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Synopsis

This paper presents the solution of a special scattering problem which may be importan t
in the theory of slowing-down of atomic particles in crystals . A projectile moves along the center
axis of a regular ring of n equal atoms which are free and do not interact with each other . Th e
interaction between the projectile and each ring atom is described by a Born-Mayer potential ,
and the scattering is assumed to be elastic and governed by the classical equations of motion .
Because of symmetry, the problem can be reduced to plane motion of a particle in a potentia l
of elliptic symmetry. The elliptic force field is approximated by a spherical one, which is dependent
on the initial conditions of the individual scattering problem . For the spherical symmetrical
potential, scattering angles and related quantitites have been tabulated, but sirnple analytical
approximations can be used too. As a result, one obtains the asymptotic velocities of the rin g
atoms as well as the energy loss of the projectile. Furthermore, it can be decided whether the
projectile is reflected by the ring. Both the feasibility of assumptions specifying the proble m
and the validity of different approximations made in the transformation from the elliptic t o
the spherical potential are investigated . Special attention is paid to proper definitions of collision
time and collision length which are important in collisions in crystals . Limitations to classical
scattering arising from the uncertainty principle prove to be more serious than assumed previously .
Inelastic contributions to the energy loss can easily be included . The oscillator forces bindin g
lattice atoms turn out to influence the scattering process only at very small energies . The validity
of the so-called momentum approximation and a related perturbation method are also in-
vestigated .

PRINTED IN DENMARK
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§ 1 . Introduction

T
he slowing-down of an atom in a crystal is a many-body problem . The

concept of mean free path, governing collisions in gases, is much les s

significant in solids because of the high density of scattering centres . The

mean free path for elastic collisions with appreciable relative energy transfe r

is comparable to the interatomic distance except for energies considerabl y
up in the keV region, dependent on mass and atomic number of projectile s

and substance atoms involved . At these high energies, the majority of col -

lisions are soft ones, so that perturbation methods may be successful . At

low energies all collisions are more or less hard ones, so that the perturbatio n

approach breaks down . As a consequence of the mean free path being so

small, correlations between successive collisions, due to the regular lattic e

structure cannot be neglected in low energy collision theory .

Two main lattice structure effects on slowing-down have been proposed .
Ion bombardment of single crystals parallel to low-indexed directions migh t

result in almost completely suppressing close collisions by keeping pro-
jectiles a certain minimum distance away from lattice rows and plane s
(channelling) . The experiments are usually done at energies from 1 keV u p

to several MeV, so that a theoretical treatment can make use of perturbatio n

methods . But, for interpretation of range distributions and especially th e
so-called "super tails" it is important to investigate the slowing-down

mechanism at the low energy end, to know whether the projectiles come

to rest at lattice sites or interstitial positions, and, finally, whether the y

create defects or not . From this, one might also get information on possibl e

diffusion following the slowing-down process .

It has furthermore been proposed that lattice geometry causes a hig h
probability of nearly head-on (replacement) collisions for knock-on atoms .
It seems difficult to verify this effect experimentally, but a great variety o f

sputtering and radiation damage phenomena are explained in a plausible way
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by assuming it to exist . According to computer simulations of slowing-down ,

low energy knock-on atoms act preferably by exciting collision sequence s
along close-packed directions without travelling far away from their startin g
positions .

The characteristic difficulties of a many-body problem arise as soon a s
a collision is neither soft nor a pure two-body event . But the many-body
problem might be simplified in special cases . Both in collision sequences

and channelling almost symmetrical orbits between and parallel to lattic e

rows are supposed to have an appreciable statistical weight within certai n
energy intervals . Therefore, calculations of perfectly symmetric motion might

answer some of the questions raised above .

This paper presents the treatment of a simple model . A set of lattic e
rows is resolved into symmetric rings ; the projectile moves along their com-

mon symmetry axis, and its interaction with one ring of atoms is considered

to be the basic event . Under certain simplifying assumptions it is possibl e
to reduce this problem to scattering of one particle in a fixed force field ,

which can be solved approximately.

The accuracy of approximations as well as the limitations of classica l

elastic scattering and the applicability to collisions in crystals are examined .
The main uncertainty entering the model is the interatomic potential . The

repulsive Born-Mayer potential is used throughout the paper, mainly be -

cause of simplicity and for comparison with other investigations . As far a s

possible, the results are discussed without specifying potential constants to o
strictly .

The model gives rather definite answers on the break-down of pertur-

bation theory and the maximum elastic energy transfer . Furthermore, it i s

possible to define a collision length in order to estimate the overlap betwee n

successive events . Finally, some suggestions are made about the approximat e

treatment of non-symmetric many-body collisions .

The present paper contains the general theory . It deals with the speci-
fication of the model and some direct consequences (§ 2) ; several methods

of reduction to spherical scattering are examined in § 3 ; general results such

as transferred energies and scattering angles are discussed in § 4, both

numerically and analytically ; this chapter also deals with the concept of

collision length as well as the validity of approximations made in § 3 ; the

last chapter is dedicated to the question of applicability of the model t o

collisions in crystals and to a discussion of quantum corrections and in -

elasticity. Applications to channelling and collision sequences will be con-

tained in a forth-coming paper .
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§ 2 . The Model
2.1 Basic definition s

The dynamics of the following system (ANDERSEN & SIGMUND, 1965 a)
will be investigated :

1) n atoms i = 1 . . .n of mass m1, neither bound by external forces no r
interacting with each other, form initially a regular ring with radius L .

2) A projectile of mass m o moving on the ring axis with an initial velocity
vo (Fig. 1) interacts with the ring atoms via some repulsive potentia l

V(roj) = V(jo -

	

• (2.1 .1 )

In applications only Born-Mayer interactio n

V(r) = (2 .1 .2)
will be used .

3) The collision is treated by classical mechanics .
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Fig. 1 . Projectile 0 interacting with a ring of n = 4 atoms . vo = initial velocity. vô and vi final
velocities of projectile and ring particle 1 .
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Due to the symmetrical initial conditions the projectile will keep on

moving on the ring axis, and ring atoms perform identical motions in plane s
made up by the axis and their initial positions (Fig . 1) . Quantities of in-

terest are :

i) the total energy loss 4E of the projectile to the ring,
ii) the asymptotic orbits and energies of ring particles ,

iii) the energy limit below which the projectile will be reflected by th e
ring, and

iv) the collision time and corresponding path length .

The feasibility of the assumptions involved in 1)-3) will be examine d

in later sections of this paper . The validity of assumption 1) depends o n

the role of binding forces (sect . 5 .3) . The significance of Born-Mayer re-

pulsion and the choice of constants A, a is discussed in a separate pape r
(ANDERSEN & SIGMUND, 1965 b) . Quantum mechanical limitations and in-
elastic effects are mentioned in sects . 5 .1 and 5 .2 .

In applications to collisions in crystals, the ring radius L will be at least
one half nearest neighbour distance (L lÅ), n may take the values 2, 3 ,
and 4, a is supposed to be slightly smaller than one half Bohr-radiu s

(a - 0 .2Å), while A varies over a wide range of energies in the keV region,
dependent on the atoms involved . Initial energies of interest range fro m
about 10 eV up to 10 keV.

2.2 The perturbation approach

If the energy loss 4E is very small compared to the initial energy E 0 of the
projectile, 4E can be calculated by first order perturbation theory (momentu m
approximation ; for brevity : MA)

a
2

4E = n
2mI

( ~
vo

° gradL V(ro l )) ,

	

(2 .2 .1 )

_ co

where gra d1 indicates the component of the force perpendicular to the orbit of th e
projectile . This orbit is assumed to be a straight line, while particle 1 is considere d
as being fixed during the collision .

For Born-Mayer interaction (2 .1 .2) one gets (BRINKMANN, 1954)

mo A 2 L

	

L 2
4E = n '

mio [a Ko
(
a .

(2 .2 .2)
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The function Ko(4) is a modified Hankel function with the asymptotic expansio n

(JAHNKE et al ., 1960)

Ko() -' I /

	

e - E for large 4 .

	

(2 .2 .3 )

According to the previous section,

~

	

L /a 5 .

	

(2 .2 .4)

For these arguments the expansion (2 .2 .3) approximates Ko with an accuracy bette r
than 3 pct .

