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Introduction

The purpose of the present paper is to generalize the theory of conjugat e

convex functions in finite-dimensional Euclidean spaces, as initiated b y

Z . BIRNBAUM and W . ORLICz [1] and S . MANDELBROJT [8] and developed by

W. FENCHEL [3], [4] (cf. also S . KARLIN [6]), to infinite-dimensional spaces .

To a certain extent this has been done previously by W . L . JONES in hi s

Thesis [5] . His principal results concerning the conjugates of real function s
in topological vector spaces have been included here with some improve-

ments and simplified proofs (Section 3) . After the present paper had bee n

written, the author ' s attention was called to papers by J . J . MOREAU [9], [10] ,

[11] in which, by a different approach and independently of JONES, result s

equivalent to many of those contained in this paper (Sections 3 and 4) are
obtained .

Section 1 contains a summary, based on [7], of notions and results fro m

the theory of topological vector spaces applied in the following . Section 2

deals with real functions f defined on subsets D of a locally convex topo -
logical vector space . In particular convex functions are considered . In

Sections 3 and 4 the theory of conjugate functions is developed . The starting

point is a pair of locally convex topological vector spaces E1 , E2 which ar e
(topological) duals of each other. For a function f with domain D c EI ,
briefly denoted by (D, f), we define

D' ={~CE2 lsup (Ç x- f (x)) < 0c, } .

xe D

If D ' is non-empty, the function (D' , f'), where

f'() = sup (Ç x - f (x))

	

for Ç e D ' ,
xe D

is called the conjugate of (D, f) . Analogously the conjugate of a function in

E 2 , in particular the second conjugate (D", f") of (D, f), that is, the conjugat e
of (D ' , f'), is defined. In Section 3 elementary properties of (D ' , f ' ) and
(D", f " ) are studied, and necessary and sufficient conditions in order that a

convex function (D, f) have a conjugate and that it coincide with its secon d

I .
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conjugate are given . In Section 4 the conjugates of functions derived fro m
others in various ways are determined. Finally, in Section 5 the class o f
convex functions (D, f) in E,_ which coincide with their second conjugate s
and have the property that their domains D as well as the domains D ' o f
their conjugates have relative interior points is characterized in the case o f
Banach spaces El and E 2 .

1 . Topological vector spaces
In the following R denotes the set of reals, R+ the set of positive reals

and Z+ the set of positive intergers . When R is considered as a topologica l
space, the topology is the usual one . All the vector spaces considered ar e
vector spaces over R .

Let E be a vector space over R with elements o, x, y, . . . , o being th e
zero element, and let Z be a Hausdorff topology on E. If the mappings Ex
E -+ E defined by (x, y) x +y and R x E --> E defined by (a, x) -~ ax are
continuous, E is said to be a topological vector space . Z, is then called a
vector space topology, and E is denoted E [t] .

If F is an algebraic subspace of E [t], then F is a topological vector spac e
in the induced topology .

If % = {V} is a basis for the neighbourhood system of o in E [Z], then
{x + V I V e Zs'} is a basis for the neighbourhood system of the point x .
There exists a basis

	

such that all V e 2 are symmetric, in the sense tha t
x e V and I a <1 imply ax e V. If b 0 and V e ß, then bV e . A subset M
of E [Z] is said to be bounded if for all V e 9 3 there exists a c e R such tha t
M C cV. Any set consisting of only one point is bounded .

The dual space of E [5.2], denoted (E [i]) ', is the set of continuous linea r
functions on E [t], organized as a vector space in the well-known manner .
For e (E [i]) ' the value of at x e E [Z] is denoted x = x .

A set M ç E [Z] is called convex if (1-0 x+ ty e M for all x, y e M,
0 � t- .1 . The set a, M,_ + a 2 M2 + . . . + anMn is convex for Mi convex, ai e R,
i = 1, 2, . . . n . The intersection of convex sets is convex. The smallest con -
vex set containing a set M, i .e . the intersection of all convex sets containin g
M, is denoted convM. It consists of all points x =

	

-1 ai x i , where a i e R ,
xi e M, n e Z+ and -1 ai = 1 . The set convM is the intersection of al l
closed convex sets containing M, and convM = convM . If M is convex, the n
also the closure M of M and the interior i1II of M are convex sets. If M i s
not empty, then (1- t)x + ty e M for all y e M, x e M and 0 <t . 1 . We
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express this by saying that all points in M can be reached from M.
s

Further M = M and M = M.

A topological vector space is said to be locally convex if there exists a
basis for the neighbourhood system of o consisting of convex sets . Normed

spaces are locally convex topological vector spaces . A subspace of a locall y
convex space is itself locally convex .

Let E 1 and E2 be vector spaces over R, and suppose that there exists a
bilinear mapping

	

E 2 x E1 -÷ R with the following two properties :
(i) For all x e E 1 , x o, there exists a Ç e E 2 such that Q3(, x) 0 .
(ii) For all Ç e E 2 , Ç o, there exists an x e El such that (Ç, x) O .

We then say that E 1 and E 2 are in duality under O .
Let El and E 2 be in duality under O . Then every Ç e E 2 is a linear func-

tion on E 1 , and every x e E1 is a linear function on E 2 , namely 5x = xÇ _
O(Ç, x) . There exist at least one locally convex topology ,1 on E l and at
least one locally convex topology 2 on E 2 such that E 2 is the set of con-
tinuous linear functions on E 1 [Z 1] and E 1 is the set of continuous linear
functions on E 2 [Z 2], that is, (E 1 [Z 1 ]) ' = E2 and (E 2 [Z 2 ])' = El . Such topo-
logies are called admissible .

If E [Z] is locally convex, and E ' is the dual space, then E and E' are
in duality under 13 (,x) = Çx, and Z is an admissible topology on E.

Let E [Z] be a normed vector space, Z denoting the topology induce d
by the norm, and let E ' be the dual space. It is well-known that II Ç II =
supl I x II < 1 x I is a norm in E ' . The topology Z' induced by this norm is
admissible if and only if E [Z] is a reflexive Banach space . In that cas e
E ' [t ' ] is also a reflexive Banach space .

