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Synopsis

Recent investigations in relativistic thermodynamics have shown that the momentum an d
energy of transferred heat in a thermodynamical process transform as the components of a four -
vector under Lorentz transformations, in striking contrast to the ideas of the early formulatio n
of relativistic thermodynamics of sixty years ago . In the present paper it is shown that th e
results of the new formulation are supported in all details by a relativistic generalisation o f
Gibbs' classical statistical mechanics .
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1 . Introduction and Survey

I
n a most interesting paper by H . OTT from 1963 [1], it was shown that

the old relativistic treatment of thermodynamical processes by PLANC K

and others [2] contained an error which led to a wrong transformation

formula for the heat energy transferred in a process . In pre-relativisti c

thermodynamics, the first law expresses the law of conservation of energ y

when heat energy is involved in the process . In relativity theory, this la w

has to be supplemented by a similar law of conservation of momentum .
Thus, in an arbitrary system of inertia S, we have four conservation equa-

tions*
4Gi = 4Ii + 4Qi, i = 1,2,3,4

	

(1 .1 )

4Gi = {4G, -4H/c}

4Ii - {41, -JA/cl

4Q i = {4Q, - 4Q/c} .

Here, 4G and 4H are the changes of the momentum G and energy H of

the thermodynamic body in a process leading from one equilibrium state
to another such state . 41 is the mechanical impulse, i . e . the time integral

of the mechanical forces acting on the body, while 4A is the work performe d

by these forces during the process . Consequently, 4Q is the heat energy
transferred to the body in the process (definition!) and 4Q is the corre-

sponding momentum transferred along with the heat supply .

In his paper, quoted above, OTT clearly pointed out that the error i n
the old treatments is due to a wrong expression for the mechanical wor k

performed by the external forces . However, his argument and his result s

were not universally recognized and his paper gave rise to a large number

* Latin indices run from 1 to 4, Greek indices from 1 to 3 . The metric tensor in Minkowsk i
space has signature +2 and the usual summation convention is made .

with

1*
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of mutually contradicting papers on the subject [3] . Therefore in a recent
paper [4], the present author considered once more in all details the simple

case of thermodynamical processes in a fluid enclosed in a container o f
changeable volume. If we assume that the fluid cannot withstand shear,
the external force on the fluid is simply the normal pressure from the wall s

of the container . Since the pressure is a relativistic scalar, it is easy in this
case to write down the transformation equations for the quantities 4G i an d
41i . Then, the transformation laws for the quantities 4Q, follow from (1 .2) .

The main results obtained in reference 4 are the following. In general ,

neither 4Gi nor 4Ii will transform like the components of 4-vectors under
Lorentz transformations . Nevertheless, the differences 4Gi -41,, i .e . th e
4Q ., are the covariant components of a 4-vector, the four-momentum of supplied

heat . This result, which in reference 4 was proved for a fluid only, has bee n
shown by BRLVni [5] and by SÖDLRHOLM [6] to he valid for any elastic bod y

and for any thermodynamical process leading from one equilibrium state to

another such state of the body.

Further it was shown in reference 4 that the four-momentum of sup -

plied heat for an infinitesimal reversible process is proportional to the four -

velocity

Vi

	

UV,=

	

v, - yc}, y = (1 - v2 /c2 )-1
, ~

, -

of the body :

dQzev - dQ°ev
ti'i ,

c 2

where dQ%, is the transferred heat energy measured in the rest syste m

S o of the body. The fourth component of (1 .4) gives

u
dQrev - dQre v

As regards the second law of thermodynamics, it is generally agreed tha t

the entropy S is a relativistic invariant,

i . e . S = S°, (1 .6)

and, in .the rest system, we have

(1 .7 )d Qr~e v
dSo =

T o

(1 .3 )

(1 .4 )

V1 - v2 ' c
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where To is the proper temperature as measured in the rest system . If one

wants a similar equation

dS = dQre v

T

to hold in any other system of inertia, one finds by (1 .5-8) that the so defined

temperature T is connected with the proper temperature T° by OTT ' S formula

T°
T -

V1 - v 2 /c2

Thus, T is not an invariant but rather the fourth component of a time-lik e

vector

(1 .8 )

(1 .9)

To
Ti =

	

Vi
C

(1 .10)

the `temperature 4-vector' introduced by AazELiis [71 :

T = T4 = - T4

	

(1 .11 )

Obviously the norm of this vector is equal to the invariant proper tem-

perature T°, since

l - Ti Ti = T o .

	

(1 .12)

Thus, instead of using a single quantity T, defined by (1 .9), for the charac-

terization of the thermodynamic state (together with `extensive' quantitie s
like the volume etc .) it seems more appropriate in an arbitrary system of

inertia to use the four components of the temperature 4-vector T i for this
purpose . Only in the rest system S° where the spatial components T° = 0

we are left with a single quantity T4 = - T o as in classical thermodynamics .

This point of view was carried through in a recent paper [8] in which also a

generally relativistic formulation was given which in a very simple way

leads to Tolman's condition for thermal equilibrium in a large body unde r

the influence of its own gravitational field .

However, in the case of an irreversible process the formulation of the se-

cond law leads to unnecessary complications in this scheme . In the rest system

S° we have, for an irreversible process ,

dn°
dS° > - ;~ 0 , (1 .13)



6

	

Nr . 1 6

but in an arbitrary system of inertia S, (1 .13) is not equivalent t o

dS > dQ , (1 .14)

a relation which is simply not true . This is connected with the fact that the

4-vector dQ i for irreversible processes is not proportional to V i in general .
However, we get a very simple general formulation of the second law i f
we, instead of the temperature 4-vector T i , introduce the reciprocal temper-
ature 4-vector 0 i defined by

0i = 0° vi,

	

0° _ (1 .15)
which has the norm

0 -

	

- Oi O i /c = 0 o . (1 .16)

Then, the second law in an arbitrary system S takes the for m

dS % - O idQi , (1 .17)

where the equality sign holds for reversible processes only . In the latter case ,

where dQi is of the form (1 .4), (1 .17) is identical with (1 .7) (or (1 .8)) and ,
for an irreversible process, we hav e

O idQi = 0° i dQ°

	

-
c

dQ° -
dQ o

To

	

To

so that (1 .17) is equivalent to (1 .13) . In the form (1 .17), the second law can
immediately be taken over into the general theory of relativity and the re -
sults obtained in reference 8, in particular Tolman's equilibrium conditions ,
follow immediately.

The considerations in references 4 and 8 were purely thermodynamical ,
but it is clear that the results quoted in this section should be obtainabl e
also by means of a relativistic generalization of Gibbs' statistical mechanic s
in which the thermodynamic properties of a macroscopic system in therma l
equilibrium is described as mean values in a canonical ensemble . A re-

versible process is then described by a succession of canonical ensemble s
with varying values for the parameters that characterize the ensemble .
In this way it is possible to derive all the earlier mentioned thermodynamic
properties of the systems, in particular the transformation properties o f
4Gi , 4I i and 4Q i , from statistical mechanical considerations, and this i s
the subject of the present paper .
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In view of the generality of the properties in question, it is sufficient t o
treat a highly simplified model like an ideal gas of equal particles enclose d
in a container . Since the particles do not interact in this case, the particle s
move independently of each other in the field of force originating from th e
walls of the container and possibly from other external sources . In the
next section we shall, therefore, start by considering a one-particle system ,
which is then easily generalized to the case of n identical particles . It will
be shown that the equations of motion can be written in the Hamiltonian
form in any system of inertia, but the Hamiltonian will in general not b e
a constant of the motion . Section 3 contains a short survey of the propertie s
of relativistic phase-spaces, such as Liouville's theorem in an arbitrary Lorentz
system and the relativistic invariance of the volume of phase-space . In
section 4 we consider ensembles of mechanical systems in the phase-spac e
of an arbitrary Lorentz system . In particular, the relativistic invariance of
the probability density and the general form of the latter for a canonical
ensemble are considered .

The following section contains a derivation of the transformation proper -
ties of the mean values of the canonical four-momentum, the forces, the rat e
of work, and the `probability exponential' in a canonical ensemble . I n
section 6 we give a statistical description of a reversible process and a cal-

culation of the mechanical impulse and work is carried out, by which typica l
relativistic effects are clearly brought out . We shall also obtain a statistica l
expression for the four-momentum of supplied heat in a reversible process .
Finally, in the last section, a number of theorems are derived which allo w
to calculate mean values of important physical quantities by differentiation s
of a function that is closely related to the free energy of thermodynamics .

2 . Lagrangian and Hamiltonian Form of the Equations of Motion i n
the Case when the Field of Force is Static in a Certain System o f

Inertia S°

The motion of a particle of constant rest mass m subjected to a forc e
in any system of inertia S is generally given by Minkowski's equations

dpi =
Fi ,

	

i = 1,2,3,4 ,
d-c

where
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dz~

	

dtl/1 - u2 /c 2

	

(2 .2 )
is the proper time ,

pz={p ' -E/c} - ~~ Vt1i 2 c 2 -i- p2I

	

(2 .3 )

mu

is the four-momentum and

(2 .4 )

the four-force .

