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Synopsis

The properties of the most general local two-body potential for elastic scattering of scala r
particles are investigated . This potential is angular momentum dependent . (Arbitrarily energy
dependent potentials are ruled out by general symmetry and invariance arguments .) In par-
ticular, we investigate the momentum space representation of the angular momentum dependent
potential, and show that it is characterized by a particular off shell behaviour . By considering
the partial wave Lippmann-Schwinger equation, we establish in a rather simple manner th e
existence of a p-fold class of phase equivalent potentials (containing p local, angular momentu m
dependent potentials), where p equals the number of bound states in the partial wave unde r
consideration . In this connection, we show that a potential, which is defined by using a per-
turbative expansion of the S-matrix from field theory, can be chosen to be local and angular
momentum dependent, provided the expressions representing the diagrams included in th e
potential satisfy simple regularity conditions . There does not, however, seem to exist any simple
relation (which does not involve the inverse of the Greens function) between a given non-local
potential and the corresponding phase equivalent local and angular momentum dependent po-
tential . As an illustration, we make some numerical calculations with a non-local single-particl e
exchange potential. The adiabatic approximation is investigated in this case, and is shown to
be quite inaccurate for a strong attractive potential.
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1 . Introduction

The object of this paper is to investigate the concept of a local, angular

momentum dependent potential and its relevance to the general problem

of obtaining a local potential which is equivalent to a given non-local po-
tential .

We consider only the case of scalar particles of equal mass in this paper ,
leaving the general case of spin-dependent potentials to a forthcomin g

paper' )
From the results of the investigations of the inverse problem of scattering ,

one can deduce, as has been pointed out by S . OxuBO and R. F . MARSHAK2) ,

that if a potential is reconstructed from a given scattering matrix, it can b e
chosen to be a function of r 2 and L 2 only, where L is the angular momentu m
operator .

Thus, it is in principle possible to construct a (not necessarily unique )
local, angular momentum dependent potential, which is equivalent to a
given non-local potential, in the sense that both potentials give identica l
phase shifts .

In practice, however, this problem has apparently no simple and ex-
plicit solution, since it seems to be rather difficult to obtain a simple an d
explicit relation between the local, angular momentum dependent potentia l
and the class of non-local potentials, which have identical phase shifts .
On the other hand, in perturbation theory, one can easily establish th e
explicit relation between the equivalent local potential and the correspondin g
non-local potentials .

Before proceeding further, we may remark that it is by no means neces-
sary to deal with local potentials instead of non-local potentials in th e
scattering problem. The scattering problem is certainly more complicate d
with a non-local potential, since one has to solve the Schrödinger equation
as an integro-differential equation, or equivalently the Lippmann-Schwinge r
integral equation, instead of the Schrödinger (differential) equation ; but
the calculations are, after all, not overwhelmingly complicated . Despite

this fact, almost all the papers (known to the author at least) published o n
e . g . nucleon-nucleon potentials, present potentials which are local, or at
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most quadratically momentum dependent . These potentials are obtaine d
by using approximations involving expansions with respect to the invers e
of the nucleon mass . The validity of approximations of this kind is quit e
doubtful in general .

The formalism developed in this paper may be used in practical cal-
culations to obtain local, angular momentum dependent potentials whic h
approximate given non-local potentials . In such an approximation we com-

pletely avoid the use of expansions with respect to the inverse of the mas s
of the scattered particles . As an example, we have considered a single
particle exchange potential and calculated the 1So-phase shifts for the exac t
potential, the static approximation to it, and for our local approximatio n
to the potential in question. The details concerning the numerical calcula-
tions are found in sections 5-6 .

From our calculations we conclude that the static approximation i s
rather poor for attractive potentials, in particular when the mass of th e

exchanged particle becomes comparable to the mass of the scattered par-
ticles, whereas the phase shifts calculated with our local, angular momentu m
dependent potential, which approximates the non-local single particle ex -
change potential, agree quite well with the exact phase shifts .

There have also appeared a few papers on the problem of defining
"local" potentials, in which no expansion with respect to the inverse mas s
is used, but where the resulting potential is energy dependent. Among these
papers, we may mention one by L . A. P . BALAZS 3) . In section 2 we show
that the use of an energy dependent potential in an ordinary Schrödinger
equation is inconsistent with fundamental symmetry and invariance require-

ments . This fact casts some doubt on the validity of Balåzs' results in par-
ticular, and on the use of energy dependent potentials in an ordinary (tim e
independent) Schrödinger equation in general .

In section 3, which is divided into 3 subsections, we investigate under

what conditions a potential, given in the momentum representation, may

be represented by a local, angular momentum dependent potential in co-
ordinate space, and discuss the properties of such a potential both for phys-

ical (integral) values of the angular momentum and for unphysical (com-

plex) values. Section 4 contains a discussion of the equivalence problem ,
i . e ., the problem of obtaining a local potential, which is equivalent to a
given non-local one . In section 5 we discuss the single-particle exchange

potential, which is used in the numerical calculations .

Finally, in section 6, we present the results of the numerical calculation s
and a discussion of these results .
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In an Appendix, we present a method by which the partial-wave Lipp-

mann-Schwinger equation, which is used in the calculation with the non-

local potential, can be reduced to a non-singular equation.

2. The general form of the potentia l

In this section we review some of the properties of a general potential ,

which describes the interaction between two chargeless scalar particles o f

equal mass, and discuss the transformation formulae from the momentu m
representation to coordinate space representation .

From the analysis given in an article by J . Goro and S. MACHZDA4), we

can deduce that the most general form of a potential between two scala r

particles, which fulfils natural invariance requirements, i . e . invariance with

respect to coordinate space translation, Galilei transformation, the exchange
of the two particles, rotation of space coordinates, space reflections, tim e
reversal, and Hermiticity of the potential, is, in momentum representation ,

V(q,p) -
Vo(g2 ,p 2 ,(g X p)2) •

The function Vo is a real function of its arguments, which are the thre e
independent scalars that can be obtained from the vectors q and p, which
in turn are defined in terms of the centre of mass (c.m) momenta as fol-

lows, (Fig . 1)
q = k-k',p = -(k+k') .

	

(2 .2 )

u = 2(r +r'), v = r - r '

we have the relation between the coordinate space potential

V(u,v) and V(q,p)

V(u,v) _ (2yc)6

S

d3gd spette u e~p • vV(q ,p) .

	

(2 .4)

(We shall occasionally use the same symbol to denote mathematically dif-

ferent functions, such as V(q,p) and V(u,v), which should not give rise to
confusion). The potential V(u,v), which in general is non-local, is to b e
inserted in the Schrödinger equation, in the c .m system *

(Ecm+02) :'P(r) = d3r'V(u,v)v(r') .

