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Synopsis
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1960), the theory of conjugate convex functions in finite-dimensional Euclidean
spaces, as developed by W. FencHEL (Canadian J. Math. 1 (1949) and Lecture No-
tes, Princeton University, 1953), is generalized to functions in locally convex to-
pelogical vector spaces.
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Introduction

The purpose of the present paper is to generalize the theory of conjugate
convex funclions in finite-dimensional Euclidean spaces, as initiated by
Z. BirnsauMm and W. Oruicz [1] and S. ManpeLBrosT [8] and developed by
W. FencuiL [3], [4] (cf. also S. Karuin [6]), to infinite-dimensional spaces.
To a certain extent this has been done previously by W. L. JonNes in his
Thesis [5]. His principal results concerning the conjugates of real functions
in topological vector spaces have been included here with some improve-
ments and simplified proofs (Section 3). After the present paper had been
written, the author’s attention was called to papers by J. J. Moreav [9], [10],
[11] in which, by a different approach and independently of JoNEs, results
equivalent to many of those contained in this paper (Scctions 3 and 4) are
obtained.

Section 1 contains a summary, based on [7], of notions and results from
the theory of topological vector spaces applied in the following. Section 2
deals with real functions f defined on subsets D of a locally convex topo-
logical vector space. In particular convex functions are considered. In
Sections 3 and 4 the theory of conjugate functions is developed. The starting
point is a pair of locally convex topological vector spaces E,;, E, which are
(topological) duals of each other. For a function f with domain D C E,,
briefly denoted by (D, f), we define

D' ={§eE,|sup (Ex—f(x) <}
xeD
If D’ is non-empty, the function (I, f'), where
f'(§) = sup (§ x—[(x)) for e I,
xeD

is called the conjugate of (D, f). Analogously the conjugate of a function in
E,, in particular the second conjugate (D7, /™) of (D, [), that is, the conjugate
of (I, f"), is defined. In Section 3 elementary properties of (D', f") and
(D", {7y are studied, and necessary and sufficient conditions in order that a
convex function (D, f) have a conjugate and that it coincide with its second
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4 | Nr. 2

conjugate are given. In Section 4 the conjugates of functions derived from
others in various ways are determined. Finally, in Section 5 the class of
convex functions (D, f) in E; which coincide with their second conjugates
and have the property that their domains D as well as the domains I’ of
their conjugates have relalive interior points is characterized in the case of
Banach spaces E, and E,.

1. Topological vector spaces

In the following R denotes the set of reals, R. the set of positive reals
and Z; the set of positive intergers. When R is considered as a topological
space, the topology is the usual one. All the vector spaces considered are
vector spaces over R.

Let E be a vector space over R with elements o, x, %, ..., o being the
zero element, and let T be a Hausdorff topology on E. If the mappings Ex
E ~ E defined by (x,y) »x+y and RxE -+ E defined by (a, x) - ax are
continuous, E is said to be a topological vector space. ¥ is then called a
vector space topology, and E is denoted E [%].

If Fis an algebraic subspace of E [Z], then F is a topological vector space
in the induced topology.

If B = {V} is a basis for the neighbourhood system of o in E [Z], then
{x—'er Ve %} is a basis for the neighbourhood system of the point x.
There exists a basis B such that all Ve B are symmetric, in the sense that
xeVand |a|=1limplyaxe V.If b+ 0 and Ve 8, then bV e 8. A subset M
of E [Z] is said to be bounded if for all Ve there exists a ce R such that
M & cV. Any set consisting of only one point is bounded.

The dual space of E [T], denoted (E [Z])/, is the set of continuous linear
functions on E [¥], crganized as a vector space in the well-known manner.
For € & (E [Z]) the value of § at x e E [%] is denoted § x = x £.

A set M S E[X] is called convex if (1-f)x+tyeM for all x,ye M,
0=t=1. The set a,M; +a,M,+. ..+ asM, is convex for M; convex, a;e R,
i=1,2,...n The intersection of convex sets is convex. The smallest con-
vex set containing a set M, i.e. the intersection of all convex sets containing
M, is denoted conv M. It consists of all points x = > %Z% a; x;, where a; ¢ R,
xieM, ne Zy and Z;Zf a; = 1. The set convM is the intersection of all
closed convex sets containing M, and convM = conv M. If M is convex, then
also the closure M of M and the interior M of M are convex sets. If I is
not empty, then (1-Dx-+fye M for all yebd, xe M and 0<i{=1. We
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express this by saying that all points in M can be reached from i,
Further M = M and i = M.

A topological vector space is said to be locally convex if there exists a
basis for the neighbourhood system of o consisting of convex sets. Normed
spaces are locally convex topological vector spaces. A subspace of a locally
convex space is ilself locally convex.

Let E; and E, be vector spaces over R, and suppose that there exists a
bilinear mapping B : E,x E; — R with the following two properties:

(i) For all x e E;, x # o, there exists a § ¢ E, such that 8(§,x) = 0.

(ii) For all §e E,, § # o, there exists an x e E; such that B(§,x) = 0.
We then say that IZ; and E, are in duality under 2.

Let E; and E, be in duality under 8. Then every § e E, is a linear func-
tion on E;, and every x e E; is a linear function on E,, namely §x = x§ =
B(E,x). There exist at least one locally convex topology ¥, on E; and at
least one locally convex topology T, on E, such that E, is the set of con-
tinuous linear functions on E;[¥;] and E, is the set of continuous linear
functions on E,[%T,], that is, (E,[%,]) = E, and (E,[T,])' = E;. Such topo-
logies are called admissible.

If E[%] is locally convex, and E’ is the dual space, then E and E’ are
in duality under 9 (§,x) = §x, and T is an admissible topology on E.

Let E [X] be a normed vector space, £ denoting the topology induced
by the norm, and let E’ be the dual space. It is well-known that || § ]| =
SUP|| x| <1 I Exl is a norm in E’. The topology %’ induced by this norm is
admissible if and only if F [Z] is a reflexive Banach space. In that case
E'[%'] is-also a reflexive Banach space.