Let E 1 and E 2 be in duality under O . Defining a(x, x) = (ax, ax) and
(x, x) + (y, y) = (x + y, x+ y), E 1 xR is a vector space over R . Likewise for
E 2 xR . Further, E 1 xR and E2 xR are in duality under 93((Ç, ), (x, x) )
3(Ç, x)+ ex . If 1 is a locally convex topology on E 1 , then E 1 [ 1]xR, that
is, E 1 xR supplied with the product space topology, is a locally convex space .
If ,1 is admissible, then the topology on E. 1 [ 1 ] x R is also admissible . A
basis for the neighbourhood system of the zero element (o, 0) in E 1 [Z1] x R
consists of all sets of the form VxRE , where V is in a basis for the neighbour-
hood system of o in E1 [ 1 ], e e R+ and R E = {a c R I la ~ � e) . Likewise
for E 2 .

Let E 1 and E 2 be in duality. For a subset M of E 1 we defin e

M1 ={Çe E 2 l Çx= 0 for all xeMÎ .

Likewise for M E2 . Putting (M1)1 = M11 and (Mll)1 = yllll we have
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M g M11 and M1 = M111 for any subset M . Further, M1 and M11 are sub-
spaces which are closed in every admissible topology, and M = M 1 ' if and
only if M is a subspace which is closed in every admissible topology .

A linear manifold in a vector space E is a set of the form y+H, where
H is a subspace in E . The intersection of closed linear manifolds is a close d
linear manifold . The intersection of all closed linear manifolds containin g
a subset M of E [52] is denoted m(M). An interior point of M in m(M) is called
a relative interior point of M .

If y+H is a linear manifold in E, and H has codimension one, then
y +H is called a hyperplane . For every hyperplane y + H in E there exists
a linear function on E and a c e R such that y + H={ x e E j x c} .
Conversely, if is a linear function on E and c is in R, then the se t
{x e E J x = c} is a hyperplane in E . Let E [Z] be a topological vecto r
space. Then the hyperplane y+H is closed if and only if a corresponding
linear function is continuous . A non-closed hyperplane is dense in E [Z] .

For e (E [i]) ' and c e R, the sets {x e E l Çx <_ c} and {x e E ~ x >_ c }
are called the closed halfspaces determined by the hyperplane . They are
closed convex sets. The sets {x e E Ç x < c l and {x e E I x > c} are calle d
the open halfspaces determined by the hyperplane . They are open convex sets .
A closed hyperplane in E [Z] is said to separate the sets A and B if A is con-
tained in one of the two closed halfspaces determined by the hyperplan e

and B is contained in the other one . If A is contained in one of the open half-
spaces and B in the other one, then the hyperplane is said to separate
strictly. In that case A and B have no common points .

In locally convex spaces we have the following theorems :

1 .1 If A is a closed convex set and x is a point not contained in A, the n
there exists a closed hyperplane which separates A and {x} strictly ([7 ]
p . 245) .

1 .2 . Every closed convex set A is the intersection of all closed halfspace s
containing it ([7] p . 246) .

2 . Functions (D, f )

Let E [Z] be a locally convex topological vector space . Then also E [ ] xR

is a locally convex topological vector space .
The functions considered in the following are real functions defined o n

non-empty subsets of E . A pair consisting of a function f and its domai n
D will be denoted (D, f) and called a function in E.
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If x e D has a neighbourhood x +V such that (x +V) n (D\{x}) is empty,
then x is called an isolated point of D . Convex sets consisting of more tha n
one point have no isolated points .

If (D, f) is a function in E, we define for a non-isolated point x e D

lim inf f (z) = sup {inf. { f (z) z e (x+V) n (D\(x)) } } ,
z~x

	

Ve û

where Ql is a basis for the neighbourhood system of o in E . If xeD is

isolated, we put
lim inf f (z) = f (x) .

z- X

Let (D, f) be a function in E . We say that fis lower semi-continuous at
a point x e D if

f (x) < lim inf f (z) .
z-÷x

If f is lower semi-continuous at every point of D, (D, f) is said to be lower
semi-continuous .

If (D, f) is a lower semi-continuous function such that for all x e 1D

	

lim inf f (z) <

	

implies

	

x e D ,
z--> x

then (D, f) is said to be closed. Theorem 2.2 below motivates this definition .
A function (D, f) is said to be convex if D is a convex set and

f((1-t)x+ty)<(1-t) f(x)+tf(y)

for all x,ycD and 0t_<_1 .
For any function (D, f) we define

[D, f]={(x,x)eExRixeD,x> f(x)} .

Then the following statement obviously holds .

2 .1 . A function (D, f) is convex if and only if [D, f] is a convex set .

Further, we have

2 .2 . A function (D, f) is closed if and only if [D, f] is a closed set.
PROOF . For a e R we defin e

Ta ={xoDI f(x)<a} .

If (D, f) is a closed function, then Ta is closed for every a e R . For, x
not in Ta implies x not in D or

lim infz x f (z) > a .
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Thus there exists a V e such that (x+V) fl Ta is empty, which prove s

that the complement of Ta is open. Now let (y, b) e [D, f] . Then y e Ta = Ta
for every a > b, whence y e D and f (y) b . Consequently (y, b) e [D, f] ,

and so [D, f] is closed .
Conversely, let [D, f] be closed . Obviously the se t

((x,a)aExRIxeE )

is closed for every a e R. Thus,

[D, f] fll(x,a)eE }

is closed for every a e R . This implies that Ta is closed for every a e R . To
prove that (D, f) is closed we consider an x e D such that

b = lim inf f (z) < oo .

z->x

Now b = - 00 would imply x e Ta = Ta for every a e R which is impossible .
Hence b e R, and clearly x e Tb = Tb . So x e D and f (x) b which prove s

that (D, f) is closed .

As a consequence of 1 .2, 2 .1 and 2.2 we have

2.3 . If Z1 and are locally convex vector space topologies on E such tha t

(E [Z1 ]) ' (E [Z 2 ]) ' , then Z 1 and 32 determine the same closed convex func-
tions in E .

2 .4 . If (D, f) is a convex function, then f (x) lim inf f (z) for al l
xeD.

	

..--)- x

PROOF . If D = (_ x), there is nothing to prove . Otherwise consider a

yeD,y x . For 0<t 1 we have (1-t)x+tyeD\{x} . Then

lim inf f (z) lim inf ((1 -Of (x) + tf (y)) = f (x) .