	

(2 .5)

* We use natural units with it = c = 2M, where M is the reduced mass .

(2 .1 )

Defining

(2 .3)
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Fig. 1 .

The transformation (2 .4) is discussed in detail in Ref. (5), where it is shown

that V(q,p) may also be transformed to coordinate space by the formula

V(r, P) =

	

1 ~ d3gezq 'rV(q,1~) ,
(27r) 3

provided p in V(r, p) is understood as - i times the symmetrical gradient

operator å ;

v'K (r)Pv(r)

	

- ~O~P*(r)D~V(r) - (o~~:'(r))~v(r)) •

The function V(r, p) may be considered as a symbolical representation o f

V(u,v), which in general is non-local .

Conversely, if V(u,v) is given, V(q,p) can be obtained by performing

the inverse of the double Fourier transform (2 .4) . This can also be ex-

pressed in terms of V(r, p) in the familiar form

V(q,p)

	

dare zk rV(r P)eik . r

	

(2 .8 )

which is equivalent to the inverse of (2 .4) .

From the previous discussion we deduce that one can obtain a strictly

local potential V(r) in coordinate space from a given V(q,p) only if V(q,p)
is independent of p. If V(q,p) is an arbitrary function of its arguments

q2,p2 and (q x p) 2 , the resulting coordinate space potential is completely

non-local. Only in the special case when V(q,p) depends quadratically p,

(2.6)

(2.7)
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is it possible to obtain an "effective" energy dependent potential in co -

ordinate space from the given V(q,p), in which case the resulting "effective "

energy dependent potential depends linearly on the energy of the two-

particle system .
We have considered the most general potential to be used in the ordinar y

Schrödinger equation, restricted only by the invariance and symmetry

requirements stated at the beginning of this section, and shown that th e

potential in the coordinate space representation cannot be an arbitrar y

function of energy in addition to the r-dependence . We can therefore con-

clude that the use of an arbitrarily energy-dependent potential in an ordinary

Schrödinger equation is inconsistent with the given symmetry and invariance
requirements .

There is still one special case in which the potential in coordinate space

is neither strictly local nor non-local . When V(q,p) depends on q and p

in a rather special fashion, one obtains in coordinate space a potential
V(r,L 2 ), where L is the angular momentum operator . The next section i s
devoted to an investigation of this special case .

3.1. Basic properties of the angular momentum dependent potential

We now assume that the potential in momentum representation V(q,p)
is given, and investigate under what conditions V(q,p) can be represented
by a local, angular momentum dependent potential V(r,L 2) in coordinate

space. If V(q,p) is represented by a V(r,L 2 ) in coordinate space, we have

the following relation (eq. (2.8)) between V(q,p) and V(r,L 2 )

	

V(q , p) = d're ak'rV(r,La)eak .r.

	

(3 .1)

We now investigate the restrictive conditions implied by (3 .1) for the func-

tional dependence on p and q in V(q,p) and, assuming these conditions

to be fulfilled, derive the inverse of (3 .1), which gives V(r,L 2 ) as an integra l
transform of V(q,p) .

Let us denote an eigen-state of L2 by IL> . Then we have, formally ,

	

V(r,L 2) I L> = V(r,L(L+1)) I L> .

	

(3 .2)

A function of an operator can in general be defined through a series ex-

pansion in powers of the operator in question . To ensure that eq . (3.2) is
valid for all physical values of L, we shall have to require that V(r,L(L + 1))
can be expanded into a series of powers of L(L + 1), convergent for all
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(real and complex) values of L(L + 1) . In other words, we must require

that V(r,L(L + 1)) is an entire function of L(L +1) (for fixed r) . When thi s

is the case, the action of V(r,L 2 ) on an eigenstate IL> is certainly well de -

fined . However, despite the fact that the function V(r,L(L + 1)) must be an

entire function of L(L + 1), this function has a well defined meaning only

for physical (integral) values of L . When we consider the Schrödinger equa-
tion with an angular momentum dependent potential for a general comple x
value of L, we must use an extrapolation or continuation of the potential
to complex values of L, which is such that the Watson-transform6> can be

applied to the resulting scattering amplitude . It is not a priori certain that

the entire function V(r,L(L + 1)) offers the required extrapolation . Therefore ,
when we consider the angular momentum dependent potential for comple x
values of L, we shall mean a function which coincides with V(r,L(L + 1))
for physical values of L, but which is extrapolated to complex values of L
in such a manner that the Watson-transform can be applied to the resultin g
scattering amplitude . (We shall later return to this point in detail) .

After these preliminaries, we consider eq . (3 .1) . We may now expand

the plane waves in (3 .1) into spherical waves and obtain a series involvin g

V(r,L(L + 1)) on the right hand side of (3 .1). The integrations in (3 .1) can
now be performed term by term, provided V(r,L(L + 1)) satisfies certain

conditions, which we give below. We do not present the details of the neces-

sary convergence proofs, which are readily obtained, using known propertie s
of Neumann series, given e .g. in Watson's " Theory of Bessel functions-7 ) ,
(W. 526, W . 35) .* The criterions which we have obtained are as follows .

First, we require the existence of a fixed number a < 3 such tha t

raV(r,L(L+1)) (3 .3)

is bounded for r 0 and for fixed L . Then we require that V(r,L(L + 1))
be bounded by a finite power of L, for integral values of L, or more pre-
cisely, we require the existence of a fixed non-negative integer p such that

sup
IraV(r,L(L + 1))

A

	

(3 .4 )
o

	

(2L+1) 22'

where A is an absolute constant . Let N now be an arbitrary fixed positive
integer. We then have to require the existence of the integral s

cc

S drr 2 I V(r,L(L + 1)) I

	

(3 .5 )

* References to this work will be cited as W . followed by the appropriate page reference .
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for non-negative integral values of L such that L N, and the existence o f

the integrals,
~

drr2+m (2L +1)-2 2' ' ~ V(r,L(L+ l)) ~

	

(3.6)

0

uniformly with respect to L, for integral values of L > N. The number i n

in (3 .6) takes the values ni = 0, 1, . . . , 2p . We understand by p the smallest

non-negative integer for which the conditions (3 .4) and (3 .6) are fulfilled .

The conditions given above are sufficient to guarantee the validity of the

term by term integrations in (3 .1), when the plane waves are expande d

into spherical waves, and also that the resulting series is convergent, uni -

formly with respect to the angle between k and k', and convergent for all

positive fixed values of k and k ' . We may summarize the discussion a s

follows . If a given potential V(r,L(L+ 1)) satisfies the conditions (3 .3)-

(3.6), an integral transform of the form (3 .1) is well defined .