We shall now in particular consider the case where the force R° is static
in a certain system S° and derivable from a potential U°(x°) which is in -

dependent of t°, i .e .

ax° ' (ax°
. u

°/c,
4/1 u 02 /c2

a° _ - grad U°

aU° aU° 2 .5)

U° = U°(x°, a) may depend on a number of constant parameters (a i )

which characterize the external sources of the force . For a particle in a
container of volume V° without other external forces, the potential energ y

U° is constant and shall be chosen equal to zero inside V° and --~ oo outside .

In the presence of external forces like static electric or magnetic fields ,
U° - 0 will be varying inside the container . The parameters (a) determin e
the strength of the external forces as well as the form and the volume of th e

container . For constant (a) and varying x°

- d U°

	

_ a U°(x°, a)
dx °

ax°

is equal to the work performed on the particle during a displacement dx° .
For fixed values of x° (and p°), the increase of the potential energy by a
change (da l) of the external parameters i s

d (a) U° = (2 .6)

which must be interpreted as the work performed on the system by a change

of the configuration of the surrounding systems .
For fixed (a), the three equations (2 .1) with i = 1,2,3 in the system S°

are the Euler equations of the variational principle
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b L°dt° = 0

17tc 2 I/ 1 - 11021c2 - U0(x0L° -

d

	

x°)

	

aL(u°, x°)
d t

(aL(u° ,

au°

The canonical momentum P° corresponding to the Lagrangian (2 .7) i s

P°

	

aL
°(u°' x°)

	

°
au°

	

p '

i . e . in S° the canonical momentum is identical with the linear momentu m
p°. The corresponding Hamiltonia n

S~° = P° . u° LO - E° + U0(x0) - c J'zn 2 c2 + p02 + U°(x°)

	

(2.10)

is equal to the total energy of the particle in the external field . The Hamil-
tonian equations

dp° _ a °(p°, x °)

dt°

	

ax°

are equivalent to the equations (2 .8) or to (2 .1) with i = 1,2,3 . , ° is a con-
stant of the motion

(2 .8)

(2 .9 )

dx°

	

a s~o(po , x°)-	
dt°

	

apo
(2.11 )

dS~°

	

aL° (u), x°)

dt o

	

a l l) (2.12)= 0

which is equivalent to the fourth equation (2 .1) in S°. The equation (2 .6)
may also be written

a5 o a xo
d(a)U°

	

~ ( aa ,~i)
dal = d(a) .V .

	

(2 .6' )

We shall now consider the motion of the particle with respect to an ar-
bitrary system of inertia S. Let v be the velocity of S° with respect to S .
Then, the corresponding four-velocity V i is given by (1 .3) and for simplicit y
we shall assume that the connection between the coordinates in S and S °
is given by a Lorentz transformation without rotation of the spatial axes .
If we treat U°(x°) as an invariant scalar it may also be regarded as a func-
tion of coordinates .x i - {x,ct} in S .
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U(x,a) then denotes the function obtained from U°(x°, a) by eliminatin g
x° by means of the Lorentz transformation connecting S and S°, i .e .

U(x,a) = U(x,t,a) = U°(x°,a) .

	

(2 .13)

In the present case, the four-force (2 .4) is easily seen to have the for m
of a `Lorentz force', i . e .

Fi = FikU
k /c 2

	

(2 .14)
where

U~

	

Y 1 uLi2
/

C2

	

V i Ç 1I2/0 J

	

(2 .15 )

is the four-velocity of the particle, and the antisymmetric tensor Fik is given
by

(2.16)

Since FikUk is a 4-vector, the validity of the expression (2 .14) for Fi follow s
from the remark that it reduces to the expression (2 .5) for F° in the system
S° where V° _ - cåz4 . Introduction of (2 .16) into (2 .14) gives

Vk Uk aU Vi dU
Fi =

	

- -

	

(2 .17)
c 2 åx i

	

c 2 dz

Therefore, if we define a new 4-vector P i by

Pi = pi +
Vi

9 U(x,a) ,
c 2

the equations (2 .1) may be written

= Ki

	

(2 .19)

åU(x)

	

OU(x)
Fik

	

_ axi-
Vi

- axk
Vi .

(2 .18)

dP,;

dz
with

VkUk OU(x)
Ki =	 -	 	 (2 .20 )

	

c 2

	

ôxi
Since Vol = cå4, i .e .

åU(x)

	

aU°(x° )
Vi =	 V °x = 0,

axi

	

dx°x

the 4-vector Ki is orthogonal to V i, i . e .

K1 V i = 0 .

	

(2 .22)

(2 .21)
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If we put
Pi = {P, - ~/c }

we get from (2 .18,3) and (1 .3)

P = p + yv U(x) /c2

= E + yU(x)

Then we get from (1 .3), (2 .15,20,22)

Ki =

	

(2.25)
{ V1 - u2/c.2 ~

	

y1 - u2 /c 2 1

ôU(x, t)
a_ (1 (v u)jc2 )y 	

ax

	

(2 .26)

For i = 1,2,3 the equations of motion (2 .19) are now

dP
d t

which are the Euler equations of the variational principl e

Bf Ldt = 0

	

(2.28)

with the Lagrangian

L(u,x,t)

	

- mc2 V1 - ti t /c 2 - (1 - v u/c2)yU(x,t) .

	

(2 .29)

For, by differentiating with respect to u, we get

åL(u, x, t)

	

v

au

	

= p + 2
yU(x, t) = P

on account of (2 .24), and by differentiation with respect to x

(2 .23 )

(2 .24)

with

(2 .27)

aL(

ax t)

	

(1- v • ulc2)y
aUa~ ' t)

= s~ (2.30)
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on account of (2 .26) . Thus, P in (2.23) is the canonical momentum and a
may 13e called 1he canonical force . The corresponding Hamiltonian i s

P•u - L = p . u ' (v .u)yU(x)/c 2 + 1I2c 2 y/l - LI2 / c 2 H- (I - v -u/c2)yU(x)~

(- . 3' 1 )~

Hence, the quantity S~ in (2 .24) which together with the canonical momentu m

P defines the `canonical' four-momentum vector (2 .23) is equal to the total
energy of the particle in the external field . Therefore, yU(x,t) may be inter -

preted as the potential energy. In contrast to U°(x°) and

	

both U and s
are time-dependent and

	

is not a constant of the motion . From (2 .19)
with i = 4 we get, by (2 .23,25)

d5)

	

l a U(x, t)

	

aL(u,x, t)

dt

	

Ø v=-(1 v u lc2 )Y \v	
ax

	

=

	

at -

	

(2.32)

on account of (2 .21,26,29) . The equations (2 .27,32) may he comprised in

the four-component equation

dP i aL (u, x)

	

a U(x)
dt

	

ax,
.

	

- (1 - v• u /c 2)y	
axi

	

(2.33)

on account of (2 .30) .

If we eliminate the velocity u in (2 .31) by means of (2 .24), = (P,x,t )
appears as a function of P and x and the equations of motion may be writ -
ten in the Hamiltonian for m

dP

	

a5~(P,x, t)

	

dx aSXP,x, t )
_

	

-	
dt

	

ax ' dt

	

aP

On account of the relation [9 ]

u2 /c 2

	

1
= y(1 -v • ul c2 ) =

U1

	

L102 /C 2

	

y(1 -r v' u
0
/ C2 ) '

the variational principle (2 .7,28) is invariant . For, by (2 .29,2,7), we ge t

Ldr

	

L°dr
Ldt =	 _	 -- = L°dt° .

u2 /c 2

	

- u 02 /c 2

E +yU(x,t)5).

	

~

(2 .34)

(2 .35)
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The preceding considerations are easily generalized to a gas of n non -

interacting particles of mass ni subjected to the same external force . In this

case the Lagrangian L q is simply the sum of the Lagrangian functions (2 .29 )

for each particle, i . e .
n

L 9 =

	

L (r)(u (r) ,x (r) , t)
r=

	

/

Inc 2 ~/1 - 1.Z(r)2/CZ
- (1 - Y1 ~ u(r)'c2)irL•(x(v) t) ,

The corresponding Hamiltonian i s

n

(2.36)
L (r)

~~ _ ~ ~~(r)(P(r) x(r )

r=1
(2 .37)) .

The suffix q indicates that the quantity in question refers to the system a s
a whole. This case is therefore a trivial generalization of the one-body
problem and, in the following section, we shall first consider the statistica l

mechanics of a single particle and afterwards make the generalization t o

the n-body system. Let Pf denote the sum of the canonical four-moment a
of all particles in the gas, i . e .

Pi

	

~Pr)(p(r),x(r),t,a) =

	

Pir)

	

~~i

	

~7(x(°),t,a) .

	

(2 .38)
r

	

r=1

	

c
r= 1

It depends on the external parameters (a) as well as on the coordinate s
and momenta . For constant values of the latter quantities an increase (da l )
of the a's changes the quantity Pg by an amount

	

ÔP'

	

V1 n

	

d U(x (r) , t,a)
d(a)l

	

' da1 - (2

	

da l .