Let E, and E, be in duality under 8. Deflining a(x, ) = (ax, ax) and
(x, x)+(¥,y) = (x+y, x+y), E;xR is a vector space over R. Likewise for
E,xR. Further, E;xR and E,xR are in duality under B((§, &), (x, )) =
B, x)+Ex. If T, is a locally convex topology on Ey, then E,[T,]xR, that
is, Eyx R supplied with the product space topology, is a locally convex space.
If ¥, is admissible, then the topology on E,[%;]xR is also admissible. A
basis for the neighbourhood system of the zero element (o, 0) in E,[%,]xR
consists of all sets of the form VxR,, where Visin a basis for the neighbour-
hood system of o in E,[%,], ¢e Ry and R, = {ae R |a;§a}. Likewise
for E,.

Let E, and I, be in duality. For a subset M of E; we define

_ M' = {§eE,|Ex =0 forall xe M.
Likewise for M S E,. Putting (M*)* = M4 and (M)t = M4, we have
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MC M and M* = MtLL for any subset M. Further, Mt and M** are sub-
spaces which are closed in every admissible topology, and M = M** if and
only if M is a subspace which is closed in every admissible topology.

A linear manifold in a vector space E is a set of the form y+ H, where
H is a subspace in E. The intersection of closed linear manifolds is a closed
linear manifold. The intersection of all closed linear manifolds containing
a subset M of E [T] is denoted m(M). An interior point of M in m(M) is called
a relative interior point of M.

If ¥+ H is a linear manifold in E, and H has codimension one, then
v+ H is called a hyperplane. For every hyperplane y + H in E there exists
a linear function § on E and a ce¢ R such that y+H = {xe E|§x = c}.
Conversely, if § is a linear functon on E and ¢ is in R, then the set
{xe E|&x =c}) is a hyperplane in E. Let E [Z] be a topological vector
space. Then the hyperplane y+H is closed if and only if a corresponding
linear function € is continuous. A non-closed hyperplane is dense in E [Z].

For §e (E [Z]) and ce R, the sets {x e Eléx éc} and {x e E| §xgc}
are called the closed halfspaces determined by the hyperplane. They are
closed convex sets. The sets {x e E| §x<c} and {x e E| §x>c} are called
the open halfspaces determined by the hyperplane. They are open convex sets.
A closed hyperplane in F [Z] is said to separate the sets A and B if A is con-
tained in one of the two closed halfspaces determined by the hyperplane
and B is contained in the other one. If 4 is contained in one of the open half-
spaces and B in the other one, then the hyperplane is said to separate
strictly. In that case A and B have no common points.

In locally convex spaces we have the following theorems:

1.1 If A is a closed convex set and x is a point not contained in 4, then

there exists a closed hyperplane which separates A and {x} strictly ([7]
P. 245).

1.2. Every closed convex set 4 is the intersection of all closed halfspaces
containing it ([7] p. 246).

2. Functions (D, f)

Let E [Z] be alocally convex topological vector space. Then also E [T]xR
is a locally convex topological vector space.

The functions considered in the following are real functions defined on
non-empty subsets of E. A pair consisting of a function f and its domain
D will be denoted (D, ) and called a function in E.
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If x ¢ D has a neighbourhood x+V such that (x+V) N (D\{x}) is empty,
then x is called an isolated point of D. Convex sets consisting of more than
one point have no isolated points.

If (D, f) is a function in E, we define for a non-isolated point x € D

lim inf f(2) = sup {int{f(2) |z (x+V) N (D\x})}},

Z->x

where 8 is a basis for the neighbourhood system of o in E. If xeD is
isolated, we put

lim inf f(2) = f (x).

zrx

Let (D, ) be a function in E. We say that f is lower semi-continuous at
a point x e D if

f(x) = lim inf f(2).

2—>x

If fis lower semi-continuous at every point of D, (D, [) is said to be lower
semi-continuous.

If (D, f) is a lower semi-continuous function such that for all x e D

lim inf f(2) < = implies xeD,
BrX

then (D, f) is said to be closed. Theorem 2.2 below motivates this definition.
A function (D, f) is said to be convex if D is a convex set and

FUQO—Dx+ty) < (L-8) F(£)+ 1 (9)
forall x,yeDand 0=t=<1.
For any function (D, f) we define

D, fl={(x,x)e ExR|xeD, x> f(x)}.

Then the following statement obviously holds.

2.1. A function (D, [) is convex if and only if [D, [] is a convex sei.

Further, we have

2.2. A function (D, f) is closed if and only if [D, f] is a closed set.
Proor. For a e R we define

T, ={xeD [ f(x)<a}.

If (D, f) is a closed function, then 7, is closed for every a e R. For, x
not in 7, implies x not in D or

lim inf,_, . f(2) > a.
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Thus there exists a Ve® such that (x+V) N 7T, is empty, which proves
that the complement of T, is open. Now let (y, b)e [D, f]. Then ye T, =T,
for every a>b, whence y e D and f(y) < b. Consequenlly (y, b) e [D, f],
and so [D, f] is closed.

Conversely, let [D, f] be closed. Obviously the set

{(x, ) e ExR|xe E}
is closed for every a ¢ R. Thus,
[D, f1N {(x, a)]er}

is closed for every a e R. This implies that T, is closed for every a ¢ R. To
prove that (D, f) is closed we consider an x e D such that
b = lim inf f (2) < .
X
Now b = — « would imply x e T, = T, for every a ¢ R which is impossible.
Hence b e R, and clearly xe T; = T,,. So x ¢ D and f(x) < b which proves
that (D, f) is closed.

As a consequence of 1.2, 2.1 and 2.2 we have

2.3. If &, and T, are locally convex vector space {opologies on E such that

(E [Z,]) = (E[Z.]), then T, and &, determine the same closed convex func-
tions in E.

