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Synopsis

The paper describes a theoretical approach to the problems of directional effects for ener-
getic charged particles moving through solids . Introductory comments on some aspects of di-
rectional effects are given in § 1 . The fundamental approximations of the description are stated
in § 2, and the associated simple concept of a string of atoms is introduced . A transverse conti-
nuum potential is a natural consequence of the basic approximations . The limit of applicability
of continuum potentials is given by a critical angle. At high particle energies the critical angl e
is of an especially simple type . The critical angle separates particles behaving essentially a s
in a random substance from particles which do not come close to e .g . strings, with correspond-
ing strong reduction of most physical processes . A number of examples are discussed, and critical
angles belonging to atomic planes, strings, and pairs are compared . Characteristic features of a
quantal treatment are briefly sketched .

§ 3 treats basic statistical estimates in calculations of directional effects . As a function o f
transverse energy, El , the slowing-down is calculated for electronic and nuclear collisions .
Multiple scattering, i .e . lack of conservation of transverse energy, is studied in § 4 . The norma l
multiple scattering, due to nuclear collisions, is strongly reduced for low values of El.

The rate of physical processes depends on the external angle between a beam and a crystal .
In § 5 it is found that in simple cases the average of such rates over direction gives the sam e
result as in a random system . Similar rules hold for spatial averages .

In § 6 experiments on directional effects are discussed from a theoretical point of view .
The main effects to be taken into account are summarized . The order of magnitude of dip minim a
is estimated . The possibilities are discussed of using as an experimental tool the shadow be -
longing to e .g . strings . A few comments are made on recent experiments connected with strin g
effects .

A more detailed investigation of classical deflections by lattice atoms, and the limits o f
validity of continuum potentials, is given in Appendix A, where also critical angles of particle
emission from perfect strings are estimated . In Appendix B quantal corrections to the classica l
description are studied, and it is found that-in contrast to the familiar case of single collisions-
the corrections are small at high velocities .
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§ 1 . Introduction

Measurements of range distributions and. energy loss in single crystal s

have revealed directional effects, both for slow, heavy ions l) and, more

recently, for protons2) . The first indications of directional effects for slo w

charged particles seem to be in observations on sputtering 3 > . Further indi-

cations were found in digital computer studies4) of simplified models of

penetration through lattices at extremely low particle energies .

The purpose of the present paper is to show that a comprehensiv e

theoretical analysis may be made of directional effects in penetration of

charged particles through crystal lattices . This analysis leads to condition s

for the occurrence of a peculiar effect, described as atomic string effect .

The corresponding string approximation is a well-defined approximatio n

procedure by means of which primary and secondary directional effect s

can be treated . It then turns out that directional phenomena provide a n

interesting tool for solid state investigations, mainly because lattice point s

can be distinguished by means of a shadow effect. The theoretical results

were summarized briefly in a recent note s), and experiments were starte d
along these lines 7 ) .

AL this point may be mentioned the well-known fact that, as a conse-

quence of lattice periodicity, interference patterns of waves can be observe d

for both electromagnetic radiations and massive particles of not too short
wave length . However, directional effects of that kind are not the subjec t

of the present discussion, where mainly shadow phenomena are treated ,
with classical mechanics as a starting-point . Usually, the wave lengths o f
incoming particles are required to be exceedingly small and incoherenc e
prevails, so that interference patterns are absent .

The basic case of the present approximation method is the case o f
high particle momenta . The classical orbital description of directional ef-

fects, as used in the following, is simple in this limit . In this connection it
is also important that the classical approximation in directional phenomena

turns out to be the better the higher the particle momentum, in contrast to

most collision problems, where quantum mechanics takes over at hig h
energies .

I .
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In the following chapters it is merely intended to present the genera l
theoretical framework, with emphasis on a few basic phenomena and sup-

plemented by a number of examples which can elucidate crucial problems .
Several aspects, like quantal effects and thermal vibrations, are treated
only in a cursory manner and need further study . Other problems, like th e
details of slowing-down, are not treated fully, because they are of secondar y
importance to the crucial questions discussed here .

The present chapter contains comments on some aspects of directional
effects . A few facts are mentioned concerning slowing-down of charged
particles .

Random system s

Although the spatial structure of a medium must have some influenc e
on slowing-down and scattering of charged particles, the effect is normally
disregarded . Several approximations are contained in a disregard of struc-
ture. They may be characterized by three mutually connected assumptions :
homogeneity, isotropy, and randomness of the medium . The first two as-
sumptions are often contained in the last one . An anisotropy due to lattic e
structure can thus result from some kind of correlation between collisions .

Suppose, that a penetrating particle has a certain differential cross section
for scattering by single atoms, that its collisions with atoms of the medium
are separable and independent, and finally, that the atoms are randoml y
distributed in space, with random orientation . Obviously, the slowing-down
process is then independent of direction ; the probability distribution i n
energy loss and scattering angle depends only on the mass per cm2 pene-
trated, and is to be computed in a familiar way from single collisions . This
is essentially a gas picture, and may be called a random system-implyin g
homogeneity, isotropy, and random collisions . However, it is important to
realize that the approximation of a random system is not confined to ran-
domly distributed atoms or molecules, but may also be applied to medi a
with lattice structure . As an example, one would a priori expect that a
polycrystalline substance in many respects can be regarded as a rando m
system .

Governed and ungoverned motio n

A single crystal is a typical example of a medium in which directiona l
effects in stopping might appear, due to both inhomogeneity, anisotropy an d
lack of randomness . We may classify directional effects for charged particles
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moving through single crystals, or other media, by two labels : 1) un-
governed motion, and 2) governed motion . By ungoverned motion is mean t
the approximation where the path of the particle may be assumed to b e
essentially unaffected by the structure of the substance . Governed motion
means that the path deviates definitely from that in a random system, be -
cause the path is determined by the structure of the medium . Ungoverne d
motion will be found to show merely fluctuations in physical effects due to
correlations, whereas governed motion leads to more fundamental change s
in physical processes .

In both categories of directional effects we may further distinguish be-

tween those cases where a) both direction and position of path are involved ,
and those where b) only direction is involved .

Direction and position

If a particle can be assumed to move classically along a straight lin e
through a thin single crystal, the direction of the line of motion is important ,
as well as its position in the Lattice (dependence on position indicates in -
homogeneity, on direction : anisotropy). Thus, assume that the path is
parallel to a major axis in the lattice . If then it is in between the atoms ,
there is a reduction of all those physical effects which require a close col-
lision between particle and atom . If the particle is very close to atomi c
positions there is an increase in these effects .

Now, on the one hand, one can hardly hit e .g. only the space between
atoms in a lattice, since a beam of projectiles will be spread over a larg e
area, and thus one fraction of the beam may pass between atoms, whil e
another fraction passes close to atoms . On the other hand, the impingin g
beam can be rather well collimated in direction, and thus a fraction o f
projectiles moving in straight lines might conceivably keep away from atom s
for considerable distances of penetration .

As an example, consider the energy losses suffered by a beam of par-
ticles moving through a thin crystal film, where the energy loss remain s
small compared to the particle energy . The energy loss by a particle to a n
atom may be assumed to be a function of the impact parameter only . How -
ever, if the particles have ungoverned motion, the average energy loss (bu t
not the fluctuations) remains the same as in a random system . This result
is evident, since the particle beam consists of parallel randomly distribute d
paths . An average of energy losses over randomly distributed parallel path s
must give the same result as an average over randomly distributed atoms .
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In the case of governed motion, the paths do not remain independent of the

lattice, and the average energy loss is expected to deviate from that of a
random system. In the following, we are interested in possible occurrenc e
of governed motion in a lattice, where effects depend on both direction an d

position of particle path, and where e .g. averages over external position o f

the path are not in conformity with results for random systems .

Direction only

For comparison, we briefly consider effects concerned with directio n

only, i .e. not associated with position in space of the particle path . Such
purely directional effects may be divided in two .

The first case can be indicated by an example . Suppose that the medium

is a homogeneous plasma in a constant external magnetic field parallel t o
the z-axis . The energy dissipation by a particle is then independent of it s
localization in space, but depends on the angle between the direction o f

motion and the z-axis . This directional effect is a property of the medium,

and subsists even though the particle moves approximately along a straight
line .

The second case occurs e .g. for wave interference patterns due to lattic e
periodicity. Such. effects require an extended wave, in sharp contrast to a

classical localization of the particle within the lattice . As mentioned pre-

viously, we shall not here treat wave interference .

Channelling

The concept of channelling was introduced in recent papers on pene-

tration in crystals, at first for slow ions 4 ) 1> and later for swift protons . By

channelling is meant that a particle path near the centre of channels alon g

a major axis in a crystal may have a certain stability . Particles moving
along channels are subject to periodic forces, mainly focusing and occasion -

ally defocusing. If the forces are of harmonic type and the focusing forc e

is preponderant, this leads to a familiar solution of the equations of motion .

The transverse motion in a channel is roughly a long-wave oscillation, com-

bined with a short-wave vibration with the lattice period. The long-wave

motion has a constant amplitude and wave-length v fw, where w is the pe-

riod of average transverse harmonic oscillation and v the particle velocity .
If the amplitude is large, the oscillation no longer remains harmonic . Any

kind of oscillation within a channel we describe as proper channelling . A
theoretical treatment of channelling is given by LEHMANN and LEIBFRIED 8>
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in a special case . Studies of individual paths at low energies by means o f

digital computers were performed by ROBINSON and OEN 4) , and by others .

It is worth while to indicate in a qualitative way the possible occurrenc e

of channelling and its relation to other phenomena . Suppose that a particle

moves along the centre line of a channel, with oscillations about the centr e

line. If the energy of oscillation exceeds the barrier to a neighbouring channel,

the particle escapes readily from the channel . We can roughly estimate

the barrier for such escape either from the harmonic force in the centre o f

the channel, or from direct estimates at the channel border line . We intro -

duce a barrier energy for channels, Ee, presumably of order of 5 eV for

protons, and depending on Zl and on the medium . Let be the angle be-

tween particle motion and channel direction when the particle is at th e

channel axis . If the energy in the transverse motion, Esin2 y, is larger than

E 4, the ion can escape from the channel ; we need not discuss details as to

the probability of escape . Thus, we find a critical angle

a
c

	

(

\ EFc)
1/2

.

=

	

,

where E is the energy of the particle . Only if the incident ion both has a n

angle less than ae with the channel axis and also starts close to the channel

axis, can its escape from the channel be disregarded and proper channellin g

take place. This corresponds to a solid angle for proper channelling,

S2~

	

n-
c

	

(1 .2)

Within this solid angle, channelling can occur with a finite probability . In

a wide channel, where the atoms in the walls are relatively closely packed ,

the energy Ec-and thus the solid angle ,Q,-is expected to be larger than

in a narrow channel.

One consequence of (1 .1) and (1 .2) is that the critical angle depends

strongly on the energy of the particle, while its charge and mass do not ap-

pear directly in the formula . Still, the barrier E, depends somewhat on the

atomic numbers Z1 and Z2 , and changes with lattice direction .

Already the above cursory considerations indicate that at high particle

energies the probability of channelling is negligible . At low energies the

probability becomes larger, although some effects have a disturbing influenc e

(cf . e .g. (A.13)) . However, the probability of remaining in one channel is
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not of much physical importance, except for a special group of phenomena .
In the following chapters we arrive at a more complete picture of the phe-

nomena at high and low particle energies .

Electronic and nuclear stoppin g

There are two sources of energy loss by a charged particle12 ) . Electronic
stopping is due to electronic collisions, where the particle excites or eject s

atomic electrons, with loss of energy . The corresponding momentum transfer
is small because electrons are light particles . Nuclear stopping arises from
nearly elastic collisions with atoms, with transfer of both energy and mo-

mentum . Deflections of a particle are thus due to nuclear collisions, where
large forces and heavy masses are involved . This simple fact is of signi-

ficance in problems of directional effects .

One may distinguish between several regions of velocity in normal un -
correlated slowing-down of a charged particle. First, at high particle velo-
cities, electronic stopping is completely dominating, and nuclear stopping i s

-10 3 times smaller. This limiting case applies for protons, or heavier ions ,

when v > vl = ZF 3 v 0 , Zl being the atomic number of the particle, v it s
velocity, and vo = e 2 /h . A quantal perturbation treatment of the excitatio n

of the atomic system may then be applied (Bethe-Bloch treatment), th e

stopping being proportional to Zi and decreasing approximately as v to a
power between -1 and - 2 . Second, at velocities v v i , electronic stopping

can still remain dominating and is nearly proportional to velocity6) 13) .

Third, the slowing-down of heavy ions of low velocities is dominate d
by nuclear stopping . In random systems, nuclear stopping can dominat e
over the electron stopping when e < 10, where e is a dimensionless measur e

of energy, of Thomas-Fermi type 6 ) ,

a•E

	

M2

Z1Z2 e2 M1 + I1I2

In (1 .3), the atomic number of the medium is Z 2 , the atomic screening

radius is a = a0 . 0 .8853 • (Z ' 3 +4/3)-112 , and E = M1 v2 /2 is the energy o f
the particle . The parameter e is convenient in the description of nuclear

collisions .

The stopping of charged particles illustrates the necessity of distinguishin g

between electronic and nuclear collisions, and between several velocity re-
gions . In the present context the actual stopping is not of primary impor-

tance, as discussed in § 2, but it remains a significant secondary phenomenon .

(1 .3)
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§ 2. Foundations of Theor y

In order to find the proper approximation procedure for the treatmen t

of directional effects, we must distinguish between primary and secondary

phenomena . The energy loss of a particle (e .g . slowing-down by electronic

collisions) is a secondary phenomenon, since it is determined by the path ,

but does not by itself govern the path . The possible governing of the path
must be due to deflections of the particle in collisions with atoms, and thu s
a deflection is a primary phenomenon. Because of this simple fact, we can

immediately introduce four basic assumptions 5) , leading to a consistent

approximation procedure for the treatment of possible governed motion o f

particles .

First, the angles of scattering of the particle may be assumed to b e
small . Not only does this usually hold for fast heavy particles, but scatterin g

by large angles would imply that the original direction is completely lost ,

as well as correlations associated with the direction. The scattering of th e

particle is due to nuclear collisions, where it interacts with the charge dis-
tribution of an atom as a whole, the collision being nearly elastic . If the
angles of scattering in the laboratory system, T, and in the centre-of-gravit y

system, O, are small, we find for an elastic collision ,

M2 sin@ _ M2

tgØ

	

~ ~1bTi + M2 cos0

	

M1+11720, for ~< l, O<1,

	

(2 .1 )

where MI is the particle mass and M2 the mass of the atom, initially at rest .
If we are interested in the motion of the particle only, we may find the cor-
rect scattering angle, T, from the potential between particle and atom ,
calculating as if the atoms were infinitely heavy. In fact, the classical for-
mula for scattering at small angles is

1 ('

	

å
MI T = Mo0

= v
I dz -V(Vz2 + p 2 ),

	

(2 .1' )
J

where p is the impact parameter and V(R) the potential between ion an d
atom at distance R . For the present purpose, the accuracy of the Thomas -
Fermi potential between particle and atom is ample in most cases, and i t
leads to a simple comprehensive description . If the potential far away
from an atom is needed, other estimates of potentials may be useful .



