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Synopsis

The paper presents a comprehensive approximation formula for classical scattering of fas t
ions by atoms . The formula has been applied in previous papers .

We discuss at first the simplifications and the errors resulting from the use of a Thomas -
Fermi type potential in scattering calculations . The accuracy of classical mechanics in suc h
scattering problems is treated briefly .

We study scattering by power law potentials for low angle deflections and derive a wid e
angle extrapolation in terms of a one-parameter formula . The formula is applied to Thomas -
Fermi potentials, where the reduced scattering cross section is found numerically as a functio n
of a single scattering parameter . The stopping cross section is obtained as a function of reduce d
energy . We, derive the magic formula, which leads Lo easy estimates of scattering in any potential ,
and compare scattering by several types of screened potentials . Comparison is also made wit h
more precise computations of scattering .
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§ 1 . Introduction

T he present paper is subtitled "Notes on Atomic Collisions, I " , and be-

longs to a group of four papers. Although the publication of the paper ha s

been delayed, some of its results were quoted and utilized in a summarizin g

article 11) and in the already published Notes II 12) and 111 13), as well as in

other associated papers14, 16, is, 17 ) . In point of fact, the essential parts o f
the paper were worked out in the years 1958-59 as a necessary basis for

our studies of slowing-down of heavy ions . At that time, little was know n

about details of the collisions in question, but during later years experimenta l

and theoretical results have improved the knowledge in this field . Never-

theless, we adhere to the original treatment . The reason for doing this i s

partly that we want to state the precise basis of the formulae used in late r

work, and partly that attempts at improvement of the general framewor k
would hardly be physically justified at present .

The main point in this paper, as in Notes IV (unpublished), is that col -

lisions between ions and atoms may be described approximately in term s

of similarity properties, where, at first, merely one parameter suffices to
embrace all scattering processes . In Notes II and III, these extremely simple

similarity properties are found to lead to significant simplifications in the

theory of particle radiation effects .

More definitely, the purpose of the paper is to find comprehensive ap-
proximation methods for treating elastic scattering of ions by atoms . The

scattering problem is comparatively simple since we disregard the inelasti c

effects, which are studied in Notes IV . In the following, we shall therefor e

mainly discuss approximation methods from a formal point of view, wit h
less emphasis on their physical justification or on their application to studie s

of ranges and radiation damage . It may be appropriate, however, to sketch

at first the background for the introduction of the present scattering method .

This is done in § 2, where we consider the various approximations involve d

in the use of a simple interaction potential in scattering calculations . The

magnitude of the potential is also discussed, and we consider briefly th e
1*
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justification for the use of classical mechanics in ion-atom scattering . After
this preamble, we study in § 3 scattering by power law potentials, and find
that low angle deflections may be extrapolated to wide angles in terms o f
a one-parameter formula, retaining a fair accuracy. This treatment is ap-
plied to Thomas-Fermi type potentials in § 4, where the reduced scatterin g
cross section is given as a function of a single scattering parameter . In § 5 we
derive the magic formula which leads to easy estimates of scattering in an y

potential, and we compare scattering by several types of screened potentials .
The present scaling formulae are compared with more precise scattering
calculations .

§ 2. General Consideration s

Ion-Atom Collisions at Low Velocities

Consider an ion, with charge number Z1 and velocity v, colliding with
an atom at rest with charge number Z2 . We disregard excitations and ejec-
tion of electrons from ion or atom during the collision . Although such in -

elastic effects are important in many respects, they may in first approxima-

tion be disregarded when we ask for the deflection in the centre of mass

system . The reason for this is, briefly, that electrons can take over littl e
momentum but often a considerable amount of energy, because of thei r
low mass .

We are interested in just the deflection of the ion and the recoil of th e
atom in the idealized elastic encounter, a so-called . nuclear collision . If the
ion comes close to the atom, the force is an unscreened Coulomb force an d
scattering is essentially given by the Rutherford formula . At larger distances
of separation, however, the Coulomb force is screened, and the scatterin g

is influenced by the field from atomic and ionic electrons .
When an ion penetrates a medium at a high velocity v, the scatterin g

of the ion by atoms is not large and is mainly of type of Rutherford scat -

tering. At decreasing velocity, however, the nuclear collisions at first lea d

to considerable multiple scattering and finally become important also in th e

stopping. The latter dominance occurs when the velocity v is quite lo w
compared to the orbital velocities of electrons which could be carried b y

the ion, i .e . according to Thomas-Fermi estimates 17 > ,

v < vl = Z 3v0 ,

where vo

	

c 2 /h . In fact, electronic and nuclear stopping arc of the same
order of magnitude «then 12 > v - 0.1 vi .
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This implies that the problems of deviations from Rutherford scattering

arise primarily when we have to do with an ion where the nuclear charg e

to a considerable extent is compensated by electrons carried by the ion .

The nuclear charge of the atom is apparently completely screened at larg e

distances by atomic electrons . However, the outermost electrons do not, fo r

swift particles, compensate at the static atomic screening radius, but a t

slightly larger distances, because the screening contains dynamic features .

We therefore envisage the interaction as a screened Coulomb field, wher e

the screening may depend moderately on velocity . With reservations for

velocity dependence, the ion-atom field is similar to the static interactio n

between two atoms of charge numbers Zl and Z2 .

Classical Scattering by Screened Potential s

Suppose that the force is known, and that the scattering is classical .

The angle of scattering in the centre of mass system might then be a function

of five variables, B = O(Z1 ,Z2 ,v,Mo,p), where Mo is the reduced mass and

p the impact parameter . We are normally concerned with a conservativ e

and central force, implying conservation of angular momentum. The clas-

sical equation of motion is the n

d 2 (R-1)

	

R2

+ R-1 +	 F(R) = 0,
dry2

	

Mov2p 2

where ry is the polar angle, Mo = 1Y11 1V12 /(Ml + 1112) the reduced mass, F(R)
the outward force, and R = R((p) the distance of separation . The initial con-

dition, corresponding to impact parameter p, is R 1 = 0 and d(R- 1 )/dry =

p-1 forry = O . When integrating eq . (2 .1), we find that R- 1 (T) increase s

with ry and has a maximum, whereupon it decreases and becomes zero a t

a certain angle, 9) 1 . The total deflection 0, in the centre of mass system, i s

then 0 = - ryl .

If the force depends on Zl, Z2 and distance R, the deflection 0 will be a

function of four variables, the velocity v and the mass Mo having combine d

to one variable, Mov 2 ,

0 = Ø (Zi, Z2, Mo v2 ,p) .

