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Synopsi s
A theoretical study is made of damage effects by particle radiations in matter, and thei r

dependence on energy, mass and charge number of an incoming particle, as well as on the com-
position of the medium . Typical examples of damage effects are the number of ion pairs forme d
in a gas, or the number of vacancies created in a crystal . We are particularly concerned with th e
consequences of the competition between energy transfer to atomic electrons and to translator y
motion of an atom as a whole . For these purposes, common integral equations are formulate d
and studied . We treat primarily average effects resulting from an atomic particle with give n
energy, but also their average fluctuation and probability distribution .

As an important example we study the division of the total energy dissipation, E, into
energy given to recoiling atoms, v, and energy given to electrons, E-v . Several radiation effect s
are accounted for from knowledge about E and v .

The primary quantities in a study of radiation effects are the cross sections for all relevant
collision processes . We use comprehensive estimates of cross sections, derived elsewhere in a
Thomas-Fermi treatment . Various simple approximations are introduced ; analytical and numer-
ical estimates are made of solutions to the integral equations . For many purposes nuclear colli-
sions and electronic collisions may be treated as if they were unconnected events, although this
is not quite correct, especially at low energies . Considerable simplification is obtained by a suit -
able scaling of energy . A key to a common experimental and theoretical study is provided b y
an incoming particle identical with the atoms of the substance. Only few experiments can at
present be compared quantitatively with theory .

Printed in Denmark
Bianco Lunos Bogtrykkeri A/S



§ 1 . Introduction

When an atomic particle is slowed down in a substance, a wide variety

of damage effects may be observed . Familiar phenomena of this kind ar e

the number of ion pairs formed in a gas, the number of electron-hole pair s
in a semiconductor, or the number of defects in a solid . Other damag e

effects have been studied less, or not at all, like the number of electrons

ejected from atomic K-shells, or the number of dissociations of molecules .
The observations of damage phenomena may be divided into two classes .

The one is particle detection, where the effect of a single incoming particl e

is observed and possibly recorded in time, and the other is the total damage

due to many particles, as in reactor materials .
All damage effects depend on a competition between the cross section s

for a multitude of different processes . Theoretical studies have been mad e

by many authors concerning some aspects of excitation and ejection o f

electrons. Other theoretical studies have been concerned with the average
energy required to form defects in solids . Less attention has been paid to

the question of the competition between, on the one hand, energy transfe r

to atomic electrons and, on the other hand, energy transfer to translatory

motion of an atom as a whole . Our knowledge of collision processes fo r

slow heavy particles has been scanty, and the mentioned competition doe s
in fact occur primarily for slow heavy particles .

To a wide extent all above damage processes may be described b y
integral equations which are formally equivalent . The differences concern

mostly the inhomogeneous parts or boundary conditions . But the competi-
tion between energy transfer to electrons and to atomic recoils can be de-

scribed by equations which have even more in common . This is becaus e
there are extensive similarity properties, of Thomas-Fermi type, betwee n
the competing processes in this case . The homogeneous integral equation s

in different substances are actually quite closely connected . It can therefor e
be worthwhile to study them in some detail . When we have gained insight
in the equations we can handle not only average damage effects, but als o
fluctuations and even the distribution in probability .

1*
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We shall be concerned mainly with one effect which corresponds to th e
simplest homogeneous equations . This effect is the division of the dissipate d
energy between electrons and recoiling atoms in the substance . More pre-

cisely, for an incoming particle of energy E we ask for that part 77 of the
total energy loss, E, which is ultimately given to electrons, and that part v ,
which is ultimately left in atomic motion . Since this division is a usefu l
and simple concept, we comment on it in some detail as an example of th e
application of the general equations .

It might seem as if the division into m and v were not quite well-defined ,
since we are not concerned with the final thermal equilibrium . However ,
on the one hand, the energy once given to electrons can be transferre d
back to atomic motion only extremely slowly and in exceedingly smal l

bits ." On the other hand, sufficiently slow atoms no longer excite electron s

and their energy may be frozen in or become thermalized. This may giv e
a qualitative justification of the separation into v and r) .

For the present purpose the quantities and v may be specified as fol -

lows. We consider ri as the sum total of the energy given to electrons, i . e .
for ejected electrons it is the kinetic energy plus the original binding whil e
for excited electrons it is the excitation energy . Correspondingly, v is the

total energy given to atoms, excluding internal excitation of atoms . Thus, rj
and v are quite well-defined, and have the sum 27 + v = E .** It is clear tha t
there must be a probability distribution P(v, E) d v in the variable v, such

that

S P(v,E)dv=1, v(E)= .vP(v,E)dv ,
0

	

0

and similarly for the higher moments . For the present we may disregar d

fluctuations and consider only e . g .

	

v (E) .
We shall attempt to show how ij(E), v(E) and other cumulative effect s

may be derived for all kinds of particles in any medium. Since T7 and v

are determined by the competition between energy transfer to electrons an d
to atomic recoils in all collisions during slowing-down, they are expecte d

to depend on the medium, on the type of particle and on its energy . Thi s

enormous variability can be reduced somewhat by studying at first the mor e

basic cases .

* An exception occurs if an electron by exciting atomic electrons gives rise to large vibra-
tions or even disruption of bindings in molecules (through a Franck-Condon effect or an Auge r
effect) . The energy transferred in this way from a moving electron into atomic motion can b e
appreciable . This effect must be studied separately, and is remarkable in that it does not occu r
in monatomic gases . - The role of the Auger effect is studied by Duesur and PLATZMAN (1961) .

** If more subtle distinctions are necessary, we may divide E into components other tha n

n and v . Examples are the energy escaping as X-rays or as near-thermal excitations .
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Let us start by considering the case where the medium consists of onl y

one atomic species, of atomic number Z 2 and mass number A 2 . Now, any

incoming particle, irrespective of its type, gives rise to recoiling atoms of the

medium, and we will have to make use of their value of v and 'T) . It follows

that the simplest basic case occurs when the atomic number, Z 1 , and the
mass number, A l , of the incoming particle are equal to those of the medium ,

Suppose that a particle belonging to the medium (Z1 = Z2) initially has

an energy E ; we want to find -i-I(E) . Collisions with atoms result in recoiling

atoms or ions which may have any energy E ' within the interval 0 < E ' <E,
and therefore the corresponding values of Ti (E' ) enter in the evaluation o f
rj(E), as must also the differential cross section for energy transfer to re -
coiling atoms . Clearly, the procedure must be to build up .7 starting from
zero energy, and the relative magnitude of the partial stopping cross section s
Se (E) and S,,(E) must he of direct importance . We shall therefore revie w
briefly the behaviour of the relevant cross sections .

When deliberating the approach to these problems, one should first o f

all bear in mind that extreme accuracy and separate computation of each
individual case cannot he the primary aim . Also, a discussion of quite lo w
energies of heavy particles, less than 100 eV say, is either unnecessary o r
may be made separately. It is therefore desirable to use statistical methods ,
of type of the Thomas-Fermi treatment, as far as possible. Since at moderat e
energies the interpenetration of two atomic electron clouds can be consider -
able, many atomic electrons with moderate bindings play a part, and sta-
tistical methods seem promising . In the case Z1 = Z2 , Al = A 2 the function

can depend on three variables, T7 _ ß(Z2 , A2 , E) . It turns out that the
Thomas-Fermi treatment together with a suitable approximation to scatterin g
reduces the number of variables . In fact, beside the energy measured in a
suitable Thomas-Fermi scale there is only one further parameter, which
even has approximately the same value in most cases . Such reductions in
the number of variables lead to highly desirable simplifications in the theo-
retical treatment .

We shall already here give a brief summary of relevant stopping cross section s
and differential cross sections . The cross sections are derived elsewhere (LINDHAR D
and ScIARFF (1961), and Notes on Atomic Collisions I and IV (unpublished)) . We
do not claim that the accuracy is very high, and in individual cases other author s
may have obtained better estimates . The primary purpose for the present is to hav e
available comprehensive formulas, applicable in as many cases as possible . Mayb e
the greatest uncertainty is the proportionality factor, k, in the electronic stopping .
A considerable number of observations on range and on scattering have been made ;
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they appear to be in fair agreement with the formulas quoted here (LINDHARD ,
.SCHARFF and SCHIØTT (1962)) .

Stopping cross sections .

The nuclear stopping cross section Sn = STndan depends on the particle energ y
E, and on the parameters Zl , Z2 , Al and A 2 . An important region of low velocitie s
corresponds to v less than - 0 .015 v o Z 2 / 3 , where Z2/3 = Z2/3 + Z2/3 and v o = e 2/TI .
In this region Sn remains nearly constant, and we shall sometimes approximate S n
by the constant standard stopping cross section Sn (similar to that quoted by Bolin
(1948)),

S° = (n 2 /2 .7183)e 2 a n Z,Z 2M 1 Z-1/3 (Ml +M2)- 1 . (1 .1 )

In a more accurate description Sn increases slowly towards a maximum (cf . Fig .1) ,
and (1.1) may be used in the neighbourhood of the maximum . Beyond it, Sn decreases
corresponding to an increasing negative power of E, but always slower than E- 1 .
In fact, Sn approaches the classical stopping formula in a screened Coulomb po-
tential .

It turns out that the nuclear stopping is most simply described by a suitabl e
scaling of energy and cross section . Introduce the dimensionless quantitie s

e = E	
aM

2	 -	 and e = RNM 2 . 4na2	
Ml

Z 1Z2 e2 (Ml + M2)

	

(Ml + M2 ) 2

as measures of energy and range, where a = 0 .8853 a° •Z-1 /3, while R is the usua l
range and N the number of atoms per unit volume. The derivative (de/de) _
S •(Ml+M2)/(4 ne 2 aZ,Z 2 M1 ) is a dimensionless measure of the stopping cross sec-
tion, S . To a good approximation all nuclear stopping cross sections are the n
described by one curve . This is shown in Fig . 1, where the solid curve was compute d
from the comprehensive scattering cross section in Fig . 2 . The approximation 5n =
Sn is represented by the horizontal dotted line (d e/d e)n = 0.327 .

The electronic stopping cross section is nearly proportional to v in a consider -
able velocity interval, i .e . for v < vl

	

Do- Z12/3, and is of order o f

Z 7/ 6 Z vSe 8 ne 2 a°	 12 • -, v < V .

