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Synopsis

Recent investigations in relativistic thermodynamics have shown that the momentum and
energy of transferred heat in a thermodynamical process transform as the components of a four-
vector under Lorentz transformations, in striking contrast to the ideas of the early formulation
of relativistic thermodynamics of sixty years ago. In the present paper it is shown that the

results of the new formulation are supported in all details by a relativistic generalisation of
Gibbs’ classical statistical mechanies.

PRINTED IN DENM ARK
BIANCO LUNOS BOGTRYKKERI A/S




1. Introduction and Survey

n a most interesting paper by H. Ott from 1963 [1], it was shown that
I the old relativistic treatment of thermodynamical processes by Pranck
and others [2] contained an error which led to a wrong transformation
formula for the heat energy transferred in a process. In pre-relativistic
thermodynamics, the first law expresses the law of conservation of energy
when heat energy is involved in the process. In relativity theory, this law
has to be supplemented by a similar law of conservation of momentum.
Thus, in an arbitrary system of inertia S, we have four conservation equa-
Hons*

AG’L' = AI@ + AQ@', i = 1’2’354’ (11)
with '
AG”L' = {AG’ _AH/C}
Al = {41, — A4fc} (1.2)
4Q; = {AQ, —4Q/c}.

Here, 4G and AH are the changes of the momentum G and energy H of
the thermodynamic body in a process leading from one equilibrium state
to another such state. 471 is the mechanical impulse, i.e. the time integral
of the mechanical forces acting on the body, while 44 is the work performed
by these forces during the process. Consequently, AQ is the heat energy
transferred to the body in the process (definition!) and 4Q is the corre-
sponding momentum transferred along with the heat supply.

In his paper, quoted above, OrT clearly pointed out that the error in
the old treatments is due to a wrong expression for the mechanical work
performed by the external forces. However, his argument and his resulls
were not universally recognized and his paper gave rise to a large number

* T,atin indices run from 1 to 4, Greek indices from 1 to 3. The metric tensor in Minkowski
space has signature +2 and the usual summation convention is made.

1*
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of mutually contradicting papers on the subject [3]. Therefore in a recent
paper [4], the present author considered once more in all details the simple
case of thermodynamical processes in a fluid enclosed in a container of
changeable volume. If we assume that the fluid cannot withstand shear,
the external force on the fluid is simply the normal pressure from the walls
of the container. Since the pressure is a relativistic scalar, it is easy in this
case to write down the transformation equations for the quantities AG; and
AI;. Then, the transformation laws for the quantities AQ; follow from (1.2).
The main results obtained in reference 4 are the following. In general,
neither AG; nor AI; will transform like the components of 4-vectors under
Lorentz transformations. Nevertheless, the differences AG; — AL, i.e. the
AQ; are the covariant components of a 4-vector, the four-momentum of supplied
heat. This result, which in reference 4 was proved for a fluid only, has been
shown by Brevik [5] and by SopEruoLM [6] to be valid for any elastic body
and for any thermodynamical process leading from one equilibrium state to
another such state of the body.

Further it was shown in relerence 4 that the four-momentum of sup-
plied heat for an infinitesimal reversible process is proportional to the four-
velocity

Vi = {yo, —yc}, v = (1-v2c2) 12 (1.3)
of the body:
d 0
dOi = —2= Vi, (1.4)

where dQ%, is the transferred heat energy measured in the rest system

S of the body. The fourth component of (1.4) gives

dQ;‘)eV

T8 A — L A
V1 - v?/c?

(1.5)

As regards the second law of thermodynamics, it is generally agreed that
the entropy S is a relativislic invariant,

ic. S - 80, (1.6)

and, in the rest system, we have
0

d
0 ‘Tev
dse = = (1.7)
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where 70 is the proper temperature as measured in the rest system. If one
wants a similar equation

erev
das = —— 1.8
- (1.8)

to hold in any other system of inertia, one finds by (1.5-8) that the so defined
temperature 7' is connected with the proper temperatare 70 by Orr’s formula

T0

T = ———— (1.9)
Y1 — v?/c?
Thus, T is not an invariant but rather the fourth component of a time-like
vector

T
T = —V, (1.10)

¢

the ‘temperature 4-vector’ introduced by Arzérrgs [7]:
T - Té= —T, (1.11)

Obviously the norm of this vector is equal to the invariant proper tem-
perature 79, since
[/~ 1T = 710, (1.12)

Thus, instead of using a single quantity 7, defined by (1.9), for the charac-
terization of the thermodynamic state (together with ‘extensive’ quantities
like the volume etc.) it seems more appropriate in an arbitrary system of
inertia to use the four components of the temperature 4-vector T; for this
purpose. Only in the rest system $° where the spatial components 70 = 0
we are left with a single quantity 79 = — 79 as in classical thermodynamics.
This point of view was carried through in a recent paper [8] in which also a
generally relativistic formulation was given which in a very simple way
leads 1o Tolman’s condition for thermal equilibrium in a large body under
the influence of its own gravitational field.

However, in the case of an irreversible process the formulation of the se-
cond law leads to unnecessary complications in this scheme. In the rest system
5% we have, for an irreversible process,

dSo -— 1.13
> 7 (1.13)
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but in an arbitrary system of inertia S, (1.13) is not equivalent to

a9
ds > —, 1.14
> (114)

a relation which is simply not true. This is connected with the fact that the
4-vector d); for irreversible processes is not proportional to V; in general.
However, we get a very simple general formulation of the second law if
we, instead of the temperature 4-vector T, introduce the reciprocal temper-
ature 4-vector ¢ defined by

gt = v, 90 = (TY? (1.15)
which has the norm

6 =)/~ 0:8c ~ 6. (1.16)
Then, the second law in an arbitrary system S takes the form
ds > — 04dQs, (1.17)

where the equality sign holds for reversible processes only. In the latter case,
where dQ; is of the form (1.4), (1.17) is identical with (1.7) (or (1.8)) and,
for an irreversible process, we have

B I c o dQ°
- 0%dQ; = — 001dQ; = — ?60[@4 =T

so that (1.17) is equivalent to (1.13). In the form (1.17), the second law can
immediately be taken over into the general theory of relativity and the re-
sults obtained in reference 8, in particular Tolman’s equilibrium conditions,
follow immediately.

The considerations in references 4 and 8 were purely thermodynamical,
but it is clear that the resulis quoted in this section should be obtainable
also by means of a relativistic generalizalion of Gibbs’ statistical mechanics
in which the thermodynamic properties of a macroscopic system in thermal
equilibrium is described as mean values in a canonical ensemble. A re-
versible process is then described by a succession of canonical ensembles
with varying values for the parameters that characterize the ensemble.
In this way it is possible to derive all the earlier mentioned thermodynamie
properties of the systems, in particular the transformation properties of
AG;, AI; and AQq, from statistical mechanical considerations, and this is
the subject of the present paper.
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In view of the generality of the properties in question, it is sufficient to
treat a highly simplified model like an ideal gas of equal particles enclosed
in a container. Since the particles do not interact in this case, the particles
move independently of each other in the field of force originating from the
walls of the container and possibly from other external sources. In the
next section we shall, therefore, start by considering a one-particle system,
which is then easily generalized to the case of n identical particles. It will
be shown that the equations of motion can be written in the Hamiltonian
form in any system of inertia, but the Hamiltonian will in general not be
a constant of the motion. Section 3 contains a short survey of the properties
of relativistic phase-spaces, such as Liouville’s theorem in an arbitrary Lorentz
system and the relativistic invariance of the volume of phase-space. In
section 4 we consider ensembles of mechanical systems in the phase-spacc
of an arbitrary Loreniz system. In particular, the relativistic invariance of
the probability density and the general form of the latter for a canonical
cnsemble are considered.

The following section contains a derivation of the transformation proper-
ties of the mean values of the canonical four-momentum, the forces, the rate
of work, and the ‘probability exponential’ in a canonical ensemble. In
section 6 we give a statistical description of a reversible process and a cal-
culation of the mechanical impulse and work is carried out, by which typical
relativistic effects are clearly brought out. We shall also obtain a statistical
expression for the four-momentum of supplied heat in a reversible process.
Finally, in the last secltion, a number of theorems are derived which allow
to calculate mean values of important physical quantities by differentiations
of a function that is closely related to the free energy of thermodynamies.