	

(2 .2)

The problem confronting us is whether this complicated dependence may b e

simplified. In the following chapters we attempt to show that, with good ap-
proximation, the number of independent variables reduces from four to one .
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The first two steps in the reduction are obtained through simplifying ap-

proximations in the interaction potential .
To this end, let us consider similarity properties of interaction potentials ;

an approximate estimate of the potential function is given below. The ion -

atom potential must be of type o f

--->

	

Z1 Z2e2

V(R) =	 R	 u,

	

(2 .3 )

where the function u must tend to unity when R -~ 0, and must vanish

when R - 00, because the Coulomb potential is screened at large distances .
A velocity-independent conservative potential corresponds t o

u = u(Zi, Z2 , R) .

	

(2 .4)

Thus, eq. (2 .4) would result from a static Hartree calculation of the groun d

state energy of two atoms as a function of distance of separation, R . For

the present purposes, however, formula (2 .4) would hardly do, becaus e

the two parameters Z1 and Z2 correspond to an embarassingly large numbe r

of cases, of order of 10 4 .
In a Thomas-Fermi treatment the static interaction between two atoms

is given by

Zl R
u

	

-,

	

,aZ2

where a is a characteristic screening length (cf. pp . 8-9) . Formula (2.5) has

one parameter less than eq. (2 .4), and is therefore much simpler . When
eq. (2 .5) is introduced in eq . (2 .1), the angle of deflection depends on thre e
variables only,

B = O(Zl/Z2i b/a, p/a),

	

(2 .6)

where b = 2Z1Z2 e 2 /(Mov 2) is the familiar collision diameter . The parameter

a/b in eq. (2.6) is used repeatedly in the following . We denote it as E, since

it is a reduced energy,

a

	

a

	

1
• - Nlov 2 .

b

	

Z1Z2e2 2

One final simplification of u may be made without introducing undu e

errors . Consider a simplified Thomas-Fermi potentia l

R
u = u (-

	

(2 .8)
a

u = (2.5 )

(2.7)



Nr.10

	

7

where the dependence of u on the ratio Z 1/Z2 in eq. (2 .5) is disregarded .

This simplification is actually a fairly good approximation, as discusse d

below (pp . 8-10) .

Eq. (2 .8) implies similarity of all ion-atom potentials . As a consequence ,

the angle of deflection obtained from eq . (2 .1) becomes a function of two

variables only

0=e E,
P

.

	

(2 .9 )

a

Since the differential cross section is da = d(7rp 2), it may, according to

eq. (2 .9), be written as

da = na2 • F E, sin
2

dS~,

	

(2 .10 )

\

where we have introduced the variable sin Ø/2 in place of Ø, and wher e

(ID is the differential solid angle . Numerical computations of cross section s

corresponding to eq . (2 .10) have been made by several authors . Thus,

EVERIIART et al . 4) calculated scattering by the exponentially screened po-

tential of Boxes, eq . (2 .11) .

The formula (2 .9) shows that classical scattering by screened potentials

(2.8) has comparatively simple similarity properties . Thus, suppose that i n

two different cases the reduced energies, e, are the same, as well as the

reduced impact parameters, p/a . We are then concerned with correspondin g

collisions : not only are the two deflections the same, but so are the orbit s

in space and time, when measured in reduced variables .

In applications of scattering formulae like (2 .9), we are usually con-

cerned with integral equations 12, 13 ), the integration being over the differen-

tial cross section da . It is then desirable to have still simpler properties ,

i .e . only one reduced variable instead of two in eq . (2 .10) . In the following ,

we attempt to show that this simplification may be made, retaining an ac -

curacy which is satisfactory for most purposes . In this connection it should

be remembered that already eq. (2.9) contains several consecutive approx-

imations . If, in specified cases, one wants to improve upon standard result s

obtained from the simplest possible similarity description, one should no t

always turn to eq. (2 .9), but may instead consider, e .g., the details of the

Hartree treatment and of the inelastic effects .
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Estimate of Ion-Atom Interaction

We shall now describe briefly the reasons for our use of an ion-atom
interaction containing only one screening length, a . This type of interactio n
is basic to the similarity approach in the present paper, cf . the precedin g

section and § 4 . The actual magnitude of a and its dependence on the atomi c
numbers Z1 and Z2 , however, is immaterial to the similarity treatment .

In his well-known survey paper2> , NIELS Bona discussed qualitativel y
many basic aspects of ion-atom collisions, and for this purpose he introduce d

an exponentially screened ion-atom interaction, i .e . eq. (2 .3) with

u = exp(-R/a B). (2.11 )

This potential has been widely used but, when R > a B , it decreases much
more rapidly than do actual ion-atom interactions . For the purpose of mor e

detailed estimates of deflections it was therefore necessary to look for a
better potential . Clearly, it is possible to find a more accurate interaction ,
but the question is whether one can retain the simplicity of Bohr's potential ,

where there is only one screening parameter and similarity of all ion-atom

interactions .

Before going further, we may again emphasize that the proper ion-ato m
interaction is a screened field containing inelastic parts and being dependen t
on the relative velocity. In point of fact, velocity dependence and inelasti c

terms are always directly connected and cannot occur independently of
each other. Moreover, we have already mentioned that we are concerne d

mainly with cases of low velocity, where the nuclear charge of the ion i s

approximately neutralized by electrons . For these reasons, it would see m

consistent to consider a velocity-independent, elastic interaction, and use as

a guidance the static interaction between two atoms .
When asking for a potential described by one screening length, we dis -

regard the shell structure belonging to a Hartree treatment, which again

emphasizes that the static interaction obtained is to be used only as a guidance .

With these preliminaries, we can readily find the approximate shape o f

the potential . A static Thomas-Fermi treatment is easily seen to lead to

potentials of type of (2 .5), i .e. u = u(Zi/Z2 ,R/a), where u is symmetric in

Z1 , Z2 , and where a, at fixed ratio Z 1 /Z2 , is proportional to Z1-]13 (or to

Z2-1" 3)' . If one of the atomic numbers is small compared to the other, e . g .