	

(1 .2 )
Z

	

v°

This leads to an electronic contribution to stopping in an s-plot (de/de) = k . e.I/2 ,
where the quantity k as given by (1 .2) depends somewhat on Z 1 , Z 2 , Ml and M 2 ,
but is often within the interval 0 .10 <k <0.20, This holds in particular in the cas e
of Zl = Z2, Al = A 2 , where k = 0 .133 Z2/3 Ai l / 2, so that k varies only little wit h
Z2 . Merely in the special case of Z2 »Zl , with ZI comparable to 1, does k appreciably
exceed 0 .20 . The dashed straight line in Fig. 1 shows the electronic stopping for a
representative value of k (k = 0 .15) . It cuts the horizontal line Sn = Sn at an energy
E° corresponding to ee = 4 .75 .

In the neighbourhood of v = vl the electronic stopping has a maximum, upo n
which it decreases and gradually approaches the Bethe stopping formula.

Let us take the ratio (E) = Se/Sn as a measure of the division of energy

dissipation into electronic and atomic motion . The above summary of
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Fig . 1 . Theoretical stopping cross sections in -s variables . The abscissa is e1/2 , i .e . proportional

to v. The solid curve is (de/de),, computed from the Thomas-Fermi cross section in Fig . 2 . The
horizontal dashed line indicates (1 .1) and the dot-and-dash line is the electronic stopping cros s

section, ke1 "2 , for k = 0 .15 .

stopping cross sections then shows that there is a natural division into thre e

regions of different behaviour . In the lowest energy region, region I, th e

nuclear stopping is dominating and relatively little energy goes into elec-

tronic motion . Region I is bounded upwards by an energy roughly equa l

to E, . Above E, the nuclear stopping falls off, while the electronic stoppin g

goes on increasing as E 1f2 . This is region II, with an upper bound give n

by v 1 , i .e . e 1 is of order of 10 3 or larger . In region II the ratio increase s
rapidly, and the fraction of energy going into electronic motion must increase

correspondingly . Finally, above ei the electronic stopping starts decreasing ,

and the ratio , though still increasing, approaches a maximum value o f

order of 2M1,/m - 4000 ; this is region III . The division into three regions
is convenient only when Z, = Z2 .

Differential cross sections .
Although the stopping cross sections are relevant and give a qualitative pictur e

of the events, they contain only part of the necessary information . In fact, in the
following the integral equations demand a detailed knowledge of the differentia l
scattering cross section in nuclear collisions. As regards electronic collisions, we nor -
mally need no more than the stopping cross section itself .

We shall briefly recapitulate two different approximations to the differentia l
cross section in nuclear collisions, assuming the scattering to be approximatel y
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elastic (LINDHARD and SCHARFF (1961), and Notes on Atomic Collisions, I), First ,
in an s'th power potential, V (r) = Z 1 Z 2 e 2 as 1s- 1 r- s, with a l ma = 0.8853 a ° •
Z-1/3 , the differential scattering cross section is approximately equal t o

	

Cn

	

dT

	

( )
da=

TI-1/8 T1+1/s'
s >1,

	

1 . 3
m

where the incoming particle with energy E transfers an energy T to an atom orig-
inally at rest . Here, T < Tin = yE = 4 M 1 M 2 (1121 + M2 )- 2 E, Tma being the maximum
energy transfer in the collision . Furthermore, the constant Cn is connected to the
stopping cross section Sn, and is approximately given by

Cn 21
(52

a

	

3s-111/s

	

= (i_) s

	

12 Z Z e28s2) Tm

	

n b =MÛ2
0

M o being the reduced mass . In preliminary discussions these simple formulas ar e
quite useful, especially for explorative purposes . The case of s = 2, where Sn = S,°n
is independent of energy, appears to be a fair approximation at energies somewhat

below E . At extremely low energies, s = 3 is preferable . AL high energies s tend s
to 1 .

A more accurate description is obtained from an interaction potential V (r) _
(Z1 Z 2 e2 /r) m 0 (r/a), where p° (x) is the Fermi function belonging to a single Thomas -
Fermi atom. It turns out that the differential cross section is now to a good approxi-
mation, for all Z 1i Z 2 , A 1 , A2 and all non-relativistic energies, equal to

d v = .~ a2
2~3/2 f(11/2) r

where l = e 2 • (T/Tm) = 8 2 - sin 2
2

. The variable fis proportional to the energy transfe r

T, and to the energy E through e2 /Tm . Thus, one universal function of a single vari-
able, f (1 1 / 2), describes the scattering at all energies and scattering angles, and fo r
all atom-ion pairs . The function f was computed numerically from the Fermi func-
tion, and is shown in Fig . 2 . At high energies and not too small angles the expressio n
(1 .4) becomes equal to the Rutherford cross section, where f (x) _ (1/2x) . The equa-
tions (1 .3) and (1 .4) are used in the following in order to get first estimates of radia-
tion effects .

Some reservations should be made in connection with the cross section (1 .4 )
and the accompanying curve on Fig . 2 . First, at high energies e > 8 1 , the curve on
Fig . 2 is not very accurate at small angles, because the screening of the potential i s
reduced, the ion being stripped of most of its electrons . However, since at thes e
energies most of the scattering is Rutherford scattering anyway, no major error i s
committed .

Second, a more interesting correction is due to the circumstance that for larg e
angle ion-atom scattering a considerable energy is spent in electron excitation o r
ejection . This was observed by FEDORENKO and also by EVERHART and co-workers

(cf . FEDORENKO (1959)). The result is that such collisions are not elastic, and that

there is a correlation between nuclear collisions and electron excitation . Although ap -

(1 .4)
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Fig . 2 . Universal differential scattering cross section for elastic collisions, (1 .4), based on a
Thomas-Fermi type potential . At high values of t" it joins smoothly Lhe Rutherford scattering .

The cross section corresponding to power law scattering (1 .3) with s = 2 is also shown .

proximate formulas may be quoted for the cross sections of such quasi-elastic col-
lisions, the gain in generality hardly outweighs the complications due to the extr a
parameters in the treatment . Since the changes in our final results are presumabl y
small (cf . p . 15), it seems preferable to verify at first the gross features of the simpl e
formulas quoted above .

The general considerations in this introduction suggest a definite line o f
approach . It seems natural to develop first a formal theory of average dam -
age effects, and to consider basic cases (Zl = Z2 ) and possible simplifica-
tions, keeping in mind. the main characteristics of the above cross sections .
In this connection, the theory of fluctuations and of probability distributions
should also be given. We therefore treat these general topics in § 2 and § 3 .
A direct application of the above cross sections to basic cases may then b e
made, first by analytical methods (§ 4) and next by numerical computation s
(§ 5) . As an illustration of more complicated cases we consider a few
examples, which also have bearing on experimental results (§ 6) .
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§ 2 . The Basic Integral Equation

We shall now formulate and discuss the basic integral equation . The

discussion, admittedly, is elaborate, but it seems profitable to make clea r

the contents of each assumption or approximation . We consider at firs t

damage effects which are additive when due to independent events, so tha t

e .g . saturation effects are excluded . The basic equation will be formulate d

in rather general terms, but immediate simplifications must be made when
we treat solutions of actual cases . We study primarily the case where th e

particle belongs to the medium, and where the medium contains only on e

atomic species. When this case is solved, we may turn to equations fo r
more complicated situations . For the present, we consider the simple case

of average damage effects . Other averages, and the probability distributio n

in damage, will be discussed below .

We are concerned with a particle belonging to the medium, i .e . Li =
Z2 (and Al = A 2 ) . The particle has the energy E . We consider some un -

specified physical quantity, 90, such as the number of ion pairs in a gas ,

the number of vacancies in a crystal, the energy given to electrons, etc .
The quantity (p is arbitrarily taken to be zero before irradiation . The fina l

average value of 99, after irradiation by a particle of energy E, we call q~(E) .

Although we use this simplified notation, the quantity depends not onl y
on E, but also on Z2 (and A 2), and to some extent on the physical state o f

the medium. Further, the physical quantity may be changed later by re -

combination processes, like in the case of ion pairs, but we shall disregar d
recombination effects and consider only the intermediate stage before re -
combination . In practice, recombination may be either avoided or accounte d

for separately . It is important that the physical quantity 7(E) in question
is additive, i .e . for each separate slowing-down process all particles set i n
motion contribute additively to 9) . This could hold for the three examples

mentioned above .

The quantity g9(E) for the particle with energy E we may express i n
another way, if we suppose that the particle moves a path length dR in the

medium with N atoms per unit volume. There is then a probability NdRdan, e
for a collision specified by energy transfer T. to the mass centre of the struck
atom, together with energy transfer Tei to electrons (electrons labelled by
suffix i) . The collision reduces the ion energy to the value E - Tn - Teti ,

i .e . the ion will now have a 7-value equal to (7(E- Tn -Teti ) . At the same
ti

time the struck atom gets the 7-value (Tn - U), where U is the energy



wasted in disrupting the atomic binding. Finally, the electrons produced ar e
described by another p-function, which we denote as 9'e, and their contri-
bution to after the collision in question is then De (Ta- Ui ), where Ui

i
are the corresponding ionization energies . The above probability times th e
total 19 -value after the collision gives the contribution of this collision t o
Fp(E) . Afterwards we integrate over all collisions . There is left a probability
1 - NdR don, e that no collisions occur ; in this event the -value remains
92- (E) .

Collecting the above contributions we may write the original - 5,(E) as

q5, (E) = NdRsdan eL45, (E - Tn -% Tei,)+ g5, ( Tn- U)+fe(Tei- Ui)} -I-
i

+ (1 - NdR dan, e) VP (E) ,

which leads to the basic integral equatio n

dan
e {c p (E - Tn -fTei ) - -(p (E) + q5, (Tn - U) + Z9'e (Te,: - Ui)} = 0 (2 .1 )

ll

	

/

This equation may be said to state simply that the -value of the particl e
before the collision is equal to the sum of the -values of, respectively, th e
particle, the struck atom and the ejected electrons after the collision, aver -
aged over the probability of occurrence of the individual processes .

It may be noted that there is no necessity for the total cross sectio n

S dan,e to be finite, and thus we do not attempt to normalize the probabilit y
of the various events . The actual physical quantities entering are integral s
of dan,,e times quantities tending to zero as e .g . Tn , or faster . The cross
sections quoted in § 1 do in fact diverge . Of course, if classical cross section s
larger than the atomic size become important in the final results, it may no t
be possible to separate into collisions with single atoms .

