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Synopsi s

The paper contains a survey of the investigations of the last decade on the
energy-momentum complex in general relativity. A comparison of the propertie s
of the various complexes proposed in different papers is performed and their ad -
vantages and deficiencies are discussed . A satisfactory solution of the energy
problem in accordance with the general principle of relativity has now been reached .
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S
hortly after EINSTEIN had developed his final theory of gravitation in 191 5

he also attacked the problem of energy and momentum conservatio n

for the complete system of matter plus gravitational field . In his famou s
papers from the years 1915 and 1916 [1] he introduced the well-known ex-
pression for the energy . momentum comple x

Erik =
rik

+ Etik

which satisfies the divergence relation
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as a consequence of the field equations . Here, Zile is the matter tensor density,

which appears as source of the gravitational field on the right-hand side o f
Einstein's field equations, while the gravitational part Etik is a homogeneous
quadratic expression in the first-order derivatives gik , l of the metric tensor

gik . In terms of the Einstein Lagrangian
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Etik has the canonical form
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where x is Einstein's gravitational constant . E2 is obtained from the scala r
curvature density 9'i by omitting a divergence part containing the secon d

order derivatives gik, a, m It is an af ine scalar density which is homogenousl y

quadratic in the gik,a and the expressions (1)-(4) can be obtained by th e
well-known method of (linear) infinitesimal coordinate transformations
applied to E2 .

This paper was reported at the Einstein Symposium der Deutschen Akademie der Wissen-
schaften, Berlin, in November 1965 .
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For a closed system and for a restricted class of coordinate systems th e
quantities obtained from Ezik by integrating over the spatial coordinates, i . e .

EPa c f I I ET2 4 dxl dx2 dx 3

have quite remarkable properties . Before stating these properties we have
to specify what we mean by a closed system. In general, an insular system,
i . e . a system for which is zero outside a time-like tube of finite spatia l
extension, is not closed since it may lose energy by emission of gravitationa l
radiation. This question has been studied extensively by BONDI et al [2 ]

and by SACHS [3], and we can now give a general definition of a non-radiativ e

system. A system is said to be closed if it is insular and, further, if it i s
possible to introduce a class of coordinate s

xi = {x, y, .z, et}, r = 1/x2 + y 2 + z2

	

(6)

with the following properties . Points at large spatial distances from the matter
tube have large values of r, i . e . spatial infinity corresponds to r .o . The
metric is of the form

fil'gik = flik + gik

	

( 7 )

where nik is the constant Minkowski matrix and
(gik

and its first-order

derivatives are asymptotically of the typ e

(1)

	

_ (1 )
gik = Ol , gik, l = gik, l - 02 .

	

(8
)

Here, On with positive integer n denotes a term for which rn O n remains

finite for r-co . The coordinates defined by (6)-(8), the "B .S.-coordinates"

for a closed system, are asymptotically Lorentzian since gik-)-nik for r - cc .

Now, by integrating (2) over a suitable cylindrical region of space-tim e
and using Gauss's theorem one finds in a well-known way that the quantitie s

EPi have the following properties A, which are essential for the interpretatio n

of Pi as the components of the four-momentum :

A For a closed system and in a system of B .S.-coordinates the quantities Pi

are constant in time and they transform as the components of a 4-vecto r

under all linear transformations .

These properties are contained in the more general statement, also followin g

from (2), that the integrals
1
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integrated over any space-like 3-dimensional hypersurface E' of infinit e

extension are independent of the choice of Z . For the validity of A it i s

essential that ETik is an of fine tensor density of weight one and that th e

gravitational part Erik is a homogeneous quadratic function of the gik,l ,
for this means that Eri k = 04 in a system of coordinates (6)-(8) .

If we eliminate Zik in (1) by means of the field equations the comple x

ETi k appears as a function of the gravitational field variables for which th e

relation (2) must hold identically . This means that ETi k may be written i n

the form
ETik

	

EPikl ,i

	

( 10)

where kikl = - ,bilk the so-called superpotential, is antisymmetrical in k
and 1 . This possibility was first noted by VON FREUD [4], the explicit expres-

sion for EPiki is [5]

giklm = ( _ g)
(gik

g lm gil gkm)

The latter quantity is a true tensor density of weight two, satisfying the

symmetry relations
(13)

while Eyikl, which is a homogeneous linear function of the gik, i , is an affine

tensor density of weight one .

By means of Stoke's theorem one gets from (9) and (10) for the four -

momentum

	

1
EPa

	

2 c J Eviklds kl

	

(14)

where the integration is extended over the 2-dimensional boundary surfac e
Ø of X corresponding to a large constant value r1 of the "radius" r (strictly

speaking one has to take the limit rl -)- oo) . Thus, EPi depends only on the

asymptotic values of the metric and it is, therefore, invariant under al l
coordinate transformations which preserve the asymptotic form of gik .

