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Synopsi s

The low energy properties of nuclei are calculated, using a model which
combines certain important features of the unified nuclear model and the inde-
pendent-particle model with a two-body residual interaction. The residual interactio n
used has two parts, a pairing force and a long range part . Calculations are don e
for nuclei with a major closed proton or neutron shell, A > 48, for various value s
of the two strength parameters, using single-particle levels taken from experiment .
In each region, the calculated energy levels and spins agree in considerable detai l
with systematic experimental data . In addition, the even-odd-A mass difference,
the electromagnetic transition rates, and other properties are calculated an d
compared to experiment . The approximate 1/A dependence of the parameter s
is consistent with a volume force .
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I . Introduction

I
n the past several years, much evidence has been gathered by studying th e
low energy spectra of nuclei, and it has been possible to interpret many

of the main observed features by the Unified Nuclear Model, i . e ., in terms
of the motions of individual particles in an effective nuclear potential' ) and
collective excitations of rotational and vibrational character 2) .

At the saine time, attempts have been made to understand nuclea r
properties in terms of shell model particles interacting with a two-bod y
force 3) . The detailed calculations in a single j shell for lighter nuclei hav e
shown that in many cases it is possible to calculate approximately th e
energy levels by using specific nuclear forces . However, these calculation s

with pure configurations are not valid for heavier nuclei where configura-
tion mixing becomes very important . Still, shell model calculations with a
two-body force show that it is possible to derive many of the propertie s

of nuclei with a few particles outside of closed shells by using a two-bod y

force between particles which move in a well taken from experiment .
However, for more than two or three particles in the system such calcula-

tions become extremely involved .

More recently, progress has been made in solving the many-body proble m
for specific models . Such work shows that it may be possible to derive

the Unified Nuclear Model from a shell model description with the inclusio n
of a two-body interaction¢) . The first step was made by ELLIOTT who showed
how the collective deformation and the associated rotational spectra ca n

be obtained for particles in a harmonic oscillator potential interacting wit h

a specific two-body force having angular dependence given by P( 2 ) (cos B) ,
with B representing the angle between the particles 5 ) . Later works) provided

evidence that this is a general characteristic of the coupling scheme arisin g

from interactions with a slow angular dependence, such as that of P(2) (cos B) .
Since the low multipoles of the force are associated with the relativel y

long range part of the interaction, it therefore appears that this part o f
the nuclear interaction may be treated in terms of a deformed field acting
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upon the individual nucleons, and is responsible for the associated collectiv e
nuclear properties .

The observed nuclear spectra clearly reveal, however, that there ar e
important additional interaction effects which cannot be incorporated int o
the nuclear field . These residual interactions are responsible, for instance ,
for the shift of the intrinsic observed levels from the independent-particl e
prediction, for the collapse of the deformation with the approach to th e
closed shell regions, and for the energy gap observed in the intrinsic nuclea r
spectra . These two-body interactions should arise from the relatively shor t
range part of the two-body interaction . A crucial problem has therefore
been to develop methods to treat the effect of the short range part of th e
nuclear force in many-particle configurations .

A new approach to this problem was suggested by the recent develop -
ment in the theory of superconductivity') . Methods have become available
for treating the effects of a simplified interaction, the "pairing force", b y
which we mean a force which has constant matrix elements in a (jm) ,
(j -m) representation. I .e ., the matrix elements of the pairing force betwee n
states of two particles in a j-level and two particles in a j '-level are propor -
tional to V[(2j+1)/2] [(2j'+1)/2] if the total angular momentum in bot h
states is zero, and vanishes otherwise . Such a force appears to represent
many of the characteristic features of a short range interaction') , ') . It is
hoped that specific differences between a short range force and the pairin g
force interaction can be calculated for individual properties when such
differences are important .

The pairing force is a generalization of an interaction operator earlie r
introduced by RACAH, which characterizes the seniority coupling scheme
for (j)n configurations . The new method therefore also leads to a gene-
ralization of the seniority concept in terms of the "quasi-particles" . State s
of different seniority are separated by relatively large energies, and th e
gap in the nuclear excitation spectrum is thereby introduced, in analog y
to that of the superconducting metals .