In equation (2 .1) we have tried to avoid unnecessary details of notation .
Thus, in specifying cp for the incoming particle or for the struck atom w e
might include a dependence on the degree of ionization of the particle i n
question. We shall assume such specifications to be included if necessary ,
but the interpretation of (E), if there can be doubt about the state o f
ionization, would normally be that in cp the number of electrons carried by
the ion is considered to be a function of the ion velocity, and equal to th e
average number of electrons on the ion at the velocity in question .

The solution g5, (E) of the equation (2.1) can be found if -e is a known
function . This is the case if represents e .g . the number of vacancies pro-
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duced in a crystal, since electrons with moderate energies may not be abl e
to produce vacancies because of their low momentum, and thus = O .

However, in general there is an additional integral equation describing Fee .
For an electron of energy E the differential cross section is denoted b y

dun,e and the collision results in a recoil atom of energy Tn and an energy
transfer

T

ee to atomic electrons . In analogy to (2 .1) we immediately fin d

dan e { -0e (E Tn-- ~ Tei) Te(E) - (rn- U-)

	

Tel - Ui)} = 0 . (2 .2 )

Together with (2.1) the equation (2 .2) leads to a solution for both ( an d
iTe . In equation (2 .2) we may normally quite neglect the recoil of th e
nucleus ; (2 .2) then contains only Vie, and can be solved separately . An in-

coming electron usually gives only a small perturbation of the struck atom ,

and electron excitation may be separated into individual excitations . With
a differential cross section due we thus find in all the simplified versio n
of (2.2)

~~ daeLTe(E-'rei) - 9)-e(E ) + 4)e( Tei- Ui)} = 0 .

	

(2 .2 ' )

Equation (2 .1), supplemented by (2 .2) if necessary, describes the simplest situa -
tion. It may be useful to comment on the set of integral equations belonging to othe r
and more complicated cases . We give only a summary treatment, since the generali -
zations to be made are fairly obvious .

Firstly, if Z l Z2 we denote by q1 (E) the average physical effect produced by
particle 1 . The equation for v 1 (E) is obtained in the sanie way as (2 .1 )

{ daln , e l~P 1 (E-Tn -~ Tei
/
l-~Pl(E)+4~(Tn- U) +

JJJ

	

l
We( Tei -Ui)} = 0,

	

(2 .3 )
i

where d ai n, e is the differential cross section for collisions between particle 1 and
the atom 2. Evidently, (2 .3) requires that the solution of (2 .1) is known. In thi s
sense, equation (2 .3) is secondary to (2 .1) ; this applies also when we wish to com-
pare experiments and basic collision theory . It is interesting to notice that (2 .3) ,
in contrast to (2 .1), is not a typical integral equation ; if Tn + .'Tet is small, (2 .3 )
becomes a differential equation .

Secondly, the substance may contain more than one atomic element . Then ,
primary cases are those where the incoming particle is one of the atoms in th e
substance, and the function Tp(j)(E) belongs to the case where the incoming particl e
is equal to the j'th atomic species of the substance . In place of (2 .1) and (2 .2) we now
write generally

m+1
dxSkj (E,x)T(j)(x)=0,

	

k=1,2, . .,, m+1,

	

(2 .4 )
j = 1

where m is the number of atomic elements in the substance, and ßy( 1 ) . . . . V (m) ar e
the q3-functions of these elements, while rp(m+1)(E) represents Te(E) . The integral
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operator Skj is associated with collisions between the k'th element, of energy E ,
and the j'th element at rest . As an example, we quote the basic case (2 .1) and (2 .2) ,
where m+1 = 2, and e .g . S21 = Sdun'n',eå(x-Tn+U), according to (2 .2) .

Let us now return to the basic integral equation (2 .1) and discuss th e
approximations which might be made in solving the equation . It is useful
to classify these approximations ; roughly, they may be divided into fiv e
types .

Discussion of approximations .

The first approximation, (A), was introduced above . It consists in as-
suming that the electrons do not produce recoil atoms with appreciable
energies . This is usually quite correct and implies that rye may be obtained
separately, i .e . (2 .2) simplifies into (2 .2 ' ) . (A) is therefore normally fulfilled .
An interesting exception occurs if the disruption of atomic bindings ha s
significant influence on the measured effects (cf. footnote on page 4) . A more
straightforward exception is the case of incoming electrons of energies s o
high (Z 1MeV) that in violent collisions bound atoms can be directly dis -
lodged. In the following, approximation (A) is always used .

The second approximation, (B), consists in neglecting the atomic binding
term U in (2 .1) so that (Tn - U) is replaced by - (T.) . Since the bindings
are of order of some eV, we are normally quite justified in neglecting U ,
for heavy particles at energies where the electronic stopping has any in-

fluence at all on the events . Approximation (B) is used everywhere in th e
following, if not directly otherwise stated .

At this stage it may be of interest to mention cases where (B) is invalid . In
fact, if the binding energies contribute to (2 .1) in a significant way, the particl e
energy E is not exceedingly large compared to the binding term U . This implies,
on the other hand, that the electronic stopping is small and may be neglected . The
approximation may be called (B- 1), and we then obtain the simplified equatio n

S dan{4'(E - Tn)-m(E)+ry(Tn- U)}-0,

	

(2 .5 )

where d an is the differential cross section for elastic ion-atom collisions . This equa-
tion is essentially that used by SNYDER and NEUFELD (1955), and by other authors .
It should be noted that the binding term U is introduced in a rather symbolic way .
A thorough study demands a detailed description of the mechanism by which a n
atom in a lattice may be removed from its environment . Thus, beside the energy
wasted irreversibly, U, when an atom is quickly removed, there is e .g . the threshol d
energy for adiabatic removal of the atom. The generalization of (2 .5) to a substance
containing several different atoms in various binding states should be obvious from
(2 .4) . Note also that the approximation (E), introduced below, may be useful in
studies of (2 .5) .
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The third approximation, (C), is to assume that the energy transfer s
T to electrons are small in a relative measure, or Tei « E - Tn . Like (B)
this approximation should hold quite well if the particle energy is not too
low. In fact, we have approximately at high velocities Tei -E times electro n
mass divided by ion mass . In all, (C) applied to (2 .1) leads to

1
dan e {q~(E Tn)-q9(E)- ' (E-Tn)LTei +

11`

+9~(Tn)+~9~e(Tei -Ui)} = 0 ,

where approximation (B) is also included. Like the two previous approxi-
mations, approximation (C) is used generally in the following, exception s
being clearly stated .

The fourth approximation, (D), is separation of nuclear and electroni c
collisions . The idea is that only a negligible part of the electronic excitatio n
occurs at the small impact parameters where nuclear collisions play a role .
In point of fact, most of the electronic excitations are associated with larg e

impact parameters . It is then natural to disregard the slight overlap of th e
two types of collision effects, and (2 .6) becomes

(E)•Se(E) Sdn{(E_T)(E)+(Tn) }+ Sdaee(Te -Ui), (2 .7 )
i

where do-,, is the differential cross section for elastic nuclear collisions .
Se(E)

	

dae 7Te2 is the electronic stopping cross section, d ae being the

differential cross section for energy transfers Tel, Tee,	 Tei, . . . . to
the individual electrons .

Approximation (D), as expressed by (2 .7), is also used widely in the
following . It contains a definite assumption, the justification of which is les s
apparent and less justified than the previous assumptions . In (2 .7) we hav e

disregarded the connection between electronic and nuclear collisions ; they
are even supposed to be separable . From a series development in (2 .6) we
find that the term neglected on the right hand side of (2.7) is approximately

(7) " (E) S dan,e T,i

		

Tei . It is of interest to investigate the justification o f
i

(2 .7) using such correction terms .

In making approximation (D) we include approximation (C) . This is

reasonable since it implies only that -(5(E) - C ( E - Tei) = (E)X Tei . The
i
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2

correction for this approximation is therefore
2

q5" (E) S dan, e ( ' Tei) on the

left hand side of (2 .7), but is presumably not large .

Finally, the fifth approximation, (E), is to assume that also T. is small

compared to the energy E . Since the maximum energy transfer is normall y

quite large, and even equal to E if Al = A 2 , it might seem that this approx-
imation is poor . However, because the cross sections are strongly forward

peaked, the approximation remains fairly good, as we shall see in § 4 . Ap-

proximation (E), together with the previous simplifications, leads to

99'(E){Se(E)+Sr, (E)}

	

d°n99 (Tn) + S daeZTe( Tei -Ui),

	

(2 .8)

where Sn (E)

	

dan T n , and where the quantity neglected, as compared

to (2 .7), is approximately (1/2) -p"(E) . S daf T? on the right hand side o f
(2 .8). The approximation (E) may be regarded as an expedient to get a n

approximate solution of (D), i .e. (2.7) .

An interesting consequence of approximation (E) may be noticed. Thus,

if we disregard (D), and use only (E), i . e . Tn and 7Tei are small, we obtain

again equ . (2 .8), but now Sr, = dun, e T., Se = S
dun,e2 T . Further, th e

cross sections on the right of (2 .8) should be dame . The separation in (2 .8)

is therefore obtained independently of the separability of nuclear and elec-
tronic collisions assumed in (D) . Conversely, it can be difficult to relate

the integral equations for 17 to the degree of correlation between electroni c

and nuclear collisions, as referred to in § 1, p . 9 . In Fig . 6, the good agree -
ment between approximations (D) and (E) indicates that correlation cor -

rections to T(E) can not be large .

We shall sometimes use an approximation, (E'), which is much closer

to (D) than (E) itself

2 "(E)rn(E)+79'(E){Se(E)+Sn(E)1 _

5dU n (Tn)+5dae J5e (Tei - Ui ) ,
i

where I'n (E) = S do-nn .

When is determined by an equation like (2 .2 ' ) it only enters as a

known source term in the basic integral equation (2 .1). Clearly, the primary

problem is then to find the complete solution of the homogeneous basic

equation, i . e. omitting the 99 e-term, in one of its formulations within th e

approximations (A) to (E) .
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It would be vain to ask for a detailed knowledge of dan, e , let alone
solve the equation (2 .1) on this basis . However, from equations (2 .7) and
(2.8) it is seen that knowledge of the stopping cross sections Se and Sn as
functions of energy is essential to the solution of the basic integral equation .
Apart from this, some knowledge of dan as a function of T. is clearly re-
quired . This is seen in all versions of the basic integral equation, where th e
term do'np(Tn) always enters .