	

z->x

	

t-k o

From 2 .4 we deduce

2 .5 . A convex function (D, f) is closed if and only if

D{xeDIliminf f(z) <

and 2. -4-

f (x) = lim inf f (z)

	

for x e D .
z -4- x

The following four propositions are valid for arbitrary topological vecto r

spaces .
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2.6 . If (D, f) is a convex function, and there exists an x e D such tha t

f is bounded below in some neighbourhood of x in D, then we have :
(i) f is bounded below on every bounded subset of D .
(ii) Every point of D has a neighbourhood in D in which f is bounded

below .
PROOF . We may assume that x = o e D and f (o) = O . Let b e R and

V e 2, V open and symmetric, be such that f (z) � b for all z e V fl D. Let
0< t< l . For every z e t-1 V fl D we have

(1-t)o+tzeVn D ,

b f((1-t)o+tz)(1-t) f(o)+tf(z) ,

f(z)>t-l b .

whence

that is

If Vll is a bounded set, then M t -1V for some t, where 0 < t 1 . In par-
ticular, for every y e D there exists a t, where 0 <t 1 . such that y e t-1V.

And t -1 V is a neighbourhood of y. Hence, the assertions (i) and (ii) follo w
from what has been proved above .

Obviously 2 .6 (ii) is equivalent to

2 .6 . (iii) If (D, f) is a convex function, then either

lim inf f (z) > - co

	

for alt x e D
z--> x

or
lim inf f (z) = -

	

for all x e D .
z~ x

REMARK TO 2 .6 (iii) . In finite-dimensional spaces we always hav e
the first alternative, whereas in infinite-dimensional spaces the second one
may occur . Every non-continuous linear function in a topological vecto r
space E [Z] provides an example, since for all c e R the set {x I x = c} is
dense in E [Z] .

Next we prove (cf. [2] p . 92) .

2 .7 . Let (D, f) be a convex function, and let D be open . If there exists a
point x e D such that f is bounded above in some neighbourhood of x, then f
is continuous on D .

PROOF . Obviously we may assume that x = o and f (o) = 0 . Let a e R
and V e R3, V symmetric, be such that f (z) a for all z e V . Consider an a

such that 0 <e <1 . If z e eV, then



10

	

Nr . 2

f(z) = f ((1 E) o+ E(£
Z))

(1 - E) f(o) + E f(-8 z) < ea ,

since 8- l z e V . Further

a- f . _

	

( 1+ z + 1

	

( .

	

1
)

/ 1 11

	

1

	

(1 - i l _/
-81 z) ,

that is,
f(z) -et'(- -wl z) � -Ea ,

since -C l z e V. Hence we have proved that z e eV implies I f (z) < Ea .
This shows that f is continuous at x .

Let y be in D . We shall prove that y has a neighbourhood in which f
is bounded above. This will complete the proof of 2 .7. Since D is open ,
there exists a e> 1 such that ey e D . Let z be in y+(1 -t 1) V, where V ha s
the same meaning as above. Then

z y+(1-- yo = P (eY)+ - ~Yo

with yo e V D . Since 0 < 1 <1, this implies z e D . Hence y + (1 -e-1) V
D . Further

f(z)
Q f(eY)+(1-~)f(Yo)<l f(eY)+--)a ,

which proves that f is bounded above in y + (1 -')V.

2 .8 . If (D, f) is a convex function, and D has a non-empty relative interio r
b, then the following statements are equivalent :

a) At least one x e D has a neighbourhood in D in which f is bounde d
above .

b) Every x e D has a neighbourhood in D in which f is bounded above .
c) f is continuous at at least one x e D .
d) f is continuous on D .
e) [D, f] has a non-empty relative interior .

a
PRooF. We may assume that m (D) is a subspace. Since D is open and

convex in m (D), we may apply 2 .7 to the function (D, f), i .e . the restriction
of f to D . This yields the equivalence of the statements a), b), c) and d) .
Since m([D, f]) = m(D)xR, the statements a) and e) are obviously equiv-
alent . Thus 2 .8 is proved .



Nr . 2

	

1 1

2 .9 . If (D, f) is a convex function, and [D, f] has a non-empty relative
interior [D, °f], then D has a non-empty relative interior D, and the projection
mapping ExR --> E maps [D ;f] onto D.

PROOF . This is an immediate consequence of 2 .8 .

Finally, we shall prove a result concerning convex functions in Banac h
spaces .

2 .10 . Let (D, f) be a lower semi-continuous convex function in a Banac h
space, and let D have a non-empty relative interior Da . Then f is continuous on D .

PROOF . We shall use the following lemma (cf. [7] p . 45) :
Let S be a complete metric space and cp a lower semi-continuous function

on S. Further, let T denote the set of points in S having a neighbourhood i n
which q is bounded above . Then T is dense in S .

There exists a closed set S D with a non-empty interior S in m(D) .
Applying the lemma to the restriction of f to S, we obtain that S contains a
point x such that f is bounded above in a neighbourhood (x +V) fl S of x
in S. But (x+V) n s is also a neighbourhood of x in D . Hence the assertion
follows from 2 .8 .

3. Conjugate function s

Let E 1 and E 2 be two vector spaces in duality under 0, and let an d

Z 2 be admissible topologies on E1 and E 2 . Then E 2 = (E 1 [Zi ]) ' and E1 =

(E 2 [Z,])' . Further ExR and E2 xR are in duality under f8 (( , f) , (x, x))
= 18 (~ , x) + fx = x + fx, and the product space topologies are admissible .
So (E 1 [Z 1]xR) ' = E 2 xR and (E2 [Z 2 ]xR) ' = Ei xR .

For a function (D, f) in E1 we define

D'=1 cE2 I sup ( x- f(x)) < } ,
xe D

f' (~) = sup (x-- f (x))

	

for e D ' .
xe D

The set D ' may be empty . If D' is not empty, the function (D, f) ' = (D ' , f ' )

in E2 is called the conjugate of (D, f) .
If (I', q') is a function in E 2 , the conjugate (P', 99 ' ) in El is defined anal-

ogously. In particular we have a second conjugate (D, f)" of a functio n
(D, f) in E1 , namely the conjugate of (D ' , f ' ) . Setting (D ') ' = D", (f ' ) ' = f" ,
we have for the second conjugate (D, f )" _ ((D')', (f')') = (D', f")

D"- (x e El 1 sup (Ç x - f'(Ç)) < co } ,
eD'
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f"(x) = sup (fix-f'(~))

	

for x e D" .