At small energies 4E becomes large according to (2 .2 .2), so this approach must
break down. In order to estimate the applicability of (2 .2 .2) we note that 4 E
cannot be greater than either the initial energy Eo or the height of the potential
barrier at the ring center, so

4E

	

Eo

	

(2 .2 .5 )
and

4E < nAe- LIA . (2 .2 .6)

E 0 must be much greater than the limiting energies defined by (2 .2 .5) and (2 .2 .6) .
Inserting (2 .2 .2) and (2 .2 .3) we obtai n

~ mo L 1! 2
E 0 » (' n --1 Ae L/ a

2 mi a

zmo L
E0 »

	

- Ae- L! a
2m l a

as necessary conditions for the MA to be a good approximation .
For not too different masses, the two conditions are essentially equivalent . I f

mo » ml , (2 .2 .6') is the stronger one .
LEHMANN & LEIBFRIED (1963) have derived a criterion of the same type by com -

paring second and first order contributions in the perturbation series for the scat-
tering angle of merely two particles :

E o » 1 (1 +

mo)
L Ae- Lla .

V2

	

ml a

(2 .2 .7) is equivalent to (2 .2 .6') for mo m l . It is easily seen that in our case (2 .2 .7 )
cannot be the appropriate criterion as soon as mo « ml ; the perturbation approach
is reasonable if
i) the ring particles only move a small distance away during the collision, an d

ii) the deflection of the projectile is small .

and

(2 .2 .5' )

(2 .2 .6' )

(2 .2 .7)
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The latter condition is ideally fulfilled in the ring collision, while a correspondin g
two-particle event with mo « ml might result in a considerable deflection of th e
projectile . Hence, (2 .2 .7) will underestimate the applicability of the MA .

Numerically, the typical limits vary from some tens of eV up to several keV ,
because of the strong dependence on L and on the atoms involved .

Standard scattering theory is easily carried out beyond the MA, when one deal s
with pure two-body collisions . Also for our model some quantities of interest ma y
be estimated using two-body scattering theory, but this must be expected to b e
a poor approach to the problem' . A comparison to the more accurate evaluation
will be made in sect . 4 .6 .

2.3 Conservation laws

An accurate treatment is simplified by stating the conservation law s
governing our system .

	

->
The asymptotic velocities vz of different ring atoms (Fig . 1) and thei r

angles (pi with the vo-axis are equal because of symmetry :

-)-
vi = vl, ~i =

where
(2 .3 .1 )

cos (pi = (2 .3 .2)

Hence, momentum and energy conservation yiel d

movo = movô + n mlvi cos (p l ,

	

(2 .3 .3)

MO 2

	

MO 12

	

rn i ,2 vo

	

2
vo + n 2v1 2 ,

	

(2 .3 .4)

vo being the asymptotic velocity of the projectile .
Conservation of angular and transverse momentum has been fully take n

into account by stating the symmetry of the orbits .

1 Sometimes, especially in computer calculations, the interaction is cut off at a certain
distance in order to ensure the two-body nature of collisions . It is obvious that this procedure
might give rise to peculiar multiple scattering effects when applied to an almost symmetri c
ring collision (ROBINSON and OEN, 1963) . The completely symmetric case cannot be simplifie d
in this way .
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(2 .3 .3) and (2 .3 .4) lead to the relative energy transfer to one ring atom ,

Ill

	

24

	

cos 9h
m o

dEl = ml vr 2 =

	

Eo .
2

	

m
1 +n 1 cost 9h

)2

m o

The total energy loss to the ring is given by

(2 .3 .5 )

(2.3 .6)AE = Eo - Eo' = n•AE1 ,

where Eô is the asymptotic projectile energy ; the asymptotic velocity become s

Ilil

	

21 -n-cos (p 1
mo

v0 .
m

1 + n 1 cost 99 1m 0

The particle is reflected by the ring if v 'o/v o is negative, i . e .

cos (p i > Vmo/nm, .

	

(2 .3 .7 )

The reverse relation to (2 .3.7) does not necessarily involve that the pro-
jectile really penetrates the ring, as the ring particles have a velocity com-
ponent in the forward direction . However, in many applications this com-
ponent is relatively small .

Most of the quantities of interest have thus been expressed by the angl e
99 1 . Clearly, q9 1 is governed by the interatomic potential .

2.4 Transformation to relative coordinate s

Convenient coordinates describing the internal state of the system ar e
the ring radius and the distance of the projectile from the ring center . Let

us consider the motion in a plane formed by vo and el and choose o as
the x-axis (Fig. 2). Then ,

ô = (x0 , 0) ;

	

= (xr, yr) • (2.4 .1 )
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ri

-x/s	

Fi g• 2 . Definition of relative coordinates x,9• r r r ~ position and velocityT of projectil e

->- -s-
and one ring atom . R, R : position and velocity of center-of-mass .

The center-of-mass moves along the x-axis, s o

-}

	

mo

	

ml
R = (X, 0) ; X= -

117
xo + n • M x i ,

	

(2 .4 .2)

where M is the total mass :

M = ni o + nln i .

Furthermore, we define relative coordinate s

x = s • (xo - xi) ; y = yi/ s ,
so that

rn i x

	

mo x
xo = X +n

11
7 •s- ; xi =

X- 111 s'
yi = sy .

	

(2 .4 .5)

In (2.4.4) we have introduced a scaling factor s . This is necessary i n

order to make the reduced mass isotropic. The kinetic energy

(2 .4 .3 )

(2 .4 .4)
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ml

	

2

	

2
Ekin = ~ xo +n

2 (x+ ~i)

becomes in the new coordinates (2 .4 .5)

M

	

m (m x 2
Ekin = X2

+ n 21 M s2
+ s2 0 2

2

This simplifies to

M .
Ek i n = 2 X 2 -I- D.- s 2 (x2 + 2 )

if we choose

l2t
S 4

	

=

	

~

	

G 1 .
mo + nm l

The total potential energy becomes, according to (2 .1 .1) and Fig. 2 ,

Ø(x, y) = V(roi) = n V(r ol)

	

n V(Vx2 /s2 + s 2 y 2 ) .

	

(2 .4 .8 )

So, in the reduced scattering problem the force field has elliptical symmetry .
If the projectile comes in from infinity we get the initial condition s

x(t =- ø) = -~ ;

p = ~(- °O) = iJl(- oo) = L/s ,
s

v,. = x(- oo) = Svo ,

E,. = n

21

s2@,2
+~2)I

	

=
rim ].

Eo ,
- M

where we have made use of (2 .4 .4), (2 .4 .6) and (2 .4 .7) . The quantities p,
v, and Er are the impact parameter, relative velocity and relative energ y

defining the reduced scattering problem (Fig . 3) .

The relation between scattering angle in the reduced system (Fig . 3)
and 991 is found in the following way :

(2 .4 .6)

(2 .4 .7)

s2 vo sin D. 1

s o vo so vo cos 19'

	

s2
ctg19/2 .

	

(2 .4 .12)
t
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Fig . 3 . The reduced scattering problem for Born-Mayer interaction . Successive equipotential

lines differ by a factor of e± 3 . Quantitative details correspond to an example discussed in sect .
4 .3 (Fig. 7) .

Here we have used (2 .4.5), (2.4 .2) and (2.4 .10) . Inserting (2 .4.12) int o
(2 .3 .5) we obtain the energy loss (2 .3 .6) :

nm

	

D. / nm
4E = 4	 171 Eo • sing

2
1 -	 NIl- sin e 292

	

(2 .4 .13)

	

\

	

/

The condition (2 .3 .7) for reflection reads

M
sin 2 29/2 >

2nm 1

The projectile penetrates the ring if 'O < r/2 , i . e .

(2 .4 .14)

sin 2 29 /2 < 1/2 .

	

(2 .4 .15)
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In the intermediate interval,

1 ill1
- < sin 2 i/2 < - - (2 .4 .16)
2 2 nm l '

the projectile moves asymptotically in the forward direction, but behind th e

centre of the ring .

§ 3. Reduction to Spherical Symmetr y

3.1 General remarks

The reduced scattering problem is simple, but nontrivial because of th e

elliptical symmetry of the potential Ø(x, y) . As angular momentum is not

conserved, the scattering angle 79 and related quantities cannot be expresse d
by integrals as in standard scattering theory . In order to calculate only th e
orbit of the scattered particle, it would be most convenient to start at Jacobi' s
principle, which states that

2	

å f VEr- Ø(x , y) ds = 0 ;

	

(3 .1 .1)

where y = y(x) has to be varied between two fixed points 1 and 2 in th e

x, y-plane, and ds is the line elemen t

ds = V1 + (dy /dx) 2 dx .

(3 .1 .1) is equivalent to a differential equation for

1

	

1

	

aØ

	

aØ

	

y"

2 Er - ~ ay
y

ax +1+y,2
= 0 .