It need hardly be added that in the following we introduce approxima-
tions other than those listed above. Most of the approximations are con-
nected with Thomas-Fermi-like properties or with the specific behaviour o f
the cross sections summarized in § 1 . An example of general interest is th e
attempt to formulate asymptotic equations in the high energy limit, cf . (5 .3)
and (5.4) .

§ 3. Fluctuations and Probability Distribution

Fluctuations .

So far, we have considered the average, -p(E), of an additive physical
quantity, q . However, it is of interest to discuss also other averages, fo r
instance the average of the square of the physical quantity . In general, w e
might consider <cpm (E)>, by which is meant the average over all events
of the m'th power of 99, so that <(E)> _ , (E) . The equation governin g
< m (E) > is obtained in a similar way as (2 .1), and we find in analogy
to (2.1)

dane{-<pm(E)>+<[p(E-Tn-%Tei)+(Tn) +

	

/

	

m

	

X 3 .1)
+X pe( Tei - Ui)] >} = O .

In principle, (3 .1) may be used to construct the average of any functio n
f(cp), e .g . by means of a power series development in cp . In practice, how-
ever, it is preferable to study instead the equation for the probability dis-
tribution in p, Pep, E) . A brief discussion of the probability distribution i s
given below .

How ever this may be, it is always of considerable interest to treat th e
case of m = 2 in (3 .1). This case indicates how equations of type of (3 .1)
may be solved, and gives at the saine time the average square fluctuation in p .
We therefore put m = 2 in (3 .1) and average over independent quantities

	

like e .g. the product <cp(F.Tn -

	

Tei)cp(Tn)> = 99 (E-Tn -Y Tei)9'( Tn) ,i

	

i
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where we average over the subsequent fate of two atoms of given energies ,
E -- T n - Tei and Tn . We get thus

where we have introduced the average square straggling S4 (E) = < 99 2 (E) >
-g) 2 (E), and S2 29, e (E) < cpë (E) > -- (E)

The right hand side of (3 .2) may be reformulated by means of (2 .1) ,
and we obtain

S dcne ~S2,1.„ (E)-S-4(Tn)- .54(E- Tn-~ Tei) Z'S2~e(Tei Ui)} _i

= Sdcrn,e t -95(E Tn -

This is the integral equation which governs the straggling in rp, and i t
corresponds to the equation (2 .1) describing i itself. Also in a more for-
mal respect (3 .3) is similar to (2 .1) . In fact, if the right hand side of (3 .3 )
could be neglected, the resulting equation for the quantity S4 would be
exactly (2 .1) . Now, the right hand side of (3 .3) is a positive source ter m
completely determined by the known functions 9) and Vie . It contains the
square of a term whose average is zero, being the square of the change
in

	

in a collision, averaged over the different results of the first collision .
We shall not quote the separate equation for S2 ,2 e(E), in analogy t o

(2 .2) or (2 .2 '), since it would be of type of (3.3) and could be writte n
down immediately . Moreover, simplifications in (3 .3), corresponding to the
approximations (A) to (E), are fairly straightforward. We consider explicitl y
only a few cases . Suppose that energy transfers to electrons are small, and
that nuclear and electronic collisions are separable. This corresponds t o
approximation (D) . In the cases where -e is zero we then get, in analogy t o
(2.7),

Se (E)	
d

E dS2`E) -
dan{ S4(E -

	

-
~

	

2

	

t
STn)S2,(E)+52~(T.) +

+dßnfq -Tn)-Ø(E)+rP(Tn)}2 ,

2
where also the term (g) ' (E))2 da'e

	

Tei ) is disregarded .

Mat . Fy9 .Medd .Dan .Vid .Selsk. 33, no . 10 .

S-S dun,
e~~V),

(E-7'n -

4p(E ) +52~( Tn) TG Srrye( Tei - Ui)} = I (3 .2 )
2

9~
_

( Tn) +~
-,

4~e ( Tei - Ui) - _932 (E) f ,

1

_

	

2

	

(3 .3)

-q (E) +cp ( Tn) + ZTe( Tei - vi)}

(3 .4)

2
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Assume here that Tn in (3 .4) is small, i .e. approximation (E) . Fro m
(3 .4) we obtain, corresponding to the homogeneous part of (2 .8) ,

j S i Se
dS~ 2 (E)

	

n S2 (Tn ) + do- J T

	

T-' E \
L n

	

} dE

	

~da ~

	

nli~( n) - n9 ( )}2

	

(3 .5)

Although (3 .5) appears to be simpler than (3 .4), we shall find in § 5 that
in a straightforward case equ . (3 .4) has the advantage of simplicity .

Let us consider for a moment what kind of changes will result in (3.5) ,
if approximation (D) is dropped and only (E) and (C) are kept . Then, Tn
and ' Tei are small, but a correlation between electronic and nuclear colli -

sions remains . According to (3 .3), all cross sections in (3 .5) must be replaced
by dan, e , but moreover the term (-45(Tn ) Tn Ø ' (E)) 2 on the right change s

2
into (g9(Tn)-~p'(E) Tn + ' Te2J) , and for this reason the effect of correla -

tions can be distinguished . In this respect (3 .5) differs from the corresponding
equation (2 .8), where we also discussed omission of approximation (D) .

Corresponding to the equation (2 .3) for g 1 (E), we shall also discuss th e
straggling in the case of Zl � Z2 . The average square straggling in 994 i s
denoted as .Q ,2 1 (E) . We consider again the case where cpe does not con -
tribute. Using approximation (D) an equation analogous to (3 .4) is obtaine d

Sle dE

	

(E)

	

da 1n1541(E - Tn) - 52 ,2 1(E) + S4, ( 7'n)! +

+ ~da1n{'1(E - Tn)-rPi(E)+ii)(Tn)}2

	

(3 .6)f

where Ø(E) is given by (2 .7), S4(E) by (3 .4) and g) 1 (E) by (2 .3) in ap-
proximation (D), while dale is the differential nuclear cross section for col -

lisions between the particle 1 and an atom 2 . Further, Sie is the electroni c

stopping cross section per atom for the particle 1 passing atoms 2 . It is

seen that. (3.6) contains (3 .4) as a special case . In (3.6), terms of type o f
2

Tei) are omitted .

Finally, we apply the approximation (E) to (3 .6), i .e .

(Sle+Sin) .Q 1 (E) =
J
dain Qry,( 7'n) +da1n{ ( T.) - 7'n9~1(E)}2, (3 .7)

where 9p, 52 2 and 9'1 should be given in approximation (E) too . Note tha t

(3 .7) is a differential equation in the variable 52 229,1 , and may be integrated
readily .
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Probability distribution .

We have now studied average quantities, m (E), described by rather simpl e
equations, as well as fluctuations, S2 2(E), which obey more elaborate equations . Thes e
are the first two steps in a series development, where successive moments < ryn >
are calculated . The series development is convenient if the first moments give ade-
quate information, since they may be calculated with comparative ease . Often ,
further information is needed. When the value of a series development become s
doubtful, a closed equation for the probability distribution itself is much to be pre-
ferred . Other approximation methods arc then at our disposal .

It is thus of both theoretical and practical interest to study the probability dis-
tribution itself . We shall merely formulate the basic equations . Let us then ask for
the equation analogous to (2 .1), where one considers the effect of an incomin g
particle with energy E, and identical with the atoms in the medium. Introduce
probability distributions P (ry, E) and Pe (ry, E) representing the probabilities that ,
respectively, the particle and an electron having energy E will produce the damag e

effect rp . Therefore, e .g . çPe (ry,E)d ry = tpe (E) is the average effect produced by
0

an electron of energy E. The equation governing P (ry,E) is derived in the sam e
way as (2 .1), making the same assumptions . We find readil y

S dcr n,e P ((p 'E) = S dan, (d99'sd9 " li S71(pi Pe (9j,

	

Ui) .
.o

	

o

	

j

	

o
(3 .8 )

1 (',_ T

	

Tei)'P

	

', T n U) .årry ._(p'_cp"-2,ryi)

	

1i

	

å

The equation states that the probability for the value ry prior to the collision is equa l
to the product of the individual probabilities belonging to ejected particles, whe n
averaged over the frequency of occurrence of the different events . There is an inte -
gration over all possible p-values of the ejected particles, with the condition tha t
their sum is equal to the original p-value, as expressed by the 6-function . Thus ,
(3 .8) assumes independent behaviour of the separate events, i .e . product of P's ,
and additivity of damage effect, i .e . ry = ry' + (p'

	

' q .

Equ. (3 .8) determines P (rp,E) and Pe is considered as a known function . I f
(3 .8) is multiplied by ry and integrated over ry from 0 to oo, equ . (2 .1) results .

There is a similar equation for Pe ((p,E) . We write it down assuming for sim-
plicity that electrons produce no atomic recoils (approximation (A) and equ . (2 .2') )

Ç dciPe (ç,E)

	

5da d' 7( ~ dpi Pe(p i, Tej Uj )
o

	

•

o Pe ( T ' E

	

Tei) (ry - So' - 2,T
i) 1

where doe is the differential cross section for transfer of energy Tee to atonic elec-
trons by an electron of energy E. There are further simplifications, if we take into
account that an electron normally ejects at most one atomic electron in a collision .

2 *

(3 .9)
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In (3 .8) let us assume that electrons do not contribute to the damage effect i n
question, i .e . Pe (92,E) = S (p) . In approximation (D) we then get, since P (92,0) _
(5 (9)),

Se (E) aE P (4 ,E) +d o'n P(T ,E

) =~d6n~drpP(4~,E - Tn)P(T,Tn)6 (<p_ 92'-(p") .
0

	

0

The bond expressed by the 6-function can be inconvenient . It is natural to in-
troduce Laplace transforms of the probability distribution ,

P(À ,E) = d w P (w, E ) e-4) .

The Laplace transforms are particularly useful because of the additivity of T .
From (3 .8) we obtain the alternative version

Sdcrn , eP(A,E) = Çdan , eP(A E

jTPe( A , 1'el - Ul) ,

and if Pe is zero we have Pe (A,x) 1 .