24. If (D,f) is a convex function, then f(x)=z=lim inf f(z) for all
x e D, 5 Z->%
Proor. If D= {x}, there is nothing to prove. Otherwise consider a
yeD,y#x. For 0<{=1 we have (1-f)x+iyeD\{x}. Then
lim inf f(2) < lim inf ((1 -8 f(x) +1f (¥) = f(x).

z->x =0

From 2.4 we deduce
2.5. A conwvex function (D, f) is closed if and only if

D={xeD|liminf f(z)< o}
and o
f(x) = lim inf f(2) for xe D.
z2>x
The following four propositions are valid for arbitrary topological vector
spaces.
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2.6. If (D, f) is a convex function, and there exists an x e D such that
f is bounded below in some neighbourhood of x in D, then we have:

(i) f is bounded below on every bounded subset of D.

(ii) Every point of D has a neighbourhood in D in which f is bounded
below.

Proor. We may assume that x =oe D and f(o) =0. Let be R and
Ve®, V open and symmetric, be such that f(2)=b for all ze VN D. Let
0 <t<1. For every ze t "V N D we have

(1-tHo+tzeVND,
whence
b<f((1-1)o+tz) < (1-1)f(0)+1f (2),
that is
f()=t"1b.

If Mis a( bounded set, then M € ¢~ *V for some ¢, where 0 <f=<1.In par-
ticular, for every y ¢ D there exists a t, where 0 < < 1. such that y e t V.
And 7'V is a neighbourhood of y. Hence, the assertions (i) and (ii) follow
from what has been proved above.

Obviously 2.6 (ii) is equivalent to
2.6. (iil) If (D, f) is a convex function, then either

liminf f(2)> —< for all xe D
2%
or
liminf f(2) = - for all xe D.
2orx

ReEMARE TO 2.6 (iii). In finite-dimensional spaces we always have
the first alternative, whereas in infinite-dimensional spaces the second one
may occur. Every non-continuous linear function § in a topological vector
space E [T] provides an example, since for all c e R the set {x | §x = c} is
dense in E [T].

Next we prove (ef. [2] p. 92).

2.7. Let (D, f) be a convex function, and let D be open. If there exists a
point x e D such that f is bounded above in some neighbourhood of x, then f
is continuous on D.

Proor. Obviously we may assume that x = 0 and f(o) = 0. Let ae R
and Ve B, V symmetric, be such that f(2) < a for all ze V. Consider an &
such that 0 <e<1. If z ¢ ¢V, then
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r@=r{a-oors(tel|za-ar@rer(ts)z ea.
since &'z ¢ V. Further
0= r =g 1ol (e e -

f(z)=z —61"(-%2) > —¢a,

since —¢ 'z e V. Hence we have proved that z eeV implies |f(2)] < ¢a.
This shows that f is continuous at x. ’

Let y be in D. We shall prove that y has a neighbourhood in which f
is bounded above. This will complete the proof of 2.7. Since D is open,
there exists a 9> 1 such that py ¢ D. Let 2 bein y + (1 —¢™1) V, where V has
the same meaning as above. Then

1 1 1
z=y+(1——)y=— y+(1—~)y
oY 0(9) 0l

with y,e VED. Since 0 <g~1<1, this implies ze D. Hence y+ (1 —g )V
C D. Further

r@stien+(1-Hroostien+i-}e

/

which proves that f is bounded above in y +(1 —g " H)V.

2.8. If (D, f) is a convex function, and D has a non-empty relative interior
D, then the following statements are equivalent:

a) At least one x ¢ D has «a neighbourhood in D in which [ is bounded
above.

b) Every xe D has a neighbourhood in D in which f is bounded above.

¢) f is continuous at at least one x ¢ b.

d) fis continuous on D.

e) [D, f] has a non-empty relative inlerior.

Proor. We may assume that m (D) is a subspace. Since Dis open and
convex in m (D), we may apply 2.7 to the function (lu), ), i.e. the restriction
of fto D. This yields the equivalence of the statements a), b), ¢) and d).

Since m ([D, f]) = m(D)xR, the statements a) and e) are obviously equiv-
alent. Thus 2.8 is proved.
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2.9. If (D, [) is a convex function, and [D, f] has a non-empty relative
interior [D,Of], then D has a non-empty relative interior D, and the projection
mapping ExR —~E maps [D,’f] onto D.

Proor. This is an immediate consequence of 2.8.

Finally, we shall prove a result concerning convex functions in Banach
spaces.

2.10. Let (D, f) be a lower semi-continuous convex function in a Banach
space, and let D have a non-emply relative interior D. Then f is continuous on D.

Proor. We shall use the following lemma (ef. [7] p. 45):

Let S be a complete metric space and ¢ a lower semi-continuous function
on S. Further, let T' denote the set of points in § having a neighbourhood in
which ¢ is bounded above. Then T is dense in S.

There exists a closed set SC D with a non-empty interior § in m(D).
Applying the lemma to the restriction of f to S, we obtain that § contains a
point x such that fis bounded above in a neighbourhood (x+V)N S of x

in S. But (x+V) N Sis also a neighbourhood of x in D. Hence the assertion
follows from 2.8.

3. Conjugate functions

Let E; and E, be two vector spaces in duality under B, and let T; and
¥, be admissible topologies on E; and E,. Then E, = (E; [Z,])’ and E; =
(E,[T,])'. Further E;xR and E,xR are in duality under B ((€, &), (x, x))
=B (¢, x)+&fx = Ex+&x, and the product space topologies are admissible.
So (E;[Z:]xR) = EyxR and (E, [Z,]xR) = E;xR.

For a function (D, ) in E; we define

D' = {€a By |sup €x—f(x) < =),
€= Slelg Ex—f(x) for Ee D',

The set D' may be empty. If D' is not empty, the function (D, f) = (D', ")
in E, is called the conjugate of (D, [).