Several standard procedures have been examined in order to solv e

(3 .1 .1) or (3 .1 .2). Most of them are rather specific for the spherical case .
The only systematic approach, which was found to have some success, i s
the perturbation series expansion of (3 .1 .2) . The first two terms are evaluated
in Appendix A . But, as was stated by LEHMANN and LEIBFRIED (1963) for
spherically symmetric interaction, the perturbation series has in general

a finite radius of convergence, and higher than first order perturbations d o

hardly improve the scattering formula .

y = y(x) :

(3.1 .2 )
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Instead of calculating approximate orbits in the exact field, one can als o
calculate exact orbits for an approximate field. The method is widely use d
in scattering theory and has the advantage that the limit of applicabilit y
may easily be found by comparing "true" and approximate forces .

As long as m o ml , the excentricity of the potential lines is moderate .

The proportion between major and minor axis : s2 = V1 + nml/mo becomes

2.5 . We shall mainly concentrate our attention on the case mo m ml , as
in the opposite case, mo « m l , the MA remains valid down to sufficientl y
low energies, given by (2 .2.5') . Furthermore, deflections in strongly varyin g
Born-Mayer fields will take place in a rather small region in space . Hence ,
in the case mo ,:, m 1 it is expected to be an excellent approximation to replace
0(x, y) by a potential of spherical symmetry which is similar to 0 in a
certain critical region. This critical region should be centered around tha t
point where the scattered particle achieves its highest potential energy . Un-
fortunately, it is not possible to find this point in a straightforward manner
when p and Er are given .

Therefore, two complementary matching methods are discussed, which
we call close collision approximation (CCA) and distant collision approxima-
tion (DCA). In both cases the center of a spherical potential is found fro m
the radius of curvature of a certain equipotential line . CCA and DCA will
be seen to cover the whole curve ?9(p) for o < p < oo for given Er with a
good accuracy. As small impact parameters p do not occur in applications ,
the DCA will be the more important approach .

3 .2 Close collision approximatio n

Figure 4 shows the orbit of a particle in an almost central collision . The
closest distance of approach R(p) will be approximately equal to R(p = 0 )
= Ro , which is given by

ø(- Ro,O) = Er .

	

(3 .2 .1 )

The radius of curvature of the equipotential line in (-Ro,O) is, accordin g
to (2 .4.8), given by

(3 .2 .2)

Hence, the centre of the CCA potential will be at
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Fig . 4 . Construction of the CCA potential Ø c (schematically) . For small p only the potentia l

near (- R o , O) causes deflection . xc is the center of curvature to the potential line through this point .

1
xc = - Ro -i-P = Ro Is4 -1 .

The CCA potential Oc is then constructed in such a way that

Øc(x, y) = Ø(x, y) for y = 0 , x 0 .

	

(3 .2 .4)

For the BM potential (2 .1 .2), Ø(x, y) is given by

(3 .2 .3)

so that

Ø(x, y) = nA exp
1

Vx2is2 + y2 ' s2
, a

(3 .2 .5)

Ø C(x, y) = nAexels2 . e- r' /sa
(3 .2 .6)

where r' is the distance between (x, y) and (xe, 0) . Hence, the scatterin g
angle in the CCA may be expressed by that for a spherically symmetri c
potentia l

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no . 15 .
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with

Ø C(r ') = Acé-r7ac, (3.2 .7)

(
nA

ae = sa ; Ac = nAe xelsa = Er	 ~ ,

	

(3 .2 .8)
Er /

where we have made use of (3 .2.1) and (3 .2 .3) . Obviously, ci yields the

exact solution for the central collision . The validity of this approach at
finite impact parameters will be investigated in sects. 4.3 and 4 .5 .

3 .3 Distant collision approximatio n

In distant collisions, where is small, the scattering will essentially tak e
place near the point (0,p) . We can therefore choose the center of curvatur e
of the potential line through this point as symmetry center of another matchin g

potential ØD, as indicated in Fig. 5. The radius of curvature is given b y

(PS 2
)

2
- ps4

P

and the symmetry center has the ordinate

liv = P e = p(l - s4) .
Ø D is chosen so that

ØD(x , Y) = Ø(x, y) for x = 0, y YD .

	

(3.3 .3)

Using (3 .2 .5), we get
syD

	

sr'

ØD = n•A•e a •e a ,

where r' is now the distance between (x, y) and (0, YD) . Hence, the DCA
potential is given by

ØD(r ') = ADe-r'/aD,

	

(3 .3 .4 )

where

a
a D = -

	

(3 .3 .5)
s

'VD

	

sp
(1-s' )

	

A D = n•A•e a = nAe a

	

(3 .3 .6)

(3 .3 .1 )

(3 .3 .2 )

and
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X
Fig. 5 . Construction of the DCA potential Ø D. For small scattering angle ,y mainly the potential

near (0, p) causes deflection. y D is the center of curvature of the potential line through thi s

point . Quantitative details correspond to the example discussed in sect. 4 .3 (Fig. 7) .

Contrary to the CCA we also get a new impact parameter in the DCA .
Instead of p we have (Fig . 5)

PD = P ° Ps4 .

	

(3 .3 .7)

The scattering angle is determined by the two proportion s

L nm~

PD

	

4 L

	

Er

	

EO e a

a D

	

a ' A D M A

Deriving (3 .3.8) we have used (2 .4.9), (2 .4.11) and (2 .4.7) .
Also the applicability of this approach will be examined i n

and 4 .5 .

3 .4 Constant velocity approximation

A much simpler reduction to spherical scattering is found in the cas e

m 0 » nin , where the projectile moves nearly uniformly independent of th e
interaction potential . In this case it seems reasonable to go over to a syste m

moving with velocity u 0 and to consider the projectile as a fixed scatterin g
center in this system . As the ring particles are independent of each other ,
they are scattered individually by an angle a (Fig. 6), which can be cal -

2 *

(3 .3 .8 )

sections 4.3
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culated from the frue Born-Mayer potential as interaction, impact parameter

L and energy

E, _ ml
E o .

mo
(3.4 .1 )

In the laboratory system, particle 1 has, after the collision, velocit y
components

vlx = vo(l - cos a )

viy = vo sin a ,

corresponding to a scattering angle T i given by

sin a

tg
got

	

1 - cos a - ctg
a/2 ,

and an energy

AE 1 = 4
m1

Eo • sine a/2 .
m o

An approach of this kind has been used byWEIJSENFEL.n (1964) in the theor y
of assisted focusing collision sequences . The essential difference to the M A
is that the ring particles are not considered to be fixed during the collision .

They are free to move away, while the projectile is restricted in its transversal
motion . This approach, which we call constant velocity approximatio n

(CVA), is a perturbation approach in the sense that the deflection of the rin g

particles is determined by the zero order motion of the projectile . The

approximation does, however, not involve an expansion in powers of th e
interaction potential . It will turn out in sect . 4 .3 that the quality of the CVA

is surprisingly good, even for lighter projectiles .

When mo is of the order of nm l , the CVA violates the conservation laws .
Weijsenfeld avoided this by assuming only the y-component to b e
determined by (3 .4.2), while the x-component is found from energy and

momentum conservation . However, for not too large energy transfers the

two formulations are essentially equivalent, as the ring particles move almos t

perpendicularly to vo . The straightforward formulation of the Weijsenfeld

approach gives an energy transfe r

4E1 = 4
rnl

Eo sine a/2 1 + 2n ml sin4 - + . . .

	

(3 .4 .5)
mo

	

\

	

mo

	

2

(3 .4 .3)

(3 .4 .4)
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Fig. 6 . Constant velocity approximation . The situation in Fig . 1 is considered from a syste m

moving with

	

The projectile 0 is assumed to beat rest in this system throughout the collision .

which differs from (3 .4.4) only by a correction term of fourth order i n
sin a/2, which is negligible . We prefer to use the CVA, as it is much simpler

than Weijsenfeld 's original approach . As it will turn out in sect . 4.3, the

CVA may even be valid if 4E1 is not negligible compared to Eo .

§ 4. Application to Born-Mayer Interaction

4.1 Accurate scattering angles

We have now found three possibilities of reducing the original proble m
of finding (pi to that of calculating the scattering angl e

9p,
d
r,/r' 2

i9(E', p ' )

	

- J	 	 (4 .1 .1 )
1/1 - O'(r')lE' - (p' l r' ) 2r,, ,

for some spherical Born-Mayer potential

0'(r') =

	

(4 .1 .2)
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E' and p ' indicate relative energy and impact parameter in any of the thre e

spherical scattering problems . r '„Z is the distance of closest approach de-

fined by the zero of the square root in (4 .1 .1) .