3 .II . The partial wave equation s

We now proceed to investigate the consequences for V(q,p) of the as-

sumption that V(q,p) is represented by a function V(r,L 2) in coordinate

space. Let F(k,k') be a given function of k and k' . We then define the par -

tial wave projection of F as follows ,

FLL.(k,k') = dt-2kdok,Yi`"*(De)F(k,k')Yi r(Dk)

	

(3 .7)

where the YL r are spherical harmonics . Taking the partial wave projectio n

of both sides of eq . (3 .1), we obtain
~

VL(k,k ' ) = 4n 2 (kk ') -

	

drrV(r,L(L+1))JL+ (kr)JL+1(k'r) .

	

(3 .8)

0

The function VL(k,k ' ) is given by

+i

VL (k,k ' ) = ~ dxPL(x)V(g,p),

	

(3 .9 )

-1

where x is the cosine of the angle between k and k ' , and PL (x) the Legendr e

polynomial . The functions J„(z) in (3 .8) are Bessel functions of the firs t
kind .
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It is clear that eq. (3.8), considered as an integral equation for

V(r,L(L + 1)), can have a solution only if the functional dependence on k
and k' in VL (k,k') is rather restricted . Let us now suppose that we have
obtained a solution V(r,L(L+ 1)) to eq . (3.8) ,which fulfills the conditions

given earlier in section 3 .I, eqns . (3.3)-(3 .6) . These conditions imply in

particular that there should exist a fixed number n < 2, such that

r"V(r,L(L +1)) is absolutely summable in (0, co) . The eq. (3 .8) is required

to hold for all values of k and k ' and must in particular be in force for

k = k' . This means that V(r,L(L + 1)) also satisfies the equation
~

kVL(k,k) = 4 .7C2 drrV(r,L(L + 1))JL
+2

1(kr) .

	

(3 .10)

0

Suppose now that we solve (3 .10) for V(r,L(L + 1)) . The solution obtaine d

from (3.10) can differ from the solution obtained from (3 .8) only by a

function which we denote by 4(r,L(L + 1)), and which satisfies the equatio n
~

0 = drr4(r,L(L+1.))JL+ (kr) .

	

(3 .11 )

0

The function d(r,L(L + 1)) must also satisfy the summability condition given

above and at the same time satisfy (3 .11) for all values of k ; 0 < k < 00 .

It is therefore clear that 4(r,L(L + 1)) is a null-function, i . e ., it equals zero
almost everywhere in (0, co) ; therefore, whenever eq . (3 .8) has a solution

for V(r,L(L + 1)), this solution can be obtained from eq . (3.10) instead o f

eq. (3 .8) . Before solving eq . (3.8), we return to the problem of extrapolatin g

V(r,L(L + 1)) to complex values of L.
From the discussion given by L . BROWN et al .8> on the partial wave

Lippmann-Schwinger (L .-S.) equation in momentum space, we may deduce

that we get the "correctly" extrapolated scattering amplitude from the L .-S .
equation, provided we extrapolate the potential in the L .-S . equation, which
is essentially the function VL(k,k ' ) (eq. (3 .9)), in a manner which is con-

sistent with the well known theorem of CARL.SON9 > . Let 20 be a fixed real
number, and let 2 denote L +112. Let A _ 2 0 + eeze . The function A(2 ; k,k ') ,
which extrapolates VL(k,k ' ), is now a function which (for k,k ' fixed) (i )
coincides with VL(k,k ') at the non-negative integers larger than A,, ; (ii) i s

regular at all points inside the angle - a < Ø

	

a, where a ? 2 ; (iii) i s

bounded by AeBO, where A and B are absolute constants and B < n, through -
out the angle -a < B < a. If necessary, one may also allow a finite num-



ber of poles in the extrapolating function A(A ;k,k ' ) . The coordinate space

potential, corresponding to A(A; k,k '), W(r,A), is now related to A(A; k,k ' )

by the generalization of eq . (3.8) or equivalently eq . (3.10)
~

kA(A ; k,k) = 47r2 S drrW(r,A)J21(kr) .

	

(3.12)

0

The function W(r,A) defined by (3 .12) coincides with V(r,L(L + 1))
defined by (3 .10) at the non-negative integers (exceeding A 0), but is in gen-

eral different for general complex values of A .

3.III. The inversion formula

In order to solve the eqns . (3.10) and (3.12), we need the following

theorem (a proof of which is given in Appendix I) ;

Theorem : If xf(x,A) is differentiable in (0, co), and if (xf(x,A)) '

dx (xf(x,A)) belongs to L2 (0, co) uniformly with respect to A within a closed

domain to the right of the line Re(A) - 71 , the equation

d

f(x, A) = dyg(y , A)4(xy)
o

implies almost everywhere
xy

g(x,A) = - 2~dx S ~g(gf(g,A))' duuJA(u)Yi1 (u),

	

(3.14)

o

	

o

and g(x,A) defined for Re(A) >

	

by (3.14) also belongs to L 2 (0, oa) . The

function YY(z) in (3.14) is a Bessel function of the second kind .

We now assume that (k2A(A ;k,k))' exists and belongs to L2(0, oa) for

Re(A) > A' > A0 . Then we obtain

~

	

x
r
r

r W(r , A)

	

~ dr
k(k2 A(A ; k,k)) ' duuJ~(u) Y,t(u),

	

(3.15)

o

	

o

for Re(2) > max(A', - 4 + e), where e is a fixed arbitrary positive number ,

(3 .13)

however small .
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We know from our inversion theorem that rW(r,2) defined by (3 .15)

belongs to L2(0, oo) . Therefore, the potential we obtain from (3 .15) cannot

be more singular than o(r-2) for small values of r, in contrast to the allowe d

behaviour o(r- 3 ) . However, one can probably generalize the inversio n

theorem to cover a class of functions which behave like o(r- 3 ) for smal l

values of r .

The expression (3 .15) for W(r,2) has been obtained by using only the

on-shell part of A(2 ;k,k ' ) . As mentioned above, the function W(r,A), whic h

we obtain by using only the on-shell part of A(2 ;k,k'), coincides with the

W(r,A), obtained from the original off-shell equation, whenever the latter

has a solution . We can therefore conclude the following . The assumption

that V(q,p) is represented by a V(r,L 2 ) in coordinate space, implies n o

restrictions on the on-shell part of V(q,p), (apart from the differentiabilit y

and summability condition for the class of functions considered here), bu t

implies that V(q,p) should be continued off the energy shell in a particula r

way .