§ 4. Analytical Approximations in Homogeneous Equatio n

The first step towards a solution of (2 .1), or its simplified versions, is t o

discuss its homogeneous part, i .e . put cp e = 0 . Now, it so happens that th e

quantity v(E), introduced in § 1 and described as the average energ y

transfer to atomic motion, is normally a solution of the homogeneous par t

of equation (2 .1), because the energy transfer from electrons to atoms is
negligible to nearly all purposes . By solving the homogeneous equation, w e
have therefore found one important physical property in slowing-dow n

processes . In the following, the normal boundary condition on T;(E) i s
T(E) /E -~ 1 for E -} 0, and thus i7 (E) / v (E) vanishes in this limit .

It is necessary to gain some experience concerning solutions of the inte -
gral equation . To this end we consider at first analytical solutions usin g

simplified approximations to cross sections ; this can be of interest partic-
ularly at the lower energies . Secondly, in § 5 we solve the integral equa-

tions numerically with more accurate cross sections, using electronic com-

putations . We are then led to new asymptotic or approximate solutions ,

which may be checked by the numerical and analytical results. The present

P(A , 1' n _ U) .
\

j'ei
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chapter may therefore be regarded as an exercise preliminary to the mor e
precise treatment in § 5 .

The simplest results obtain when we suppose that the differential cross
section dan may be approximated by the power law scattering formula (1 .3) ,
corresponding to a potential proportional tor-s . We can then arrive at ana-
lytical solutions of the various approximations to the integral equation .
Let us start from approximation (E), i .e . (2 .8) . The homogeneous equatio n
(2 .8) for T becomes

E

(Se +Sn)-v (E) = d7 dTT,(T),

	

(4 .1 )

T o

where has been replaced by T . We introduce (1 .3) in (4.1), and multiply
by Sn' El-11s Differentiating with respect to E we get a differential equatio n
of second order in place of the integral equation (4 .1) ,

( (E) + 1) E 2 f," + {E e' (E) + (1 1 ) (1+e(E))}Ev'-(1- ) = 0,

	

(4 .2 )

where e(E) = S5(E)/Sn(E) . It is apparent that a differential equation was
obtained from the original integral equation only because of the simpl e
behaviour of the cross section (1 .3), where the dependence of dan on E
could be separated out as a factor .

Corresponding to (1 .2) we shall assume that Se«E1f2 , and since oc

E1-218 we get e(E) a E21s-112 It then turns out that the solutions of (4 .2)
are hypergeometric functions, of the kind F (a, b ; a + b ; x), cf. ERDÉLY! et
al . (1953) . The complete solution of (4 .2) is seen to be

v(E) = C1E•F/
2s

	

s+2

	

3s+2
-4E)) +4-s ' 4-s '

	

4- s
1-s 2-2s 4-3s

	

6-5s
(4.3)

+C E s • F2

	

(

	

' ' -(E) ) '4-s 4-s

	

4-s ;

where C1 and C2 are arbitrary constants .

If we ask for the particular solution given by the normal boundar y
condition for Ti at E = 0, i .e . '',7(E) /E -> 1 for E -~ 0, we obtain C 1 = 1 ,
C 2 = 0, if s < 4 . Nole that only for s < 4 does the present e(E) tend to zero
for E - 0, and that this is the proper behaviour of e(E) .

If instead of (2 .8) we start from the more correct equation (2 .7), the cross section
(1 .3) is seen to lead to the equation
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o
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The integrand on the right is large only for T E . Making an underestimate of the
integral (because v" (E) is always negative and increases with E) we then replace
T-1-118 by E-1-lis in the integral. This gives the differential equatio n

E 2 i " •( +-+-- + E v' iE '-1-il--l(f+1)j-(1-s)ii=0 .

	

(4 .4 )

This equation differs only little from (4.2), but is an underestimate of 17, as com-
pared with the precise solution of (2 .7) and (1 .3) . It is interesting that 17 from (4 .2)
is instead an overestimate of the solution of (2 .7) and (1 .3) ; this follows from v ' (E)
being a decreasing function of E . We have thus bracketed the solution of (2 .7 )
between two approximate solutions . It turns out that (4 .4) is generally a somewha t
better approximation than (4 .2) . The solutions of (4 .4) are seen to be hypergeometri c
functions, of the type

	

E

	

2s

	

s+2 (4 +s)a-+-2s-2

	

$(E)\\I (4-s) ' (4-s) '

	

(4-s)a

	

'

	

a 1
and

1=s ( 2-2s (2 -s)a +2-2s (4 -3s)a +2-2s _ “E)\

	

Esa .F	 	 	 J
(4-s) a '

	

(4 -s)a

	

(4-s) a

	

'

	

a

1 1where a = 2 + 2s is
the coefficient of 1' in the brackets in (4 .4) . The present solutions

of (4 .4) are similar to (4 .3), and contain it as special case (a = 1) .

Region I. In region 1, where 0 <E we may select a few suitable values
of s, and study some of the approximate solutions . In doing this, we obtain
not only a reasonable estimate of v(E), but also an insight in errors involved
in some of the simplifications, (A) to (E), of the basic integral equation .

Let us consider the standard case, where s = 2 and Sn = Sn is independ-
ent of energy, cf. (1 .1) and (1 .3). We put (E) = (E/EY f2 , and obtain from
(4.2) and (4 .3), with the boundary condition i (E)/E = 1 at E = 0 ,

i(E)=Eck-12+6[1+2(Ec/E)112 ]•log(1+(E/Ee ) 1" 2 )f, (4 .5 )

representing the solution of (2 .8) -i .e . approximation (E) -for power law
scattering with s = 2 . The solution (4 .5) can be used only at energies wher e
E/E, is somewhat less than unity . This limitation must be made because a
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decrease sets in in the actual function Sn at an energy somewhat lower tha n
Ee , in most cases .

Let us consider in particular the limit of (E/Ee) « 1, where a more gen-
eral approach is possible . In fact, in any one of the approximations (D) to
(E ') we get, when s = 2, a power series in (E/Ee ) 11 2

~(E) = E T (E) = alE312 E---1J2 - . . . , E « Ee ,

	

(4 .6 )

where a l is a constant, the value of which depends on the approximation
used. We compare four solutions of the case s - 2 . Firstly, approximation
(E) given by (4.5) leads to a l - 1 . Secondly, a series development of th e
solutions of the approximation (4 .4) leads to a l = 16/13 - 1 .23 . Thirdly,
the more correct integral equation (2 .7), i .e . approximation (D), may b e
solved by a series development, leading to a l = 4/(3 oz - 6) = 1 .17 . These
three values for a t give an indication of the accuracy of the various approxi-
mations . As expected, (cf. the discussion of (4 .4)) the solution (4.5) is a n
overestimate and (4 .4) an underestimate of v(E) ; (4.4) is a somewhat better
approximation . A fourth case may be mentioned, i .e. approximation (E ')
given by equation (2 .8 '). It consists in including the next term in the series
development of T,(E - Tn) - v (E), i . e . subtract (1/2) (E) don Tv! on the left
hand side of' (4 .1). We find here a l = 8/7 = 1 .14, so that approximation (E ' )
is superior to (E) .

Region II. In this region the function Se remains the same, increasing a s
E X12 . However, Sn begins to decrease and the scattering approaches the
Rutherford scattering, though with a screening at a distance -a. For a
qualitative orientation we again base our description on (1 .3), so that we
assume that Sn is proportional to a power of E, i .e . E1-215 . This ap-
proach is qualitatively less justified than in region I, but we can lear n
about the possible approximation methods for solving the basic integra l
equation .

Let us suppose that S n is proportional to E-112 for E > Eo , so that s .-
4/3 in (1 .3), and 4E) _ (S e /Sn ) _ (E/E b ) . Then, Eb = (E0 Ee)1/2 is the energy
at which the two stopping cross sections become equal . Equation (4 .2) for
v now becomes

(4E3 41 +4E2)v" +(5E2 Eb1 +E)v'=0,

	

(4.7 )

with the complete solution (cf . (4.3))
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E1/2+ V 2 El/4 +

	

= C l ' 5Eb{ I- 1_

	

log	 1

	

4V2

	

E1J2 -y2 E l /4 + 1
i/ 4

0 1 , 2 r1f4 arctg 12112 } + C2
-114Eb 11 4

The solution is determined by the boundary conditions at the energy Eo ,
where wc find v and P ' from (4 .5) . Thus, Cl is given by

C 1 = 1j x-2+5(x+1)( .x, -2)x3 log(1 +x) 2-L 1- J .x + . . .,

	

(4 .9)

where x = Eo/Eb is less than unity for all values of Z1 = Z2 . The expressio n
for C 2 is more involved, but C 2 <0 . This shows that although v(E) increase s
with E, it remains below the value C l , and it increases only slowly toward s
this limit. In region III, however, it turns out that v will go on increasin g
without an upper limit, although still quite slowly . The behaviour of (4 .5)
in region I and (4 .8) in region II is shown by the dashed curve in Figs 5
and 6 for the case of s c = 4.75 (k = 0 .15) and x = 0 .56, where it is com-
pared with a numerical estimate based on the more accurate scattering
formula (1 .4). It may be noted that the value of C 1 is not far from unity,
and that C 2 is small . If we were to put C 1 = 1 and C 2 = 0, we would instea d
have the solution where s = 4/3, i .e . (4.7), is used down to zero energy ,
and apparently this is satisfactory as a rough estimate .

In region I the solution (4 .3) of the equation (4 .2) was an application of approx-
imation (E) using the cross section (1 .3) . It might therefore seem that also in regio n
II the equations (4 .7) and (4.8) are equivalent to approximation (E) . IIowever, w e
change from one cross section d an in region I to another in region II . Since (4 .2)
and (4 .7) were obtained by differentiation of (4 .1), they should be supplemente d
by inhomogeneous terms if the cross section changes at low values of TE . Thi s
circumstance is disregarded in (4 .7), (4 .8) and (4 .9), giving some deviation from (E) .

Straggling in region I . An evaluation of the straggling in v or al, Qv(E) _

541 (E), from (3 .3) is more involved than the estimate of v itself. Still, at low
energies in region I, a series development may be made and the first ter m
is readily obtained . If (1 .3) is applied, it turns out that the relative stragglin g
in r1 becomes a constant, independent of energy (and atomic number and .
mass) at low energies ,

a2 =
S2 "

I	 (E) = tonst., for (E) « 1 .