Hereafter the meaning of (D (n), f (70), n e Z+, is clear .

In the set of functions in a vector space a partial order relation i s
defined by

(D i, fl) <_ (D 2 , f2) if and only if [D 2 , f2] S [Di, fi] .

Then (D i , f1 ) <_ (D 2 , f2) holds if and only if D 2 ç D 1 and fl (x) f2 (x) for

all x e D 2 . Accordingly, (D 1 , fl) is called a minorant of (D 2 , 12), and (D 2 , f2 )

a majorant of (D i , f1 ), when (D i , fi) (D2, f2) .

3 .1 . If (D, f) has a conjugate, and (D, f) (D 1 , f1), then (D 1i f1) has a
conjugate, and (Di, fi) < (D' , f ' ) .

PROOF . Let be in D ' . Then

f' (~) = sup (x-- f (x)) ? sup (x - f1(x )) ,
xeD

	

x6D,

which implies e Di and fl O < f ' ( e) . This proves 3 .1 .

3 .2 . If (D, f) has a conjugate, then it has a conjugate of any order n e Z+ .
Further (D", f") (D, f), and (D ( " ) , f (n) ) equals (D ' , f ') for n odd, (D", f")
for n even .

PROOF . Let x be in D. Then we have f (x)x- f'(0 for all e D ' ,
which implies x e D" and f (x)? f"(x) . Hence, (D, f) has a second con-

jugate, and (D", f") <_ (D, f) . Since (D", f") is the conjugate of (D ', f ' ), the

sane argument applied to (D ' , f ' ) shows that (D, f) has a third conjugate ,

and (D", f"')

	

f ' ) . In particular, (D", f") has a conjugate, and since
(D", f") (D, f), 3 .1 yields (D ' , f ') (D"' f,,,) . Hence (D,,, f,,,) = (D', f ' ) .
Hereafter, the unproved part of 3 .2 follows by induction .

A closed hyperplane in Ei [,2,1]xR is a set of the form

{(x, x) e E1 xR 17jx+Yfx = c) ,

where (ri , r~) e (E1 [ 2 1 ] xR) ' = E 2 xR and c e R, that is the set of those points

(x, x) at which a continuous linear function (ri, 97) takes the value c . For
the sake of convenience we specify the hyperplane by its equation rix+r/x

= c . A hyperplane rix+'x = c in E1 [ 1 ] xR is called vertical if 97 - 0, non-

vertical if 9

	

0 .
Let M be a non-empty subset of El [ ]xR . By a barrier of M we mean

a non-vertical closed hyperplane such that M is contained in one of the tw o
closed halfspaces determined by the hyperplane . This means that if ri x +
97x = c is a barrier of M, we have either rl x + y x > c or ri x + 97x c for all
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(x, x) e M . If M is of the form [D, f], the equation of a barrier r~ x + n x = c
can always be written in the form x-x = e, (~,-1) e E2 xR, e R, and

such that x - x for all (x, x) e M = [D, f] . For, division by - gives a n

equation of the form e x - x = e, and Ç x - x >_ for all (x, x) e [D, f] is
impossible, since (x, x) e [D, f] and k e R+ implies (x, x +k) e [D, f] .

A barrier of the set [D, f] will also be referred to as a barrier of (D, f) .
The previously defined barriers of a function (D, f) have a close relatio n

to the conjugate of (D, f) . Let (D, f) be a function in E l , and let e x - x =

e, where (,-1) e E 2 xR, e R, be a barrier of (D, f) . Then e'_>_ x-x for

all (x, x) e [D, f] . In particular, e >_ x - f (x) for all x e D . Hence e e D'

and e ?f' (Q, and so (, e) e [D ' , f'] . Conversely, let (D, f) have a con-
jugate, and let (, e) be in [D ' , f ' ] . Then we have

Lf'(~)>f(x)?ex- x

for all (x, x) e [D, f], which shows that e x - .x = is a barrier of (D, f) .
Hence, we have prove d

3.3 . A function (D, f) has a conjugate if and only if it has a barrier .
If (D, f) has a conjugate, then the point (, e) is in [D ' , f ' ] if and only if the
hyperplane ((x, x) I x - x = } is a barrier of (D, f) .

Because of the duality, 3 .3 is also valid for functions in E 2 , in particular

for (D ' , f ' ) . This give s

3.4 . If (D, f) has a conjugate, then the point (x, x) is in [D", f"] if and

	

only if the hyperplane { (~, e)

	

x - e = x) is a barrier of (D ' , f ' ) .

From 3 .3 and 3.4 follows immediately

3 .5 . If (D, f) has a conjugate, then

(i) [D', f' ] =

	

n

	

{$)x).
(x, x) e [D, f]

(ii) [D", f"] =

	

(l

	

{(x,x) I x-xe} .

Consequently the sets [D ' , f ' ] and [D", f"] are both intersections of close d
halfspaces, and thus convex and closed. Thus, by 2 .1 and 2 .2, we have

3 .6 . THEOREM . If (D, f) has a conjugate, then (D ' , f ' ) and (D", f")
are closed convex functions .

Concerning the existence of conjugates we have
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3 .7 . THEOREM . If (D, f) is a closed convex function, then it has a conjugate .
PROOF . For y e D and k e R+ the point (y, f(y) -k) is not in [D, f] .

Consequently (cf . theorem 1 .1) there exists a closed hyperplane rl x + ri x = c ,
(rl, r7) e E2 xR, c e R, that strictly separates [D, f] and the point (y, f (y)-k) .

We can assume x+ <c for all (x, x) e [D, f] and r l y+r7 (f(y)-k)>c .

Since y e D, it follows that 97 0 . Hence r) x + r7x = c is a barrier of (D, f) .

In 3.2 we showed that (D", f") (D, f) . A fundamental question is unde r

which conditions (D", f") = (D, f) holds. By 3M, it is necessary that (D, f)

be convex and closed . Theorem 3.10 below states that this is also sufficient .
In the proof we shall us e

3 .8 . Let M be a closed convex subset of E l x R. If M has at least one barrier ,
then M is the intersection of all closed halfspaces containing M and bounde d
by barriers of M.