2. Lagrangian and Hamiltonian Form of the Equations of Motion in
the Case when the Field of Force is Static in a Certain System of
Inertia S§°

The motion of a particle of constant rest mass m subjected to a force

& in any system of inertia S is generally given by Minkowski's equations
dp;

2~ Fy, i=1234, 2.1

dv ! (2.1

where
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dr = dt)/'1 - u2fe (2.2)
is the proper time,

u ———
pi = {p, —Efc} = {ﬁl-n——'_z/z — [ m?e? 'rpzl\ (2.3)
— u?fc
is the four-momentum and
a5 @wie o
i = ; e 2.4
V1 - u?/?c V1 — u?fc?

the four-force.

We shall now in particular consider the case where the force 0 is static
in a certain system S® and derivable from a potential U%x?) which is in-
dependent of #9, i.e.

F = —grad U0 ‘
Py - {ﬁ o (o ety @ |

U0 = U%x0 a) may depend on a number of constant parameters (g;)
which characterize the external sources of the force. For a particle in a
container of volume V¢ without other external forces, the potential energy
U0 is constant and shall be chosen equal to zero inside V0 and + oo outside.
In the presence of external forces like static electric or magnetic fields,
U% » 0 will be varying inside the container. The parameters (a) determine
the strength of the external forces as well as the form and the volume of the
container. IFor constant (@) and varying x°

AU(x0, a)

—-dlo = — = dx0

0x?

is equal to the work performed on the particle during a displacement dx?.
For fixed values of x0 (and pY), the increase of the potential energy by a
change (da;) of the external parameters is

Y BV, ) .
diyU° = Z e da, (2.6)
l

which must be interpreted as the work performed on the system by a change
of the configuration of the surrounding systems.

For fixed (a), the three equations (2.1) with { = 1,2,3 in the system S°
are the Euler equations of the variational principle
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5[ Loar - 0 1
o (2.7)
19 = — mc? [/'/1 —uf?/c? — UY(x"), J :
i.e.
/ 0 40 0 0
d (OL(u,x )) RECED) 2.8)
dt ou' dxc0

The canonical momentum P corresponding to the Lagrangian (2.7) is

OLO(u0, x)
P - A
oul

?° (2.9)

L.e. in S° the canonical momentum is identical with the linear momentum
Pt The corresponding Hamiltonian

90 = POyl — L0 = EO 1 U0(xY) = c)/m2c? + p%% + UO(x0)  (2.10)

is equal to the total energy of the particle in the external ficld. The Hamil-
tonian equations

ap° 9P x%)  dx®  09(p° x0) (2.11)
op°

are equivalent to the equations (2.8) or to (2.1) with i = 1,2,3. $° is a con-
stant of the motion

A0 ax0 ' dwo

a0 ~ JL0 (u, i,co> _

0 2.12
dio a0 ( )

which is equivalent to the fourth equation (2.1) in S° The equation (2.6)
may also be written

, 09(p°x9,a) N
d iy U° = zufuﬁ day= d gy 9. (2.6")

Ja
; H

We shall now consider the motion of the particle with respect to an ar-
bitrary system of inertia S. Let o be the velocity of S0 with respect to S.
Then, the corresponding four-velocity V; is given by (1.3) and for simplicity
we shall assume that the connection belween the coordinates in § and S°
is given by a Lorentz transformation withoul rotation of the spatial axes.
It we treat U%x®) as an invariant scalar it may also be regarded as a func-
tion of coordinates x* = {x,¢t} in S.
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U(x,a) then denotes the function obtained from U%xY, a) by eliminating
x0 by means of the Lorentz transformation connecting S and S9, i.e.

U(x,a) = U(x,t,a) = UNx9,q). (2.13)
In the present case, the four-force (2.4) is easily seen to have the form
of a ‘Lorentz force’, i.e.
Fp = FikUk/Cz (2.14)
where

| u c
“/17* et Y1 — uz/czj

is the four-velocity of the particle, and the antisymetric tensor Fy is given
by

Ui ~

(2.15)

oU() | 0U(x)

i L (] (2.16)

Since FypUF is a 4-vector, the validity of the expression (2.14) for F; follows
from the remark that it reduces to the expression (2.5) for F? in the system

S0 where V) = —cdiu. Introduction of (2.18) into (2.14) gives
ViUE BU  V, dU
e (2.17)
¢ oxt &2 dr
Therefore, if we define a new 4-vector P; by
Vi
Pz = D; + Y U(-’l',a), (2‘18)
2
the equations (2.1) may be written
dp;
R (2.19)
dr
with
ViUE 0U(x)
K=~ — o~ (2.20)
Since V0 = 8%, i.e.
0( 50
0U) DU o, (2.21)

dat Dt

the 4-vector K; is orthogonal to V¢, i.e.

KVi = 0. (2.22)
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If we put

P; = {P, - §]c}
we get from (2.18,3) and (1.3)

P = p + yoU(x)/c?
$ - F+yUx)

Then we get from (1.3), (2.15,20,22)

L5 (®-v)/c ]
K {]/1 _"‘1‘12/62’ Vl — uZ/czj
with

= (1 (0wl

aU(x,t)
ox

For i = 1,2,8 the equations of motion (2.19) are now

ap
= e
dt

which are the Euler equations of the variational principle

5det=o

with the Lagrangian

L{ux,t) = - mc2[/1 —u?fc® — (1 — v u/cR)pU(x,1).

For, by differentiating with respect to z, we get

OL(u,x,1) v
2D - b Sy UGD

r

l

on account of (2.24), and by differentiation with respect to x

IL(ux.1)

aU(x, t)
(1 — e ag) DNy N
I (1 —v-ufc2)y T

Ly

11

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



12 Nr.16

on account of (2.26). Thus, P in (2.23) is the canonical momentum and &
may be called the canonical force. The corresponding Hamiltonian is

Pu—L = pu~+ (v uwyUlx)/c+ 111021//1_—7}% +(1 - v-u/c‘z)yU(x)] 5 31
~ E 4+ pU(x,t) = 9. | (2:31)

Hence, the quantity § in (2.24) which together with the canonical momentum
P defines the ‘canonical’ four-momentum vector (2.23) is equal to the total
energy of the particle in the external field. Therefore, yU(x,!{) may be inter-
preted as the potential energy. In contrast to U%(x?) and ¢ both {7 and £
are time-dependent and $ is not a constant of the motion. From (2.19)
with i = 4 we get, by (2.23,25)

dp

i &0=-(1 v~u/c2)y<'v- (2.32)

alU(x,t) OL(u,x,t)
ox | at
on account of (2.21,26,29). The equations (2.27,32) may be comprised in
the four-component equation

AdP; 3 L (2, x)

AU(x)
dt dat

= — (1 — v u D)y —
(1 -2 ufcyy—-

(2.33)
on account of (2.30).

If we eliminate the velocity # in (2.31) by means of (2.24), § = H(P,x.t)
appears as a function of P and x and the equations of motion may be writ-
ten in the Hamiltonian form

dP 09(Px.l) dx  OH(Pax1)

S , 2.34
dt Ox dt apr ( )
On account of the relation [9]
V1 — u?fc? 1 _
e = l-vu c?) = T T, 2.35
Y1 — u%/c2 4 e (1 +o-ub/c?) (2:35)

the variational principle (2.7,28) is invariant. For, by (2.29,2,7), we get

Ldz 107
Ldt - = = — — Lo,
V1 —u?/c? V1 — u?/c?
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The preceding considerations are easily generalized to a gas of n non-
interacting particles of mass m subjected to the same external force. In this
case the Lagrangian L, is simply the sum of the Lagrangian functions (2.29)
for each particle, i.e.

Z L (T)(u(r) x", )
r=1 (2.36)
LY = — me? V 1- LI.(”2‘/L*2 -(1- v'u(r)/cz)yU(xm: t).

The corresponding Hamiltonian is
"
= > PN, xD 1. (2.37)
r=1

The suffix ¢ indicates that the quantity in question refers to the system as
a whole. This case is therefore a trivial generalization of the one-body
problem and, in the following section, we shall first consider the statistical
mechanics of a single particle and afterwards make the generalization to
the n-body system. Let Py denote the sum of the canonical four-momenta
of all particles in the gas, i.e.