	

(4.10)T7-2( E)



Nr . 10

	

2 5

If we consider the standard case, s = 2 in (1 .3) and = (E/Eo ) 1(2 we
find at low energies that is proportional to E312 , cf . (4 .6) . We solve (3 .5)

and get a 2 = 1/14 . We may also solve directly the more basic integral equatio n

(3 .4) for 51 2 , which corresponds to equation (2 .7) for Ti itself. Then we ob -

tain a 2 = (3 g/4) - (23/10) = 0 .0562, which is somewhat less than the pre-

vious value of a2 .

If, instead of the relative straggling, we consider the absolute straggling
51 1 , we find that (3 .5) gives closely the same as (3 .4), being only about 4
percent less than (3 .4) . The approximation (E) is therefore considerably

better for the straggling than for the value of the function 7j itself .

Since Sly is expected to be more accurate than a 2 , we quote the value of
51 21 obtained in approximation (E), i .e . (3 .5), using (1 .3 )

D (h, ) s (s -1) (s+3)2(11 s2+23s+6)
(E' e(E))2 , e(E)<< 1 , (4.11)

4(3s+2) (2s .3)(2s-1 )

which shows that the coefficient of (E' e(E))2 only varies from 0 .071 to
0 .109 when s increases from 2 to 3 . The corresponding variation of a2 may

be found from (4 .3) and (4.11) .

§ 5 . Numerical and Asymptotic Solutions for Z1 = Z2

Numerical results .

The analytical solutions in § 4 give merely some guidance in the problem ,
because they are based on the power law scattering, which has quite limite d
applicability . A fairly complete and reasonably accurate solution of the case
Zl = Z 2 may be obtained from representative values of the electronic stopp -

ing constant, k, together with the universal cross section given by (1 .4) and
Fig . 2 . It is convenient to use the e t variables in (1 .4). The electronic
stopping is then assumed to be (dE/de) e ° k' e'12 in regions I and II . The
homogeneous integral equation for -f i s

del 'v ' (e)
dele

dt . f(sll2
)

1 ~,
(8

(e)+(t)~,

	

(5 .1 )
E

i Ea

2
o

where N112 ) is shown in Fig. 2 . Note that (5 .1) is equivalent to approxima-
tion (D) .

The integral equation (5 .1), with (de/de), = k . 8 112 , was solved by numer-
ical methods on the electronic computer DASK . Actually, a slight modifi-
cation of (5 .1) was advantageous in the numerical computations ; if gives a
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slight overestimate of v as compared to (5 .1), and should be accurate within

a few percent . When starting the solutions at small values of e, the asymp-

totic behaviour of the cross section (1 .4) was assumed to be f(x) « x113, cor -
responding to power law scattering with s = 3 . We could here use the ana -

Fig. 3. The function (e) vs . e at low values of e, for Z l = Z 2 and in the three cases k = 0 .10, 0 .1 5
and 0 .20 . The curves were computed numerically from (5 .1) .

lytical estimates in § 4 . In the following, solutions are presented for k =
0 .10, 0 .15 and 0 .20, which covers the range of variation of k for Z1 = Z2 .

The results of the coded computations of v(e) from (5.1), i .e . approxi-

mation (D), are shown in Fig .s 3 and 4 for the above three values of k .
Fig. 3 represents low values of the energy variable r . In this region it i s
preferable to give the function ri (e) -P(6), because i (e) is nearly equa l

to e . Fig. 4 is a continuation of the curves up to e = 100 . The function 1 (e)

10
e'E)

/

/
E

10
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Fig . 4 . The function v (e) vs . e for 0 < e < 100 . The figure gives the continuation
of the three solutions in Fig . 3 .

increases initially as s, but remains small compared to s when s is large .

In region II, i .e . when (d s/d 0)e = k . 8 11 2, -v(8) has an upper limit, as discusse d

below .
As a preliminary to the above calculations we made numerical calcu-

lations by hand in approximation (E), i .e. based on the homogeneous part

of (2.8). It seems of interest to compare the two approximations. This is
done in Fig.s 5 and 6, in the case of k = 0 .15 . The full-drawn curve i n

Fig. 5 is the accurate solution of (5 .1). The dashed line is the analytica l

solution (4 .5) for power law scattering, with s = 2 . At s = 4 .75 this solution

is continued by (4 .8), corresponding to s = 4/3, cf . text in § 4. The accuracy
of the power law solutions is seen to be moderate. Similarly, Fig. 6 shows
1(s) for e < 100, in three approximations . The solid curve is the solution o f
(5.1). The analytical solution (4.8), for power law scattering with s = 4/3 ,

is continued from Fig . 5, and shown by the dashed curve . This analytical
solution is seen to become increasingly poor for large e . The stipled curv e
represents the abovementioned computation by hand in approximation (E) .
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As expected, (E) is an overestimate of by about 10 percent for high values

of e ; this may be a tolerable accuracy for several purposes .
The average square fluctuation in v, Q 2 (e), may be computed from

(3 .4), i .e . approximation (D) . In the coded computation we use 8- t vari-

(E)

AV"

IIP
/ - -

/ô-l

	

/

	

/o

Fig . 5 . Comparison of approximations for Z 1 = Z,, k = 0 .15 Curves show 17(e) vs . E at low
values of e . Thick solid curve is solution of (5 .1), like Fig .3 . Dashed line is power law for mula

(4 .5), with s = 2 . The curves approach the thin solid line n = e .

ables as in (5.1), and with f (t 1l2 ) given by Fig . 2 . The equation contains
inhomogeneous terms which may be computed from v(e) in Fig.s 3 and 4 .
Ate = 0 the solutions were started from the analytical approximations i n

.' 4, with s = 3 . The results are shown in Fig . 7, for the three values of k
used above, and relatively large values of e . The figure gives t 2 /v 2 , the

average square fluctuation divided by w 2, and the resulting curves are seen

to lie remarkably close to each other . It is instructive to compare variou s

/o
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Fig . (i . Comparison of approximations for Z 1 = Z 2 i k = 0 .15 . Curves show 17(e) vs . e for e< 100 .
The solid curve is solution of (5 .1). Dashed curve is (4 .8) continued from Fig. 5, corresponding

to power law s = 4/3 . Stipled curve was computed by hand in approximation (E).
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Fig . 7 . Relative average square fluctuation in v, S2 2 /v2 , for k = 0 .10, 0.15 and 0 .20 . Coded com-
putations in approximation (D) .
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Fig. 8 . 522 / 17 2 (two upper curves) and Q2/s2 (two lower curves) for k = 0 .15 . Solid curves com -
puted numerically in approximation (D), sLipled curves in approximation (E) .

approximations, as seen in Fig . 8 for k = 0 .15 . The solid curves represent
approximation (D), as in Fig . 7 . The stipled curves were computed by han d
in approximation (E) . The horizontal dashed line shows the point (s = 3) ,
from which Q2 /~2 in approximation (E) was started at e = O . The differenc e
between Q 2 /1.72 in approximations (D) and (E) is quite large, and here the
errors in 'Ti and in D2 seem to add, at low E-values . We believe that the accu -
racy in D2, at low values of e, is not quite satisfactory in any of the ap-
proximations used .

One important reservation should be made as regards the above com-
putations of F and < (v -v)2 > = D 2 . Apart from their definition as average s
in the probability distribution P(v), these two quantities acquire a simpl e
meaning if P(v) is approximately Gaussian, i . e . P- C exp {- (v -F) 2 /2 0 2 } .
However, sometimes the deviations from a Gaussian are noticeable . The
probability distribution then has an asymmetric peak, with a most probabl e
value v* slightly smaller than v, and with a width at half maximum which
may be considerably smaller than for the above Gaussian . There is also a
tail towards high v-values, decreasing with a power of v of about -2 t o
-2 .5, and having a cut-off at some high v-value . Examples of this kin d
were studied in a recent paper (LINDHARD and NIELSEN (1962)) . In any
case, it depends on the experiment performed whether one may use the
average values v and Q 2 , or take recourse to the probability distribution .
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In a particle detector, where damage events due to single particles are re -

corded individually, one should normally consider the probability distribu-

tion . However, if many events are recorded together, like the damage b y

thousands of particles in a solid, the events collect into a Gaussian distribu-

tion, with average value N- -f, and an average square fluctuation N•52 2 ,

where N is the number of particles .

If the electronic stopping continued to rise as k . 8 1 / 2 , (region II), there

would be an upper limit to v (e) . In the cases shown in Fig . 4 this upper

bound may be obtained from (5 .3) ; for k = 0 .15 this leads to Tj< 7 .8 . How -

ever, at an energy e i - 10 3 the electronic stopping has a maximum an d

starts decreasing, so that approximately Se /Sn tends to a constant - 10 3 .

Thus, in region III there is strictly no upper bound on v, but its increase
is extremely slow . We did not continue the coded computations into regio n

III, partly because a new stopping parameter would be required, and partl y

because simple asymptotic equations take over, long before region III is

reached .

Asymptotic equations .

Let us first consider a semi-empirical approximation to v, which may be

found from the numerical curves . In fact, from Fig . 4 it is seen that for large

e the function is nearly reversely proportional to k, i .e . to the electronic

stopping. This result cannot hold for e <1, where v e . However, in thi s

limit we found in § 4 that i = e-v is proportional to k, because the elec-
tronic stopping is small and a series development may be made of th e

function rI in powers of k . A simple comprehensive formula joining th e

two results v-gi (e)k-1 and v e-kg2(E), i s

v(E)

	

1+k•g(E)'
(5.2)

E

where g(e) - 0 for e - 0, and g(e) -* E in region 11 . On the basis of th e
curves in Fig .s 3 and 4, we have estimated g(e) as shown in Fig . 9. It ap-
pears that (5 .2) with Fig. 9 reproduces v(e) within an accuracy of som e

percent, for all values of e in regions I and II, and for the k-values of in -
terest when Z 1 = Z2 .