PROOF . Being convex and closed, M is the intersection of all close d

halfspaces containing it (cf . theorem 1 .2) . Thus we have to show that if

there exists a vertical closed hyperplane separating M and the point (y, y) ,
and not containing (y, y), then there exists a non-vertical closed hyperplane

with the same property . Let 3x = c, (3, 0) e E2 x R, c e R, be a vertical

closed hyperplane in Er x R such that 3y > c and 3 x� c for all x e p (M) ,
p denoting the projection mapping E l x R -~ El . Further let r) x + x = y ,
(rl , e E2 x R, 0, y e R, be a barrier of M. We may assume rl x + 97x y

for all (x, x) e M . Now, for every t e R+

~(x,x)eEi xRj(rl+t3)x+ 1x=y+tc }

is a closed non-vertical hyperplane such tha t

for all (x, x) e M. If

then

(rl+13) x+r7x < y+tc

(rl +t3) y +r7 y

	

y +tc ,

t (3Y-c)

	

y- 7 1Y -r7 y .

But this cannot be true for all t e R+ since 3y> c . Consequently, there exist s

a to such that

( rl + to 3) Y + r7y > y + to c ,

and so the non-vertical hyperplane

~(x, x) e E1 x R I (ii+to3) x+r7x = y+toe )

separates M and the point (y, y), and does not contain (y, y) .
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3 .9 . TITEOREM . If (D, f) has a conjugate, then

[D", f"] = cony [D, f] .

PROOF . By 3.3 and 3.5 (ii), [D ", f"] is the intersection of all closed
halfspaces containing [D, f] and bounded by barriers of [D, f] . Since the
barriers of [D, f] are identical with the barriers of cony [D, f] , it follows
from 3 .8 that cony [D, f] is the intersection of the same closed halfspace s
as [D", f"], which proves the statement .

Since for a closed convex function (D, f)

[D, f] = conv [D, f] ,

3 .9 yields the theorem previously mentioned :

3 .10 . THEOREM . If (D, f) is convex and closed, then (D, f) = (D", f") .

We note that, under the assumptions of 3 .10, the existence of (D", f") i s

ensured by 3 .7 .

As easily seen, there exists a closed convex minorant of the function
(D, f) if and only if (D, f) has a conjugate . In that case there even exists
a greatest closed convex minorant of (D, f) namely (D", f") . For, let (Dl ,

fi) be a closed convex minorant . Then [Dl , ['l ] is a closed convex set, an d
[D, f ] ç [Dl , fl ] . By 3 .9, this implies [D", f'"] ç [Dl , fi ] . So we have prove d

3.11 . THEOREM . If (D, f) has a conjugate, then (D", f") is its greatest

closed convex minorant .

The question arises which functions do have conjugates . A necessary
condition is that

lim inf f (z) > - co for all x s D .
z~x

For, let e x - x = be a barrier . Since is continuous, it is possibl e
for every x e E to find a V ei such that z _> x -1 for all z e x + V. From
this we deduc e

lim inf f (z) inf {f (z) I z e (x+V) fl (D\{x}) }
z->x

inf {~z- Izex+V}E>-cc .

We shall prove that, for convex functions, this is also sufficient .

3 .12 . THEOREM . (i) Let (D, f) be a convex function . Then (D, f) has
a conjugate if (and only if)

lim inf f (z) > - co

	

for all x e D .
z~x
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In view of 2 .6 . (iii), we may also formulate the theorem in the followin g
way :

3 .12 . THEOREM . (ii) Let (D, f) be a convex function, and let x be a n
arbitrary point in B . Then (D, f) has a conjugate if (and only if )

lim inf f (z)> - ø .
z-3x

PROOF . Let (D, f) be a convex function such that for all x e D

lim inf f (z) > - co .
z~X

Then the function
f (x) = lim inf f (z)

z--> x

is well-defined on the set

D={xeDlliminf f(z)<c1 .
z-> x

a) (D, f) is a convex function .
Proof of a) . Let yo and y,, be in D, and consider y t= (1 - t) yo+ ty j ,

where 0 t 1 . Let y t + V be a convex neighbourhood of y t . From the defini-
tion of (I), f) it follows that for every e c R+ there exist a zo a (yo + V) f l

(D\{yo}) and a z 1 c (y 1 +V) n (D\{y 1}) such that f (zo) < f (yo)+e and
f (z1) f (Yl) + E .

Since zo and z1 are in D, the point zt = (1 -t) zo+ tz 1 is in D, and

f (zt)

	

(1- t) f (zo) + tf (zi)

	

(1 t) f (Yo) + t f (Y1) + e .

Further z t a (1 - t) (yo+V)+t (y l +V) = y t +V . Hence

inf{f(z)Ize(y t +V)fD)(1 t)f(Yo)+ tf(y1) .

This implie s

inf { f (z) I z c (y t +V) n (D\{y t }) } (1 - t) i(yo) + t f (Yl)

since, if yt e D ,

f(y t)liminf f(z)inf{f(z)Ize(y t +V)n(D\{y t))) .
ziyt

Consequently

	

lim inf f (z) (1 - t) f (yo) + ti (y l ) ,
z ->-Yt

which shows that (D, f) is convex .
b) (D, f) is a minorant of (D, f) .
Proof of b). From the convexity of (D, f) it follows that lim infz ,x f (z)
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f (x) for all x e D . This implies D D and f (x) _> f (x) for all x e D . Hence
(h, t) is a minorant of (D, f) .

c) For all x e D we have lim inf f (z) = lim inf f (z) .
z->x

	

z--> x

Proof of c) . Let x be in D. Since (D, f) is a minorant of (D, f), we have

inf (z) z e (x +V) fl (D\{x}) }

inf {f (z) I z c (x +V) (1 (D\{x}) }

for all V ens. This implies

lim inf f (z) lim inf f (z) .
z-3-x

	

z->x

To prove the reversed inequality we consider an arbitrary zo e (x + V) n
(D\{x}), where V es is assumed to be open . As the topology Z, on E l i s
Hausdorff, and V is open, (x+V)\{x} is a neighbourhood of zo . Let e e Rf
be given . Since f (zo) = lim infz, zo f (z), there exists a z, such tha t

z, e ((x+V)\{x}) fl (D\{zo}) ç (x + V) fl (D\{x})
and

f (z i)

	

(zo) + E .

