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and their influence on various electromagnetic transitions are discussed .
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1 . Introduction

F
or a long time it has been difficult to understand the position of lo w

lying even parity states in closed-shell nuclei . Several years ago a clue to

the solution was suggested by BOHR and MOTTELSON in connection with the

"mysterious zero plus states" . The suggestion (pointing out the special im -
portance of seeing the low lying states from the stand-point of deforme d
excited states (i )) has been confirmed by recent experiments (2) which show

that many of the low lying excited states in O H and Ca40 can be fitted into

rotational bands . Along this line, several investigations (3, 4) have been made ,
in particular in the interesting work of G . F. BROWN (5, 6) , how to interpret
the rotational band structure and in connection with it the low excitatio n

energy of the even parity states .

As a first step, Brown considers in his model unperturbed excited state s

with a definite number of particles and holes . These states may be ob-

tained (3) from a Hartree-Fock approximation* . They turn out to be deformed
in a body-fixed system and thus account for the occurrence of rotationa l

bands. The deformation then is regarded as the main reason for the low

excitation energy of the first excited O +state in O H . However, excitation s
consisting of pure 2particle-2hole (2p-2h) or 4particle-4hole (4p-4h) con -

figurations would not be able to account for the observed strong electro-

magnetic transitions between the rotational band and the ground state .
Therefore, Brown (5, S) introduces, in a second step, a considerable mixin g

between a few specific unperturbed excited states and the spherical shell -

model ground state. Of course, this procedure will in general destroy the

rotational band structure obtained in the first step . The problem then is to
find a reasonable mixing of unperturbed states, which explains both th e

electromagnetic transitions and at the same time preserves the rotational

band structure . Because of this restriction, and in spite of the striking succes s

of the model, it appears to us that the account for ground-state correlation s
is somewhat artificial and insufficient, and a refined treatment is desirable .

* Actually, in Brown's model the core deformation is taken into account phenomenologicall y
as an important correction .
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Such a refinement should be based on ground-state correlations whic h

are known to be particularly important for collective phenomena in nuclei .

We may expect that the correct ground state has a collective predispositio n
for collective excitations . In other words, the collective correlation which i s

responsible for collective excited states will also be present in the groun d

state as a ground-state correlation . In the phenomenological theory, th e
collective predisposition clearly manifests itself in the zero-point motion .

Correspondingly, the success of the new Tamm-Dancoff method (NTD) or

random-phase approximation (RPA) in describing collective phenomena i s

essentially due to the symmetrical treatment of correlations for both the

excited states and the ground state . In this way the collective predispositio n

is properly incorporated in the theory . This is certainly an improvement

over the Tamm-Dancoff method (TD) which asymmetrically attributes all

the collectiveness exclusively to the excited states . For instance, if we just
consider configurations with a definite number of particles and holes an d

treat them in the TD (7) or (in order to obtain a more clear-cut notion o f

"intrinsic deformation") in the Hartree-Fock approximation (3) , the resulting

collectiveness which produces the deformation is entirely ascribed to th e

excited states . But we have seen above that the collectiveness should be in-

corporated in the ground stale as a collective predisposition to produce deforme d

excited states . This collective point of view has been especially stressed by

BoHR and MOTTELSON*, and is the essential stand-point of the present theory .

Once the corresponding ground-state correlations have been taken int o

account properly, the excited states will become much more "collective" ,

and both the deformations and the level positions of the excited states wil l
be quite different from those obtained by the TD or Hartree-Fock method .

The importance of such changes for explaining the actual deformations an d

actual level positions has long been recognized (8) ; the effect is often referre d

to as the " deformation of the core by the excited particle" . This cooperation
effect of the core is usually discussed in the single-particle picture, where i t

is reflected in the change of the energy difference between the highest occu-

pied and the lowest unoccupied Nilsson level as a function of the deforma-

tion (5, 6) . Quantitatively this effect can be seen in the Volkov (9) type calcula -

tions. In O16, for example, the energy necessary to excite a particle pai r

has a minimum for large prolate deformations . From our collective point

of view, this precisely corresponds to the collective predisposition of th e

spherical ground state to produce deformed excited states .

* Sec, for instance, the discussion in Congrès International de Physique Nucléaire, Vol . I
(Paris, 1964) 129 .
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The main purpose of this paper is to propose a theory which takes int o
account such a collective predisposition in the spherical ground state an d
to treat the cooperation effect of the core for deformations in the excited
states in a self-consistent way. Of course, one might try to solve the proble m
by diagonalizing the Hamiltonian in a space which includes enough con -
figurations to describe core deformation effects . However, the straight-
forward approach has two essential defects : (a) the rank of the matrix t o
be diagonalized is too large to get solutions without serious approximations ;
(b) even if we have the exact solution we do not gain any physical insight
into the nature of excitation . In order to reach a better understanding we
are forced to extract the basic physical elements from our problem. To
this end it is useful to invoke the well-known notions of the field-producin g
force and the residual interaction as a guide. The field-producing forc e
generates a (deformed) self-consistent field and is well accounted for in a
Hartree-Fock approximation . By definition, the residual interaction cannot
be incorporated in a self-consistent field . It is responsible for the pairing
correlations in the superconducting state and for two-particle (or two-hole )
scattering correlations in the normal (non-superconducting) state . Usually
the residual interaction is considered to be unimportant for closed-shell nucle i
because of the large energy spacing between occupied and unoccupied levels .
However, we have discussed above that for large prolate deformations (du e
to the field-producing force) the occupied and unoccupied levels come quit e
close to each other . This means that even if the residual interaction is small,
the interplay between the residual interaction and the field-producing forc e
will be of decisive importance . (This is also reflected in Brown's model where
the residual interaction gives rise to mixing effects) . We may reformulat e
the statement in another way : If, for simplicity, we adopt the "pairing plu s
quadrupole force model", then the difference in parity between major shell s
prevents the quadrupole force from exciting particles from an occupied shel l
to the nearest unoccupied shell even if the force is strong . In fact, particle s
can only be excited by the pairing force even if its strength is weak . Once
particles are excited, however, the quadrupole force will act strongly amon g
the excited configurations and efficiently lead to deformations .

Both this picture and the aim of investigating the important interpla y
between field-producing forces and the residual interaction suggest the fol -
lowing two-step procedure : In a first step we diagonalize the residual inter -
action including ground-state correlations, and in a second step we diagonal-
ize the field-producing forces. This gives rise to a new type of ground-stat e
correlations which will be shown to exhibit the collective predisposition of
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the spherical ground state for deformed excited states . The outline of this
two-step method is presented in section 2 and the details of both steps
in sections 3 and 4, respectively . In section 5, we extract the basic element ,

which produces deformations in the excited states, from the general solu-
tion of sect . 4 . We show, in a succession of generalizations of the costumar y
Hartree-Fock approximation (3) (which leads to deformed excited states) ,
how we can get a self-consistent method which contains the core deforma-

tion effect explicity and is an approximation for the method given in section 4 .
In section 6, the theory is applied to electromagnetic transitions in which th e
interplay between the field-producing force and the residual interactio n

plays a decisive role . In section 7, finally, we indicate the application o f

our theory to other problems and summarize our results .

2 . Outline of the Theory

It is the purpose of the present section to give a first understanding of an d
additional motivation for our theory . For clarity, we will not use here a
decomposition of the interaction into a field-producing force and a residua l

interaction, as discussed in the introduction, but rather use a closely related

subdivision which characterizes various parts of the Hamiltonian by Feyn-
man diagrams. The original point of view will be taken up in section 5 .

2.1 . Notation and Hamiltonian

Let us consider a closed-shell nucleus and assume its ground state to b e

spherical and normal (i .e ., non-superconducting) . Adopting the j -j coupling

shell model for the zero-order states, we can define the particle- and hol e
creation and annihilation operators a s

c« _ (1 - Oa)ca + O gee = aå + ba

cc, _ (1 - 0«)ca + O aca = as + bå

where denotes the complete set of quantum numbers a {n,1, j, m, r} ,
and a = {n, 1, j} denotes the same set except for the projection quantu m
numbers .

Furthermore,

1 for levels occupied in the free ground state

0 for levels unoccupied in the free ground state
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where the free (unperturbed) ground state 100 > is defined by aal = ba t
0o> = 0. For a basis of stationary states it is possible to build the entire
treatment on real quantities if the phase convention is suitably chosen .
In the following, we always assume this to be the case . The Hamiltonian can
be written as

H = Ho + Hin t

Ho =

	

- 2) : cå c a : _ ~ Ea : ca Ca :
a

	

a

= ~~a(aåas - bå ba)
a

Hint =

	

vaßya : ca cß cåcy :
aß2'å

where the symbol : : denotes the normal product with respect to particle s
and holes, and 2 is the chemical potential . The potential matrix element
has the symmetry propertie s

Uaßyd

	

- vßayS = - UaßBy ° vy8aß .

2.2 The Matrix Elements of the Interaction

In order to discuss the various parts of the interaction Hint we divide
the Hamiltonian (2 .3) in the following way :

where
H = Ho+H2 , 2,+Hhh +Hph +HV -I- Hy , (2.5 )

H2,2,

	

vaßyåaa aß aàay
aß2' å

Hfah
=apy

aVaßyåbå bß båby

Hph = 4

	

vaßyoaa bs ay bß
aßys

Hv =

	

vaßyb(aå aß b- by + aaaßbaby)
a ß2' å

(2.6)

H7 = 2 vaßyå(c aß+bg ay + aå bßaga y
aß2'å

+ aå b~ bÿ bß + bg babßay) .

Each matrix element is represented by one of the diagrams in fig . 1 . The
first three parts, Hpp , Hhh and Hhp , conserve the number of particles and
holes and therefore are the only ones considered in the Tamm-Dancof f

(2 .4 )



H„

xxx
Pp

	

Hhh

	

Hph

H y
Fig . 1 . Graphic representation of the matrix elements of tile interaction . Lines with arrow s
pointing upwards indicate particles, lines with arrows pointing downwards indicate holes . Each

diagram includes both the "direct" term and the "exchange" term .

calculation or the Hartree-Fock approximation (3) for a fixed number o f

particles and holes. The part, Hy, introduces ground-state correlations
and is discussed in the following subsection . Finally, the part Hy will be
neglected in our treatment . This is equivalent to the assumption that only

the excitations with an even number of particles and even number of holes are
important for a description of low lying even parity states in closed-shell nuclei .

The assumption may be justified by the following arguments . (a) Among

the 2 hco excitations the 2p-2h configurations offer by far more couplin g

possibilities than the lp-1h configurations . Since a strong collectiveness is

necessary to produce the deformed excited states, the space of all 2p-2 h
configurations will be of main importance . (b) Calculations (7, 10> for 016 ,

using the Tamm-Dancoff approximation for lp-1h and 2p-2h configurations ,

have failed to explain the electromagnetic transitions between the lowes t
excited states of even parity and the ground state . The calculated transitio n

probabilities are by orders of magnitude too small . This means that th e

effect of 1p-lh configurations would be of less importance compared with

the effect of ground-state correlations for the low lying even parity state s
in 016 .
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2 .3 A Two-Step Metho d

As has been indicated in the introduction, it is our aim to take the ground -

state correlations properly into account and to investigate the importan t

interplay between the field-producing force and the residual interaction .

This has to be done in two distinct steps . G. E. Brown, in his model (5, 6) ,

first treats the effects of the field-producing force on the excited states and

afterwards incorporates, to some extent, effects of the residual interaction in

the mixing of the deformed states . Such a procedure deals with the effects

in the order of their importance ; however, it encounters two intrinsic dif-
ficulties . (a) The unperturbed states obtained in the first step by a Hartree-
Fock method will belong to different deformations . Thus (unless one use s

the SU3 model instead of the Hartree-Fock procedure), the unperturbe d

(deformed) states will not form an orthogonal set which, however, is re-

quired in order to treat the collective ground-state correlations properly .