10

	

Nr . 14

Second, since a collision demands that the particle comes close to the
atom, strong correlations between collisions occur if the particle moves a t

a small angle with a row of atoms ; if it passes close to one atom in the row,

it must also pass close to the neighbouring atoms in the same row . This
leads us to the concept of a string of atoms, characterized merely by th e
constant distance of separation, d, of atoms placed on a straight line . We
describe this as the perfect string . In first approximation, collisions occur
with one string at a time, string collisions being independent and uncor-

related . The physical importance of the string is emphasized by the fac t

that practically all physical processes caused by the particle, or influencin g
its path, demand that it comes close to the string . One exception is resonanc e

excitation of atomic electrons, which may take place many lattice distance s

away from the particle, if it has a high velocity . The simplicity of the string

approximation is partly due to the circumstance that the lattice structur e
does not enter, the only lattice parameter being the distance d between atom s

in the string . Strings belonging to low index directions have a small value o f
d, and are the most pronounced ones . Correlations weaker than those o f

strings are expected for crystal planes, atomic pairs etc .

Third, classical orbital pictures may be used to a large extent. They may
be applied in locating the particle in the lattice, because the wave length x ,

is small. It is less obvious that classical orbital pictures may be used i n

describing collisions with e .g. strings of atoms . In fact, since individual

collisions with atoms need quantal corrections either when the quantit y
x = 2Z1Z2 e 2 /hv is not large compared to unity, or when the impact para -

meter is large, the classical approximation might seem to be doubtful i n

several cases . However, contrary to such expectations the classical descrip-

tion of many successive collisions with atoms in a string does not becom e

invalid at high velocities . The quantal corrections are discussed below, cf .

Appendix B .
Fourth, the idealized case of a perfect lattice, and a perfect string, may

be used as a first approximation . The most important deviations are vibra-

tions of strings, i .e. thermal and zero point vibrations . Again, some of the

effects of vibrations are reduced by successive collisions with many atom s

in a string .

On the basis of the above four assumptions it is possible to construct ,

step by step, a theory of directional effects for energetic charged particles .

The discussion of correlations and small angle deflections has led to the

basic concept of a string of atoms . This concept is not to be considered a s

a fixed model, but rather as a starting-point for an approximation procedure



applicable to directional effects . In this sense there is an analogy to the

ideal gas as a starting-point for descriptions of real gases, or an ideal lattice

as a starting-point for solid state theory .

Transverse continuum potential of a strin g

In order to study the effect of correlated small angle deflections on th e

motion of a particle, we may at first introduce the continuum string ap-

proximation. The basis of the continuum approximation is to assume that

many consecutive atoms contribute to the deflection of the orbit . Having

found the particle orbits in the continuum approximation, we may nex t

ascertain whether these orbits are actually determined by many collisions ,
i .e . we can find a condition for validity of the continuum picture . A discus-

sion of the connection between continuum string and perfect string is given

in Appendix A, where the combined effect of successive classical collisions

is considered in some detail .

In the continuum approximation we introduce the average potential a t

a distance r from the string, i .e .

+ x

U(r) =
J
ä V(Vz2 -f- r 2 ) ,

where V(R) is the ion-atom potential and d the distance between atoms i n

the string. Although U(r) is determined as an average potential belongin g

to a string, it is of interest to notice that d - U'(p) determines the scattering
already in a single collision with an atom, according to (2 .1') .

If R is not very much larger than a, the potential V(R) is essentially o f

Thomas-Fermi type, and we may put

Z1 2 e2

1 Rl
V(R) =

R	
To

Here, a is the screening length of the ion-atom interaction, equal to' a =

ao . 0 .8853' (Zi"3 -f Z2/3)-'/2 and cpo(R/a) is the Fermi function belonging to
one isolated atoms ) 9 ) . It is seen from (2 .2) that, as a general rule, the varia-

tion of U with 1/r is by one power less than the variation of V with 1/1. .

When (2 .3) holds, we can write U a s

* In the following it is often implicitly understood that Z 1 «Z2 , so that a is put equal
to a„-0 .8853-Z2-1 /3 .

(2.2)

(2 .3)
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z
U(r) =

Zi~2e
e(r/a) ,

which formula is valid if the Thomas-Fermi type potential (2 .3) applies .
A comparatively accurate estimate of 4(r/a), at moderate values of r/a ,

is given in ref. 10. For the present purpose we shall use somewhat simple r
estimates . In order to get qualitative insight in the behaviour of e, i .e . of U,
we note that To 1 for R/a « 1, and according to (2 .2) and (2 .4) the
function e(r/a) must then increase logarithmically for small r, o r

1r

	

C a
e

	

2log-

	

for r <Ca ,
,a

	

r

where 21og C is a constant of integration, determined by the screening .
An approximation somewhat better than (2 .5), and applicable for all value s
of r, is given by the expression, in the following described as the standard
potential,

(2 .4)

(2 .5)

+1~ .

	

(2 .6)
r ~

ey,a
log

According to (2 .6), C (Ca/r) 2 for r > Ca . Even though (2 .6) decreases
rapidly for large r, it becomes less accurate when r » a . As a standard value

for C we shall use C = 1/3, which gives a fairly good over-all fit . The best

fit at small r/a would be obtained for a lower value of C, while large r/a
would require a slightly higher value . Besides such estimates of U(r) we
shall sometimes consider the important atomic region where R - a and

r --- a, so that V behaves as ,r R-2 , and e(r/a) becomes C

	

Ica/2r . The ac -
curacy of the above approximations is indicated in reference 10 .

The formula (2.6) corresponds to simple expressions for the density o f

electrons, O(R), and for the atomic potential 17(R) in (2 .5), i .e .

/

	

3

	

(Ca) 2
e(R)

	

4n Z2 (R 2 + (Ca) 2 )5/ 2

(1

	

1

	

~
1 7(R) = Z1Z2 e2 1-

The limitation of the standard atomic potential in (2 .6) is clearly seen i f

we attempt to compute the average of the atomic radius squared, R 2 . This

R (R2 C 2 a 2)1/2 f

(2 .6' )

(2 .6")
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quantity diverges logarithmically, according to (2 .6 ' ) . However, this i s

usually not of importance in the present calculations .

Condition for continuum approximation and critical angles *

A qualitative condition for the continuum approximation is obtained i f

we demand that the scattering in the vicinity of the minimum distance o f

approach is due to many atoms . Thus, the collision time, it, multiplied by

the velocity component parallel to the string vcos yi v, must be larg e

compared to d . The collision time is of order of rmin(l)/(v sin y), where I
is the impact parameter with the string, and rmin(1) the corresponding mini -

mum distance of approach . The condition is thu s

4t• vcosy ti rmin(l)
> d.

	

(2 .7 )

Let us apply the condition (2 .7) in its most restrictive form, so that w e
demand its fulfilment for l = 0, i .e. for rmin(0) . The latter quantity is a

function of v. For brevity we simply write rmin instead of rmin(1 - 0, y) .

The minimum distance of approach is determined b y

1
U(rmin) = 2

Mlv2 • sin2 yJ .

It is seen that rmin increases rapidly as y decreases . According to (2 .7) ,

the critical angle is obtained by inserting rmin = d • y in (2.8) .

If the energy, E M1 v2 /2, is increased at fixed y, rmin in (2.8) tends Lo
zero . We may therefore expect that at high energies (2 .5) applies, so that

the condition (2 .7) together with (2 .8) leads to

Ca

	

fi

2
. exp

yid

	

2b
>1 ,

where b = Z 1 Z2 e2 fE is the collision diameter belonging to laboratory syste m

coordinates .
For yi increasing from zero, the inequality is violated first by the rapi d

decrease of the exponential, provided Ca/yd can remain large . Condition

(2 .7) therefore remains fulfilled i f

/2b

	

' F,

	

2Z1Z2 e 2
=

Y/

	

El =	
d

	

(2 .9)

* For a detailed treatment cf . Appendix A ; in particular (A . 8), (A . 20) and (A. 21) .

(2 .8)
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provided Ca/pfd is larger than unity, i .e . approximately

a

	

d

d
, or E > E ' = 2Z1Z2 e 2 Q2 ,

	

(2.9 ')

where a/d - 20-1, so that the energy E' is several hundred times larger
than E1 . According to (1 .3), the condition (2 .9') may also be stated a s

e> r ' = 2(d/a) • M2 /(M1 +M2), and if M1 M2 this corresponds to r 2d•43a 2 .
If ' fulfils the condition (2 .9), the continuum potential (2 .4) may be

used and, accordingly, the particle cannot come closer than -a to the

centre of the string . Since E1 is normally much larger than E, in (1 .1) ,

the angle ip1 is large compared to the critical angle a, for channelling . There -
fore, in a well-defined high energy region given by (2 .9 ' ), where electroni c
stopping dominates, we may use the transverse potential (2 .4), with a
critical maximum angle aŸ'1, i .e . an effective maximum height of the trans -

verse potential « 2Z1Z2 e 2 /d . In several respects, this maximum potential i s
remarkably simple . It is independent of the total energy of the particle an d
of the atomic screening radius a . It is a function of Zee/d, the charge per

unit length of the string .
At low energies, where (2 .9') is no longer valid, we obtain an approxi-

mate expression for the critical angle by introducing (2 .6) in (2 .8) and

(2 .7) . This leads to the condition

~ Ca

	

1/ 2

< ~2

	

Ÿ~1

	

,

,d[,/ 2

and since C/J/2

	

V3 /I/2 ,,,1, the critical angle P2 applies when

(2 .10)

a
'P1

	

d
or

	

E < E', (2.10 ' )

cf . (2 .9 ' ) . An interesting consequence of (2 .10) is that the potential energy

barrier, obtained by squaring the right-hand side of (2 .10) and multiplying

by E, decreases proportionally to E 112 , instead of remaining constant as in

the high energy region . In contrast to IA in (2.9), the critical angle v2 in

(2 .10) depends on the atomic radius a and on the behaviour of the screene d

atomic potential . For this reason, (2 .10) is only a rough estimate and ca n

hardly be expected to hold accurately at very low energies . In the followin g

discussion we treat mainly the case of high energies, where (2 .9) and (2 .9 ' )
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apply. The other limit, (2 .10), will only be discussed briefly, but in a genera l

sense the following description applies also when (2 .10) holds .

Already the result (2.9) gives a qualitative idea of the behaviour of a
beam of particles moving through a lattice . If the initial angle y, is less tha n

yl , the continuum picture of the string applies, and there are separate

repulsive collisions with strings, the particle leaving the strings at the sam e

angle y as it had prior to the collision . Such particles hardly come close to

atoms, and their angle y is not changed as it would be by normal multipl e
scattering . This may be called the aligned beam of particles, the conditio n
being that y < C'yyl , where C ' turns out to be of order of 1-2 . For the aligne d
beam, the approximation of ungoverned motion, mentioned in § 1, can no t
be valid .

From the formula (2 .5) for the continuum potential it might seem as i f
there were an infinitely high barrier at r = O . However, firstly we have
seen from (2 .9) that the continuum picture is not quite applicable when

y y (cf. Appendix A for a more detailed computation of critical angles) .

Secondly, if we use a continuum picture already the thermal vibration o f

atoms would lead to a smearing of the potential near r = 0, with a maximum
Z1Z2 e 2 d-I log(C2 a 2 /o 2), where e is the amplitude of vibration, and th e

resulting maximum potential remains of Lhe order of El . From both points
of views, if p > C' p 1 the particle moves rather freely through the lattice ,
and may easily be scattered by atoms in the usual way . In most respects ,
the penetration phenomena are then as in a random system . We therefor e

denote this part of the beam as the random beam .

Classical Rutherford shadow behind one atom

A simple and illustrative phenomenon is the shadow behind a repulsiv e
scattering centre in an external, parallel beam of particles . The scattering
is assumed to be classical (cf . (B .4) and (B .5)), and we suppose that ther e
is a screen perpendicular to the beam, at a distance d behind the scatterin g

centre . This idealized experiment may be said to represent a pair of atoms ,

the scattering centre being one atom, the second atom being placed in th e
screen, so that we ask for the probability of hitting the second atom .

An example of nearly isolated atomic pairs is found e .g. for nearest
neighbours in the diamond lattice, i .e . in the <1 1 1>-direction. Such pair s
may also be regarded as incomplete strings, with successively two occupie d
and to unoccupied sites . The pair effect can occur not merely in a mon-
atomic substance like Si, but also in e .g . ZnS, where all S atoms are shielde d
by Zn atoms in one direction, and conversely in the opposite direction .
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For simplicity, we consider merely Rutherford scattering, correspondin g
to impact parameters p a . Let the scattering centre be placed on the
z-axis, the beam being parallel to this axis . A particle with impact para -
meter p hits the screen at a distance r from the z-axis, and for small angle s
of deflection r is given by

b
r = p - I--d,

p
(2.11 )

where b = Z1Z2 e 2 /E . The distance r has a minimum, rmin = 2Vbd, for

p = Vbd. The shadow region therefore has a parabolic shape, as a functio n

of the distance d, since its edge is at r = rmin oc
dl/ 2

In order to hit the centre of the screen, we must tilt the beam by an

angle ymin = 2V b/d
= yIV2 , where y1 is given by (2.9). The intensity

distribution on the screen is easily obtained from (2 .11) . Let f(r) be the

intensity on the screen, the external beam containing one particle per unit
area. Then, for large r, f(r) tends to unity, whereas f(r) = 0 for r < rmin '
The particles aiming at r < rmin are pushed just outside rmin, where f(r )
has a peak. In fact,

r < I' min

f(r) = 2

	

l1/2

	

2

	

-1/2 -

Tm2n 7

	

\1

_ rmin)
r > rmin•

(2 .12 )

The sharp edge at r = rmin is blurred when quantal corrections are taken

into account, the blurring remaining small only when x = 2Z1Z2 vo/v is

large compared to unity (cf. (2.29)) .
The number of particles missing on the screen inside r min is TLrmin

The number missing inside r is 7Sr 2 - f;.m ,,,2nrdr f(r) = xr2(1 - (1 - ra in/r 2 ) 1/2)

For large r this implies that only half the missing number is compensate d

in Rutherford scattering with p « d . It is easy to show that, for screene d

atomic fields, the full compensation occurs for r larger than a . In fact, when

(2 .6 ') holds, a 75 per cent compensation is obtained for r = Ca . Thus, for

fast particles obeying eq . (2 .9 ') the compensation is divided . in two equal

parts, one occurring ar r 2(bd)112 , or y y1 V2, and the other at r - Ca ,
or p

	

Ca/d .
The critical angle ymin for a pair of atoms is apparently quite similar

to that of a perfect string. Still, there are differences of major importance .
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If we tilt by an angle of e .g . ymin/2, the nearest approach to the centre of

the screen will be rminl2 = l/bd, which distance is much smaller than th e

corresponding distance of approach to a perfect string, -a, if (2 .9 ') is

valid . In fact, both for strings and atomic pairs we must assume validit y

of (2 .9 ' ), in order that Rutherford scattering remains responsible for th e

phenomenon . The atomic pair is therefore much less effective than the strin g

in pushing particles away from the atom . Another difference between atomic

pairs and strings is that the atomic pair is less classical because there i s

only one repulsive collision instead of many . However, the most important
difference between atomic pairs and strings is the small multiple . scattering

in the latter case, as will be discussed below .

Atomic planes

Another case of interest is that of a plane of atoms . Consider a particle

moving not in any major string direction, but still nearly parallel to a plan e

in a lattice . There must then be some correlation between collisions with

atoms, although in a weaker and less well-defined manner than for a string .
Accordingly, one may expect effects of atomic planes in penetration . Like
in the case of atomic pairs it is of interest to find the comparative merit s

of planes and strings .