* The proof is as follows . Suppose that the Thomas-Fermi equations are solved for atomic
numbers Z1 , Z 2 , and distance of separation R . We ask whether another case, Z', = nZl , Z _
aZ 2 , can he solved by scaling all lengths by a factor ß, e .g . R ' = ßR . The local potential energy
of an electron is changed by a//3 . The local kinetic energy is changed by az/a ß-2, being propor-
tional to the density to the power two thirds . Scaling is obtained when the two energies chang e
by the same factor, i .e . for ß = of-O .
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Zl = 1, Z2 » 1, the potential must be approximately the Thomas-Fermi
potential of a single atom, so that in this extreme the screening function u
becomes

u = 92o(R/a),

	

(2 .12)

where To is the Fermi function 7) , and a = 0 .8853 • ao • Z2 1J3 , the number
0 .8853 being a familiar Thomas-Fermi convention (ao = h 2 / I ne 2 ) ,

In order to see whether a suitable choice of a can be introduced in eq .
(2 .12) so as to fit approximately all cases, one need only estimate the static
Thomas-Fermi interaction in the other extreme, i . e . Zi = Z2 . For thi s
purpose, we made a detailed derivation of the potential on the basis of th e
perturbation method described by GolIBAs 7 ) . We need not reproduce the
lengthy calculations here, which also would indicate an unwarranted im -
portance of these static calculations* . We further compared with numerica l
Thomas-Fermi-Dirac calculations by SEIELDON 21) for Zl = Z 2 = 7, which
did not deviate from the perturbation calculation by more than - 10 0 / 0 .

When trying to see whether these numerical results for Zr = Z2 may
be approximated by eq . (2 .12) with a suitable choice of a = a(Z1,Z2), we
considered Bohr's screening length as a starting-point . On the basis of
qualitative considerations, BOHR suggested that the reciprocal square of th e
total screening length was the sum of the reciprocal squares of the screening
lengths of the two atoms . It turns out that this choice reproduces fairly accurately
the above-mentioned numerical results, i .e ., eq . (2.12) may be applied for any
pair Li , Z2 , with

a = 0 .8853 ao (Z13 + 43 )- ile

	

(2 .13)

which quantity differs from Bohr's choice only by a constant factor clos e
to unity, a = 0 .8853 are . The formula (2 .13) in (2 .12) begins to deviate from
the numerical estimates (cf . footnote) when R/a becomes large ('., 5), but
this is the least important and most dubious part of the potential . The error
might be remedied by not using exactly the Fermi function To at large dis -
tances .

In the following we represent the ion-atom interaction by eq . (2 .12)
together with eq. (2 .13) . We shall use various simple approximations to u ,
besides the Fermi function To .

It is important to note that, for practical purposes, several other choice s
of a do not differ from eq . (2 .13) . Thus, suppose that we choose a screenin g

* The perturbation treatment, with Z l = Z„ leads in first approximation to the interestin g
formula u = rpl(R; [2 . 0 .8853 • no • ZZ i /3]) , i .e . the square of the Fermi function belonging to a
single atom, but taken at half the distance of separation.
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length a ' proportional to (4 ,2+4,2 )- 2 / 3 , instead of a in eq. (2 .13) . When

Z1/Z2 changes, the ratio a ' /a also changes, but this variation of a ' /a is by

less than +. 4 °/o, and usually considerably less . We therefore found no reason

to deviate from Bohr's choice of dependence on atomic numbers .

We later learned about the ingenious Thomas-Fermi estimates by FIR -
sov 6) , who derived both upper and lower limits for the potential . The

reader is referred to Firsov's papers for a more detailed understanding of

the static Thomas-Fermi estimates . With the qualifications mentioned above ,

Firsov's results are in accord with the present estimates .

In order to emphasize the uncertainties of potentials, we may quote on e
example . In Fig . 4 is shown the deflection by the Lenz-Jensen potential relative t o
that by the Thomas-Fermi potential, OLJIOTF, as a function of impact paramete r
p . When p exceeds 2a, the ratio OLJ/OTF begins to drop, and is - 0 .75 for p = 4a .
The Lenz-Jensen potential belongs to an isolated atom, or to Zl « Z2, where i t
is often a better approximation to actual potentials than is the Thomas-Ferm i
potential, for large values of Ria 7 ) . This indicates the magnitude of one type o f
uncertainty .

Validity of Classical Estimate s

The problem arises whether it is permissible to use classical mechanic s

in the present scattering phenomena. Usually, when posing a problem o f

this kind, we would have to specify completely the scattering measurement

in question, in order that a well-defined answer may be given . In the present
case, however, the phenomena are often classical to such a wide extent

that practically all relevant calculations may be performed on the basi s

of classical mechanics .

To be more specific, let us consider the question whether a given total

deflection, 10 < 1, may be associated with a certain impact parameter p and .

a classical path during the collision . For elastic collisions, this problem was

discussed in a general way on the basis of wave packets in ref. 19, appendi x

B, in analogy to the discussion by BorR 2 ). It was shown that if we at -
tempt to obtain a given impact parameter p and corresponding classical

deflection 0(p), the minimum uncertainties in these quantities becom e

A
(åP)2 =

	

and (60)2 = A . 10'(p) ! .

	

(2 .14 )
2 1 a (P)

If we demand that the relative uncertainty in deflection be small, (60) 2 < 0 2 ,

we find the following condition for a classical path
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~
d Ø1

	

< 1,

	

(2 .15)
d

P (P)

where i" = h/Moe is the wave length of the relative motion .
For a Coulomb potential, the deflection is Ø = b/p ; when introduced in

eq. (2.15), this leads to Bohr's condition

2Z 1Z2 e 2
x =

	

> 1,

	

(2 .16)
hv

and if e .g . v « Z113 e 2 /f. (cf. p. 4), the condition (2.16) is amply fulfilled .
For the Coulomb potential, the minimum uncertainty in impact paramete r
is åp/p

	

(2x)-1 1 2 , according to eq . (2 .14) .

In order to illustrate the general behaviour for screened Coulomb poten -
tials, let us consider the analytically simple standard potential (4.13), where
the deflection is Ø = (b/p) (1 +p 2 /C 2a2)-1 , C 2 --- 3, i .e . according to eq. (2 .15) ,

> 1 +
3	 P2
C 2 a

(2 .17 )

which inequality indicates that at sufficiently large p, or small Ø, the clas-
sical approximation becomes doubtful . In the usual case of large x, th e
inequality (2 .17) is violated only at very low values of 0 .

As a general result, we have found that at sufficiently high velocities, o r
sufficiently low angles of deflection, a quantal treatment is necessary . For
several reasons, however, classical estimates may remain more reliable
than indicated above . First, we often need not ask for classical trajectories ,
but want instead to estimate integrals of type of f (sin0/2) 2nda, n = 1, 2 . These
integrals are usually approximated well by a classical calculation whe n

> 1 . Second, even at high velocities where x < 1, classical integrals o f
the above type are not completely in error, because the major part of th e
scattering is of Rutherford type, which formula obtains both in classica l
and quantal calculations. Third, we are always concerned with repulsiv e
fields, where simple estimates are more reliable than for attractive fields .