By means of (1) the equations (10) may be written

kl

	

l k~ k
E~Ÿi ,l Ei - "LI

which obviously is a special form of Einstein's field equations . If we rais e
the index i by means of the metric tensor gik these equations can also be
brought into the form

with

Elpi
kl =	 gin	 gnklm

2xv-g

	

,na

(12)

Bildm = Bilkm = _ gmkii gkimi

(15)
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ikl
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where

	

1B
'u'l
	 gikl7n m - _B,ilk

	

(17 )
2xV- g

and Bilk again is a homogeneous quadratic function of the gik, i • In thi s
way we arrive at the complex first given by BERGMANN and THoMsoN [6] .

B
Tik =

	

+
2ik =

	

ikl

	

(18)

The integrated quantities BPi obtained from this complex in a similar wa y
as EPi in (5) or (9) also have the properties A. Moreover, in any system o f
B .S .-coordinates we have simply

EPi - ?Îik BPk

	

(19)

i . e . the two different complexes give the same values for the total momentum
and energy in such coordinates .

Similar properties has the following complex given by LANDAU and

LIFSHITZ [6] :
LTik -

L
ikl

l (20)

Lvikl 1	 gikim (21 )

From (16)-(21) it follows that

9 x

	

m

LTik = g (zik + Bilk) (22)

where Lzik like B zik is an of fine tensor density of weight one, which is a

homogeneous quadratic function of the gik, l . Consequently LTik is an affine

tensor density of weight two, which means that LP' is a 4-vector under
Lorentz transformations only . On the other hand LTik has the advantag e

of being symmetrical in i and k as is seen at once from (20), (21) and (13) .

In any system of B .S .-coordinates we have

LPi = BPi = ylik EPk

so that the three different complexes are equally suited for the calculatio n

of the four-momentum in such coordinates . However, in more general system s

of coordinates the application of these complexes leads to meaningless results .

From the point of view of general relativity this is not satisfactory and in

(16)

(23)
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the past this has caused some doubts about the applicability of these com-
plexes at all. As a matter of fact we must require of a truly generally relati-

vistic expression for the four-momentum that it satisfies the following con-
dition :

B For a closed physical system the total four-momentum is a free 4-vector
under arbitrary space-time transformations.

The necessity for this requirement is seen at once if we go to the limit o f
spatially very small systems, for in this case our system is effectively a
particle which, according to basic assumptions of general relativity, certainl y
should have a four-momentum with this property .

A somewhat weaker requirement contained in B is the condition tha t

B' the fourth component of the four-momentum must be invariant unde r
purely spatial transformations

x` = fa (xx), x 4 = x4
i, e .

P4 = P4

which expresses the physically evident fact that the total energy is invariant
under such transformations .

Now, none of the forementioned complexes satisfy even this rather weak
and triviel condition. In the case of the Einstein complex this was pointe d
out first by BAUER [7] who remarked that in a completely empty spac e
Einstein's expression for the total energy gives the correct value zero in a
Cartesian system of coordinates, but the meaningless value - co when cal-
culated in polar coordinates . For this reason the whole question of the energ y
in gravitational fields was taken up again in 1958 [5], and it was shown
that it is possible to define a complex

0i
k

	

k
-f- 4%tk
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=

	

, l

V - g
xikl =

	

(gin, m gim, )
gkm

g
i n

x

which satisfies the condition B'. In fact it follows from (26) that 044 is a
scalar density under purely spatial transformations which means that the
Bauer difficulty does not arise with this complex . Further, it seemed that
this complex made it possible to give an unambiguous meaning to the di-
stribution of the energy throughout space-time . Similarly as the Einstein

(24)

(25)

(26)
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expression is obtained from the Lagrangian EØ, the complex (26) follow s

by the method of infinitesimal coordinate transformations applied to th e
complete scalar curvature density 91 [8] . However, a closer consideratio n

showed that the complex (26) does not satisfy the condition A . This is

connected with the fact that besides the gik, t also contains the second -
order derivatives gik, i, m . Furthermore, it is not sufficient to consider th e

energy only, i . e . besides the condition B ' we have to require the full conditio n
B to be satisfied and this is not the case either for the complex (26) . In
fact the applicability of the latter complex is even more restricted than th e
three former complexes .

In a recent paper, which will appear in the Report of the Conference o n

Elementary Particles held in Kyoto in September 1965, the question was dis -
cussed what properties of the energy-momentum complex Tik are necessar y

and sufficient in order that the integrated quantities Pi have all the properties

A and B . The result was the following :

1. Ti k =

is an affine tensor density of weight one satisfying the relatio n

Tik ,k =O .

in every system of space-time coordinates .