(b) Even if the problem of orthogonality did not arise, the incorporation
of the residual interaction would destroy the rotational band structur e

obtained previously. To avoid such difficulties, we start from the excitatio n

mechanism and treat the effects of the residual interaction in the first step .

For a normal ground state in closed-shell nuclei, these effects will lead. to
2-particle (or 2-hole) scattering correlations described by the followin g

linearized relations :

[H, aå aß ]
= Yå

(111aßyr54ag + ll7åßysbaby) (2 .7a)

[H, bå bß ] = ~ (MaßySbÿ bS + iVlåß yS a bay) ,
yS

(2 .7 b)

where the coefficients M and M' depend only on the part Ho + Hpp + Hhh + Hv
of the Hamiltonian (2 .5) . The equation of motion corresponding to th e
approximation (2 .7) is solved by introducing certain eigenmodes (or elemen-

tary excitations) which consist of a correlated particle pair, A+, or a corre-

lated hole pair B +. The correlated pairs (virtual Cooper pairs if J = 0) ar e
represented schematically in fig . 2 together with the corresponding ground -
state correlations . It is important to note that in constructing the pair scat -
tering modes we have taken into account the interaction Hv at a stage where

it is still easy to handle without severely reducing the dimension of th e
space in which the interaction is diagonalized as it is done in Brown's model .
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Fig. 2 . Schematic representation of pair scattering modes for a particle pair A+ and a hol e
pair B+. To the right : the corresponding ground-state correlations for the ground state 14% > .
The states A+ B+ !Oo > will, in the following, often be called "2p-2h" states where the quota -
tion marks indicate that also 4p-4h, 6p-6h, . . . amplitudes (in the sense of the TD method )
are admixed. The correlations will be called "pair scattering ground-state correlations" due t o

the residual interaction .

In the second step we diagonalize the particle-hole interaction * Hph by

using another linearized relatio n

~ H, A ÉL Bv~ _ ~(1~uvoaA~ Bd + 1V1
2'voaAoBa)

	

(2
.8)

na

which gives us new and very complex correlations . They are indicated i n
fig. 3 with broken lines symbolizing correlated pairs of the type shown i n

fig . 2 . The formal resemblance with the correlations known from the or-

dinary RPA for the "lp-1h" problem suggests the appearance of new collec-
tive effects . The new ground-state correlations may be called ground-stat e
correlations due to the field producing force . They exhibit the collective pre -

disposition of the ground state for deformed excited states .

It should not be concealed here that these results can be derived onl y

* The main source of deformation in the excited states of closed-shell nuclei will be the
repulsive particle-hole interaction (corresponding to an attractive particle-core interaction) .
This interaction forces, for example, the particles to the poles of the core if the holes are con-
centrated in the equatorial plane, so that particles and holes contribute to the deformation wit h
equal sign . In the SU3 model, this corresponds to the fact that the lowest 2p-2h states i n
olé are those with maximum weight, namely with the SU 3 representation (42) . These state s
have the particles along one axis and the holes in the plane vertical to this axis . For details ,
see the discussion at the end of sect . 4.1 .



Fig . 3 . Correlations introduced by the particle-hole interaction Hß,1, or by the field-producing
force . The broken lines represent pair scattering modes : for a "particle pair" A+ if the arrow
points upwards, for a "hole pair" B+ if the arrow points downwards . The diagram (a) is a typical
graph taken into account in the ground state, the diagram (h) is typical of the graphs included

in the description of a "dressed 2p-2h" system .

at the expense of giving up the Pauli principle between particles and hole s

belonging to different correlated pairs . Still, the Pauli principle is accu -

rately taken into account as long as we are dealing with a 2p-2h system in
the sense of the TD method . (For details, see section 3 .3). In this respect ou r

approximation is superior to the case in which the "particle-hole" pair is

coupled to a unit, so that the Pauli principle is neglected even for a 2p-2 h
system in the sense of the TD method .

2.4 A Self-Consistent Approximation

In order to show that the solutions of our two-step procedure describ e

indeed deformed excited states, we propose a new self-consistent approxima-
tion which treats the cooperation effect of the core deformation in a self-

consistent way. The conventional Hartree-Fock approximation for th e

excited states (3) is obtained as a special case of our generalized self-consisten t

method if we neglect ground-state correlations and thus the effect of the cor e
deformation .
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3. Pair Scattering Correlations

In the preceding section we have shown that it is convenient to treat th e
particle pair (and hole pair) scattering correlation before entering the full
complexity of "2p-2h" (in the NTD sense) or even higher excitations . In
the present section we turn to the construction of these pair scattering mode s
and to the discussion of their properties .

3.1 The Equation of Motio n

We define the operators for pair scattering eigenmodes by

Cµ = 1(y µ(aß) aå aß + yt,(aß)babß)

	

(3 .1 )

yµ(aß) - y',u(ßa ) and 99,.(aß) 99,u(ß°'),

	

(3 .2 )

- {N, JM, TZ}, m = {N, J, T}

characterize the pair by the angular momentum J and its projection M, the
isospin T and its projection Z, and a set of additional quantum number s
N. We start with the following linearized relation in the NTD approximation :

[H, aa aß ] _

	

(MaßyBay aa + Maßyåb8by)
YS 11 (3 .3)

[M, bå bß ]=
S

(Maßysbÿ bg + 1b7åßybasa
Y) '

The matrices M and M' are obtained by taking the appropriate matri x
elements of eq. (3.3) with respect to the unperturbed ground state an d
2p-2h states . It is clear that only Ho, Hpp, Hhh and Hv out of the Hamil-
tonian (2.5) contribute to the matrix elements M and M ' . The correlatio n
amplitudes yi,(aß) and yi,(aß) (taken as real) are now determined as th e
solutions of the equation of motion

[H, C~] = w.C~.

Using eq. (3 .3) one obtains two coupled eigenvalue equations for y and y
which can be written in the compact for m

wm (aß)

	

{(I sal + I r bI) å åßå + 2v 9yå}(1- oc - oa)T,,(yb)

	

(3 .5)
y a

with

where

(3.4)
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by using the convenient notation

1pµ(4) = (1 - 0a)(1 - Øb)w-,u(aÅ')

iY,a( aß) =

	

e a e b

	

T(aß)

where O a is defined in eq . (2 .2) .

The vanishing of one of the eigenvalues wm would indicate an instability *
of the normal ground state (11), but according to our assumption of a normal
ground state we neglect this possibility . Equations of the structure (3.5)
have been discussed previously in connection with the "independent pair
model including the hole motion" (12) and (for the special case of J = 0) i n
connection with the "pairing vibration" (13, 14) .

3 .2 Properties of the Pair Scattering Modes

The secular matrix of eq . (3 .5) can formally be considered as Hermitian
provided we adopt an indefinite metric expressed by the following ortho-
normality relation (12, 13) :

Dr'µ(alg)(1 Øa D b)Tv(aß) _ ,sµ byv ,

where the sign function sm is defined by

1 if corn > 0

	

l
sm =

		

} (3 .8 )
- 1 if wm < O . JJJ

If none of the eigenvalues co rn vanishes we also have the completeness
relation

Y-1µ(aß) s,uT(Y b) = 4 (aayåßs - aaaaßy)(1 - e a - e b ) .

	

(3 .9 )
la

It is now convenient to distinguish the operators of the pair scatterin g
eigenmodes according to the sign sm of the corresponding energy eigenvalue .
Therefore we define, in formal analogy to eq . (2 .1) for the fermion operators ,
the pair operators

* In that case we have a superconducting ground state so that we should make the Bogo-
liubov transformation .

aß
(3 .7)
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c+ _ (A~ if w. > 0

,`

	

{l B~

	

if co„t < 0

cF` _

{Al, if wm > 0

if Cam < O .

The physical interpretation of the operators defined in eq . (3 .10) is the fol-
lowing . The operator Am+ is the creation operator for a correlated particl e
pair : This means AIL+ creates two particles with the large amplitude s
ypi,(aß) {for ca m > 0} and annihilates two holes with the small amplitude s
(?i,(aß) {for cam > 0} . The operator B is the creation operator for a correlated
hole pair . This means that B~ creates two holes with the large amplitude s
8) 1,(aß) {for Ca m < 0} and annihilates two particles with the small amplitude s

y~(c ß) {for °m < 0} . In the absence of ground-state correlations, Ai and

are identical with the operators which create an exact 2-particle eigenstat e
and 2-hole eigenstate in the TD method .

The definition and physical interpretation of the creation (annihilation )
operators A11(A0 and B (Bm) for correlated pairs enable us to define a
new ground state IØo > by requiring

Ai,IØo 0.

	

(3 .11 )

Clearly the new ground state now contains correlations due to the inter -

actions Hpp, Hhh, and Hv . It is a mixture of Op-Oh, 2p-2h, 4p-4h, etc . excita-
tions in the sense of the TD method . Thus the diagrams considered in th e
ground state and the "2p-2h" excited states (in the NTD sense) are al l

diagrams of the type given in fig . 2 .

3 .3 The Physical Meaning of the Approximation

We want to use the pair scattering modes as a new basis of the theory

and so it is necessary to discuss the physical implications of our approxima-
tions. For definiteness, we restrict ourselves in the following to a "2p-2h "
problem* (in the sense of the NTD method, thus including 4p-4h, 6p-6 h

excitations, etc) . The New- Tamm-Dancoff method on which the present

theory is built and which allows to describe the collective predisposition of
the ground state has two important consequences .

* It is in principle possible("), however, to extend the theory to a "4p-4h" problem if i t
should turn out that a simple "2p-2h" description is not adequate for Oi5

(3.10)
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(a) The Pauli principle is violated between identical fermions belonging to
different 2p-2h pairs . Writing down the linearized relation (3 .3) implies ,
for consistency, that the commutation relations for fermion pairs reduc e

to Bose commutation rules . In other words, the 2-particle pairs aå aß an d

2-hole pairs by ba are approximated by quasi-boson operator s

aå an > - 0

	

with

	

ß

	

l
1

	

(3 .12)
bÿb > OyS with ßÿs = -day

which satisfy the boson commutation relations

Ala
ß3] = sa da åß ß , - 6 a,ßs aa43

Sy'»66 z - 8 y.8E ayA.

[No,

	

Ya]

	

3yå1 = O .

Due to eqs . (3.1) and (3 .10) these relations are equivalent to the well -

known boson commutation relation for the correlated pair operators Am+

and B4

[Am, Aÿ ] = å1v,

	

[Bp , Bÿ ] = (5tiv
(3 .13 b)

[ Aµ , B; ,E ]

	

[ A -12 , B ,,] = O .

Now it is clear that, within the subspace S composed of the unperturbed
ground state and all unperturbed 2p-2h excited states in the TD sense, ther e
exists the following one-to-one correspondence between the fermion space
and the boson space :

	

I00 >

	

1 00 »

	

aIXaßbÿba I Ø0 > = I aßyå >

	

94 [

	

3 00> = a(3yå ii ,

where I0o» is the unperturbed ground state in the boson space defined by

A,,ß1 Ø0» yB Øo» ° 0 . Thus iL is easily seen from eq. (3 .12) that the
Pauli principle is rigorously satisfied in a 2particle-2hole system even thoug h
it is treated in the boson space .

(b) As a second consequence of our NTD method (to keep the consistenc y

with the determination of the matrix elements M and M' in (3 .3)), we
observe that all occurring matrix elements of physical one-body or two-bod y
operators T are entirely restricted to matrix elements taken within a sub -
space composed of the unperturbed ground state and the unperturbed
2p-2h states. This, however, is just the subspace S in which the Pauli prin-
ciple is not violated by the use of eqs . (3.13) .

Mat.Fys .Medd .Dan.Vid .Selsk. 35, no . 7 .
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Thus it is possible to give a rule how to transcribe any physical operato r
T given in the fermion space into an operator T defined. in the boson space (15) .