We can formulate this condition more easily in terms of VL(k,k ') as
follows . In order that a V(q,p) be represented by a V(r,L 2) in coordinate

space, it is necessary that the partial wave projection VL(k,k ' ) of V(q,p)

has a repeated integral representation of the form

(

S drJL ± (kr)JL+(k'r)

~

VL(k,k ')

	

- 2zr(kk ' )-i {
0

z r

(dSdz[el, 2
dr ~z,'z))]

duuJL+
1

( LZ) YL+
12

(ZI)
)

o

	

o

The condition (3 .16) looks rather complicated, but the content of it is clear
enough, namely, that the off-shell part VL(k,k ') is uniquely given by th e
on-shell part VL(k,k) for a potential which is represented in coordinat e
space by a local, angular momentum dependent potential . This is of cours e

also true for a strictly local potential V(r), as this is a special case of a loca l

angular momentum dependent potential .
We shall now finally have to make sure that W(r,2), given by (3 .15) ,

actually reduces to a function V(r,L(L + 1)) when L in 2 becomes a non -

negative integer, and that this V(r,L(L +1)) can be considered as an entir e
function of L(L + 1) . When L is a non-negative integer, then we have

(3 .16)

JL+2(z)YL-F(z) = ( -1)L+1JL+2(z)J- (L +2 ) (z), (3 .17)
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kr

	

(3.18)

duuJL+1(u)J-(L+q)( u) }

0

From the definition of VL(k,k '), eq. (3.9), we obtain

(-1)LVL(k,k) = dxPL(-x)V(q,p),

	

(3 .19)

where we have used the well known symmetry property of the Legendr e

polynominal . (It is of course understood that we use the constraint k = k '

in V(q,p) in (3 .19)) . It is known that the function PL(-x) considered as a

function of L(L + 1) is an entire function of L(L + 1), when x has any as -

signed value, such that -1 < x < 1 . The function (-1)LVL(k,k) defined by

(3 .19) for general values of L will therefore be an entire function of L(L + 1) ,

provided well known conditions concerning continuity and uniformity of con -

vergence of the integral (3 .19) are satisfied . The integrand in (3 .18) becomes

then an entire function of L(L + 1), which means that also V(r,L(L + 1)) ,
defined by (3 .18), is an entire function of L(L + 1), provided certain stand-

ard conditions are satisfied .

It is a simple matter to show that V(r,L(L + 1)) is bounded by a finite

power of L(L + 1) for integral values of L, and to derive conditions for the

existence of the appropriate number of absolute moments of V(r,L(L + 1)) ,
in accordance with the discussion in section 3 .I. The proofs arc neithe r

very difficult nor very interesting, and are therefore omitted .

4. The equivalence proble m

In the previous sections we have investigated in detail the properties o f

a local, angular momentum dependent potential, and derived the condition s

under which a potential given in momentum space is represented by a

local, angular momentum dependent potential in coordinate space .

Let us first discuss the definition of a potential in perturbation theory .

We follow the discussion given in a paper by A . A. LOGUNOV et al . 10 ) . The

and the right hand side of (3 .17) is, apart from the factor (-1)L+1 , an

entire function of L(L + 1) for fixed z . From (3 .15) we then obtai n

rV(r,L(L+1
)) = 21aß ddr

dlc
(( - 1 )

Lk2V
L(k , k)) '
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authors of this paper define the potential by the requirement that, whe n
inserted into an equation of the Lippmann-Schwinger type considered by

them, it will reproduce, to each order in perturbation theory, a T-matrix

on the energy shell, which is considered given through an expansion in a

coupling constant . The equation in question can in fact be exactly reduce d
to the ordinary non-relativistic Lippmann-Schwinger equation, as we ar e

going to show in the following subsection . The definition formulated abov e

can symbolically be stated as follows

n- 1

[V2] _ [ T2], [V2n ] - [ T2n] - Z [ V2m X T2n-2m] '
m= 1

Here T2 is the second order T-matrix, and V2 the second order potentia l

(in momentum space) etc ., and the square brackets mean a transition t o

the energy shell in the corresponding expressions .

Let us now discuss the meaning of eq . (4.1) more in detail . We see tha t
the second order potential V2 becomes fixed only on the energy shell . We

can therefore continue the function V2 off the energy shell in any (reasonable )
prescribed manner . It seems therefore natural to continue V2 off the energy
shell in such a manner that V2 becomes as simple as possible, without

imposing restrictions at the same time on the resulting T-matrix by th e

chosen off shell continuation . This principle leads to an off shell continua -
Lion of V2 , which permits V2 to be represented by a local, angular momen-

tum dependent potential in coordinate space. Whatever off shell continua-

tion we choose for V2 , we have as the result that the (new) T-matrix par t

corresponding to the chosen V2 is T2 - V2 . (This fact is not indicated i n
eq. (24) of LOGUNOV et al ., which corresponds to our eq . (4 .1)) . The fourth -

order potential V4 becomes again fixed on the energy shell only, be the next

equation in (4 .1). However, the value of V4 on the energy shell depends
now also on the off shell continuation chosen for V2 . We can then continu e
V4 off the energy shell in the saine way as V2 . The new fourth order T-

matrix is now T4 = V4 + V2 X T2 . It is obvious that we can continue thi s

reasoning to any order in perturbation theory . We have thus demonstrate d
that there is a considerable amount of freedom in choosing the off shell

continuation of a potential which is constructed to reproduce a given T -

matrix on the energy shell only . This does not mean that we can add arbi-
trary terms vanishing on the energy shell to a given potential without af-

fecting the resulting T-matrix on the energy shell . In particular we hav e

shown that a potential, defined by the principle symbolically stated in eq .

(4 .1)
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(4 .1), can be chosen to be local and angular momentum dependent in co -

ordinate space .
From their eq . (24) LOGUNOV et al . conclude that the potential can be

chosen to be a local, energy dependent function in coordinate space . Thi s
is inconsistent with basic symmetry and invariance requirements, as w e
demonstrated earlier . (Some of the equations of LOGUNOV et al . manifestly

violate the necessary symmetry between in- and out-going momenta .) We

note incidentally that we have also in the foregoing discussion explicitl y

demonstrated that it is possible to construct a local, angular momentu m
dependent potential, which is equivalent to a given non-local one .

It appears to be rather difficult, however, to obtain a solution to th e
equivalence problem without resorting to perturbation theory arguments ,

or without solving directly the whole scattering problem with the non -
local potential . To see this clearly, let us consider the partial wave Lippmann -
Schwinger equation . We define

UL(k ' ,k)

	

8n
VL(k' ,k),

	

(4 .2)

where VL(k',k) is the partial wave projection of the potential, defined b y
eq. (3 .9). We then have the partial wave L .-S.-equation

,

	

2 dk"k"
UL(k',

k")TL(k", k)

TL(k , Ic) = UL(lr , k) +

	

k"2 - k 2 -

	

(4 .3 )

o

where TL is an off shell amplitude, which on the energy shell becomes

TL(k, k) = ejår tk> sin (åL(k)) .

