n
is treated as the interaction of the particle with isolated strings or rows o f

atoms . This simplifies very much the theoretical description . Furthermore ,

* In the following referred to as I .

1*
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it is shown in I that this interaction may be treated essentially by classica l
mechanics* .

As a first approximation (the continuum approximation), the atomi c
potentials are replaced by an average potential U(r) given by

J

dz
u(o

where r is the distance from the string, V(R) the atomic potential, and d
the distance between atoms in the string . In this approximation, the trans -
verse energy of a particle El = Ecp 2 + U(r) is conserved in a collision with
a string .

In I, Appendix A, this description is refined by considering the trans -
verse energy at the planes perpendicular to the string half-way between atoms .
It is shown in a direct way that the transverse energy defined in this way
is approximately conserved when the angle between the particle path an d
the string is small .

On the basis of this approximation, the emission of a particle from a
string atom is considered in I, § 6 . The particle motion is divided into thre e
stages :

a) Emission from the string atom
b) Passage through the crystal lattic e
e) Transmission through the crystal surface .

Figure 1 illustrates the calculation of the distribution in transverse energ y
after stage a) . The particle A with energy E is emitted from atom B . The
angle of emission is q~ and 19' is the azimuthal angle of emission . At the moment
of emission, the atom is at a distance r from an otherwise perfect string .
Thus, the thermal vibrations of all string atoms except the emitting ato m
are neglected, whereas the thermal vibrations of the emitting atom are
represented by a probability distribution for r, dP(r), which is taken a s
a Gaussian :

dP(r) = é-r91Q' d( 2)
a ,

where a=1 is a normalization constant and A2 the mean square displacemen t
perpendicular to the string .

* For a general quantum mechanical treatment, the reader is referred to ref . 5) .

(1 )

(2)
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E 1 = Ey 2 + U(r* )

r2 + (21) 2 + ri.pd cos

Fig . 1 . Emission of particle from string atom .

The emission is assumed to be isotropic . Consequently, the probability

distribution for cp is proportional to (for small angles cp) and for 19' a con-

stant . The transverse energy of the emitted particle is calculated at the
half-way plane as the sum of the transverse kinetic energy E(p 2 , and the

transverse potential energy U(r*) .

From this, an expression for the distribution in transverse energy afte r

stage a) is derived* :

	

ro

	

2 .7r

.Ilout(E1) = J dP(r) f d(E(p 2 ) f d?9
' - å(E1 - U(r '') -E 2 ) .

	

r=0

	

0

Here, ro is given by rrro = (Nd) -1 , where N is the number of atoms per cm 3

and d the distance between the atoms on the string. The other parameter s

are indicated in Fig . 1 .

* Here, and in the following, the probability distributions are normalized to the rando m
case, i .e . to U(r) - 0 .

(3)
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According to I, Appendix A, the transverse energy of the particle is not

changed by collisions with perfect strings . In the following, we neglect th e

change in transverse energy during stage b) of the motion caused by therma l

vibrations of the atoms on the strings and assume strict conservation o f

transverse energy in stage b) .
Stage c) of the particle motion is the transmission through the crysta l

surface . The transverse energy Eyre of a particle, which has been transmitte d
through the crystal surface at a distance r from a string, is given by Ep =
E1 - U(r), where E1 is the transverse energy before the transmission . Con-

sequently, the distribution in transverse energy outside the crystal surface

P e (Epe) becomes

Pe(E?Ve) = J
dElllout(E 1)T(E1é , E1) ,

	

(4)

where the transmission factor T(Ep, El ) is given by

T(Ey~e2 , E1) =
J

2	
d('12

2)	 å(E1 - Etp é U(r))

	

(5)
ro - (E 1 )

0

Here, î•(E1) is defined by U(r(E1)) = E1 .
The transmission factor T(Ep,E1 ) is analogous to I, eq . (6.1), the transmis-

sion factor for particles incident on a crystal surface. The only difference

is that ro in the denominator is replaced by rô -1 2(El) because the particle

motion is restricted to that part of the transverse plane where E 1 > U(r) .

From (4) and (5) we get

Pe(E tve) _ f ro _
~, 2(Ey,e) U(r))

nout(Ewe ~ U(r))

	

(6)
o

Formula (3) is in I treated analytically in the continuum approximation :

r` = r, and an explicit expression for Ilout(E1) is derived, using the standar d

potential I, eq. (2 .6) :

r0

ro

U(r) = 1E14 . log
(Cay

r )
i 1 , ( 7 )

where

'9Z1Z2e 2 1/ 2

= 1 d E
/

I
1
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a is the Thomas-Fermi screening radius and C =V3 .