A plane can give rise to governed motion of a particle, if the orbit of th e

particle, as derived from the continuum potential, involves many collision s
with atoms . We therefore evaluate first of all the potential of a continuum

plane, as obtained by smearing the atoms evenly in the plane* . As a function

of the numerical value, y, of the distance from the plane, the continuum
potential is

Y(y) = iV dpJ27trdr • V(Vy2 + r 2 ),

	

(2 .13 )

0

where N . dp represents the average number of atoms per unit area of th e

plane, dp being the distance between planes . The ion-atom potential V(R)
is given by (2 .3) . The potential Y(y) is similar to the string potential (2 .2) ,

but lower by a factor --- 2a/d, when r 2a . Further, in the plane-i.e .

for y = 0-the potential (2 .13) has a finite value,

Y(O) = N • dp • ~27rRdRV(R) _ Z1Z2 e 2 Ndp R,

	

(2 .14)
0

* The perfect plane has no preferred direction . The atoms may be assumed to be distribute d
as a two-dimensional liquid or, in simple estimates, random gas .

Mat .Fys .Medd .Dan .vid.Selsk . 34, no . 11.
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where R is the average radius of the `atom ' , = ZS-' J 47re(R)
o

R3 dR . The

LENZ - JENSEN models) leads to R = 2 .68 a, whereas (2 .6') implies R = 2Ca .
By means of the standard atomic potential (2 .6 ' ) a simple estimate is

obtained for the potential Y(y)

Y(y) = 2atZ1Z2 e2 •

	

[(y2 + C2 a 2 ) 1/2 -- y],

	

(2 .15 )

which expression may be compared with the corresponding one for a
string, (2 .6) .

The criterion for use of continuum potential for a plane is more involved tha n
for a string. Let the particle, when far away from the plane, have an angle B wit h
it, i .e . transverse energy El = E • 0 2 . Even though many atonis contribute to th e
deflection of a particle, there remains an uncertainty in the nearest approach y min
to the plane . In contrast to the case of a string, the particle will usually not b e
deflected by atoms directly below its orbit, but it may happen that there is an ato m
directly below the orbit at minimum approach. Let us therefore demand that i n
this eventuality the deflection in the single collision is smaller than 95 . According
to (2.15), i .e . for the standard atomic potential, ymin is given by

B 2 = 2nb • N . d7, • [ (y min + C2a2)1/2 - ymin],

	

(2 .16 )

and we demand

6>

	

d•U(ymin) = b_- 1

	

1

2E

	

ymin 1
H-

y min
C 2 a 2

where the expression on the right-hand side is derived from the standard atomi c
potential (2 .6 ' ) . When combining (2 .16) and (2 .17) we find that they contain two
dimensionless parameters, = ymin/Ca and a = El,/E, where

Z 1 Z 2 e 2 2
Ep

	

2acC3a3N . d p ~ Z1Z2
• 30 eV .

The condition (2 .17) is then equivalent t o

5 2 (1 + c 2 ) 2 [(-2 + 1) 1 / 2

If we demand that ymin a, this leads to E > 3Er . In point of fact, the inequality
(2 .19) shows, on the one hand, that the continuum potential hardly ever holds a t
distances small compared to a, even though the energy E is very large. On the
other hand, even for quite low energies the potential applies down to distance s
comparable with the atomic radius, R 2Ca. In view of the comparatively slow
variation of Y(y) with y, we may then normally assume that the potential barrie r
of a plane is not higher than

(2 .17)

(2 .18 )

a .

	

(2 .19)
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Yeti = Y(0)/2,

	

(2 .20 )

and for quite low values of E/Ev the barrier becomes somewhat lower . So far, we
have discussed merely one of the conditions for a continuum description of planes .
We supplement this insufficient discussion by the description of a plane as a string
of strings .

Plane described as string of string s

The limits of applicability of a continuum description are less obviou s

for planes than for strings . Some aspects of the properties of planes are

illustrated by the following idealized picture . A plane of atoms can b e

treated as a string of strings, if the angles with a major string are not very

large compared to yi. This case is of particular interest also for studies o f
the way in which string effects and plane effects join .

Suppose that the angle yp with a set of parallel major strings is of orde r
of the characteristic angle y, l, so that for a wide region of impact parameters ,
1, with strings, the strings can be considered as continuum strings . The de-

flection can then be described in terms of the two-dimensional motion in

the plane perpendicular to the strings, i .e. the transverse motion . Strings

are arranged in a regular lattice, so that a plane consists of a row of strings ,
i .e. it can be conceived as a string of continuum strings . The transverse
motion has a velocity vi = v . y, and the deflection by a string is determine d
by U(r) . If the angle of deflection Tl in the transverse motion is small, it i s
obtained easily from the integrated force, and the result can be expresse d
in terms of the previously calculated plane potential Y in (2 .13) ,

ds • Y'(l )
= - 2E

y
2 (2 .21)

where ds is the distance between strings . It is seen from (2 .13) that the
product ds • Y depends on lattice constants only through c1s • N• dd, = d -1 ,

where d is the atomic spacing in the strings .

We may at first discuss the shadow behind one string, in analogy to th e
way in which we treated the Rutherford shadow behind an atom. This

enables us to study both the case of a pair of strings and the validity of
the continuum plane approximation . Consider a particle with transvers e
motion in the positive x-direction, and impact parameter l with a string

placed in the origin, (x,y) _ (0,0) . According to (2 .21), the particle hits
the line x = ds at a distance y from the x-axis, where

2*
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~

	

1 +
ds

Y
( 1 )

~

	

2E , v2
(2 .22 )

We may write y = 0 • d,, and find from (2 .22) the minimum angle Omirs a t
which the centre of a string may be hit, due Lo the shadow from the pre-
vious string,

3( ac vi
C2a2

1
Ømin - 2 1 2 y~ 2 ds )

9

	