The integral (4 .1 .1) has been tabulated by ROBINSON (1963) for 0 .005
E' /A' 1 and p ' /a ' ranging from zero up to such values where the

accuracy of the MA is sufficiently good . The tables provide enough point s

to cover all cases of interest in applications as far as concerns the DCA,
which is the approximation mostly used later on . Therefore, in plotting d E
vs . Eo , uncertainties from the evaluation of (4 .1 .1) can be assumed to be

negligible within the range of validity of the DCA .

For those cases where the tables do not provide data one has to us e

analytical approximations . A list of references has been given in an earlie r

paper (SIGMUND & VAJDA, 1964) . We only mention two formulae, the mos t

accurate one given by HEINRrcH (1964) :

(4 .1 .3 )

where

= A E , ' aÎm,2Ko(rm/a ') .

	

(4 .1 .4)
p

It is seen by expansion that (4 .1 .3) gives the correct result at small angles .

Furthermore, '9(p' = 0) = r, as it must be. Within the whole range of the
numerical tables the accuracy of (4 .1 .3) is better than 4 pct . The disad-
vantage of this formula is that r?z is defined by a transcendental equation,

so one has to use p ' and r,n as independent variables and calculate E ' .
At large angles the following formula has proved to be a good approxi-

mation (SIGMUND & VAJDA, 1964) :
/ ,\2

	

a / 1 2

	

1- p

	

1 -

sin 2

	

=	
`Ro	 RzJ ,

	

(4 .1 .5 )
a r

P

	

1 + 4	 I
Ro \R

,
o

where Rô is the head-on radius defined by

° = In A7 .

	

(4.1 .6 )
a

	

E

1
sin 0/2 =

1 +2/0 1 '

(4 .1 .5) is based on the matching method of LEIBFRIED & OEN (1962) .
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4.2 A simple analytical approximation

For qualitative considerations the above mentioned scattering formula e
are too complex . If one is not interested in a high accuracy, an extremel y
simple approximation may be found as follows. The potential (4 .1 .2) i s
matched by a cut-off Coulomb potential :

c
C --1	 r' < c

Ømr(I~') =

	

r'

0	 r ' ? c .

The constants C and c are chosen so that the potentials agree in value an d
slope at r '

	

p' :

ØM(P ') = Ø'(P ') and dd, M(P ') = dd

	

(4 .2 .2)

This matching method is similar to those by LEIBFRIED & OEN (1962) an d
LEHMANN & ROBINSON (1964) ; Leibfried and Oen fulfilled the conditions
(4.2 .2) in r' = R'o instead of r ' = p ' , and Lehmann and Robinson matche d
in r ' = rm . For the very central collision (p' « R o' ) our matching procedur e
is expected to break down .

Potential (4 .2 .1) yields, according to Leibfried and Oen,

(4 .2 .1)

r
1 - (p'/c)Z

	

1
1 I

~/ 2

4E'

~+

1)

C .for p' <

s o

From (4 .2.2),
, 2

c = pp a, ; C = A 'é p'I" ' I p -1 ,
a '

~

	

2a, - 1

sin2 - =
2

	

,

	

E'

	

2

	

E'(å +2 A eP~a
-4A'

e P la

We shall mainly apply (4 .2 .3) in connection with the DCA . According to
(3 .3.8), we have

(4 .2 .3)
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aD

	

L =s4
a

5 . 5 = 1 for rno -> mi. ,

when we use the numerical estimates of sects . 2.1 and 3 .1 . Comparison with

the numerical tables shows that the accuracy of (4 .2 .3) is better than 10 pct .
for p ' /a' 1 .5 . For the very lowest values of pD /aD one has to use mor e
careful estimates . Clearly, (4.2 .3) becomes wrong for p ' < a' . Inserting

(3 .3 .8) in (4 .2 .3) we obtain

mp L
2-

m
-
a

- 1

sin2 19'

2

=	 2(m o
lll a+ M A~ e

/
a) - 4 nM Ao e ~~a

4 .3 General results

In order to give an impression of the applicability of the different ap-

proximation methods we discuss an example . Fig. 7 shows sin P/2 as a

function of L/a for n = 2 ; mo = m1 ; Eo/A = 4.45 10 -3 . For the copper
potential of GIBsoN et al . (1960),

A = 22 .5 keV ; a = .196 Å for Cu,

	

(4 .3 .1 )

this corresponds to E0 = 100 eV. The calculations were done in the fol -
lowing way :

CCA : Parameters from (3 .2.8), sin 19/2

	

a) from (4.1 .3) ,

b) from (4.1 .5)

	

(4 .3 .2 )

DCA : Parameters from (3 .3.8), sin 0/2 from numerical table s

(ROBINSON, 1963)

	

(4 .3 .3 )

MA : 1

	

(tg19) (l) from (A. 8)

	

(4 .3 .4 )

CVA : D. from (2 .4 .12), where (pi is given by (3 .4.3) and a is take n

from the numerical tables .

	

(4 .3 .5)

As the CVA has no connection to the elliptical scattering problem, the re-

duced scattering angle 79' introduced by (4 .3 .5) has only formal significance .
It is plotted in Fig . 7 in order to show the direction of discrepancies .

We know that the CCA and MA are correct at, respectively, small an d

large impact parameters. Fig. 7 indicates that the DCA not only yields the

DCA : (4 .2 .4)
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5

Fig. 7 . Comparison of scattering angles in the reduced system, obtained by different approxima-
tions discussed in § 3 . s (p) passes probably through the shaded area in the region where th e

approximations differ most drastically (sect . 4 .5) .

asymptotic behaviour in these extremal cases (in Fig . 7 : L/a 3 and
L/a ,:, 8), but also represents a plausible interpolation in the region wher e
the discrepancy between the four curves is greatest (in Fig . 7 : 5 L/a 7) .

We note that it is just this interval of L/a which is extremely important
in applications .

It will be shown in sect . 4 .5 that the DCA slightly underestimates an d

that the correct p-curve most probably lies in the shaded region .
We note that s 4 = 1/3 in this example . For s4 closer to 1, the quality

of the DCA is expected to be better, as this approach yields the exact solutio n
for s4 = 1 . Let us, therefore, look at another example, where s4 is much
smaller .

In applications we are mainly interested in the dependence of 4E on
E0 at a fixed ring radius L. 4E is found from (2 .4 .13) . We consider the
case (Fig . 8)
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mo 20 L
n = 2 ;

	

; - = 6.5 ; A = 10 .1 keV,

	

(4 .3 .6 )
ml 64 a

where s4 = 0 .135 . (4 .3 .6) might represent a neon ion interacting with tw o
nearest neighbour atoms in a copper crystal under the assumption that (4 .3 .1)

properly describes the interaction between copper atoms (ANDERSEN & SIG -

MUND, 1965 b) .
It appears that 4E is reasonably approximated by the DCA over the

whole range of energies Eo . This curve agrees with the MA at high energie s

(Eo ,Z„ 100 eV), it goes through a maximum somewhat smaller than th e

potential barrier (30 eV) so that condition (2 .2 .6) is fulfilled . Below the
maximum 4E approaches the straight line 4E = E° corresponding to total

stopping, and at still smaller energies the curve bends away from 4E = E0 ,
corresponding to reflection (2 .3.7). Only at very low energies (E0 « 10 eV)

does DCA agree with CCA .

The CVA appears to be a poor approach in this case, which is due t o

the small mass ratio mo/nm l = 0 .156. On the other hand, the MA appear s

to be valid almost down to E0 = 50 eV. Because of their big masses, the

ring atoms can be considered as remaining at their lattice sites during th e

collision, so that condition i) in sect . 2 .2 is fulfilled .

An analytical evaluation is possible for not too small projectile masses
(rn 0 nm 1 /2) . We insert the simple formula (4 .2 .4) into (2 .4 .13) . Exact

determination of the maximum of 4E would be rather complicated becaus e

of the last factor in (2 .4 .13) . Fortunately, this is slowly varying and clos e

to 1 near the maximum as will be seen . If we neglect it for the determinatio n

of the maximum we obtain by differentiatio n

E0(max) =
m 0 . L Aé-L/a (4 .3 .7)
2m 1 a

The energy transfer at E0(max) becomes then

nml a\- (4.3 .8)L!a4E(max)

	

4E(E0(max)) = nAé

	

1	
2mo L /

(4.3 .8) states that a heavy projectile (m 0 » m l ) is able to dissolve the ring

almost completely during the collision, i . e . to transform the potential barrie r

nAé-Lla into kinetic energy of ring atoms .
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Fig . 8 . 4E vs . Eo for n = 2 ; m = 6 ; s4 = 0 .135, L/a = 6 .5 ; A = 10 .1 keV (Ne in Cu) .
i

As soon as the term
2m1 L becomes comparable to 1 (if m l » m o ) ,

0

AE(max) will be greater than (4 .3 .8) but, of course, smaller than the potential

barrier . A more accurate analytical determination is, however, doubtful i n

view of the approximate character of the scattering formula (4 .2 .3). The
error in (4 .3 .8) is by comparison to correct evaluation of the DCA found
to be smaller than 25 pct. for s4 > .25 .