1

	

C 2a2
110,4E1)

	

exp

	

-

	

(eEtP -- 1)-1 1 - exp

The result i s

- (8)1

	

2

e

	

J 2

.e

Furthermore, a qualitative estimate, I, eq . (6 .12), of the integrated dip is given :

yC 2 a 2 +o2
Q n

2
.log	 2	 	 (9)

where y = 1 .78 is Euler's constant .
Except at low energies, where ?p 1 Za/d, formula (8) gives a good approxi -

mation for the width of the dip and its dependence on the vibrational am-

plitude e . The important feature of compensation, however, is missing i n
this continuum description . The accuracy of the formulas (8) and (9) is

further discussed in § 5 .

§ 2 . Emission of Particles from a Plane

A similar, but weaker correlation of successive small angle scattering

events exists for a particle moving at a small angle to a low-index crysta l
plane . The scattering of the particle by a plane of atoms may, as a firs t
approximation, be treated as the motion in an average planar potential :

Y(y) = N• dp ~ 27rrdr V(Vy2 + r2 ) ,

0

where N • dp represents the atomic density in the plane, N being the numbe r

of atoms per cm3 and dr the distance between planes . In this approximation ,

the transverse energy El = Ep2 + Y(g) of a particle with respect to a plan e
is conserved .

In the string case, the continuum description was improved by measurin g

the transverse energy at the half-way planes . A similar refinement is not

straightforward in the planar case because of the less well-defined correla-
tion between successive scattering events . The need for such a refinement is ,

however, smaller in the planar case since the planar potential decrease s

more slowly with distance than the string potential, and the critical angle s
for planes are smaller . Furthermore, the compensation of the dip is alread y
contained in the continuum description of the planar case as may easil y

(10)
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be seen by integrating formula (12) with respect to E 1. Consequently, in th e
following, the planar case is treated in the continuum approximation .

Formulas for the distribution in transverse energy of particles emitte d
from a planar atom are not given explicitly in I but may easily be derive d
in analogy to the string case . Again, zero-point and temperature vibration s
are represented by a Gaussian distribution of the distance y of the emittin g
atom from the plane at the moment of emission :

2

	

/o

	

a
dP(y)

=VZe

3z
~ dy - ,

where a is a normalization constant, a^' 1, and p2 is the mean square dis -
placement perpendicular to the plane . 1f the emission is assumed to be
isotropic, the probability distribution for the angle of emission cp is a constan t
(for small angles (p) .

The transverse El of the emitted particle is the sum of the transvers e
kinetic energy 4,2 , where E is the energy of the emitted particle, and th e
transverse potential energy Y(y) . Thus, the distribution in transverse energy
Ilout(E1) after stage a) become s

dr /2

E )1/ 2

Hout( E1) = f dP(y) f d(Eq)2)
(E2)

å(E1 - Eq~ 2 - Y(y))

where O(E1) is given by Y(ÿ(E1)) = E1 for E L < Y(0) and û(E1 ) = 0 for
E1> Y(O) .

Again, we neglect the redistribution in transverse energy in stage b) an d
only consider stage c), the transmission through the crystal surface . This is
complicated by the fact that in statistical equilibrium, the probability distri-
bution Po(E1 , y) for the distance y of a particle with given transverse energ y
E1 from a plane is not constant as in the two-dimensional string case, bu t
inversely proportional to the square root of the transverse kinetic energ y
(I, eq. (3 .2)) :

r

	

E

	

1/ 2

=
J dP(y)(El

- Y(y ) ~

o
dy / 2
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K

	

E1

	

1/2

(

	

for El > Y(y)

~ dp ;El - Y (y ) •

Po(El , y)
l 0 for El < Y(y)

where K is a normalization constant, K = K(E1), given by

d$,
f

/2

	

1/2

(iv (E1 EY(y))
K(E1 ) = (14)

The transmission factor T(E4, E1) thus becomes :

dp//
2

T(E4, E1) =
J dy

Po(E1, y ) å(E1 - E é - Y(y) )

o
dy /2

= K
Jdy

pd
	

E1Y(y)•

~1/2

8(E1 -L ié Y(g)) .
(G1

From this we get the distribution in transverse energy outside the crystal :