These cursory remarks may indicate both that classical estimates ar e
valid to a wide extent and also how, in a specified case, the error of a clas-
sical calculation can be estimated. It should be noted that we have her e
discussed elastic collisions only .
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§ 3 . Power Law Potentials and Wide Angle Extrapolation

Perturbation Calculatio n

We ask for a classical scattering formula with the least possible numbe r

of independent variables, with the hope to retain a reasonable accuracy .
It is then tempting to consider first the familiar perturbation treatment, cor -

responding to forward scattering and to an approximately rectilinear path
with constant velocity . Let the path be parallel to the z-axis, and let th e

impact parameter he p . If KÇ (p,z) denotes the force perpendicular to th e

path, the deflection in the centre of mass system becomes the transvers e
momentum transfer divided by the total momentum, i .e .

6

	

NIou 2 ~ KL(p, z)dz

	

Mou2 dp
J V(Lp 2 + z 2p I2)dz,

	

(3 .1 )

-~

	

- ~

if e « 1 . The angle 8 is therefore obtained from the potential V by one

integration and one differentiation . Consider a screened Coulomb potentia l
(2 .3) of type of eq . (2 .8), where the potential is a function containing onl y
one parameter, R/a . We then find from formula (3 .1 )

=
p

Ø

	

g(3.2)

The formulae (3 .1) and (3 .2) may also be obtained from eq . (2 .1), if the

last term on the left in eq. (2.1) is considered as a perturbation . Note that

in the case of an unscreened Coulomb potential, one has u(R/a) = 1 and
therefore g = 1 .

As to the number of variables necessary in a perturbation treatment,

we find from eq . (3 .2), since a/b = e,

	

Jo\
e . =

	

g(-

	

(3 .4)p
a

* The reader may notice that the integrated potential on the right-hand side of eq . (3 .1 )
is of importance also in small angle quantal scattering"), and in directional effects for crystal

d,

lattices 1 '), where it is proportional to the continuum potential, U(r) = d-1
f V((r' ez')O)dz ,

the constant d being the distance between atoms along the particle path .

~12

	

{tzg(~) =
r
I cos q~dq~

0

where b = 2ZiZ2 e 2 /Mov 2 is the collision diameter, an d

LZ

,

(COS 99 / COS 9
(3.3)
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The number of independent variables is therefore reduced by one in th e
perturbation treatment, i .e . from two in eq . (2 .9) to one--p/a---in eq . (3 .4) ,
because the dependent scattering variable has become eO . This similarity
in dependence of scattering on energy for Ø « 1 we now wish to extend to
scattering by finite angles Ø .

It the scattering potential depends also on Z 1/Z2 , i .e . if eq. (2.5) holds, we fin d
that g = g(Z 1 /Z2i p/a), so that e . 0 in eq . (3.4) depends on two variables, whic h
again is one variable less than in the exact solution (2.6) belonging to the potentia l
(2 .5) .

Power Law Potentials

In order to sec whether scattering by finite angles may also permit a
reduction in the number of variables, we study at first in some detail th e
case of power law potentials, V(R) « R- s , or

R

	

k s /als 1

u

	

= • -
a

	

s \ R/

where la, is a constant . One of the advantages of power law potentials i s
that, for several integer values of s, there are simple exact scattering formulae ,
so that it becomes easy to estimate the accuracy of approximate solutions .

In limited intervals of R, screened Coulomb potentials like eq. (2 .3)
may be represented by power law potentials, i . e . s = - alogV/alogR . For
low values of R, the power s must approach the value 1 belonging to a n
unscreened Coulomb potential . In a considerable region of R-values, s i s
of order of 2 or 3 .

From eqs . (3 .5), (3 .2) and (3.3) we find for the deflectio n

Ø = ys •b . (1s-1 k-1s

	

, if •Ø« 1 ,
A

where

,[
(~'2

	

r111=1s +11

	

(1

	

1
Ys = J cos' 9~ dcP =

	

S 1 2\ 1= ~ B , s 2 I ,
0

	

2T~2 + 1

B(x,y) being the beta function3 ) . From the explicit formula for ys in terms
of gamma functions, one derives the useful relation ys . y s _ 1

	

n/(2s) . I t

(3.5 )

(3 .6)
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follows then that s • ys = (s - 1) . ys _ 2 . Table 1 gives values of y s in a number

of representative cases ; we are only interested in cases where s 1 . In § 5

we attempt to approximate ys by simple functions .

TABLE 1 . Values of y s = 2 B (~ , s21 ) .

s

	

I

	

1

	

`

	

1 .5

	

2

	

2 .5

	

3

	

I

	

4

	

I

	

5

I's

	

0 .874 ~

	

7E l4

	

0 .719

	

2/3

	

3:7116

	

8/15

	

~

	

I/7cJ2 s

Wide Angle Extrapolation

At small angles of deflection, it is not important to select carefully th e

variables which are to characterize the scattering . In the above, we chos e

as variables the angle 0 and the impact parameter p . In the case of finit e

angles of deflection, we may note, first, that the differential cross sectio n

da d(rp2 ) is preferable to the variable p . Second, we usually want t o
integrate functions of T times the probability of scattering, where T is the

energy transfer in the laboratory system 2 ), T = Tm •sin e 0/2 , T. being th e

maximum energy transfer in elastic collisions . In terms of T, the differentia l

cross section (2 .10) becomes, according to eq . (3 .6) ,

b 2

	

ils 1 dTldo = -

	

4
a2s - 2 I cs2 Ys

2
Tm

1

	

s T i + vs '

and we expect this formula to be more appropriate than eq . (3.6), at wid e

angles of deflection . It so happens that for Coulomb potentials the formul a

(3.8) is exactly the Rutherford law (cf . below), and it is therefore worth

while to consider the consequences of (3 .8) in some detail .

Even though eq . (3 .8) is derived from the perturbation formula (3 .6) ,

there is considerable difference between the two, at finite angles O . Firstly,

in eq. (3 .8) 0 is replaced by 2sin0/2, as described above . Secondly, eq .

(3 .8) is obtained from formula (3 .6) by differentiation of p2 , so that p2 in

eq. (3 .6) might contain an arbitrary additive constant, p2 p2 +A, and stil l

lead to eq. (3 .8). Therefore, eq. (3 .8) is equivalent to

0

	

2 sin 2 = ys • b • as-1ks . (p2 +p2 -sl2

	

(3 .9)

where po, so far, is an arbitrary constant . The obvious demand that T <_ Tm
in eq. (3 .8), or that sin0/2 5 1 in eq. (3 .9), leads to fixation of po . For

(3.8)
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repulsive potentials we have sin 0/2 = 1 for p = 0, so that, according to eq .
(3 .9), po (y s • b • 5 - lks

/2) 2/5 * . The introduction of po implies, qualitatively ,
that for a given impact parameter p we have introduced an effective closes t
distance of approach, - (p2 + 14) 1 '2 . We describe eq . (3.9), or eq . (3.8) with

0

	

T

	

Tm, as the wide angle extrapolation .