The new operator T has to be constructed such that within the subspace S

<< a1ß1Y1 å11 T 1 22ß2y2 å 2

	

_ ( 21ß1)11 å H T 1 2 2ß2)12 S 2

«00 I T I0ß)1å» = < 0oI T I aßyå>

	

(3 .14)

<<o*åI T I Øoi>

	

< aßYå I T I Øo> -

Since all matrix elements which occur in the NTD method are taken wit h
respect to states belonging to the subspace S, we can regard the operators T
as the effective physical operators in our NTD method. Clearly, if we neglec t

ground-state correlations, then, according to construction, all results obtaine d
with the operator T in the NTD method are identical to the results obtaine d

with the operator T in the TD method .

3 .4 The Expansion of Physical Operator s

The preceding subsection provides us with a firm basis for expanding

various physical operators in terms of pair scattering modes . The first task
is to express the creation operator for two uncorrelated particles or holes

in terms of pair scattering modes . This is easily achieved with the help of

the completeness relation (3 .9), and the result i s

The next problem is to find the effective physical operators which are con -

sistent with our NTD approximation . As an example, let us consider a
physical one-body operator C :

C = ~Caß'ß : =
a/3

~Jaß(aåaß - bp- ba + aå bß - 6100 .

	

(3.16)

Then, the rule (3 .14) easily gives us the transcribed operato r

= IlzaßWyNy
aß y

which is equivalent to the replacement

2åaß -ß

	

aÿ%ßy and bjba

	

3ßy 2y .

	

(3 .18)

= 2(1 - Oa - Ob)L ~u(aß)(~~~c - $,u )
t-t

il-`µ(aß)l.c ,ces C+ .

	

(3 .15)
\1) 0, bß

	

= 2
/1 - 0a - 0b )~ ~ßa I

1-~

(3 .17)
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In order to get the expansion of one-body operators (3 .16) in terms of pair
scattering modes C + and C, we have now only to insert (3.15) into (3.17) .

As an application of the resulting expansion, one can easily find that th e
total number operator of our system

_ ~cå ca = ~(aå as bå ba ) + total number of particles in the system (3.19)
a

is expanded as

9t = 2 ~(AA - BB) + total number of particles in the system .

	

(3 .20)

Similarly, the y -component of the angular momentum operato r

=

	

<a I J,2I>~ab~zaiß :Cå Cß :
a

<a l J, ij> Sab = <Jblrnß,tt I J. Ina> ~~Ja(Ja -I- 1) åab

Ju = 1<e J a I 6> 6rs åz ezQ (AéA, - BP B6)
(6

<eIJ,a I a> åra = <Js lMMp l Jrme>I/Jr(Jr +1 ) å re

The formal analogy to the usual expressions in the fermion space indicates
the usefulness and, in fact, the simplicity of the expansion in terms of pai r
scattering modes.

3 .5 The Expansion of the Hamiltonian

The rule (3 .14) also enables us to expand the Hamiltonian in terms o f
pair scattering modes . Each term (2.6) in the decomposition (2 .5) of the
Hamiltonian can be transcribed into the boson space . The result i s

HO
- HO - PG(Ea + £b)(9-tOaß - aß0aß)

aß

Hpp --~ Hpp
afly S

Uaß
yåVO-1y a

Hhh -)- Hhh = UaßyS ZaOyS
aßyS

~ UaßY~(~aß~åy + 9,{4 18y)
aßyS

(3.21 )

(3.22)

HV --> HV

(3 .23 a)

(3.23 b)

(3.23c )

(3 .23d)

2*



Hph ~ Hph

	

aß8va~la~~ E~YEP
06-', 3 13T

HY iO .
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(3 .23 e )

(3 .23f)

20

As has been discussed in section 2 .1, the operator Hy does not contribut e
in our approximation where only states with an even number of particle s
and holes are considered . This is shown once more in eq . (3 .23f) .

Remembering that the pair scattering modes were constructed to tak e
into account the interaction terms Hpp, Hh s and Hy, we calculate the com -
mutators

[kn o, kß
where

and [k)o, ~ß]

o ° Ho -I- Flpp + Hhh + Hv •

	

(3.24)

Using eqs. (3.13) and (3 .23) we regain the equations (3 .3) which had
been the starting point in constructing the pair scattering modes. Corre-
spondingly one obtains for 5t o the expansion

	

= 1 wm(A Ay - B ic BFa) •

	

(3 .25)
m

This confirms once more the internal consistency of the transcription rul e
(3 .14) with the linearization approximation (3 .3) .

So far the particle-hole interaction has not been considered at all . But ,
in the following section, it will be of great importance as the source of new
ground-state correlations which reflect the collective predisposition of th e
ground state for deformed excited states . The desired expansion in terms
of pair scattering modes is obtained by inserting (3 .15) into (3 .23 e) . This
leads to

	

Hph = 4 V ve, CO CcCti .

	

(3 .26)
,~cvga

Now it is convenient to rewrite Hph as a normal product (symbolized by
with respect to the operators A+ and B F . The necessary contractions give u s
a renormalization of the single-pair energies wm which should be determined
in a self-consistent way . Here we assume for simplicity that the renormaliza -
tion is already incorporated in the definition of co.. So we can writ e

Hph = ~ Vm, P a
~CV~iv

where the transformed potential matrix element has the symmetry

(3.27)
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VµvPa = VPaµv

	

(3 .28)
and is explicitly defined by

Vµvpa = - 64aßå '' UdßYds,as,,,se s, tFl,( as ) Pe(ye)T3,03T)Ta(b (P )

6 b = B a = Bf =1 } .with

	

(Ba -Be =de =0

	

(3 .29 )

4. Interaction Between Pairs

In the preceding section, a new basis system has been constructed whic h
consists of pair scattering modes for particles and holes . The properties o f
these modes have been investigated, and it has been shown how to expres s
all operators of physical interest on the new basis . After this preparation we
can turn to the proper aim of the present work, namely the collective descrip-
tion of even parity states in closed-shell nuclei . The present section, therefore ,
is devoted to the formal solution of the problem, whereas the following sec-
tion will show where the deformations in the excited states come in .

4.1 The Hamiltonian in Terms of Pair Scattering Mode s

Using the expansions (3 .25) and (3 .27), we can write the Hamiltonian o f
our system in the form

H = 5t o + Hph = com(AF Aµ - Bû B,u) +

	

Vµvoa : qCv CaCe . (4 .1 )
µ

	

taw

In analogy to the procedure of section 2 .2 we now decompose the Hamil-
tonian in various term s

H = o + ~pp + Co, + ~ph + V +

	

(4 .2 )

where o is given in eq . (3.25) and

to pp =

	

Vµ ,, Pa A -1,F Aÿ AaA o

	

(4 .3a)
µvPa

~hh = ~ VµvPa Bl1Bv BaBP

	

(4.3 b)
µvPa

~ ~aVµvPa LA~ B~APB„ + A~BPAaB„ + AvBQ APBµ + A„ BéAaBµ} (4.3c)

= ~ VµvPa {A~ A,+ B6 B~ + AµA v B QB P} .

	

(4.3 d)

tph

tv
µvPa
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Pig . 4 . Graphic representation of the matrix elements arising from the particle-hole inter -
action or the field-producing force . The broken lines indicate pair scattering modes, for a "particl e

pair" if the arrow points upwards, for a "hole pair", if the arrow points downwards .

Finally, 5~ Y contains all possible matrix elements analogous to Hy in (2.6) .
If we graphically symbolize a correlated pair by a broken line, we ca n
depict in fig . 4 the matrix elements of each part of the particle-hole inter -
action If by diagrams which are formally similar to those of fig . 1 . In
order to illustrate the physical meaning of these new diagrams, typica l
graphs contributing to kph and 5) 1, are shown in fig. 5 in the conventiona l
representation. From the structure of Vp,e, defined in eq . (3.29) it is seen
that, in the absence of ground-state correlations due to pair scattering (see
fig . 2), only the first term in (4 .3c) survives among all the terms occurring i n
(4 .3) . This term is represented in fig . 5(a) . Its significance will be discusse d
in section 5 in connection with deformations for the excited states . The
appearance of diagrams of the type v indicates that the interaction between
pairs introduces a new kind of ground-state correlations, which will be show n
later to describe the collective predisposition of the ground state for de -
formed excited states .

Here, it should be pointed out that the interplay between the effect o f
the field-producing force and the effect of the residual interaction is especi-

ally important in producing this new type of ground-state correlations . This



(a) (b )
Fig . 5 . Typical diagrams in the conventional fermion representation which contribute to the ,

term Hpr, decomposed in fig . 4 . The diagram (a) occurs, for example, in 5ayj„ and (b), for example ,
in Say.

is most obvious in the limit where the pair scattering ground-state correla-

tion due to the residual interaction vanishes . Then the new correlations
due to the field-producing force, Hph, vanish as well .

At this point it might be appropriate to discuss a shortcoming of the
present treatment in the two-step method . With the aim of taking into ac-
count the "residual interaction effect" in the first step, we have split th e
Hamiltonian into Hpp + Hhlz + Hv and Hph, and then have diagonalized
Hpp + Hhh,+ Hv only in the subspace of two particles and in the subspace o f
two holes (including pair scattering ground-state correlations) . In the second
step, Hp h was taken as the field-producing part of the interaction, whic h
acts between different pairs . As a result, those parts of Hpp and Hhh which act
between different pairs have been neglected . Physically, this means that the
neglected field-producing (i .e ., long range) parts of Hpp and Hhh are assumed
to be unimportant compared to Hp h . Indeed, if we considered a " 2particle -
2hole" system (in the NTD sense), the parts discarded in Hpp and Hhh would
enter only via ground-state correlations, in contrast to Hp h . Thus, their influ-
ence* would presumably be very small compared with the influence of Hph .
Moreover, the main source of deformations in the excited states of closed -
shell nuclei will be the repulsive particle-hole interaction (corresponding t o
an attractive particle-core interaction) . This interaction forces, for example ,

* In model calculations it turned out that the interaction Hp,,(Hju) between particles (holes )
belonging to different pairs was not at all important for the deformation obtained . See also the
arguments at the end of sect . 5 .3 .
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the particles to the poles of the core if the holes are concentrated in th e
equatorial plane, so that particles and holes contribute with equal sign t o
the deformation .

To avoid the above shortcoming of our treatment, it is useful to divid e
the interaction into the residual interaction (with a short range) and th e
field-producing part (with a long range). In this case, the first step of our
treatment corresponds to the diagonalization of the short range force, and th e
long range force then gives rise to the deformations in the excited states and,
at the same time, to the collective ground-state correlations discussed above .
The only formal change which results from this decomposition of the Hamil-
tonian is to modify the definition of the interaction matrix elements V,uroo o
in (3.29) by dropping the restriction on the summation, i .e . ,

VIpveo = - 64 1 Daßy8sµsvse saT1u(aE)Te(y E)Pv(ß4') Pa(6 9)) .

	

(4 .4)
Œßyå 8Ø

Thus, the field-producing parts of Hpp and Hhh are fully included in th e
Hamiltonian (4.2). It is unnecessary to say that the original division (2.5)
of the Hamiltonian has been chosen simply because it is more clear-cu t
from the formal point of view .

4.2 Collective Modes in the Excitation of Closed Shells

In order to investigate the collective modes due to the field-producin g
force we start from the following linearized relation :

I(NµveaA- BQ + NFtveo AeBO .