Pe(Ev) = f dE1llout(E1)T(E4,E1 )

dp / 2

f dy
l.
01é +Y(y))

(E14	
(J})1/2Hont(E é+ Y( y))

612,
o Ed e

§ 3 . Thermal Vibrations

In the above formula, an Einstein model of independently vibrating

lattice atoms is assumed . Furthermöre, the vibrations of all atoms except

the emitting atom are neglected . This may be a reasonable first approxima-

tion since the vibrations of the other atoms are averaged out when many

atoms contribute to the scattering .
The mean square amplitude <R 2 > may be estimated from the Debye model

(see e .g. ref. 6)) :

9h 2 1
iR2 . 	 1 +Ø(X )}i - ~IxTD l4 XD

	

D

y(E.J

(17)
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where M is the atomic mass of the crystal atoms, x is Boltzmann's constant ,

TD the Debye temperature, and XD defined by XD = TD/T . The functio n
(I (XD ) is defined by

x„

Ø(XD )
1

X

f x

	

(18)
XD e'

d

- 1
x

0

Ø is tabulated in e .g . ref . 7) .

From (17), <R2> may be calculated as a function of the absolute tempe-

rature T. For T< TD, the term 1/4 from zero-point vibrations dominates ,

and for T> TD , < R 2 > is proportional to T.
For the mean square vibration perpendicular to a string or a plane, w e

have <r 2 > = 2/3<R2 > and <g 2j = 1/3<R2), respectively. From these relations ,

and from (17), the parameter e in formulas (2) and (11) may be estimated .
Since the nearest neighbour plays a dominating part in the interactio n

of the emitted particle with the string or plane, it may be of interest t o
estimate the correlation between the vibrations of neighbouring atoms . This

may be don e $) on the basis of a formalism as developed in ref . 6). If ua(r) is

the a-component of the displacement operator at the position a correla-
tion coefficient ß for the a-components of the vibrations of the neighbourin g

atoms is defined by :

(19)

where dis the distance vector between the two neighbouring atoms. As usual ,

< > denotes the expectation value .
In ref. 8), this correlation coefficient is estimated in two limits : T« TD

and T» TD , in the Debye approximation :

T«TD : ß^ 2(1 - cos(kD d)) /(kD • d)2

	

(20 )

T»TD : /3=
~

(kD d)-
2

Here, kD is defined by kD = (6n2/Vo)i"3, where Vo is the volume of the unit

cell .

If we set d = Vo 13 and disregard the cosine term in (20), we get in the

two limits ß ='-'0 .13 and ß ^ 0 .40, respectively . It is seen that, despite the cor -

relation, the mean square relative displacement in both limits is larger tha n

the mean square absolute displacement . In consequence, it seems justified
to neglect the correlation in the present approximation .

r= <ua(2')IIa(r --d) )

< ua(` ) 2i,

(21)
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§ 4. Numerical Calculations

String case

The intensity distribution (6) is calculated by simulating emission o f

particles from a vibrating string atom . First, the intensity distribution (3)

is calculated. The three parameters (cf . Fig. 1), r, and 9) are varied

independently in steps : r : (1-25) • ell 0, i9- : (1-10) • :z/10, q) : (1-50) . P i /10 .

For each set of parameter values, the transverse energy El of the particle

is calculated from the relation El = Eg~ 2 + U(r") . (Lindhard's standard

potential (7) has been applied with C = j/3) . Thereby, the emission angl e
y is determined through the relation Ep = El , and y is approximated by an

integral multiple of yi /10. The emission spectrum is obtained, each event

being weighted by a factor 2 9, . r/e • exp{ -1.2/4 which accounts for the
probability distribution of the parameters r, V, and <p .

In the last part of the program, the change in the angular distributio n

in stage c) - the transmission through the surface- is calculated from (6) .

For simplicity, rå - l 2 has been replaced by rô in the program . This intro-

duces an error of at most a few per cent for some values of the emissio n

angle . The angle of emergence y e is also approximated by an integral mul-
tiple of y i /10 .

The program contains four external parameters : PI = Ca/d, P2 = e/d ,
P3 = yp l , and P4 = 7E4/d 2 . The last parameter only influences the secon d
part of the calculation, transmission through the surface . Furthermore, th e

intensity distribution before this transmission has an important similarit y

property. As a function of y/y l, the distribution only depends on the two

parameters P1 /P2 = Cale and P2/P3 = e/dypl . This may be compared t o
the probability distribution (8) obtained in the continuum approximation .