This proves
inf { f (z) I z e (x +V) n (D\{x})}<_ f (zo) .

Hence
inf { f (z) I z e (x + V) fl (D\{x}) )

inf { f (z) I z e (x+ V) fl (D\{x})} ,
and thus

lim inf f (z) lim inf f (z) .
z->x

	

z-> x

d) (D, f) is a closed function .
Proof of d) . Let x be a point in D = D such that lim inf,x i (z) < . From

c) and the definition of (D, f) it follows that x e h and i (x) = lim inf,x f (z) .
Hence, (D, f) is closed .

Now, from a), b) and d) it follows that (D, f) has a closed convex
minorant . Thus, (D, f) has a conjugate .

3.13 . THEOREM . If (D, f) is a convex function, and it has a conjugate ,
then the second conjugate (D", f") is determined b y

D" = {x e D I lim inf f (z) <
z-> x

Mat .Fys .Medd.Dan .Vid .SClsk . 34, no. 2 .
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f (x) = lim inf f (z)

	

for x e D" .
z--› x

Consequently, if f is lower semi-continuous at x e D, then f" (x) = f (x) .
PROOF . Let (D, f) be convex. If it has a conjugate, then lim infz ~ x

f (z) > - co for all x e D . Hence, we may define (D, f) as in the preceding
proof and prove that (6, f) is a closed convex minorant of (D, f) . In fact
(D, f) is the greatest closed convex minorant of (D, f) . For, let (D 1 , fl) be
a closed minorant of (D, f) . Then for every x e D

lim inf fi (z) lim inf f (z) = (x) < co .
z3x

	

z-+ x

Since (D l , f1) is closed, this implies x e D l and fl (x) (x), i .e . (D 1 , fl ) i s
a minorant of (D, f) . Thus, by 3.11, we have (D, f) = (D", f"), which proves
the theorem.

4. The conjugates of functions derived from other s

In this section we shall consider questions of the following kind . Suppose ,
a function (D, f) is derived in a certain way from functions (Di , fi), i e J ,
where J is an index set. Is the conjugate (D', f') determined by the conju-
gates (Di , f1), and in the affirmative case, in what manner ?

4.1 . THEOREM . Let the function (Do, f0 ) have a conjugate (Do, fo'), and
let (D, f) be defined by

D = xo + ID o

f (x) = kfo(I-1 (x - xo))+~o x + h ,

where xo e E l ,

	

e E 2 , and h, k and 1 are reals such that k> 0 and l -f 0 .
Then (D, f) has a conjugate (D ' , f') which is determined by

D' = o+kl-1Dô

f ' g) = kf(; (i1 1 (-°))+(-) x0-h .

PROOF . For all e E2 we have

sup ( x - f (x)) = sup ( x - kfu (1-1 (x - xo)) - ~o x - h)
xeD

	

xe D

-k sup (lk-1 - 0)Y - fo(Y))+-~o) xo - h .
yeDo

This proves the theorem .



4.2 . THEOREM . Let (D 1 , f1) and (D2s f2 ) be closed convex functions suc h

that D 1 fl D2 � Ø, and let (D, f) be defined b y

D = Dl fl D2 , f (x) = fi(x) + f2 (x) .

Then we have :

(i) (D, f) is a closed convex function .

(ii) [ D ', P]

	

[Di, fi] + [ Dz, f2] •

(iii) D1 + D2 S D ' S Di + D2 .
(iv) If [D ', f ' ] has a non-empty relative interior, then

f' (t) =inf { fi (i)+ f2 (2) I = 1 + 2,

	

e Di , 2 e D'2 )

for all in the relative interior of D ' .
PROOF . (i) The convexity is obvious . Since lim inf,x f1 (z) > - œ for

all x e Dl , and lim inf, x f2 (z) > - co for all x e D 2 , the expression

lim inf f1 (z) + lim inf f2 (z)
z>x

	

z->x

is well-defined for all x e D Ç D l fl D2 . Further, for all x e D

lim inf f1 (z) + lim inf f2 (z) lim inf f (z) .
z>x

	

>x

	

z> x

Let x e D be such that lim infz>x f (z) < Go . Then, by the preceding ine-
quality,

lim inf f1 (z) + lim inf f2 (z) < co .
z>x

	

z> x

As (D 1 , fi) and (D2 , f2 ) are closed, this implies x e D,_ n D 2 = D, and

f (x) = fl (x) + f2 (x) lim inf f (z) .
z> x

Thus (D, f) is closed .
(ii) D 1 n D2 Ø implies [D 1 , f1 ] n [D 2 , f2 ] � Ø. Hence [Di, fi] and

[D2, f2] have a common barrier x C = x . Then x - e = 2x is a barrier of
[D 'i , fi' ] + [D 'z , f2 ] . This implies that the closed convex set [D 'i, f' [ + [D2 , fz ]
is of the form [I', 99], where (l', cp) is a closed convex function in E2 . Now
(T', p') = (D, f), which may be proved in the following way. If (x, x)
e [T ' , p '], then

( 1+2) x -(e1+C2) x

for all (i, C1) e [D 'i, fi], (2, $2) e [Dz, fz], and this implies
2*
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sup (fi x- fl'())+ sup (x-f2(ß)) x .
~GDi '

	

~EDa '

Hence xeD' fl D2' =D 1 f1D 2 =D, and

x fi (x) + f2 (x) = f1(x ) + f2 (x) = f (x) ,
that is (x, x) e [D, f] . Conversely, for every (x, x) e [D, f] we have

(S1 +~2) x - (e1 ± 2) fl ' (x) + f2 ' ( x ) = fl (x) + f2 (x) f (x) x

for all ( 1 ,

	

e [D l , f1 ], ( 2 , b 2 ) e [D 2 , f2 ] . Thus fix-

	

x for all
) e [Di, f1'] + [D2, f2], and consequently then also for all (, ) e

[Di, fi] + [D2, f2 = [I, T] . This shows that (x, x) e [P', p ' ] . Hence we
have proved (P', g) ') (D, f) . As (P, (p) is convex and closed, this implie s
(P, (p)

	

(D', f ' ), which, proves (ii) .
(iii) This is an obvious consequence of (ii) .