	

(4 .5 )

By taking the appropriate matrix elements of eq . (4.5) with respect to th e
(unperturbed) eigenstates of to, it is seen that the coefficients N and N'
contain only matrix elements of 51 o, ph and tv . In this approximation we
can define the creation operators of eigenmodes (or "phonons") for eve n
parity excited states of closed-shell nuclei as solutions of the following equa-
tion of motion :

[II,Xl- ] = S2lXI-

	

with

	

S2l > 0, (4 .6)
where

X~ = ~1~7(uv)AûBi + nA((av)A,u BvJ (4 .7 )

with
µv

~ = {L, IH, TZ},

	

1 = {L, I, T } . (4 .8)
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Here, A means the set of quantum numbers composed of the angular mo-
mentum I and its projection M, the isospin T and its projection Z and,
finally, a set of additional quantum numbers L necessary for a complet e
specification of the "phonon". Correspondingly, 1 stands for the set A with
the exclusion of the projection quantum numbers M and Z . From eq . (4 .5 )
one obtains the eigenvalue equation for the functions et(p ) and N(,uv)
(taken as real) :

ea(iav) =

	

(NPauv A(ea) - Nea,uv'7Â(e a )}

DanÄ(,uv )

		

- a1ve6,uv 1A(Pa) - NPvgv$A(ea)) .
o u

Eq. (4.9) has the same structure as the well-known equations for "1 particle -
1 hole" excited states in the RPA, and thus we have the usual orthogonality
and completeness relation s

iea (itt v)W,uv) '7a x (FLV)N.:(,uv)} = ba a
µv

~f{~R(ruv)eR(C~) - T1A(+uv ) rll,(~O6 )} = åu4sv a

i ),(Fuv)'7.l(e6) n7.(mv),I(P6) )

S2l > 0 .

From these relations we get immediately the inverse expansion to eq. (4 .7)

(4.9)

(4.10 a)

(4.10b)

with

A
P
+B+ °

A
($A(, uv )X7 - ?7A(,uv)X,t) . (4.11 )

We are now in a position to define the new ground state I T° > for closed-
shell nuclei by

XRI O = 0

	

(4.12)

and similarly the excited even parity states !T> of closed-shell nuclei by

= XÅ jWoi•

	

(4.13)

It is clear from these definitions that both ground state and excited state s
contain very complex correlations, namely all diagrams of the type indicate d
in figs . (3a) and (3b) .
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In order to understand the physical significance of these ground-stat e
correlations, let us first see what happens if we neglect them . (This also
means that we neglect the ground-state correlations due to the residua l

interaction) . In that case the linearized equation (4 .5) reduces to the equa-
tion of the TD method for a 2p-2h system . As an approximation to the TD

method one may use the Hartree-Fock approach (3) which is known to

yield intrinsically deformed 2p-2h states and a spherical ground state . Let
us now gradually switch on the ground-state correlations and correspond-

ingly treat the problem in our NTD method. This procedure will gradually

decrease the energy of the excited states . At the same time it will leave the

excited states deformed and the ground state spherical, until, with increasin g
interaction strength, the smallest excitation energy (i .e ., the lowest DI) passes
through zero . Then the spherical ground state becomes unstable and under-

goes a phase transition into a deformed state .
Although the physical ground state is spherical, it has a collective pre -

disposition to produce deformed excited slates due to the symmetrical treatmen t

of ground state and excited states in our NTD method . This is in contrast t o

the "lp-1h" problem in the usual RPA, where a spherical (deformed )

ground state is always associated with a spherical (deformed) excited state .
The difference is that a pure 2p-2h excitation is intrinsically deformed b y

itself. The bare deformation of the 2p-2h excitation has a further conse-
quence : Due to the ground-state correlations the "dressed 2p-2h" excite d

states defined by (4 .13) possess a "dressed" deformation which includes ,

and is amplified by, the cooperation effect of the core deformation .

5 . Deformation of the Excited States

In the preceding section, general solutions were obtained in a spherical re -
presentation, so that the deformation of the excited states would only mani -

fest itself in a rotational band structure . In this section, however, we want

to set the deformation into evidence more directly, using a sequence o f
successively generalized self-consistent field methods . For simplicity, w e

adopt a separable field-producing force . Starting from the conventional

Hartree-Fock approximation (3) , we easily see how to generalize the metho d

in order to take into account the residual interaction . A final generalization
treats the full core polarization due to the collective ground-state correlation s
in a self-consistent way . This turns out to be an approximation to the genera l

solutions of section 4, thus explicitly demonstrating their deformed nature .



Nr.7

	

2 7

5 .1 A Separable Field-Producing Force

In order to see the origin of the deformation in the excited state mor e
clearly, it is convenient to divide the interaction into the field-producing
(long-range) part and the residual interaction (short-range part) . For sim-
plicity, we furthermore assume the field-producing force to be separable :

Hf - 2 ~xL•QLMQLM : ~
L M

where QLM is given by

QLM
=

2r4rLYLM(09Aß> :c cß : .

	

(5 .2)
«ß

With the aid of the rule (3 .14) and eq. (3.15), the operator Q LM is expanded
in terms of pair scattering modes as

QLM =

	

Ga l QLMI v) : C/'Å-C,, : ,
m v

where

(,a I QLMI r) = 4 2 <a l rLYLM( O Ç0) ßis,uP-µ(aY)(1 - O. - Oc)svt~v(ßY) . (5 .4 )
aßy

Thus, one may write down the field-producing force in terms of the pair -
scattering modes in the following form :

Hf - 2 ~ xL : QLMQLM : •

	

(5 .5 )
LM

For later discussions it is convenient to divide Q LM and Hf into the followin g
parts :

QLM
_

QLM + QLM ,

	

(5 .6 )

Hf =

	

(1) -I-
(2) + k,(3) ,

- 2 xL . 011011+z
LM

(2)_ - 2 2 xL . QLMQLM
+ :

	

> (5 .7 )

(3)

	

- G xL : QMQM :
LM

LM

(~ QLMI v) (~µA „ + By Bµ)
~cv

_~(F~ I QLM I v) (A~Bÿ + AA/2 ) .
µv

(5 .1 )

(5 .3)

where

QLM

QLM
(5.8)
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The term C3) in eq. (5.7) corresponds to Y in eq . (4.2) which has playe d
no role in constructing the collective excited states discussed in sec . 4 . For
consistency, we therefore discard e) in the following . It should be note d
that, in the absence of pair-scattering ground-state correlations, only QLM

and 5r( 1) survive . This is easily seen from the structure of @1lQ LM I v) in
eq. (5 .4) .

5 .2 An Extension of the Hartree-Fock Approximation

The origin of the deformation in the excited states can be traced mos t
clearly using the self-consistent field method which leads to the notion of a n
intrinsic deformation in a natural way. In this subsection we investigate th e
mechanism which leads to intrinsic deformations in the excited states i n
the case without ground-state correlations .

In this case, the exact 2p-2h eigenstates are given b y

IØ,ti = X~TD)+ IcPo>,
(clot' 00> = b«I00> = 0)

	

(5 .9 )

with their creation operators

Xr'D) + _«

fl
ft (aßyS)aå a~+ bŸ bå .

	

(5 .10)

The function h (taken as real) satisfies the eigenvalue equatio n

Ql(TD)
tA(a1ß1Yl a1)

	

L«z,%,,å, .Ay ,h(2ß2Y2s2) ,

where the coefficients L are defined by the usual linearized relation char-
acterizing the TD method :

[H, aiaßlbÿ bå ] _

	

c
L«,ß,y 1S i , «xßxyxax aå x afi b$ .

	

(5 .12)
« ;ß9y2å2

It is known that the eigenvalue equation eq . (5 .11) can also be obtained
from the variational principl e

S(<00 1X~TD) , HXÅTD)+00 > _ D(TD)<001
X~TD),X~TD)+I004 - 0 . (5 .13)

The intrinsic deformation of

/

a state 104 > in eq. (5.9) with J = 0 wil l
manifest itself in a Hartree-Fock approximation (3, 4 ) in which the trial
function for f,Zp(aßyå) is taken as

ff(aß'å )

	

fk, m o,(aßY S)

	

'u{vko(a)'ao(ß))w{9)mo(Y)9)no(S)} . (5.14)
(It : the antisymmetrization operator)

(5 .11)
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with separate orthonormality conditions among the 'p and T. The variational

principle leads to the well-known single-particle problem in a self-consi-

stent field, whose deviation from the spherical shape defines the intrinsi c

deformation of the state 10,10 > with J = O .
In the above Hartree-Fock approximation, the residual interaction i s

completely discarded, as is clear from its definition, and only the field -
producing force is taken into account . To overcome this shortcoming we
can use the following procedure :

(a) In a first step we diagonalize the residual interaction . The operator s
of pair scattering eigenmodes are then of the for m

= 1P(TD)(aß)aå aß ' By -

	

y(TD)(Yb)b-Oÿ

	

(5 .15)8
to which the operators of the pair scattering eigenmodes defined in eq . (3 .1)

are reduced when the ground-state correlations are neglected . Within the
subspace of 2p-2h excitations the Hamiltonian can thus be writte n

H(TD)

	

l CU (TD)j~ ~ ''nTD)Bv Bv 2 G xL ~ QLM T D)QL~ T D) +

	

(5 .16)
hl

	

v

	

LM

Here, (aTD) is given by

QLM
TD)

= G (P11 QLMI a2)TDAY I AF12 + ( v 1I QLMI V2)2'DB,BV1 ' (5 .17)
U,jA

	

v iva

to which QLM defined by eq. (5 .6) is reduced in the absence of ground-state
correlations .

(b) In the next step, we use a variational approach, taking a trial stat e
vector for IØ a.o > with J = 0 as follows :

1 Øßa % - IØcda i = ÂôB~ I Øo i, ( ,i,.100> = P,100> = 0)

	

(5 .18)

_

	

U7o(v)Bv '
v

Ula(v) = 1 .
v

with

The variational principle for the Hamiltonian (5 .16) gives the following
self-consistent eigenvalue equations with Q ) - W(TD) - jV~TD>

VV(TD)
u/7~(a) _ 0)Z')

u
2 0(la1) i- G, U«]u '( 2 )2n

	

-`20

	

1

	

ba 20 ~ 2 '

VV.lTD)U v l = w(ZTD)U
vl

	

Uvve v1a( v2
va
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where

ZL()M(Jl QL-MI P2)TD . aLM
L

A~
M

Uv,V] =

	

XL( -)M(vl QL-MI v2)TD . aLM'

	

(5.21 a )

E~

LM

aLM = G (v1 QLMI V2)TD Ufu(v 1) Ufo( y2)

(5.21b)
aLM =

	

gill QLMI u2)TDUio(U1) Ui,(u2) •
tt,tt

The eqs. (5 .20) constitute a self-consistent field problem for a single pai r

of two particles or two holes . The particle pair is moving in the field U th I

generated by the hole pair, and vice versa . Thus, the intrinsic deformation

of the state 1020 > with J = 0 is given b y

<ØiofoI QLMI Øiofa> = aiM + aLM = aLM .

	

(5 .22)

The situation obtained by solving (5 .20) is illustrated in fig. 6 for a simple

model .

In order to see the connection with the Hartree-Fock approximatio n
(5.14), it is noted that the derivation of eqs . (5.20) is essentially equivalen t
to a variational approach with the following choice of the trial function for

f2p (aßYå) in eq. (5.10) :

f, (aßYå)

	

fiafo(aßY å) = fio(aß)ffo(YS)

	

(5 .23)
with

t0( Œ ß) = - fi,(ßa), 60 (Yå) _ - ffo(å i ) •

In this procedure the Pauli principle is taken properly into account, as wa s

pointed out in section 3 .3 . The two steps used in deriving eqs . (5 .20) are
just a convenient but unessential decomposition of ho and ffo into

fio(aß) =

	

Uio(p),PD'(aß) and 60 0,0) _ I U fo( v ) çPvTD)(6y ) •
F~

	

v

From the variational point of view, therefore, the procedure is simply a

generalization of the Hartree-Fock approximation with the purpose o f
taking the residual interaction properly into account .

5.3 The Origin of the Intrinsic Deformation

So far we have considered the simplified case in which the ground-state

correlations are completely discarded . However, the formal extension of
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the treatment given in the previous subsection to the case in which the pai r

scattering ground-state correlations are taken into account is straightforward .
'We only have to consider the Hamiltonia n

H = ~ cu„zA+Au - ~ )i Bÿ B y + St (1) .