This distribution depends only on one parameter, Cale .
The program has been used at the GIER computer at the University o f

Aarhus. For one set of external parameters, the calculation takes -5 minutes .

Planar case

In this case, the integrals in (12), (14), and (16) are calculated directly .

The potential used is the continuum planar potential obtained by introducing

Lindhard's standard potential I, eq . (2 .6") in (10) :

Y(g) = 2nZiZ2e2A''d7, [(y2 + C2a2)i/2 - g]

	

( 22)

with C = j/3 .
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It would have been more correct to use a potentia l

(g) = Y(g) + Y(dP - g) .

	

(23)

However, the two potentials only differ appreciably for y dp /2, and the

correction will therefore be of minor importance .

If a distance d is introduced by

N dp • d 2 = 1

	

(24)

and an angle vl, by

(2Z1Z2e211/2 V-
cy~p=

d E /)

	

d ,

(22) is transformed into

i2

	

l
-

Y(g) - z E 'pp
[((ca)2 1) Ca .

It is easily seen from formulas (24), (25), (26) and from (10), (12), (14) ,

and (16) that the shape of the intensity distribution only depends on two

parameters : p1 = Ca/e and p2 = Ca/dr, . For fixed values of these two para -

meters, the planar dips are similar with scaling factor Essentially, the

parameter p2 only influences the surface transmission so that, analogousl y
to the continuum description of the string case (8), the intensity distributio n

as a function of lV/yl, before transmission through the surface only depend s

on one parameter Cale .
This program has also been used aL the GIER computer at the University o f

Aarhus. For one set of parameter values, the calculation takes - 10 minutes .

§ 5 . Results of the Numerical Calculations

String cas e

As mentioned above, the string dip is essentially determined by th e

relative magnitude of the three parameters, P1, P2, and P3 . The influence
of the fourth parameter, P4 = rro/d2 is illustrated in Fig . 2, which shows how

the transmission through the surface of the crystal changes the angular di-

stribution . It is seen that the transmission almost exclusively influences th e

intensity at the bottom of the dip .

(25)

(26)
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w I : P4 = 0.125

II : P4 = 0 . 5

II : No surface transmissio n

	 i
1

	

2

	

3

Fig . 2 . Influence of the surface transmission on the angular distribution illustrated by th e
emission of 500 keV protons from a <100> string in tungsten aL 1470° K . Actual value of

P4 is 0 .5 .

The most important parameter is P3 = v 1 . In the continuum approxi-

mation (8), angular distributions for different values of y1 are similar, with
scaling factor p1 . In the present calculation, the similarity is broken . This
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Fig . 3 . Illustration of the deviations from similarity of angular distributions for varying P3 =
vl . Values of Pi and P2 correspond to emission of protons from a <100> string in tungste n
at X100° K. Values II, III, and IV of Pi correspond to proton energies of 700 MeV, 1 .2 MeV,

and 0 .2 MeV, respectively. Q is the integrated (two-dimensional) dip .

is illustrated in Fig . 3, which shows angular distribution before surfac e
transmission for fixed values of PI = Ca/d and P2 = o/d and varying P3 .
Also shown in the figure is the curve calculated from (8) . It is seen that th e
numerically calculated curves approach this curve for P3 - O . In order to
compare with the approximation (9) for the integrated dip Q, this has bee n
calculated for each curve .

ur
i

	

g, P1 0.060

II

	

'

	

P2=0.01 5

I : formula (8) Q = 1 .65x ntIi _

P3_ 0.001 S2_ 1.55x Ttitq

III : P3= 0.024 Q ;. 1 .37 x >ZC~ ~ _

IV : P3= 0.060 S2= 0.79x ncii
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Normal value

P10.060
P2 = 0.013 ; 0.022 ; 0.050
P3 = 0.03 7
P4 = 0 . 5

p Å T °K Min.vatue p2/rô Ratio Half width

A 0.041 70 1 .9%o 11%0 1 .7 1 .12

	

x

B 0.070 295 3 .8%0 3.0%° 1 .3 1 .00 x

C 0.158 1470 17.2%° 15.7% ° 1 .1 0.67 x

2

	

4

	

5

	

6

	

7

	

8

i
Fig . 4 . Influence of vibrational amplitude p on angular distribution of 500 keV protons emitte d

from a <100> string in tungsten at different temperatures .