2. Ti k is a function of the gravitational field variables which, in a B .S.-syste m
of coordinates (6)-(8) for a closed system, satisfies the relatio n

3.

is a true tensor density depending on the gravitational field variables an d
their first-order derivatives only .

r 3 ,gik -+ 0 for r--œ . (29)

The superpotential uika = - ~q lk

	

which expresses Ti k in the form

~T1k = ukli

	

i
(30)

The conditions 1 and 2 ensure that the integrated quantitie s

Pi c f J T
i 4 dxl dx 2 dx3 = - c

f Tik dSk = - 2 c J u
ikl dSka

	

(31 )

E

	

Ø

have the properties A . Further, with the assumption 3 . the quantity dAi =

= 11,ßk2 dSki is a true 4-vector on O . Therefore, since space-time for a close d

i (27 )

(28)



Nr.3

	

9

system can be treated as flat on and outside Ø the vectors dAi can in a uniqu e

way be parallel-displaced to a common point P on or outside Ø so as to for m

a true 4-vector at the point P . Thus Pi is a true free 4-vector . It should be note d

that, for a system with sufficiently small spatial extension say an atomi c

system, "spatial infinity " is practically reached already at very small distan-

ces, so that the "radius" r 1 of Ø in such cases may even be taken micro-

scopically small .

None of the complexes mentioned so far satisfy the condition 3 . In fact

it is evident that no complex containing the metric tensor only can satisfy

this condition, for it is impossible to construct a true tensor density 111»

out of gik and its first-order derivatives . This shows that one has to introduc e

a new element into the space-time manifold of general relativity and thi s

can be done in different ways .

Following ideas of ROSEN [9], CORNISH [10] introduces a flat space metric

gik which asymptotically for large spatial distances agrees with gik . TheSi
mapping of the real space-time with metric gik on the imaginary flat space -

time with the metric gik may for instance be performed by assuming that

gik in a definite B.S.-system of coordinates (6)-(8) has components gik = 'rlik
throughout space-time . In any other system of coordinates obtained by a

non-linear transformation the components of gik are then not constant

although, of course, the curvature tensor corresponding to the metric gi k

vanishes in all systems. Now, if the covariant derivative of a tensor A i k

corresponding to the metric gik is denoted by Aikil one may, starting fro m

EPikl in (11), define a superpotentia l

cu2kl -	 gi n	 gnklmlm

	

(32)
2x- g

which obviously is a tensor density under arbitrary space-time transforma-

tions . Then, the complex

cTi
k

= cut
kl, l

	

(33)

satisfies all the conditions 1-3 and the corresponding integrated quantitie s

ePi will have all the properties A and B . In a similar way one could star t
from the superpotentials Bel and Lei and construct true tensor densitie s

by means of the flat space metric gik . In this way one would arrive at tw o

other expressions for the total four-mementum which are numericall y

identical with the one following from (32), (33) .
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However, this method of obtaining true tensor densities by introducin g

an unobservable metric does not seem to me quite satisfactory. Apart fro m

the arbitrariness in the mapping of the real space-time on the imaginar y
flat space-time which perhaps is not so serious since it does not effect th e

values of the total four-momentum, the introduction of a metric gik which

to a large extent is independent of the observable metric gik makes the co -

variance obtained rather formal and deprives the general principle of rela-
tivity of its physical content . If one introduces unobservable quantities, they
should rather be of a similar type as the potentials in electrodynamics fro m

which the observable quantities, in our case the gik , can be calculated
uniquely . As was shown in a series of recent papers [11-13] it is, in fact ,

possible to obtain a satisfactory expression for the energy-momentum complex ,

satisfying all requirements, if one describes the gravitational field by mean s

of tetrads h i(a) which uniquely determine the metric tensor by the equation s

gik = h(ia) h(a)k .

	

(34)

Here, the index (a), which is raised and lowered by means of the constan t

Minkowski matrix i7(ab) = 17 (ab) numbers the four tetrad vectors hZ a)(x) at

the arbitrary point (x) . The use of tetrads to describe the gravitationa l

field is by no means new. In fact, tetrads enter as an essential element

in the generally relativistic formulation of the Dirac equations for Fermion
fields .

If one eliminates gik in the expression for the scalar curvature density

Ill, by means of (34), 9i appears as the sum of a divergence part and a ne w

Lagrangian 2 which is a homogeneous quadratic expression in the first -
order derivatives h2,k of the tetrad variables . The explicit expression is [11 ]

2

	

V/- g[Yrsd Y
tsr Ør

Ør ]

where yika and Ok are the following true tensor and vector, respectively,

Yiki - héa) h(a)k ; i, Øk ° YZki

Here, the semicolon means covariant derivation corresponding to the real

observable metric gik . Thus, in contrast to the Einstein Lagrangian C2, in

(3) the Lagrangian 2 is a true scalar density. If we apply the metho d
of arbitrary infinitesimal coordinate transformations to this Lagrangia n

2 we get an energy-momentum complex (27) satisfying the condition 1 .