	

(5 .24)
v

where m1) is defined in (5.7). Then we construct the eigenstates of corre-

lated "2p-2h" excitations

=

	

7(~ v )A u+Bv 0o i,

	

(Am! Øo > = B vI Øo = 0),

	

(5 .25 )
µv

with the aim of diagonalizing the Hamiltonian (5 .24) within the subspac e

composed of the unperturbed states A ll By 10'0 > . Instead of solving the
eigenvalue equation for 42(uv) directly, we use a similar variational approach
as in section 5 .2 . To this end we assume for an eigenstate (5 .25), I rh'j a

with J = 0, the following trial for m

~da %

	

Øio1o % = AiBå I 0p >

	

(5 .26)

	

Ail- =

	

uio(iL4)A(.6 ,

	

Bj =

	

Ulo( v)BY
P

	

v

	

(5 .27)
u ô(FL) = 1,

	

U.o(v) = 1 .

	

,u

	

v

The variational principle with the Hamiltonian (5 .24) leads to self-consistent

eigenvalue equations which are identical with eqs . (5.20), except that the

label (TD) has to be dropped everywhere. For the sake of later reference, we
just write down the coupled equations

J
(5 .28)

WfoU.fo(v1) - W ?L, U jo( v1) - ~ Uvp ] U,7o( v2 ) '

v s

All quantities here are defined by eqs . (5 .21) if the index (TD) is disregarded .
The intrinsic deformation for the state 1Øj> with J = 0 is given by

with

wia u io(P1) = Wmo uio(m1) + TÎk.,%Gz uio(m2 )

CØ
z,o l QLar l

Øfo9o>

	

<Ø2~~o l Qïivr 1

	

aLM, (5.29)

where Q LM is defined by eq. (5 .6) and we have used the result

Øi,,,o l QiMI Øi o,o % = 0 . In contrast to eq. (5 .22) the new equation (5 .29)
now defines an intrinsic deformation aLM which contains the core polarization
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effect due to the pair scattering ground-state correlations . This situation is
illustrated in fig . 7 for a simplified model .

Nov the origin of the intrinsic deformation in the excited states is obvious .
The essential part of the field-producing force responsible for the deforma-

tions in the excited states is just the interaction (1 ) . The interaction 5~ ( l )

survives in the absence of ground-state correlations, and can be visualize d
physically as the repulsive particle-hole interaction as follows : Let us de -
compose j(1) into

V I) - ~p72 +plp +hhl

	

(5 .30)

where Hipp and 5~ n have the same structure as eqs . (4.3a) and (4 .3b) ,
respectively, and

C,h - - %'L( - )M

	

(,u 1I QLM v1)Gu 2 I QL-M I V 2){A+ Av1 BvQB (5 .31 )
LM

	

,uivi ~I.Lz1/a

We can see that only Ç1ph , which arises mainly` from the particle-hole inter -
action, contributes in the "2p-2h" problem since the expectation values o f

app and hh with respect to 1Øj o > are zero .

On the other hand, the interaction .(2 ) vanishes in the absence of ground -
state correlations and will become important for constructing collectiv e
ground-state correlations due to the field-producing force. This will be
elucidated in section 5 .4 .

Numerical Calculations for a Simple Model

The coupled self-consistent equations (5 .28) describe a correlated particl e
pair moving in the field produced by a correlated hole pair, and vice versa .
In order to investigate the deformation-producing mechanism, we adopte d
a simplified model and solved eqs . (5 .28) self-consistently. In zeroth order ,
the model consisted in one occupied level with angular momentum jh and
one unoccupied level with angular momentum jv . The spacing of thes e
levels was taken to be 2ev, with ro serving as an energy unit . The interaction
was taken to be composed of the conventional pairing force with the strength
Go and the conventional quadrupole force with the strength z (both measure d
in units of ro) . This system was found to have the following properties :

* This is easily seen by neglecting the pair scattering ground-state correlations . In thi s
case, only the particle-hole interaction H le contributes to ky~, . Correspondingly, . ~Ÿa ß'

r
) and . 7f'7)~

are just reduced to the field-producing (i .e ., long range) parts of H n and H,, that have been
discussed in section 4 .1 .
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Fig . 6 . Illustration showing the instability of a spherical 2p-2h excitation with respect to de -
formation . Details are explained in the text.

(a) Defining the deformation ß = ß p +ßh as the dimensionless angular

part of a20 in eq. (5 .29), the following dependence on the parameters x and
Go was obtained . For a fixed strength of the pairing force, the spherical shape ,
ß = 0, is stable as long as the quadrupole force is sufficiently weak. For
increasing x the spherical shape becomes unstable, and two stable deformed

solutions emerge, one with a positive and the other with a negative deforma-
tion. For large x the deformation tends to a saturation value . The energy

is lowered roughly linearly with x, starting from the point at which th e
system becomes deformed. For reasonably weak pairing forces (Go < 0 .15)
the results are not very sensitive to Go . Therefore we illustrate the stability
situation in fig . 6 for Go = 0, choosing jp = 7/2 and j h = 5/2 . For simplicity ,
w-e restrict ourselves in fig . 6 to particle pairs and hole pairs with J = 0
and J = 2, measuring x in units of the arbitrarily fixed energy splitting
between these levels . Inclusion of all possible values of J changes the result

by less than 10 percent . In fig . 6 we use ßh = ßinput as an input parameter

and plot the difference (ßcaie-ßinput) of the hole deformation (calculated
according to eq . (5 .28)) and the input deformation as a function of ßinpu t

11fat .Pys .Siedd .Dan .Vid.Selsk, 35, no . 7 .
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Evidently, self-consistency is obtained for (ßcaic-/3input) = 0, but the solu-
tion is stable only if the derivative d(/ßcalc-t3input)/dl3input < O . It is seen
that the spherical solution becomes unstable between x = 0.6 and x = 0 .7 .

(b) In all calculations with an attractive quadrupole force (x > 0) the
particle deformation, ßp , turned out to have the same sign as the hole de -
formation Ph . This feature is decisive for obtaining stable deformations an d
is due to the mutual repulsion of particles and holes for x = 0 (see also
footnote on p . 12) .

(c) For a fixed value of x the deformation decreases with increasing Go ,
for small Go slowly, for large Go more rapidly . The reason is the following :
Increasing Go enlarges the energy splitting between the particle (hole) pai r
states with J = 0 and J + 0, thus diminishing the ability of the quadrupol e
force to mix the levels and to produce deformations .

(d) In our model the pairing force introduces ground-state correlation s
and consequently an admixture of 4p-4h, 6p-6h, . . . to the dominant 2p-2h
configurations . That is, the pairing force leads in a natural way to cor e
excitations. In order to investigate the effect of continuously increasing cor e
excitations we used in fig . 7 a fixed spectrum for the pair scattering modes ,
unaffected by the pairing force and simulating an "experimental" spectrum .
The energies of the particle (hole) pair scattering modes were arbitrarily
assumed to be FJ/so = + (1 .5 + 0 .1 . J) for J = 0, 2, . . ., 8 . Fig. 7 shows
how the pairing force in this case increases the deformation, and decreases th e
energy by admixing 4p-4h, 6p-6h, . . . configurations . The vertical lin e
indicates the phase transition to superconductivity . When approaching thi s
point, the deformation becomes much larger than the limiting deformatio n
which can be obtained for a pure 2p-2h excitation . Thus the pairing force,
by introducing ground-state correlations, softens the core so that the quadru-
pole force can efficiently produce deformations . However, since we disregar d
the effect of the pairing force which stabilizes the spherical shape as discussed
under (c), the deformation plotted in fig . 7 gives us only a measure of th e
"triggering effect" for deformations . The actual deformations are mainly
due to the core deformation effect which enters through the collective ground -
state correlations discussed in sect . 4 . Thus, the core deformation effect du e
to the field-producing force is triggered by the core softening effect due to th e
pairing force .
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Fig . 7 . Self-consistent deformation and self-consistent energy as functions of the strength G o
of the pairing force for various strength parameters x of the quadrupole force . Details are ex-

plained in the text .

3*



36

	

Nr . 7

5 .4 . A Self-Consistent Method Including the Core Deformatio n

In the preceding subsection we have traced the origin of the intrinsi c

deformation in excited states . Now we are in a position to present a metho d

which demonstrates explicitly the intrinsic deformation of a "dressed 2p-2h "
state containing the collective ground-state correlations . To do this, it is
useful to note that the eigenvalue equation (5 .28) can also be obtained from

the following procedure .
(a) In a first step we introduce the approximatio n

- xL( -)n' Gi QL -Ml v))a' By . 4:21
LM

	

µv

xL( - ) M 7(ft QL-
M I Y)fl~ A v a L M

LM

	

u.v

-I-

	

(p) h)

	

(1)cons': I xL(-)
M

aLMaL
(

-M)

	

~ph(u)
.L m

( 1 )
p h

with

aiwr

	

(u I QLM I v) < AµA v%
,av

a(h) -

	

( I QLMI v)<Bv' Bp>LM
,a

where <A A v > and <B, Bu> are expectation values which will

mined later in a self-consistent way .

(b) As the next step we construct the ei.genstate

Øi ; >

	

i;(iav)AFi Byl- I Ø O >
µv

with the aim of diagonalizing the following Hamiltonian within the subspace

composed of the unperturbed states i1»3,; I Ø o > :

	

H'(a) = comA~+iAf~ - conBv By +

	

(5 .35)
Fc

	

v

(c) The expectation values <A A„> and <B., B I,> are determined self-consi-

stently by the condition

	

<Øz; ANAv Øi';> = <AViA,,>

	

i (5 .36)
<4i ; I By B m Øij > _ <Bv Bp) .

We can easily see that the eigenvalue equation for i5 (,uv) defined by eq.

(5 .34) is identical to the equation obtained by the variational approac h

which is described by eqs . (5 .26) and (5 .27) and yields "ij (,av) = u i(,u) v;(v) .

This equivalence leads immediately to a self-consistent method whic h
demonstrates explicitly the intrinsic deformation in the "dressed 2p-2h "

(5 .32)

(5.33)

be deter -

(5 .34)
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states subject to the cooperation effect of the core deformation . This metho d
consists of the following operations : With the Hamiltonia n

H(a) - ~ comA~ Af~ - ~ ~7aBv Bv + {C,h(a) +C -I- ~pp{ + (2) '
y

	

y

we start from a linearized relation similar to eq . (4 .5)

[ H( a), A By ] = .{N,rcvoa(a ) 4 Bô + IL' ve6AeBa},

	

(5 .38)
oa

where the coefficients N() are now functions of all aLM and aLM . The
creation operator of the eigenmode, which satisfies the relatio n

[H(a), XŸ ] = Qy .2 with Shy > 0,

	

(5 .39)

Xy = { ey(Fti'),4 By + vly(,uv)ApBv{•

	

(5.40)!

Here, y is a set of quantum numbers specifying the excited state unde r
consideration

Ty > = Xÿ I Ÿlo >, (Xy I To > = 0) .

	

(5 .41 )

With the aid of eq . (5 .38) the functions ey (cw) and g y(uv) are seen to obey
the eigenvalue equations

Dy$y(titv ) = {NoQ,uv(a)ey(e6) - Ne' ,,uvny(C cr ) {

S2y7?y(Cly) _

	

{l'veo'ttv(a)?2y(e6) - Ne QyvÇy(e6)} .
oo'

The orthogonality and completeness relations of y(uv) and ny(uv) are of
the same form as eq . (4 .10) .

The quantities aLM and aLM are determined self-consistently b y

= 1(,t I QLm v) <Ty I A A v I Ty>
/Iv

(5 .43)
aLM - (kt I QLM 11,) <Ty I By Bp I T'y> .

,uv

Now it is clear that the eigenvalue equation (5 .42) with the self-consist-
ency condition (5 .43) is simply a generalization of eq . (5 .20) with eq . (5 .21 )

for the purpose of taking the cooperation effect of the core deformation int o

(5 .37)

is then given by



38

	

Nr. 7

account . The intrinsic deformation of the " dressed 2p-2h" states associate d
with the core deformation is now given by

aLM <T7,1 QLMI Ty> _ <Ty QLMI `y> = aLM + o,M

	

(5 .44)

Here we have used the result <Ty j Oa» Ty> - 0, which follows immedi-
ately from eq . (4.11) . The operators QLM and Oa are defined by eq. (5.8) .