A nuclear model in which the interaction is represented by two simple
components, the pairing force plus the long range part, usually represented
by a quadrupole force, has been studied in some detail by BLLYALV 10) who
showed that it contains the main qualitative features of the observed spectra .
In particular, it accounts for the gradual transition from the closed shel l
regions to the regions of deformed nuclei with the associated vibrationa l
and rotational modes of excitation .

Calculations with the model have so far, however, been based on a
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greatly simplified single-particle level spectrum ; especially the case o f

particles in a single degenerate level, such as a major shell in an oscillator

field, have been treatedil) . A quantitative comparison with experimental
data has therefore not been possible . To this purpose it is essential to intro -
duce the proper succession and separation of the low lying single-particl e
levels available to the particles outside of closed shells .

In the present investigation we have attempted to perform such mor e

realistic calculations, with a pairing force plus a P( 2 ) force, based on avail -

able information about the single-particle level spectrum of the shell model ,
and to make a comparison with experimental data on the low energ y

nuclear properties .

For simplicity, we have restricted ourselves to nuclei in which eithe r

the neutrons or the protons are in a major closed shell . We shall refer to
these as s .c .s . (single closed shell) nuclei . For this reason, we do not have
to deal with the difficult problem of the short range interaction betwee n

neutrons and protons . These isotopes do not seem to possess a stati c

equilibrium deformation and we can therefore use the spherical wave
functions as a basis from which to start the calculation . The single-particle

levels, when known, are taken from experiments on isotopes with one par-

ticle or hole outside of a double closed shell . In other cases, their positions

are estimated from other experimental results and from theoretical calcula-
tions of the nuclear well .

Since the s .c .s . nuclei have a spherical equilibrium shape, the pairing

force must in some sense be stronger than the P( 2) force. For this reason,
we first calculate the excitation energies of the s .c .s . nuclei with only the

pairing force acting between shell model particles . We do this approximately ,

using the Bardeen solutions . Subsequently, the effect of the P (2 ) force is de-

termined by the deformed field method . Of course, with such a simpl e

force we cannot expect to derive the detailed quantitative properties o f

these nuclei, but rather attempt to find the main systematic features and

to identify the main parts of the nuclear wave functions . We do expect
that certain of the specific nuclear properties which are not given correctl y

by our wave functions might be derived from them by perturbation theory .

In Chapter II, the canonical transformation of the pairing Hamiltonia n
to the quasi-particle system is reviewed and the results are given which

are important for the present calculation . We also describe the transforma-

tion to the collective coordinates to obtain the collective states . As an

example of a possible interaction between quasi-particles, the perturbatio n

theory results for the P( 2 ) force are derived .
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In Chapter III, the results for the energy levels of odd-A and even- A

nuclei are presented for the various nuclear regions treated, along with

discussions of the single-particle wells and the strength of the pairing an d
P( 2) force in each case. In Chapter IV, the gap which results from our

solutions is compared to that measured . by the even-odd mass differences .
In Chapter V, the expressions for the quadrupole moments are derive d
with our wave functions, and our theoretical predictions are compared t o

experiment . In Chapter VI, our calculated magnetic moments are compare d

to experiment and the additional shifts in the magnetic moments whic h
are produced by a short range force differing from the pairing force ar e

considered. In Chapter VII, the alterations of the electromagnetic transitio n

rates caused by the pairing force and the P( 2 ) force are investigated an d
the results compared to the experimental values .

II. The Hamiltonian and Approximate Solutions

A. The Hamiltonia n

The basic assumption of this work is that, in the space of the wav e
functions for the low energy states of nuclei, the nuclear system can b e

represented as closed shells plus shell model particles which move in a

well which changes only slowly as the number of particles changes, an d

which interact with a pairing force and a P (2 ) force .
Implicit in this assumption is the fact that the excitations of the cor e

particles involve energies which are large compared to the excitations o f
the extra-core particles . To the extent that this is true we expect that the

main effect of ignoring the core states as well as ignoring the states in th e

shells higher than the shell which we consider is to renormalize the para -
meters of the residual two-body interaction . Since we use a force which

reproduces the low energy properties of s .c .s . nuclei, we implicitly include

such contributions .