Further

(35 )

(36)
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~1

is a homogeneous quadratic function of the h2 a)k which is essential for th e
validity of 2 . The corresponding superpotential i s

uika _ - Milk = V g [Ykli - ôk Øl
x

which shows that also the condition 3 . is satisfied . Thus, the complex follow -
ing from (37) by (30) satisfies all the conditions 1-3 and our problem seem s
to be solved .

However, the tetrad field liza) is not determined uniquely by (34) for
a given metric field gik . In fact, any Lorentz rotation of the tetrads ,

D(a)
(b) (x)

h20

leaves the right-hand side of (34) unchanged. Here, the rotation coefficients

f2(a)(b)(x) may be any scalar functions of (x) which satisfy the orthogonalit y
relations at each point, and the complex Tin obtained from the superpotential
(37) is not invariant under the "gauge" transformations (38), except if the
rotation coefficients are constants throughout space-time. For an arbitrary

physical system there are no physically convincing arguments for fixing th e
gauge so as to make Tik(x) a unique function of the space-time coordinates ,
but in the case of a completely empty flat space there is no doubt about the
choice of the tetrads . In order to avoid the forementioned Bauer difficulty
it is necessary in that case to require that the tetrad field forms a system o f
mutually parallel tetrads throughout space-time, i . e . we must have every -
where

(37)

(38)

hiak = 0 . (39)

Further, for an insular system, where space-time is asymptotically flat w e
must require that the tetrad fields at least asymptotically form a system of
parallel vectors . This suggests that the tetrads in a system of B .S .-coordinate s
must satisfy the same boundary conditions as the metric at large spatia l
distances. For a closed system this would mean relations analogous to (7) ,
(8), i . e .

(1 )

h (a) i - gai -- h at
(1)

	

(1)

	

(40)

110 -O1 ,haik =02
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Then, as was shown in reference [12] for an even more general system

emitting gravitational radiation, the total four-momentum Pi is invariant
under all gauge transformations (38) which respect the boundary conditions .
Besides, of course, Pi is invariant under all Lorentz rotations of the tetrad s
with constant rotation coefficients D (a) (b) . On the other hand, the complex

Tik itself is invariant only under the latter type of gauge transformations .
Therefore, unless one can find a good physical argument for fixing the gaug e

throughout the system, it has no physical meaning to speak about the energy
distribution inside the system . This would be in complete agreement with
Einstein's own point of view. Actually nobody has so far been able to giv e

a prescription for measuring the energy of the gravitational field in a smal l

region, in contrast to the total energy for which such prescriptions are easily

given [13] .
In any system of B .S .-coordinates, the values of Pi obtained from the

tetrad complex (37) are the same as those obtained from the metric com-
plexes (11), (17), (21) of EINSTEIN, BERGMANN and LANDAU . Therefore, onc e
the generally covariant expression of Pi has been established by way of the

tetrad formalism, we may forget about the tetrads and perform the calcula-

tion of Pi in a system of coordinates in which the purely metric-dependent

complexes are known to be valid. Then, the values of Pi in an arbitrar y

system of coordinates can be obtained by using the law of transformation

of a 4-vector .
Anyhow, the tetrad formulation has given us more confidence in th e

application of the energy-momentum complexes which for many years b y

many physicists have been regarded as not quite respectable quantities .

We are also encouraged to apply them to more general physical systems.

Up till now we have only considered the case where space time far awa y

from our system is flat . What about a system in a permanent external

gravitational field, for instance a planet in the field of a heavy central body
like the sun? If the external gravitational field is practically constant ove r

a region of extension 1 large compared with the dimensions of the plane t

the preceding considerations are easily generalized . We have only to choos e
the tetrads of the external field so that the equation (39) is satisfied at eac h

point of the time-track of the planet . This can always be obtained by a

suitable transformation (38) . In a system of Fermi-coordinates where th e

external metric has vanishing first-order derivatives at all points of the time -

track of the planet we then get by integrating T i 4 over a sphere enclosing

the planet but with a radius smaller than 1 a four-momentum PP for the

planet which is a 4-vector in the space-time with the external metric .



Nr . 3

	

13

The energy-momentum complexes can also be used for calculating th e
total energy and momentum for systems which emit gravitational radiatio n

in which case these quantities are not constant of course. Also the amount

of energy and momentum emitted in different directions can be calculated .

Such calculations were performed in reference [12] . As regards the tota l

energy and its variation in time the results obtained are in agreement with

and corroborate earlier results of BONDI [2] and SACHS [3] .

The Niels Bohr Institute and

NORDITA Copenhagen
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