	

l dal

	

C2 r=1 1

	

da l

3 . The Structure of Relativistic Phase-space s

In classical statistical mechanics one introduces the important notion o f
a `phase-space' which for a one-particle system is a space of six dimension s

where every phase-point corresponds to a definite mechanical state of the
system . However, in a relativistic theory it is convenient to introduce a sep-

arate phase-space Z(S) for each system of reference S. Each mechanica l
state is pictured as a point in E(S) with the six coordinates (P, x) . The
`state-points' are moving according to the Hamiltonian equations (2 .34) ,

(2 .39)
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which determine the curve (the phase-track) in I(S) described . by a state -
point (P(t),x(t)) in the course of the time t .

On account of the Hamiltonian form of the equations of motion in ever y
system S, Liouville's theorem holds in every E(S) although ,") in genera l
is time dependent . Thus, if Q(to) is the region in E(S) which is occupied

by state points at the time to and Q(t) the region occupied by the sam e
state-points at the time t, then the volumes of the two regions are equal, i . e .

V Q(t) = f f dPdx = f f dPdx = Ve to) ;

Q(t)

	

Q(to

	

(3 .1 )

dPdx = dPxdPydPzdxdydz .

(In every E(S) the volume is defined in the same way as in a Euclidea n
space with Cartesian coordinates) .

In S° where S° is independent of t° the phase-tracks are fixed curves i n
S'(S°) . This is not the case in S where the direction of a phase-track passing

dP dx\
through a fixed point is given by the `phase velocity' 	 	 which by
(2 .34) is seen to be time dependent .

	

dt ' dt 1

Instead of the canonical variables (P, x) we may also use the non -
canonical variables

~
s t ~ = (px,py, pz,x,y,z)

as `coordinates' of the phase points . From the `transformation ' equation s
(2 .24)

P = p + vyU(x)/c2

	

(3 .3 )

it is easily seen that the corresponding Jacobian determinant is equal t o

unity, i . e .

d(P, x) =
J =

	

- 1 .

	

(3 .4 )
d(p,x)

Thus, by Jacobi's theorem the volume of a region Q may also he writte n

s
V~ = f f dpdx, dpdx = fJ d$1, .

	

(3 .5 )

	

Q

	

cc= 1

In the new coordinates, Liouville's theorem (3 .1) takes the form

V~ (t) = J ( dpdx = fio, dpdx = VQ(t) .

	

(3 .(3 )

	

Q(t)

	

2

(3 .2)
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The equations (3 .1,6) show that the volume VQ(t) occupied by the state -
points which lie inside a region S2(t) at time t is independent of t . Further
this volume is relativistically invariant in the following sense . Consider the
state-points which at the time to in S° are situated inside a region S20(t° )
of E(S°). The same state-points are moving through E(S) of another syste m
S according to the equations (2 .34). At the time t their simultaneous position s
will span a region 0(t) . Then

V2°(to)

	

fJdpOdxO

	

1 J dpdx
= V2(o

	

(3 .7 )
Qv (t^)

	

b(t)

independently of the choice of 1° and t . The proof of this theorem is a littl e
intricate and, for simplicity, we shall consider the special case (which doe s
not spoil the generality of the proof), where Q° and S2 are infinitesimal and
the relative velocity v of S and S° i s

v = {v,0,0} .

	

(3 .8 )

A state-point which at the time t passes through a point = (p, x )
in E(S) will in E(So) go through a point eF, = (p°,x°) at a time t o given by th e
Lorentz transformation

P z
0

= Y[p~ - vEJc2], ~y = py, pz = p°

x° = y[x - vt],

	

yO = y, z o = z

to = y[t - vx/c2]. (3.10)

Here we have made use of the 4-vector character of p i = {p, - E/c } . Since
E = cJ/m 2 c2 +p2 , the equations (3 .9) represent a non-linear transformatio n

g, =

	

(3 .11 )

which defines a certain one to one correspondence of the points in E(S° )
and E(S) . On account of the relation

aE c2p

äp = E - u ,

ae

	

af(,t )the partial derivatives -=

	

are given by the matrix

(3.12)
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y(1 - vuz/c: 2) - youy/c 2 - yvuz/c 2 0 0

	

0

0 1 0 0 0

	

0 \
0f, 0 0 1 0 0

	

0
(3 .13 )

0$v 0 0 0 y 0

	

0
0 0 0 0 1

	

0

	

f
0 0 0 0 0

	

1

Now, consider the state-points in Z(S) which at the time t are passing
through the phase points inside an infinitesimal parallelepiped Q(t) spanned

by six infilesimat vectors along the `coordinate axes', i . e .

d( 1)$/,t =(dp , 0, 0, 0, 0, 0)

= (0, dpy, 0,0,0,0)
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .
d( s) S~z =(0, 0, 0, 0, 0, dz)

or

	

d (a) $,,c = cSt',d$a) ,

	

of = 1,2,3,4,5, 6

(no summation over cc! )

d$a = (dp x , dpy , dpz , dx, dy, dz) .

The volume of this region is given by the determinant

6

dVQ(t)

	

I d(a 1,i, I _ ( bjrd a~I =

	

dia = dpdx .

	

(3 .16)
a- 1

In the mapping of Z(S) on Z(S°), defined by (3 .9) or (3 .11), the region Q(t)
corresponds to a region Q°(t°, t° + dt°) in Z(So) which is spanned by the si x

infinitesimal `vectors '

	

d ( oe _
(
'

	

	 d~a ) ~, = at"
ds~ ,

	

(3 .17 )
Fc

~

	

a$„

	

a$

on account of (3 .15) . The volume of this region is given by the determinant

(3 .14)

3 .15)

dVs?o (to , t o + at)
dfl,

dsa)
~d a

s
= J

	

= JdV.Q(t)

	

(3 .18 )
«= 1

where the Jacobian J is the determinant of the matrix (3 .13), i .e .

J = dp°D'x~) = y2(1 - vuz/c2 ) .
d(p,x)

(3 .19)
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E(s°) E(S)

D

	

C

d (') t~-~- dp x

d x

A

	

)

	

B

In the 2-dimensional picture above the region Q(t) in L'(S) is represente d
by the inside of the rectangle ABCD with sides dx and

		

the vectors
--->-

do-) t , and d(4 ) t, being represented by the lines AD and AB, respectively .
The corresponding vectors da ) e °,, and d(4) in 2:.(S°), as given by (3.17) ,

are represented by the lines A°D° and A°B°, and the region 2°(t°, t° + dto )
is the inside of the parallelogram AoBoCoDo

According to (3 .18,19) the volume dVs2o(i,,i,- do of this region is not
equal to the volume dVQ0) of Q(t) . However, the points inside -2°(t°, to +dt°)
are not the positions in 52(S°) of the state points in Q(t) at the same time
t o , since the passage time, for the points along the lines parallel to A°B° ,
according to (3 .10) vary linearly from to to t o + dt° with

dt° = - YU dx
c2

(3.20)

which is negative. During the time Idt°I = Y dx, the points on the line B°C °
c 2

are displaced by a displacement vecto r
terms of the second order, is given b y

(dp o

	

dx
° dt°

I dt° ' dl°

1(1101 \

In the picture this constant vector is represented by B°E° or C°F° . The

state-points, which at the time 1° dt° = t o - Y
dx were in B° and C°, wil l

2
\fatFys .ifedd .Dan .Vid.Selsk. 36, no . 16 .

	

c

	

2

which, if we neglect small

o
ds .a

/

	

YUdx YUZd °
- dx

åx° c2 '

	

c2
(3 .21)
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at the time t o be in the positions . E° and F°, respectively, and the whole line
B°C° will be displaced to E°F° . Thus, the region Q°(t°) which at the time t o
is occupied by the state points inside 2(t) is in the figure above represente d

by the parallelogram A°E°F°D° spanned by the vectors A°D° and A°E°, i . e .
by the vectors d( 1)$° and d(4)$°1,+6q° = Jet . Therefore, in the 6-dimen-
sional phase space the region Q°(to) is spanned by the six vector s

v(a)~° .= {d (i)°, d ( 2 )~° d(`3)O 4~, e°,d( 5 ) O~,d (6)
° }

(3 .22 )
with

4(4)~°

	

4 e° =
d(4) ~~ +

â
~~̀ = a~4t dx

+ ä$°

a° Yv

	

no y vU

	

no Yu
y

~

	

°

	

Uu~ vu °z~

	

I I

	

x

ax° c 2

	

c2 ,

	

6z° c2 ,

	

c~

	

Y ~
C 2

	

Y

c 2

on account of (3 .17,21,13) . The other vectors a (a) ° are given by (3 .17, 13 )
The volume of the region spanned by the vectors (3 .22) i s

dVQo(to) = l4 (a) e t( I

for which one easily gets the valu e

dVQU(ta) = y 2(1 - vux/c 2)(1 + uu°/c 2)dpdx

or, on account of (2 .35) and (3 .8,16) ,

	

dV.Qo(to) = dpdx =

	

dVQ(t)

	

(3 .24 )

Since dVQ is invariant under arbitrary spatial rotations, it is obviou s
that (3 .24) holds for an arbitrary system S (arbitrary v) . Thus, for tw o
arbitrary Lorentz systems S and S ' we hav e

	

dVQ(t) = dVQ ,(t ,) .