(iv) Since it = lll, M convex, M Ø, it follows from (ii) that the rela -
tive interior [D', °f] of [D ' , f'] is equal to the relative interior of [Dl , fi ]
[D2, f2] . (Likewise, we have by (iii) that the relative interior of D ' is equal
to the relative interior of D' + D2) . Hence

[D',°f'] c [Di, f;. ] + [ D2, f2 ] s [D' , f ' ] .
Let be in the relative interior of D' . Then, by 2.9, there exists a e R
such that (~, ) c [D ' , °f' ] . Since all points in [D ' , f ' ] can be reached fro m
[D ' ,°f' ] , we have

) e [D ', °f'] _ [D l , fl] + [ D2, f2 ]

for all ~ > f ' (O . Thus

f' (~) = inf {~ I ( , ~) e [D l, fi]+ [ D2, f2 ~ } ,

which proves (iv) .

In accordance with the partial order previously defined, a function
(D, f) will be called a minorant of a set of functions ((Di, fi) I i e J) if
(D, f) (Di, fi) for all i e J . Analogously a majorant is defined.

If there exists a minorant of the set {(D i , fi ) I i e J}, then the functio n
(D, f) defined by

D =UD i ,
ie J

f (x) = inf { fi (x) i e J, x e Di~



Nr.2

	

2 1

is the greatest minorant . We shall denote this function by AieJ (Di , fi ), or
for the sake of brevity A (D i , fi), and the set [D, f] by Ai,J [ Di, fi], or briefl y
A [Di, fi] . (Similar abbreviations will be used below in connexion with the
symbols Â , V, U and n) . Clearly

u [ Di, Al c A [Di, fi] Ç U

If A (Di, fi) exists, then there exists a closed convex minorant of ((Di, ffi))
if and only if A (Di, fi) has a conjugate (A (Di, fi)) ' . In that case there exist s
a greatest closed convex minorant, denoted Â (Di, TO, namely the second
conjugate (A (Di, fi))" of A (Di, fi) .

Of course, the greatest minorant of a set ((Di , fi)) of convex function s
need not be convex. However, if the set ((Di, fi)) is totally ordered,
A (Di, fi) is easily seen to be convex .

Suppose that there exists a majorant of {(Di, fi) i e J} . Then the func-
tion (D, f) defined by

D = {x e n Di sup tg (x) < co} ,
ieJ

	

ie J
f (x) = sup fi (x)ie J

is the smallest majorant . This function (D, f) is denoted by V (D i , fi ) and
the set [D, f] by V [Di, fi] .

Obviously, V (D i , fi) exists if and only if fl [Di , fi ] is non-empty, and in
that case

V [Di, fi] = n [ Di, fi] .

Hence, the smallest majorant of a set of convex or closed functions is conve x
or closed, respectively .

4 .3 . Given a set of functions {(Di, fi) i e J} .
(i) If A (D i , fi) and (A (Di, fi)) ' exist, then (A (Di, fi)) ' = V (Di, fi )
(ii) If V (Di, fi) and at least one (D , fi') exist, then (V (Di , fi)) '

A (Di, fi) (where A (Di' , f) means the greatest minorant of those (Di, fi )
which exist) .

(iii) If all (Di, fi) are convex and closed, and V (Di, fi) exists, then
(V (Di, fi)) ' _ (A (Di , f1))" .

In all cases the assumptions ensure the existence of the minorants, majorants
and conjugates occurring in the statements.

PnooF . (i) It is easily seen that the barriers of A (D i , fi) are precisely
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the common barriers of {(Di, fi)) . This implies that V (D , fi,) exists and
that (i) holds .

(ii) For all ,j e J we have (Ds, fi) V (Di, fi) . Hence the existence of a t
least one (Di' , t) implies that of (V (Di, fi)) ', and we have (V (Di, fi)) '
(D'j , fi) for every j for which (D;, f;) exists . This shows that A (Di' , f1 )
exists and that (ii) holds .

(iii) Under the assumptions all (D'i , fi') exist. From (ii) follows tha t
A (Di, fi) and (V (Di, fi)) ' exist and that (V (Di, fi)) ' A (D;, fi' ) . This
implies that (A (Di' , fi'))' exists, and (i) applied to {(DD, fi')) then gives

(A (Di , fi ))' = V (Di g, fi) = V (Di, fi ) ,

since all (Di, fi) are convex and closed . Hence (A (Di, fi )) = (V (Di, fi)) ' .

4.4 . THEOREM . Let {(Di, fi)) be a set of closed convex functions . If

A (Di, fi), (A (Di, fi)) ' and V (Di, fi) exist, then

(Â (Di, fi)) ' = V (Di , fi) ,

(V(D1,fi))'=Â(Di,f1) .

PROOF . This is an obvious consequence of 4 .3 (i) and (iii) .

4 .5 . THEOREM . Let {(Di, fi)) be a set of closed convex functions, an d
suppose that V (D i , fi ) exists . For (D, f) = V (Di, fi) we then have

(i) [D ', f' ] = cony (U [D'i , fi' ]) .

(ii) cony (U D'i ) S D ' Ç cony (U D'i ) .

(iii) If [D', f'] has a non-empty relative interior, the n

f' l~) = inf S L /1vv

	

fiv (~v) =

	

a v Sv, ~v e Div , i1v >_ 0
v

2i,= 1, n e Z+l
v= 1

for all in the relative interior of D' .
PROOF . (i) All (Då, fi) and A (Di, f') exist, and we hav e

U [ D i , fi ] = A [Di' , fi ] = U [ D'i , fi ] •

This implies

tonu (U [Di , fi ]) = conu (A [Di, fi ]) ,

since convM = convM for any set M. Statement (i) then follows from 3 . 9
and 4.3 (iii),
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(ii) This is a simple consequence of (i) .
(iii) By (i) we have

[D ' , °f ' ] Ç cony- (U [DZ , fl ])
ç

[ D' , f ' ] ,

[D ' , °f ' ] denoting the relative interior of [D ' , f' ] . Let be in the relative in-

terior of D' . Then (, ~) a [D ' ,°f ' ] for all :>f' (e ) , that i s

f' (~) = inf {~ I (, ~) e conv(U [Dz, fz ])i •

5 . Convex functions with domains having non-empty relative interior s

As usual, E, and E2 are vector spaces in duality . We first prove a result

concerning the structure of closed convex functions .