If (I, @) is a function in E,, the conjugate (I, ¢") in E; is defined anal-
ogously. In particular we have a second conjugate (D, f)” of a function
(D, [) in E,, namely the conjugate of (D, f"). Setting (D') = D", (f'Y' = {7,
we have for the second conjugate (D, )" = (D), (f)) = (D", f")

D’={xeE,|sup (§x—f ()<=},
geD’
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[ (x) = 5;111)3 Ex—f'(&) for x e D".

Hereafter the meaning of (D™, f®)), ne Z,, is clear.
In the set of functions in a vector space a partial order relation is
defined by

(D1, ) 2Dy, fy) if and only if [D,, f.] € Dy, ]‘11

Then (Dy, f1) = (D,, f,) holds if and only if D, € D, and f; (x) = [, (x) for
all x e D;. Accordingly, (Dy, fy) is called a minorant of (D,, f,), and (D, f,)
a majorant of (Dy, f1), when (Dy, f1) = (D,, fo).

3.1. If (D, f) has a conjugate, and (D, f) =(Dy, f1), then (D, f1) has a
conjugate, and (D3, f{) = (D', f).
Proor. Let & be in D’. Then

F7(€) = sup (Ex—1 (%)) = sup (§x— £, (%)),
which implies § e D] and f{ (§) <f'(§). This proves 3.1.

3.2. If (D, [) has a conjugate, then it has a conjugale of any order n e Z..
Further (D", f") =2 (D, f), and (D™, fm) equals (D', f") for n odd, (D", ")
for n even.

Proor. Let x be in D. Then we have f(x)=Ex—f'(§) for all e D’,
which implies x ¢ D" and f(x)=f"(x). Hence, (D, ) has a second con-
jugate, and (D7, ") = (D, ). Since (D7, ) is the conjugate of (D', f"), the
same argument applied to (), f') shows that (D, ) has a third conjugate,
and (D, )y < (D', ). In particular, (D", f7) has a conjugate, and since
D", )2, f), 3.1 yields (D', f) = (D™, {). Hence (D™, f*) = (I, ).
Hereafter, the unproved part of 3.2 follows by induction.

A closed hyperplane in E,[%,]xR is a set of the form

{(x, %) e E;xR | nx+nx = c},
where (1, 1) e (E{[Z,]xR)’ = E;xR and ce R, that is the set of those points
(x, x) at which a continuous linear function (7, %) takes the value ¢. For
the sake of convenience we specify the hyperplane by its equation nx+#nx
= ¢. A hyperplane nx+nx = ¢ in E{[3,]xR is called vertical if 4 = 0, non-
vertical if # = 0.

Let M be a non-empty subset of E,[T;]xR. By a barrier of M we mean
a non-vertical closed hyperplane such that M is contained in one of the two

closed halfspaces determined by the hyperplane. This means that if nx+
nax = ¢ is a barrier of M, we have either nx+%x = ¢ or nx+nx < ¢ for all
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(x,x)e M. If Mis of the form [D, f], the equation of a barrier nx+7nx = ¢
can always be written in the form §x—ax =&, (§,~1)e E,xR, £e R, and
such that §x —~x < £ for all (x, x)e M = [D, f]. For, division by —# gives an
equation of the form §x—x =&, and §x—x =& for all (x,x)e[D, f] is
impossible, since (x, ) e [D, f] and k e Ry implies (x, x+k) e [D, f].

A barrier of the set [D, f] will also be referred to as a barrier of (D, f).

The previously defined barriers of a function (D, f) have a close relation
to the conjugate of (D, f). Let (D, f) be a function in E,, and let §x—x =
&, where (§,—1)e E,x R, £e R, be a barrier of (D, f). Then §=§x—x for
all (x,x)e[D,f]. In particular, é2&x—f(x) for all xe D. Hence &e D'
and &£2f(§), and so (§, &) e [D', f']. Conversely, let (D, f) have a con-
jugate, and let (§, &) be in [D’, f']. Then we have

Ezf (@ z8x—f(x)z8x-x
for all (x, x)e [D, f], which shows that §x—a = & is a barrier of (D, f).

Hence, we have proved

3.3. A function (D, ) has a conjugate if and only if it has a barrier.
If (D, f) has a conjugate, then the point (§, &) is in [D', f'] if and only if the
hyperplane {(x, x) | Ex—a = E) is a barrier of (D, f).

Because of the duality, 3.3 is also valid for functions in E,, in particular
for (D', f"). This gives

3.4. If (D, [) has a conjugate, then the point (x, x) is in [D”, f”] if and
only if the hyperplane {(&, HlEx—&= r} is a barrier of (D', f").

From 3.3 and 3.4 follows immediately

3.5. If (D, f) has a conjugate, then

@O .= N {EHIEx-E=x).

(x, z) e D, f]

i D7 1= N A= a)|Ex-z<§)
(§,&) e D', 1

Consequently the sets [D’, '] and [D”, f”] are both intersections of closed
halfspaces, and thus convex and closed. Thus, by 2.1 and 2.2, we have

3.6. TurorEM. If (D, f) has a conjugate, then (D', f") and (D", f")
are closed convex functions.

Concerning ihe existence of conjugates we have
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3.7. TueoreM. If (D, f) is a closed convex function, then it has a conjugale.
Proor. For ye D and ke Ry the point (y,f(y)—k) is not in [D, f].
Consequently (cf. theorem 1.1) there exists a closed hyperplane nx+na=c,
(M, 1) @ EyxR, c e R, that strictly separates [D, f] and the point (y, f (3) - £).
We can assume Nx+#nx <c for all (x, x)e [D, f] and ny+9 (f(»)—-k)>c.
Since y e D, it follows that # = 0. Hence nx-+#nx = ¢ is a barrier of (D, f).