1-_

.n
ZP‘”(p(” x" ta) = Y P ;ZU(x“'),t,a). (2.38)
r=1

It depends on the external parameters (a) as well as on the coordinates
and momenta. For constant values of the latter quantities an increase (duy)
of the «’s changes the quantity P{ by an amount

dU(x™, t,a)

>, Dt day. (2.39)
= 2

PV
T2,

d g Y
(@)* 1 dal q

3. The Structure of Relativistic Phase-spaces

In classical statistical mechanics one introduces the important notion of
a ‘phase-space’ which for a one-particle system is a space of six dimensions
where every phase-point corresponds to a definite mechanical state of the
system. However, in a relativistic theory it is convenient to introduce a sep-
arate phase-space 2(S) for each system of reference S. Each mechanical
state is pictured as a point in 2(S) with the six coordinates (P,x). The
‘state-points’ are moving according to the Hamiltonian equations (2.34),
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which determine the curve (the phase-track) in 2(S) described by a state-
point (P(#),x(t)) in the course of the time f.

On account of the Hamiltonian form of the equations of motion in every
~ system S, Liouville’s theorem holds in every 2Z(S) although $ in general
is time dependent. Thus, if Q(%) is the region in X(S) which is occupied
by state points at the time f and £(¢) the region occupied hy the same
state-points at the time ¢, then the volumes of the two regions are equal, i.c.

Voo = | [@Pdx = [[apax = vy, ;
Q) Qt) (3.1

dPdx = dP,dP,dP,dxdydz.

(In every 2(S) the volume is defined in the same way as in a Euclidean
space with Cartesian coordinates).

In §° where $° is independent of £ the phase-tracks are fixed curves in
2(8%. This is not the case in § where the direction of a phase-track passing

through a fixed point is given by the ‘phase velocity’ <~dl—) ij) which by
(2.34) is seen to be time dependent. dt= dt

Instead of the canonical variables (P, x) we may also use the non-
canonical variables '

&0 = (P2 Py P, Y, 7) (3.2)

as ‘coordinates’ of the phasc points. From the ‘transformation’ equations
(2.24)
P = p+ovpU(x)/c? (3.3)

it is easily seen that the corresponding Jacobian determinant is equal to
unity, i.e.

d(P,x
= ——————( ) = (3.4)
d(p.x)
Thus, by Jacobi’s theorem the volume of a region £ may also be written
6
Vo = ff dpdx, dpdx Zul_'[ldfﬂ. (3.5)
fo) =

In the new coordinates, Liouville’s thecorem (3.1) takes the form

Vaw = | [ dpdx = [ [ dpax - v, (3.6)
2@ Q)
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The equations (3.1,6) show that the volume Vo occupied by the state-

points which lie inside a region £(#) at time { is independent of #. Further
this volume is relativistically invariant in the following sense. Consider the
state-points which at the time {° in SO are situated inside a region £20(10)
of X(S". The same state-poinls are moving through 2(8) of another system
S according to the equations (2.34). At the time ¢ their simultaneous positions
will span a region £(#). Then

‘I_Qo(to) = J‘J‘dpodxo = [f dpdx = V.Q(t) (37)
Oo(t0) Qa)

independently of the choice of {0 and ¢. The proof of this theorem is a little
intricate and, for simplicity, we shall consider the special case (which does
not spoil the generality of the proof), where 29 and £ are infinitesimal and
the relative velocity v of S and S9 is

v = {0,0,0}. (3.8)
A state-point which at the time ¢ passes through a point £y = (byx)

in Z(8) will in Z(S8%) go through a point EEL = (p%x0) at a time {0 given by the
Lorentz transformation

o = vlp, = vEICL Py = pye Po = 0 (3.9)
0 = 'y[x~ Ut], yO -y, 20— - .
10 = y[t — va/c?]. (3.10)

Here we have made use of the 4-vector character of p; = {p, — E/c}. Since

E = c]/ mc% + p?, the equations (3.9) represent a non-linear transformation
& = (5.0 (3.11)

which defines a certain one to one correspondence of the points in 2(89
and 2(S). On account of the relation

oF_ P 3.12
L= =y, .
" E (3.12)
&, af (5.t
the partial derivatives -~ = —I-Cu(—z are given by the matrix

dé&, o0&,
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(1 —vigfc?) —youy/ct —you,fc? 0 0 0
0 1 0 0 0 0

O 0 0 1 0 0 0 (3.13)
9z, 0 0 0 ¥ 0 0
\ 0 0 0 0 1 0
0 0 0 0 0 1

Now, consider the state-points in 2(S) which at the time ¢ are passing
through the phase points inside an infinitesimal parallelepiped £(f) spanned
by six infilesimal vectors along the ‘coordinate axes’, i.e.

= (dps,0,0,0,0,0)

d®E, = (0,dpy,0,0,0,0)
..................... (3.14)

d(G)EH = (0,0,0,0,0,dz)
or

d(“)é—‘ = 0pdéy,y, «=1,2,3,4,5,6
(no summation over «!) - (3.15)
= (dp,,dp,, dp,, dx, dy, dz).

The volume of this region is given hy the determinant

6
AV = 149, = [0%dE,| = 1:[1 dé, = dpdx. (3.16)

In the mapping of Z(8) on 2(S8%), defined by (3.9) or (3.11), the region (1)
corresponds to a region Q0(¢0, {0+ (f9) in X(8%) which is spanned by the six
infinitesimal ‘vectors’

afu(&, D I‘M ;
d(a)f? S\ ¢ dog, - - dffa,: (3.17)
1 v

on account of (3.15). The volume of this region is given by the determinant

df,
r e <
dLQO(;o)io;‘_dI) = 65 d‘:a) = J ]_—_[ df - Jd‘ Q(l) (318)
where the Jacobian .J is the determinant of the matrix (3.13), i.e.
d(p°, x0
J = (P ) = y2(1 — vuz/c?). (3.19)

d(p,x)
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17
¥(S)
D C
d"g,~dp,
(1.0
d
dx
A B
E]J:(E'l(w> d EP

In the 2-dimensional picture above the region £(t) in 2(S) is represcnted
by the inside of the rectangle ABCD with sides dx and dpa, the vectors
- —

dM&, and dWE, being represcented by the lines AD and AB, respectively.
The corresponding vectors dW&, and d@& in X(89), as given by (3.17),
— —
are represented by the lines A°DY and A8, and the region Q9(79,#0 + dt9)

is the inside of the parallelogram A9B°C0/0,

According to (3.18,19) the volume AV s, oy qey ©F this region is not
equal to the volume dVg,, of £(t). However, the points inside £°(19, 10 + dt%)
arc nof the positions in Z(S8%) of the state points in 2(¢) at the same time

1%, since the passage time, for the points along the lines parallel to AR,
according to (3.10) vary linearly from 0 to %+ df? with

Yo .
dto = —;5 dCl? (320)

o
which is negative. During the time |d#0] = ?{2- ¢, the points on the line BOCO
¢

are displaced by a displacement vector BE?L which, if we neglect small
terms of the second order, is given by

dpo dx0 099 yuda youd
£0 . 0 df®1) = { = * o= 9 ¢
o dto el dio dt ]> ( ax® ¢z 7 2 ). (3:21)

— —

In the picture this constant veclor is represented by BOE® or (COFO. The

state-points, which at the time [0+ d#0 = 0 — Vz dx were in BY and (9, will

Wat, Fys. Medd. Dan. Vid.Belsk. 36, no. 18. ¢ 2
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at the time #° be in the positions 0 and F9, respectively, and the whole line
BOCY will be displaced to EOF® Thus, the region £20(i%) which at the time
is occupied by the state poinls inside £(f) is in the figure above represented
by the parallelogram AOEOFODO spanned by the vectors M) and AF0, i.e.
by the vectors d(l)fz and d<4>£0M+552 = AEZ. Therefore, in the 6-dimen-
sional phase space the region £0(#%) is spanned by the six vectors