With regard to the long range part of the force, there are additional
contributions from the core as are revealed by the polarization effects fo r

one particle outside of a double closed shell, such as the enhanced E 2
transitions in 0 17 and Pb 207 . These are included in the present work b y
using a renormalized charge and quadrupole moment for the extra-cor e

particles . The change in the positions of the single-particle levels with A

is neglected within each s .c .s . region .
Letting 10>, I im>, and I j-m> stand for the shell model particle
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vacuum, and states with one shell model particle with angular momentu m
j- and z-component m and -m, respectively, the other quantum numbers
being suppressed, we define the particle-creation operators

b3mI0>= lim >

b j-mI0> = IJ -i72 > = zlJin>,

where z is the time-reversal operator* . In terms of these operators, th e
assumption is that the low energy states of s .c .s . nuclei are eigenstates of
the Hamiltonian

1
H'

	

2 G~ b~'m'bj'- m'b m bjm
jas

	

32' mm '

1
X Y <J1 in 1J2 nz z I~ ( 2 ) J2 1n 2Jl iil l > b31 .m b?2 m 2 , b12 m2 b 11 m 1

71721172 '
Ml mZ m r m2 '

In (2), ej are the single j shell particle levels, G is the strength parameter
for the pairing force, and$(2) is the operator for the P( 2 ) force (cf. II . C .) ,
with a strength parameter x .

Since the solution to the pairing part of the problem is simplified by
transforming to a system in which the number of particles is not conserved,
an auxiliary Hamiltonian is introduced which is related to H' b y

H= H'-~lN= H'-b;m bjm ,

where 21, the chemical potential, is a Lagrangian multiplier included to take
into account the constraint that for the solutions T, ( lI' I N I Ÿ') = n, the proper
number of particles . Solutions to H with various values of G and x are found
for each s .c .s . region and a comparison shows that the A dependence o f
these parameters is consistent with their being a volume force .

* The states j-In> have the phases (-1) .7-m x the states used by A . R . EDMONDS "Angular
Momentum in Quantum Mechanics", Princeton University Press, Princeton, New Jersey (1957) .
Thus, the orbital spherical harmonics are defined as i1 1m and the spin states have an intrinsic
phase of n/2 under time reversal . This choice of phases results in the same signs for the ampli -
tudes of the I jrn> j-m> states which are components of a () 2 ) o state .

(3)
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B. Pairing Force

1 . Canonical Transformation to an Independent-Particle Hamiltonia n

The ground state of the independent-particle Hamiltonian withou t
residual interactions corresponds to filling of the single-particle levels wit h
a sharp cutoff at the Fermi energy . I .e ., all of the single-particle levels belo w
the Fermi energy are definitely occupied and all of those above the Ferm i

energy are definitely unoccupied in the shell model ground state configura-
tions . In the presence of the residual interactions, some of the particles ar e
excited from the occupied single-particle levels to the levels which wer e

unoccupied . The ground state of the Hamiltonian with a short range residua l
interaction corresponds to a diffuse distribution of the particles in th e
single-particle levels, with a region of energy near the Fermi energy, where
the product, U 2 V2 , of the probability of occupation of a level, V 2, and the

probability of non-occupation of a level, U 2 , is not zero . Based on this physica l
picture, the method used in the present work is to express the groun d
state of the Hamiltonian with a pairing force residual interaction as an

admixture of shell model configurations with the admixture coefficient s
determined by the U's and V's .

The energy level of an excited state of the independent-particle Hamil-

tonian without residual interactions is found simply by summing the single -

particle energies of the excited configuration . In the presence of short rang e
forces, the present method of solution allows one to identify once mor e
independent modes of excitation, so that the energy level of an excited stat e
eigenfunction with pairing forces present can be found approximately b y
simply adding the elementary excitation energies . Indeed, the independen t
excitations in the presence of the pairing forces are usually quite differen t
from the single-particle shell model energy differences .

A convenient approximate solution for that part of Eq . (3) not including

the P( 2) force can be found by introducing the Bogolubov-Valatin canonica l

transformation into "quasi-particle" creation and annihilation operators' )

ajm - ~.1 bjm-V7
b7-na

N7m = Uj bj-m +Vj bj7n

U~+ = 1 .