In 3.2 we showed that (D", f") = (D, ). A fundamental question is under
which conditions (D", f”) = (D, f) holds. By 3.6, it is necessary that (D, f)
be convex and closed. Theorem 3.10 below states that this is also sufficient.
In the proof we shall use

3.8. Let M be a closed convex subset of E;x R. If M has at least one barrier,
then M is the intersection of all closed halfspaces containing M and bounded
by barriers of M.

Proor. Being convex and closed, M is the intersection of all closed
halfspaces containing it (cf. theorem 1.2). Thus we have to show that if
there exists a vertical closed hyperplane separating M and the point (¥, y),
and not containing (y, y), then there exists a non-vertical closed hyperplane
with the same property. Let 3x =c¢, (3,0)e E,x R, ce R, be a vertical
closed hyperplane in Eyx R such that zy>c¢ and 3x=<c for all xe p(M),
p denoting the projection mapping F;x R - E,. Further let nx+xnx =y,
(m,mye Ey;xR,n++0, veR, be a barrier of M. We may assume nx+nx =y
for all (x, x) e M. Now, for every fe Ry

{(x, x)ye EyxRI(M+13) x+nx = y+tc}
is a closed non-vertical hyperplane such that

N+ x+nx =v+lc
for all (x, x)e M. If

N+ y+ny = y+te,
then

t(Ry—-co) 2 y-ny-ny.

But this cannot be true for all # € Ry since 3y > ¢. Consequently, there exists
a {, such that

N+t Dy +my >y +iec,
and so the non-vertical hyperplane
{(x, x)e EyxR|(M+1t,3) x+1r = 'y+tﬂc}

separates M and the point (¥, y), and does not contain (y, y).
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3.9. Turorem. If (D, f) has a conjugate, then
[D”, ] = conv [D, f].

Proor. By 8.3 and 3.5 (ii), [D”, f”] is the intersection of all closed
halfspaces containing [D, f] and bounded by barriers of [D, f]. Since the
barriers of [D, f] are identical with the barriers of conv [D, f], it follows
from 3.8 thal conv [D, f] is the intersection of the same closed halfspaces
as [D7, f”], which proves the statement.

Since for a closed convex function (D, f)
[D, f] = conv [D, f],

3.9 yields the theorem previously mentioned:
3.10. TuroreM. If (D, f) is convex and closed, then (D, f) = (D", 7).

We note that, under the assumptions of 3.10, the existence of (D", f7) is
ensured by 3.7.

As easily seen, there exists a closed convex minorant of the function
(D, f) if and only if (D, f) has a conjugate. In that case there even exists
a greatest closed convex minorant of (D, f) namely (D", f7). For, let (D,
f1) be a closed convex minorant. Then [D, f1] is a closed convex set, and
D, f1€ Dy, f1]. By 3.9, this implies [D”, 7] € [D,, fi]. So we have proved

3.11. Tueorem. If (D, f) has a conjugate, then (D7, [7) is its grealest
closed convex minorant.

The question arises which functions do have conjugates. A necessary
condition is that

lim inf f(2)> - for all xe D.
zZ—>x
For, let §x—x = & be a barrier. Since § is contlinuous, it is possible
for every xe¢ E to find a Ve 8 such that§z = Ex—1 for allze x+V. From
this we deduce

lim inf f(z) z inf{f(2) | z e (x+V) N (D\{x})}

z->
2i11f{§z—§|zex—|—V};§x¥1—£> — .

‘We shall prove that, for convex functions, this is also sufficient.

3.12. TuroreM. (i) Let (D, f) be a convex function. Then (D, f) has
a conjugate if (and only if)

lim inf f(2)> ~w for all xe D.

z2—>Xx
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In view of 2.6, (iii), we may also formulate the theorem in the following
way':

3.12. Tueorem. (i) Let (D, f) be a convex function, and lel x be an
arbitrary point in D. Then (D, [) has a conjugate if (and only if)

lim inf f(2)> ~ .
z—>x

Proor. Let (D, f) be a convex function such that for all xe D

lim inf f(2) >~ .
zZ—=>Xx
Then the function

[ (x) = lim inf f(2)
zZ—>X
is well-defined on the set

D={xeD|liminf f(2)<=}.
. >

a) (D, f) is a convex function.

Proof of a). Let y, and y, be in D, and consider y;= (1 ~1) y,+ ly;,
where 0 < t< 1. Let y:+V be a convex neighbourhood of ;. From the defini-
tion of (D, f) it follows that for every ee Ry there exist a zye (¥, +V) N
(D\{y0}2 and a z;e(y,+V)N (D\{yl}) such that f(z,) £ f(¥e)+¢ and
FEO=F(y)+e.

Since 2z, and 2, are in D, the point z; = (1 —t) 2,+{2; is in D, and

F(z) = (L= f(z)+t[(z) = (10 [ (yo) +tf (y1) +e.
Further zse (1 —8) (o +V)+ (¥ +V) = y:+V. Hence

inf {f(z) |ze (et VIND} =18 (w)+tf (3.
This implies

inf {7(z) | 26 (9e+ V)N (D))} = (1=D) f (wo)+ 1] (30,
since, if y: e D,
f(¥e) = limint £(2) = inf {f(2) | ze (3:+V) N (D\{xe)) }.
z-—>
Consequently ' _
lim inf f(2) = (1 =0 f (¥o) [ (¥1), -
Z=>
which shows that (D, f) is convex.
b) (D, f) is a minorant of (D, f).
Proof of b). From the convexity of (D, f) it follows that lim inf, ., f(2)
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< f(x) for all xe D. This implies D € D and f(x) = f (x) for all xe D. Hence
(D, f) is a minorant of (D, f).
¢) For all x e D we have lim inf f (z) = lim inf f(z).