A@E = {dVg,,dPg, dDE), A5, dD &, dOE ) (3.22)
with
ofu
@0 _ A0 _ @0 o _ U~ 0
ADE, = A&, = dVE, + 08 = Py dx + 0§, ]
, ©(3.23)
_ 090 v 090 pv aHo yu 1 1)1123 yuug youy .
o\ Bad et gy ez’ 802’ W e )2 e v

on account of (3.17,21,13). The other vectors 4®&) arc given by (3.17,13)
The volume of the region spanned by the vectors (3.22) is

dV_Qu([u) = |£](Cl)£’“|
for which one easily gets the value

AV gup = 731 —vue/c?)(1 + vul/c?)dpdx
or, on account of (2.35) and (3.8,16),
dV oy = dpdx = dVg,. (3.24)
Since dVg is invariant under arbitrary spatial rotations, it is obvious
that (3.24) holds for an arbitrary system S (arbitrary o). Thus, for two
arbitrary Lorentz systems S and S’ we have

The generalization of these results to a system of n non-interacting
particles is trivial. The phase spaces 2(S) are 6n-dimensional, and as the
coordinates of the phase-points we may take the 6n variables

£, = (PU,xD,. . po),x, . pw) xm), (3.26)

If the volume of a region £ in X(S) is defined by
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6n .
v, - f dt. = [ [dpwdxw ... dpmwdxm 3.97

it is obvious that Liouville’s theorem (3.6) as well as the relativistic invar-
iance of dVg, i.e. equation (3.24) holds also for a gas of n particles.

4. Statistical Ensembles of Mechanical Systems in the Phase-Space
Z(8) of an Arbitrary Lorentz System §. Canonical Ensembles

Let us start by considering an arbitrary ensemble of one-parlicle systems.
In 2(S) the disiribution of the state-points of the ensemble is described by
a probability density P(p,x,t) which in general depends explicitly on the
time. The number of systems which at the time / are lying inside an in-
finitesimal region (1) of volume dVg, at the place (p,x) is then by defi-
nition

NE(px.D)dV . (4.1)

where N is the total number of systems in the ensemble (N —» o0). Al a
different time f, the same number of state-points is given by

NP(po,x0,l0)dV g, (4.2)
where

dVQ(to) = dVQ(l) (43)
on account of (3.6). Thus, (4.1,2) gives

B(po,x0.t0) = P(p.x,1) (4.4)

which shows that B(p,x,f) is a constant of the molion, i.e.

Apxt) _oBpxl)  ORpxD dp ORDxH

0. 4.5
di O ap i a1 4-3)

By integration over the whole phase-space we get for all ¢
f f B(p.x,Odpdx - 1. (4.6)

All these relations hold for any Lorentz system. In the phase-space X(S")

of another system S’, the state-points given by (4.1) occupy at a time ' an

infinitesimal region £2'(¢') around the point (p’,x’), where (p'x’,t') and
2*



20 Nr. 18

(P.x,t) arc connecled by the Lorentz lransformation leading from S to §'.
On accounl of (3.25) the volume dV gy of this region is equal to AV
Therefore, since the number (4.1) of systems is also equal to

NR'(p',x', l’)dV_Q,U,), (4.7)

where B'(p’,x’,t") is the probability density in Z(S'), we may conclude that
the probability densily is a relativistic invariant, i.e.

L(p.x.t) = B'(p'.«', 1) (4.8)

where the arguments in the two functions are connccted by the Lorentz
transformation § - §'.

The mean value of any physical quanlily F(p,x,() like the encrgy $ or
the canonical momentum P is, at the time ¢, given by

Ep%0) = [ [ F(px, 0., Odp. (4.9)

For a system of n non-inleracting particles, the probability density
By(&,, 1) in the 6 n-dimensional phase-space X(S) is the product of the
probabilily densities in the G6-dimensional phase-spaces of the separale
particles ”

P& = T1 BO(pm, xt, 1), (4.10)
=1

We shall now in particular consider the case where the ensemble is can-
onically distributed in 8° Such aun cnsemble represents an adequate de-
seription of our knowledge about the mechanical state of a gas in a container
at rest in S° and in thermal equilibrium with a heal reservoir of given tem-
perature T9. For an ideal gas each of the particles in the gas will then be

canonically distributed with a probability density

PO PO, x0) = ¥~ G°H0(p°, x°, @)/ k (4.11)

where k is Boltzmann’s conslant and 6° = 1/7° is the reciprocal of the pro-
per temperature 70,
0
@ = gy + ol (4.12)

are phase-independent quantities delined by
o Pk J[e—— On&joﬂcdpodxo, I

(4.13)
-k _ fc_ GnEu“'deO, e—(p,j/l-: _ fe— 9”[7"(x°,a);‘];dx0' ‘
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These equations determine ¢° = ¢%6° «) as a function of 6° and the external
parameters («) which define the thermodynamical state of the system in SO,
The thermodynamical significance of ¢" is given by the relation

FO = ng®/6® = @°/g° (4.14)

where FO is the frec cnergy of the gas in the rest System S° (see § 5).
While P in 8° is independent of ° the probability density B in S is time
dependent. Since the canonical four-momentum P; is a 4-vector we have

PyVE = PIVO — 90 (4.15)
Thus, if we introduce the 4-vector (1.15,16)
gt = 00Vt =~ gv? (4.16)

we get, on account of the invariance of the probability density expressed

+ 0PI

Bipx 1) = T (4.17)

where
P = ¢ (4.18)

is an invariant.
In the general system S the thermodynamical state is determined by the four
parameters 6% together with the external parameters (q;). The expression
(4.17) is closely related to expressions used by Mazur and Lurcar and by
Barur [10].

5. The Mean Values of the Energy and the Canonical Momentum and
their Transformation Properties

The mean values in question are, in a system S,

it

> fJ D(p.x, DB(Pp, x, Hdpdx, ]

P> f f P(p.x. OB(p, x, Hdpdx, | e

i

where the integrations are to be performed at constant time. From these
expressions it would seem that (> and (P> are time dependent. However,
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a calculation of the integrals (5.1) will show that these quantities are inde-
pendent of ¢ for a canonical ensemble with P} given by (4.17).

Let us again for simplicity arrange it so that the velocity of S° with
respect to S is
: v = {v,0,0} (5.2)
in which casc the equations (3.9) are valid. In order to perform the integra-
tions in (5.1) it is convenient for constant  to introduce the quantities p9, x0

defined by (3.9) as new variables of integration. The inverse transformations
of (3.9) are (for constant {)

P = ¥Ipy+vEYP], p, = pS. p. = p?

(5.3)
x = vt +x%y, y =y’ z=:0
According to Jacobi’s theorem we have then to replace dp dx by
dpdx = Jdp°dx®. (5.4)

Here J is the Jacobian determinant corresponding to (5.3) which is easily
seen to be

AP, x)

Cd(p )

Jin (5.5) is of course the reciprocal of the determinant (3.19) (comp. (2.35)).
Since P;is a 4-vector and P? = p0 we have

1 +oulfc® = 1+ vpd/E°. (5.5)

O = y[D° + vph]

and, because of the invariance of the probability density, the first integral
in (5.1) becomes

@ = [ [ Bt a)p(0° + opd(1 + oplEOdp'a’. (5.6)

Here we have made use of the time independence of 9.

In the next section we shall consider a case where the probability density
LO(PO, x0, 19) is t0-dependent. In applying the formula (5.6) one has then in
PO(pO, x0, 1) for the argument {® o substitute the expression (3.10), which
by means of (5.3) may be written

10 = o[t —vx/c?] = t]y — vxb/cE. (5.7)

However, in the present case we get from (5.6)
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> = PIKOHB + v ph° + < 0 px>° + Px SO, (5.8)

where ¢ >° denotes the mean value over the ensemble (4.11) in 7(50)

Since §0 = ch2cZ+p°2+ Do(xo) and E° depend on the squares of pJ, pf
and p? only and the integration over thesec variables goes from — oo to + oo,
where % = + oo and L0 = 0, it is obvious that

<Px>0 - <]JJ>0 = <p >0 =

. 9 (5.9)
PPy’ = pepy® = <= e o =
Further, as
2,,02 an oo
e o - gﬂ%, (5.10)
E oy TTop)
we get by partial integration
c2pl2
>0 _ fJ- (‘P"_OO'SQ")/dedeO
(5.11)
[)?BO 0 0 0
ff dp dx® = k70 | | Pdpidx® = kTo.
Hence,
. v?
@) = p|<800 + S kT0). (5.12)
Similarly we get from the second équation (5.1), remembering that
P, = ylps 00l Py = P, P, = P, (5.13)
Py = [{HD0 + kT vv/c?
¢ [<® Iyo] (5.14)
Py =P =0

on account of (5.9,11).