Accuracy of Wide Angle Extrapolatio n

It remains to study the accuracy of eq . (3 .9) . Let us consider s = 1 ,
i .e . an unscreened Coulomb potential . In this case, u = 1 in eq . (3 .5) and
therefore kJ = 1 . Since also y i = 1, we find that po = b/2'. Thus, eqs. (3 .8)
and (3.9) arc seen to contain the exact Rutherford formula .

Let us next compare eq . (3.8) with exact scattering in another potentia l
of considerable interest, i . e . a repulsive R-2-potential . A straightforward
comparison shows that in this case the differential cross section (3 .8) agree s
well with the exact classical scattering (cf. Bonn., ref. 2, eq. (1 .5 .5)), the
error increasing from 0 at T = 0, to -3°/0 at T = T., corresponding t o
backward scattering .

More generally, it turns out that-independently of the value of s-th e
relative error in eq . (3.8) is largest at T = Tm, and decreases towards zer o
when T tends to zero . Let us therefore consider the error belonging to back -
ward scattering as a function of s . When s increases from 1, the relativ e
error in eq . (3 .8) for backward scattering rises slowly from 0 tô

	

15 °/ 0
at s = 3/2, whereupon it decreases to 0 at s 2, and becomes - 20 °/ 0 a t
s - 5/2 . For higher s-values it becomes increasingly negative . As a result ,
we find that in the region 1 < s < 5/2 the formula (3 .8) is sufficiently ac -
curate for our purposes, even for large energy transfers T . For values of s
higher than ti 5/2, the accuracy is not good in the limit of extreme back -
ward scattering .

The power law potentials give only a first guidance, since we wish to
study screened Coulomb potentials, where the effective power s increase s
slowly from 1 at small values of R/a, to s - 2 when R/a - 1 and, finally ,
to s - 3-4 at large distances where R/a » 1 . At low energies, the collisions
become less penetrating, and the scattering by screened Coulomb potentials
is determined by regions with high values of s . Since the present metho d
underestimates the backward scattering in such regions, it might seem a s

* We have thus found that Ø is a function of only one variable = b • a s-l k 5/p s . This i s
also correct in an exact description of scattering by R-8-potentials . The exact formulae for the
dependence of Ø on fe deviate from the comprehensive formula (3 .9), but deviations are quite
small at low s-values, as shown in the text .
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if scattering integrals are seriously underestimated at low energies . For

several reasons, however, we expect that such errors are much reduced .

First, at any given energy the backward scattering concerns the closest col -

lisions, i .e . the lowest effective power s . Second, a reduced accuracy merely
in the region 0 does not impair most estimates of scattering integrals .
In this connection, it is also important that backward scattering events ca n

remain rare even during the whole process of slowing-down, and thus nee d

not contribute much to the dominating part of the probability distributio n

of, e .g., energy loss . Third, it should be remembered that inelastic effects ca n
be important just in the case of backward scattering, so that here we may no t
need the highest possible accuracy in the approximation of elastic collisions.

It seems therefore worth while to accept the procedure of extrapolatio n

to wide angles used in eqs . (3.8) and (3 .9), and apply it to actual potential s
with the hope that, by and large, errors are less than, say, 10 °/ o .

§ 4. Scattering Formula for Screened Coulomb Potentials

Before treating actual examples of screened potentials, we introduce a

terminology suitable for the similarity treatment belonging to the wide angl e

extrapolation . If we apply the wide angle extrapolation to eq . (3 .4), its left -

hand side becomes e • 2 sin 0/2 , so that in the differential cross section,

(2.10), the function e- 2F depends only on this variable . We therefore intro -

duce a parameter t given by

t = £2 • sin2 0/2,

	

e = a/b .

	

(4 .1 )

The parameter t is proportional to the energy transfer T times the particl e

energy E, t = 7' • E • (M2/Mi) • (2ZIZ2 e 2 /a)-2 .

We may now rewrite the differential cross section (2 .10) in the following

form

dt
AP/2) ,= - ~ca2

	

f\2t3/2

	

/2) ,

whereby we have defined a scaling function f(0/ 2) . We have introduced

the factor 1 3 /2 in the denominator for practical purposes : the case of powe r

law scattering with s = 2 then corresponds to f = const . In the inner part s

of the atom where s < 2, the function f therefore decreases for increasin g

t; in the outer parts of the atom, where s > 2, f increases with increasing t .

Now, t in itself is a measure of the depth of penetration into the atom,

large values of t corresponding to small distances of approach . We therefor e

(4.2)
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Fig. 1, Reduced differential cross section, calculated from Thomas-Fermi potential and eels .
(4 .3) and (4 .4) . Ordinate is f(1i / 2) = 2L 2I2 (da/dL)•(yra 2) -1 ; abscissa is f1 / 2 = sing/2 . For large
values of t i /2 , curve approaches Rutherford scattering, indicated by dashed curve . Horizontal

line represents f for R-2-potential.

	

-

expect that f increases for small values oft until it reaches a maximum, an d
decreases for large values of t .

In order to treat scattering by a screened Coulomb potential, we mus t

specify the wide angle extrapolation of the general perturbation formul a
(3 .4) . By means of the procedure leading to eq . (3 .9), we find directly

1

	

a

	

1
tlf 2

= e sin 0/2 =
2 (P 2 + p2)1/2

g a (P 2 + Po)lf
2

	

(4 .3)

where po = po(e, a) has become a redundant parameter, which need no t
be determined . If we know the screening function u, we can compute g

from eq. (3 .3) by one differentiation and one integration . Next, we solve eq .

(4 .3) with respect to p 2 +po, i .e . p 2 + po(a, a) = a 2 • G(t1f 2 ) . Having obtained

G(t l / 2), we derive f(tl / 2 ) in (4.2) by differentiatio n

f(ti/2 ) = - t • G ' ( t l /2) .

	

(4 .4 )

This calculation of the universal scattering function f is normally done
numerically .

Mat . Fy3. Medd. Dail .V id . Selrsk . 36, no . 10 .
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TABLE 2a.
Thomas-Fermi scattering

	

TABLE 2b .
function /(t 1/2 ), cf . text and

	

Thomas-Fermi s(s) and w(e), cf . text an d
Fig . 1 .