	

(3 .25 )

The generalization of these results to a system of n non-interactin g
particles is trivial . The phase spaces E(S) are 6n-dimensional, and as th e
coordinates of the phase-points we may take the 6n variable s

	

fti = (p(1),x(1), . .,p(n) x(n)

	

. . .p(n) x(n)) .

	

(3 .26)

If the volume of a region Q in E(S) is defined by

3.23)
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6 n

V2 = j . .f Hde = f . . Jdp( 1 )dx a ) . . . .dp(n)dx(n )

	

(3 .27)

S2 u=~

	

2

it is obvious that Liouville's theorem (3 .6) as well as the relativistic invar-

iance of dV2 , Lc. equation (3 .24) holds also for a gas of n particles .

4. Statistical Ensembles of Mechanical Systems in the Phase-Spac e
E(S) of an Arbitrary Lorentz System S . Canonical Ensemble s

Let us start by considering an arbitrary ensemble of one-particle systems .
In E(S) the distribution of the state-points of the ensemble is described b y

a probability density $(p,x,t) which in general depends explicitly on th e

time . The number of systems which at the time t are lying inside an in-

finitesimal region Q(t) of volume dVQ(t) at the place (p, x) is then by defi-

nition

N$(p,x, t)dVQ(t) ,

	

(4 .1 )

where N is the total number of systems in the ensemble (N -+ co) . At a
different time to the same number of state-points is given b y

N13(po,xo, to)dV 2(to)
where

dV
Q(to) = dV

Q(t)

on account of (3 .6). Thus, (4.1,2) gives

$(po,xo,to)

	

T(p , x , t )

	

(4 .4 )

which shows that. $(p,x,t) is a constant of the motion, i .e .

d$(p,x,t) _ 0$(p,x, t )

	

d$(p,x,t) dp d$(p,x, t )+

	

+

	

- o .
dt

	

ax

	

dp

	

d

	

at
(4.5)

By integration over the whole phase-space we get for all t

if (p,x,t)dpdx = 1 .

	

(4 .6)

All these relations hold for any Lorentz system . In the phase-space '(S ' )
of another system S ' , the state-points given by (4 .1) occupy at a time t ' an
infinitesimal region D'(t') around the point (p',x'), where (p'x',t ' ) and

2 *

(4 .2 )

(4 .3)
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(p, x, t) are connected by the Lorentz transformation leading from S to S ' .
On account of (3.25) the volume dV2 ,(t , ) of this region is equal to dVQ(t) .

Therefore, since the number (4 .1) of systems is also equal to

N i'(p' , x' , t' )dVo (t ),

	

(4 .7 )

where $'(p', x' , t ' ) is the probability density in 5'(S ' ), we may conclude that
the probability density is a relativistic invariant, i .e .

	

$(p, x, t)

	

3'(p' , x', t' )

	

(4 .8 )

where the arguments in the two functions are connected by the Lorent z
transformation S -~ S ' .

The mean value of any physical quantity F(p,x,t) like the energy S~ or
the canonical momentum P is, at the time t, given b y

<F(p , x, t)>

	

f r F(p, x, t) $(p , x, Odpdx .

	

(4 .9)

For a system of n non-interacting particles, the probability densit y
$,(k,,, t) in the 6 n-dimensional phase-space Z;(S) is the product of th e
probability densities in the 6-dimensional phase-spaces of the separat e
particles n

S~~

	

~
T (PI, , t) = 11

	

() (p (r) ,
r= 1

We shall now in particular consider the case where the ensemble is can-
onically distributed in S° . Such an ensemble represents an adequate de-
scription of our knowledge about the mechanical state of a gas in a containe r
at rest in S° and in thermal equilibrium with a heat reservoir of given tem-
perature To . For an ideal gas each of the particles in the gas will then b e
canonically distributed with a probability density

(4.10)

po x°) =
e(9'o

-
0v(p°,x°, a))ik (4 .11 )

where k is Boltzmann's constant and 0° = 1/T° is the reciprocal of the pro -
per temperature T o .

9'o = m o

	

o

are phase-independent quantities defined b y

e [p°ik =

JJ e
0^s," iltdp odx° ,

(,tu,'k = (' e 0°1'kdpo, e-~;,, k _ fe 0o L' , ( x°,ce 1 dx° .

(4.12)

4.13)
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These equations determine cp° = p°(0° a) as a function of 0° and the external
parameters (a) which define the thermodynamical state of the system in S° .
The thermodynamical significance of g2° is given by the relatio n

F° = ng)°f o° = Ø°/0°

	

(4 .14)

where F° is the free energy of the gas in the rest System S° (see § 5) .
While $° in S° is independent of t° the probability density $ in S is time

dependent . Since the canonical four-momentum P i is a 4-vector we have

= po ti oi

	

v .-

	

.

Thus, if tive introduce the 4-vector (1.15,16 )

0 2 =0°V i -6V1

(4 .15 )

(4 .16)

we get, on account of the invariance of the probability density expresse d
by (4.8) with S' = S°,

$(p
x, t) - e{(p + 0 ` P,),r 1

(4.17 )

where

(4.18)
is an invariant .

In the general system S the thermodynamical state is determined by the four
parameters O i together with the external parameters (a l ) . The expression
(4.17) is closely related to expressions used by MAZUR and LURÇAT and by
BARU"r [10] .

5. The Mean Values of the Energy and the Canonical Momentum and
their Transformation Propertie s

The mean values in question are, in a system S ,

< ~.)> = fJ SXp, x, t)$(p, x, t)dpdx,
(5 .1 )

<P> = f f P(p, x, t) 3(p, x, t)dpdx,

	

J
where the integrations are to be performed at constant time . From these
expressions it would seem that <5» and <P> are time dependent . However,
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a calculation of the integrals (5 .1) will show that these quantities are inde -

pendent of t for a canonical ensemble with $ given by (4 .17) .

Let us again for simplicity arrange it so that the velocity of S° with

respect to S is

= {v,0,0}

	

(5 .2)

in which case the equations (3 .9) are valid. In order to perform the integra-
tions in (5 .1) it is convenient for constant t to introduce the quantities p°,x°
defined by (3 .9) as new variables of integration . The inverse transformation s

of (3 .9) are (for constant t)

xvt+x°/y

	

g = yo

	

z =^o .

According to Jacobi's theorem Ave have then to replace dp dx by

	

dpdx = Jdp°dxo .

	

(5.4)

Here J is the Jacobian determinant corresponding to (5 .3) which is easily
seen to be

J =
rt(p00,x~)

- 1 + vii
°

/c 2 = 1 -f- vp /E° .

	

(5 .5 )

J in (5 .5) is of course the reciprocal of the determinant (3 .19) (comp . (2 .35)) .

Since P 1 is a 4-vector and Po = p o we have

=

	

+ ')p° ]

and, because of the invariance of the probability density, the first integra l

in (5 .1) becomes

-

	

$°(p°,x°)y(V + vpx)( 1 + vpz/E°)dp°dx° .

	

(5 .6 )

Here Ave have made use of the time independence of 130 .

In the next section we shall consider a case where the probability density
s3o(po xo, 10) is t°-dependent. In applying the formula (5 .6) one has then i n
s, o(po x°, to ) for the argument t° to substitute the expression (3 .10), which
by means of (5 .3) may be writte n

t o = y[t - vx /c 2 ] = t/y - vx°/c2 .

	

(5 .7 )

However, in the present case we get from (5 .6 )

Px = y[Pz + vE° /c2 ], py = Pÿ' pz =

	

(5.3)
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<s:)0>0
+ v<p°j ° + < zÉo p

°
>° + < v Éô2 ~°

where < > 0 denotes the mean value over the ensemble (4 .11) in s(S°) .

Since ,Ç)° = c],~ m 2 c-2 +pÔ2 + U°(x o ) and E° depend on the squares of p?, pÿ

and p° only and the integration over these variables goes from -cc to + o ,

where° + 00 and $ 0 = 0, it is obvious that

<p°>° _ <I)>0

	

<p°i° = 0

S o 0

<p°p°i° ° <P°p°i° _ < °x i° = 0 .

Further, as

c2p02

	

° 0E°

	

o
n°

~~ = Pxâpo -= Px

we get by partial integration

2

<cE° 2 >0

	

J rpx a~~°
°

(w° - o°.i,~)I~~dp°dx °
Px

6°
ff p°

~
dp°dx° = kT° f f $°dp°dx° = kT° .

Hence,

rr
~2°

	

2

< g» = y
L
<>° +

U
kT° .c 2

Similarly we get from the second equation (5 .1), remembering that

(5 .8)

5 .10)

(5 .11 )

(5 .12)

Px = Y[P° = v,V/c2J, Py =

	

Pz = P° ,

<Px) _ [<g)°i° + kT°J yv/ c 2

<Py> ° <Pz> = 0

(5 .13 )

on account of (5 .9,11) .