	

(4 .4)

The main ambiguity in the potential is due to the fact that there exists a
whole class of functions UL(k ' ,k) which give rise to the same TL on the
energy shell, but for which TL off the energy shell is different . This ambiguity
is the one we have already discussed in the foregoing perturbation theory

discussion. The other ambiguity comes from the possible existence of bound
states . To see this clearly, we consider the problem of deducing UL(k' ,k)
from a given phase shift åL(k), with the aid of eq . (4.3). Let us then suppos e
that we make an arbitrary (but sufficiently smooth) off shell continuation
of the TL(k,k), which is determined by SL(k) . The eq. (4 .3) can then be
considered as a singular integral equation for UL(k' ,k), with k' as a parameter .
Consulting the literature on singular integral equations"), we observe that
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eq. (4 .3) can be reduced to a Fredholm equation for UL(k ' ,k) . However, w e
do not in general obtain a unique solution for UL(k ' ,k) from eq. (4.3) . This
ambiguity is related to the existence of linearly independent solutions to
the dominant part of eq . (4.3). The theorems given in Ref . (11) state that
the number of linearly independent solutions equals the index x of th e

Hilbert problem connected to the solving of the dominant equation . The
index x can easily be calculated and is, in this case, given b y

-(åL( 0 +) åL(-)) .

The index x given by (4 .5) is equal to the number of bound states in th e
L : th partial wave. We have thus obtained the result : For a given off shell

continuation of TL , we obtain x independent potentials U2- ) , Ur, . . . , Ur ,

which produce the given TL on the energy shell .

Thus, using an other off shell continuation of the TL given on the energy

shell, we can obtain x different potentials UL ) , UP ) , , UL ) . We can thus

assert that there exists a p-fold class of potentials which produce a give n
phase shift, where p is the number of bound states in the partial wave unde r
consideration .

However, we have not been able to obtain a simple and explicit relatio n

between two members Uit and Ui of this class .

We have now analysed the ambiguities inherent in a potential, whic h
is required to produce a given T-matrix on the energy shell only . We may

conclude that, although it is in principle possible to use these ambiguitie s
in constructing a local, angular momentum dependent potential, which is
equivalent to a given non-local potential, this problem has apparently n o
simple and practical solution .

The formalism developed in this paper may, however, be used to ap-
proximate non-local potentials by local, angular momentum dependent

potentials. We conclude this section with a brief discussion of this possibility ,

and of the conventional methods which have been earlier used to approx-

imate non-local potentials by local ones . Let us consider again the potentia l

V(q,p)

	

(4 .6)

where, as before, q is the momentum transfer and 2p is the sum of the in-

and outgoing momenta in the c .m. system. Let us then suppose that we ca n
expand (4 .6) in powers of p2

oo

v(q ,p) = ~ Un(q)p2
n

n=o

(4 .5 )

(4 .7)
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The so-called static approximation means that we neglect all higher power s
of p 2 , and use vo(q) as an approximation to V(q,p) . It is clear that vo(q)
becomes local in coordinate space. In the next approximation we obtain a
quadratically momentum dependent potential : vo(q) + v(q)p 2 . In coordinate
space, this becomes of the form vo(r) + a 1 (r)p 2 , where p is the differential
operator defined by eq . (2 .7) . It is obvious that one cannot continue this
approximation method to higher order terms, since potentials of the for m
v n(r) (p 2 )n (n > 1) cannot be used in the Schrödinger equation. We may
remark that the potentials derived from meson theory are not entire func-
tions of p2 , so that expansions of the type (4 .7) do not exist except possibly
in a small region around p2 = 0 . From the formal point of view, the ap-
proximations based on equations of the type (4 .7) are therefore meaning -
less . However, if the function V(q,p) is a slowly varying bounded function
of p2 , the static approximation need not be entirely unreliable . If this is the
case, then the next approximation vo(q) + v1(q)p 2 is certainly very doubtful ,
although it might to some extent be remediable by a properly chosen cut off .

Despite the large uncertainties which inevitably are connected with the
use of approximations involving expansions with respect to p2 , such approx-
imations have been used extensively e .g. in derivations of nucleon-nucleo n
potentials . The approximation method we suggest is rather obvious . Consider
the partial wave projection VL (k,k ') of the potential V(q,p) . We now approx-
imate the function VL(k,k ' ) by a function VL(k,k '), which coincides with
VL(k,k ' ) on the energy shell, but which is continued off the energy shell i n
the manner prescribed by eq . (3 .16) . The function VL(k,k ') coincides with
VL(k,k ' ) along the lines k = 0, k ' = 0 and k = k' . Unless VL(k,k ' ) varies
violently in the sectors between these lines, we may expect that VL(k,k ')
approximates VL(k,k ' ) in an acceptable manner in the whole first quadrant
of the kk ' -plane. The coordinate space potential corresponding to VL(k,k ')
is obtained directly by inserting VL(k,k) in the formula (3 .18), or, for com-
plex L, eq . (3 .15) .

5. The single-particle exchange potential

We consider an equation, recently discussed by R . BLANKENBECLER and
R . SUGAR 12) ,

1 d3k"W(k' k" )ll2(k" , k)
M(k ' ,k) = T~V(k', k) + - ~	 	 (5 .1)

4 ., (2703 1/k"2 -1-1 1 (k„2
- k 2 )

Mat.Fys .Medd .Dan.Vid .Selsk. 35, no. 13 .
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Here W(k', k) is the propagator for the exchange of a particle of mass ni

between two scalar particles of unit mas s

W(k',k) = g2 (rn 2 + (k k') 2 ) 1 ,

	

(5 .2 )

and k' and k the relative initial and final momenta, respectively, in th e

c.m. system . The eq. (5 .1) with W given by (5 .2) may be considered as an
approximation to the Bethe-Salpeter equation in the ladder approximation .