	

Figs . 2 and 3 .

il/2

	

I Ail/2 )

0 .002 0 .16 2
0 .004 0 .20 9
0 .01 0 .280
0 .02 0 .334
0 .04 0 .38 3
0 .10 0 .43 1
0 .15 0 .43 5
0 .20 0.42 8
0 .40 0 .38 5
1 0 .27 5
2 0.18 4
1 0 .10 7

10 0 .05 0
20 0 .02 5
40 0 .0125

e s(s) w(e)

0 .002 0 .120 0 .00009 7
0 .004 0 .154 0 .0002 5
0 .01 0 .211 0 .0008 5
0 .02 0.261 0 .0020 6
0 .04 . 0 .311 0 .00479
0 .10 0 .372 0 .013 8
0 .15 0 .393 0 .021 4
0 .20 0 .403 0 .028 7
0 .40 0 .405 0 .054 2
1 0 .356 0 .10 5
2 0 .291 0 .15 2
4 0 .214 0 .18 9

10 0 .128 0 .22 8
20 0 .0813 0 .24 5
40 0 .0493 0 .24 9

In our basic numerical computation of f, we have chosen the Thomas -

Fermi potential (u(s) = quo()) . It turns out that for very low values of t

the function f(t l /2 ) behaves asymptotically as - 1 .43•(( 1 / 2 ) 0 .35 . The result s

are shown in Table 2a and Fig . 1, the latter representing f(t1 / 2 ) as a functio n

of t1/2 . In the figure is also shown the asymptotic Rutherford scattering ,

f = 1/(21'/ 2), as well as a horizontal line corresponding to power law scat -

tering with s = 2, and k 2 = 2/(0 .8853e), i .e. the value of k2 chosen by

Boma 2 ) .
It is apparent that the treatment is inaccurate at low values of s, e .g .

s < 10-2 . In particular, at such, low values of e the case of low atomic num -

bers Zl and Z2 corresponds to particularly low energies, where deviation s

from Thomas-Fermi estimates may be considerable .

Stopping Cross Sections and Fluctuations12 )

Having obtained the scattering cross section in terms of f(t 1 /2 ), we may

next calculate the stopping cross section S for nuclear collisions given b y

S = J Tdo = Tm • I sine
2

do-,

	

(4 .5)
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10 -3 10 -2 10-1 1 E
Fig. 2 . Reduced nuclear stopping cross section s, (4 .7), as function of s . Curve obtained by in-
tegration (4 .8) of Thomas-Fermi curve in Fig . 1. . Horizontal line represents s for R- 2 -potential .

where T is the energy transfer to an atom at rest, and T„, = E • 4111M2

(D21 + M2)- 2 is the maximum value of T . The stopping cross section S may

be associated with the specific energy loss, S(E) = (dE/dR)•N-1, where

N is the number of atoms per unit volume and dR the differential path

length, R being the range measured along the path . It is seen that if w e

define a reduced range, e, by

NT1
= RNMz • 4sza 2

(MI H- M2)2
9 ,
~

we may introduce a reduced stopping cross section s(s) by means of the

equation

dE s R
s(s) =

dR
• E •

	

(4 .7 )
e

We consider only nuclear stopping in (4 .7), and find from (4 .2) and (4 .5)

s(e)

	

s
ff(~) d

	

(4 .8)

o

(4 .6)

2*
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Fig. 3 . Reduced square fluctuation in energy loss ao(E), obtained from eq . (4.9) and Thomas-

Fermi f(fil a ) .

In Fig. 2 and Table 21) is shown the reduced stopping cross sectio n

(4.8) as a function of x, computed from the Thomas-Fermi estimate of f
given in Fig. 1 and Table 2a ; for r Z 10 one finds approximatel y
s = (20-1 log (1 .2940 . The corresponding square fluctuation in reduce d
energy loss,

e

Iv(x)

	

É-2- f .2f(OdC ,

o
is shown in Fig. 3 and Tabte 2b .

It may be noted that a stopping cross section depending on the variabl e

x obtains not only from the one-parameter cross section (4 .2), but also from
the two-parameter cross section (2 .10). If so desired, we would in fact-
by differentiation of e •s(e) in eq . (4 .8)-be able to find a function f(t l l z )
in eq. (4.2) which gives exactly the same stopping cross section as a two -

parameter scattering formula, (2 .10) .
It should be appreciated that in many cases one is not concerned with th e

total nuclear stopping cross section (4 .8) . Since the probability of the closes t

collisions is glow, these collisions may correspond to a tail in the energy los s

(4 .9)
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distribution . If one then observes the most probable energy loss, this quantit y
may be obtained from the integration in eq . (4 .8) with an upper limi t
smaller than s . The simplicity of the present description in such cases wa s
utilized by FAsTRUP et al . 5) .

Power Law Scatterin g

In the case of power law potentials, eq . (3 .5), the formula (3 .8) leads to

1 1

f(t l / 2 ) = AS . t2 s

	

(4 .10 )

where the constant 2b = (2/s)(ksy s /2)2Js depends on y s given by eq . (3 .7) .
In particular, A l = k2112 , so that f = t-1/2 /2 for Rutherford scattering, an d
for s = 2 we find f = 2 2 , where 22 = k 2 :rf8 . It turns out that 0 .3 ,.̀, AS

	

1 .5 ,
and 1

	

s 3, in the important regions of screened Coulomb interactions' .
Whereas the power law scattering (3 .8) was derived as an approximat e

description of scattering by power law potentials, we may turn the table s
and consider the power law scattering as a basic approximation without
bothering about the question of an associated potential . Power law scat-
tering has proved useful in analytic treatments of integral equations 12, 13, 22 )

The only restriction we put on the power law scattering is that s > 1, so tha t
it is never more strongly peaked in the forward direction than correspondin g
to Rutherford scattering. Thus, according to eq . (4.10) or (3 .8), the differen-
tial cross section dafdT is proportional to T to a power between T_1 and T-2 .

The present scattering by screened Coulomb fields must therefore alway s

remain quite different from isotropic scattering, where do-MT is constant .

For power law scattering the reduced stopping cross section (4 .8) be -
comes

22,

	

1 S
Ss(e) =	 • e

	

.

2

	 (	
1 )

s

Again, the case of power law scattering for s = 2 is particularly simple ,
since s 2(s) = R2 = coast .

Comparison of Deflections by Various Potential s

A comparison between deflections by various screened potentials i s
shown in Fig . 4. The deflections are measured relative to the correspondin g

* For small t, the asymptotic behaviour of the Thomas-Fermi scattering function in 'fabl e
2a corresponds to s

	

3 .1 and .

	

1 .43, whereas the standard potential, (4 .13), leads to s > 3 ,
7. > 0 .87 .