Obviously the eigenvalue equation (5 .42) is an approximation to our
general equation (4 .9), thus demonstrating explicitly the deformed nature
of the excited states obtained as solutions of (4 .9) . The ground state define d
by (4.12), however, is spherical, and only if eq . (4.9) had a zero-energy
solution, it would be really deformed. This has been discussed in sectio n
4.2 . Correspondingly, the ground state defined by eq . (5 .41) will be "spheri-
cal" unless the eigenvalue equation (5 .42) has a zero-energy solution .

We now want to solve the eigenvalue equation (5 .42) in a way which
explicitly traces the effect of 1,-7(a) responsible for the intrinsic deformation .
For this purpose we divide the Hamiltonian (5 .37) into two parts :

II(a) = Ho + C(a) ,
Ho = wmA,uAf, - conBÿ B, -I- ~pp +

	

+ 51 (2) ,
f~

	

v

and introduce the eigenmode creation operator with respect to Ho :

+ =

	

-1- 1iß(°)(,uv)A/,B,,}

	

(5 .46 )
Fav

[IIo, Xa° ) +] = S2i°)Xf + with S2i°) >

	

(5.47)

The functions e (,uv) and r ) (,uv) clearly satisfy the eigenvalue equatio n
(5 .42) with aiM = oca = O . Similarly as in the usual RPA for "1p-1h "
excitations, we then obtain the well-known formulae *

1

	

~

	

I (pi QI i M,l v) I 2 (w m - co n)

2 îL
,u v

so = I- 1
sv =-1)

* Eqs . (5 .48) and (5 .49) are valid for T l = 0 only, since QLM has been taken to be a scalar
in isospace. For Tl + 0, eq. (5 .46) becomes simply

x" +

	

)T,i-Zv<'I
mJnM ctMv II 1 M 1>< T m TnZ 1.1 -Zy Tl7l> A +By -

(5 .45)

which satisfies

(OJ m
con ) 2 )2 _ D(0)2 (5 .48)
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Nl(,tl QI r M, v)

	

(°)

	

Nl(v I QI i Mx I

(w7n, - wn) - .Q(°) ,

	

(co. - co n) + Di°)

	

(5 .49)

where NI is the normalization constant determined by eq . (4.10 a) . States
like those created by the operators XA°) + are conventionally called spherical ,
similarly as the "1p-1h" states in spherical nuclei known from the usua l
RPA. This is consistent with our definition of the intrinsic deformation aLM

and reconfirms the conclusion of the preceding subsection that C,1-1Xa) i s
the origin of the intrinsic deformation in the excited states of closed-shel l
nuclei .

Using X j,0) +, we now can write the creation operator XiE in eq. (5.40)
for a deformed excited state as

X~ = Uy (A)Xf~ + + Vy
(A)Xr )

7.

	

A

=

	

Uy(AA. ) ( FzN) + ~
tiÿ(A)~1j~)(~v)}AûBv

~CV 2

	

A

+ { Uy(A)17N,uv) + Vy(A)l)(,uv)}AIR,B,, .
µv A

	

A

Then eq. (5.42) simply becomes a self-consistent equation for Uy and Vy .
The functions Uy and Vy describe the effect of C)l, (cc) : if aine = aïn)I = 0 ,
then Vy(A) = 0 and Uy(A) ây . The requirement that the operators Xÿ

and X(° ) + each form a set of boson operators entails the orthogonality rela-
tions

{Uyr(A)Uy, (A) -1v=(A)Vya(A)} = åyfy a

A)vy(A) -
.Vy (A)Uy2(A)}

= 0 ,

{Uy(21)Uy(22) vy(A1) vy( A 2)} = a A,A
y

Z{ Uy( Al) vy( A 2) - vy(A1)Uy(A2)} = 0 ,
y

and the inverse relation to eq . (5 .50)

Xr )+ = ~ Uy(A)Xy+

	

Vy(A)Xy .
y

	

y

q° ) (,cw)

5 .51 )

(5 .52)
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5 .5 Intrinsic Deformations in Excited 0 + States

In this subsection we restrict ourselves, for simplicity, entirely to quadru-
pole deformations . This corresponds to taking up only the L = 2 part' i n
the expansion (5 .32) of pÿ~(a) . If the excited 0 + state `y.> defined by

eq. (5.41) has an intrinsic quadrupole deformation (i . e . a2M + 0), then the
solution must have the appropriate degeneracy to contain all possible orien-

tations of the "excited deformed nucleus" in space . Without loss of generality

we therefore can choose the axes of the intrinsic deformation as coordinate

axes, so that a2, M = 1 = 12,M = _1 = 0 and a2 , M 2 = (X2 , M = _2 . Furthermor e

we assume, for simplicity, that the intrinsic deformation in the excited 0 +

state is axially symmetric, so that a2,M = 2 = a2,M = -2 = O. In this case ,

the intrinsic deformation is characterized by one quantit y

a2M=° = (5.53)

The projection Ky of the intrinsic angular momentum on the symmetr y

axis now is a constant of the motion, so that Ky . = 0 for our excited 0 +

state. We need not say that eq . (5 .42) gives us the information about th e

intrinsic excitations in the body-fixed coordinate system and eq . (5.37) pro -
vides the intrinsic Hamiltonian of our system .

The excited 0 + state under consideration,

	

> with Ky. = 0, in
eq. (5 .41) is given by

I Yryo > = Xf ~ Yf°

Xy9

	

A
Uyo(

2.
)
x~ + + ~ Vyo(4XJ °) .

	

(5 .54)

Thus the eigenvalue equation (5.42) for this state becomes a self-consist-
ent eigenvalue equation for Uy and tivo :

(S 0 - Di°))(1yo(4) =

	

x

~

(F~~å9
gyp) + Fta,

e)

) vy o (2 2 )

_ /bL-r(üJWJ,z~~27) + GLP ) ) Vy9 ( 2 2) ,

(5 .55)

with

( Q , + 1T )) Vyo (~1) = + x~(ITO') + F~2~9
ß') ) Vy o ( A 2 )

+ x(GV2,,ß(P)
+ G(2) ß Uh)

)U, 0(22 )

* Of course, the L = 0 part in q)t (a) will contribute even under this restriction . However,
the effect of this term is only a renormalization of the single pair energy wyn for Jin = 0. In the
following we assume, for simplicity, that the renormalization has already been carried out .
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where x = xL - 2 and

=

	

z

	

(el Q.201 6)

	

f l, ' (Pe) ;,T (pß) + vrr)(Pa)q )(pe)}~
(sp = å = - 1)

	

(s~=u +1 )

~

	

(p I Q2o1 v)

	

{eÅ°)( ve)qNpe) + vir)(pe)4 ) (ve)}
y v

(sk - sv - + 1)

	

(s e

The quantities ß(p ) and ß (h) are determined self-consistently b y

ß(p) _ 2(y IQ201 v )<Y ỳ o l A Avl Y ỳ o>
/L V

ß (h) ° 2(e1Q2o1 a)<Pya l B-Bel yo > .
e a

To evaluate eq . (5.57), we first note that the operator s

(, c I Q20 I v)A Av and

	

(e I Q20 I
a)B a+, Be

,av

	

ea

can be expanded in terms of the operators Xa° ) + as follows :

(It I Q20l v)Aµ Av =

	

~ s%i ~t

	

~ aF (2) • X (°) +Xro)
/Iv

- G(u l Q20) v) (2i)(,ue)n ;i,°'(ve)X, °) +Xr + + ~~~i'(~e) ~°)(ve)xå°jXåa)] ,
,uv

	

e

	

e

(e iQ 2o1F%
(
a/.
1>

t

	

a.40)
+

X%
( )

ea.

	

21A a

- ~ (el Q201a ) [1' $å°'(P6))1g'(pe)xa(,°)
+xå.?) + + )'t)(P6)l'(Pe)n)X°)] .Ataa

	

y

	

y

In obtaining eq. (5.58), we have used a transcription rule similar to eq .
(3.14), and then have employed the relation (4.11) with respect to Xr) + .
Finally, by inserting eq . (5 .52) into eq . (5.58), we get the deformations

ß(p) =

	

F?3a{ Uyo( A 1) Uy o (/12)+ Vyo ( A 1) Vyo ( A2) }ÀA.

+ > G$~åaf Ur n (2 i) Vy o ( 22) + Vyo( A 1)L'yo ( A2)} ,
112 9
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F~,~~ a

F 2 ),ta. a

G 2(1)t)~ a

G (2)kJ,

eQ
(se = s Q = - 1)

	

(sw = + 1 )

(pl Q201 v)

	

f q'(ve)nr(pe) + 14)(Pe)eå°)(ve)} .
,(.lV

	

p
(s~ = si, =+t)

= -I )

(el Q2016)

	

{qt'(pe))IV(,u6) +

(s0 -1) 1

4

(5.58)
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fl =

	

~z{ Uy o (21)Uyo (22) + Vya(k) Vya( 2 2) }
2,A E

	

+

	

Ga{ Uy0(21) Vyo( 22) + Vy o(~1) Uyo ( 2 2) } .
A,7.

In the expressions (5 .59a) and (5.59b) we have already dropped the fol -
lowing terms, respectively :

F(2)a Vy(2 1) Vy( 2 2) + ~ Gå~7z ~ Uy( 2 1) Vy(2.2 )
a,aa

	

y

	

y

Fa • Vy( 21)Vy(22) + G(À'-1a • ~ Uy(21) Vy( 2 2)
y

	

R,7 f

	

y

These terms occur not only in the excited 0 + states 1 Tyo > in which we
are interested, but they are also common to all other excited states I Ty > .
The sum of both terms can thus be interpreted as an "unphysical deforma-
tion" of the spherical ground state IPo > (defined by eq. (5.41)) given by

< T01 Q2o Po% = (F11+ F(2 )
m

	

-) Vy( 2 1)Vy(2 2 )
y

+

	

(Gål) + Gå,~åa)' Uy( A 1) Vy( Â2) •
,7.2

	

y

We are now in a position to write down the final result for the intrinsi c
deformation ß of the excited 0+ state. The result is

ß = <Ty o I 02oI 1̀yo>

	

< ỳ1 OA I y a> = ß()°) + ß(h )

	

AlÀ
(FLI + FjL){Uyo(A1)Uyo(22) -F Vyo ( X1) Vy0(22)}

	

(5 .62)

+

	

(GÅ'l + G , ) { U,,(2 1) Vy,( 2 ) + Vyo ( A l)Uyo ( A2.)} .

Here we have used the fact that <Tyo 1 02ô I yo > = 0, which follows
from a relation analogous to eq. (4.11) . The operators Q20 and Q20 ar e
defined by eq. (5 .8) . From the definition (5 .56) of F and G, it is obviou s
that in the absence of ground-state correlations due to the field-producin g
force (that is, if 17X )(,uv) = 0 and Vyo(A) = 0, (see eq. (5 .50)) only the
first term in eq. (5.62) contributes to the deformation . Thus the expression
(5 .62) allows us to identify clearly that part of the deformation in the ex-
cited state which arises from the cooperation effect of the core deformation .

(5 .60)
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5.6 Rotational Bands Built on Excited State s

The basic equation (5 .42) of our self-consistent method describes th e

intrinsic excitation in the body-fixed coordinate system associated with the

intrinsic deformation of each excited state . Thus the state vector I TJy i in

eq. (5 .41), describing the intrinsic excited state, has no definite angula r

momentum. The proper eigenfunctions with definite angular momenta ar e
then obtained by the usual projection operation (16 >, which also yields th e

rotational band structure belonging to the intrinsic excited state IT'y > .

To avoid the problem of computing overlap integrals in this method ,

we may apply the conventional Bohr-Mottelson description to our problem .