An equation of the type (5 .1) has also been discussed earlier, e .g . in the

previously mentioned article by A. A . LOGUNOV et al . (Ref . (10)) . We recall

that there is a difference in normalization between the relativistic amplitude
M and the amplitude T, which occurs in the ordinary non-relativistic Lipp-

mann-Schwinger equation .
Defining

	

111(k ' ,k)
(5 .3)

V(k ' , k) = -
4k/2 + 1 v k2 + 1

we obtain the ordinary L .-S .-equation from (5 .1)

„

	

„
T(k', k) = V(k', k) +	 ~ dsk„ V(~2,k

k 2
(kI £ k)

(2n)'

The function V(k ' ,k) in (5.5) is precisely the quantity we have called a

potential in momentum space, expressed as a function of the in- and out -

going momenta k' and k. (Note the symmetry between k' and k in (5 .4)) .
For later convenience, we introduce explicitly a mass M of the scattered

particles in the expression (5 .4), and introduce also a strength parameter

A = - g 2 /16n . The expression for the single-particle exchange potential i s

then

1

	

4n11M
V(k -k',(k+k')) = 4,	 	 (5 .6)

2

	

vk2 + 111 2 f/k '2 + lY1 2 ((k- k ' ) 2 +rn 2)

We evaluate the partial wave projection of (5 .6) according to eq. (3.9) and

obtain

T(k,
, k) - - 4'

	

- 44j/ 1 " + 1 1/k 2 + 1

W(k',k)
(5 .4 )

(5 .5)
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47rAM

	

(k2 + k'2 + m2 1

Jt~L(k , k ) =	
kk'vk 2 + M 2

	

+ M2
QL

	

2kk'

	

(5 .7)

where QL is a Legendre function of the second kind . We can also immedi-

ately infer from the properties of the QLfunction that the expressio n

47rAM

	

(k 2 + k '2 +

m2)
A(A, k,k')

kk' ~k 2 + M 2 Vk '2 + M 2 Q~-2

	

2kk'

	

'

is the correct continuation of VL(k,k ' ) .

The static approximation of (5 .6) consists of replacing the factor

M(/k2 + M2 f/k/2 -~-
M2y l

by unity . We then obtain, upon transision to coordinate space, the wel l
known Yukawa potential

e-'
V(r) = Ar

It is not difficult to see that the off shell behaviour of VL(k,k ' ) in (5.7) does

not allow VL(k,k ' ) to be represented by a local, angular momentum depend -

ent potential in coordinate space . In constructing the potential W(r,2) from

A(2 ; k,k) given by (5 .8), we therefore make an approximation of the kind

previously discussed. We obtain, according to eq . (3.15), (Re(2) > -
1
4

r

	

(

	

2

rW(r,7~)

	

-A dk I dk (~/M 2 + kz QA
-2

1 + 2k2
))]{krJ~(kr)Y,t(kr) J . (5.10)

o

	

L

We may check the integral (5 .10) by putting M(M2 + k2)- = 1 in the in -

tegrand . The integral can then be evaluated and becomes precisely equa l

to (5 .9), as it should .
When L is a non-negative integer, we may use the simple analytic prop-

erties of the integrand in (5 .10) to write the integral in a more convenient

form. We denote by KL+2 (z) the exponentially damped Bessel function

(W. 80)

KL+2(z) (q-e-z
n~ (I~	

n~!
)' (2z) n .

(L = 0,1, 2, . . . .)

(5 .8)

(5 .9)

(5.11 )

2*
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CL(z)

	

(zKLi-2(z ))• (5 .12)
Let

After some exercises in contour integration, we obtain from (5 .10)

M

	

2

	

l
V(r, L(L + 1)) _

	

m-~1 2 `	
d

M	 PL (	 - 1 I C L(JI' )VM2 y2

	

2y 2

m
2

2

+Il 4 (- 1)L

	

dyM	
QL( 1

m
C L(yr )

n M vÿ 2 M2

	

2y

2

(L = 0,1,2, . . . )

It is easily seen that the local, angular momentum dependent potential

(5.10) and (5 .13) posesses the properties we required in section 3 .I .

6 . Numerical results and discussion

In this section we describe the results of the numerical calculations
performed with the non-local potential (5 .6) and the two approximations
(5 .9) and (5.13), respectively, to this non-local potential .

A calculation of phase shifts with a non-local potential in momentu m

space has been performed e .g. by J . Goro13) and by P . SIGNELL and P. S .

GONNORS' 4) . These authors restricted themselves to calculate phase shifts for

a one-pion exchange potential . They also used a rather small cut off, of the

order M -2M, where M is the nucleon mass . This makes it difficult to coin -
pare their results directly with those obtained in the static approximatio n

with the local potential in coordinate space .

In fact, to the best of the author's knowledge, there exists no systemati c

investigation of the validity of the static approximation, even for the simple
case of a single-particle exchange potential . We have attempted to mak e
such an investigation by calculating the L = 0 phase shifts with the poten -

tials mentioned above, for a number of values of the strength paramete r
A and of the mass m of the exchanged particle . The mass M is given the value

of the nucleon mass (M = 938 .5 MeV) . In order to have a physical measur e

of the strength of the potentials, we present below a table (Table 1), which

shows the values of A, for which one and two bound S-states occur wit h
the Yukawa potential (5.9)15) .

(5 .13)
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TABLE 1 .

m(MeV) A(1) A(2 )

140 -0.25 -0.95
280 -0.50 -1 . 9
400 -0.72 -2 . 7
700 -1.25 -4.8

(The strength of the static one-pion exchange potential in the 1S°-state cor-

responds to A = -0 .081 .)

For positive values of A in the range 0 < A < 3, there is no appreciabl e

difference (< 5%) between the phase shifts calculated with the potential s

(5.6), (5.9) and (5 .13), respectively, in the energy region 0 < ELAB < 280

(MeV) and for the values of m, given in Table 1 . For attractive potential s

the situation is different . Here the static approximation yields systematically

too large phase shifts . In the static approximation we replace the factor

M(M 2 + k2)- i (M 2 + k'')- i by unity in the expression (5 .6) for the potential in

momentum space . The resulting coordinate space potential becomes there -
fore too singular near r = O. When we take this factor into account in th e

approximation (5 .13), we obtain a potential, which behaves like O(log2(r) )

near r = 0, in contrast to the 0(r - l) behaviour of the Yukawa potential .

The difference between the phase shifts in the static approximation and the
phase shifts resulting from the potential (5 .6) increases rapidly with increas -

ing ni and IAI . We give examples of this in Fig . 2-Fig . 10 . The curves labeled

"Exact" in Fig. 2-Fig. 10, are the L = 0 phase shifts, which are obtaine d

by solving the partial wave Lippmann-Schwinger equation (see appendix

II) with the potential given by (5 .7). The curves labeled "Yukawa" are the

phase shifts in the static approximation, obtained from the Schrödinger

equation with the potential (5 .9), whereas the curves labeled "Appr." are
the phase shifts obtained from the Schrödinger equation with the local ,
angular momentum dependent potential (5 .13) . The phase shifts obtaine d

from the L .S.-equation are given only in the energy region 50 < ELAB < 280

(MeV) . We have checked the accuracy of the phase shifts resulting from th e

L.S.-equation by solving also the L .S .-equation with the static approxima-

tion to (5 .7) . The difference between the phase shifts obtained in this way ,

and those obtained with the Yukawa potential (5.9), gives a measure of the
accuracy achieved in solving the L .S.-equation. Table 2 shows these max-

imal absolute differences for the values of m and A given in Fig. 2-Fig . 10 .
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TABLE 2 .

m(MeV)

	

Max . num . erro r

14 0

28 0

40 0
700

0 .030
0 .028

0 .033

0 .038

The numerical errors inherent in the curves labeled "Exact" in Fig. 2-
Fig. 10 are therefore rather small, and can hardly produce any detectabl e

effect in the given curves . From Fig. 2-Fig. 10, it is seen that the differenc e

between the exact and the Yukawa phase shifts is approximately constan t

over the range 50 < ELAB < 280 (MeV) . A measure of the average error i n

calculating the phase shifts in the static approximation (5 .9) instead of using

the potential (5 .7) is therefore the difference between the Yukawa phase
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TABLE 3 .