(4 .11)
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Fig . 4 . Comparison between deflections by various screened potentials . At a given energy e ,
ordinate 0/0rp represents deflection measured relative to deflection for Thomas-Fermi potential .
Abscissa is reduced impact parameter p/a . The curves shown are Lenz-Jensen potential : Q , Boh r

potential : X , standard potential, C 2 - 3 : +, and C 2 = 1 .8 : 0 .

deflection in a Thomas-Fermi potential at the sane energy E, so that th e

ordinate is the ratio OIOTF . The abscissa is the reduced impact parameter ,

p/a . The comparison in Fig. 4 therefore belongs to the perturbation case ,

where deflections are small . The curves were calculated from the magi c

formula, cf. § 5. It may be added that the curves in Fig . 4 are actually
applicable at all angles of deflection, if the ordinate is interpreted as (t/tTF) l / 2
and the abscissa as (p 2 + pô) i72 /a .

The curve with open circles represents the Lenz-Jensen potential . It

follows the Thomas-Fermi potential rather well until p/a - 2, and then

drops considerably below it . Although the Lenz-Jensen potential belong s

to single atoms, the curve indicates that the Thomas-Fermi potential ma y

overestimate scattering at large impact parameters . The curve for the Bohr

potential (x) is slightly too high when p/a < 1, but is much too low when

p/a > 2 .
The figure also indicates the relative deflection by the `standard potential' .

For several purposes it has been useful to approximate the screened ion-
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atom interaction by a simple function, which we have called standard po-

tentiales, 19)

R
u(R/a) = 1 - (R2 -I- C 2 a 2 )1/2

(4 .13)

The standard potential contains one adjustable parameter, C . A fairly good

over-all fit is obtained for the usual choice, C 2 = 3 . The standard potentia l

is much simpler analytically than the Bohr potential and also a better ap -

proximation to the Thomas-Fermi potential .

In Fig . 4, the curve for the standard potential with C 2 = 3 (+) is too

high when p/a - 1, but at high values of p/a it has the merit of being be-

tween Thomas-Fermi and Lenz-Jensen . For comparison is also shown a

curve for the standard potential with C 2 = 1 .8 (full circles) . It follows the

Bohr potential rather closely when p/a < 2, but for higher values of p/a

it is less in error than is the Bohr potential .

Wide Angle Extrapolation for Attractive Potential s

In the perturbation case, eq . (3 .1), the magnitude [01 of the deflection is inde -
pendent of the sign of the potential. This holds no longer at finite angles	 excep t
for unscreened Coulomb potentials-and the wide angle approximation (3 .9) and
(4 .3) is applicable only for repulsive potentials . It may be worth while to indicat e
that a similar wide angle approximation may be introduced for attractive potentials ,
but it does not possess the accuracy belonging to repulsive potentials . Consider the
extrapolation of eq . (3 .6) for attractive potentials, and demand again that Ruther-
ford scattering is obtained exactly . We are then led to the substitution 0 -~ 2tg0/2 ,
i .e . instead of eq . (3.9) we get 2tg0/2 = ys . b . a s- lks'p- 5 . For general screened
potentials we therefore introduce, instead of t in eq . (4.1), the parameter 1* =s2
tg 2 0/2, with e = a/b . The differential cross section is determined by eq. (4.2), where
t is replaced by t*, the function f being given e .g . in Fig . 1 . This simple approxima -
tion may sometimes be useful (for large e), but as a general rule it is not particularl y
accurate .

Approximations by Other Author s

During later years, several authors have discussed approximation methods in
elastic scattering by screened repulsive Coulomb fields (cf . e .g . refs . 1, 6, 8, 9, 10, 23) .
HEINßmCH B) has suggested an interesting interpolation between forward and back -
ward scattering which has some resemblance to our treatment . His results may be
more accurate than ours, but do not contain the similarity property which is th e
main simplification in the present work . Both BEIBrRIED et al . 9 ) and Si1I'rH et al . 23 )
have studied a series expansion valid at small angles only and an expansion vali d
only for 0 in the neighbourhood of e . BIERsnex 1) has made scattering, calculations
where he comments on some of the present results .
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§ 5 . Magic Formula for Scattering

The above method of calculating f (t l/2 ) for screened potentials by mean s

of the perturbation formula (3 .1) was used in our original computations o f

stopping powers and cross sections . We have therefore reproduced that cal-
culation in § 4. Shortly after having applied the formulae, we did, however ,
derive a much simpler method . We called it the magic formula, because its

structure and accuracy was rather surprising . In the present chapter we
introduce the magic formula and use it for a number of comparative studies .

We shall find that it gives quite closely the same results as found in § 3

and § 4 .

Power Potentials

As a starting-point, we consider again the perturbation formula for scat -

tering by power law potentials, i .e . eq. (3.6). We note that, since the deflec-
tion is O = ysbksp sas-1 it is proportional to the potential Vs(R) itself (cf .
eqs. (2 .3) and (3 .5)), taken at the distance R = p, and multiplied by s • ys .

Now, a multiplication by s is equivalent to a logarithmic differentiation ,
- Rd/dR, of the power law potential . Therefore, if ys may be approximated
by a simple function of s, we should be able to obtain the right-hand side

of eq. (3.6) by differentiation of the potential at the point R = p, or b y

integration. When looking for a simple approximation to ys , we can hardly

avoid introducing a square root, because of the asymptotic behaviour give n

in Table 1, i .e . ys - (7r/2s) 112 for s -> oc . We must also demand that the ap-

proximation is accurate for s = 1, where ys = 1 . Let us compare two fairl y

accurate approximations of this type, denoted as y ', and ys ,

1 /3s- 1
ys sl

	

2
and.

l /	 ~

Ys

	

2s+1 *

Both of the functions represent rather well the asymptotic behaviour of y s

for s - oc . When s = 1, we find yi = 1, which is the correct value, whereas

Yi = 1 .023, i . e . slightly too large . It is of course an advantage that Rutherford

scattering (s = 1) is obtained exactly . The behaviour of the ratios ys/ys and

(5 .2)
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f (t in)

1 t~/2

Fig . 5 . Check of error in magic formula applied to Thomas-Fermi potential . Curve with open
circles reproduces f(1 1/ 2 ) as a function of t 1/2 from Fig . 1 . Curve with full circles is calculated fro m

magic formula, eqs . (5 .4) and (5 .5) .

ys /Ys is stated in Table 3 . It is apparent that ys gives a superior fit-withi n

1 °/p	 in the important interval 1 < s < 4, and ys coincides with y s not

merely for s = 1, but also for s = 3 .