For a gas of n non-interacting particles, the equations (5 .12,14) hold for
each particle separately and, by multiplying these equations by n, we ge t
the corresponding formulae for the mean values of the total energy an d
canonical momentum of the gas. Thermodynamically, these quantities ar e
to be identified with the energy and momentum of the gas, i . e .
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H - < S)r% n<S'», H° <4i°

G = <Pg > = n<P>, G°

Gi = <PZi _ n<Pii, G° = <p9o> o

The justification for this identification lies in the fact that the fluctuation s
of these quantities normally are completely negligible for large n of the order

of the number of particles in a ponderable amount of gas . It is perhaps a
little surprising that G is identified with the mean value of the canonica l
momentum and not with that of the linear momentum . However, it should
be noted that the potential U°(x°) of a particle in S° will represent a momen-
tum yv<U°j°/c2 in S and, according to (2 .24), this is just the difference be-
tween the mean values of the canonical and the linear momenta . In the case
where there are no other external fields than the forces from the walls ,
<U°> o is zero and there is then no difference between <P> and <p> .

From (5 .12,14,15) we now get for the momentum and energy of
the gas

G = [H° + nkT°] yvf c 2

u2

H = H° -+ nkT° y
cz

holding for any direction of v . This may also be writte n

H e
Gi = z Vi+ gi

c

InkT°

	

nkT° v2 y
gi

	

yv, -
C 2

	

C 2

	

C

The quantity gi (and hence G i ) is not a 4-vector, but it satisfies in any syste m
S the relation

gi V` _ 0,
i . e .

	

(5 .18 )
G,zV i = - H° .

Since Fi is a 4-vector we have, in the case (5 .2), the following transforma-

tion formula for the mechanical force and the rate of mechanical work t1u :

(5 .16 )

(5 .17)
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+ v(a° u°)/c z	 	 iÇ
,
ÿ

1-I- vux/c2

	

ZJ~

	

y[l + vux/C? ]

"Cs', . u

c- Oü z

	

°

	

TJ°(x° )
~ -

2.6' z

	

y[1 -1- vux/c]

	

r7x °

u o + v~2

1+1)4/0

(5 .19 )

Similarly, we get for the canonical force (2 .25,26)

	 sto

	

~ o
	 x	 A, =

= l_ + vu
x

/C2

	

J

	

y[1+ vux/c 2 ]

AOz

	

W = -
c~U°(x° )

z

	

y[1 + vux/c2 ]~

	

ax °

'v JL O U

1 + vu°/c2

	

1 + v4/0 '

The mean value of ° _ A° over the ensemble (4 .11) i s

<~ °>° - -
ff

OU°(x

°) e(~°-8F
° -Øv° )/kdp°dx °

ôx°

(5 .20)

0o iS åx°
('e(m° - B °~

o

	

U°) Ik)dp°dx° = 0

(5 .21 )

since $o vanishes outside the container . Similarly, we find

< ;io . uo>o = <fo . v>o = 0 .

	

(5 .22 )

By means of Jacobi's theorem and (5 .4,5,19,20) we get, therefore, for th e
mean values of the forces and the rates of work in the system S

«>=<a> = 0

< .u><A . v>o.

Although the mean value of the total external force acting on the system i s
zero in a canonical ensemble, as one should expect for athermodynamical
system at rest and in thermal equilibrium in S°, we get of course in general
a non-zero result if we take the mean value over this quantity when th e

(5 .23)
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position of the particle is fixed or confined to a finite region w° in space .

Then we get in S°, instead of (5 .21),

r

	

-0°U°(x°)li

<t°>w° _ (g°>°., _ f e(m° 0°E°>lkdp°kT°
J

(' ae

	

dx°
ax

w°

=kT° f e-e°U°(x")lkyida0/J
e 0°U"(x

°)Ixdx o
,

Go

where the integral in the numerator is taken over the surface o° of co° an d

n is an outward normal to the surface element da. The volume integral in

the denominator in (5 .24) follows from (4 .13) . In the case where the force s
from the walls of the container are the only external forces present, we hav e

and the denominator becomes

f e- 0°U °lkdx o = s~o

	

(5 .26)

where l° is the rest volume of the container .

Nov let us for w° take a small cylinder with end surfaces do and

doe lying immediately inside and outside the container wall, respectively .

(Actually we have to think of the wall as consisting of a thin transition layer

inside which the potential rises rapidly but continuously from the value 0

at der? to a very large value at do-0 .) Then, we get from (5 .24) in the cas e

(5 .25)

(5 .24)

10

	

inside the container

4 Co outside the containe r

<a°i° " _ <a°)°, ° = kT°dcronl /9.3o (5 .27)

where ni is the inward normal of the container wall . When multiplied by

the number n of particles and divided by du? (5 .27) gives the normal

pressure ,1° of the wall on the gas. Hence ,

= nkT°/& .

	

(5 .28)

When U° is given by (5 .25) the pressure is the same everywhere, the thermo-

dynamical body is homogeneous . On the other hand, when U°(x°) 0 inside

he container, the pressure varies as é- 0 ° U = 1k , where U° is the value of the
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potential ti° at the place considered . If the considerations leading to (5 .24,27 )

are carried through in the system S one easily finds by means of (5 .19) that

the pressure is an invariant, i .e .

p

	

P° .

	

(5 .29)

In the homogeneous case (5 .25) where (5 .28) holds the equations (5.16)

may also be written

G = [H° + p 0V]fv/c 2

v2

H = H°+

c

2 Y

which are the equations for a thermodynamical fluid from which We starte d
our considerations in reference 4 .

Finally we shall consider the statistical analogue of the thermodynamica l
entropy S. If we put

= e'1 ,

	

= ens,

	

(5 .31 )

then the invariance of the probability density entails the invariance of th e
`probability exponential' n, i . e .

(5 .30)

71(1), x , t) = i7°(p°, x°) (5 .32)

where the arguments in these functions are connected by the equations (5 .3) .
Hence

<'7) ° <n°>° - (5 .33)

This also follows by means of Jacobi's theorem and (5 .4,5) which give s

= JJcipcix = f f 7l°$°( 1 + vp (PE°)dp°dx°

_ <17°>° -~- v<r°p°/E°>° .

By the arguments leading to (5 .9) it follows that the last term in this expres -
sion is zero so that (5 .33) follows . (5 .33) holds for every particle and fro m
(4 .10) we get for the mean value of the probability exponential for a gas o f
n particles

\
<ig> = I2<77> = Il <77°>° = <179>O .

	

} (5.34)
)))

According to classical statistical mechanics the entropy S° of the gas in th e
rest system is

77g = ln$g
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S°

	

- k<yi°>°

	

- kn<y°>°

	

(5 .35)

and, since the entropy is a relativistic invariant, (5 .34) shows that the entrop y

S in an arbitrary system of inertia must be given by

S = k<T/gi = kn< y > .

	

(5.36)

ensemble (4 .17),

yj = 1n4î = (cp + O i P 1 )/k .

S = - ncp n0' <P 2 >

Ø = - Oi G i - S
5 .38)

=ncp .

Although G i is not a 4-vector, O 1 Gi is an invariant. For we have, by (5 .18)
and (4.16),

O 1 G 1 _ - O°H° = H°/T° .

	

(5 .39)

On account of the invariance of the entropy, (5 .38) may then be written

=

	

T[O TOS O
Ø Ø° =

	

= Fo / T °
To

in accordance with (4 .14) .
In the present section we have considered the statistical expressions fo r

the thermodynamic state functions G 1 , p and S which are functions of O1

and (a) . The change of these quantities in a process connecting two equi-

librium states of the body is obtained by simple differentiation . How-
ever, we shall also consider quantities like AI and AA (the mechanica l

impulse and the work) that are not absolute differentials and which there -

fore depend on the character of the process . In the next section we shall in
particular consider processes which are reversible .

6. Statistical Description of a Reversible Process . The Mechanical
Impulse and Work . The Four-Momentum of Supplied Hea t

Consider a reversible thermodynamical process connecting to equilibriu m

states (0 1 , ai) and (0 i + 40 1 , az + da l) and let us for the moment assume tha t
the rest system S° is fixed during the process, which means that the velocity

For a canonical

Hence

or, by (5.15),

)(5 .3
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v of the thermodynamical body with respect to S is constant . Then, the chang e
of 0 , is due solely to a change in the temperature T o of the amount 4T° .
Now, a process is reversible if it is performed so slowly that the syste m
may be considered going through a succession of equilibrium states with
temperatures T°(t°) and external parameters ai(t°), which are `infinitely '
slowly varying monotonic functions of the time to . If T o is the duration o f
the process we may assume that the temperature and the external para -
meters rise from the initial values (T°, az) to the final values (T° 14 T° ,
a i + 4a i ) in the time interval

0<t°< To . (6 .1 )

Experimentally, the body has during the process to be brought into contac t
with a `continuous' succession of heat reservoirs of temperatures T°(t°) .

From classical statistical mechanics we know that the adequate statistica l
description of this process in the system S° is furnished by a 'quasi-canon-
ical' ensemble with a probability

(

density (for each

/

particle) of the typ e

S °(p° , x° , 00( 10 ), all°)) = exp l( °(0°,a) - 0°(t°)S-°(p°, x0 , a(t°))/k} .