2 7rdsv

~~~2Ca .

if (2 .23)

If the inequality in (2 .23) is not fulfilled, estimates of Ømin are not quite
well-defined, since for small impact parameters 1 the continuum string i s
no longer applicable . If the inequality is fulfilled, the angle yØ ,nin remains
smaller than that belonging to the continuum plane potential . In fact, the
effective potential energy corresponding to Ømin is

9

	

v 2
Y,, = E • v2omin = Y(0)	 1/3

7 ~1

111 32	 	 (~ 24 )
4 (4mc)

(v 2

Thus, the effect of a plane disappears gradually in the neighbourhood of a
string direction. This means that a string can stand out distinctly within a
plane. However, for strings of high index number, the barrier belonging t o
(2 .9) or (2 .10) may be less than the barrier of the plane, and such strings
can be engulfed by the planar effect .

Comparison of transverse potential s

In three cases, i .e. for channels, strings and planes, we have estimated

continuum potentials, and we have also treated the case of atomic pairs .
At high particle energies, cf . (2 .9 ' ), the potential harriers for major strings
(and atomic pairs) are of order of 4Z1Z2 e2 /d Z 1 Z2 . 20 eV, since d 5ao .
The harriers of major planes are, cf . (2.20), 5Z1Z2 e 2Ndpa 5•Z143 eV,
and thus lower than those of strings by a factor of - 4Z 3 , such that critical
angles are less by 2Z2 16 . The barrier for proper channelling, perhaps
- 5 eV for protons, is considerably lower than the two others . When com-
paring effects of strings and planes, however, one must first of all bear i n
mind that the string potential decreases more rapidly with distance than doe s
the plane potential ; the two potentials become equal at distances of order
of d/2 . The rapid decrease of the string potential makes penetration to th e
centre of string atoms more sensitive to e .g . temperature vibrations of atoms,
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as will be discussed below . Moreover, there is a difference between string s
and planes, because in the former case the particle motion is two-dimensional ,
while in the latter it is one-dimensional . However, strings and planes have
in common the division of a particle beam into an aligned part which doe s
not penetrate the potential barriers, and a random part which does . The
aligned beam remains at distances larger than a in both cases . In the two
latter respects, atomic pairs differ from strings and planes .

Quantal shadow behind an atom

As a counterpart to the classical shadow behind an atom, we may finall y
consider the quantum mechanical shadow in the limit where quantal per-
turbation theory applies for single collisions . This will also indicate a char-
acteristic feature of string effects in a wave picture . The essential point i n
the following calculation is that we are not concerned with the standar d
case of scattering theory, where the scattered wave is recorded at infinity .

As before, we consider a scattering centre located at the origin, wit h

potential V(R), where R = (x, y, z) . At a distance d behind the centre is

placed a screen, i .e . with coordinates R '

	

(x ' , y ' , z ' = d) . The incoming
particle has a wave function exp(ikz), where k = M1 v/h . Scattering angle s
are assumed to be small . The range, a, of the potential is small compare d
to the atomic spacing d. In first order perturbation theory, the wave functio n

v(R') becomes

zV(R' )

Since all coordinates in the x and y directions are small compared to d,
we find by series development of !R -RI, and performing the integratio n
over z,

1l'(R') = e n", ~l -
2~~2

f dx f dyU(r)e2d
{(x x )e +(s -y')~ }

],

	

(2 .26)

where U(r) is given by (2 .2) and (2 .4) .

At this stage it is essential to notice that the exponential in the integran d
is a rapidly oscillating function . In fact, since U contains the screening
length a, the exponential varies rapidly i f

a2

-> -~

Mef e 1s[ ± k m
2~cR

	

(2 .227h.2
~R - R' I

A - d
» 1 . (2.27)
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For Z2 » Zi and with d

	

5ao, the inequality (2 .27) is equivalent to

MI u 1

m uo 5Z2/3
2

» 1, (2.27 ')

and therefore the condition (2 .27) is easily fulfilled for heavy particles .

Another way of expressing (2 .27 ' ) is to say that the momentum of the par-
ticle, Dl1u, should be very large compared to the average momentum, ma 0 Z2 13 ,
of an electron in the Thomas-Fermi atom . We conclude that even in the
quantal perturbation treatment there is a considerable localization of path

in analogy to the classical treatment . This is because the distance d between
atoms is not large, in the sense stated by (2 .27) .

The results obtained in (2 .26) and (2 .27) show that, in a general quantal

treatment, the contributions to the wave function at a certain point in spac e
are due to scattering by atomic fields within a narrow cone opposite to th e

direction of motion . The disregard of all atomic fields except those withi n

the cone (or e .g . the string), is equivalent to the basic assumptions on page 9ff .

We introduce (2 .4) in (2 .26),

dxd
He2

[(z-e)'+(y-y'I'l
I (R')1 2

= 1 4~~~ add
e

	

A d

	

1 2 ,

	

(2 .28)

where r2 = x 2 + y2 . Suppose that x ' = y ' = 0, and apply the estimate (2 .6)

for $(r/a) . Then, for low values of and when (2 .27) holds ,

Iv(o , d)1 2
2 (2

	

(a2C2y )1 2
1-

	

+ flog	
2Ad

xn
-1

	

2,

	

(2 .29)

where y is Elder's constant. The right-hand side is the limit for small x of a

familiar result belonging to a pure Coulomb field, Iy(0, d)1 2 = 7tx[exp(zx) -1 ] -1 .

For attractive fields we may here regard x as a negative quantity, and ob -
tain an increase in intensity behind the scattering centre .

§ 3. Statistical Treatment and Energy Los s

The previous chapter was concerned with basic problems and with th e

accessibility of different regions in a crystal lattice . In order to study in

more detail the total behaviour of a beam of particles in a crystal lattice ,

we may, as a first approximation, apply the simple continuum picture o f

strings (and planes) .



Nr . 14

	

2 3

The continuum picture implies conservation of the velocity componen t
parallel to the string. The motion may therefore be studied completely in
terms of its projection on a plane perpendicular to the string . In this trans -
verse motion, the velocity far from a string is v i = vsiny uy, and the
corresponding transverse energy is El = E sin2 y~ ^ E • y2 . The potential is
U(r), and we shall use several of the approximate formulae for U(r) in-
troduced in § 2 .

Available phase space in transverse motion

The use of statistical mechanical estimates is a powerful alternative t o
detailed studies of separate successive collisions with strings . We shall at
first consider statistical estimates of particularly simple type . We use the
continuum picture, and we need consider only the transverse motion ; all
angles p can be assumed to be small. For fixed values of velocity u an d
transverse energy El , we then ask for the two-dimensional probability
distribution in a total potential Utot = EU(i -ri), where U is given by (2 .4),
and ti = (xi, yi) is the position of the i'th string of atoms . Evidently, w e

Fig . 1 . Transverse plane of strings for simplest cubic lattice . The square indicates unit cell, and
the dashed circle with radius ro is approximate unit cell. Shaded area outside circles with radius
ro, io illustrates accessible portion of the plane for a given transverse energy . There is unifor m

probability distribution in shaded area according to two-dimensional continuum picture .
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may usually confine the treatment to one unit cell in the two-dimensional
r-plane, containing one string . For most purposes, we can assume that th e

unit cell is a circle around the string, with radius ro , such that its area i s
zrô = (N . d)-1 . We often disregard the potential due to neighbouring strings ,
so that the potential becomes simply Utot U(r) ; this approximation ap-

plies if the transverse energy is not exceedingly low .
The beam of particles has some initial probability distribution, e .g .

corresponding to a given direction in p1-space . As a function of time t, o r

depth of penetration z = vt, the distribution will be P(pl,i, t) . There wil l

be a trend towards statistical equilibrium in the transverse phase space .
Let us consider the equilibrium distribution within a transverse energy shell .

We introduce the available momentum space as a function of , when th e
transverse energy is between E1 and El + dE1 . Since the volume in two -
dimensional momentum space is proportional to dE1 , the equilibrium pro-

bability distribution becomes

E1 > utot(r ) ,

E1 < utot( r ) ,

where the constant A is the accessible area in a unit cell with total area
A o = N-1 d -1 . When the accessible portion of the unit cell is large, or A Ao ,

we can simply disregard the overlapping of string potentials . This leads t o
Po = 1/A 1/Ao, and Utot(1) = U(r), where r is the distance from a string .

One-dimensional distribution

It is interesting to notice the extreme simplicity of the probability distributio n
in two-dimensional space, i .e . (3 .1), as compared to both one- and three-dimensiona l
spaces . Thus, the one-dimensional equilibrium on an energy shell, correspondin g
to continuum planes, becomes

C

	

E

	

\ 1/z
	 1	 	 E >Y L

Po(E1 ,g) = d7, E1- Y(I)

	

(3 .2 )

0,

	

E1 < Y(g) ,

where d p is the distance between planes and C a normalization constant . In the
one-dimensional motion the particles stay with maximum probability at the edge s
of forbidden regions, where the velocity is lowest . The formula (3 .2) has severa l
consequences different from those of (3 .1) . Thus, when E1 is large, higher than Y max '
all values of y are allowed, but the particle still feels the potential-in contrast t o
(3 .1)-and stays with increased probability near the planes, where Y is highest .
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Trend towards equilibrium on transverse energy shell

Having studied the equilibrium distribution on an energy shell in th e
transverse motion, we may next estimate how quickly the equilibriu m

distribution is attained . A measure of this is the change of average trans -

verse momentum, <pl> . Suppose that strings can be considered a good ap-

proximation . It is easily shown tha t

<Pl>

	

<Plio exp (- z f A1 ) ,

where <>o denotes initial averages for z = 0, and where the mean fre e

path length Al of the particle i s

1

	

r
- = N. d • sin y

J
dl (1 - cos 99(1)),

	

(3 .4)

1

cp(l) being the scattering angle of the transverse motion as a function o f

impact parameter with the string. It is to be noted that Al • sinyp is the so-
called transport mean free path of the transverse motion, i .e. on the aver-

age the particle moves 21 . sing, in the transverse plane, in the direction o f

<P1io .

If we assume that the minimum distance of approach exceeds -a, and
the approximation = raf(2r) is used for the string potential in (2 .4), we

get by a simple computation a direct estimate of A 1 ,

(3 .3)

-x

1 - zc2
•N•d•a i-

A l

	

4

	

~
for

,
r,

na
(3 .5)

2r .

Therefore, when y, < yl the mean free path
21 is less than 1 /(Nday l), the

latter quantity being of order of 1000 atomic layers or less . After an energ y
loss of perhaps 1-10 keV, a proton attains equalization of distribution withi n
the transverse energy shell.

The results (3 .4) and (3 .5) are based on random collisions for the trans -
verse motion in the two-dimensional lattice of strings . However, as discusse d
in § 2, p . 19, this lattice contains strings of strings, or planes . When the di -
rection of Pl is not far from a plane direction, there is again a reduction o f

scattering, but now in the two-dimensional motion . In this limit, continuum

planes are applicable and the primary equalization of the distribution is i n
the one-dimensional motion, leading to the equilibrium described by (3 .2) .
The mean free path for the one-dimensional equalization must be of order
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of 71.2,

	

d27 Jcp, where cp is the angle between v and the plane . At this stage
we need not treat further such questions of more detailed kind .

The quick scattering in azimuthal angle indicates that an assumptio n
of statistical equilibrium on a transverse energy shell is often a fair approxi-
mation. Moreover, suppose that experimental conditions are such that ini-

tially an average is actually performed around a string direction, i .e . with

respect to azimuthal angle . We then start from equalization on the trans-
verse energy shell, which distribution has stable symmetry in the continuu m
picture .

Basic statistical averages over transverse motio n

These results justify, so far, the use of (3 .1) . As a consequence of (3 .1) ,

we can for any function f, depending on p1 and i, obtain first its average

on an energy shell

f(E1 ) = Jdxjdg fCPl,i),

	

(3 .6 )

or, equivalently, for not too low El,

ro
1

f(E1) =

	

2

	

2

	

2mrdr f(p1,r),

	

(3 .6' )
n(ro - retin)

rm,n

where f(p1 ,r) is the average of f(p1 ,r) over angles, and retin is determined

by E1 through the relation U(rmin) = El. The formula (3 .6 ') is utilized re-
peatedly in the following. If ret in « rô, the normalization factor is (nrô) -1 =

N• d, and the upper limit in the integration may often be replaced by co .

When the transverse energy is so low that the motion is confined t o
small unconnected areas (proper channelling), the integration in (3 .6) can

be approximately within an ellipse or circle around minimum of potential ,

and with area A.
Second, we can determine the final average f of f(E1 ) over the probability

distribution in ip, i .e .

<f> _ Jg(E1)f(E1)dE1,

	

(3 .7 )

where g(E 1) is the probability density per unit transverse energy .

The function g(E1) will change with penetration depth, because of mul-

tiple scattering, i .e. lack of conservation of transverse energy. Multipl e

scattering is treated in § 4 . Before doing that, we find further properties be-
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longing to particles with a given transverse energy . In fact, we have so far

assumed that the total energy of a particle is conserved . We must therefor e

estimate the nuclear and electronic stopping for a particle of given trans -

verse energy .

Statistical estimate of nuclear stoppin g

When the particle passes one atom at a distance r, and has a small

angle of deflection cp, one obtains directly in terms of U(r) defined in (2 .2) ,

cf . also (2 .1') ,

d • U '(r)
(3 .8)_

	

-
2 E

and therefore the energy transfer in this elastic collision i s

d 2
(3 .9)Tn =

2M2v2 [U
'(I)] 2 .

For aligned particles with a given value of El , we may average (3 .9)

over the available part of the unit cell according to (3 .6), and obtain

d 2

Tn(El)
2M2v2

A fdxf dy
j

	

r~~) ,

A

where are the transverse coordinates of strings. Since we normally d o
not consider extremely low transverse energies, we may introduce (3 .6 ' )
in (3 .10), assuming rmin «r0,

7rN• d 3

Tn(E1 ) = 17 02 f rdrU'2(r),

	

(3 .10')
2

where the usual upper limit of the integration, ro, is more correctly replaced
by oa . The average energy loss in (3 .10) and (3 .10 ' ) is equal to Tn(E1) _

N • d • Sn(E1 ), where Sn(E1 ) is the stopping cross section for a given value o f
El . The integration in (3 .10 ') may be performed explicitly and the result
expressed in terms of El , if the standard atomic potential (2 .6) is used .

The main contribution to the integral in (3 .10 ' ) is in the vicinity of th e
lower limit, rmin . If U(r) varies as r'' when r ti rmin , we get directly from
(3 .10') the nuclear stopping as a function of transverse energy

(3 .10 )
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2El Ml
S (F ) = ~' v d 2 (3 .11 )n

	

1

	

4

	

E M2

because U(rmin ) = El . Since v is nearly equal to 1 for a < rmin < 2a,
increasing slowly to values - 2 for rmin > 2a, the value of v in (3 .11) is
not very sensitive to the magnitude of El', and (3 .11) gives a useful first
estimate of the nuclear stopping . At the same time, the distribution in mag -
nitude of the individual energy losses is also implicitly given by (3 .10 ') .
The stopping cross section (3 .11) may be compared with the normal nuclear

stopping in a random gas, cf . (4 .2) . When comparing with (4 .2), (3 .11) is
found to imply that Ln(El) (v/2) • (El/Eyl) 2 , which is much smaller than
for normal nuclear stopping at high energies, where Ln = log (1 .29 s) - 5-10 ;

it should be noted that (3 .11) is applicable only for El E . In any case ,
for swift particles the nuclear stopping cross section S . is quite small com-
pared to electronic stopping Se .

Nuclear energy loss in single collision with strin g

The above application of phase space in transverse motion resulted in statistica l
estimates, (3 .10) and (3 .11), of average nuclear stopping . However, it is also o f
interest to find the energy loss in an individual encounter between ion and string ,
characterized by the energy E of the particle, and its initial angle ,p and impact
parameter 1 with the string .

The energy loss to one atom, at a distance r, is given by (3 .9) . In a string col-
lision r is a certain function of time, r = r(t) . Integrating (3.9) over the orbit, w e
thus obtain the energy loss to the string, rn(1,0 ,

x,, (1,0 =	
d

	

f U'2(r(t))dt .

	

(3 .12 )
2 M2 v _

The integration in (3 .12), containing the radial motion r(t) as a function of time,
is usually not simple, but may be readily performed if the potential U(r) is pro-
portional to r- 1 or to r- 2 . It can then also be verified that an integration of (3 .12)
over all impact parameters results in the stopping cross section (3 .10 ' ) . In the pre -
sent context we omit more detailed evaluations of type of (3 .12), one reason bein g
that except at exceedingly low energies the nuclear energy loss is negligible com-
pared to electronic energy loss .

Electronic stoppin g

Even though we made only cursory estimates of nuclear stopping, tha t

case can be treated in a comprehensive manner, and the accuracy may b e

easily improved . The electronic stopping is less simple because we mus t
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distinguish between a number of different cases . Still, one qualitative ex-

pectation can be stated generally ; at a fixed particle energy E, but decreasing

El, the electronic stopping is expected to decrease more slowly than doe s
nuclear stopping. The ratio between electronic stopping and nuclear

stopping should therefore be higher in the aligned beam than in the rando m
beam.

We study primarily the important case of electronic stopping at thos e

high particle velocities-and low charge numbers Zl where the Bethe-
Bloch formula applies . This formula may be written a s

dE

	

4 7tZ 2 e4

dR =
Se N Z2 = mU2 Z2 •N•Le ,

	

(3 .13 )

where N is the number of atoms per unit volume, and Se the stopping cros s