Figure 4 shows how the calculated string dips depend on P2 = e/d .
The parameters Pl, P3, and P4 correspond to 500 keV protons incident o n

a tungsten crystal along a <100> direction . The first column in the table in

the figure shows the e-values, and the second column the temperatures which ,
in this case, correspond to the values of the parameter P2 . The e-dependenc e

of the minimum yield is shown in the third column and compared with th e

value e2 /rô, which is the minimum yield calculated in the continuu m
approximation (I, eq. (6 .13)) . As expected, the agreement is best for larg e

values of e . The last column in the table shows the variation with e of th e

width at half minimum of the dip .
Figures 3 and 4 also illustrate the compensation of the dip by an increas e

in yield at angles slightly larger than the width . The compensation is analogou s

to the compensation of the classical Rutherford shadow behind an ato m
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Fig. 5 . Semi-logarithmic plot of the calculated half width tp i z as a function of the two parameter s
zpi /(Ca/d) and e/Ca .

(treated in I, §2). In that case, half the compensation is found at angle s

-Ca/d. This feature is easily recognized in Figs . 3 and 4 . Another qualitativ e
feature of the compensation is seen. The high and narrow compensatin g

shoulder found at small values of o is rapidly smeared out when o increase s

relative to yl • d .

An important parameter, which may be extracted from the calculate d
curves, is the width at half dip as a function of the relative magnitude o f
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the three parameters PI = Cold, P2 = e f d, and P3 = yl . In most cases ,

the surface transmission does not influence the half width very much (cf .

Fig . 2). It was therefore not included in the calculations on which Fig . 5

is based. The results are plotted as a family of curves, each characterize d

by a fixed value of Pl /P2 = e/Ca . The curves give the half width y1/2 in

units of vl. as a function of P3/P1 = dy, 1/Ca . This family of curves is com-

pared to the curve obtained from I, eq. (A. 19), corresponding to e = O . It i s

interesting to note that for I1 < Ca/d, the ratio yl/ ,/v l is almost constant and

close to unity when thermal vibrations are included . As a rule of thumb ,

the full width at half dip may be taken to be 2vi for ip1 <„ Ca/d .
The region yl » Ca/d has not been investigated in detail, mainly becaus e

few experiments are performed at very low energies . The calculations may ,

however, easily be extended to cover this region .

T

3 .0

	

4.0

	

5.0

	

6 . 0

(Pe /4) 1

Fig. 6 . Comparison of different calculations of the angular distribution of 5 .49 MeV alpha par-
ticles emitted from a <111> string in tungsten . Curves I and II are calculated numerically
with Lindhard's standard potential and a Bohr potential, respectively . Curve III is calculate d
by Onx 5l on the basis of a two-particle model . In all calculations, the value p = 0 .054 A ha s

been used .
Mat .Fys .Medd.Dan .vid .Selsk .36, no-7 .
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1°

	

2 °

Fig. 7. Angular distribution of 400 keV protons emitted from {100} and {110} planes in tung -
sten at room temperature .

Comparison with numerical calculations on the basis of a two-particle mode l

The influence of thermal vibrations on the classical shadow behind a n
atom has been numerically evaluated by OEn 9l . In Fig. 6, his results for
the shadow behind a single atom are compared to the present results for

the shadow behind a siring of atoms . The comparison is complicated by the

p1 = 3 .8

	

LU p = 0 .68 °

p2 = 0 .085 width =1.4 x tUp

pt = 3 .8

	

(Up = 0.58 °

p2 = 0 .120 width =1 .3 x ,U p

{110}

{1001



I : p2= 0.34 width =1 .05 x (, p

B : p2 = 0.085 width = 1.3 x
III : No surface transmissio n

width =1 .5 x (pp

	Normalvalue

3 4 5 6

(1)e/* p
Fig. 8 . Influence of the surface transmission on a planar clip illustrated by angular distributio n
of protons emitted from { 110} plane in tungsten at room temperature . Actual value of p 2

is 0 .085 .

difference of the potentials used in the two calculations (OEN uses an expo-
nentially screened potential) . The string calculation has therefore bee n

repeated with an exponentially screened potential. The resulting curve i s
also shown in Fig . 6 . It is seen that the width of the dip obtained with a
Bohr potential is much smaller than that of the dip obtained with Lindhard' s

2*



1

	

2
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p Å T°K Min . value Width

A 0.029 70 3 .7°/° 1 .41 x 4)p

B 0.050 295 6 .8°/° 1 .35x ~p

C 0.112 1470 13 .6°/° 1 .21 x tip

Fig . 9 . Dependence on the vibrational amplitude P of a {110} planar dip in tungsten .
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standard potential . This is not surprising since in the actual case v i -a/d,

i .e . scattering of the emitted particles at distances ,:, a plays an important part ,

and in this region, the Bohr potential is known to decrease too rapidly .