For a gas of n non-interacting particles, the equations (5.12,14) hold for
each particle separately and, by multiplying these equations by n, we get
the corresponding formulae for the mean values of the total energy and
canonical momentum of the gas. Thermodynamically, these quantities are
to he identified with the energy and momentum of the gas, i.e.
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H = (D = 0Oy H® = <HP° = nH»’
G - P - nP>, G = (PD° = (P (5.15)
Gy = (PP = ndPp, GY = (PI%O = n(PHL, [

The justification for this identification lies in the lact that the fQuctuations
of these quantities normally are completely negligible for large n of the order
of the number of particles in a ponderable amount of gas. It is perhaps a
little surprising that G is identified with the mean value of the canonical
momentum and not with that of the linear momentum. However, it should
be noted that the potential U%x?) of a particle in S will represent a momen-
tum yp{U%0/c? in S and, according to (2.24), this is just the difference be-
tween the mean values of the canonical and the linear momenta. In the case
where there are no other external fields than the forces {rom the walls,
(U0 is zero and there is then no difference between (P> and {p>.

From (5.12,14,15) we now get for the momentum and energy of
the gas

I

[H® + nkTO)yv/c? l

2 (5.16)
HO + —nkT®y I
c

i

H

holding for any direction of ». This may also be written

Ho
G; = -‘Vi-%—gi
c2

gi = 3—— vv, -~
c2 2 ¢

(5.17
{RI{TO nk1o 02;/} J )

The quantity g, (and hence ;) is nof a 4-vector, but it satisfies in any system
S the relation
givi _ O,

i.e. ) (5.18)
G, Vi = — HO

Since I is a 4-vector we have, in the case (5.2), the following transforma-
tion formula for the mechanical force § and the rate of mechanical work §u:
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- %0 + U(%O 0)/C ‘ ~§0
5, - 0 B -
1+ od)c® 1+ vzzz/c ]
ord %E,,,,,,,ﬁ a0 _ ag(i(f ) 519
Oz = y[1 -+ oud)e?] 5 a0 (5-19)

v 78‘0,“0 + v

0/.2
1+ vuyfe

Similarly, we get for the canonical force (2.25,26)

0 )

R, = — 575 N = 73
R vild[c? : p[1 + vl

. &9 aU%(x)

(£ A L ——— 5.20

K p[1 + vdd/c?] dx° (5.20)
0.9 &%

§o- 0
L+ odfe? 1+ vuad/?

The mean value of §° = &0 over the ensemble (4.11) is

(050 = (00 = _f G W' =B =0Tk gpogxo

0x0
(5.21)
(P B U g0 a0 — ()
- o] [t )dp
since P50 vanishes outside the container. Similarly, we find
(RO U0 = (KO-p0 = 0. (5.22)

By means of Jacobi’s theorem and (5.4,5,19,20) we get, therefore, for the
mean values of the forces and the rates of work in the system S

(Fy =< =0 |
(F w = <Kv) = 0. I

Although the mecan value of the lotal external force acting on the system is
zcro in a canonical ensemble, as one should expect for a thermodynamical
system at rest and in thermal equilibrium in 89, we get of course in general
a non-zero result if we take the mean value over this quantity when the

]

(5.23)
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position of the particle is fixed or confined to a finite region w® in space.
Then we get in SO, instead of (5.21),

0 0 0 e_ ooUu (xn)/}c ]
<%0>(20n _ <§0>(200 _ fe(¢ *BE)/deOICTO —_0“x*0’* de
® (5 ‘)4)
=LT0 fe*B“U"(x")/kndGO/J‘e—9“U“(x”)/kdx0,

o°

where the integral in the numerator is taken over the surface o0 of w® and
n is an outward normal to the surface element do. The volume integral in
the denominator in (5.24) follows from (4.13). In the case where the forces
from the walls of the container are the only external forces present, we have

0 inside the container

Uo(x%) = { } (5.25)

+co outside the container

and the denominalor becomes
fe_e"U"/’“de ~ RO (5.26)

where B0 is the rest volume of the container,

Now let us for o0 take a small cylinder with end surfaces doj and
doy lying immediately inside and outside the container wall, respectively.
(Actually we have to think of the wall as consisting of a thin transition layer
inside which the potential rises rapidly but continuously from the value 0
at do? to a very large value at do.) Then, we get from (5.24) in the case
(5.25)

(FH% = (@M, = kT0doin, [B° (5.27)

where ny is the inward normal of the conlainer wall. When multiplied by
the number n of particles and divided by do} (5.27) gives the normal
pressure p® of the wall on the gas. Hence,

PO = nkTO/LO, (5.28)
When UYis given by (5.25) the pressure is the same everywhere, the thermo-

dynamical body is homogeneous. On the other hand, when U%(x®) # 0 inside
he container, the pressure varies as e“9°U5/7“, where UlD is the value of the
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potential U?at the place considered. If the considerations leading to (5.24,27)
are carried through in the system S one easily finds by means of (5.19) that
the pressure is an invariant, i.e.

p = po. (5.29)

In the homogeneous case (5.25) where (5.28) holds the equations (5.16)
may also be written
G = [HY + poBO[yp/c?

02 (5.30)
H = {HO + ;i pO%O]y

which are the equations for a thermodynamical fluid from which e started .
our considerations in reference 4.

Finally we shall consider the statistical analogue of the thermodynamical
entropy S. If we put

P = e Po = o7, (5.31)
then the invariance of the probability density entails the invariance of the
‘probability exponential’ #, i.e.

n(px, 1) = n°(p°x0) (5.32)

where the arguments in these functions are connected by the equations (5.3).
Hence

(= (00, (5.33)

This also follows by means of Jacobi’s theorem and (5.4,5) which gives

o = [ [ndpax — [ [1P5°01 + opY/ B dpas?
= 1%+ v Py 0.

By the arguments leading to (5.9) it follows that the last term in this expres-
sion is zero so that (5.33) follows. (5.33) holds for every particle and from
(4.10) we get for the mean value of the probability exponential for a gas of
n particles

7y = InP,

5.34
(> = 0y = ny®0 = (0. (5:34)

According to classical statistical mechanics the enlropy S° of the gas in the
rest system is



28 Nr. 16
S0 = ~]<'<7/2>0 = — kn{xn%° (5.33)

and, since the entropy is a relativistic invariant, (5.34) shows thatthe entropy
S in an arbilrary system of inertia must be given hy

C S = =k = — kn{n. (5.36)

For a canonical ensemble (4.17),

7 =B = (¢ + H8P)/k.
Hence

S = —ng — nOP (5.37)

or, by (5.15),
b = - 0iG; - S l

b - o, J‘ (5.38)

Although Gy is notl a 4-vector, 0°G; is an invariant. For we have, by (5.18)
and (4.16),
fiG; = —0OHO = — HO/T0, (5.39)

On account of the invariance of the entropy, (5.38) may then be written

10— Togo |
D =PV = — —— = FO/TO (5.40)
70 [

in accordance with (4.14). ‘

In the present section we have considered the statistical expressions for
the thermodynamic state functions &;, p and S which are functions of &
and (a). The change of these quantities in a process connecling two equi-
librium states of the body is obtained by simple differentiation. How-
ever, we shall also consider quantities like 4I and AA (the mechanical
impulse and the work) that are not absolute differentials and which there-
fore depend on the character of the process. In the next section we shall in
particular consider processes which are reversible.