Thus, a quasi-particle creation operator is a linear combination of a shell
model particle and a shell model hole creation operator . The physical

interpretation of U5 and Vi will be that V2 is the probability of the pair

(4)
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(jm, j- m) being found in the ground state, while u,2., of course, is the prob -
ability for non-occupancy, as can be seen from Eq. (8). Written in terms

of these new Fermion operators, the Hamiltonian (in normal form) is

HG = U+H 11 +H2O +Hint

	

(5)

where HG refers to the Hamiltonian (3) without the P (2 ) force . U is independ-

ent of quasi-particle operators, H11 is an operator of single quasi-particl e

type, i .e ., each term has a factor (a+ a+ß+ ß), and H2O creates or annihilates
two quasi-particles . HIIlt, which contains products of four quasi-particl e
creation or annihilation operators, is ignored . 7 ), 10) Therefore, when H2 O

is set identically equal to zero, the Hamiltonian (5) describes a system

of non-interacting quasi-particles . The long range part of the two-body
force will lead to an interaction between quasi-particles, as will be see n

in the next section.

The result of setting H2O = 0 is the gap equatio n

U2 = 1 1 +

/ Ej
-Å	

V \E7 - AY +4 2

E

	

.l	

V'
=1[1 -

2

	

j/(E; _' Ä) 2 + 2 , ,

where

(6)

and S2; = j+1/2 is the pair degeneracy of the j level . The essential problem

in finding the solutions is determining 2. and 4, which are found by the
simultaneous solution of the gap equation (6) together with the equatio n
which results from fixing the mean number of particles (cf . (13)) .

The wave functions are simply the quasi-particle creation operators
operating on the quasi-particle vacuum . For an even-A nucleus, the groun d
state is the quasi-vacuum state, i .e ., a state where all shell model particles

are coupled in pairs to zero angular momentum . The excited states are th e
two, four, etc . quasi-particle states, corresponding to two, four, etc . element-
ary excitations . bl terms of the shell model particle states, the ground stat e

of the even-A nuclei is
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To =II H(Uj +Vj b~m b~-m )IO %,

	

(8)
j m> o

where 10> is the vacuum for a shell model particle, defined as b 10 > = 0 .

One obtains the one, two, etc . quasi-particle states by operating on To

with quasi-particle creation operators .

2. Energy Spectru m

The ground state energy for even-A nuclei is

while the energy of a two quasi-particle state is

(jijz) I HG

	

(jlj2)) + An = U ' +

	

.)2 +A2 + V(e j2- A)2 +42

= U ' +Ej1 +Ej2 ,

where the two quasi-particles have angular momenta j 1 and j2 . From
Eqs . (9) and (10) it is clear that there is a gap of at least 2A between the ground

state and the two quasi-particle states of even nuclei . The ground state of

odd-A nuclei is a one quasi-particle state, while the excited states are one ,

three, etc . quasi-particle states . Usually the three quasi-particle states ar e
quite far removed in energy. Thus the energies of the ground and low ex -

cited states in odd-A nuclei are

(T (j)I HG ~ T (j)) + An= U' +~,~(ej-7)2 +42=U' +Ej,

	

(it )

where j is the angular momentum of the quasi-particle . Since there are
several one quasi-particle states in each odd-A isotope, there is no gap lik e

that in the even isotopes .

3. Number of Particle s

For a state with r quasi-particles, 1, . . ., r, the expectation value of th e

number operator is

(T o IHG I T o)+ An= U+

	

U '

	

=
\

J DJ E l 1_
V

	

Ej
-2	

S2j4 2
/

	

1 -'-	
(E.7 -A)2+42,

	

j 2 y/(ej - a .) 2 +4 2

	 Ej- %,
~1-	

V( ej-
,0

2+ 42
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7 ai - ï
(Ÿfl . . .N~ Ÿf1 . . .r) =

	

SZ, f	 	 ( ~)2+42 ~ I ~
i=

	 ei- 2 	 (12)
v~( 8

i - 2)2 + 4 2

In even -A nuclei, the average number of particles in the ground state i s

(ToINIPo)=n=~~f2 i 1--	 a~	

]

	

(13 )
V(ej - Ä)2 +4 2

Given the shell model energies in a particular shell, (13) and (6) are suf-

ficient to determine 2 and A, for a given isotope, which in turn determin e

the ground state wave function and energy . The same values of 2 an d
4 are used for the excited states . This insures that those states are orthogona l

to the ground states, and is expected to be a good approximation for state s
of few quasi-particles, which are the only ones considered in the presen t
work. One could adjust 2 and 4 for higher states . However, in this work ,

the average number of particles differs from the number N in the ground

state . For instance, in a state with two quasi-particles of angular momentum

k, the average number of particles differs from that of the ground state b y

(W (k, k)I N I W (k, k))-(ToI N I To) =2 -,	 Ek-
Ä

	

(14 )
/(ek- .1)2+42

.