Then our system is described by the following effective Hamiltonian :

3
h 2

H = ~ 25,,(a)
R,,2 +

H(a)
,

x =

where IH(a) is given by eq. (5 .37) and Rx is the component of the "collec-

tive" angular momentum in the direction of the x-axis of the body-fixed

coordinate system, and the quantities x are the principal moments o f

inertia .

The physical interpretation of eq . (5.63) is the following : A specific
intrinsic excited state ITfy > defined by eq . (5 .41) is created by applying

the operator Xy to the spherical ground state of the closed-shell nucleus .

Once the state is excited, we can choose the body-fixed coordinate syste m
determined by the axes of the intrinsic quadrupole deformation of thi s
excited state . The corresponding moments of inertia of the state Ty > can

be calculated . With these moments of inertia the intrinsic excited state per -
forms a rotational motion which gives rise to a rotational band belongin g
to this specific state TI-y ) . The explicit calculation of the moments o f
inertia for the state 1 T'y > is possible by applying the conventional Lagrang e
multiplier method to our self-consistent approach developed in section 5 .4 .
However, we do not want to go into further details in the present work . With
the approximation (5 .63), the rotational states belonging to the excited 0 +
state discussed in section 5 .5 are of the usual form

=
[21+11 2

I1t1 ;YoKyo = 0)	 	 87.c

	

DNrxya - o( 0i)I Tyo %

I~ = 0+,2+,4+,6+ . . . .

(5 .63)

with

4*
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Here I
ryu>

is defined by eq. (5.54), and the effect of the well-known

symmetry restrictions are taken into account in limiting the allowed values
of I .

6 . Electromagnetic Transitions

In this section we discuss various electromagnetic transitions involvin g
even parity states (with T = 0) in closed-shell nuclei . Electromagnetic
transitions are a crucial test of the theory, more than energies, in particular

they are shown to be decisively influenced by the interplay between the
residual interaction and the field-producing force . The essential difference s
between G . E. Brown's and our theory are pointed out .

6.1 Energy-Weighted Sum Rule

As a preparation we wish to show that, for a general one-body boson
operator defined by

=

	

(6 .1 )
,uv

the following sum rule holds within our approximation (4 .5 )

I<Wo1 t 1 -T,>1 2 (Ei- Eo) = 2<0ô1 [t[FI, ]]I Øô> .

	

(6 .2)
A

Here the unperturbed ground state 1 Ø 0 > is defined by eq . (3 .11), I >
and I tea, > are defined by eqs. (4.12) and (4 .13), respectively, and (E1 - Eo)

.Ql are the eigenvalues of eq . (4.9) .

With the aid of eqs . (4 .11), (4, 9) and the completeness relation (4 .10 b)
we can rewrite the left hand side of (6.2) as

I<q̀'01tI `z>1 2(El - Eo) =

	

[1' 0, 1 l;?I v){7,(,uv) - v/R(Fiv )}] 2Q1

=

	

(Pi t 1 v) (el

	

(Np,vQ.Q - Nyvea)

	

(6 .3)

,tuers

On the other hand, we obtain directly

<001 [t [Ii, t]] 100> =

	

(FB I DI v) (el I a) (N1, ve, - nvoc).

	

(6 .4)

µvQc

Comparison of eq . (6 .3) and eq . (6.4) proves the sum rule (6 .2). An analog-

ous rule is known (17) for "lp-lh" excitations described by the conventional

RPA .
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Now we observe that in our theory an operators for electromagnetic

transitions can be written as one-body boson operators of the form (6 .1 )

by inserting (3 .15) into eq. (3 .17). Consequently, the usual energy-weighte d

sum rule for electromagnetic transitions holds in our approximation . This

is in contrast to the mixing model (5,, 6) in which there is no guarantee tha t

the sum rule might not be violated .

6 .2 Transitions Within Rotational Band s

For simplicity we confine ourselves to the rotational band belonging t o

the excited 0+ state discussed in sect . 5 .5 ; in the following we wor k

with the wave functions (5 .64) . Furthermore it is convenient to refer th e

mass quadrupole moment operator Ow (defined by eq . (5.3) with L = 2)

to the body-fixed coordinate axes which are chosen to be the axes of the

intrinsic quadrupole deformation of the excited 0 + state . This is achieved i n

the usual way by writin g

~2M = DXvK 2(B i)02K ,
K

(K = 0, + 2) .

	

(6 .5)

Now the E2 transition matrix element between an initial state II i ,Mi ;

yoKyo = 0) and a final state IIfMf ; yoKyo = 0) is given by

(If llff ; yoKyo = 0 I M(E2, NI) 1 IiMi , yoKyo = 0)

= e(IfMf ;
yoKyo = 01 02M ; yoKy = 0) .

Here we are considering only T = 0 states . With the aid of eqs . (6.5) ,

(5 .64) and (5 .62), we then obtain the result

(IfMf ; y olfy o = 0 1sraz(E2, M) IIi NIi ; yoKyo = 0)

2L + 1J2

	

(6 .7 )
= 2e	

e	
<Ii2MiM I If111f> < L 200111.0> •

21f -1- 1

B(E2 ;Ii -> If) = 4e2 2001 If 0> 2 •ß2 .

	

(6.8)

Eq . (6.8) shows the well-known dependence of the E2 transition probabilitie s

within a band on the intrinsic deformation, ß, defined by eq . (5.62) charac -

teristic of this specific band .

(6 .6)
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6 .3 E2 Transitions Connecting the Rotational Band with the Ground Stat e

Here we consider the E2 transition from the 2 + state in the rotational

band belonging to the excited 0 + state discussed in sect . 5 .5 to the ground

state . In this case, the E2 transition matrix element connecting the 2 + state
IIi = 2,Mi ; yoKyo = 0) and the ground state, I0 1), is given by

(0Z,1~(E2,M)IIi = 2,11Ii ; yoKyo = 0)

= 2 e < 22117i M 1 00><WoQ2,K = 0I q1-yo >

and so we have

B(E2,2i - 0 ) = 2ä e2 < o1Q2K=o) Py a >1 2 ,

	

(6 .10)

where i O > and 1 yo > are given in eq . (5.54) or eq. (5.40) .
In evaluating <To I Q2,K =0 ) Y'y> we first observe that <iP I OK =00 1 Ty>

= O . This result is obtained with the use of the definition (5 .8) of Q21K = o
and by inserting eq . (5 .52) into eq . (5.58) . Then, using eq. (4 .11) with
respect to Xÿ , we have

<TolQ2,K =0 = <TOIQ22K = O1 Tyo >

Q20I v)}yo(yv) -
1iy0 (,uv )} ,

µv

where e yo (,uv) and nyo (yv) are defined through eq. (5.40) and are written

with the help of eq. (5 .50) as

$ya(u v )

	

U,( 2) Œ )(uv) + Vyo(2 ) 12r( / '
f"v) }

?ayo @tv) = { Uyo (Â)n '(,uv)+Vyo(A) r(uv)}-

	

(6 .12)

With eq . (6.11), eq. (6 .10) becomes

B(E2 ; 4- ~ Oi) = 2oe2[(,ii)Q20I v){ yo(,uv) ')yo(ccv)}]2 .

	

(6.13)

It is interesting to observe that formally eq . (6.13) has precisely the

same structure as the corresponding equation obtained by the conventiona l

RPA for "1p-1h" problems . For the E2 transition from the "dressed 2p-2h "
excited 2+ state to the ground state, we will therefore expect the well-known

enhancement associated with the structure of eq . (6.13) . In particular w e

will have the usual relation : the stronger the field-producing force, the large r

the B(E2) value . Such an enhancement, caused by the collective ground -

state correlations due to the field-producing force, is a direct and natura l

(6 .9)
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consequence of the present theory . The enhancement is needed to explain

the large measured transition rate in Oi6 namely B(E2 ; 2i > OP) = 5e 2 fm4 .

An interesting feature of the electromagnetic transitions is the importance o f

the interplay between the residual interaction and the field-producing force .

It becomes most obvious if we neglect altogether the ground-state correla-

tions due to the residual interaction. Then, from the definition (5 .4) we have

Cal

	

= 0 for sa = 1, .sv = -1 ,

and thus there are no E2 transitions from the 2 + state to the ground state .

But the residual interaction need not be strong either . Even a weak residua l
interaction may provide a sufficient basis for strong collective ground-stat e
correlations (due to the field-producing force) .

6 .4 E0 Transitions from Excited 0 + States to the Ground State

Throughout this subsection we are again considering the excited 0 +
state, I02) = I = 0, M = 0 ; yoKyo = 0), discussed in sect . 5 .5 . The effec-

tive operator for the decay of the state I02+, ) to the ground state 10i) by elec-
tron-positron pair emission or internal conversion is given b y

Po = e<aI 1 	

2

	 T3 r2 1 ßi : cå cß :~

	

.

With the help of the rule (3 .14) and eq . (3 .13), we can expand the operato r
in terms of pair scattering modes as

(6.14)

Po = S(p I PoI v) (6.15)
,uv

2

	

4e <al1 +	 T
3

2 I' I ßisµ~µ(ay)(1 - O~, - ec)svTv(ßy)•

	

(6.16)
aßy

	

_

Thus, in the same way as in the preceding subsection, we obtain the matrix
element for pair emission as

where

(PI Pol v)

(Oi 1 P01 0z) =

	

Ca l Pol v){ y,( tv ) ny o(pv)} .
,uv

(6.17 )

As in the preceding subsection, we may expect from the structure o f
eq. (6 .17) an enhancement of the pair emission rate, possibly sufficient t o
account for the large experimental value in 016 , namely (OZ I Po 10j!- ) 0.4eRô
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(Ro = nuclear radius) . Furthermore, the arguments given in the precedin g
subsection for the importance of the interplay between residual interaction s
and the field-producing force are equally applicable here . The influence of
the intrinsic deformation of the state 102) on the pair emission rate becomes
evident if we insert eq . (6 .12) into eq . (6.17) and then trace the role of th e
functions Uya and Vy0 .

6.5 Hindrance of Double Gamma Decay of the First Excited 0 + State

In discussions of the properties of the first excited 0 + states in closed -
shell nuclei, an instructive piece of data has often been neglected, namel y
the absence of observed yy-decays of these states . Usually the first excite d
0 H- state 102) = [W, ,> decays to the ground. state 10i) = I n0 > by the EO
transition discussed in the preceding subsection . However, the two-photo n
emission (18, 19) may also contribute to the decay. In this case, the total energy
E,10 - E0 = S2 1o = h(w + w') is split up between two photons with energies
hw and hw ' . The most probable decay mode will consist in the emissio n
of two dipole quanta . Then the total transition probability is given by (is, 19 )

2

	

1
WYY

	

105a (lic) 6 (EA° - E0)'

>: (0 1-1 E
(E1

,
0 )I n)(n l

E
(E1

,
0 )I 10

En -E0

(6.18)

+ T3

x
2

/4z
3

where

î(E1,0) = e(a11

	

-rY1o(09))I

	

cåcß :
aß 2

is the electric dipole operator . In the sum over the intermediate states In)
in eq. (6 .18), the most important contribution will come from the gian t
dipole resonance, so that En - Ei, »» hw or hw ' . This fact has been used t o
drop the terms Ira) and kw ' in the energy denominator of eq. (6.18) .

In trying to evaluate eq . (6 .18) it is necessary to relate Wyy to other
independent observable quantities in an unambiguous way . This is best
done by introducing (19) a parameter 77 through the definitio n

1
1E(E1,0)In)(nlP(El, 0) 1 02)

En - E0
n	 	 (6.19)

=
>w EO

(O1 R (E1 , 0 ) n)(n 1 a12 (E1 , 0)I Oi ) •
En -

n
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The sum of the right-hand side is closely related to the (- 2)-moment of th e
photonuclear absorption cross section (20 )

~_ 2 ° f ~~~) dE

16z 3 N ~

	

1
.=

	

-(Oi 12(E1,0)1 n)(nIE(E1,0 1 0i) ,
3 he

	

En -Eo

which is known to be a smooth function of the mass number A for mos t
nuclei . The parameter 77 is a well-defined quantity and can be obtained fro m
the experimental upper limits for Wn /W(E0), from W(E0), and eqs. (6.18)
to (6 .20) . The result of such an evaluation is presented in table I .