6. Statistical Description of a Reversible Process. The Mechanical
Impulse and Work. The Four-Momentum of Supplied Heat

Consider a reversible thermodynamical process connecting to equilibrium
states (07, a;) and (6%+ 46%, q; + da;) and let us for the moment assume that
the rest system SO is fixed dwring the process, which means that the velocity




Nr. 16 29

2 of the thermodynainical body with respect o S is constant. Then, the change
of % is due solely to a change in the temperature 79 of the amount 479,
Now, a process is reversible if it is performed so slowly that the system
may be considered going through a succession of equilibrinm states with
lemperatures T9(1%) and exlernal parameters a,({%), which are ‘infinitely’
slowly varying monotonic funclions of the time #. If <0 is the duration of
the process we may assume that the lemperature and the external para-
meters rise from the initial values (79 @) to the final values (70 AT0,
a; + Zey) in the time interval

0 < 10 < 70 (6.1)

Experimentally, the body has during the process to be brought inlo contact
with a ‘continuous’ succession of heat reservoirs of temperatures T9({0).
[From classical statistical mechanics we know that the adequate statistical
description ol this process in the system S0 is furnished by a ‘quasi-canon-
ical” ensemble with a probability density (for each parlicle) of the type

BP0, %0, 00(19), a(19)) = exp{(gO(80,a) — OIS PO, %0, a((O))/k}.  (6.2)

Like T9(1%) and a(9),
00(10) = 1/79(1%) (6.3)

is also a slowly varying function in the interval (6.1) bul constant outside,
ie.
J 6o for 10 < 0 1

HO( 0y — 6.4
=004 a0 or 05 w0 [ 6D

Since ¢% is a funclion of §° and («) it will also be a function of 0 in the interval
(6.1). The condition for the correctness of this description is that 0 is ex-
remely large compared with the period of the system, i.ec.

7050 10/{uf»0, (6.5)

where {0 is the linear extension of the container and w90 is the mean value
of the particle velocity.

We shall now calculate the mean force and the mean rate of work
on the parlicle in the general system S, and let us start by considering the
case where the «’s are kepl constanl during the process. As we shall see,
this simple case exhibits already the typical new features introduced by the
theory of relativily. In non-relativistic thermodynamics the mechanical work
is zero in such a process and the change of the temperature is due solely
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to the supply of hecat energy. In a relativistic theory, this is still true in the
rest system S? but, as was shown in detail in reference 4, in any other system
S we have a finite impulse and a finite work performed by the external
forces. We shall now calculate this effect from statistical mechanics.

For simplicity we shall start by assuming that the relative velocity v is
given by (5.2) so that (5.3) is the transformation connecting the phase-
spaces 2(S) and 2Z(S8%. Then, using (5.19) and Jacobi’s theorem (5.4,5),
we get for the mean value of $%; at the time ¢ in S

gx% G 65
_ N 0 0 0 o0 /0 0,7..0 :
G = NN BN ol Edpat, |

where 0 is the distribution function (6.2) (with conslant a’s). Here it must
be remembered that 6%¢%) is a function of the variable

10 — t/y— vx®fc? (6.7)

given by (5.7), which depends on the variable of integration al. Hence

Gov- || <‘ aUO@)iBO(po,xo,eO(tO))dedxo

Ox0
o (6.8)
i f f (fiE f)) B p0,20,60(£9))dpOedd.

The last integral is obviously zero since P as a function of (pg,py, py)
depends on the squares of these quanltities only. Thercfore, it follows from
(5.20) that the mean values of §, and &, are cqual. In order to calculate
the first integral in (6.8) we remark that the quantity £%3°/69, in the present
case where the «’s are constant, depends on the variable a® both through
U%(x%), occurring in the exponential of the expression (6.2) for B9, and
through 69(#9). Therefore

a5Bo/6o aUY(x0) O(RO/6Y) 3HO(10) :
— - = PO - L+ 6.9
o R ( 2 I N TR M0 (6-9)
or, by means of the relation
0800 0G0 (0
__,(2 - _E)u)(_} (6.10)

Jdx0 2 gt
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following from (6.7),
5 R0/0 j0 0/go
kdEB /0 ~ < oue ) 0 yUBSB /0

da A0 2 Ot

(6.11)

If we integrate this equalion over the whole phase-space 2(S0) the left hand
side gives zero, while the integral of the first term on the right hand side is
just the first term in (6.8). Hence

c e, o d @A)
e | oy don (6.12)
Similarly we find, by means of (5.19,20),

<%’y>t = <§Ey>t = 0, <%z>t = <5%ez>t =0 (613)

which together with (6.12) may be written in the general vector form

Ryo d [ [ B(P0.80,60(19)

e = =" 69(19)

= dp°dx?. (6.14)
In the same way we obtain for the mean mechanical effect

(Fupe = {K-v) =

kyv? d f @«w(to))dpodxo (6.15)

¢ dt 6o( £0Y

For a gas of n particles, the expressions on the right hand sides of (6.14,15)
have to be multiplied by n. For the impulsc of the total mechanical force on
the gas during a time interval &y < { < {3 we get therefore

ty
AK(tLts) = n f (Foedt

H_Wk U f LD, x°, 00(19)) /00(3)dp°dix” (6.16)

ff PBOP°,x°,0019))/69( 1)dp dx® }

where #] and {) are obtained from (6.7) by putting ¢ equal to t; and {,, re-
speclwely Now choose {; and #z so that {{ < 0 and #3 = 7° for all values
of 2 inside the container. Then, 60(¢3) and 69(¢%) have the constant values
00+ A6% and 69, respectively, in the two integrals in (6.16). Thus, we get

for the mechanical impulse during the whole process
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nyv k k nkATO ]
AI — ————— = == —_ . , 6 1 7
[eo T 00} e J (e

2

c2

Similarly, by integralion of (6.15), we obtlain the fotal external work

yi? o .
A4 = "’Cz']]]{llf. (6.18)
Hence
nkATO 0kATO yp?
Al = § = o, — =N i Ags, (6.19)
c2 c? ¢ [

where g, is the change of the quanlity g; in (5.17) for the casc of constant .

From (5.17) and (6.19) we see that the difference AG; - 4I; is a 4-vector
which, according to (1.1), must be interpreted as the four-momentum of
supplied heat:

AHO ALHP° 4Q°
AQsy = AGy Al = —— V; = g Vi= —-V; (f3.20)
2 ¢ 2 )
where
A0° — AH® — /I<,S;)?]>U (6,20/)

is the supplied heat in the rest system for constant (a).

The equalion (6.20) is in agreement with the thermodynamical equa-
tion (1.4) derived in veference 4, bul so far it has been dervived from stalis-
tical mechanics only for the case where the a's are kept constant during the
process. However, it is easy to find statistical expressions for the work and
the impulse arising from an infinitesimal reversible change of the cxlernal
parameters (a). In the system S9 the work performed on a particie (for
fixed p%,x%) by an increase (da;) is given by (2.6,6"). The mean value of
this quantity multiplied by n is to be identified with the work performed on
the gas due to a change of the «a’s, i.e.

0 04,0 09° 0 3
dA™ = ndd 0" = ny {0, (6.21)
i aal
or
0,0 6@2 0 >
dA® = {dy9y)" = Z<Ba > day (6.22)
1 I

where 99 is the total Hamiltonian (2.37) of the gas.
In the homogeneous case (5.25), there is only onec external parameler
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for which we can take the rest volume 9. Since the work performed on
a gas by a reversible increase d¥? of the volume is

dA® = — podsBe, (6.23)

a comparison with (6.21,22) gives

- =<

990 0D%(P%x%,BY) N
0 = S 50, (6.24)

an expression which also follows from (5.24) when one takes into account

that the polential U%x%) in the vicinity of the walls is a function of the
normal distance to the wall.

On the analogy of (6.21,22), the impulse and work in S due to an increase
(da;) of the external parameters is equal to the mean value of the quantity
d,P{ given by (2.39). Hence

OPY(&, 1, a)

]

dgyly = <d,P%> = %\,dal< > = ndd P

(6.23)
OP(p,x,t, (1)>

dU(x,aq;) Vi
0 L
a

= nydag = nyda
i 7

27
a; C

-

Since —— is a relativistic scalar, Jacobi’s theorem (5.4,5) gives
a

Thus, by (6.21,22,25),

dAo <d( ®0>0
digyli = e Vi = —~*‘a;2g Vi

; (6.26)
which shows that this part of the mechanical ‘impulse-work’ dI; is a 4-vector.