The complete function 4E(Eo ) becomes

4E = nAé-L!ø	 4e(1 -ß/2) 1
1

rtm i

	

ß(1 - ß)

(1 +-'2 18~

	

M (1 +

	

- 2ß~ '

where

M a
Eo/Eo(max) ; ß =

mo L

(4.3 .9 . )

(4 .3 .10)
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Especially for m o » ml , ß « 1 s o

4E

	

nAé- Lia	 (1+ß f)2 for C >. 1 .

	

(4 .3 .11)

This is a very important formula as it covers a region where the MA over -
estimates 4E strongly. Inserting (4 .3 .7) into (2 .2 .2) and using (2 .2 .3) one
would obtain

MA :

	

4E(Eo(max)) = ,7rnAé-L/a ,

	

(4 .3 .12)

which differs from (4 .3.8) by a factor of ac . It is characteristic for the cas e
mo » m 1 that the maximum of 4E is extremely broad . According to (4 .3 .11) ,
4E drops to 4E(max)/2 at = 5 .8 . It should be mentioned that (4 .3 .11) ,
within the mentioned accuracy of about 25 pct ., also describes 4E for
E0 < Eo(max) .

While the MA fails completely for heavy projectile masses, mo » m l , the
CVA is supposed to be a good approximation . Evaluating (3 .4 .4) by use
of (4 .2 .3) we obtain

CVA : 4E = n4E1 = nAé-L/a for mo » m1 .

	

(4 .3 .13)

( 1+ C) 2 - 2 C L

For mo » m l , one gets ß

	

a/L, so (4 .3 .13) agrees with (4 .3 .9), apart from
the last factor in (4 .3.9), which is small for C > 1 .

The discussion of laboratory scattering angles is postponed to sect . 4 .6 .
Here we examine the question whether the projectile will be reflected . A t
first we note that the condition (2 .4.14) cannot be fulfilled as soon a s

M > 2nm 1 or mo > nml .

	

(4 .3 .14)

This means that a heavy projectile penetrating a series of concentric rings
of free, light atoms along their common axis will never be stopped completely .
In a crystal, of course, the binding of ring atoms and thermal scattering
will prevent this kind of "hyperchannelling" . For m o < nm t , the projectil e
will be reflected if its energy is smaller than a certain limiting energy E

ref l

corresponding to a critical scattering angle (2 .4 .14)

1'

	

m
sing i9ren/2 = 2 1 +	

O

nm1
(4 .3 .15)
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z9ren is always greater than r/2 . For these angles the Born-Mayer scattering
law is well approximated by (4 .1 .5) . Inserting (3 .2 .8) and (3 .3 .8) into
(4 .1 .5) and neglecting /Rô « 1 we obtai n

CCA : Eren

	

nA (1 +	 z12 ° ~ exp /-
L ~ 2zunlnto2

J

	

(4 .3 .16)
`

	

ntnl

	

` a

	

n m 2 - ntoJ

DCA : Eren nA (1 +
zn °

	

L /nznl m °
exp - 	 +

nm 1 ~ ( a \M M

2nnt1 \
~ . (4 .3 .17)

nm1 - n7o l

For m o « nm 1 , (4 .3 .17) gives the expected resul t

Erefl

	

n le L/a

	

(4 .3 .18 )

namely, the potential barrier . 'Oref1 is about 2t/2 in this case, so the CCA i s
not expected to give reliable 79-values .

For mo nm 1 , where 7 refl

	

n , the CCA yield s

Ere, 2nA exp (-
L

V
	 m0	

~

	

(4.3 .19)
aV nml - m °

This energy might become very small, hence the validity of (4 .3 .19) is
limited again because of the role of binding forces (sect . 5 .3) .

The condition (2 .4.15) for penetration is only evaluated in the DCA .
Analogous to (4 .3 .17) one obtains

	

mo

	

L nml
DCA : Epen = nA 1 + -

	

exp

	

+ 1,2
nt o
-

	

(4.3 .20)

	

( nml

	

a M

	

M }
Obviously, for zno « m 1 ,

Epen = nAe-LJa ,

	

(4 .3 .21 )

as it must be .

4.4 Collision Length and Time Integral

The concept of collision length, which is a path length travelled durin g
the collision, is needed both for the problem of overlap between successiv e
impacts, the role of binding forces (sect . 5 .3) and the validity of matchin g
potentials (next section) . The fundamental formulae will be derived in thi s
section .
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Let us start by considering a reduced system with fixed, spherical Born -
Mayer potential and use the notations from sect . 4 .1 .

Within the limits of the MA, the flying particle (m ' - mass, v' = velocity)

transfers the total momentum

2A' /n p
dp =

	

/
v

	

2a'
for p » 1 . ,

	

(4 .4 .1 )
a

to the scattering center. We define a collision time Az' by the relatio n

dp = Finax ' 4-c',

	

(4 .4 .2 )

where Finax represents the force acting at the closest approach, i . e .

	

Fmax

	

N
p

'/a '

	

max

	

a
(4.4 .3 )

A '

for a particle moving on a straight line . Comparing (4 .4 .1), (4.4 .2) and

(4 .4.3) we have to choose

14z' =

	

V 27ra 'p ' . (4 .4 .3)
v

This corresponds to a collision length

A' = V27ra 'p ' . (4 .4 .4)

It is characteristic for the rapidly decreasing Born-Mayer potential that A '

is relatively small . Seen from the scattering center, the interaction take s

place within an angle (Fig . 9) A'/p' = V 2mca ' /p ' going to zero for p ' » a ' .

For comparison we mention that the corresponding angle for the Coulom b
potential is 90° for large p ' . The potential at the end of the collision length
is given by

Øena ° A' exp (- a Vp, 2 + (11 '/2)21

	

A,~ p'!a' é-nl4

	

(4 .4 .5)

for p ' /a ' » 1, which is less than half of the potential in the closest approach .

So far, we required the MA to be valid . Let us now keep p ' fixed and
lower the energy so that we arrive at appreciable scattering angles, wher e

the MA breaks down . As a first approximation, A' being defined as th e

real path length travelled during the collision remains independent o f
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Fig . 9 . The collision length A' . 0 : scattering center . p' : impact parameter. v' : relative velocity.

energy ; perhaps it will slightly decrease, since the particle is scattered awa y
from the force field . Thus, we suppose that the relatio n

A' N 1/2aca 'p '

	

(4 .4 .6)

should be valid even for large angle scattering .
Let us verify this by considering the opposite case, where p ' is small .

For p ' = 0, one can solve the equation of motion exactly (LEHMANN &

LEIBFRIED, 1961) with the result
v' t

i ' = v' tanh 2, .

	

(4 .4 .7)
a

The velocity Y is zero in the closest approach (t = 0) . From (4 .4 .7) we get
a collision time

Ar' = 4a ' /v '

	

(4 .4 .8)

and a corresponding path length

Al.'

	

2a '

	

for p' N 0,

	

(4 .4 .9)

as (4.4.7) represents, roughly, a uniformly accelerated motion within
III < 2a'/v ' .

Comparing the collision lengths (4 .4.4) and (4 .4 .9) we find the un -
equality (4 .4 .6) being fulfilled, except for impact parameters p'/a' < 2/n ,
while a comparison of the corresponding collision times (4 .4 .3) and (4.4 .8)
gives discrepancies already at p'/a' < 8/n . So we conclude that A' is a well-
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defined quantity, which for all impact parameters under consideratio n

(p ' /a ' Z' 1) may be majorized by (4 .4 .6) .
We want to apply this result Lo our collision model within the range o f

applicability of the DCA . The corresponding path lengths in the elliptica l

potential can easily be found from the definitions in sect . 3 .3, but the re-
lation to laboratory quantities involves the so-called time integral . This
quantity, which connects relative and centre-of-mass motion, is usuall y

(LEHMANN & LEIBFIIED, 1961) derived for two-particle collisions but can
easily be generalized to our situation . This is done in Appendix B . The
coordinate system is chosen so that the origin is the initial ring center, and

the time scale is such that the closest approach happens at t = O . For
t » 0, i . e . after the interaction, relative and center-of-mass motion obey th e
following equations :

(B. 12) : r '(t)

	

VpD + (soot -F r D)2 .

	

(4 .4 .10)

(B . 3) & (B . 8) : X(t) = s4 (v0 t rD/s) .