Although for the lowest quasi-particle states this quantity is small, sinc e
2 ek for the lowest elementary excitations, this variation in average numbe r

is sometimes nearly two for the distant two quasi-particle states . On the other

hand, the error in the energy value of the state is not expected to be larg e

since the solutions of HG are stationary with respect to a variation in n .
Still, a basic assumption of this work is that the excited states vary smoothl y

and slowly from isotope to isotope .
For the odd-4 isotopes Eq . (13) is also used. In this case, the error

in the average number of particles is small for the lowest states and unim-

portant in determining energy eigenvalues for the high one quasi-particl e

states for the same reason .

4. Accuracy of the Solutions

For a degenerate level, the Bardeen solutions give energies which are
correct to order D-1 when compared to the exact solutions with the pairing
force . In other words, the energies are good to order G/4, since 4 = G O

in this case . For a system of non-degenerate levels there is an effective pairin g
degeneracy,



	

a
-

~ .

	

-

	

s~,

	

~eff G 2

	

/

	

\ 28
' -

A

+ 1

which indicates the accuracy . Therefore, even if the state near the Ferm i

surface has a low degeneracy, the solutions can give useful results so long

as the pairing force scatters sufficiently to other states . One situation in which
one might expect these solutions to be inaccurate is that in which a nuclear

shell has a j = 1/2 subshell rather isolated from other levels . Such a situation

may occur in the region of 50 neutrons . In this case, the solutions might

be quite inaccurate for two or three isotopes near the point where the ga p

is small .

In addition to the small errors in the calculated energies which hav e

been discussed above, the present approximation method introduces a
characteristic uncertainty which arises directly from the fact that the wav e

functions are not eigenfunctions of the number of nuclear particles . This

is the introduction of spurious states, and in particular of one spuriou s
spin zero two quasi-particle state . 8 ) ' 9) Many levels are involved when th e
gap is large, so this spurious state is then distributed over many levels ;

there are, nevertheless, some situations in which one state is almost entirely
spurious, as is the case in Pb 206 . One can usually recognize such a situatio n
when it occurs .

C . P(2) Force

1 . Perturbation Theory

For the long range part of the shell model particle interaction we us e
the last term of (2) as two-body P( 2 ) force :

Hlong range - - 5/4 7c
12

ti

	

F(r~, ri ) P( 2 ) (cos 0i,)

	

i
i4

1
=

	

z~<.1~ rn112 ln s I F (ri, r2) Y(- 1)~`Y 2 (1) Y2 FL
(2 ) ~ J2 rn2J1 ln i i

~

b11 m1 b72 m 2 b.72• m2,
b~ l , ml '

where P( 2 ) (cos 0) is the Legendre polynomial of order two . The reason
for this choice of force is that, for nuclei far from a closed shell, it can produc e
permanent quadrupole deformations which are experimentally observed ;
and for nuclei with or near closed shells, where its effect is weaker, it ca n

provide an explanation for the observed quadrupole vibrational spectra .

(15)

(16)
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Even for s .c .s . nuclei, which we consider, the long range interaction betwee n
the outside nucleons and the closed shell core plays an important role .
However, we shall take the P M force acting only among the outside nucleons ,
and assume that the effect of the core can be included as a quadrupol e
force and charge renormalization for the outside particles .

For the perturbation treatment to follow, the radial dependence of th e
force is of less importance than the angular dependence given by P( 2 ) (cos 0) .
In a j shell, for example, the energy spectrum is given entirely by th e
angular dependence of the force . For the evaluation of the matrix elements ,
we use the radial dependence rZr, as this is simply connected with th e
quadrupole field description of § IE C 2 . This is the force, 44P( 2) (cos 0) ,
which is diagonal in the U (3) coupling scheme of Elliott . 5) For the
evaluation of the radial matrix elements, harmonic oscillator wave func-
tions are used .