	

(6 .2)

Like T°(t°) and a(t°),

	

0°(t°) = 1/T°(t°)

	

(6 .3 )

is also a slowly varying function in the interval (6 .1) but constant outside ,
i . . e .

1

	

0°

	

for t°

	

0
0°(t°)

	

1 B° -I- 40° for to

	

r° .

Since T o is a function of 0 0 and (a) it will also be a function of t o in the interva l
(6 .1) . The condition for the correctness of this description is that T° is ex-
tremely large compared with the period of the system, i . e .

T o ») l °/<u°>°,

	

(6 .5)

where 1 0 is the linear extension of the container and <u°>° is the mean valu e
of the particle velocity .

We shall now calculate the mean force and the mean rate of wor k
on the particle in the general system S, and let us start by considering th e
case where the a's are kept constant during the process . As we shall see ,
this simple ease exhibits already the typical new features introduced by th e
theory of relativity. In non-relativistic thermodynamics the mechanical work
is zero in such a process and the change of the temperature is due solely
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to the supply of heat energy. In a relativistic theory, this is still true in th e
rest system S° but, as was shown in detail in reference 4, in any other system

S we have a finite impulse and a finite work performed by the external
forces. We shall now calculate this effect from statistical mechanics .

For simplicity we shall start by assuming that the relative velocity v i s

given by (5 .2) so that (5.3) is the transformation connecting the phase -
spaces s(S) and E(S°). Then, using (5 .19) and Jacobi's theorem (5 .4,5) ,

we get for the mean value of x at the time t in S

U

+ ~2 ' u°)

T°(p°, x°, o°(t°))(1 + ePxlE0)dp°dx° ,
1 + vpx/T°

(6 .6)

where $o is the distribution function (6 .2) (with constant a's) . Here it must

be remembered that B°(t°) is a function of the variabl e

t o = t/y -- )x°/c 2

given by (5 .7), which depends on the variable of integration .x° . Hence

(Zixit - JJ(- aU°(x°))$°(p°,x°,B°t °O)dpax°

	

°dx°

+ v f f
(	 Ëp°) 1(p o ,x°,0o(t°))dp°dxo .

The last integral is obviously zero since $° as a function of (px,4y , j4)
depends on the squares of these quantities only. Therefore, it follows fro m

(5 .20) that the mean values of 2`ßx S'Tx are equal . In order to calculat e
the first integral in (6 .8) we remark that the quantity k$°/O°, in the presen t

case where the a's are constant, depends on the variable x° both through

U°(x°), occurring in the exponential of the expression (6 .2) for $°, an d
through 00(0) . Therefore

kar/B°

	

°l aU°(x°) A

	

0 (	 °/0o ) aoo(to )

ax° -

	

ax°

	

+k
a0 0

	

ax°

	

(6 .9)

or, by means of the relation

(6.7)

(6 .8 )

000(to)

	

vv 06000)
=. -

	

-
ax°

	

c2 at (6 .10)
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following from (6 .7),

a $°/0°

	

a U°

	

yv a $0 /0 °

axo
$° -

k c2 at .

	

(6 .11 )

If we integrate this equation over the whole phase-space L(S°) the left hand
side gives zero, while the integral of the first term on the right hand side i s
just the first term in (6 .8) . Hence

<g-,,>t

	

k_ _d

	

(' ~°(p°,x°,0°( t
<g-,,>t = <Si'xit =

c 2 dt J J

	

0o(to )	 dp°dx° .

	

(6 .12 )

Similarly we find, by means of (5 .19,20),

<'Y>t=<Rdit=0, <z>t = < szit = 0

	

(6 .13 )

which together with (6 .12) may be written in the general vector form

<it = <a> t =
kc

v

dt ~,~

$°($~ ~~~~°(t°)) dp°dx ° .

	

(6 .14 )

In the same way we obtain for the mean mechanical effect

< ~̀'u)t = <A •v> t =
hc2

2

dt

d f T°(p~ ~~,~°(t°)) dp°dx° .

	

(6 .15 )

For a gas of n particles, the expressions on the right hand sides of (6 .14,15 )
have to be multiplied by R . For the impulse of the total mechanical force o n
the gas during a time interval t i < t < 12 we get therefore

t .,

4I(t l ,t 2 ) = n f< .R)td t
t ,

n Lvk [ff O(pO x 0 0o(tO))/0Ø(( O )dpQdxQ

	

(6.16)

- iff $0(p°,x°,0°(ti))l0°(ti)dp°dx°]

where f° and 12 are obtained from (6 .7) by putting 1 equal to tl and t2 ', re-
spectively . Now choose t z and t 2 so that t° 0 and 2î î° for all values
of x° inside the container. Then, 00(t2) and 00(t°) have the constant value s
0 0 +400 and 0°, respectively, in the two integrals in (6 .16) . Thus, we ge t
for the mechanical impulse (luring the whole process

k
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nyv r k

	

k

	

nk4 T°

L̀

	

J -

	

-
I

	

c2 0° 1 z0° 0°

-
yv

C2

Similarly, by integration of (6 .15), we. obtain the total external work

y1)2

4A = -- nk4T ° .
c 2

Hence

nk4 T o

	

nk4 To yv 2 1
Al, -

	

---yv, -

	

- -

	

4gß,

	

(6 .19)
c2

	

c 2

	

c J

where 4g i is the change of the quantity gi in (5 .17) for the case of constant v .
From (5 .17) and (6 .19) we see that the difference 4 Gi -AI, is a 4-vecto r

which, according to (1 .1), must be interpreted as the four-momentum o f
supplied heat :

4H°

	

4<s~>°

	

4 0°

4Qi .= 4Gg -Ali = --- Vi =

	

20 vi = -- Vz

	

(6.20)
C 2

	

C

	

c2

where

Q° = 4H° = 4<0>°

	

(6 .20 ' )

is the supplied heat in the rest system for constant (a) .
The equation (6 .20) is in agreement: with the thermodynamical equa-

tion (1 .4) derived in reference 4, but so far it has been derived from statis-
tical mechanics only for the case where the a's are kept constant during th e
process . However, it is easy to find statistical expressions for the work an d
the impulse arising from an infinitesimal reversible change of the externa l
parameters (a) . In the system S°, the work performed on a particle (fo r
fixed p°,x°) by an increase (da t) is given by (2 .6,6') . The mean value of

this quantity multiplied by n is to be identified with the work performed o n
the gas due to a change of the a's, i .e .

as 0

dA° = R<d~0,)5~°>° = n< ->°daz

	

(6 .21 )
a aa a

(6.18)

or

a l- °
dA° = <d(a)`~~~>° =

	

aa
g>°da

l

where j° is the total Hamiltonian (2.37) of the gas .

In the homogeneous case (5 .25), there is only one external parameter

(6.22)
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for which we can take the rest volume Z° . Since the work performed o n

a gas by a reversible increase dR3° of the volume is

dA°

	

- .p°d3°,

	

(6.23 )

a comparison with (6 .21,22) give s

p ° = - < a s>° =

	

n<as°(p°,x°,°)>°

	

(6.24)
a3°

	

a °

an expression which also follows from (5 .24) when one takes into account

that the potential U°(x°) in the vicinity of the walls is a function of the
normal distance to the wall .

On the analogy of (6 .21,22), the impulse and work in S due to an increas e
(da l) of the external parameters is equal to the mean value of the quantity
d(a) ll given by (2 .39) . Hence

aPg($, t, a )
d(a)Ii = <d(a)I> = daz<	 ~~~	 -i = n< d (a)Pi i

aPi(p, x, t, a)

	

a U(x, a i ) Vi
= ndai<

	

da l
	 ~ = rt ~ da i <	

da l

	

cz

Since
a U

ô a
	 is a relativistic scalar ,

a
Jacobi's theorem (5 .4,5) gives

	

aU

	

aU°
< aai =

<ôa > ° < åa
~° .

	

a

	

a

	

l
Thus, by (6 .21,22,25),

dA°

	

<d(a)~e%° vi ,
d(a) Ii = -- - Vi = --

c2

	

c 2

which shows that this part of the mechanical `impulse-work' dIi is a 4-vector .
For an infinitesimal reversible process the total expression for dIz is obtained
by combining (6 .26) with the equation (6 .19), i .e .

dA°
dIi = dgi + c2Vi

(nkdT°

	

nkdT° yÙz
dgi

	

Sl 2 yv, -

	

2

	

--
~

	

~

	

c

for constant v . Instead of (6.20) we now get in the general cas e
Mat . Fys.Medd.Dan.vid .Selsk. 36, no . 16 . 3

6.25)

(6 .26)
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dH° - dA°

	

dQ°
dQi = dGi - dIi =

	

---- Vi =

	

Vi„

	

(6 .28)
C 2

	

C2

in complete agreement with (1 .4). The statistical expression for the transfer -
red heat energy in S° is, by (5 .15) and (6 .22),

0
dQ° = dH° dA° = d<5~~>° -1da i < aa~g>°_

	

(6.29)
z

Since dgi • V i = 0 we get from (6 .27 )

V idgi = - dA°

	

(6 .30)

which, by means of (1 .2,3), gives

dA = vdl -H dA0J/1 - e2/c2

	

(6 .31 )

The error made in the early treatments of relativistic thermodynamic s
consisted in replacing dl in this expression by dG instead of the correc t
replacement of dl = dG- dQ following from (1 .1) .