A m(MeV)
111

DLOCAL °Io DSTATIC °Io

- 0 .5 140
-

1 4

-1.2 140 -2.7 2 0

- 0 .8 280 - 2 .7 1 9

-1 .5 280 - 2 .5 24

- 0 .7 400 - 2 .1 1 9

-1 .1 400 - 3.7 2 4

-2 .0 400 -3.9 2 6

-1 .1 700 -4.9 32

- 2.0 700 - 6 .5 36

shift and the exact one at 150 MeV . We give above a table (Table 3) of this

difference, D STATIC, expressed in percent of the exact phase shift, an d

also the corresponding difference, D LOCAL, between the exact phase shift
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and the one obtained with the local, angular momentum dependent potentia l

(5 .13) .
We have thus shown that the static approximation is quite unreliable fo r

the attractive single-particle exchange potential, in particular when the mass

of the exchanged particle becomes large, whereas the phase shifts calculate d

with the local, angular momentum dependent potential agree quite well wit h
the exact phase shifts . The potential (5 .6) is, of course, not exact in an ab-

solute sense, but represents a potential which, when used in the Schrödinge r

equation, yields an approximation to the sum of all ladder diagrams, a s
previously pointed out .

In section 4 we showed explicitly that, in perturbation theory, one ca n

choose the potential to be local and angular momentum dependent in co -

ordinate space, since this merely corresponds to a rearrangement of the

(infinite number of) equations connecting the quantities T 272 and V2 ,ß . How-
ever, the problem of constructing a potential to all orders in perturbatio n

m=280,A= -0 . 8

---- Yukawa .

Appr.

Exact .
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Appr.
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theory is, of course, highly academic since, if every T 2, is known, and if

it is possible to sum these quantities, it is indeed unnecessary to obtain a
potential V, which on insertion in a Schrödinger equation yields the known
T-matrix. In practice, the potential V is constructed up to some finite (and

small) order, which means that one obtains approximations to the sums

of those classes of diagrams, which are the iterations of the diagrams in-
cluded in V, when using this V in the Schrödinger equation. When the
potential V is constructed only up to a finite order, the resulting phase shift s

do indeed depend on the off shell continuation chosen for V. From the

pure S-matrix point of view, the question of the off shell continuation i s
undecidable. However, for reasonable potentials and reasonable off shell
continuations, we may expect that the resulting phase shifts do not diffe r

much for two different off shell continuations, even when the potential i s
constructed up to some small order, as indicated by the numerical exampl e
considered in this section .
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m=400, A= -0 .7

---- Yukawa .

Appr.

Exact .
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We may then assert that within a reasonable and practical perturbation -
theoretic definition of a potential (not necessarily based on Feynman-Dyso n

expansions), it is always possible to obtain a local angular momentu m
dependent potential in coordinate space, provided the expressions represent -

ing the diagrams we include in the potential satisfy simple regularity (dif-

ferentiability and summability) requirements of the kind given in this paper .
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Appendix I

The inversion theorem

In this Appendix we prove the inversion theorem given in section 3 .I11 .
The equation to be solved i s

f(x,v) = Sdyg(y,v)J(xy) .

	

(A . 1 )

o

Here f(x,v) is given as a function of the real parameter x and of the para -
meter vsD, where D is a closed domain which is subsequently determined .

In solving (A.1), we use the theory of "general transforms", an exposi-
tion of which can be found in Titchmarsh's "Theory of Fourier Integrals" 16 ) .

We need the following theorem, which is a straightforward generalization o f
theorem 129 in Ref. (16) .

m=400,A=-1 .1

---- Yukawa .
Appr.

Exact .

200

	

250 E LAB
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m=280, A= -1 . 5
---- Yukawa .

Appr
Exact .
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Theorem : Let Iß2 + it) and H(2 + it) be any bounded functions of the rea l

parameter t, satisfying the conditio n

	

2 + it) H

	

(
2
- it) = 1 .

	

(A . 2 )

Define k(x) and h(x) by the formulae

	

Ç

	

T Kj + it)
k(x) =

	

1 . i . m dt	 \
1 it

	

-T

	

2

rT HI 2+it I

	

h(x) =

	

1 . i . m dt	 `	 l x

	

it

	

27L 1 ~m T

	

2-it

(A. 3)

(A . 4)
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m=700, A= -1 .1
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Appr.
Exact .
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Let f(x)eL2 (0,co) . Then the formula

g(x) - dx
d

S
uud

k(xu) f(u)

o

defines almost everywhere a function g(x)sL 2 (0, oa), and the reciprocal

formula
~

d

f (x) dx ~ uu
h(xu)g(u)

	

(A. 6)

o

also holds almost everywhere .

In using this theorem for eq . (A. 1), we proceed as follows . Let n(x)
and m(x) be two arbitrary functions of x . We multiply and divide (A .1 )
by n and m

--

(A. 5)
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00

n(x)f(x,v) _ dym(y)g(y , v) [
m(Y)

	

Jv(xy)] .

	

(A .7)

0

When we demand that the kernel (the term within brackets) in A . 7) be

a function of (xy), it follows

m~
= (xy)a,

	

(A . 8)

where a is an arbitrary (real) number, which we have at our disposal .
Hence n(x) = x a and m(x) = x-a . Assume that xaf(x,v) is differentiable i n

(0, co), when a has a fixed value, which we subsequently determine .

Let f1(x,v) = d x af(x,v) and let g1(x,v) = xl-ag( .x,v) . Then we get

~

ft(x, v) =

	

y

d ~
d

g ~.(y , v) (xy)a.Jti (xy) .

	

(A. 9)
y

0

\

m=700,A - 2

---- Yukawa .
Appr.

Exact .
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We shall now have to determine the number a, so that the conditions of
Theorem I are fulfilled for the kernel

k(x) = x aJv(x) .

	

(A. 10)

The function K(s)(1 - 0-1 is the Mellin transform of k(x)x- 1

r = 2--s-a .

The integral (A . 11) can readily be evaluated (W . 403)

r(r)F v +
2

--r
K(s)(1-s)-1 =	 /

2 r(r(
2 +21))

2
r(v+2+

2
r)

,

provided

Re(r) > 0, Re(2v + 1 - r) > 0 .