For an infinitesimal reversible process the tolal expression for dI; is obtained
by combining (6.26) with the equation (6.19), i.e.

dA
al, — dg; + — V,
(.‘2

Cyp, - A
c® c

) - (6.27)
nkdT?® nkdT0 yv?
dg; = '

for constant @. Instead of (6.20) we now get in the general case
Mat. Fys. Medd.Dan.Vid.Selsk. 86, no. 16.
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dHY — (A0 dQo
dQi = dGy—dly = ————— Vi = -V, (6.28)
e e

in complete agreement with (1.4). The statistical expression for the transter-
red heat cnergy in S° is, by (5.15) and (6.22),

dQ® = dH"— dA® = d<@g>°—2dc:l<%%g>°. (6.29)
Since dg; V' = 0 we get from (6.27) l :
Vidg, = — dA? (6.30)
which, by means of (1.2,3), gives
dA = vdl + dAO)/1 — p?c2. (6.31)

The crror made in the early treatments of relativistic thermodynamics
consisted in replacing dI in this expression by dG instead of the correct
replacement of dI = dG —dQ following from (1.1).

In the homogencous case (5.25), where (5.28) and (6.23) are valid,
we get from (6.27), (1.2,3) and (6.31)

Ropo
a
2
(6.32)
Bogpo '
dd = 2y v — pdi,
2
where
B = BOY1—v2c2, p = o (6.33)

is the volume and pressure in the system S. (6.32) is in agreemient with the
equations (66) and (72) in reference 4.
The equation (4.6), which for a canonical ensemble (4.17) reads

H}'W(”’P;‘P’-*"’“”/’“dpdx -1, (6.34)

determines ¢ as a function of the state variables 6¢ and («). Diflerentiation
of this equation gives for infinitesimal increases df%, (da;) of these variables

[ [ (o + doip, + 6id P Bedpdse = 0
or o
dp + 0P + 0Kd Py = 0. (6.35)
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Further, by differentiation of the equation
Ky = @ 4 0Py - (6.36)

we gel, using (6.35),
kd<np»

Il

dg + dOi(Py> + B1d<P;) }
. (8.37)
BYd(P, ~ {diyPD).

Multiplying this equation with —n we obtain, by (5.36), (5.15) and (6.25),
for the change of the entropy S

dS = — 0i(dG,; — digl,). (6.38)

For the type of process considered here, where o is constant, we have

fi

1
Bidg; = 7 Vidg; = 0
Thus, by means of (6.26-28),

dS — — 0i(dG; — dI;) = — 61dQ; (6.39)

in accordance with the thermodynamical equation (1.17) for a reversible
process. This may be regarded as a new proof of the statistical expression
(5.36) for the entropy.

Finally, a few words about the process of adiabatic acceleration of the
thermodynamic body, where the acceleration is performed ‘infinitely’
slowly and smoothly with constant («) and without heat supply. In that case
we may assume that the internal thermodynamic state is the same in the
successive momentary rest systems S° of the container which means that
HO® and 6° = 1/T° are constant during the process.

From (5.17), which also may be written

HO + nkTo v nkT?

G; = - —;‘; — g ("yj 61’4, (640)

we then get
HO+ nkT0 nkTo

— e AV + = Sudy™t = AI; (6.41)
¢ c
since there is no heat supply in this process. For an infinitesimal process
of this type we have, since VidV; = 0,

. nkTo® 1 -1
Vidl; = -—— V3dy ' = nkT‘)yd'y*l
or by (1.2,3) ¢

3*



36 Nr.16
dA = vdl — nkTOdy™! (6.42)

which replaces (6.31) in this case. A detailed statistical derivation of (6.41)
is most adequately obtained by replacing the successive rest systems by
one smoothly accelerated system of coordinates such as the one introduced in
chapter VIII, § 97, of reference 9. This requires a generalization of the
statistical mechanics of the preceding sections to the case of accelerated
systems of reference, a subject which we shall not go into here. However,
in the next section we shall at least give a statistical derivation of the equation
(1.17) for a process of adiabatic acceleration in which case (1.17) reduces
to dS = 0.

7. Mean Values in a Canonical Ensemble

According to (4.10,17) a gas of n particles in thermal equilibrium is,
in an arbitrary system of inertia S, described by the canonical probability
density

B = oD+ 0PI, (7.1)
where
V.
Pt T, 1
2! .
" u (7.2)
P3P0 U, =3 00, L), J
r=1 r=1

Thus, the ‘total canonical momentum’ P{ of the gas depends on the ‘co-
ordinates’ (£,) (3.26) of the points in phase-space and on the parameters
Vi and (q;) of the thermodynamical state, i.e.

P{ = PY(E, 1,V Q). (7.3)

The quantity @, which is connected with the free energy by (4.14, 18), is de-
fined by the equation

f' 'J'e[<D+0iPz(§,t,V,a)w.~d§ =1,

dé = dpWVdxV ... ... dp™dx™

(7.4)
or

e Pl f . .fexp[aipg(g, £V, )] deE. (7.5)
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The variables §* and V? are connected by (4.16). However, for the following
development it is more convenient at the moment to regard the variables 6
and V* as independent of each other. For fixed V? the quantity @, as defined
by (7.5), appears then as a function @(0% Vi, a) of the independent variables
6% and (a;), which may be partially differentiated with respect to 8¢ or to g,
all other quantities being kept constant in these derivations.

By partial differentiation of (7.4) with respect to 6% we then get

o[ (G  peuas o 1.)

Thus, taking account of (7.1,4) and the relations (5.15) and (4.16),

(7.7)

. - oo [%_)}

Here and in the following, a square brackel around a function of (64, Vi, a)
indicates that we have to put

6t = BV = poyi (7.8)
in this function.
Further partial differentiation of (7.6) with respect to 0% gives

8’0 1/0d oD
w5 wpr) 52 Py - ;
f’ 'f{f’oiaek | ]c(@@i | P”)(amr +P@>}S’Bd5 0 (7.9)

or, if we put §° = 6V in this equation and use (7.7),

(7.10)

020, V1,
(PY — (PISYPY — (PEYYy — — k {——(ﬁz}

elrdilzg

In particular for & = i we get the following simple expression for the square
of the fluctuation o{Pf} of the quantity Py:

(7.11)

320 (64, V, )
age

O‘Z{Piq} = —Ic[——~ .

Similarly, the mean value of the probability exponential or the entropy

may be expressed in terms of @ and its first order derivatives. From (5.36,37)
and (7.7), we get
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S = —kiny = - [P+ 0<PYH] l
- DO Vi ia®(6i’w’a) (7.12)
= {@(G,V,a) —0 T } }

Partial differentiation of (7.4) with respect to @, (counstantl 6%,V?) gives

00 0,00,
f f( )aszg - 0. (7.13)
Bal c?

) oU
Thus, pulting ¢ = 6V? we get, since —¢ is invariant,
! ° a
I

au, au? 9990 ]

N 90: -
<6a,> < > <Bal

_ gt aq‘)(ei,V?Q _ o 0P
Oa, da,

(7.14)

where @9(00,a) = ngf(0%,a) is the function defined by (4.13). In the homoge-
neous case, where the rest volume B9 can be identified with the external
parameter a, (5.29), (6.24) and (7.14) gives the following expression for the
pressure
po=po = ‘6~1{§?(6_2’_W’§))} — o1 agPO(go’ggO)v (7.15)
OB AR
From the preceding considerations it follows that all the thermodynamic
functions of the system can be calculated by simple differentiations when the
function @(6,V%,a) is known. Also typically slatistical quantities like the
fluctuations of PY may be obtained in this way. For reversible processes we
may then also express quantities such as dl; and dQ; in terms of @ and its
derivations. For instance we get from (6.22,26) and (7.14)

_9PY(Go, '
da0 — go-rs P I
e a;

0@ (09, a)

a;

(7.16)
dl; = <60 12 dal>VL/c— J

We shall now investigate the general structure of the function @(8%, V%, ).
Although this funection for 0¢ = 0V? of course has the same value in every
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Lorentz system, it is not a form-invariant function of the (independent)
4-vectors 6% and V. Since

. . oiv; -
0P ~ Opf + — U, (7.17)

is a sum of two parlts containing the momenta and coordinates separalely,
we may write
o= Pl = Dk o= Pyt ¢ =0,+90, (7.18)
where
e D00 _ f . f Holkdp® | dgpm (7.19)
is a function of 0% only, while

POV ) [ .. J e ViU KD o) (7.20)

in general depends on all variables (0%, V% a).
By partial differentiation of (7.19) with respect to 07 we gel, similarly
as in (7.6,7), for the mean value of the linear four-momentum p¢

L X CR)
iy = [_—_am J (7.21)

which may be interpreted as the ‘bare’ four-momentum of the gas. Similarly
as in (7.11), the square of the fluctuation of the linear four-momentum is

GZ{pg} - _ k{azdip_(?i)} (7.22)

By subtraction of (7.7) and (7.21) and by using (7.2) and (7.18) we get for
the ‘four-momentum of the potential energy’

@ Vi = <U,‘?>O Vi = — [wiiq)} (7.23)

a0?