A convenient approximation, valid for large e, may be mentioned i n
connection with the numerical estimates . We note that for high energies E
the differential cross section (1 .4), as shown in Fig . 2, will be equal to the
Rutherford cross section, dan, except when T (Eo/E) - O . If therefore

we integrate a function of T, tending to zero as T, we may replace (1 .4)
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Fig. 9 . The semi-empirical function g(e) in (5 .2) .

by the Rutherford cross section, integrated from the lower boundary T =

.i 2/E, where the constant /1, is determined by 7'dß = TdaR . We might
o

	

»/E
make this replacement in the accurate equation (2 .7), but for the presen t
purpose (4 .1) is accurate enough . Since v(T) increases slowly at high T-

values, we can replace the upper limit E by 00 in the integral in (4.1) and
find, expressed in the 8-1 variables ,

de
(e)=e 4t2v(t/e)-loge+C,

	

(5 .3 )
P

t ,

where t o = 0.60, and C is a constant .
The formula (5 .3) is a useful and rather accurate approximation, pro -

vided e is larger than - 10 . It may be readily integrated, without recours e
to complicated coded computations . If we start using (5 .3) at an energy 82 ,
we may for instance fit v(e 2) and v (e2), the latter determining the constant
C . We may normally disregard (d e/d e)n and write de/de = (de/de), . In
region II we put (de/de), = k • e l/2 , and in this case (5 .3) leads to an upper
bound for f (e), as mentioned on p . 31 . We note furthermore that according
to (5 .3) the increase of f(e) is proportional to k-1 , in agreement with (5 .2) .

An equation similar to (5 .3) may be derived for the average stragglin g
S2 2 (e) . For this purpose we consider equ . (3 .4) . Since the integrand on the
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right tends to zero as T 2 or faster, we may directly put dc = do ll for high

energies and integrate from 0 to E, because the integral converges rapidl y

at T = 0 . We may also simplify the right hand side, since clearly f (T)

is the dominating term for small or moderate T, where the differentia l

cross section is large . Because v 2 (T) saturates we then have the simpl e

limiting approximation

se'
E 4

1
2 ti2 (t/E) = y~(E) .

	

(5 .4 )

o

dde
S2 2 ( E ) =('de '

E -

, de

We observe that the right hand side of (.5 .4), v(e), tends to a constant fo r

large s . The magnitude of y(e) may be estimated roughly by putting (cf.
(5 .2)) f (x) = x . (1 + kx)-1 , leading to y(e) = T (e) . 4 -1 -9- k-14-1 . Now, in re-

gion I I we then obtain (d Q 2/de) s T(e)4-1 . k-l e-312 , leading us to expec t

that for large e the function Q2 is proportional to k-2 . Actually, this resul t

fairly well corresponds to the curves in Fig . 8 . In the opposite limit of lo w

e-values we have found that Q 2 k 2 .

§ 6. Outline of Treatment for Z 1 � Z 2

From the previous discussion it appears that the most direct connec-
tion between experiments and theory may be achieved in the case of Zl = Z2 .

Unfortunately, there are as yet no measurements of this kind .

A brief treatment may now be given of more involved cases . We con -
sider problems where the incoming particle does not belong to the medium ,

but the medium still contains only one atomic species ; we write briefly

Z1 = Z2 . As we shall see, our previous division into three energy region s
can no longer be upheld . At the lowest energies the description remains
comparatively simple, and experiments are available for comparison with

theory .

We shall not consider erases where the medium contains more than on e
element . The formulation of accurate general solutions can here becom e
quite complicated, but solutions of special cases may be worked out numer-
ically . Several measurements are available .

Consider then an incoming particle with atomic number Z l different
from Z2 . We assume that the case of Zl = Z2 is already solved, as described

in the preceding paragraphs, and the corresponding solution for the energ y
given to atomic motion is v(E) . The unknown function for the case Zl Z2

Mat . Fys . Medd. Dan .Vid . Selsk. 33, no. 10 .
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is denoted as vl (E) . The integral equation for i i is obtained from (2 .3) ,
where we introduce approximation (D) ,

yl(E)' S1 = \ da l {vi (E-T)-vi (E) +(T)) .

	

(6 .1)

Here, Sie is the electronic stopping cross section for the ion Z l in the mediu m
Z2 , and dal is the differential cross section for an elastic nuclear collisio n
between an ion Z l and an atom Z 2 , with corresponding stopping cross sec -
tion Sin .

In (6 .1) enters v(T), where T< Tm = yE ; y = 4 M,M2 /(M1+M 2) 2 . Our pre-
vious division into three regions was characterized by the energies Ec and E 1 ,
belonging to the atoms Z 2 . Putting Ec and E l equal to the maximum recoil energ y
Tm we obtain for the particle Z l two characteristic energies Et c = y-1 E, and
E 21 = y- lE 1 . However, the stopping cross sections S l c and S i n for the particl e
Z l give rise to a further subdivision . In fact, at energies lower than Ei c we may
assume that Ste/S1n increases slowly, with a power of E between 1/2 and 1/6 .
At the energy E l , the ratio 51e/51n is comparable to 1 . Next, above Ei c there i s
a decrease in S i n while Si e continues to rise as E l/2 until the energy Eli is attained .
For still higher energies Su decreases and the ratio Ste/S1n increases towards a
constant -403 . Formally at least, we might then distinguish between five energ y
regions, separated by the energies Etc, E re, E21 and Eli .

We limit the discussion to the lowest energy region . It is bounded upwards b y
either Ei c or Et c . Approximate values of these energies are Eic 4 A1(A.,+A2)-2
Z4/3Zj1/3 .500 eV, and Etc (Ai +A 2) 2 •A11 Z 2 . 125 eV . When Z l »Z2, El c will
be larger than Etc, while for Z 2 »Zl the energy Et c becomes considerably large r
than Eic . For Z l = Z2 the two energies are of course equally large .

Assume now that the energy is below Ei c and Etc . We may then make th e
sarne approximation as in § 4 in region I . As an example we consider the standard
case s = 2, leading to energy independent nuclear stopping cross sections, so that
S t e/S1n = (E/E l c) 1 / 2 and Se/Sn = (E/Ec) 1 / 2 . For v(E) we can then apply approxima-
tion (4 .6) with cr i = 1 . The corresponding series development may be made i n
(6 .1), i .e . in approximation (E) . Using the expression (1 .3) for do- we obtain

'q1 = E-P 1 = AE 3 / 2, for E < E1c, Etc,

	

(6 .2 )

where A = 3 {E1 e1 2 +2y1/2E- 1/2l .

Next, we determine the straggling S21 in ?I, . With the same low energy approx -
imation as in (4 .10), we apply (3.5) . Like in (4 .10) the relative straggling in i71 be-
comes a constant,

1

	

ylr2

	

2
DI(E)/T4(E) = 4 y {~ AEl/z 4 + 16 }, E <E1c, E2 c .

	

(6 .3 )
t

	

~

The method actually used by us in solving equ . (6.1) is the following
one. We introduce the s -e - t variables described in § 1, and consider
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those regions where electronic stopping cross sections are proportional t o
E 1/2 . The problem then contains two empirical constants, k and k 1 , i .e .
the proportionality factors in electronic stopping for particles Z 2 in Z2 and
Z1 in Z2 , respectively . The values of k and k1 are estimated in (1 .2) . Two
further parameters enter, one being the mass factor, y = 4 MIM2 f (M1 +M2 ) 2 ,
and the other the ratio, A, between the e-units for the particle pairs (Z 1 , Z 2 )

and (Z2 , Z 2 ) . The solutions are then of type of v1 = 111 (e ; k, k1 ; A, y) and
S21 = S21(e ; k, k1 ; A, y) . A programme was coded for electronic computa-
tion on this basis, and solutions have been obtained in a number of cases .
Three sets of solutions of this kind are quoted below . Other solutions wer e
utilized in a recent paper on damage in Si (DENNEY et al . (1962)) .

The numerical solutions should be regarded with some reservation, an d
they are of limited applicability . Firstly, they apply only at the low energie s
where electronic stopping cross sections are proportional to E 1f2 . This can
be remedied by continuing the solutions by means of asymptotic equation s
similar to (5 .3) and (5 .4), cf. (6 .6). Secondly, the connection to an actual
measurement is rather longwinded and uncertain . The usefulness of the
average quantities v1 and S21 can differ much from one set of (Z 1 , Z2 ) to
another . In any case, the three examples in the following may illustrat e
some of the difficulties .

Ionization efficiency .
One important experimental observation is the number of ion pairs Ni

produced by a certain incoming particle ; in a solid state detector we le t
Ni represent the number of electron-hole pairs . We shall not discuss th e
detailed mechanism by which electrons create ion pairs, but only note tha t
the energy per ion pair, Wß = EelectronINQ, is approximately constant fo r
swift electrons . :K In the present case of an arbitrary incoming particle it i s
therefore natural to consider the total energy )7 given to electronic motion ,
and expect that the average number of ions is approximately given by th e
relation

	

_
N. = ~Wß)

	

(6 .4)

Evidently, if 17 fluctuates, Ni should fluctuate proportionally . An average
square fluctuation in r7, S2 2 (E) , must therefore contribute to the averag e
square fluctuation, (4 Nß) 2 , in Ni by the amount

(4 NJ ) ; = S22 (E)/Wß ,

	

(6.5 )
* Experimental and theoretical discussions of W-values for electrons and a-particles ar e

given in recent papers by JESSE (1961) and PLATZMAN (1961) . The deviations of W,/W/3 fro m
unity in polyatomic gases indicate one limitation in the accuracy of (6.4) .

3*
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Fig . 10 . Curves for v l (E) and Q 1 (E) for a-particles in Si . Solid curves correspond to the code d
computations . Dashed curves include corrections for decrease in electronic stopping, cf . (6 .6) .

but this is not the only cause of fluctuation of Ni . A direct statistical effec t
in ion pair production is that considered by FANO (1947), where the average
square fluctuation was found to be (d Ni )F = F Ni , with F 0 .5, i .e. in

some respects similar to a Poisson distribution. In many cases the fluctua-
tion (6.5) dominates over the Fano effect .

In a treatment more precise than (6 .4) and (6 .5) one would introduce Ni directly
as the variable ç9 in the basic integral equations . In fact, the basic case in productio n
of ion pairs is an electron passing through a medium, and one must at first solv e
(2 .2') for fpe(E) = N2Q (E), i .e . the average number of ion pairs produced by a n
electron of energy E . Next, (2 .1) is solved (Z l = Z2 ) with respect to Ni(E), N 2e(E)
being a source term. Thirdly, equ . (2 .3) for Nil(E) is solved . The Fano fluctuation
is an estimate of the fluctuation in the first step only .

a-particles in Si .