	

(A. 14)

The function K(1/2 + it) defined by (A . 13) with s = 1/2 + it is bounded and
non-zero for bounded values of I t ' . The asymptotic behaviour of K(s) for
large values of t = Im(s) is

I K(s)I = ItlSe(s)+x
-2(1+O(r1)) .

	

(A. 15)

Hence, in order that K(s) be bounded on Re(s) = 1/2 for all t, we must
choose

a = 1 .

	

(A. 16)

As a consequence of the conditions (A . 14), we must have

where

(A. 12)

(A. 13)

K(s)(1 - s)-1 = ÇdxxJ(x),

	

(A. 11)

..	
/

Re(v) > - 1
4

(A. 17)

Defining H(s) by eq . (A. 2), K(s) being given by (A. 13) with a = 1, and
performing the integral (A . 4) we obtain

x

h(x) = - 2~c S duuJ.,(u) Y71(u),

	

(A. 18)

0

where Y,(u) is the Bessel function of the second kind .
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We have thus obtained the result ;

If xf(x,v) is differentiable in (0, co), and if (xf(x,v))' = dx (xf(x,v))
sL 2 (0, Do), uniformly with respect to v within a closed domain to the righ t

of the line Re(v) = -4 , the equation

f(x, v) = Çdyg(u,u)J(xg)

	

(A. 19)

o

implies almost everywhere
~

	

x y

d
g(x, v) = - 2n dx ~ d~ (gf(g , v)) ' duuJv (u)Yv(u),

	

(A. 20)

o

	

o

and g(x,v) defined for Re(v) > - 4 by (A. 20) also eL2 (0, oa) .

Appendix I I

Reduction of the Lippmann-Schwinger equation

We write down the partial wave L .S.-equation, eq. (4 .4)

T(k ' , k)

	

U(k', k) 2
s dk"k"U(k',k")T(k",k)

=

	

+ -

	

~

	

k"2 -k2 - I s
o

where for simplicity we have omitted the subscript L . We define the functio n

T(k',k )
F(k', k) _	

1 + iT(k,k)

It is readily proved that for real non-negative values of k and k'

argT(k',k) = argT(k, k) .

The function F(k ' , k) is therefore a real function, which on the energy shel l

becomes

(B . 1 )

(B. 2 )

(B . 3)

F(k, k) = tan(å(k)) .

	

(B . 4)
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Let us then write F(k',k) in the form

N(k',k)
F(k' ,k) = D(k)

where

(B . 5)

D(k) = 1_ 2 p dk"k"H(k,k")N(k",k)

	

(B . 6)
k"2 -k 2

o

The function H(k,k") in (B . 6) should be chosen so that N and D in (B . 5)
have convenient properties . From (B . 1), (B . 2), (B . 5) and (B . 6) we obtain
the equation for N(k',k )

2 s dk"k"[ U(k',k") - U(k' k)H(k k„ )]N(k„ k)

	

~
7)N(k ' , k~) = U(k ' , k) + P

	

k„2	
k2

	

. (B . 7

o

If H(k',k) is chosen to be unity for k' = k, the kernel in (B . 7) become s
finite at k" = k, provided U(k ' , k) satisfies the appropriate Lipschitz condi-
tion. If we choose

„

	

U(k,k")
H(k, k ) =

	

	 	 (B . 8)U(k,k) '

we obtain from eq . (B . 7), apart from nugatory changes in the notation ,
the equation recently discussed by H . P. NoYEs17 ) . With this choice we force
the function N(k ' , k) to have poles, as function of k, at those points where
the phase shift goes through an integral multiple of z . Instead of (B . 8) we
therefore take18 )

H(k,k" ) = 1 .

	

(B . 9 )
We then have

2 dk"k" [ U(k ' , k") - U(k ' , k)] N(k", k)N(k ' ,k) = U(k , k) + - ~

	

k,2 = kti

	

(B . 10)

o

and, from (B . 4) and (B . 5),

tall(S(k)) =	 ~N(k,k)

	

(B. 11 )
2 (dk"k" N(k", k)

1

	

P

	

k"2 k2
o
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The phase shifts given in section 6 are obtained by solving a slightly modifie d
version of eq. (B . 10), with U(k' ,k) given by

2

k 2 + k '2 +
lM)

U(k , k) =

	

2kk'

	

(B. 12)

2k~~k 2 +1 1~k '2 -I- 1

The method used for solving the equation is the well known matrix inversio n

method .

A Q



References

(1) G. CRONSTRÖnz, Mat .-Fys . Medd . Dan . Vid . Selsk . 35 (14) (1967) .
(2) S . OKUBO and R. E . MARSHAL, Ann. Phys . (USA) 4, 166 (1958) .
(3) L. A. P . BALAIS, Phys . Rev. 137, B 1510 (1965) .
(4) J. GoTo and S . MACHIDA, Progr . Th . Phys . 25, 64 (1961) .
(5) N. IIosHIZALI and S . MACHIDA, Progr. Th . Phys . 24, 1325 (1960) .
(6) G. N . WATSON, Proc. Roy. Soc . (London) 95, 83 (1918) .

V . DE ALFARO and T . REGGE, Potential Scattering, North Holland Publ . Comp .
(1965) .

(7) G. N . WATSON, Theory of Bessel Functions, Second ed . Cambridge Univ . Press
(1944) .

(8) L . BROWN, D. I . FIVEL, B . W . LEE and R . F . SAWYER, Ann . Phys . (USA) 23 ,
187 (1963) .

(9) G. H . HARDY, Acta Math . 42, 327 (1920) .
(10) A. A . LOGUNOV, A. N . TAVKIIELIDZE, I . T . TODOROV and O. A . KHRUSTALEV ,

Nuovo Cimento, 30, 134 (1963) .
(11) N. I . MUSKHELISHVILI, Singular Integral Equations, P . Noordhoff N.V . Gronin-

gen-Holland (1953) .
(12) R. BLANKENBECLER and R . SUGAR, Phys . Rev . 142, 1051 (1966) .
(13) J. GoTo, Progr . Th . Phys . 28, 283 (1962) .
(14) P. CONNORS and P . SIGNELL, Progr . Th . Phys . 26, 757 (1961) .
(15) E. M. NYMAN, Nuovo Cimento 37, 492 (1965) .
(16) E . C . TITCHMARSH, Theory of Fourier Integrals, Second ed . Oxford Clarendo n

Press (1948) .
(17) H. P . NoYES, Phys . Rev. Lett . 15, 538 (1965) .
(18) M. H . KALDS and R. H . DALITZ, Phys . Rev . 100, 1515 (1955) .

Indleveret til Selskabet den 28. oktober 1966 .
Færdig fra trykkeriet den 5 . maj 1967 .




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124