	

(4 .4 .11)

The time integral rD is given by (B . 9) and has been tabulated by ROBINSO N

(1963). The position of the projectile at t = 0 as well as the complete asymp-

totic motions x 0(t), xi(t), qi(t) are listed in (B . 11) and (B . 14) .

Finally, we are interested in the actual collision time 4r corresponding
to the path length (4 .4 .6) . For not too large angles (l < r/2), A' = 2 P0 Q'

(Fig. 13 in appendix B) will approximately be equal to 2QQ' . Applying the

cosine relation on the triangle OQQ ' and inserting (4 .4.10) and (4 .4 .4), we

obtain

4r = 1 (1/2ara DpD + 2p D tg '0/2 - 2rD) .

	

(4 .4 .12)
sv 0

For '19 = 0, rD goes to zero, so that 4r goes over into 4r' (4 .4.3), as it must

be. At finite angles, 4r is greater than 4r' .

4 .5 Validity of Approximations .

In this section we discuss the applicability of our four approximations withi n
the model defined in 2 .1 . The limitations of the model itself will then be mentioned
in the subsequent chapter .

In the following we assume scattering angles for a spherical potential to be give n
exactly, for example from Robinson's tables, so that the only approximative step
consists in reduction to spherical symmetry . We shall first discuss the different
approximations in terms of the reduced scattering angle 6.
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From the construction we know that
i) the CCA yields the exact result for

	

n Furthermore from Appendix A ,
ii) the MA is asymptotically exact for high energies (small 0) .

Following the examples from sect. 4 .3 we suggest :
I) The DCA is a good overall approximation .

II) For s4 « 1 the validity of the MA is much better than in the corresponding
two-particle collision .

III) For s4

	

1, also the CVA is an excellent approximatio n

I . DCA. We first show that DCA and MA agree at high energies . Using the
perturbation expansion

AD PD

	

AD

	

PD -pnl a n
_ Er aD Ko(pD/a D)

	

Er ' 1/
z
2 aD e

	

,

	

(4 .5 .1 )

and inserting (3 .3 .8) one obtains

DCA : P _
/7r

Le L/a
2 a

(4 .5 .2)

For the MA we obtain from (A.7)

MA : a~ = ns2

E

• a Ko(sp /a) ^
r

in perfect agreement with (4 .5 .2) . The second step in (4 .5 .1) using (2 .2 .3) is no t
exact as soon as pD/aD is not large (s 4 (<1) . Numerically, 7%DCA is 10 pct . smaller tha n
2iMA at pD/aD = 1 and large E l) .

Next, we compare DCA and CCA at large P . A convenient scattering formula
near P = x is found by expanding (4 .1 .5)

cos P/2 =	 (1 + a' /Rô), for P

	

7r,

	

(4.5 .4 )
0

where Rô is defined in (4 .1 .6) . Inserting (3 .2 .8) and (3 .3 .8) and neglecting a'/R'o in
(4 .5 .4) for low energy we ge t

s2L/a
CCA : cos 0/2 = (4 .5 .5)

ln(MA/m1Eo) '

s 4L/a
cos '0/2 =

	

L/a
(4 .5 .6 )

nm1
In(MA/m1Eo) -

	

L/a
M

Obviously, the two expansions only agree for L/a -)- 0 and s4 = 1 . Otherwise both
numerator and denominator in (4 .5 .6) are smaller than in (4 .5 .5) so that the numerical
difference is not too big .

Mat.Fys .Medd .llan.vid.Selsk. 34, no. 15 .

	

3

Mmo A 7r L e L/ a
m1 Eo l 2 a

(4 .5 .3 )
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ac
FEr

FC

0

	

5

	

-~- L la
Fig. 10a . Magnitude of force in CCA. F = real force, Fc = CCA force .

5

	

Lia
Fig . 10]) . Angle of forces to the negative x-axis in CCA, y = angle of the real force, yc = angle

of the CCA force .

Fig.10a-d . Comparison of real and approximate forces in the closest approach, for th e
example discussed in sect. 4 .3 (Fig. 7) ; s 4 = 1/3, Eo /A = 4.45 iß 3 .

.5

0

0



Nr. 15 3 5

FaD

Er

Fig . 10e . Magnitude of forces in DCA. F = real force, FD = DCA force.

Fig . 10d . Angle of force to the negative x-axis in DCA . y = angle of real force, yD = angle o f
DCA force .

3*
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INITIA L
DIRECTION
OF MOTIO N

Fig . 11 . . Comparison of forces in three characteristic points within the collision length (see Fig .
13) . L/a = 6 ;

	

s4 = 1/3 ;

	

Eo/A = 4 .451 3 .

At intermediate scattering angles both CCA and MA are suspect . To estimat e
the accuracy of the DCA we compare the actual, elliptic force field with the spherica l
one from the DCA in that region where deflection takes place, i . e. within the
collision length . The most important point is, of course, the closest approach r ;,, .
In Fig. 10 a-d we have plotted magnitude F and angle y (measured with respec t

to the negative x-direction) of the real force F and the approximate forces Fa an d-~
FD in the closest approach as calculated respectively by the CCA and the DCA .
Fig . 10d shows that the direction of the force is very well approximated by the
DCA at all impact parameters . The magnitude (Fig . 10e) is only correct at L/a > 5 ,
while it is drastically overestimated by the DCA at small L. This is immediately
evident from the construction of the potential SOD (Fig . 5) . The scattering angle 79,

is not affected very much by this discrepancy, but other quantities must be, for
example the closest approach itself as well as time integral and collision length .

Figs. 10a and 10b show that the CCA force deviates considerably from th e
real force already at rather small values of L/a . This might explain the rather limite d
range of applicability of the CCA in Fig . 8 . It means also that eq. (4 .3 .17) will in
most cases be more adequate to determine Ereii than (4 .3 .16) or (4 .3 .19) .

In order to estimate the accuracy of the DCA scattering angle at L/a 6 we
note that the errors of VD and FD are around 5 pct ., while the discrepancies of y e
and Fa (Fig . 10a and b) are very large. Furthermore, the direction of the discre-
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panties indicates that the DCA underestimates a5, while CCA clearly overestimates .
Hence, one would suppose that the DCA angle is about 5 pct . too small under th e
assumption that these relations are qualitatively the same within the whole collisio n
length .

To be sure about this, we have also calculated the forces in two other point s
within the collision length, namely the points P I and P2 from Fig . 13 . It is easy
to see that the length PÎP2 is not much smaller than A as defined by (4 .4 .4) . The
forces are shown in Fig . 11 for the case L/a = 6 . Po is the closest approach (Fig . 13) .
Clearly, the discrepancies in PI and P2 are not greater than in Po .

We note that the validity of the DCA force field rapidly decreases, just a s
> n/2 . This seems evident from the construction of the potential (Fig . 5), a s

the particle is deflected far away from that point where we have matched th e
potential . We consider this result to be more general and assume in the followin g
the DCA to be an accurate description of our model for g/2, except for s4 < 0 .1 ,
where the error in might exceed 10 pct . At 6 > n/2, the scattering angle itsel f
might he well approximated, but other quantities should be considered with care .

II . M.A. We now investigate the error which is made by evaluating the DCA
scattering angle by the MA . According to (4 .5 .2) and (4 .5 .3) this is equivalent t o
treating the original problem by the perturbation approach, for s 4 > 0 .1 .

Following LEHMANN & LEIBFRIED (1963), the error can be estimated from the
proportion of second and first order contributions in the perturbation serie s

_ ~ (1) + ~(2) { . . .

PD
K1 2

PD 3 Ko P D
A D aD

	

aD 2

	

aD _ AD 1~~PD
_

	

p Dfa D

	

- 1 .19 1 .
Er

	

Ko(PD/aD)

	

r Er 1/2

	

aD

In the second step we used the asymptotic expansion of the I-Iankel functions Ko
and K1 (JAHNKE et al ., 1960) . Inserting (3 .3 .8) we get

to be

.0 (2)

0 (1 )

(4 .5 .7 )

(4 .5 .8 )

Im00 + n)
(moL 1.19 1 e

-L/a .
`` 1

	

0 112a

	

4/ 2

.0(2 )
?3 ( 1 ) (4 .5 .9)

For the pure two-particle collision one would obtai n

	

\A L

	

1(mo

m
+ 1

	

C - 1 .191 32 e L)a .