If it is sufficiently weak, the PP) force may be treated as a perturbatio n
to the pairing force calculation . For this purpose, it is convenient to expan d
the force (16) in terms of creation and annihilation operators for quasi -
particles :

Hiong range =11

	

(2) + 20
(2> + $5 li (2) + $540

(2> +

	

(2>+ 22(2)f,

	

(17)Z {~00

	

3 1

where, as in Belyaev, the subscripts refer to the number of creation an d
annihilation operators, respectively . The general form of the terms is give n
by Belyaev 10 > . In first order perturbation theory, only l11(2) and $22 (2 >
contribute to the relative level spacing . The effect of 3 11 ( 2 ) is to add to the
energy of a quasi-particle of angular momentum j an amount

7~~G

(C2 j
~ 1 ~ 2 Ln 1 1 ( U71 - Vli Vj ) 2 }

<j
r2 j1%2 , (18)

21

where the "C"-symbol is a Clebsch-Gordan coefficient .
For the perturbation to have no effect on the number of particles in th e

ground state, to first order in the coupling constant z, the chemical potentia l
must be shifted simultaneously by an amoun t

4A=

	

4ac /C° 2
X1)2 (+)

	

1(2 U,V)2V~1- (2 UjVV ) (U~ - V
5

) Uh V11
Jil l

1

	

1 1

<j 1 1,2 I j1> 2 ~,

	

+ 2 I E~• i (2 Uj ,V1 ,) 2

J
.



16

	

Nr. 9

This causes an additional shift in energy for a quasi-particle of angular
momentum j of an amount

4Ej = -(U2-V2) .

	

(20)

If G«4, the inclusion of this contribution is equivalent to the readjust -
ment of the U's and V's so as to satisfy (6) and (13) with the inclusio n
of P( 2) to first order in z, thus leaving the quasi-particles independen t
except for the interaction part of the Hamiltonian, $40(2)+ l31(2) + ' 3 22 (2) .

This contribution due to 4A is unimportant except for quasi-particles fa r
from the Fermi surface .

The term $22(2) has no effect on zero or one quasi-particle states, bu t
for two quasi-particle states it splits the energy according to the total angula r
momentum, J, to which the two quasi-particles are coupled, thus breaking
the degeneracy of the pairing Hamiltonian . For two quasi-particles o f
angular momentum jl and j 2 coupled to J, the energy shift i s

2 Y <[a:ii ßh] J$22( 2 ) [Pit,

	

- 4 2 V ( 2 Ji+ 1) (2J2 + 1 )

) ;i+1z

	

C2i
11~ C21z92tv

(JiJzJi.J2 ; J2) <JiI 22 IJii<J21 1 '2 IJz%( U
i
- Vi)( U2-V2 )

~ 2 2 o G r

(
_1)3i 12 C 2fi rÿ Co

2ji
j
io I

	

W (hJ2JzJi ; J2) <Jil r 2 I .12>2 ( Ul U2 VV2) 2

+ 5
(_ 1)j i - j2 Cojij,2

C
o z

;i å
J2 <Ji I r2 I J2i 2 ( Ui V2 + U2 Vi) 2~ ,

where "W" is a Racah coefficient .
The first two terms on the right, which have the J dependence of the direc t

and exchange part of two shell model particles interacting with a P( 2 ) force ,
arise from the normal interaction of the hole and particle part of the tw o
quasi-particles with each other, the U, V factor expressing the fact that a hol e
and a particle interact with opposite sign from two particles or two holes .
The third term, which only affects J = 2 states, arises from the mutua l
annihilation of the hole and particle parts of the quasi-particles and thei r
subsequent creation through the P( 2 ) force .