In the homogeneous case (5 .25), where (5 .28) and (6.23) are valid ,
we get from (6 .27), (1 .2,3) and (6 .31 )

.Ç8 o dP o
dl = - - yv

c
2

~`s°dp°

	

2dA

	

2 - - ye

	

pd~3 ,c2

_z 2 /c 2 , p _ p °

is the volume and pressure in the system S . (6.32) is in agreement with th e
equations (66) and (72) in reference 4 .

The equation (4 .6), which for a canonical ensemble (4.17) reads

where

(6.33)

f I cicp +9+p;(n, Y, t,a)Jikdpdx - 1, (6 .34)

determines cp as a function of the state variables Oi and (a) . Differentiation

of this equation gives for infinitesimal increases dO i , (da l ) of these variable s

f f (dcp + dO iPi + O id(a)Pi)Tdpdx = 0
or

dg~ + dO i<Pi> + O1 < d (a)Pi> - O .

	

(6 .35)
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Further, by differentiation of the equatio n

k<ni = g -I- 02<P2> 6 .36 )
we get, using (6.35),

kd<r/i = dcp + dB i<P i > + Bid<Pii
} (6 .37)

= Bi(d<Pi>

	

<d (a)Pii) ,

Multiplying this equation with -n we obtain, by (5 .36), (5 .15) and (6 .25) ,

for the change of the entropy S

dS = - 6 i(dG2 - 40I 2 ) .

	

(6 .38 )

For the type of process considered here, where v is constant, we hav e

1
Oidgi = To V2 dgi = O .

Thus, by means of (6.26-28) ,

dS = - e 2 (dG 2 - dIi) = - B idQ 2

	

(6.39)

in accordance with the thermodynamical equation (1 .17) for a reversibl e
process. This may be regarded as a new proof of the statistical expressio n
(5 .36) for the entropy .

Finally, a few words about the process of adiabatic acceleration of the
thermodynamic body, where the acceleration is performed ` infinitely '
slowly and smoothly with constant (a) and without heat supply. In that cas e
we may assume that the internal thermodynamic state is the same in th e
successive momentary rest systems S° of the container which means that
H° and 80 = 1/T° are constant during t:he process .

From (5 .17), which also may be written

H° 1- nkT°

	

nkT°
Gi	 V . .,.

	

--- Si4 ,
c2

	

C y

we then get

H° +nlcT°

	

nkT°
4 Gr =

	

4 Vi +

	

5 244ÿ 1 = 4I i

	

(6.41 )
c 2

	

c

since there is no heat supply in this process . For an infinitesimal proces s
of this type we have, since V2 dVi = 0 ,

nkT°
Vidli = -

	

V 4dÿ-i = nkT°ydy` i

c

(6.40)

or by (1 .2,3)

3 *
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dA = vdI nkT a d ,, 1

	

(6 .42)

which replaces (6 .31) in this case. A detailed statistical derivation of (6 .41 )
is most adequately obtained by replacing the successive rest systems b y
one smoothly accelerated system of coordinates such as the one introduced i n

chapter VIII, § 97, of reference 9 . This requires a generalization of the
statistical mechanics of the preceding sections to the case of accelerate d
systems of reference, a subject which we shall not go into here . However,

in the next section we shall at least give a statistical derivation of the equatio n
(1 .17) for a process of adiabatic acceleration in which case (1 .17) reduce s
todS=O .

7 . Mean Values in a Canonical Ensemble

According to (4 .10,17) a gas of n particles in thermal equilibrium is ,

in an arbitrary system of inertia S, described by the canonical probabilit y
density

s~ - e [Ø + O 'P n ]lk ,

where

Vi
på = På -l_.

	

U q
e2

n

	

n

Pg = ~På'l

	

U g _

	

U(x(r),t, a ) .
r=1

	

r

Thus, the `total canonical momentum' Pg of the gas depends on the 'co-

ordinates' ($ ju) (3 .26) of the points in phase-space and on the parameters
Vi and (a1 ) of the thermodynamical state, i .e .

Pi' = Pt,Vi,a) .

	

(7 .3 )

The quantity 0, which is connected with the free energy by (4 .14, 18), is de-
fined by the equation

J

	

J e[O
+0'Pr($,t,v`,a)]lkds~ = 1 ,

d~ = dp (1)dx (1)	 dp (nldx (n)

(7 .2 )

(7 .4)

or

é ~I~1r.

= ~ . . f exp[Ø iP9(~, t,V`, a)j d~ .

	

(7 .5)
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The variables 0i and V' are connected by (4.16). However, for the following
development it is more convenient at the moment to regard the variables 0 i
and V i as independent: of each other . For fixed V i the quantity 0, as defined
by (7 .5), appears then as a function 0(0i, a) of the independent variable s
0 i and (a l), which may be partially differentiated with respect to 0i or to al
all other quantities being kept constant in these derivations .

By partial differentiation of (7 .4) with respect to 0i we then get

J . . J(( ;
aØV2 a)Bi

	

+ Pig

	

= 0 .

Thus, taking account of (7 .1,4) and the relations (5 .15) and (4 .16) ,

[00(0 1 , Vi,a)1
Gi =<P9>=

	

06i

	

J
.

	

(7 .7 )

Here and in the following, a square bracket around a function of (0i , Vi , a )
indicates that we have to put

0 i = 0Vi = 0°Vi
in this function .

Further partial differentiation of (7 .6) with respect to O' give s

f a 2 Ø

	

1 a o

	

/aØ
~ . . J ôOiôB i~ k(aB i+ Pg)

\00 k

or, if we put 0 i = 0V i in this equation and use (7 .7) ,

a 2 Ø(02 V2 a)
]<(Pr - <Pr>)(Pk - <Pk>)> _- k

	

aeiaek J
In particular for k = i we get the following simple expression for the squar e
of the fluctuation a{P9} of the quantity P9 :

a 2{ gP . }

	

- k
[0 20 (B2, V2, a)

0022

	

~

Similarly, the mean value of the probability exponential or the entrop y
may be expressed in terms of Ø and its first order derivatives . From (5 .36,37)
and (7 .7), we get

(7.6)

(7 .8 )

+ P)} q3d = 0

	

(79)g .

(7 .10 )

(7 .11)
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S = - k<n g) _ -

	

0 i<Pig% j

Ø(O i ,Vi
,a) Oi aØ(Oi, vi, a)

-	 ~ .
a0 i

Partial differentiation of (7 .4) with respect to a i (constant 01,Vi) give s

dØ O i V i O U
- -~-

aa i

	

c 2 Oa
= 0 .

	

(7 .13 )

O U
Thus, putting 0 i = 0 Vi we get, since

	

g is invariant ,
da l

	

OU

	

a u°

	

as~g

<an>

<ä~>° = <a~ >

°

	

l

	

l

	

l

aØ(0Vz a) ~
0-1	

da l

where 00 (0 0 ,a) = ncpo (0 0 ,a) is the function defined by (4 .13). In the homoge-
neous case, where the rest volume can be identified with the externa l
parameter a, (5 .29), (6 .24) and (7 .14) gives the following expression for th e
pressure

aØo (0 0 aeo-1 --- ' )
dal

(7 .14)

p = p o = _ 0 1 0Ø(0i, Vi, ~°) ,
---

~

	

a3
°

0 0_1 aØ°(00 ° e))_

	

a~°
(7 .15)

From the preceding considerations it follows that all the thermodynamic
functions of the system can he calculated by simple differentiations when th e
function 0(0 i,Vi,a) is known. Also typically statistical quantities like the
fluctuations of Pg may be obtained in this way . For reversible processes w e
may then also express quantities such as dI 7: and dQi in terms of Ø and it s
derivations. For instance we get from (6 .22,26) and (7.14)

dA° = 00-1`._
000(00,a)

da~

	

aal

	

a
e

d(oIi = (00 1a)

	

2 .
da l

We shall now investigate the general structure of the function 0(O i ,V1 ,a) .
Although this function for 0 i = 0Vi of course has the same value in every
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Lorentz system, it is not a form-invariant function of the (independent)
4-vectors Oi and Vi . Since

Bipi -
eZpi

..
B z 2
vi

Ug
c

(7 .1.7 )

is a sum of two parts containing the momenta and coordinates separately ,
we may write

e-Øpß = e ~,,11ze zI'~lk

	

Ø = Øp + Øq ,

	

(7 .18)

where

	

0,,(0^) r k _ j . . fc0P1dpW . . . . dp (n)

	

(7 .19 )

is a function of O i only, while

f . f e0'v,U„lkedxW . . .dx (n)

	

(7 .20)

in general depends on all variables (O i ,V1 , a) .
By partial differentiation of (7 .19) with respect to O i we get, similarly

as in (7 .6,7), for the mean value of the linear four-momentum p '

= _ [00p(09

]

	

(7 .21)

which may be interpreted as the `bare' four-momentum of the gas . Similarly
as in (7 .11), the square of the fluctuation of the linear four-momentum i s

JJ

	

[!!20,2041
- - IC

	

aei2

By subtraction of (7 .7) and (7 .21) and by using (7 .2) and (7 .18) we get for
the `four-momentum of the potential energy '

	

<Ug	 vi

	

<U° >o

	

l7 _

	

aØ g (O z , Vi a ) ]_

	

_

	

c2

	

c2

	

-

	

00i

	

.