	

1 / É0 a

	

//
0( 2 ) '

(4 .5 .10 )

Obviously, (4 .5 .9) and (4 .5 .10) are only equivalent for mo » mi . Already for mo 772 1
there is a considerable difference, and for mo « m1 one get s

A (mo L 1 .19 1 eL/a , mo « m 1

	

(4 .5 .9')
Éo m1 a

-	
72 )V 2

(2)

~( 1 )
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instead of

ti A
/L - 1 .19 1 e- Ll øti

E o \a

	

1%2
(4 .5 .10')

for the two-particle collision . For the example illustrated in Fig. 8 the error in th e
energy loss, which is twice the error in angle, is predicted to b e

O(AE) < 31 eV
JE

	

Eo
(4 .5 .11 )

by (4 .5 .9'), while (4 .5 .10') yields 114 eV/Eo. Comparison to Fig . 8 shows that the
actual discrepancy between MA and DCA is even smaller than (4 .5 .11), as long as
E 0 > Eo(max) .

III . CVA .
We show that CVA and MA agree at high energies . Starting at (3 .4 .4) we obtain

2 z L
AE = ndEl

ml Eo
a2 n

mo A

	

e 2L/a

	

(4 .5 .12 )
mo

	

ml E 0 2 a

in agreement with (2 .2 .2), if only L/a » 1 . This asymptotic behaviour is independent
of the mass ratio, contrary to the DCA, which means that in the case s 4 « 1 the
CVA is asymptotically exact, but a bad approximation at finite Eo, while the op-
posite holds for the DCA .

At mo » ml , both DCA and CVA have the right asymptotic behaviour . In order
to find the deviations at smaller energies, we consider the second order momentum
approximation . Expanding both 8(DCA) and a(CVA) as well as the expressions for
the energy loss (2 .4 .13) and (3.4.4) in powers of A, we obtain to the second orde r

AE(DCA)

	

1 + 215(2)/0(1)

	

//6(2)

	

a (2 )

dE(CVA)

	

1 + 2a(2) /a(1)

	

1+ 2 -o(i) -
a(1 ) )

6(2)
92) /6(1) is given in (4 .5 .9) apart from the sign : 0(1) < O . a(2 )/a( 1) is easily foun d

using the definitions in sect . (3 .4), so we obtain

AE(DCA)

	

nAe-L/a

AE(CVA) = 1+1
.19 l;2	

Eo

	

for large Eo .

	

(4 .5 .14 )

(4 .5 .14) is independent of the mass ratio but only correct for - a » 1 . It is seen

that the CVA underestimates zE, which is to be expected, as the CVA under -
estimates the collision time .

For numerical estimates one should remember that (4 .5 .14) is only valid within
the radius of convergence of the perturbation series .

(4 .5 .13)
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COS?

.5

.01

	

.1

	

Eo/A
Fig . 12 a. Starting angle 92, of ring particle 1 as a function of projectile energy for different number s
of ring atoms (n = 2, 3, 4), compared to n = 1 (pure two-particle scattering), MA and CVA .

4.6 Angular relation s

It would he of considerable interest also to investigate many-body scatterin g
events which are not as symmetrical as the model discussed until now . It is im-
mediately evident that most of the techniques applied in the present paper are
rather specific for the symmetric ring collision and cannot be generalized in a straight -
forward manner .

If we confine ourselves to distant collisions it will always be reasonable to apply
the MA above some well-defined limiting energy . At low energies, it will often
happen that the path of the projectile may be well approximated by a straigh t
line, even if the relative energy transfer to atoms surrounding the path is not small ,
just because of the stabilizing effect of an assembly of scattering centers . In these
cases, it seems most reasonable to apply the CVA in order to calculate the trans-
ferred energy, rather than to resolve all interactions into two-body events an d
treat these by familiar scattering theory .

Applying the CVA to a given scattering problem, one obtains energies an d
directions of motion for all the struck particles . From that, using conservation
laws, one might also get the total energy and momentum change of the projectile .
This procedure has been used by WEIJSENFELD (1964) in the theory of assisted
focusing collision sequences . The validity of the approach has not been estimated .

From our model, it is only possible to estimate the accuracy of the CVA in th e
completely symmetrical case, where the assumptions underlying the CVA are bes t
satisfied . As to the calculation of transferred energies, this has been done in th e
preceding section . In order to see that the situation is quite analogous with respec t
to angular relations, we just discuss an example . In Fig. 12a, we have plotted th e
cosine of the starting angle qi of ring particle 1 for different approximations and
various numbers of ring atoms . The CVA claims that (p i is independent of n . Within
the DCA, the angle Ip 1 appears to be almost identical for n = 2, 3 and 4 .
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Fig . 12b . Energy transfer AE, to one ring atom corresponding to the angles in Fig . 12a.

In the energy region where the MA fails completely, the scattering angle cal-
culated from the assumption of pure two-particle scattering ("n = 1") appears stil l
to be a satisfactory approximations . This is not the case if one considers the energ y

Note that for large E
l 1cos ~iI2

-bod = 1 +
Inm I cos 99,

Y

	

o/

	

CV A

due to the violation of momentum conservation in x-direction . In applications, this discrepancyis unimportant.

.1.01

	

Eo /A

	

1
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4E1 transferred to one ring atom (Fig . 12 b) . Here, the two-particle approach fail s
completely . One might suppose that the relations between the different approaches
as indicated in Fig . 12a and b are more general, but a detailed investigation i s
outside the scope of this paper.

§ 5. Limitations of the Mode l

5.1 Validity of classical scatterin g

A detailed investigation of the limitations of classical scattering due to

the uncertainty principle would require a wave packet description of ou r

model . This requires in turn some knowledge of the classical orbits in th e

case of deviations from perfect symmetry which are not considered in this
paper .

In order to get a feeling for the magnitude of quantum corrections t o

our model, we estimate the accuracy of 4E 1 and 4E only in the specia l
case of a heavy projectile (m 0 » m l) and small energy transfer, where the

main uncertainty arises from localizing the ring particles, so that the pro -

jectile may be considered to have well-defined position and momentum .

The uncertainty in the scattering angle a of one ring particle in a system
moving with velocity uo (Fig. 6) is calculated by the method of Boxß (1948 )
modified for Born-Mayer scattering . Assumin g

ôa/åL

	

- a/a, (5 .1 .1)

one obtains the relative uncertainty

åa

	

V , (5 .1 .2 )
aa

where

h.
A1 = (5 .1 .3 )

ml vo

Asa determines the energy transfer, we obtain from (3 .4 .4)

å(4E 1) åa 8h2

	

1 1 14

2-
~

(5.1 .4 )
4E 1 a 2m 14E1

for the relative uncertainty in 4E1 .
Finally, since the different ring particles are independent of each other ,

the uncertainty in the total energy loss 4E is given b y



42

	

Nr . 1 5

å(4E)
= R 1/2 ,

å(4E1) =.

	

1/4 . (	
8h 2 )1 1 4

4E

	

4E

	

a g ni 4E

Assuming a - 0 .2 Å one obtains from (5 .1 .5 )

6(4E)

	

(0 .8eV 11 4

4E

	

nA 14 E

where A I is the mass number . As the energy at which the fraction (5 .1 .6 )
becomes comparable to 1 usually lies in the range of validity of the MA ,

one might suppose that the classical approach should be successful belo w
this limit, also at energies where the MA breaks down .

The relations (5 .1 .4) and (5 .1 .5) remain qualitatively correct even fo r

mo m 1 , as long as the energy loss is small . But in the energy region wher e

the projectile can be reflected, these considerations might be insufficient .
One should mention that the limiting energies calculated by LEI-IMAN N

LEIBFRIED (1963) are considerably higher than those arising from (5 .1 .4) o r
related equations . This is due to the fact that the criterion of WILLIAMS (1945)
used by these authors in the case of screened potentials is only a necessar y

condition for the applicability of classical orbit pictures .

5.2 Inelasticity

Due to ionization and excitation of electrons the collisions in a crystal are not
perfectly elastic . It has often been assumed that a certain ionization threshold
energy El exists below which inelastic effects should be negligible . It seems well-
established that such a general threshold in the sense of a cut-off energy does no t
exist . Nevertheless, there might be a characteristic energy separating those regions ,
where, respectively, elastic and inelastic effects dominate, but this energy will i n
general depend in a sensitive way on the considered effect .

In this paper we are concerned with particle velocities much smaller than e2 /ht ,
so that dipole resonance excitation will not take place (Bonn, 1948) . One only deal s
with close Coulomb encounters of the projectile with the electrons of the crystal .
SEITZ (1949) assumed that these will not lead to excitation if the maximum energy
transfer is smaller than the Fermi energy in a metal or the ionization energy i n
an insulator . The theory for stopping of charged particles in an electron gas (LIND -
HARD, 1954) does not confirm this statement . The stopping power turns out to b e
proportional to velocity :

\d e = con st a,

	

(5 .2 .1 )

the proportionality constant depending on the charge of the projectile and th e
density of the electron gas . -Within the limits of applicability of the Thomas-Ferm i

(5 .1 .5 )

(5 .1 .6)
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model eq . (5 .2 .1) should also be valid for non-uniform electron gases as they occur
in solids and, especially, in metals .