Z-rx Z>x

Proof of ¢). Let x be in D. Since (D, f) is a minorant of (D, f), we have
inf{f(z)|ze(x+V) N D\{x})}

sinf{f(2) | ze (x+V) N(D\{x})}
for all Ve %. This implies
lim inf f (2) < lim inf 7 (2).
2-rx z—=>x

To prove the reversed inequality we consider an arbitrary zye (x+ V) N
(D\{x}), where Ve @ is assumed to be open. As the topology ¥, on E, is
Hausdorff, and V is open, (x+ V)\{x} is a neighbourhood of 2,. Let ¢ e Ry
be given. Since f(z,) = lim inf,_, , f(z), there exists a z, such that

26 ((x+ V)\{x)) N (D\{z,)) € (x+ V) N (D\{x})
and
f(2) =F(z0)+e.
This proves )
inf {f(2) | ze (x+ V)N (D{xP) = F(z0)-
Hence

inf {f(2) | z & (x+ V) 0 (D\{x}))

<inf{f(2) |z e (x+ V) N (D\{x})},
and thus
lim inf f(2) < lim inf f(2).

z—>x X

d) (D, f) is a closed function.

Proof of d). Let x be a point in D = D such that lim inf,_, , f (2) < ©. From
¢) and the definition of (D, f) it follows that x e D and f(x) = liminf, , , 7 (2).
Hence, (D, f) is closed.

Now, from a), b) and d) it follows that (D, f) has a closed convex
minorant. Thus, (D, f) has a conjugate.

3.13. Tueorem. If (D, f) is a convex function, and it has a conjugate,
then the second conjugate (D", f7) is determined by

D" = {x € D | lim inf f(2) < oo},
z->x
Mat.Fys.Medd.Dan, Vid.Selsk. 34, no. 2. 2
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7 (x) = lim inf f(2) for x e D”.
2>x

Consequently, if f is lower semi-conlinuous at x e D, then " (x) = f(x).

Proor. Let (D, f) be convex. If it has a con]ugate then lim inf, , .
f(2)>— = for all xe D. Hence, we may define (D, ) as in the preceding
proof and prove that (D, f) is a closed convex minorant of D, ). In fact
(D, f) is the greatest closed convex minorant of (D, ). For, let (Dy, f1) be
a closed minorant of (D, f). Then for every x e D

lim inf f,(2) < lim inf f(2) = f (%) < =.
zZ—=>x Z—rx

Since (Dy, f1) is closed, this implies x e D, and f; (x) < f(x), i.e. (D, fo) is

a minorant of (D, f). Thus, by 3.11, we have (D, f) = (D7, ™), which proves
the theorem.

4. The conjugates of functions derived from others

In this section we shall consider questions of the following kind. Suppose,
a function (D, f) is derived in a certain way from functions (D;, i), ie J,
where J is an index set. Is the conjugate (D', f') determined by the conju-
gates (D}, f;), and in the affirmative case, in what manner?

4.1. TuEOREM. Let the function (Dy, fy) have a conjugate (D, f,), and
let (D, f) be defined by
D = x,+1D,

[ () = kfo (T (x = x0)) +Eyx -+ b,

where x, e E,, § ¢ E,, and h, k and | are reals such that k>0 and [+0.
Then (D, ) has a conjugate (D', ") which is delermined by

=&y + k71D,
F/(§) = kfe (I (€=€0)) + (§—Ey) xo—h.

Proor. For all § e E, we have
sup Ex—f(x) = sup (€% — kfo (It (x = x0)) —§ox — h)
=k sup (M (E-E) ¥y~ fo(3)) +(§ - &) xo—

yeD,

This proves the theorem.
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4.2, TneoreEM. Let (Dy, f1) and (D,, f;) be closed convex functions such
that D, N D, = O, and let (D, f) be defined by
D=DiND,y, [f(x)=fi(x)+f(x).
Then we have:
(i) (D, f) is a closed convex function.
() [, '] = D, f1]+1Dy, fo].
(ifi) Dy+Dy € D' € D, +D;.
(iv) If [D', f'] has a non-empty relative interior, then

F &) =inf {1 €D+ /(€D | € = §,+&, & e Dy, € e Dy}

for all § in the relative interior of D',
Proor. (i) The convexity is obvious. Since lim inf, | f; (z2)> — = for
all xe Dy, and lim inf,_, , f, (2) > — « for all x e D,, the expression

lim inf f; (2) +lim inf f, (2)

a4 2>X

is well-defined for all x ¢ D € D, N D,. Further, for all xe D

lim inf f; (2) +1lim inf £, (¢) = lim inf [(2).

2>rX Z->x 2 x

Let x ¢ D be such that lim inf, , _ f () < «. Then, by the preceding ine-
quality,
lim inf f; (2) +1lim inf f, (2) < ».

Z—> X Z>Xx

As (Dy, f1) and (D,, f;) are closed, this implies xe D; N D, = D, and

[ () = £ (%) +, (%) = lim inf f(z).
2—>Xx
Thus (D, f) is closed.

(i) D,N D, @ implies [Dy, 11N [Dy, f,] # O. Hence [Dy,f;] and
[Dj, fo] have a common barrier §x — & — . Then Ex— &= 2z is a barrier of
[Dy, fi)+[D5, fy]. This implies that the closed convex set [D], fi]+ (D5, fa]
is of the form [I', ¢], where (I, @) is a closed convex function in E,. Now

", ¢) = (D, f), which may be proved in the following way. If (x, x)
e [I", '], then

Ei+8) x—(&+&) = x

for all (&, &) e [D], fil, (§s, &) e (D, f,], and this implies
2*



20 Nr.
sup (Ex~ £, () +sup Ex—/;(E)) = =.

Eeby EeDy

Do

Hence xe D} N D) = D, N D, =D, and
@z fi () +f (%) = fi(®) +[o(x) = [ (),

that is (x, ) e [D, f]. Conversely, for every (x, x) ¢ [D, f] we have
(G +8) x~(E1+E) = f1 () +f5 (%) = [y () +fa(x) = f(x) S

for all (&4, &) e [P, fil, (€ &) e [Dy, fo]. Thus Ex—E<a for all
(§, & e Dy, fil+[Dy, f,], and consequently then also for all (£, &) e
(D}, il +[D5, f] = [T, ¢]. This shows that (x,x)e[l”, ¢’]. Hence we
have proved (IV, ") = (D, f). As (I, ¢) is convex and closed, this implies
(I, ) = (D', f"), which proves (ii).