section per electron . The factor L e is approximately given by

2mv 2
L e log	 (3 .14 )

provided the velocity is so high that x = v 2/(voZ2 ) » 1, and13) 14) vivo > 4/3 .

The quantity I is the average excitation potential, I

	

Io • Z2 , and Io

	

10 eV .
When (3 .14) applies, one may divide collisions with electrons in two

groups, the distant resonance collisions and the close collisions with larg e
momentum transfers to electrons (cf . Bona 12) ) . Since the phenomena are
largely of quantum mechanical type, one may not apply classical orbita l
pictures in every detail for collisions between an electron and the particle .
The precise distinction between close and distant collisions is in terns of ,

respectively, large and small momentum transfers . However, one may
distinguish between the particle being outside the electronic orbit, where
only resonance collisions occur, and inside the orbit, where close collision s
occur with a probability distribution given essentially by the Rutherfor d
scattering law. In a qualitative way, it is well-known from the derivatio n
of the Bethe formula' s ) 15 ), that for very fast particles the stopping is asymp-
totically contributed equally by close and distant collisions . This turns ou t
to hold also in a precise manner (equipartition rule' s)), at not too low par-
ticle velocities . A detailed discussion of the dependence of energy loss o n
the space track of a particle of arbitrary velocity requires a generalizatio n
of the usual description and will be published separately .
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From these considerations it seems proper, for large x, to replace (3 .13) by

dE 4-

	

±
dR

(R) = Se • [(1 - a)NZ2 + a • o(R)],

	

(3.15)

where e(R) is the density of electrons at the point in space through whic h
the particle moves, and where a. ,:„ 1/2, a being the closer to 1/2 the higher
the value of x v2 /(vôZ2 ) . This result means directly that the stopping cross
section for a swift particle penetrating a thin foil can at most be reduce d
by a factor

	

1/2 . As we shall see, it can also increase by a factor slightly
above unity, cf. § 5 .

The increase per path length in square fluctuation of energy loss, d(4 E) 2 /dR ,
in the case where (3 .13) applies, is proportional to Z2N. The fluctuation

contribution is due to close collisions only . In the present case, this con-

tribution must be obtained by replacing the average electron density Z 2N
by eÇ ) . This straggling contribution, as a function of 1, becomes (cf. Boüi112 ) )

(d(AE) 2 )

dR lle

= 47(4_ e 4 Q(R) . (3.16)

A somewhat similar formula 13) holds at velocities v < voZ21/2 . According t o
(3.16), the straggling depends more strongly on P than does the stopping
cross section (3 .15) .

We consider statistical equilibrium at a certain transverse energy El ,
and introduce an effective charge number Z2(El ) such that with U(rmin) - El

the number of electrons per atom outside the distance rmin from the string

is Z2(E1) . Averaging (3.15) by means of (3 .6 '), the electronic stopping

cross section is found to be
r

Se(E.1) = Se • I 1 - a + 4
L

	

Z2

l(E)
J ,

where Se is given by (3 .13) . The ratio Z2(El)/Z2 is according to (3 .22) an d

(3 .6 ' ),

G2 (El)

	

d- rmin.U'(rmin)

	

(3.18)
Z2

	

2Z1Z2 e 2

Thus, Z2(E l)/Z2 is approximately equal to vEl/(Eyl), if U(r) « r ' near

rmin , cf. also (3 .11) . When the atomic model (2 .6) is introduced in (3 .18) ,
the following simple formula is obtained

(3.17)
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[1_

	

2E l
Se (El ) = Se

	

exp	 	 1
1

(3 .19 )
E ' yi l

The formula (3 .19) shows that the dip in electronic stopping is somewha t

narrower in angle y than are string effects where penetration to the centr e

of strings is necessary. The direct significance of the characteristic angle yPl

is also clearly indicated . It is noteworthy that the atomic screening radius a

does not enter, in spile of (3.19) being based on (2 .6), where the screening

radius is an important parameter . The formula (3 .19) contains the usual

error belonging to continuum potentials, i .e . the stopping does not rise abov e
the normal stopping Se when El ,,:, Eye , and compensation of the dip (cf .

§ 5) is not obtained . The error is not serious, however, because the ris e

above normal stopping is rather small .

The average straggling energy loss is immediately found from (3 .16)

and (3 .6 ' ),

(d(4E)2 )

l dR e

= 4~Zie4N Z2(El),

	

(3 .20)

where ZZ'(E1) may be replaced by the estimates in (3 .18) or (3 .19) .

Electronic energy loss in single collision with strin g

The electronic energy loss, Te(l, yi), in a single collision with a string ,
at impact parameter I and initial angle y, can also be derived on the basi s
of (3 .13) and (3 .15) . But we disregard the resonance stopping, i .e . the first

term in (3.15), since it takes place independently of a string collision . The

energy loss in a single collision with an atom at impact parameter r is then ,
from the second term in (3 .15),

+ .0

Te(r ) = 2e ' d ' es(r) =
2e

f dz ' P(Vz2 +r2),

	

(3 .21 )

where e(R) is the electron density in an atom, at a distance R from the nu-

cleus, and where the electron density O s(r) of the continuum string is

1

	

1 d
es(r)

	

4acZl e2 r dr
(1.U

(
r
))

. (3 .22)
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As an example, we choose again the approximation U = Z1 Z 2 e 2na/(2dr), and
obtain

Z e a 1
es( r) = 8d r3

	

(3 .23 )

We next integrate (3 .21) over the encounters with atoms along a string, using (3 .23 )
and the hyperbolic orbit of an r- 1-potential . The electronic energy loss in one collision
with a string becomes, at a transverse energy

/

El = E pp and impact parameter 1 ,

Te( 1 ,~1) =
S e d- 2

a 11 1 I 1 - 21

	

b1arctg 1,

	

(3 .24 )
9y 2

where bl is defined by U(bl) = El , i .e . bl = nay,7/(47, 2 ) . If we integrate (3 .24) over
all 1, we obtain the formula (3.18), with v = 1 .

In order to estimate the straggling in energy loss, we can compare the maximu m
energy loss in a string collision, i .e. Te(0,y) in (3 .24), with the usual maximum energ y
transfer to an electron, 2mv 2 . The ratio -ce/2mv2 can be large compared to unity .
If in (3.13) we introduce L ", 1 .5 • x1/2 = 1 .5 - (v 2 /4Z2) 1/ 2, which formula applie s
approximately when x is of order of 1 13 ), (3 .24) leads to

t f; < ie(O,1p) N
cå d I1/2 (m11

)
1/2Z i f 2 - 70eV,

	

(3 .25 )

which would be - 3keV for protons. Since this is an upper limit to -re , the energy
loss is normally divided into bits much smaller than (3 .25), so that the stragglin g
is small .

§ 4 . Scattering of Aligned and Random Beams

We have seen that a beam of fast particles, having some probabilit y
distribution in direction, can be divided roughly in two parts . For angles
less than vl (or p2 , at low energies) we are concerned with the aligned par t
of the beam, while angles large compared to vl constitute the random part

of the beam. The part between ,ti v l and -twice yh is a transition region .

In most respects, the two parts have a quite different behaviour . Thus, th e
aligned part was found to have a smaller stopping cross section S(E1) than

has the random part . Moreover, in first approximation the two parts of th e

beam appear not to communicate at all . Consider an ion in the random part
of the beam . It can easily collide with atoms and be scattered to other di -

rections within the random beam. If it were to be scattered into the aligne d

beam, a comparatively close collision is required-i .e . impact parameter s
much smaller than a . However, when the ion subsequently emerges from

essentially the centre of the string, it cannot easily become aligned, sinc e

ions in the aligned beam do not come closer to the string than - a . Scattering
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from random beam to aligned beam therefore seems prohibited . Conversely,

an ion in the aligned beam will in the continuum approximation keep a

constant far away from strings, i .e . a constant transverse energy E1 , chang-

ing merely its azimuthal angle in a more or less random manner . This

indicates the difficulty of being scattered into the random beam .

It is therefore important to discuss those phenomena which may b e

responsible for transitions between aligned and random beam and for an -

gular diffusion within the beams, i .e. lack of conservation of transvers e

energy. In the discussion we may distinguish between three groups of phe-
nomena responsible for transitions between aligned and random beams .

The first group concerns deviations from the picture of parallel conti-

nuum strings, with a potential U(r) or Utot(r), cf. (3.1). Deviations can be

due to thermal vibrations, including zero-point vibrations of atoms, whic h

implies that the force on the particle fluctuates ; the effect of fluctuation o f
atomic positions will be studied in some detail . Deviations must also occur

when there are defects and impurities in the lattice . Defects and impuritie s

lead to important scattering effects, but are of variable size and can be quit e

small in pure and perfect crystals . A special kind of deviation arises from
the periodicity of a perfect string, which gives fluctuations of the path as com-
pared to the motion in a continuum potential U(r) . The periodicity of perfec t

strings normally gives rise to only a small scattering effect (cf . Appendix A) .

The second kind of scattering is due to deviations from classical motio n
in a conservative force field . It is necessary to estimate the magnitude of

quantum mechanical corrections to classical mechanical motion (cf. Ap-

pendix B) . Moreover, a single collision between an ion and an atom i s
quasi-elastic, so that the force field is not strictly conservative . In first ap-

proximation, the deviations from elastic collisions are included in electroni c

stopping and the damping effect, cf . below .

The above two groups of phenomena lead to an average increase of E1 .

A third effect may be singled out, especially because it tends to reduce El .

Suppose that electronic stopping is dominating, and that the motion is in a

continuum potential . Now, if the slowing-down force is directed against the

motion and the energy loss is 6E, the corresponding average change in El

turns out to be 6E1 ^_' - ß åE . EJE, where ß - 0 .5 - 1 . Although small, thi s

damping effect can in some cases compete even with multiple scattering . We
may also compare the damping with the change of transverse potential

barrier . At high energies E, the transverse barrier is constant, while at low

energies it may decrease as E1J2 during slowing-down, cf . (2 .10') . The damping
by itself thus exceeds the decrease of the barrier .

Mat .Pys .Medd.Dan.vid .Selsk . 34, no . 14 .
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Multiple scattering

When discussing the changes in y, or El , along the particle paths, it i s
useful to consider at first the normal case of multiple scattering in a rando m
system. Let y x and ypy be the angles with the z-axis of the projection of the
direction of motion on the x -z and y -z planes, respectively, so that ÿ~ _
(yJx , yy) and yi = (11i-1-4y-12 . The average square fluctuation in angle i s
then 92 = <(<>)2 > . We study the change of S22 as a function of pene-
tration depth . It is well known (cf . BoHR 12)) that the increase in average
square fluctuation in angle, due to nuclear collisions, is approximately give n
by

SS22 , ., 11I2 (åE)n = (bE )e Z2 n~ Ln

	

4 .1 )(

	

)n 1b71 E

	

E

	

1111 Le

	

(

where 6 )

(dE) _ 47z 71Z2 4

dR n

	

M2U2
N

Ln'
L.

	

log (1 .29 s),

	

(4 .2 )

the reduced energy s being given by (1 .3). The formulae (4.2) and (4.1)
apply for s large compared to unity . When s 103, it is seen that Ln - 5 - 10 ,

so that Ln is not sensitive to the value of s .

There is a similar increase in average square fluctuation in angle, due t o
electronic collisions, and derived from Rutherford scattering in close col -
lisions between particle and atomic electrons ,

(852 2 ) e =
rn

	

S . C(R) • åR .
21lIlE

In a random system, where the density of electrons e(R) is replaced by its
average, NZ2 , the electronic contribution is much smaller than the nuclea r
one, (4 .1), by a factor - 2Z2 L n /Le . The formula (4.3) is valid only if u is
larger than the electronic orbital velocities, or rather x = v2(UÔZ2 » 1 .

In the case of the random beam, where all nuclear collisions are permit-
ted, we can apply formula (4 .1), with neglect of the electronic contributio n
(4.3). We can also use (4 .1)-both for the random and aligned beams-i n
the case of interstitials, impurities that break the symmetry, amorphou s
surface layers, etc. Then, N represents the density of scattering centres, Z2

being their atomic number .

In the present context, it is appropriate to consider y l as a standard
angle, also for a random system without string effects . We introduce the .
path length, In, , for which the average square multiple scattering in nuclea r

(4.3)
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collisions (4 .1), applicable for the random beam, becomes equal t o
Evidently,

2

ln' v_

	

nNd2 Ln~i

	

(4 .4)

and the corresponding total energy loss of a random beam, or in a rando m
system, is according to (3 .13)

2Z1 e 2 L e 1b11
åEy

= d L,z m

	

(4 .5)

i .e . of the order of Z1 • A 1 . 10 keV in the case of swift particles, for which

Le/L. --- 1/2 .
In connection with (4 .4) and (4.5), one should also consider single

scattering by angles larger than yl. The mean free path for such single
scattering is larger than (4 .4) by a factor 2Ln - 10 . We may therefore often
disregard single scattering, but for special purposes it becomes important,
cf. (6.15) .

Starting from an initially well-defined direction, e .g. corresponding t o
polar angle P. = 0, the distribution becomes approximately Gaussian ,

P(T)2nTd'l-f exp€-T 2 /Q 2}2 1..Fd u/Q 2 ,

	

(4.6)

where S~ 2 is obtained by integration of (4 .1). The Gaussian is a consequenc e
of many small scattering processes . For large ¶ the actual distribution ha s
a tail decreasing more slowly than (4 .6), and due to large angle single scat -
tering. The approximation of WILLIAMS and Boxx12) 17) may be applied .
If (4.3) is not negligible, it must be added to (4 .1), and (4 .3) contributes to
the Gaussian only-not to the tail .

Consider next particles in the aligned beam. We may at first estimate
the contribution to multiple scattering from electronic collisions . In analogy
to (4.4), we introduce the path length l, for which (åQz ) e becomes equal
to yl . Averaging (4 .3) according to (3 .6 '), we obtain

4Z2

	

Z2

nNd2 L e ipl, Z2(El)

	

(4 .7)

The factor Z2 /Z2(E1) is given by (3 .18) or (3 .19), and tends to unity fo r
the random beam. while for the aligned beam it becomes large when y -3 O .
The path length ley is larger than 1,2, ,„ in (4.4), by a factor of at least 2Z2 .

3*



36

	

Nr.1 4

The strong multiple scattering (4 .1) for a random system disappear s
completely for the aligned beam colliding with continuum strings, i .e . when
conservation of transverse energy applies . In `3 3 it was found that part o f

the multiple scattering reappears as a quick trend towards uniform distribu -

tion on the transverse energy shell, cf . (3 .4). Another part reappears du e

to deviations from perfect strings . Thus, suppose that in one transverse

atomic plane there is a deviation åK(r) from the usual transverse forc e

K = -grad U(r) . This gives a change in the transverse momentum pl , i .e .

approximately

(4 .8 )

When the square of this scattering is summed over the atoms along a strin g
(or over successive transverse atomic planes), we obtain the change i n

average transverse energy, due to string imperfections, i .e. on the path
length åR,

a <Fl> _ (aÅ11)2 =
d4E

. <aK(i)2>6R,

	

(4 .9 )
2M

where < . . .> denotes an average over positions in transverse motion of the
particle, i .e . (3 .6) can be applied .

If the average square amplitude, 0 2 , of the thermal vibrations (cf . (6 .5))
may be considered as small, the corresponding force fluctuation become s

alJ l = åK(l) .
U

< å-k-@'Y>

	

e
2<K2(r)r-2 + K'2(r)>, (4.10)

in the case of axial symmetry . The total diffusion can be expressed in term s
of the result (4.1) for a random system ,

a <El> _ (åQ2),,- E y,

	

(4 .11 )

where the reduction factor y = yn(E1, (2) + y e(E1) is a sum of contribution s

from nuclear and electronic collisions . According to (4 .9) and (4 .10), th e

magnitude of yn becomes approximately

2 2E1

	

_ 2El

Yn(El,e) N
Ln C~a2 e EtVï (1 e E 2)3

	

(4.12)

if the standard atomic model (2 .6) applies .
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For comparison, we rewrite the electronic scattering contribution (4 .7) ,
introducing the standard atomic model by means of (3 .19) ,

_2E1

Ye(Et) -L' Z(1 e E'Vi) .
2 2

Although (4 .12) and (4 .12 ') are merely cursory estimates, it is apparen t

that in contrast to random systems-the electronic contribution ye may
exceed y., if 2E1/Ey1 is small, and Z2 low . Note, however, that the dampin g
effect, cf. p . 33, can dominate over (4.12') when AIM > 2m .

When the increase in average square angle is known, the correspondin g
diffusion equation becomes

(4.12')

ôz
4(Pl , z) = divpD(Pi) gradPg(Ål , z), (4 .13)

where g• dpl,x dpl,y is the differential probability, measured e .g. at potential
U = O . Further, z = vi is the distance of penetration . The diffusion con-
stant, D, is determined by å<E1>, and for axial symmetry one find s

S<E

>
2D(Pl) P1D' (Pl) = 1~1 åR

where the right-hand side is given by (4 .11) .

When the diffusion constant is known, the increase in square fluctuatio n
of e .g . pi can be derived . In order to compare with the increase in El we
consider the quantity ((p1 - <p1>)2>/(2M1), and obtain from (4 .13), for initi-
ally well-defined El,

å <(P,_ <Pl%) 2i

	

D (Pi)
2M1 åR

	

1VI1

If y in (4.11) increases rapidly with El , the value of (4 .15) is much les s
than å<E1>/SR . The smearing of the distribution by diffusion may then b e
disregarded, and the transverse energy remains well-defined, increasing
steadily according to (4 .9) or (4.11) .

It can be of interest to solve the equations on the assumption of well -
defined transverse energy . If the electronic contribution (4 .12 ') can be dis -
regarded, we obtain from (4.11), (4 .12) and (4 .4) the following change in
E1 on a finite path length åR,

(4 .14 )

(4.15)
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2

	

2E 1

1

2 2

8R
c2 ~ L i n, - - 6(1 - e E~Vi)-2

	

-
å ~2E 1, ,

	

(4 .16)
n

	

v,

	

1

where I n,7l, , is given by (4 .4), and b denotes the increase of the quantity i n

question . One interesting feature in (4 .16) is not limited to this equation ,

but holds also for the more general diffusion based on (4 .12) ; the path
lengths for scattering are increased by a factor -Loy, as compared to