As electronic stopping acts only as a minor correction on the orbit of the pro-
jectile, it seems to be a reasonable approximation to treat the collision as bein g
elastic and to add the inelastic contribution later on, provided the proportionality
constant in (5 .2 .1) can be calculated . Electronic stopping may be dominating at
energies considerably below the ionization limit, especially in channelled motion .

5.3 Effect of binding force s

In our scattering model it is an essential assumption that the ring atom s
are not bound by external forces or interact with one another . In a crystal,

however, the atoms are bound to their lattice sites by oscillator forces, a s

a first approximation .
It has been shown by B OHR (1913, 1948) that oscillator forces can b e

neglected in collision problems if the collision time 4i obeys the condition

w 1 4r < 1,

	

(5 .3 .1)

where col is the . oscillator frequency of the struck particle . Eq. (5 .3 .1)

defines an adiabatic limit . For w 1 4r > 1, the energy loss is overestimate d
by assuming free scattering .

As the collision time increases with decreasing energy, our descriptio n
can only be correct above some limiting energy which turns out to be quite
small .

For 4-r we use, for not too small s 4 and '0 « r/2 , the first term in (4 .4.12), s o

2 7c aDPD 2naL
(4i)

z
(svo) L

	

v
o

The frequency co l is conveniently found from the coupling constants of th e
lattice by assuming all atoms fixed except 1 . If we only take nearest neighbou r
interaction into account, we ge t

for the FCC lattice : in1 w1 4(a + 2ß) (5 .3 .3)

and for the BCC lattice : mlcoi 8a, (5 .3 .4)

where a and ß are coupling constants in the notation of LEIBFRIED (1955) .
Hence, (5 .3.1) reads

(5 .3 .2)
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mo aL(a + 2ß)

	

4n -	 < 1 for FCC lattice ,

	

m 1

	

E o
and

	

(5 .3 .5)
mo aLcc

8~cm E < 1 for BCC lattice .
1

	

0

As an example, we discuss the <100> focuson in Cu considered by WEiJSEN -

FELD (1964) . Here, we have (JACOBSEN, 1955)

a = .30 eV/Å 2 ;

	

ß = .54 eV/Å 2 . (5 .3 .6)

For L/a = 10, a = .2 A and mo = m 1 we obtain

(5 .3 .7 )
/7 eVl1J 2

co 1 4i = l\ E/I
0

so that the condition (5 .3.1) is fulfilled at Eo > 7 eV. As this energy is o f
the order of the potential barrier, the energy limits for reflection and pene-
tration, as defined in (4 .3 .16) etc., will suffer some modifications . The 4 E
vs. Eo curves around. and above Eo(max) will not be affected .

Appendix A
Perturbation Expansion

Eq. (3 .1 .2) can in principle be solved by a perturbation serie s

y ( x) = y(0)(x) + y( 1 )(x) + . . . .

in powers of the potential, Ø . We write (3 .1 .2) in the form

2 (Øy - y'Øx) ( 1 + y' 2) + (Er - Ø)y" = 0 -

Øx and ch y indicating partial derivatives . The zero order term yield s

Ery(o )"(x) = 0 ;

	

y (o)'(x) = const. = 0 ; y(o)(x) = const . = p ;

	

(A3)

Collecting first order terms we obtain

1 Ì'y(x, p ) + Ery(1),• = 0
2

(Al )

(A 2 )



Nr . 15

	

45

or, using (2 .4 .8)

y(1)„

	

nps2 V (Vx2/s2 + s 2p 2)

2Er

	

Vx2/s2 + s 2p 2

where V' is the derivative of V with respect to the argument .
The scattering angle 0 (fig. 3) in first order is given b y

(tg 0)(1) = y(1)' ( x = ~) = f dx y(1 )"(x)

~
nps3 ~	 V' (~J) d 'q

Er

	

1/ y2 _ S 2p 2
s p

where we have made the substitution

(A 4)

(A 5)

For Born-Mayer interaction
x 2/S2 + s2p2 = y7 2 . (A6)

(A5) yields
V(r1) = Ae-711a

	

(A7)

For small 0( 1 ), we write

(tg 0) (1) = ns2 .
E ' a Ko( sPla) •Er (A8 )

so (2 .4 .13) reads

	

(tg aß)( 1 )

	

0( 1)

	

2 sin 0( 1 )/2 ,

JE ti 4 ~ E°(ai(1)/2)2

	

nm°
° La ° (a)J2,

	

(A9 )

where we have used (2.4 .9), (2 .4 .11) and (2 .4 .7) . Eq. (A9) agrees with (2 .2 .2), as
it must be.

Collecting second order terms in (A2) we obtain

y(1)Ø yy(x,P ) -
2- y(1) Øx(x,P) - y(1)"Ø(x,P) + y(2)„Er = 0

or, after partial integration ,

(tg 6) (2) = y (2) (co) =

	

2~
J dx y(1) (x) (Øyar( x,p ) - Øxx(x ,P)) •

	

(A 10 )E,

As explained in sect . 3.1, there is no need to evaluate (A10) explicitly .
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The time integral

	

Appendix B

Let the laboratory coordinates (2 .4.1) satisfy the initial condition s

and

	

xo( to) _

	

< 0 ; x1( t o) = 0 ; yl( to) = L

	

(B 1 )

xo( to) = vo ; x1( to) = y1( t o) = 0 .

	

(B2 )

From the definition (2 .4 .2) we get immediately the center-of-mass motio n

x(t) = x(to) +X(to)(t - t o) = M (e o + v(t -

For the relative coordinates x, y (2 .4.4) we obtain

x( t o) = svo ; y(to) = L/s = p

x(to) = svo ; y(to) = 0 .

Integration of the equations of motion is possible for spherical potentials .
Hence, we go over into the coordinate system (x ' , y ' ) defined by the DCA,
where (Fig . 5)

)) . (B 3)

x ' = x; y' = y - yD - Y P(l - s4) .

y'( t o) = s4P = PD

y'(to) = O . .

Here,

x (to) =

x'( to) = sv o ;

With the potential ØD(r ' ) from (3 .3.4) we get

~ 0D(r) pl "2+ svo 1 -	 E	 r 2

	

for 1 ~ 0,

	

(B7)
r

where r '2 = x '2 + y '2 .

The closest approach is assumed at t = O . Hence, to < O . Integration
from to to t = 0, assuming that the potential energy at t = to is negligible ,
yields

svoto = rD +x '(to ) = rD +s• o , for to «0 .

	

(B8)

Here zD is the "time integral"

tD = (r.' 2 PD)1/2 -
r dr '

	

OD(r) - PD
-112 7

- 7-2
PD

2)-1/ 21 '

J

	

~ v

	

Er

	

r

	

r

	

(B 9)
~

dr '

dt
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which has been tabulated by ROBINSON (1963), and rm is the closest approach.
From (B3) and (B8) we get the position of the centre-of-mass at t = 0 :

As
X(O) = s4($0 v0 t0)

=

	

.S
3
tD . (B 10)

x ' (0)

	

- r,n sin 0/2 ,

the position of the projectile at the time of closest approach become s

xo(0) = X(0) + (1 - s4)
s

.x ' (o)

	

- s3zD --- (1 - s4)
rs

sin 0/2, (B 11)

where use has been made of (2 .4 .5) . Furthermore, for t » 0, we get in th e
same way as (B8)

soot = -rD +Vr'2 - pD ; for t » 0 .

	

(B12)

This relation governs the asymptotic orbits . We have (Fig . 13) for t » 0
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y' = tg + -PD
cos z9

and x' and y' can be expressed by r ' :

x' - pD sinz9+cosz9•Vr' 2 -pD
y' = pD cos 'O + s in a9Vr' 2 - pD •

Using eqs . (2 .4.5), (B12) and (B13) one obtain s

nlnl

	

\

	

nzn

	

\
xo(t)

	

(vo t + zD /s) 1 - 2	
M

sin
2

z9'/2 - s3 2rD +
11~1

p sin z9 ;
/

	

/

xl(t) _ (vo t + rD/s) . 2
n~

sin 2 z9/2 - s3
(2T -

~p sin z1 ;

y l(t)

	

(v0 1 + rDis) s 2 sin z9 + sp 1 - 2
N

Izn
sin 2 19./2

/

(B 13)

(B 14)

for t » 0 .
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