The difference between curves II and III may be attributed to the scat-

tering from the second, third, etc ., neighbour on the string . As expected ,

the difference is largest for small angles .

Planar case
Two typical planar dips are shown in Fig . 7 . We may compare the

width at normal value with the respective values of ylp given by (25) . This

comparison is made in the figure . It is seen that ?p p is a fairly good measur e
of the width .

Figure 8 illustrates the influence of the transmission through the surfac e

and of the parameter p2 = Ca/d . It is seen that the influence of the trans -

mission - as expected - is much larger than in the string case .
Figure 9 shows the dependence one of a planar dip . The planar dip

shows a somewhat weaker o-dependence than does the string dip . The

minimum value is changing by a factor of 3 .7 compared to a factor of 14 .3 in

Fig . 4. The width changes with a factor of 0 .86 compared to a factor of 0 .60
in Fig. 4 .

§ 6 . Discussion of Result s

String cas e
Before comparing the results of the calculations with experiments, it ma y

be appropriate to discuss briefly the kind of agreement to be expected . For

this purpose, we may divide the string dip roughly into three regions :

1) The bottom of the dip

2) The side of the dip, i .e . the region where the yield rises rapidly t o
the normal value

3) The shoulder, i .e . the region just outside the dip where the dip i s

compensated by a yield higher than normal .

The main physical interest is concentrated on region 1), where the large

dip in yield occurs . This dip may be characterized by the minimum yiel d

imin• The value of Zmin found in experiments depends critically on the expe-

rimental conditions . First of all, ;timin is sensitive to all kinds of crysta l

defects, especially surface defects such as an oxide layer or even small devia -
tions of the crystal structure near the surface from the bulk structure .
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Fig . 10 . Experimental 13 ) and calculated string dip in Rutherford scattering yield for 480 ke V

protons incident along a (100) direction on a tungsten crystal at 390°K .

Furthermore, under normal experimental conditions it is not possible t o
resolve the yield due to the first layer of the crystal from which the yield i s
normal. In most cases, some multiple scattering is also included in measure-
ments of )(min . A quantitative agreement between the numerically calculate d
value of xn, in and the experimentally found value is therefore not to b e
expected . In favourable cases it has, however, been possible10' 11) to measure
î~min values of the same order as Lindhard's qualitative estimate, xnin =
Nd7r(e 2 + a 2 ) (I, eq. (6.14))* .

Region 2) may be characterized by the width at half minimum of th e
dip . The width is not very sensitive to experimental conditions and should
therefore show good agreement between calculation and experiment .

* In cases with very high depth resolution, more detailed information about the minimum
yield and its variation with depth may be obtained as recently demonstrated by Boer-s 12>.
For such cases, theoretical estimates considering the specific experimental conditions may b e
developed .
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Fig. 11 . Experimental 2) and numerically calculated string dip in (p,y) yield for 1400 ke v
protons incident along a (110> direction on an aluminium crystal at room temperature .

Region 3) cannot be expected to show quantitative agreement, the main
reason being that in most cases, the yield in this region is strongly influence d
by planar effects . Clear experimental evidence of this influence is found i n
e .g . ref . 13) . Measurements may, however, be expected to exhibit the quali-
tative features of the compensation mentioned in connection with Figs . 3
and 4 .

Here, we shall not give a comprehensive comparison between the avail -
able experimental results and corresponding numerical calculations . A con-
siderable amount of experimental results is found in refs . 11) and 13) .

In these references, the corresponding results of the numerical calculation s
are also given . To illustrate the kind of agreement found in most cases, tw o
experimental and calculated string dips are compared in Figs . 10 and 11 .

As seen in these figures, the width of the experimental dip is well reproduce d
in the calculation .
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Planar case

The theoretical description of the planar case is not expected to be a s
accurate as the description of the string case and consequently, a less quanti-
tative agreement is expected. The agreement obtained in the planar case i s
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illustrated in Fig . 12 . The widths at normal value are in fair agreement but

the minimum values differ by a factor of two, and the very high shoulde r

found in the calculation is not reproduced by experiment . This is not sur -

prising since very little multiple scattering is required to smear out the

extremely narrow shoulders .
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