5 .1 . Let (D, f) be a closed convex function in E, . There exists one and ,

obviously, only one subspace Fl of El , called the linearity space of (D, f), with

the following properties :

(i) F, is closed .

(ii) D + F, = D .

(iii) For every x e D
f(x+z)-f(x), zcF, ,

is a continuous linear function on F,, independent of x .

(iv) Every subspace of E, with the properties (ii) and (iii) is a subspac e

of F, .

(v) If (F, (p) denotes the conjugate of (D, f) in E 2 , then

m(I')=Ç+Fl
for every Ç e I' .

PROOF . We define F, = (f - W1, where Ço e F . Thus, a point x a E, i s
in Fl if and only if it is a constant function on P . Obviously F, is a closed
subspace . For x e D and z e F, we have

sup (Ç (x + z) - T (Ç)) = sup (Ç x - p (Ç)) + Ço z .
ße7'

	

~eI

Hence x + z e D and f (x + z) - f (x) = Ço z, which proves (ii) and (iii) . Let
yo o be in a subspace with the properties (ii) and (iii) . Then there exist s
a continuous linear function n on the subspace generated by yo such that



f (x+ 0(Yo) -f (x) = Tl ( aYo )

for all x c D and all a e R . Let xo e D and e r. Then we have

p (~) = sup ( x - f (x))
xe D

>_ sup ( (xo
-r ayo) - f (x o + aYo))

a e R

= sup ( - T 1) ayo+f (xo) ,
aeR

which implies ( - ) y 0 = O . Hence yo = rl yo for all e r, that is yo e Fl .
Thus (iv) has been proved . The last statement follows fro m

Fi = (r-Qu = (m (r)- ;)u = nt(r)-~,

	

er .

We shall now make some further assumptions on the vector spaces El
and E2 , namely that they are normed spaces, that the topologies induced

by the norms are admissible and tha t

IIxll = sup RxI,

	

IIUII = sup It x l
IIÇII~1

	

IIxlI~ 1
eF E

	

xeE,

for all x e E, and all e E2 . In fact, this means that E l and E 2 are both

reflexive Banach spaces, and each space is the dual of the other one .

Let F, be a closed subspace of E, . It is easily verified that the functio n

IIxIIF,=supI t x l
IMl ; 1

e F,l

is a semi-norm in E,, and that it has the following properties :

(i) ItxIIItII'IIxIIF. forxeE,,teFl .
(ü) II x II =II xi IF,, x c E,, if and only if F, _ (co) .

We note that II x IIF, = infzeF, II x-z II (cf. [7] p . 282) .

5 .2 . THEOREM . Let (D, f) be a closed convex function in E,, and (r, )
ils conjugate in E2 . Let F, be the linearity space of (D, f) . Then a point

o e E2 is a relative interior point of r if and only if there exist an x o e E, ,
a eeR+ and a aeR such that

f(x)PII x - xoIlp,- a+t o x

for all x e D . In particular, o is an interior point of r if and only if ther e
exist an 'c o c E,, a e c R+ and a aeR such that
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f(x ) >_ ol~ x - xoll -a+~o x
for all x e D .

PROOF . First, suppose that

f(x) '_ gII x - xOII F,- a +o x

sup (o x f (x)) a
xe D

that is ~o e F . For every e m (I') _ 0 +F- such that I I - o I I P we have

for all x e D . Then

sup ( x -f (x)) `- sup (~ x - g II x- xo

	

+a-x)
xeD

	

xeD
ç ÇÇ

	

ç ÇÇ= sup ((S - o) (x - xo)

	

11 x xo IF,) + ( - SO) x 0 + a
xe D

~ sup ((I I~ - ~ 0 I I- e) I I x- x 0 I IF,) +(S - i0) x0 -I- a
xe D

(~ - ~o) xo -I- a .

Hence e

	

which proves that o is a relative interior point of T' .
If for all x e D

f(x)'ell x xoll a +O x,

then F 1 = {o) . For let z o e D and yo e F1 . There exists a continuous linea r
function r on F1 such that for alla e R

f (z o + ayo) = f (zo) + rl (a Yo)

eiI zo+ a yo- x o II - a+ o(zo+yo)
el aI . II YoII - ell z o - xo 11- a+ 0 zo+0(ayo) .

This implies yo = o, that is F1 = {o} . Hence I I x I IFr = I I x I I for all x e D,
and the proof above yields that

	

is an interior point of F.
Next, let

	

be a relative interior point of F . Then 99 is continuous at o
(cf. 2 .10) . Consequently, there exist a o e R+ and a a e R such that

K={~I~em(r), II~-~oII<<_o}çI'
and

9( )

For every x e D we then have

for all e K .
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Nr. 2

f (x) = sup ( x - 9' (~)) '_ sup ( x - (~))
~aI

	

~e K

supx-a=sup(~ o)x-a+ x
~eK

	

~e K

= eII x IIF,- a +Ço x .

Thus, we have an equality of the form desired, with xo = o
If is an interior point of P, then F 1 = {o} . Hence II x I I = II x IIF0, and

we have

f (x) ell x I I- a + o x
for all x e D .

Now,Lhe main theorem of this section follows immediately from theore m
5 .2 and the dual statement :

5 .3 . THEOREM . Let CS', denote the class of closed convex functions (D, f)
in El with the following two properties :

(i) D has a non-empty relative interior .

(ii) For some x„ e El , ~u e E 2 , p e R+ and a e R we have

f (x) - ell x x o IIF,-a+ x for xe D ,

F 1 denoting the linearity space of (D, f) .
The class of conjugates of the functions in 6: 1 is the analogously defined clas s

2 in E2 , and conversely . If (D, f) in El and (P, gyp) in E 2 are closed convex
functions with the property (i), such that each function is the conjugate o f
the other one, then (D, f) is in (fi and (P, (p) is in (f 2 .

The same statement holds for the subclass Z1 of

	

consisting of those close d
convex functions (D, f) for which

(i) D has a non-empty interior .

(ii) For some xo e E 1 , ~o e E 2 , e R+ and a e R we have

f (x)-'=ell x-xo II - a+x for xeD .

In that case F 1 = {o} for the functions involved .
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