Our first example of numerical computations illustrates the ionizatio n
by charged particles in a detector . We consider a-particles in Si, i . e . a
solid state detector, but the results are quite similar to those for a-particles
in A . In Fig. 10, the full-drawn curves show the behaviour of 77 1 (E) and
Q 1 (E), as obtained from the coded computations mentioned above . Now ,
electronic stopping for a-particles in Si is proportional to velocity only u p
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to about 0 .7 MeV, where a maximum obtains, upon which the stopping
decreases as - v-1 . The full-drawn curves in Fig . 10 are therefore under -
estimates at energies above 1 MeV . A correction can be made rather easily ,
since v(E) for Si ions in Si at the energies in question is given in e .g. Fig .
6, or by (5.1), so that the asymptotic equation i s

e
(de\

•v'
(8) AE dt

v (yt
del

	

()

	

y 4 t2 1~

	

(6 .6)
t o

where the right hand side is known, and to = 0.60 . A similar treatment
may be made for DT(r) . In this manner the two dashed curves were ob-
tained for vi(E) and D1 (E) in Fig. 10 . By means of (6 .4) and (6.5) may be
found the resulting effects on signal size, No and on signal fluctuation ,
4 N2 . However, the fluctuation Q1 is so large that the distribution in il l must
differ considerably from a Gaussian . The quantities vl and Q1 are then
less relevant than the most probable value of v l , the width at half peak
height, and the shape of the tail in the probability distribution . In a recen t
note (LINDHARD and NIELSEN (1962)) the latter quantities are obtained b y
a method much simpler than the above one .

Ionization by a-recoils .
The recoil nucleus in a-decay is a very heavy particle with an energ y

of only 100-200 keV. In this case iri 1 (E) « E, and a conspicuous effec t
should be observed in the number of ion pairs, according to (6 .4): Detailed
measurements have been made by B . MADSEN (1945), for Po, ThC and
ThC' a-recoils . In argon containing about 5 percent air, MADSEN observed
the average number of ion pairs, and also the width of the distribu-
tions .

The corresponding coded computations of v 1 (E) and .Q2(E) for a heav y
recoil particle in pure argon have been performed . The three recoil nuclei
have practically the same atomic number, and differ only in energy . The
resulting behaviour of T 1 (E)/Wß is shown by the full-drawn curve in Fig .
11 . In the figure is also shown the result, if power law scattering with s = 2
is assumed, as indicated by the dashed line . The three experimental point s
of MADSEN are his values for No assuming W« = Wß = 26 .4 eV, the energy
per ion pair in pure argon . The points lie below the solid curve and ,
in view of the uncertainties, the agreement must be said to be satisfactory .
From MADSEN'S curves the mean square relative fluctuation, 4Ni/N1 , may
be estimated roughly. It is of order of d NI /NQ - 0 .02 . This is considerably
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Fig . 11 . Comparison with three a-recoil measurements by B . MADSEN . Solid curve is % (E)/W p
computed numerically . Dashed curve corresponds to the power law approximation (6 .3) . Com -

parison assumes W«= Wß, but magnitude of this constant is not important .

larger than the numerically computed average square straggling, ..(22/4. -

0 .002, but in approximate agreement with (6 .3), i .e . s = 2 . The latter i s
possibly fortuitous, and further measurements in the region of extremel y
low velocities are desirable .

Ionization by fission fragments .

As a third example we may consider the ionization by fission fragment s

in various gases . The question of the ionization efficiency of fission frag-
ments was studied experimentally by SCHMITT and LEACHMAN (1956), cf .

also UTTERBACK and MILLER (1959) . SCHMITT and LEACHMAN observed the

variation of the number of ions, No with fragment energy in several gases .
It turned out that Ni was not quite proportional to the energy of the frag -
ment. They therefore considered the difference between E and the energy

Ea = WE •NI (E), where Wa -,Wß is the energy per ion pair for natural
a-particles. This difference, 4 = E-WaNI , was called the ionization defect .

Now, if (6 .4) holds very accurately, and if WOE =Wß, it is apparent that 4

becomes equal to the present function vI (E) . However, since the observed
4's are only some 5 percent of E, and since in some cases already W a can

deviate from Wß by several percent, it is abundantly clear that a compariso n

between 4 and -17 1 is only qualitative, as long as the excitation and ionization
cross sections for fission fragments have not been studied in detail .
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The coded computations of v1 and S4 were carried through for fission
fragments in a number of substances, taking one representative of the median
light group (Z1 = 39, Al = 94 .7, E initmal = 98.9 MeV), and one representativ e
of the median heavy group (Z1 = 53, Al = 138.8, Einitiai = 66.9 MeV) .
Several results of this kind are given in a recent paper (LINDHARD and
THOMSEN (1962)) . Results are quoted in Table 1 for the two groups of fissio n
fragments with initial velocities in Ne and A, as compared with the observa-
tions of A by SCHMITT and LEACHMAN . There is quantitative agreement,
and more could hardly be expected. It is seen that v 1 is systematically
smaller than 4 , which is not surprising since the value to be used for W
may be greater than Wa .

TABLE 1

FI (MeV)

A

4 (MeV) ~ vl (MeV )

N e

Heavy group	
Light group	

4 .8+0. 7
4 .3+1 .0

5 .5+0 . 5
5 .1+0. 8

2 .5
1 .6

3 . 1
2 . 0

Fluctuations have not been studied experimentally . As examples of the
numerical computations it may be mentioned that for the heavy fissio n
fragment group with initial velocities in Ne and A the values of D1 /v 1 are
0.066 and 0 .097, respectively .

In an interesting theoretical treatment of the ionization yields of fissio n
fragments KNIPP and LING (1951) have used a differential-integral equatio n
for the average ionization of similar type as (E) in the present paper . More -
over, they introduced the description by ionization defect 4 employed by
SCHMITT and LEACHMAN . The estimates of atomic collision cross sections b y
KNIPP and LING were necessarily somewhat uncertain . They considered the
case of fission fragments in argon . For argon in argon their maximum
ionization defect A was 780 keV, while our upper bound on v 1 in region II
(cf . p . 31) gives 600 keV for argon in argon . For the two fission groups i n
argon their estimates of 4 are also somewhat larger than our values of v1 .
KNIPP and LING made use of the connection to MADSEN ' S measurements .

Production of lattice defects .

In the present context mention should be made of the damage produce d
in a crystal lattice by irradiation. A general survey of radiation damage in
solids is given by BILLINGTON and CRAWFORD (1961) . Consider a solid
composed of one element only . We may let (p represent e .g. the number
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of vacancies N., produced by a particle with Z l = Z2 . The discussion belo w

applies just as well for the production of other lattice defects . In first approx -

imation Ny should be proportional to the energy given to atomic motion, v .

The average value of Nv is therefore expected to obey an equation simila r

to (6.4)

Nv = "T v
(6 .7)

T(E)

where U., may be regarded as an empirical constant . The relation (6.7 )

probably affords a more direct experimental check of the present result s

for v and 7 than does equ . (6.4). The reason is that in most cases v < E and
5 ti E, as in the ionization efficiency of fission fragments .

U„ can also be estimated theoretically from (2 .5), i . e . approximatio n

(B-1), valid at low energies where no energy ends up in electronic motion .
Having derived a constant U„ at such low energies, we have also justifie d
the use of (6 .7) at higher particle energies .

Several estimates have been made of the connection between U~ and
atomic binding (SNYDER and NEUFELD (1955, 1956) and others, cf . SEIT Z

and KOEHLER (1956), BILLINGTON and CRAWFORD (1961)). It has becom e
customary to use hard sphere ion-atom scattering, i .e . dan = const . dT.
Our present cross sections in § 1 are much more forward peaked and lea d
to a higher value of the ratio between Uv and atomic binding .

The fluctuation in Nz,, (4 N„)2 , has a contribution from the fluctuation

in v . We find analogously to (6 .5), (4(4 = Q 2 (E)/Uv . The magnitude of

the relative fluctuation in N„ may be read off directly from the curves i n
Fig. 7, for Z l = Z 2 .

In approximation (B -1), and with hard sphere ion-atom scattering, LEIß-

FRIED (1958) has derived a fluctuation in ND , (4 N,,)L = 0 .15 Nv , analogous t o
the FANO ionization fluctuations . Already at quite low energies the fluctuatio n

of LEIBFRIED is completely overshadowed by the present fluctuations .

The above relations, together with our previous computations of v(E)
and S2 2 (E), cover the question of Nv and its fluctuation for Zl = Z2 . If

Z1 # Z2 some cases are represented by the examples in this section, and
others by LINDHARD and THOMSEN (1962) . An interesting further example

is the damage produced by neutrons, where the production spectrum o f
recoils by neutrons, times T(E) from § 5, may be integrated to give th e

production of lattice defects .

Finally, it should again be emphasized that (6 .7) is an approximation .

If necessary, more accurate treatments may be made . Thus, let us consider
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the behaviour of N„(E) at high particle energies . Here, an increasing frac-

tion of the energy transfers to atoms are so small in magnitude that lattic e

bindings need not be disrupted. In fact, the logarithmic increase of the right

hand side of (5 .3) for increasing E is due to such small energy transfers .

In the evaluation of N, we may therefore at a sufficiently high energy re -

place log E by a constant, but this does not result in a large correction .

In conclusion we wish to express our deep gratitude to all who have encourage d
us and assisted in this work . Miss SUSANN TOLDI has given untiring assistance in
the preparation of the manuscript .

Institute of Physics ,

University of Aarhus .

Note added in proof . In a recently published article by ABROYAN and ZBOROVSKII

(Soviet Physics Doklady, 7, 417 (1962)) the ionization pulse by potassium ions in a germa -
nium detector is measured at ion energies - 1 keV . The authors find that the ratio ß betwee n
the pulse for K ions and for electrons with the same energy is ß = 0 .032, 0 .071, 0 .114 an d
0 .135, for E = 0 .5, 1, 3 and 8 keV, respectively . Now /3 should be equal to i/E, and the simpli -
fied theoretical formula (6 .2) gives ME) = 0 .051E112 , where E is measured in keV. This i s
in excellent agreement with the experimental values of /3 . However, numerical estimate s
corresponding to (5 .2) are nearly a factor of 2 higher . In view of the smallness of ß th e
results are promising in any case.
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