(4 .4), valid for random media . This result is essentially based on the validity
of (4.10) .

Single scattering

The reduction factor Yn in (4.12) can become quite small . If the diffusion i s
sufficiently small, however, the dominant effect can be single scattering . By single
scattering a particle may in one collision enter the random beam, or its fringes .
Single scattering requires that the particle comes close to a nucleus, and the pro -
bability for single scattering is therefore proportional to the fraction of the total
number of nuclei which may be hit by a particle with transverse energy E 1 . Thi s
fraction turns out to be Ilin(E1) P(rmin(E1)), where rmin(E1) is the minimum
distance of approach to a string, and P(r) the probability for a nucleus to be more
than the distance r away from the string, cf . § 6 . The effective cross section for
single scattering is thus

d6efP(El) - da ' ~in(E1) .

	

(4 .17 )

For a given penetration depth, (4 .17) can be applied to angles of deflection large r
than those belonging to the Gaussian peak of multiple scattering .

§ 5. Rules of Angular Averages and Compensatio n

Suppose that we are concerned with a definite physical effect, like th e

energy loss per cm., the number of K-shell excitations, or the number of
(p, y) reactions . For random systems the effect occurs at a definite rate ,
independently of direction. In a crystal, due to e .g. string effects, the rat e

may change drastically within small solid angles . In § 3 we estimated som e

changes of this kind in the approximation of transverse potentials . How-

ever, it can be difficult to carry out estimates to a high degree of accuracy
at all angles . It is therefore appropriate to ask for rules which hold irrespec-

tive of the use of e .g. transverse continuum potentials . In particular, it is
of interest to know in how far the average of an effect over all directions o f
incidence in a crystal is equal to that of a random system . If this is the case ,

we say that there is compensation of the directional effect in question .
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At first we can disregard slowing-down of particles, i .e. we assume

conservation of total energy. We are then concerned with particles movin g

in a fixed potential in three-dimensional space . We can here utilize tw o

concepts from statistical mechanics, i .e. reversibility and microcanonical

distribution . The idealized experiment of interest in the following is to

consider an external beam of particles, represented by e .g. a point source

at A, and to ask for the probability of hitting a certain point of space, B,
in the neighbourhood of one atom. This probability is to be compared with
the corresponding one when e .g . all atoms in the crystal, except the one i n
question, are removed or brought in disorder .

Rule of reversibility

The first useful result is that of reversibility . We need not enter o n
details, and shall disregard magnetic fields . Not only can the motion of a
particle in its orbit from one point A outside the crystal to a point B inside
the crystal be reversed according to mechanics, but also the transition pro-

babilities for direct and reversed processes are equal, PAB = PBA , if the
potentials at A and B are equal (cf. below) . More definitely, suppose that at
A is emitted v particles per second per unit solid angle, in a direction towards
B, and that the cross section at B is c . The rate PAB of direct processes is

equal to the rate PR 4 of reversed processes, for which emission at B is v

per unit solid angle and cross section at A is a . This result may be regarde d
as a consequence of Liouville's theorem . By finding the angular distributio n
outside the crystal of particles emitted by atomic nuclei in strings in th e
crystal, we have then also obtained the probability of hitting nuclei by a n
external beam of particles. These results are not changed by multiple scat -
tering, where the processes are reversible too .

Reversibility can be violated in some cases . In fact, if slowing-down o n
the path between A and B is so large as to influence the deflections on the
way, it may not be possible to reverse the path, neither for potential motio n
nor for multiple scattering effects .

Rule of angular average s

In order to obtain the second rule, i .e. the rule of simple angular aver -
ages, we introduce the probability P of a particle of energy E being at a

space point, R, inside the crystal . The probability is measured relative to
that without a crystal . Let the initial state be a particle beam of given uni -
form intensity, and a direction specified by angles 19', T. The probability is



40

	

Nr.1 4

then a function of ?9 . and Ø, P = PQ, q , R). It should be noted that P also
depends on other variables, especially on the energy E, as well as on th e

type of particle (Z1 , A 1 ), and on the medium (Z2 , lattice structure) . If we

average P(V,T,R) over all directions, and denote the average as P(R), w e
obtain

P(R) = 1J. P(O',99,7)sin29dz9dcp .

	

(5 .1 )
4~c

An average over external angles is equivalent to imposing on the system a n
external statistical equilibrium. The average can therefore be estimated fro m

statistical equilibria, e .g. a microcanonical ensemble for one particle . For

this purpose we introduce the particle-lattice potential V A (R) at the space

point R. If R is close to one atom, V1 (R) should only include the potentia l

from the other atoms, because we compare e .g. with the corresponding pro-

bability of coming near the atom in empty space (or in a random substance) .

Without considering details, we can state than VA (R) must be quite small ,
perhaps of order of few eV for protons, like E, in (1 .1), and thus usually

much lower than the transverse potential U(r) . Since the available volum e

in momentum space is proportional to pdE V/{2M1 (E- V1 (R)}dE, the

average value of the probability P(z9, T, R) is approximately

E - 171 (10)1"
P(R)

	

,	 E	 = 1,

	

(5 .2 )

where the deviation of P from unity can be disregarded, being approximatel y

equal to V1 /2E. Now, probabilities, intensities or fluxes may differ b y

[E- V1 (R)]/E to a power between perhaps -1 and +1, but such factors

are quite close to unity, so that even without detailed estimates we may
state that averages of type of (5 .1) are equal to unity .

This leads to the rule of angular averages for energy conservation : Any

quantity Q, depending linearly on P(V, g), R), has the same angular averag e
as in a random system . By a random system is meant a system with

the same density, but without directional effects, for instance because o f

lack of structure . Examples of quantities obeying the simple rule ar e

electronic stopping, e .g . (3 .15), and nuclear stopping, (3 .10), at a fixed

energy E. We may formulate the rule of angular averages as follows . If Q

is given by
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Q(19',T) = a + J b(R)P(î,g),R)d 3R,

the average of Q becomes, according to (5 .1) and (5 .2), (5 .3)

<Q(#,T)> = 4z f dQ • Q(9,, = a + J b(R)d 3 R .

Both in (5.3) and in (5.1) it is often possible to limit the average to a soli d

angle S2 small compared to 47r . In fact, suppose that at the borderlines o f

a solid angle Q the particles are not deflected into or away from this soli d
angle, by deflections due to strings or planes . The separate average over Q
must then also fulfill (5 .3) .

If we apply the result of reversibility, the rule of angular averages ca n

also be used for particles coming from any space point R in the lattice and
arriving at a point outside the lattice. In this case the rule is quite evident ,
even without use of reversibility and (5 .3) . In fact, imagine that atomic
nuclei in the lattice emit a-particles, which process occurs at a fixed rate
per unit solid angle. The a-particles are deflected away from string di -

rections, and exhibit a certain angular distribution when emerging from th e
crystal . But, evidently, on a large sphere surrounding the crystal, all par-
ticles will be collected, independently of their possible deflections within
the crystal. Moreover, if we collect within a relatively small solid angl e

around a string direction, the angular width still being large compared t o
string deflection, the number collected is the same as if the string were no t
there . Thus, the angular distribution has a complete compensation of th e

dip, characteristic of quantities linear in P(O, cp,R) . A similar problem wa s
discussed in § 2, in connection with the classical shadow behind an atom .

Limitations of rule of angular average s

When we are concerned with definite physical observations, like thos e
mentioned in the beginning of this section, the simple rule does not alway s
apply, because in actual fact energy conservation is violated in slowing-dow n
and the measured quantities may be strongly dependent on energy . By and
large, physical effects depending on slowing-down will not obey the rule o f
angular averages. It can be useful to consider a few examples .

First, a basic quantity is the range of a particle . The stopping cros s
section S(E1, E), at a definite energy E, is linear in P and follows the rule of
averages . The range, however, is of type of fdR = fdE f(N• S(E1 , E)) . It is
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therefore not linear in P, and does not follow the rule . In fact, deviations ca n
be quite large. In two cases will deviations from the rule become small .
If S(E1) S, the latter being the stopping cross section for random slowing -
down, we have S(El )-1 ^ S r . (2 - S(E1)/S), which is linear in P. More-
over, in a polycrystalline medium where the size åR of each crystal cor -

responds to åE = àR • (S(E1 )N) « E, the range will be as in a rando m
system .

Second, an instructive example is afforded by a (p, y) reaction for pro -
tons passing through a crystal . The reaction occurs at a definite energy E 0 ,
and has a width P, very small compared to Eo . Suppose that f nevertheles s
remains so large that an energy loss - P is obtained only by penetration o f
many atomic layers . The number v of reactions is then proportional t o

v a P(zp,R,,)/Se(zp), where P(y,,R,,) indicates the probability of hitting a
nucleus . Since the ratio P/S e is not linear in P, its average over all directions
need not correspond to a random system, and (5 .3) does not apply . How -
ever, the probability of hitting an atomic nucleus may be essentially zero ,

except when El is large . Since Se(E1) has a rather narrow dip, cf. (3 .19) ,
we may have Se(E±) Se = const ., in the region where P is different fro m
zero, in which case the compensation belonging to (5.3) is approximatel y

obtained .

As indicated by these examples, there is a large number of combination s
of effects which may influence the angular averages, when slowing-dow n

comes into play. Therefore, a thin single crystal foil, where the energy los s

remains small, is one of the few examples where physical effects can obe y
(5 .3) in a straightforward manner .

In measurements of angular dependence of effects in the neighbourhoo d

of strings and planes, the compensation in (5 .3) is usually of interest in a
qualitative way only . In other cases, e .g. if nuclear cross sections are to b e
measured with high accuracy in solids, the applicability of (5 .3) can be of

direct importance .

Rule of spatial average s

The previous averages were concerned with angles, but also average s

over space give rise to interesting rules . Suppose that an external bea m
has a fixed direction given by (#,T), e .g. close to a string direction, and

consider a nuclear process with a constant, energy independent cross section .

The rate of the process depends on the position of the nucleus in the lattice .
Now, if the probability density of the distribution of nuclei is constant in a
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transverse plane, the process has for these nuclei the same rate as in a ran -
dom substance, simply because every particle must pass through some point
of the transverse plane . Thus, for a fixed value of z, less than the penetra-

tion depth of every particle ,

<P0,1p,R)>xy Ao fJ dxduPO,g),R) = 1,

	

(5 .4 )

a s

where P is the previously mentioned probability, normalized to unity for a
-

>-random system . Any linear function Q = a + b • P(19', (p,R) has the average
<Q)xy = a+ b . Therefore, if-for fixed external direction D',99-there is a di p

in reaction rate when the atomic position is at a string, there must be a ris e
above normal yield at positions in between strings . However, the area out -
side strings is much larger than the effective area of a string ; the increas e
in rate is then quite small, of order of Nd • -ta 2 . A somewhat larger effec t
would occur for planes . Still, because of the smallness of these changes ,
reaction rates may then instead be dominated by secondary string pheno-

mena, like electronic stopping, cf. § 6 .

§ 6. Idealized Experiments and Comments on Measurement s

When discussing experiments-both idealized and actual experiments-
it is instructive to bear in mind that, at low angles of incidence, particles ar e
prevented from coming closer than -a to the centre of strings (or planes) .
This indicates, firstly, experimental tools that may be chosen . In fact, there
is a possibility of utilizing any physical process requiring that the particl e
is less than the distance a from the atomic nucleus (nuclear reactions, Cou-
lomb excitation, inner shell excitation, wide angle Rutherford scattering ,
emission of charged particles from radioactive nuclei) . Secondly, measure-
ments of this kind give direct information about paths of particles in the
lattice and their scattering, and hence enables one to study the importan t
primary phenomena, which govern the particle motion, cf . p. 9 . Thirdly ,
by means of the shielding inside a one is able to pin atomic positions with
an accuracy < a in the vicinity of lattice sites, so that e .g. a method of ob -
serving defects and positions of impurity atoms is available .

It is easy to visualize many further applications, but it seems proper t o
demonstrate first the way in which theory and experiments can cope with
the primary task sketched above . When that is done, a quantitative basis
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is obtained for estimating in how far the more complicated applications may

be realized. In the present context, however, we shall merely discuss briefl y
a few aspects of the primary task .

Three stages in particle motion

The fate of particles on their way from an external source to e .g. an

atomic nucleus in a crystal may be divided into three successive stages .
These three stages appear in the opposite order for the reversed process of

a particle coming from a nucleus and arriving at a detector outside the

crystal . A calculation of the probability of a direct process is often equivalen t
to an estimate of the reverse process, cf . § 5 .

A particle beam has an initial angular spread before entering the crystal

surface. Let the initial distribution be P(Ep)d(Eyé), where ye is the externa l
angle with strings . It can be convenient to include in this spread the multipl e

scattering due to impurity layers in front of the crystal surface . It should be

remembered that the angular distribution from scattering by a thin layer

consists of a narrow Gaussian peak and a tail due to single scattering .
Consider particles arriving at the crystal surface at a definite angle ye

with a string (or a plane) . The first stage is then the transition from im-
mediately outside to immediately inside the crystal surface . We may intro -
duce a transmission factor,

T T(E1 ,Eye) ,

such that T' dEl is the differential probability of transverse energy betwee n

El and El + dE1 , when the external angle is ye . In the continuum descriptio n
we get, if Utot(l)

	

U(r),
r o

T(E1,E v ) =
`2r2

3(E1 - Ep - U(r)) ,
ro

	

(6 .1 )
Jo

because, at the point

	

the transverse energy becomes Eyre + (Kr) . In this

way, the initial distribution g(E1 , z = 0) can be obtained ,

g(E1,0 ) = fP(Eye)d(Eyé)T(E1,Ey'é),

	

(6 .2)

where the particle energy is E .
In (6 .1) is assumed axial symmetry ; the general formula corresponding

to (6.1) is a normalized integration over the unit cell . Therefore, in the

corresponding estimate for planes, the right-hand side of (6 .1) is replaced by
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J
2dy

å(E1 - Ezpe - Y( y)) ,
o

where dl, is the distance between planes, ve the angle with the plane, an d

Y(y) the continuum plane potential . In (6 .1) the direction of the transverse
motion is disregarded and we shall omit estimates of e .g . g(.,i, z = 0) .

The second stage consists in the passage through the crystal from th e

surface to depth z . During this stage there is multiple scattering, i .e. a re-

distribution of transverse energy in a manner somewhat similar to diffusion .

The redistribution depends strongly on the value of El/EV, cf . § 4. At the

same time, the particles are subject to slowing-down, so that the energy E
decreases . The slowing-down also depends on El /Epl, cf. § 3 . Accordingly ,

a redistribution factor R is obtained, giving the probability of energy E '
and transverse energy E1, at depth z, if their values are E and E1 at the

surface, i .e .

R = R(E' , Ei, z ; E, E1, 0) ,

where R(E' , El, 0 ; E, El , 0) = 6(E ' - E)S(E" - El) . Usually, one can either

disregard energy loss as compared to diffusion, or disregard diffusion an d
include only energy loss . This leads to considerable simplification in R .

In some cases we can assume that both E and El change smoothly, withou t

fluctuations, as functions of depth, so that R is a 6-function in both E '
and E .

When R is known, we can estimate the probability g(E ' ,El,z)dE 'dEl
of energy in the interval dE ' and transverse energy in the interval dEl' ,

g(E,El,z) = f dElg(E1 ,0)R(E,E1 ,z ;E,E1 ,0) .

	

(6 .3)

The third stage is the occurrence of the actual physical process, a nuclea r

reaction for instance . In processes of this kind, the particle essentially must
penetrate to the centre of atoms, and the probability H in(E1) for this wil l

be discussed in some detail . If 17in(E1 ) is known, and the cross section for
the process in question is 6, the effective cross section aeff at depth z become s

c,eff( z) = f dE' f dEl g(E' , El , z)Hin(El)o'(E') .

	

(6 .4 )

Cross sections 6(E') for nuclear reactions can be of resonance type in th e

energy E ' .
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We refrain from discussing further the general case of superposition o f

the three stages mentioned . Instead, a few basic examples will be treate d
after the estimates of [1(E1 ) .

Particle emission from string atoms and 1I(E1 )

Several characteristics of basic phenomena in the string effect are illus-

trated by the following idealized experiment . A fast, positively charge d