(iii) This is an oobvious consequence of (ii).

(iv) Since M= M, M convex, M= @, it follows from (ii) that the rela-
tive interior [D',°f'] of [D', '] is equal to the relative interior of [D;, fl']+
(D, f5]- (Likewise, we have by (iii) that the relative interior of D’ is equal
to the relative interior of D) + Dj). Hence

[D°f'1 S [Dy, f1+1D5, 2] S 1D, 1.

Let € be in the relative interior of D’. Then, by 2.9, there exists a £e R
such that (§, &) e [D,"f']. Since all points in [D’, f'] can be reached from
[D',Cf’], we have

.0 e D] Dy, fA1+[D5, fo]
for all {=>f" (§). Thus

f1© = int{L1, &) e DL, Al+1D2, £},
which proves (iv).

In accordance with the partial order previously defined, a function
(D, ) will be called a minorant of a set of functions {(Di, foliedyif
(D, =Dy, f;) for all ieJ. Analogously a majorant is defined.

If there exists a minorant of the set {(Di, folie J}, then the function
(D, f) defined by

D =U Dy,
e J

f(x)=1inf {fi(x) lieJ, xe D)
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is the greatest minorant. We shall denote this function by A;.; (Di, fi), or
for the sake of brevity A (D, fi), and the set [D, f] by A;e; [Di, fi], or briefly
A [Di, fi]. (Similar abbreviations will be used below in connexion with the
symbols A, V, U and N). Clearly

U [Di, il €A [Di, fil S U[Dy, fil.

If A (Ds, fi) exists, then there exists a closed convex minorant of {(Di, ﬁ)}
if and only if A (D, fi) has a conjugate (A (Di, f;))’. In that case there exists
a grealest closed convex minorant, denoted A (Ds, fi), namely the second
conjugate (A (Dy, f:))” of A (D, fi).

Of course, the grealest minorant of a set {(Di, f,-)} of convex functions
need not be convex. However, if the set {(Di, fi)} is totally ordered,
A (Ds, fi) is easily seen to be convex.

Suppose that there exists a majorant of {(Di, folie J}. Then the func-
tion (D, f) defined by

D —{xen D;|sup fi (x) < =},
ied ied

f(x) = sup fi (x)
ieJ

is the smallest majorant. This function (D, f) is denoted by V (Dq, fi) and
the set [D, f] by V [Dy, fi].

Obviously, V (D, fi) exists if and only if N [D;, fi] is non-empty, and in
that case

V [Dy, fil = n [Dy, fil.

Hence, the smallest majorant of a set of convex or closed functions is convex
or closed, respectively.

4.3. Given a set of functions {(Ds, fi) | ie J}.

(D) If A (D, fi) and (A (D1, fi))' exist, then (A (Di, )Y =V (Dj, f;)-

() If V(Ds, fi) and at least one (D, f;) exist, then (V(Di, f)) =
A Dy, ) (where A (D, f;) means the greatest minorant of those (D;,£)
which exist).

(i) If all (Di, f;) are convex and closed, and V (Di, fi) exists, then
V (D5, f))' = (A Dy, )

In all cases the assumptions ensure the existence of the minorants, majorants
and conjugates occurring -in the statements.

Proor. (1) It is easily seen that the barriers of A (Dy, f;) are precisely
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the common barriers of {(Di, [@)} This implies that V (D;, f;) exists and
that (3) holds.

(i) For all je J we have (Dy, f;) £V (Dy, fi). Hence the existence of at
least one (D;, f;) implies that of (V (Di, f))’, and we have (V (D, f;))' =
(D, f;) for every j for which (D}, f;) exists. This shows that A (D], f))
exists and that (ii) holds.

(iif) Under the assumptions all (D;, f{) exist. From (i) follows that
A (D, f)) and (V (Di, fi)) exist and that (V (Di, i) <A (D;, f;). This
implies that (A (D;, f))’ exists, and (i) applied to {(D;, ﬁ')} then gives

AL ) =V DL =V (D fi),

since all (D;, f;) are convex and closed. Hence (A (D, )" = (V (D4, 7).

4.4, TueoREM. Let {(Di,ﬁ)} be a set of closed convex functions. If
A (Di, i), (A (Ds, 1)) and V (Ds, f7) exist, then

(A (Di, )Y =V (D1 1),
vV (Ds, 1) = A Dy, 1)
Proor. This is an obvious consequence of 4.3 (i) and (iii).
4.5. THEOREM. Letf {(Di,ﬁ)} be a set of closed convex functions, and
suppose that V¥ (D, f3) exists. For (D, f) =V (D4, fi) we then have
@ D', f'] = conv (U Dy, fi]).
(ii) conv (U D;) € D' € conv (U D).

(i) If [D', f'] has a non-empty relative interior, then

fl (6) = inf{ él }‘v fz,,, (gv)

¥ i3
§=Zavgv,gveD;v,l,,zo,ZA,,:l,zzeZ+}

V=1 y=1

for all € in the relative interior of IV
Proor. (i) All (D}, ;) and A (D}, f;) exist, and we have

U D}, 1S A D, ;1 €U Dy, f;].
This implies

conv (U [D;, f{]) = conv (A [D}, £1),

since convM = convM for any set M. Statement (i) then follows from 3.9
and 4.3 (iii).
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(ii) This is a simple consequence of (i).
(iii) By (i) we have
[Df'] € cony (U [D;, ;D € 1D, '],

(D",°f'] denoting the relative interior of [D’, f']. Let § be in the relative in-
terior of D’. Then (§, {) e [D',°f'] for all {>f' (§), that is

1 (§) =inf{f ] (€, {) e conv(U [D;, fi D}

5. Convex functions with domains having non-empty relative interiors

As usual, E, and E, are vector spaces in duality. We first prove a result
concerning the struciure of closed convex funclions.