2 2

Since pf = >pi" is the sum of the four-momenta of the separate par-
¥

ticles we obtain from (7.19)
(%) = ng, (6% (7.24)

where ¢, (0%) is given by
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o P OE _ f lidp. (7.25)
Here, both p; and
Bt = {8,64} (7.26)

are time-like 4-vectors.

In the intergral (7.25) it is convenient as new variables of integration
to introduce the components of the momentum vector p0 in a Lorentz sy-
stem S° which has its time axis in the direction of 6. Then, the four-velo-
tity of S? relative to S is

Vi< 69 = {V,V4} (7.27)
which in S has the components

VOt — it (7.28)
Hence
0'py = OV'p, = OVYp? — Bep?

= = 0E° = —fc)/mic? + [p° 2. ,

Since dp/E is known to be invariant under Lorentz transformations, the
Jacobian corresponding to the transformation p > p°is (comp. equation

(2.35))

(%% - 1% = Vifc + (V- pO)/EO — 64/c + (6 - po)/gED (7.30)

on account of (7.27). Thus, (7.25) becomes

‘ 4 8. po
~ @0k — | o OEUR__ gp0 f ~6mk " £ pp0
‘ fe fc ot ¢ HE° p

The last integral is obviously zero, so that e %/ is of the form

4
e Pk % e~ 1Ok, (7.31)
C

Here f,(6) is a function of the invariant norm

0= |/~ 06,6%)c (7.32)
defined by ’

. R NS
e hOk — fe*ob"”‘dpo = (mc)3fffe k dédndi.  (7.33)
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A comparison of (7.33) with (4.13) shows that
Pp(0%) = £,(6%. (7.34)

The function f,(6) defined by (7.33) may be expressed in terms of a
Hankel function HY of the first kind and the second order with imaginary
argument [11] in the following way:

% fme

, V1t 9 .
e~ 1Ok (mc)%bzf e w'du
0 (7.35)
2m?m3ck
- 71 i H im0/ k). J
it
From (7.24,31) we get for the part @, of @
. . o
Dy(0) = ngy(6%) = n| f,(6) ~ kin - |. (7.36)

This part is independent of the forces acting on the system, which have an
influence only on the part @, defined by (7.20).

For a system of non-interacting particles, where the potential is of the
form (7.2), we have on the analogy of (7.24)

D, (04, Vi, a) = ne,(05,V:,a) (7.37)
with

@l = f U VUG L)k g (7.38)

If we introduce the coordinates &0 of the rest system S instead of x
as integration variables, we have in the integral (7.38), which is performed

at constant ¢, to put
dx - dx“[//liv—%v%2 = %dxo. (7.39)
Thus, (7.38) may be written
= PO VL e~ Il ke jya, (7.40)

where f(u,a), defined by

eldpadlk J‘e~yU0(x0‘a)/kdx0’ (74 1)



42 Nr. 16
is an invariant function of (a) and of the invariant variable
wo= — 8tV (7.42)

A comparison of (7.41) with (4.13) shows that
po(0°,a) = £,(6°% a). (7.43)

The quantity u is positive for 6¢ in the vicinity of the value (7.8). From
(7.40,86,18) we finally get
/ A\

o, = 17(}“’(1(#,(() - ]clnéi)

\

(7.44)

DO, Vi, q) = n(/'p(ﬂ) + [, a) — k 1116014/4> |

By means of this cxpression for @, we may now calculate the mean va-
lues of various physical quantities. For instance, by (7.7), the four-momen-
lum G is obtained by differentiation of @ with respect to 67 and subsequently
putting 8% = Vi Since

o0 0; du . o
oo T s o - VI (7.45)
we get
oD (8ia 0y
Goi ~ a(= fp(0)040 — f,(u, O Vi) ]2 — 11]{( 01: + 0252>,
_ \ (7.46)
. af4t, @)
fq(p-a) = *Wal;{’“ J
Thus, since
[u] = 0 = 69, (7.47)
G, = — [agq = 17(/"’(90) + [2(80 (,)) Vie2 + ILIEKZ 4 nk 9: 7.48)
" o0 PR G ETE  ge 2 T oy @
which expresses G; as function of the thermodynamical variables (V;, a)
and A% = 1/T0, In the rest system where V,? = — ¢4, we get of course G0 = (),
and
HO = — G = n(f, (0% + [,(6°,2)) (7.49)

so that (7.48) may be written

HY 4 nkTO nkTo .
ri = P V{ T — (57;4, (/.;)0)
c? cy

in accordance with (6.40).
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By further differentiation of (7.46) with respect to 0%, we get from (7.11)
an expression for the square of the fluctuation of PY which obviously in-
creases linearly with n. Since also the mean values, i.e. G;, are linearly
dependent on n we have for the ratio

a{P{} — 12 =
<P?> = 0@ Y?) (7.51)
so that the fluctuations, generally speaking, become unimportant for ma-
croscopic bodies. As mentioned earlier this is a general feature for all ther-
modynamic quantities.

When we put Vi = 00 in @(0%, Vi a), we gel a function @(67,a) of 6
and (a) which, according to (7.44,42), is given by

D, a) = DO,V a)] = n(f,(0) + [,(6,a)). (7.52)

Thus, as a function of the thermodynamical state variables (6¢,a) the quan-
ity @ is a function of the norm § and (a) only:

D(8%,a) = [(0,a), | 1 (7.58)
[(0,a) = n(f,(6) + [,(0,a)). |

For the corresponding quantity @° in the rest system, defined by (4.10-13),
we get by (7.34,43)

P(6%, a) = ne%(6%a) = n(g), + ¢ = n(f,(6°) + f,(6°a))
or

DU0%, a) = f(6°a). (7.54)
Since § = 09 is an invariant, (7.53,54) show that

D0 a) = PU0,a) = DB, a), (7.55)

in accordance with (4.18).

As we have seen, the equation (7.7) allows us to caleulate the four-mo-
mentum ¢(; by differentiating the funetion @(6¢, V%, «) with respect to §¢ and
alterwards using the relation (7.8). However, if we use (7.8) first in @(6%, Vi, q),
by which we obtain the function @(0% a) given by (7.53), and subsequently
differentiate with respect to 9 we get a quanlity

dD(6, a)
7 A
pYT (7.56)

i



44 Nr. 16

which, in contrast to G;, is a 4-vector. In fact, [rom (7.53,45,8) we obtain

0f(6: Cl) O'L .y . .
Py = - 56 22_0 = H(fp(60> +fq(00,a))V7;/c3
or, by means of (7.49),
Ho
-y, (7.57)
2

P; would be the four-momentum if the system were a free system.
In conclusion we shall convince ourselves that the expression (7.12) for
the entropy is independent of Vi From (7.46,8,53) we get

oD
{Gi@;} = On(f (&) + [,(6,a) = 0f*(8,a) (7.58)
and, hence, for the entropy (7.12)
af (o,
S - ~f(0,a‘)+6~f;6a). (7.59)

We see that this expression is independent of Vi, i.e.
S =950

in accordance with the invariance property of the entropy. Further it follows
that S is unchanged, i.e.

ds = 0 (7.60)

under an adiabatic acceleration, where 6 and (a) are constant and only
the variables V? are changed. (7.60) is in accordance with the thermodynamic
relation (1.17) for the process in question.

The Niels Bohr Institute
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