TABLE I . Hindrance of Double Gamma Decays

E Wexp(EO) a) W yy/ Wexp o_ 2 usecld) ll'YY ( calc )
,12

[MeV] [sec1 ] (E0) [yb/MeV] [sec 1 ]

0 16 6 .05 1 .4 10 1D < 1 .1•10- 410 7 y,6 1 ' 5 .8•10' Ty"

	

< 2 .6 . 10- 4
Ca40 3 .35 2.9 . 10' < 4

	

• 10- 4c) (2 .6 1 0 .5) . 10' 1 .2 . 10 8 al z

	

< 0 .95 . 10- 4
Ge 72 0 .69 3 .4 . 106 3 .5 A5 ' 3 5 .6 . 10 4

77 1

Zr" 1 .75 1 .1-10' C 1 .8 . 10
-40)

3 .5 A5,3 8 .1 . 10' 7p z

	

< 0 .25 . 10- 4

a) see the first of refs . 19 .
b) see ref . 23 .
c) see ref . 24 and compare the still lower limit given in ref. 25 .
d) for Ca40 , see ref. 26, for the other nuclei ref. 20 .

Replacing in eq . (6.19) the main resonance region by a single represen-
tative state !no), the "dipole state", we may take* 77 as a measure for the
ratio of matrix elements

X 0 2 	 (E1, 0)Ino>

ICI

	

(0i l(E1,0)Ino>

	

(6.21 )

If the two states l0i) and 102) were of a very similar structure then s shoul d
be of the order one . Table I shows, however, that in all measured cases 77

must be a very small quantity, indicating, quite systematically, that the first
excited 0 1- states seem to have no appreciable coupling to the giant dipol e
resonance .

* This replacement is possible unless there are considerable cancellations in the left han d
sum of eq . (6 .19) due to fluctuations in the sign of (nl Ø0«E1, 0)102 )/ (n l0t(E1, 0) 1 00 . It is known,
however, that the giant dipole resonance behaves like a single coherent state, the dipole state ,
so that strong cancellations are not to be expected .

(6.20)
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Similarly the coupling of the first excited O+ state in 016 with other 1-

states which are normally described as "1p-1h" excitations seems also t o
be small (21, 22 )

B(El ;1 -- (7 .12) -~ 02,+ ) /B(E1,1- (7 .12) --> q) < 10- 2

B(El ;1-(13.1) --> 02)/B(E1,1-(13.1) --> Oi) < 10 -2 .

Here, it should be noted that the first transition occurs only through isospi n

impurities . The limits are not as low as those for 71 ; on the other hand, the
interpretation is unambiguous .

As has been realized long ago Flo) , it will be very difficult to explain

the experimental limits (6 .22) in a model (6 ) in which both I OP) and 102)

are described as a mixture of spherical and deformed states with roughl y
equal amplitudes . It may be even harder to account for the smallness of

1121 without simultaneously destroying the strong EO and E2 transition s

between the rotational band and the ground state of 016 . On the other hand,
we wish to show that the present theory does not encounter such difficulties .

Suppose that the states In) are well described as " 1p-1h" states in the

conventional RPA :

I n ) = D,+z IOi)

	

(6 .23)
with the creation operator s

D,å = (Rn(aß)aåbß + Sn(a(3)bßaa) .

	

(6 .24)
a

Then, with the aid of the inverse relation to eq . (6 .24) ,

aå b = (Rn(aß)Dn - Sn(aß)Dn),

	

(6 .25 )
n

the denominator of eq . (6 .21) is written in the usual form

(q P(El , O )1 no) = e
ß<«1

	

I'
1

2z3Yio(8(p)Iß~{Rna(aß) - Sno(aß)l .

	

(6 .26)

In the same approximation in which eq . (6.26) has been obtained, th e

numerator in eq . (6 .21) becomes

(02 1 E(E1, 0) no) = e 2 <ai 1
T

3I' Yi.o(e4')I ßi {Rn(aß) - Sn(aß)}
n afl

X (0 2 I tnno1 0 1 )

	

(6 .27)

=

	

IE(E1,0)1n)(02 l fnnolOi) ,

n
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where the operator nn0 is defined by

+ + + +
nano = - Rn(a1ß1) Rn~(a2ß2) a, a az b ß, bß2

a,ß, a2ß 0
(6 .28)

-
q

	

R

	

L

	

L
Sn( a lßl)Sno(a2ß2)aa,aa bßibß •

a,ß, a0ß0

To get a rough estimate for the order of 177 1, we assume that we can replace
the sum over intermediate states by the "dipole state" Ino) . From eq . (6 .26)
and eq. (6.27) we get for the order of 177 1 the result

ow N ( Q Itnanol0l )i• (6 .29)

Expanding the operator C n no in terms of the pair scattering modes with the
aid of eqs . (3 .15) and (4.11), we hav e

0(10 - 1vTyol fnon e i To>1

	

i
(1 - Oa, - Oat) (1 - 0 b,. + O b2) R no(alßl)R mo (a2ß2)

a,a2 ß,ß 8

X

	

[ Ao(,uv )P,u( a la2) 'F2,01ß2) - ro,o(i tv )TF.G(ßlß2)wv(ala2) ]
µ v

Sµ = 1, S 9 = -1

	

(6 .30)

+ 4

	

(1 - Oa, - Oa2)(1 - 0b, - Ob)Sno(a1ß1)Sno062ß2)
a,a2 ß,ßz

	

/~
x

	

[ e2u(~v)TA3 1ß2) 2yv(ala2) - iAo(tiv)T,.(ala2)Tv(ß2ß2)]
J

itv
sµ=l, s„=- 1

in which the leading terms are

14

	

(1 - Oa, - %2)(1 O b, - O b)R na(atßl)Rno (a2ß2)
a,aa 1302

X

	

$Ao(t,v )T,u(ata2) P-v(ß1ß2) 1

sÿ= -1

According to the present theory, the hindrance of the double gamma deca y
comes from the extreme smallness of the overlap in eq. (6.31) between the
"lp-1h" correlation functions Rno (a 1ß 1 ) and Rno (a2ß 2 ) for the giant re-
sonance and the "2p-2h" correlation function,

	

$Ao(uv)PI,(ala2)Tv(ß1ß2) ,
he v

for the first excited 0 + state . One reason for this smallness is simply the angular
momentum recoupling which is sufficient to explain the limits (6 .22) . In
the case of the dipole resonance, we have an additional effect : The larges t
components of Rna (aß) for the giant resonance state come from the highest

(6 .31 )
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particle levels a and the lowest hole levels ß, while the largest components o f

,to (~4v)ŸJ~(a1a2) 1lfv(ß1 ß2) for the first excited 0 + state come from the lowes t

particle levels a and the highest hole level ß . A rough estimate with simplify-
ing assumptions seems to be in agreement with the experimental limits on Ink .

7. Conclusions

In the last few years, the RPA describing "1p-1h" excitations has found

a wide field of application, particularly in explaining collective phenomena
in nuclei . Essentially, however, this approach is exhausted and its limita-

tions are known. In the present work we have attempted to construct a

systematic theory for " 2p-2h" excitations. Clearly, this problem is next i n

simplicity after the "1p-1h" excitations, and yet it yields a wealth of new
collective phenomena . In constructing the present theory some approxima-

tions are necessary, of course . One of the important approximations is th e

two-step method and the other is the neglect of interaction matrix elements
involving an odd number of fermions or fermion pairs (i .e ., HY and Y,
respectively) . This shortcoming may partly be compensated by a proper

choice of the effective interaction . Similarly as in the conventional RPA we
also were forced to renounce the Pauli principle to some extent . As far a s
the Pauli principle is concerned, our NTD method is constructed in such a
way that, in the limiting case of a pure 2p-2h system (without ground-stat e

correlations), all our results are exact .

The starting point of our work was the problem of 0 16 and Ca". It was
felt that existing theories and models were unsatisfactory and not entirel y

adequate to cope with the situation . The reason why the collective ground -

state correlations introduced in our NTD method should become particu-
larly important for closed shell nuclei is obvious : These ground-state correla -
tions carry the decisive interplay between field-producing forces and the resi -

dual interaction . Even a weak residual interaction may provide a sufficient basis
for strong collective ground-state correlations (due to the field-producing force) .

In a pictorial language, the residual interactions are indispensable fo r
softening the core, so that the strong field-producing forces are able t o
deform it . All these effects are included in the " collective predisposition" of
the spherical ground state for deformed excited states .

Although in the present work our NTD method was primarily designe d
for closed-shell nuclei, a wide field of applications suggests itself . The next
objects of interest will be nuclei which differ by two nucleons from closed-
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shell nuclei, like 0 18 and Ca42 . Here, certain excited states will be described
by a "2p-2h phonon", )C ,F , coupled to a correlated pair Al. The presently neg-
lected interaction ~ Y will become important for the coupling . Similarly it
will be possible to describe certain excited states in nuclei like 0 17 and F17

by coupling a fermion to a "2p-2h phonon", where HY might be expecte d
to play an important role . Since the excitation from a spherical ground
state to a deformed excited state is definitely due to an anharmonic effect ,

we might also expect our NTD method to be useful in describing anharmoni c
effects in the second excited states (Jz = 0+, 2 + , 4+) in spherical even nuclei .

Before entering on such problems, we duly turn back our attention to
the starting point 016 and Ca40 . It is true that we are not yet able to present
any numbers : a quantitative discussion will be the subject of a later publica-
tion. But, fortunately, the measured properties of 0 16 and Ca40 are s o
striking that a natural simultaneous explanation of the various phenomen a
has a certain conclusive value even though it is only qualitative .

We believe that we easily can account for the strong collective lowerin g
(with respect to the unperturbed positions) of first excited even parity states .
It is due mainly to the deformation, but "triggered" by the residual inter -
action. Since the excited state with a definite intrinsic deformation contain s
the ground-state correlations properly, there is no difficulty in simultaneously
understanding both the rotational band structure and the E2 transition t o
the ground state. In other words, although the ground state is spherical and
the excited states are deformed, we may expect strong electromagnetic transi-
tions between the rotational band and the ground state . This is borne ou t
both by the validity of the energy weighted sum rule and the expression give n
explicitly for the transition probabilities . Formally, the expression has a
very close resemblance to the corresponding expression for the strong collec-
tive transition probabilities described by the conventional HPA . Finally, the
collective nature of the first excited 0 + state in 0 16 and Ca40 makes it easy
to understand the strong hindrance of the double gamma decays . Thus, we
feel that, in principle, all the striking and not easily unifiable features o f
016 and Ca40 can be well accommodated in our theory without dependin g
on a very critical choice of some parameters .

It is sometimes argued that any theory which tries to describe the lowest
excited even parity states in 0 16 as consisting mainly of 2p-2h excitations
is doomed to fail from the outset . The arguments are usually based o n
the fact that Hartree-Fock calculations (3) for 0 16 , with certain restrictions
and confined to a space of pure 2p-2h or alternatively pure 4p-4h configura-
tions, might give a lower energy for 4p-4h excitations` . From our point of
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view, such arguments are not necessarily conclusive . In spite of the resul t
of reference 3, we still tend towards the orthodox belief that the shell-mode l
configuration with the lowest zero-order energy should be of some impor-

tance. Furthermore, we feel that taking into account the collective ground -

state correlations might change the ordering of the "2p-2h" and "4p-4h"
states . The reason is that only the 2p-2h states couple directly to the shell -
model ground state (provided that only conventional two-body interaction s
are considered) . Thus, it seems to us that the question of whether the "2p -
2h" or the "4p-4h" configurations win the competition of being mainl y
responsible for the first excited 0+ state in 016 cannot be decided before

quantitative calculations in the framework of the present theory are per -
formed .

Whatever the outcome may be, certainly there will be states to whic h
our approach is applicable and there may be use for it in other problems .
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