TABLE 3 .

Accuracy of ys, (5 .1), and ys , (5 .2) .

s

	

I

	

1

	

I 1 .5

	

2 2.5 3

	

4

	

I

	

5

	

I 6

	

I

	

~

Ysiy s I

	

1 .000 1 .009 1 .007 1 .002 1 .000 0 .995 0 .992 0 .990 0 .97 7

Ys (Ys 1 .023 1 .016 1 .009 1 .007 1 .004 1 .003 1 .002 1 .002 1

The decisive feature, however, is the way in which s enters in the tw o

functions . The significant quantity is s • y s , as shown above, and y 's has the

property that (sys) 2 = (3s -1)/2, which corresponds simply to one differen-
tiation . The quantity (sys' ) 2 = rrs 2 /(2s + 1), on the contrary, is of a typ e
requiring one integration and two differentiations, and is therefore quit e
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complicated. Although we might have made the numerical values of ys a s
accurate as those of ys by introducing a constant factor, this would no t
improve upon the innate complication belonging to ys' .

Magic Formula in Perturbation Limit

On the basis of ys in eq. (5 .1), we are then led to a tentative perturbation
formula for scattering, as deduced from power law potentials ,

0 z

4 = - 4(Mov2)2Pi/3
p

fV2(P)P2'~ 31

	

(5 .3)

We have seen that, in so far as ys may be considered equal to y s , the formula
(5 .3) is equivalent to the perturbation formula (3 .6) for power potentials .
In particular, for s = 1 and s = 3 the two formulae coincide ; the error in
0 is less than 1 °/o when s < 6, and less than - 2 0 / 0 when s is large .
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Fig . 6 . Comparison of reduced differential cross sections for three screened Coulomb potentials .
Ordinate is f(fl/ 2 ) = 21 3/2 (da!dt)(ma2 )- 1 , abscissa is reduced deflection 11/2 = s sinO/+2 . Full -
drawn curve corresponds to Thomas Fermi potential, curve with open circles to Lenz-Jense n

potential, and curve with full circles to Bohr potential, (2 .11) .
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Fig. 7 . Comparison of reduced stopping cross section, s(e), for three screened Coulomb potentials ,
calculated from curves in Fig . 6 . Full-drawn curve corresponds Lo Thomas-Fermi potential, ope n

circles to Lenz-Jensen potential, and full circles to Bohr potential .

We shall show presently that-in the general case of screened Coulom b
potentials-the formula (5 .3) rather faithfully reproduces the original per-

turbation formula (3 .1) . The advantage of eq . (5 .3) is that only one differen-
tiation is necessary, whereas eq . (3 .1) demands one differentiation and one
integration. The magic formula (5 .3) is therefore primarily an alternative
way of calculating scattering by small angles, the advantage being grea t
simplicity in both analytical and numerical treatments .

Magic Formula Applied to Wide Angle s

We can immediately generalize the perturbation formula (5 .3) by in-
troducing the wide angle extrapolation (3 .9). We replace 0 2 /4 in eq. (5 .3)
by sin2 0/2, and the impact parameter p by (p2 +W I ', where p o = po(E) .

We confine the treatment to the basic case of a screened Coulomb potentia l
given by eq. (2 .8), i . e . V(R) = ZIZ2 e2 u(R/a)/R . By changing to reduced
variables, we then arrive at a formulation of eq . (5 .3) which includes wid e
angles,
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Fig . 8 . Comparison between exact calculations (EVERHART et al .')) and present formulae fo r
Bohr potential, in a f(P/ 2) vs . 1 l / 2-plot . Full-drawn curve is calculated from magic formula. Th e
six separate curves are Everhart's calculations, for e = 0 .089 (0), s = 0 .177 (0), e = 0 .443

(x), s = 0 .89 (A), e = 1 .77 (-I--), and s = 4 .43 (p) .

t = E 2 sln2 B=

	

3e1/3 d { 11 2(e)e- 4/3) ,
2

	

16

	

(5 .4 )

which connects t with the variable = (p 2 /a2 +po/a 2 )" 2 by means of a

differentiation . According to the definition of f(t1 /2 ), eq. (4 .2), we find thi s

function from eq . (5 .4) by one further differentiation ,

20/ 2
f( tll2) = - (5 .5)

dt/dW) .

The formulae (5 .4) and (5 .5) represent the magic formula in the case o f
wide angle extrapolation for repulsive potentials .

Fig. 5 gives a comparison between the direct calculation of f(t l/2) for the

Thomas-Fermi potential, as given in Fig . 1, and a calculation by means of

the magic formula . The deviations in the cross section are seen to be less
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Fig . 9 . Reduced stopping cross section s(e) for Bohr potential . Comparison between exact cal -

culations (dashed curve), and magic formula (full-drawn curve) .

than - 3 0/ 0 , which is a completely satisfactory agreement in the presen t

connection .

Because of the simplicity of the magic formula and its equivalence to th e

direct calculations, we use it for a number of comparisons . Thus, in Fig . 6
we compare f(t1 " 2 )-curves for the Thomas-Fermi, the Lenz-Jensen, and th e

Bohr potentials . The Bohr potential leads to too low cross sections at low t

(i . e . low s or low 0), and to slightly too high cross sections at t

	

1 .

Fig . 7 gives a comparison of the reduced stopping cross section, (4 .8) ,
in the three cases represented in Fig . 6 . The curves exhibit a similar behav-

iour as in Fig. 6, with too low stopping cross sections for the Bohr potential

at low s .

Numerical calculations of scattering by simple screened potentials, lik e

the Bohr potential and the Thomas-Fermi potential, have been performe d

by EVERHART et al . 4 ), ROBINSON"), and others . The calculations lead to the

differential cross section (2 .10), depending on two parameters, s and sin0/2 .

In Fig . 8 we compare Everhart's calculations of scattering in the Bohr
potential with our one-parameter curve . Everhart's curves are shown for
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six values of s ; each curve ends at t 1 / 2 = s, corresponding to backward
scattering for the s-value in question . As expected, the deviations from our
curve is-in general-largest at backward scattering .

In Fig. 9 is shown the stopping cross section for the Bohr potential, a s
calculated in the present treatment and from Everhart's cross sections . We
may emphasize again that, if it were desirable, one could, e .g., modify
the present f(t1/2) so as to give the stopping curve of Everhart's calculation s
(cf. p. 20) .

In conclusion, we wish to express our gratitude to many colleagues an d
friends for their kind interest in the present work . We are particularl y
grateful to SUSANN TOLDI for patient assistance in the preparation of the
paper .

Institute' of Physics
University of Aarhus .
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