particle leaves a nucleus by a process independent of lattice properties, e .g .
an a-decay. The nucleus has some probability distribution in space. The
first question to be solved is the probability Hout(E1)dE1 of transverse energy

between E1 and El + dE1 .

We note that Hin(E1) = f Hout(E1) is the probability of the opposite proces s
as described by (6 .4), where f is a constant accounting for available space-or phas e
space-in the two opposite processes . In fact, in the continuum description f- 1 i s
the fraction of the area of the transverse plane accessible to the particle, i .e . =
1 -rm,n(E1)/r'o, and thus f is normally close to unity . The subsequent fate of th e
particle, as determined by multiple scattering and emergence through surface, can
be treated separately, the former being determined by (6 .3) and the latter by re -
versal of (6 .2) .

Suppose that the atomic nucleus is in the neighbourhood. of an atomic

position in a perfect string, with probability distribution dP(r), where r i s
the distance from the string axis . The distribution in z-direction may be dis -

regarded . For simplicity, a Gaussian type distribution will be used as an

example in the following, i .e .
rs

dP = e e' 2rdr • a/o2 ,

	

(6.5 )

where r is the distance from the perfect string, and a is a normalizatio n

constant, a = (1 - exp(-rô/O 2)Î 1 , i .e . a 1 if e 2 is small compared t o

ro = 1 /(rN• d) . The distribution (6 .5) might roughly represent zero-point
and thermal vibrations of an atom with respect to its neighbours . If e i s

large, (6 .5) corresponds to a uniform distribution within the unit cell . It

can therefore represent cases other than vibrations. The calculations of
several effects, cf . (4.10) and (6.13), involve merely the average squar e

vibration of an atom, e, and not the probability distribution as such . At

low temperatures, 22 is determined by zero-point vibrations of lattice atoms ,
while at high temperatures it increases proportionally to temperature .

We ask for the initial distribution in transverse energy Hout(E1), of

particles emitted into the lattice from an atom close to a lattice site . Consider
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the approximation in Appendix A, where a transverse potential U(r) may

be used, and El is to be registered at the planes half-way between atoms .

A particle initially at a distance r from the string, moving at an angle 9)

with the string and azimuthal angle z9, will be a distance r* away from th e
string when it arrives at the half-way plane, where r* 2 = r2 + (0/2)2 + ried
cosz~ . Therefore,

	

ro

	

('

	

2 z

	

Hout(El) =
r

	

I dP(r) J d(E~p2)f

	

U(r*) Ecp2 ),

	

(6 .6)

	

r J=o

	

0

and for planes an analogous formula holds .

If 0/2 is small compared to the range e of the distribution, we may

put r' = r, and (6 .6) becomes
ro

Hout(El)
= J

dP(r)

u (r) < E1

(6.7)

Although (6 .7) implies a dip quite similar to that in (6 .6) for low values o f
El , the magnitude of (6 .7) apparently cannot exceed unity, in contrast t o
(6 .6). The shoulder of the distribution at El - EA is therefore absent i n

the approximation (6 .7) .

By means of (6 .7), (6.5) and the standard potential (2 .6) a definite ex -

pression for Rout is obtained

G,2 C1 2 2El

	

r2
l

Hout(E1) ° exp -
e

2
	 (eEy, ; - 1)-1 - exp { -

~2
} ,

where it is assumed that e « ro, i .e . a ti 1 . When El -÷ U(ro), the expression

in (6.8) tends to zero . However, the value of 11out(El Re 0) is sensitive to
the atomic potential, and to the behaviour of the probability distribution
(6.5). The number of particles emerging from the crystal surface, at angle s
close to zero with the string, may therefore be strongly influenced by mul-

tiple scattering, etc .

In view of the variability of the maximum dip, it can be of interest to look for
quantities less sensitive to multiple scattering . From (6 .7) and (6 .8) approximate
estimates of the width of the dip in 11(El) may be easily obtained, but a precis e
definition of the width is less simple . However, the integrated dip is more well-
defined . Since the dip from unity is 1 - I7out(El ), we may integrate over positive
values of this quantity. When (6 .7) is introduced, we obtain an integrated dip

(6.8)
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S2(P) = J (1 - I7out(E1))2 z sin ,pdy _ i-T f (1 - Hout(E1))dE, . =-

o
r ô

~a f

J
d(r2) rE	 2e Pa U(r) .

P
o

When P is large compared to a, but small compared to ro , we find by partial inte -
gration,

	 1	 ('

	

( )

	

Z1Z2e2
2

	

(6 .10)

	

P2d E J 4~R 2dRV R

	

Pzd E z 3 R2,

where R 2 = Z21
J

4zR4 dR9(R) is the average square radius of the atom per electron .
o

In the LENZ-JENSEN description 9 ) the average square radius becomes R2 15a 2 ,
which result agrees well with measurements as well as with the HARTREE treatment .
For large compared to a, we may thus pu t

.Q (P) ~ ~ . 2 . 10a2 /P2 .

In the opposite limit of P small compared to a we find readily, from (2 .5),

(6 .9 )

n(r o » » a) =

(6 .11)

11)2
Q(P < a) =

	

2
log

/ C2 a2

\ P
2 Y)'

(6 .11' )

where y = 1 .78 is Euler's constant . A qualitative estimate, applicable for all values
of P, is therefore

yC2a2+ P 2Q2 log

	

P2

The formula (6 .12), giving the dip as a function of transverse energy for P « r o ,
should in this case also give approximately the dip outside the crystal, if multipl e
scattering can be neglected . However, when P in (6 .9) becomes large compared t o
r o , there is a uniform probability distribution dP(r) in the unit cell, r < r o . The
effects of exit from the surface are then most important, and according to the dis-
cussion in § 5, there is no dip outside the crystal . It so happens that (6 .12) has the
value zero in this limit, and in this sense represents better the external than th e
internal angular distribution. There is, however, a serious drawback in the formulae
(6 .7) - (6 .12) . A continuum potential has been used, and thus compensating shoul-
ders are disregarded . It would be more correct to use (6 .6) and apply the formulae
in Appendix A, according to which the potential energy is to be measured at th e
planes half-way between atoms .

(6 .12)
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The equation (6 .12) can be used in two ways . From knowledge of Q, the valu e
Q can be found approximately ; from measurements of .Q, the value of Q2 can be
estimated qualitatively. Apart from such estimates, it is seen that Q is proportiona l
toi

	

2Z1Z 2e 2 /d . E .

Lowest minimum yield

The minimum yield of e .g . nuclear reactions at a given depth correspond s
to external angle ipe = O. The lowest value of the minimum occurs at lo w

depth, where the multiple scattering is small . If we disregard the multiple

scattering, we find from (6 .1) and (6.4) that there always remains a yield

from thermal vibrations . If the continuum description applies, we obtai n

from (6 .7) and (6 .1) the first contribution xl to the total x ,

xl = N•d•gT9 2 , (6 .13)

where e2 is the average square amplitude of atomic vibrations with respec t
to the string. It is noteworthy that (6 .13) does not depend on the probability

distribution, i .e . (6 .5) need not apply . The magnitude of xi is often xi

	

10-2 ,

when d 31.
For several reasons, the effective lowest minimum can be higher tha n

the above value. Particles in the exterior beam, which hit within - a from
the centre of a string, obtain transverse energy --- E y~l, and they may afte r

very little multiple scattering be able to hit the centre of atoms ; the path

length in question is < In,v, in (4 .4). This leads to the next, and less well -
defined contribution to x,

x2

	

N • d • aa2 .

	

(6 .14)

In the case of major strings, i .e. for d 3 . 10-8 cm, the magnitude of Z2

varies between - 0 .03 in the lighter substances and - 0 .005 in heavy sub -
stances . For planes, we roughly find x2 - 2a/dp .

The result (6 .14) corresponds to the high energy case (2 .9 ' ) . At low ener -
gies, or large values of d, there is a well-defined increase in the fractiona l
area x2 corresponding to transverse energy above the barrier . According to
(2 .10) or (A.21) one obtains x2 ^' 7rN• d 2ay1 , when ?pi is large compared to a/d .

It may be noted that the atoms at the surface can react directly with th e
particle . The effective number of layers, of thickness d, giving full contri-
bution is $, where $ > 1 . Measurements confined to the first 10-50 layers
cannot therefore yield very strong dips, and a certain amount of multipl e
scattering must always be included in the measurements .

Although a classical orbit remains outside the centre of atoms in a
perfect string, there is a quantal penetration . However, particles with the

Mat.Fys.Medd.Dan .Vid .Selsk . 34, no . 14 .
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same value of Z1 /E have the same characteristic angle but their wave
length decreases proportionally to (M1E)-112 (M1Z1 )-112 The quantal pene-
tration probability is in this sense an independent quantity which can b e
made quite small .

The presence of amorphous impurity layers on the surface of the crysta l
need not cause large multiple scattering . Still, effects of single scatterin g
cannot be disregarded in the present context. Let the number per cm 2 of
the i'th atomic species be v2, while its collision diameter with the particle i s
bi . The fraction of particles deflected by an angle larger than O, in singl e
scattering, is then

~v¢'nbi •O- 2

where it is assumed that O is so large that Rutherford scattering applies .
If the particles originally have zero angle with a string direction, we hav e
directly obtained a tail of the distribution in transverse energy, and the
contribution x3 to x is obtained,

~
~ dE

z~b2 E E2 n(Ei)-

	

(6.15)

0

The integral in (6.15) may be evaluated by means of (6 .6) or (6.7). At high
particle energies and fore < a we may assume, crudely, that Ti ,ti 0 for
El < EyT, and` II 1 for El > Ey4, leading to x3 - 2 Ev ti hb2 . This re-
sult is interesting in several respects . The value of x3 can exceed xi or x2 ,

if there is a substantial surface layer of not too low atomic number . It i s
also seen that at high particle energies both xi, x2 and x3 may be proportiona l
to the spacing d between atoms in the string . It is therefore expected that
the minimum yield, when small, increases with d in a simple manner .

In any case, if measured dips are in the neighbourhood of the minim a
quoted above, it seems possible to study in detail the effects of multipl e
scattering, etc ., as discussed in the beginning of this chapter .

Comments on experiment s

Although detailed comparisons with experiments would be out of place ,
it may be proper to comment briefly on some measurements directly con-
nected with the theory. We do this in the spirit of the introductory remark s
in this chapter (p . 43), selecting primary directional effects .

In the exploratory measurements on (p,y) reactions in Al and Si at
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400 keV, BØGH, DAVIES and NIELSEN 7) observed the expected reductio n

in yield in string directions . The yield is proportional to II(Ei)/Se(El), the

probability distribution in El depending on external angle. The observe d

reduction by a factor - 5 was large enough to be promising 5) , partly be -

cause the disturbing influence of electronic stopping could then be dis -

regarded, and partly because it seemed comparatively easy to develo p
further this tool of solid state observations . The measurements are apparently ,

as to purpose and result, different from those of TxoMnsoN 19) .

In continued measurements, also effects of planes were clearly seen ,

and higher proton energies were used 20) . In connection with (p,y) reactions ,

with rate a S;-'(E1 ), it may be mentioned that they might also be used for
identifying interstitials, where peaks in yield, instead of dips, should appear
for atoms outside strings when y e < y1 (cf. p . 43 and (3 .19)) .

The measurements by DOMEIS and BJÖRKQVIST 18) are of particularl y
simple and informative kind . The angular distributions of a-particles ,
emitted by heavy ions stopped in W, showed dips by a factor 4 an d

angular widths in agreement with (2 .9) . It could be concluded that most ,

if not all, ions ended up in lattice positions . In more detailed measurements ,

including changes of temperature, it should be possible to verify position s
of ions in the lattice and even to check vibrations (cf . also (6.9)) .

Observations utilizing wide angle Rutherford scattering would seem t o

provide a promising and versatile tool, because of the large cross sections ,
and the free choice of Z,, Z2 and E 5 ) . The measurements by BØGx and
UGGERHØJ 22) of Rutherford scattering for 400 keV protons in Ta and with

energy analysis of the emerging protons, provide the most definite an d
detailed information obtained so far . Strings of both low and high inde x
numbers are clearly seen . The angular widths as functions of d and E ar e
in accord with (2 .9) and (2.10), and dips approach the lower limits (cf .

p. 49 and ref . 5) . An effect of planes is seen as a background of the dominating
string dips . It may be added, as an example, that Rutherford scattering ca n
be used for determining positions of impurity atoms, in lattice sites or in
interstitial positions .

As to other processes requiring that the particle comes close to the nucleus ,
preliminary measurements of inner atomic shell excitation by 100 ke V

protons have been performed by BMANDT et al . 21 ), but in the interpretation
the repulsion by atomic strings was not taken into account .

As regards secondary directional effects (cf. p . 9), the most prominent

one is slowing-down . For fast protons, the most accurate observations were
performed by ERGINSOY, WEGNER and GIBSoN 11) . These measurements

4*
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clearly reveal effects of planes and strings . The energy loss is found to be
reduced by a factor of at most - 2, in rough agreement with (3.15). The
wide distribution in energy loss is not to be accounted for as usual straggling,
which becomes quite small according to (3 .20), but in terms of the statistics
of the two first stages in particle motion mentioned on p . 44 ff.

Numerous careful experimental studies on penetration by heavy ions i n
the keV region have been performed, especially by DAVIES and co-worker s
(e .g . refs. 1 and 23), and by LUTZ and SIZMANN 24 )
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Appendix A

Classical Scattering by Perfect String and Continuum Potentia l

The accuracy of the continuum string approximation may be assesse d
approximately within classical mechanics . Besides classical mechanics, th e
calculations in this appendix are based on the perfect string, i .e. atoms
placed on a straight line with constant spacing d, and are easily generalize d
to a perfect lattice .

The first circumstance to be noted is the strict conservation of angula r
momentum with respect to the string . We shall at first discuss only the cas e
of zero angular momentum. This is the least favourable case for conser-
vation of transverse energy, because the particle penetrates the closest t o
the string .

Let atoms be placed on the z-axis, at z

	

0, f d, + 2d, . . . It is con-
venient to introduce the planes half-way between atoms, z = + d/2, + 3d/2 ,

. . , and measure transverse coordinates (x, y) at these planes. The distance
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from the string is r = (x 2 + d2 ) 1t2 , and the motion is assumed to be in a
plane containing the string (cf . above) . We want to find the accuracy with
which transverse energy is conserved between the two planes, the a-plan e
where z a = d/2, and the b-plane where z b = + d/2 . In the a-plane th e
distance from z-axis is r a and the angle with the z-axis is ye a , and in the
b-plane distance and angle are rb and yob. At z = 0, where the deflection

d

	

d Î

P

I

	

~q

	

Î

	 6	
ra

	

r
,	 ô	 r'	 b	

Ze_ 2

	

Z b.2

	

Z

Fig . 2 . Classical deflections of particle by perfect string, with coordinates recorded at half-way
planes, cf . text .

occurs, the distance from the axis is ro . Then, rb = ro +

	

d/2, and

ro - y,, . d/2 . The deflection at ro becomes, cf . (2 .1') ,

d • U' (r 0)
9,_

	

- Pa = - 2E

ro and rb - ra are given by

ra + rb

	

d

	

d
j' p =

	

2

	

- (P 4 ; l'b - ra = (V'a + VI)) .

We here disregard terms of relative magnitude (yea + yb)2/2 in ro , and of
relative magnitude cpro/d in rb -ra .

From these relations we may find the degree of conservation of trans -
verse energy, retaining only powers of zp less than y 4 ; the latter limitation is
implicitly contained in the small angle approximation for y . We tentatively
introduce transverse energies E1(ra) and E1(r b ) ,

E±(ra) = E . yß å + W(ra), El(rb) = E . y)b + W(rb ),

	

(A .3)

and ask whether a transverse energy of this kind can be approximately
conserved, i .e .

(A.1 )

(A.2)

Ej(ra)

	

El(r b )•

	

(A .4)
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If (A.4) holds, it is easy to calculate the angle of emergence p from th e

string, since E - 7,0
2 = El . An over-all validity of the continuum approximatio n

would mean that the conservation in (A .3) holds not merely at the half-
way planes, but is also accurate at other values of z .

Consider the difference between Ei(ra) and El(rb) in (A.3), and eliminate

yea and 1Pb by means of (A .1) ,

El(rb) - Ei(ra) = W(rb) - W(ra) - (rb 1' a) ' U'(ro) •

Since (A.2) is an implicit equation for ro , i .e .

ra r b

	

d2 i

2 + 8E
U(ro) ~

ro and U'(ro) are only functions of the sum ra + r b , in the present approxi-

mation . The mean distance (ra +rb )/2 is, for brevity, denoted as r, and we

may ask for the connection between differential changes in r and ro . From
(A.6) is obtained

r

	

d z

	

dr = dro I 1 -

8

	 U" (r o ) .

If ro initially is large, and then decreases, the two terms dr and dro remain

approximately equal, until the term in brackets in (A .7) becomes zero .
Thereupon, r increases rapidly as ro tends to zero . It is therefore appro-

priate to require

d 2
E >

	

U"(rmin) ~
8

in order that the transverse motion can be described by a continuum potential ;

in (A.8) the minimum distance of approach to the string is rmin rmin(EI)
for transverse energy El. The criterion (A.8) is closely equivalent to thos e
in (2 .9), (2 .10), or (2 .7) .

In order to find W, we expand in (A.5) ,

W(rb) W(ra) = (rb ra) • W'(r) +
24

(rb - ra) 3 ' W"'(r) + . . . .

	

(A.9)

Assuming r - ro to be small, we also find

d2
U ' (ro) = U'(r) + U"(r) •

8E
U'(r) + .

ro =

(A .5)

(AM)

(A.7)

(A.8 )

(A.10)
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As a result of this, we find that if the last term in (A .9) is disregarded, (A.5)

becomes equal to zero when the potential W(r) is given by

W(r) = U(r) + .16E [ U' (r )] 2 + . . . . (A .11 )

However, it is easily verified that the condition (A .8) demands that th e