Since py = Rir) is the sum of the four-momenta of the separate par -
r

ticks we obtain from (7 .19)

(7 .22 )

(7 .23)

op(O i ) _' I21~7 p\~ Z )

where (p a (O i ) is given by

(7 .24)
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e-TA( Ø`)l k - je0P11dp. (7 .25 )
Here, both p i and

Oi = 0,04 1 (7 .26)

are time-like 4-vectors .
In the intergral (7 .25) it is convenient as new variables of integratio n

to introduce the components of the momentum vector p° in a Lorentz sy -
stem S° which has its time axis in the direction of V . Then, the four-velo-
tity of S° relative to S is

V 2 =Bi/O{V,V4}

	

(7 .2 7 )
which in S° has the components

Hence

	

V O2 = cå24 .

	

(7 .28)

O2p i = B V 2pi = O V°2p° .-= Ocp4

= - OE° =

	

Oc Vm 2 c2 -I- I p° I 2 .

Since dp/E is known to be invariant under Lorentz transformations, th e
Jacobian corresponding to the transformation p p° is (comp . equation
(2.35))

d(p)

	

E

d(p°)
= E°

= V4 f c + (v ' p°) l
E ° = Ø 4kØ + (O ' p°) IBl °

	

(7 .30)

on account of (7 .27) . Thus, (7.25) becomes

4
9,Ÿ(O

)Ik = J ~ BE°Ikedpo + f 0E./ k Ø	 ' p° dpo
Oc

	

OE °

The last integral is obviously zero, so that e- W,, Ik is of the form

4
é TP (0)lk = -- e-!„(0)Ik

c e

Here fp (0) is a function of the invariant nor m

0 = ~`-Øi ei / c
defined by

f

	

z	
e- fT (0)Ik = fe0ß01'dpo = (mc)3 f

J J

f e k I~i + + '7+

	

~'

(7 .31 )

(7 .32)

(7 .33)
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A comparison of (7 .33) with (4.13) shows that

4 1

49 p(0°) = tp( O °) . (7 .34)

The function fp (0) defined by (7 .33) may be expressed in terms of a

Hankel function H21) of the first kind and the second order with imaginary

argument [1.1] in the following way :
x Ow'	_
1P

	

Vl + u'
e- f,,(O)i" -(mc)3 4~c J e k

	

u2du

o
27t2 ni 2ck

H 1) (Zmc2 O/k) .
i 0

From (7 .24,31) we get for the part Øp of Ø

0 4 \
019 (00 = n0; p (09 = n fp(0) -- kln

6c

	

(7 .36)

This part is independent of the forces acting on the system, which have an
influence only on the part Ø q defined by (7 .20) .

For a system of non-interacting particles, where the potential is of th e
form (7 .2), we have on the analogy of (7 .24)

Øq (O i ,Vi ,a) = n(pq(O'',Vi,a)

	

(7 .37)
with

é cpylk = J'e0 (x ' ta )I 1 'dx . (7.38)

If we introduce the coordinates x° of the rest system S° instead of x
as integration variables, we have in the integral (7 .38), which is performed
at constant t, to put

dx = dx° ~% 1- U 2 /c 2 =
V4

dx ° .

	

(7 .39)

Thus, (7 .38) may be written

é 9n(O',V`,a)Ik = ( fqlY .a)/IÇc /V4,

	

(7.40)

where ff(u,a), defined by

ef?.(t',Ot. = Je U°(x°, a)Jkdx°,

	

(741 )
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=

	

0' Vi/c 2 .

A comparison of (7 .41) with (4 .13) shows that

(7 .42)

ry 4°(0°, a) = fq.(0°, a) . (7 .43)

The quantity ,11 is positive for 0 i in the vicinity of the value (7 .8) . From
(7 .40,36,18) we finally get

Ø~ = n( fa Ga,a) kln
c

V'%

h(Oi, V i ,a) = n(fp 0) + 4(,u, a) - Ic 1n
0 V

4 4

By means of this expression for Ø, we may now calculate the mean va -
lues of various physical quantities . For instance, by (7 .7), the four-momen-
tum G i is obtained by differentiation of 0 with respect to 0 i and subsequently
putting 0 1 = OVi . Since

80

	

O i

	

a u

a0i
=

	

c2 0 '

	

a0i
= -- Vi/c2 ,

	

(7 .45 )

we get

n

	

/

	

(

	

14

	

oi (-fr~(0 ) oi 1 0 - fq\a,a)Vi) /c2 - nk(
å
04 - +

	

)c02

,

/q" (Ha , ci) = a/g(F~~
a)

Thus, since

[ ~] = o = 00,

nk Vi nk
n(G( 0 °) + Îq(0 °, a)) vi /c 2 + oo o +

Bo
L 6 14

Y

which expresses Gi as function of the thermodynamical variables (V i , a )
and 0o = 1/T°. In the rest system where = cåî 4 , we get of course Go = 0 ,
and

	

H° =

	

cG4 = n(G(0°) fq(0°, a))

	

(7 .49)

so that (7 .48) may be written

	

H° nkTo

	

nkTo

	

G i =

	

--

	

Vi

	

åi4 ,

c2

	

cy
in accordance with (6 .40) .

a ~

00 1

[a
Ø

Gi =

	

W
.
a

7 .46)

(7 .47 )

(7 .48)

(7 .50)
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By further differentiation of (7 .46) with respect to 0i, we get from (7 .11)

an expression for the square of the fluctuation of P,' which obviously in -
creases linearly with n . Since also the mean values, i .e. are linearly

dependent on n we have for the ratio

{ g ia Pz f = Go-
'72 )

	

(7 .51)
<P >

so that the fluctuations, generally speaking, become unimportant for ma-

croscopic bodies . As mentioned earlier this is a general feature for all ther-

modynamic. quantities .

When we put Vz

	

0 2 1'8 in Ø(0 z , V i , a), we get a function Ø(0 i , a) of 8 2
and (a) which, according to (7 .44,42), is given b y

0(0i , a) = jØ( O1 , Vi , a )] = n(f ( O ) + fq(e , a )) .

	

(7 .52)

Thus, as a function of the thermodynamical state variables ( 0 i , a) the quan-
tity is a function of the norm 0 and (a) only :

0(0 i , a)

f(0 , a)

= f(0,a) ,

= n( f,(0) + fg(e, à)) .

hor the corresponding quantity Ø° in the rest system, defined by (4 .10-13) ,
we get by (7 .34, 43)

or
0(00 ,a) = nm°( 0 °, a) = n(,~ + ~P2)

	

n(ff( O °) + fq(0
°,

a))

0°(0°, a) = f (0°, a) . (7 .54)

Since 0 = 0 0 is an invariant, (7 .53, 54) show tha t

0(0 1 , 0 = 00(0,a) = 00 (0 0 ,a), (7 .55)

in accordance with (4.18) .
As we have seen, the equation (7 .7) allows us to calculate the four-mo-

mentum Gz by differentiating the function Ø(0 1 ,V1 , a) with respect to 0 i and

afterwards using the relation (7 .8) . However, if we use (7 .8) first in Ø(O W ,V1 , a) ,
by which we obtain the function Ø(0 i, a) given by (7 .53), and subsequently
differentiate with respect to 0 i we get a quantit y

â 0(0 i , a)
Pz = - -

- 00 iti
(7 .56)
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which, in contrast to Gi , is a 4-vector . In fact, from (7 .53, 45, 8) we obtain

ôf(O,a) O i

00 c2 O
- n(tp( O °) + fg(0 °, a))Vi lc 2Pi ---

or, by means of (7 .49),

Ho
Pi =

	

Vi .
c 2

(7 .57)

Pi would be the four-momentum if the system were a free system .

In conclusion we shall convince ourselves that the expression (7 .12) for
the entropy is independent of Vi . From (7 .46,8,53) we get

= On( G(0) + fg(0, a) = Of'(O, a)

	

(7 .58)

and, hence, for the entropy (7 .12)

af(0, a)
s = - f(0, a) + 0- --

ae

	

.

We see that this expression is independent of Vi , i . e .

S=S°

in accordance with the invariance property of the entropy . Further it follows
that S is unchanged, i . e .

dS = 0

	

(7 .60)

under an adiabatic acceleration, where 0 and (a) are constant and only

the variables Vi are changed . (7.60) is in accordance with the thermodynami c

relation (1 .17) for the process in question .

The Niels Bohr Institut e

and NORD I TA

(7 .59)
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