5.1. Let (D, f) be a closed convex function in E;. There exists one and,
obviously, only one subspace Fy of Ey, called the linearity space of (D, ), with
. the following properties:

(i) Fy is closed.

(i) D+F,=D.

(iii) For every x e D

f(x+2)—f(x), =zelky,
is a conlinuous linear function on F,, independent of x.

(iv) Every subspace of E; with the properties (ii) and (iii) is a subspace
of Fy.

() If (I, @) denotes the conjugate of (D, f) in E,, then

m (I') = §+ F{
for every §e I
Proor. We define F; = (I'—§g)*, where §,¢ I'. Thus, a point x e E, is
in F, if and only if it is a constant function on I'. Obviously F, is a closed
subspace. For x e D and z e F; we have

sup (§(x+2)—@(§)) = sup Ex—¢ (§)) +8& =2,
el el

Hence x+zeD and f(x+2)—f(x)=E&,2, which proves (ii) and (iii). Let
Yo # 0 be in a subspace with the properties (ii) and (iii). Then there exists
a continuous linear function n on the subspace generated by y, such that
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f(x+aye)—f(x) =n(2y0)
for all x ¢ D and all xe R. Let x,e¢ D and § ¢ I". Then we have

@ (§) = sup Ex—f(x)

v

sull?E (€ (x¢+ayy) = f (%0 + xyo))

= sup (§—m) ayo+Ex0—f (%),
«eR
which implies (§ —1) ¥, = 0. Hence Eyy = ny, for all §e I, that is y,e F;.
Thus (iv) has been proved. The last statement follows from

Ft = (=8 = (m(I)-§* = m(I)~§, §el.

We shall now malke some further assumptions on the vector spaces E;
and E,, namely that they are normed spaces, that the topologies induced
by the norms are admissible and that

[lx|] =sup |[8x], [I§]l =sup|Ex]
el =1 l[=]]<1
ek, x ek
for all xe E; and all § ¢ E,. In fact, this means that E, and E, are both
reflexive Banach spaces, and each space is the dual of the other one.
Let F; be a closed subspace of E,. It is easily verified that the function

Hxllp = sup |Ex]
gl =1
§GF1J'
is a semi-norm in FE;, and that it has the following properties:
@) 1€x =118l -llx|lp, for xe Ey, Ee Fi.
(i) || x|l =|lx|lp,, xeE,, if and only if F; = {o}.
We note that || x ||z =inf, .z || x—2z || (cf. [7] p.282).

5.2. Turorem. Let (D, f) be a closed convex function in E;, and (I, ¢)
ils conjugate in E,. Let Fy be the linearity space of (D, ). Then a point
§v & E, is a relative interior point of I' if and only if there exist an x,¢e E,,
a o e Ry and a o ¢ R such that ’

f(x)29||x_xo”m_a+§ox

for all x ¢ D. In particular, §, is an interior point of I' if and only if there
exist an xge Xy, a pe Ry and a oe R such that
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fE)zollx—xll -0+«
for all xe D.
Proor. First, suppose that

F)zellx—xy|lp,—0+8&x
for all x e D. Then

sup (§gx—f (%)) =0
xeD
that is §ye I'. For every §em (I") = §,+ F{ such that || -§,||<¢ we have

sup (gx—f(x));:gg Ex—ollx—x,||p+0—-8x)
~sup (-8 (x—x)—ollx—xl[p) +(§=&) 2y +
= sup ((1E=8ll =)l x — 2 ll5) +(§—8o) %o+ 0
=(€-8) xy+o0.

Hence §e I', which proves that §, is a relative interior point of I.
If for all xe D
[(x)zollx—x,1[-0+E x,

then F; = {o}. For let z,e D and y, ¢ F;. There exists a continuous linear
function n on F; such that for all e R

[(zo+ayo) = [(20) + 1 (x,)
Zollzy+aye—xg || —0+8 (2o + ay,)
zolul: ”J’OH_Q”zo_xo|["G‘|‘Eozo+§o(°‘y0)-
This implies y, =0, that is Flz{o}. Hence [|x||z, =||x|| for all xe D,
and the proof above yields that § is an interior point of I.

Next, let §, be a relative interior point of I'. Then ¢ is continuous at &,
(cf. 2.10). Consequently, there exist a p e R+ and a o e R such that

K={g18em (I, [|E-&ll<o} S

and
P& =0 for all feK.

For every x ¢ D we then have



26 Nr.2

f (%) =sup (§x - (§) Zsup (Ex - (£))
el EeK

zsup&x—o=sup(§-§)x—o0+ x
feK feK

=ollx|lp— 0o+ x.

Thus, we have an equality of the form desired, with x, = o.
If §, is an interior point of I', then F, = {o}. Hence || x || = || x ||z, and
we have

f()zollx||—o+8x
for all x ¢ D.

Now, .the main theorem of this section follows immediately from theorem
5.2 and the dual statement:

5.3. TueoreM. Let €, denofe the class of closed convex functions (D, f)
in E, with the following two properties:
(1) D has a non-emply relative interior.

(ii) For some x,e E{, §,e E,, oe Ry and oe R we have
f(x)zollx—xq|lp,—6+Ex for xeD,

F, denoting the linearity space of (D, f). ‘

The class of conjugates of the functions in &, is the analogously defined class
€, in E,, and conversely. If (D, f) in E; and (I', ¢) in E, are closed convex
functions with the property (i), such that each function is the conjugate of
the other one, then (D, f) is in €; and (I', ¢) is in G,.

The same stalement holds for the subclass D, of €, consisting of those closed
convex functions (D, f) for which

(i) D has a non-empty interior.

ii) For some xy¢ Eq, §ye E,, pe Ry and o e R we have
0
f(x)zollx—xyl|-0+8x for xeD.

In that case Fy = {o} for the functions involved.
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