second term in (A.11) remains small compared to the first one . We may

therefore identify W(r) with the continuum potential U(r) . Nevertheless ,

the second term in (A .11) may be given a simple physical interpretation ,

accounting approximately for single scattering, albeit in an incomplete

manner, cf. below .
We omitted the last term in (A.9). Since we need only a crude estimate ,

we may by means of this term find an upper limit to the lack of conservatio n

of transverse energy in a collision with a string . In fact, suppose that thi s

term represents twice the uncertainty in energy conservation when goin g

from za to Zb . Suppose even that the uncertainties add . The total uncertainty

in transverse energy after a string collision must be less than this sum .

We write the sum as an integral, where we can put (r b - ra)2 = d 2 . yr =
d 2(Ej. - U(r))/E, as well as W(r) = U(r) ,

2	 fcSEl -~ f 24E {E
l - U(r)} U'"(r)dr, =

d2

	

v2
	 E 2 .
48E

	

rmi n

where v is the effective power of U(r), v = -dlogU(r)/dlogr . The right -

hand side becomes comparable to El only if El > EA, as was to be ex-
pected. Moreover, the right-hand side decreases as El to a power between

3 and 4, since v 1 -2 . It is therefore seen that transverse energy conser-

vation must be accurately fulfilled, if El is not large . We conclude that the

conservation of transverse energy, as expressed by (A .4), is a good approxi-
mation, and that deviations from it must be due to e . g. atomic vibrations .

In connection with (A.3), (A .4) and (A .11) may also be noted the special

case of a harmonic oscillator potential . Then, the higher derivatives of U
vanish, and an exact solution is obtained . In fact, suppose that Utot(r) =
Cr2 /2 . The general two-dimensional motion obeys the equations (A .5) and
(A.6), which may be solved to give

d2U'(rmin) 2

48E
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1

	

1	 	 1

	

1
Evi + 2 Cri	

d2C
= Evb + 2 Crb	 d2C

	

(A .13)

	

1--

	

1-	

	

8E

	

8E

One must therefore require that E > d2 C/8, in order that the motion does
not diverge . This criterion coincides with (A .8) . If the potential is not con -
fined to the transverse plane of atoms, the critical energy is slightly reduced .

In the above, transverse energy E1 was shown to be conserved . However, the
particle energy E in the laboratory system was unchanged during the collision, i . e .
the recoil energy of the atom was disregarded. We may briefly show that, even
when the latter effect is included, E1 may normally be taken to be conserved i n
a collision . To this end, consider an elastic collision, so that particle energy after
the collision is E - T n , where T. is given by (3 .9) . The change of energy implies
in itself a reduction of transverse energy, 6E1 , 1 = - T.• yp,2. . Moreover, when ther e
is transfer of energy and of angular momentum, the outgoing particle path is shifte d
outwards by an amount år, cf. reference 10 ,

Tn U(r)

	

1 l
Sr

	

E r •	 U'(r) 2 } r

the corresponding change of E 1 in the collision is 6E1 , 2 = 6r • U ' (r) . The total change
is then 6E1i1 + 6E1i2 . Suppose next that U oc r- v , and find the statistical averag e
of åE1 for strings, according to (3 .6) . A simple calculation then shows that, for
rmiq « ro,

<6E1i

	

v - 1 <T n>

E1

	

3 E

Therefore, E1 is conserved quite accurately if 0 < v < 2, cf . standard potentia l
(2 .6) . For this reason, and since electronic stopping normally dominates ove r
nuclear stopping-especially when El is small-we may often disregard the chang e
in E1 due to elastic nuclear collisions in a perfect lattice . The change in E1 during
penetration is then usually due to electronic stopping, and to the other effect s
mentioned in § 4 .

General equations of motion

As an alternative to the above estimates we treat a somewhat differen t
approach, associated with variational principles in dynamics and usefu l

for numerical estimates . For this purpose we record the distance rf at z = j • d ,
where j is an integer . Since the basic equation of deflection is

rj + - 2rj + rj	 -1
-

	

d ' U' (rl )

d

	

- (Pi _ _ 2E '

(A.14 )

(A.15)
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we may form the sum

	

m

	

(I9	 I 7 -1) 2~Lp =

	

2

	

- U(r ).) ,

	

(A.16)

	

1 = n

	

d

and the orbit for given values of coordinates rn and rm is determined by

variation of all r5 , j = n+ 1, . . , m -1, with a stationary value of (A .16) .

So far, the deflection was assumed to occur in the plane z = z5 , the force

being an approximate å-function . AL large distances from strings this is no t

quite correct . It is easy to introduce the smoothly varying force in the presen t

formulation . In fact, let Vtot(r,z) be the total potential in the lattice . Then,

the orbit from (Pp , z1 ) to (1:2 ,z 2 ) is determined by the variational principle

z
r
,

åf
L(m(z), r(z),z)dz = 0, r(zl) =

z

where

L(ûKz), r(z), z) = 2 M1 w2(z) - Vtot((z),z), ut)(z) = v dz
r(z) ,

and all angles are assumed to be small, i .e . iv « v . The Lagrangian formu-

lations (A.16) and (A.17) may be turned into Hamiltonian equations, bu t

owing to the explicit dependence of L on z, i .e . on the time variable, one doe s

not obtain the normal simple conservation of energy .

Emission of particle from atom in perfect strin g

On the basis of the approximate conservation of transverse energy El
in (A.4), we can discuss the emission of a particle from the centre of an atom

in a string . It is of interest to find both the minimum angle and the angular
distribution. It should be remembered, though, that this will not represen t

too well the actual emission from an atom in a lattice, because we disregar d

the vibrations of atoms, and in some cases quantal corrections should b e
included . However, we do obtain an alternative estimate of the validity o f
the continuum string picture .

The particle is emitted from the point r = 0, z = 0, at an angle Ø.
Its total energy, El = E . ?, is then given by (A .3) and (A.11), where the
energy is recorded at z = d/2, i .e . rb = dØ/2, vb = Ø, and where we assume

W(r) = U(r),
Ey, 2 = E 02 + U(Ød/2) .

	

(A.18)

r (z2) = r2 ,

	

(A .17)
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Since emission probability is proportional to differential solid angle 27COdØ ,

the probability distribution in angle y is also contained in (A .18) . If the secon d
term in (A.11) is included, we must add W2 = Ede - U '2(Od/2) • (4E)-2 on
the right-hand side of (A.18) .

In order to obtain quantitative estimates, we introduce the standard

potential (2 .6), and (A .18) becomes

	

2

	

2

	

1 4 cy,

	

Ø + 2 log
\d2 .02 +1 ,

	

(A .19)

the additional term being W2 = yl(20)-2(1 +Ø 2 d2 /4C 2 a 2)-- 2

It is interesting to compare the terms in (A.18) and (A .19) with the correspond-
ing ones in scattering by a single atom, cf . p . 15 ff . In scattering by a single atom ,
with the same notation as in (A .18), one obtain s

	

d

	

2

	

2

y, 2 = (Ø -
É U

'(1d)) = Ø2 - - • U'(Ød) +
1E2

U'2(Ød) ,

where the first term equals that in (A .19), whereas the second term tends to v i
for low values of O. The third term dominates when is small, and is similar to
W2 for ih -- O . However, if v i > a/d, the third term can become - W 2 /16. This
indicates the ambiguity belonging to W 2 . In the following we disregard W 2 , pri-
marily because its inclusion would not affect much the estimates of critical angles .

Returning to (A .19), we can estimate the minimum, ymin, of the angle

of emission, v. The minimum is obtained fo r

Ø2 d2	 +

/ 2C 2 a2\2

	

2 2C2 a 2

d2

	

-I-
'7'1

	

d2

1/ 2
2G 2 a 2

It is convenient to distinguish between two limiting cases . Suppose that yi
is small compared to aid. Then

aCa
112

	

a

ymin1 log
opid

	

for l <
d ,

	

(A.20)

where a = 2312exp(1/2) . The coefficient of y l is of order of 1 .5-2, and is

nearly independent of E and y1 , if Pi is small .

At lower energies, where y i > a/d, we find from (A.19) the minimum angl e

(iVl Ca1 11 2
iVmin = 2 ~~	 d/I = 2V 2 , (A .21 )for
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There is a smooth transition between the limiting cases (A .20) and (A .21) .

These two formulae are in good agreement with the qualitative considerations

in § 2, cf . (2 .9) and (2 .10) . It should be added that in the low energy region ,

where increasingly large impact parameters become important, the standar d

potential (2 .6), as well as (A .21), should not be considered as accurat e
estimates .

In the formula (A.21), where angles are large, hardly more than the
first atom contributes much to the deflection near the critical angle . It i s
noteworthy that in spite of the simplified transverse potential description
used here, the critical angle (A .21) is 14 per cent above the correspondin g

precise result obtained for scattering by one atom only, at a distance d .
This gives a justification of the use of transverse continuum potentials i n
one limit .

Appendix B

Quantal Corrections to Classical Descriptio n

The following discussion is divided in three sections, of which the tw o
first are meant as a preamble to the third . The first section, Single Collisions ,
concerns a familiar case of scattering, where a classical description is th e
more accurate the lower the velocity. The second section, Continuum String ,
illustrates that if the continuum picture were completely valid, the transvers e
motion of particles would be essentially classical . The third section, Perfect
String, aims at an estimate of the quantal correction to classical deflectio n
by an actual string. It is shown that, in contrast to other collision problems ,
the classical description is the better the higher the velocity of the particle .

Single Collision

In a single collision the condition for a classical treatment is determine d
by essentially two lengths, the wave length A of the relative motion an d
Lf = [t '(p)]-1 , i.e. the focal length of the classical scattering, V(p) bein g
the deflection for impact parameter p . The total uncertainty, å't9, in scat -
tering angle can be obtained in a way analogous to that used by Boi-iß 12 ) .

We assume that the angle 9(p) is small, and thus determined by (2 .1') .
With a wave packet of width år there are two contributions to å19', one fro m
diffraction and one from classical uncertainty in position, i .e .

l(d0)2

	

4(Sr)2 + (år) 2 .r(9, (P)) 2 . (B .1)
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The minimum value of (B .1) is obtained for (6r) 2 = A/(2?9''(p)), and becomes

(8'19)2 =

	

(P) .

	

(B .2)

In order to obtain a well-defined orbit, we may demand (my < 192 , or

d

	

1- < l ,
dp `9'(P))

which formula in the case of Rutherford scattering, .d = b/p, leads to the
inequality of Boaß 1S )

2Z1Z2 e 2
X

	

I .
hi)

For the screened field of the standard atomic potential, (2 .6"), the condition
(B .3) and the scattering formula (2 .1') give the somewhat stronger conditio n

2

x> 1+~2å 2 ~1+~2

The above formulae apply for the relative motion, where fi = it./Mov, and
0(p) is the deflection in the centre of gravity system. However, it may b e
shown that the results also apply in the laboratory system, if (2 .1) is ful -
filled, i .e . with A = li/Mlv and I(p) the deflection in the laboratory system .
This leads to a slight change in (B .1) and (B .2), since Mo is replaced by M1 .
However, (B .3), (B.4) and (B .5) remain unchanged, because the particl e

masses do not enter in these formulae, cf . (2 .1 ' ) .

It should be strongly emphasized that (B .3), and similar conditions for

the use of classical mechanics, are conditional and not absolute statement s
of limitations of classical estimates . Thus, (B .3) comes into play only if

one desires a well-defined angle of deflection at very large distances from th e
scattering centre, in one-body or two-body scattering .

Continuum string

Let us assume that the continuum approximation is valid . We may then

ask for the quantal. correction to classical transverse motion . This is a quite

straightforward problem, since both classically and in quantum mechanic s

there is conservation of transverse energy . As a simple example, we con -

sider a string potential U(r) = Z1Z2 e2 ma/(2dr), and a particle with trans -

(B.3 )

(B .4)

(B.5)
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verse energy E . The Boxa condition (B .4) applied to the transverse motion
with initial velocity vl = vy, and initial energy El = Ey 2, becomes

na 1
xl = ;s

.2d
~> 1 .

y

Since y <

	

we find that xl is always larger than (we put a " aoZ2-1/3 )

	

M

~1/2 /

	

1/ 2

til	 l

	

772/3 . ao

	

(B .7 )

The right-hand side in (B .7) is independent of energy E, and is certainly
large compared to unity if M1 is large compared to the electron mass m .
In the general case of string deflection the formulae (2 .21), (2.15) and (B .3)
show that a classical description is applicable if l « a. The essential point
is that quantal tunnelling to the centre of a continuum string does not occur .
The treatment can be extended, e .g . to continuum planes, but for the presen t
purpose this is hardly necessary .

The following curious transformation from perfect string to continuum strin g
may be illustrative . We start from a perfect string of atoms with spacing d. W e
imagine that each atom is cut in two equal parts, by a cut perpendicular to the
string, retaining the electron distances from the string . The halves are placed with
constant spacing d/2 . Next, we cut each half in two, the spacing becoming d/4 .
This process can be continued, the string approaching more and more a true con-
tinuum string . On the one hand, consider an isolated collision between the moving
particle and the fraction of an atom remaining at the n'th stage . The Born ap-
proximation will take over and be . the more accurate, the higher the stage, an d
orbital pictures of the deflection fail completely (cf . the previous section) . On the
other hand, the continuum description of the particle motion gets more and mor e
accurate as the cutting proceeds, and the estimates in the present section becom e
relevant . In point of fact, the motion becomes rather classical . But in any case ,
the use of a continuum description is not determined by the isolated scattering by
single entities ; the decisive parameter is the length of the time interval d/v, be-
tween successive collisions, as will appear from the following section, and from
(2 .27) .

Perfect string

When considering quantal corrections to the classical treatment of a
set of successive collisions, we must compare the relative magnitude of a
number of quantities . We can introduce five basic quantities of this kind, i .e .

Lf

	

[0' (r)1-1 ,

	

a,

	

d, Leon,

	

(B .8)

(B .6)



62

	

Nr . 1 4

where the first three parameters belong to single collisions too, whereas d
is the distance between successive collisions, and Leon = v • 4 t, cf. (2 .7) ,
the effective collision length with one string, combined of many separat e
atomic collisions . It is apparent that Leon > d » a, and in the type of col -

lisions considered here we also have « d .
Besides the above lengths, we are concerned with others, partly con-

structed from those in (B .8). Thus, if a wave-packet is formed in the trans-

verse motion, of width Or, the wave-packet does not spread essentially o n

a path length Lw = (år) 2 /% . We want to choose the size (år)2 of wave-packets ,

i .e . Lw , in an optimal way . A crucial question is whether Lw is large or

small compared to d, the distance between successive collisions . Let us

tentatively suppose that d could be large compared to Lw ; we would then
have a set of randomly adding fluctuations . In the i 'th collision the angula r

fluctuation is analogous to (B .1),

s

(å?5')

	

4 br• ? + (Sr)i~' '2 ( r •i) ,
( ) 2

i .e. at minimum

(år)ß

	

(å19)z = M'(ri ),

	

(B .10)

and totally the angular fluctuation would becom e

(819) 2 = Alz9 '(ri ) .

	

(B.11 )

However, in this derivation we assumed that d > Lw i , where Lw,i = 1 /219 ' (rî )

according to (B .10). Since 19 '(rî) 19(rî)/ri , this implies that d > ri / 19i ,

which is in direct contradiction to the basic condition (2 .7), requiring tha t

several collisions take part in the repulsion of a particle, i .e . Leon > d.
We must therefore assume that Lw ,.. d, and can conclude that (B .11) does

not apply . The conclusion that the wave-packets in consecutive collision s

are not independent is in agreement with the inequalities (2 .27), (2 .27 ') .

Disregarding the assumptions leading to (B .11), we must then consider

a wave-packet which approximately retains its width during the whole set

of collisions. If the width is 8r, the total contribution to angular dispersio n

from diffraction becomes (819)22a lffi• . = A 2 /4(år) 2 , which may be compared

with the corresponding term EA 2/4(år) in (B .9), (B .10). As to the tota l

uncertainty in deflection of the particle by the successive force fields, w e

assume that there is a lack of coherence between successive collisions . I f

they were completely coherent, the uncertainty in . total deflection would

(B .9)
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disappear when transverse energy is conserved . In order to get a sligh t
overestimate of the uncertainty, we assume incoherence between successiv e
terms, i .e. totally

(å~)2
4(å02 +

(år) 2 D9'r2 ( l i) (B .12)

leading to

(B .13 )(
å,0

) 2 =
and J

(B .14)(år) 2
= 2

[Ez9 ,2(ri )] -112 .

According to (B .13) and (B .14), both (6z9 ) 2 and (år)2 become smaller than
the corresponding expressions (B .11) and (B .10) belonging to completely
independent wave packets . Since z9 '2 (ri ) decreases strongly with increasing
ri , it can for large El be permissible to include in (B .14) only the effect of
the closest collision .

If we evaluate the summation in (B .13) as an integral, i .e. in the con-
tinuum approximation, we find

d1 ;
2 + cc'

	

1/2

(å19) 2 = i	 J dzU"2(r(z))

	

(B .15)
2E

-

where r(z) is the distance from the string as a function of the coordinate z
measured along the string . The integral in the brackets depends only on El
and on the impact parameter 1 in the transverse motion, but not on d .
Therefore, (B .15) tends to zero for d -> 0, as it should do for continuu m
strings, in contrast to (B .11) .

If (B .1h) is multiplied by E, it represents the change in transverse energy
in one collision. Let us consider a particle at different energies E, but in
each case with the same transverse energy El . According to (B .15) its in -

crease in transverse energy, by fluctuations due to quantal corrections, wil l
then be proportional to the wave length of its translatory motion . The
quantal corrections to classical description therefore decrease with increasin g
velocity v .

A more detailed discussion of quantal effects will be published shortly ,
in collaboration with Pa . LERVIG and V . NIELSEN .
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