2 . Collective Coordinates

It is easily seen from the experimental data on transition rates an d
excitation energies that this perturbation treatment of the long range force is
not adequate for all states of most of the isotopes considered . First, the large
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B(E2) values for the deexcitation from the first excited 2 + state of even nuclei

to the 0+ ground state make it impossible to explain this state as a two

quasi-particle state perturbed by a P( 2) force. The pairing correlations

may introduce some enhancement of the B(E2) values above a "single-
particle" estimate, but in all cases they introduce less enhancement than
that indicated by the collective treatment which follows . One finds, in

the case of Pb 2os that the enhancement predicted by the collective treatment

is 2 .4 times that of the two quasi-particle 2+ state with the largest enhance -

ment. For Pb2os where the effective charge (see Eq . (34)) is known fro m
experiments in Pb 207 , the transition rate agrees better with the collective
B(E2) than with the quasi-particle value . Thus, even though the collective

approach may be least accurate in the Pb case, it may still be more accurate

than the perturbation approach. In all other cases, the collective treatment

increases the enhancement over that produced by pairing correlations
alone by larger factors : a factor of about six for the Sn isotopes and about

four for the Ni isotopes, for example . In these cases, the effective charge

is not known from experiments analogous to those on Pb 207, but the collec-
tive treatment agrees with experimental transition rates for effective charge s
of about the magnitude of that in Pb 207 , while larger effective charges woul d

have to be used to obtain a fast enough decay from a perturbation treat-

ment.
Second, the lowest 2+ state is well below the two quasi-particle state s

produced by a pairing force of such strength as to be consistent with othe r

data, this lowering also being the smallest in the case of the Pb isotopes .
Since this 2 + state must he constructed from the quasi-particle states ,

and is far separated from them in energy and of a different character from

them, a non-perturbation treatment is necessary for this state .
We assume with Belyaev that we can define a collective parameter ,

Q, the quadrupole field or the total nuclear quadrupole moment, and that

the main effect of the long range force can be described as an interactio n

of each particle with that field . Then,

Hlong range (Q,a) ° - Qt,

	

. (22)

where

	

, the quadrupole moment operator, is given by

	

Q-L gvv 2 17,2 +

	

q/3','j,, (Uv Uv, -- Vv Vv) (aÿ av, Nv ' ßv)
v

	

vv'

~ ~/~+

	

gv"v' / \ Uv [v' + Vv Uv')(av~v' + Nv av') >
vv'

	

Mat . Fys.Medd. Dan .vi d. Selsk . 32, no . 9 .

	

2

(23)



18

	

Nr. 9

and
qv ' = <r I r 2 Y I r'> with v - jm .

	

(24)

Using harmonic oscillator wave functions, we have the selection rules tha t
the parity of v is the same as of v ' and

I Jv - Jv' I c 2 • (25 )

We shall also require the condition of self-consistency : that the quadrupole
moment of the outside nucleons associated with the Y1 degree of freedo m
be equal to Q~ . For this purpose we use a Lagrangian multiplier y and the
auxiliary Hamiltonian

H'=H - u Q = Hpairing - xQ • Q- p Q .

where, for simplicity, we have dropped the subscript y and consider for
the moment only the contribution to the energy of the Yô quadrupol e
degree of freedom . To obtain the ground state energy of H we follow a
method suggested by A . BOHR which is equivalent, within the approxima-
tions used, to that of Belyaev . If the quadrupole moment is not too large ,
the intrinsic ground state wave functions for (26) for even-A nuclei can b e
written in perturbation theory

(26)

T (Q)

	

1

	

/- '-Po- 2 xQ+,u
qvv'	 ( U,vVv . + Vv Uv') ~. ßi.

Ÿ

	

(27)
Ep Ev,

	

av v' Io

The Lagrangian multiplier y is then fixed by the self-consistency conditio n

(P (Q) I Q I T(Q))
q vv , (Uv V, +Vv Uv,) 2

E.v+ Lv , = Q .

	

(28)

The ground state energy may then be calculated as a function of Q as

g2vv' (Uv Vv • + Vv Uv) 2 -1 1

	

2

(T (Q)I H I (Q))= U '+ [4L

	

Ev+Ev

	

J

	

2 x Q
(29)

=U'+

2

CQ 2 ,

defining the restoring force parameter C . The rotationally invariant collectiv e
Hamiltonian, utilizing the five quadrupole degrees of freedom Q IL asso-
ciated with a Y deformation, is then given by



Heoll= U +20Q2+2BQp,

	

(30)

where the inertial parameter B is calculated in adiabatic perturbation

theory to be12 )

B =
2u

> ' (zIå/å Q IP(Q))2

	

qvv'(Uv Vv,+Vv U02 f

	

' q'vv'( Uv Vv'+ Vv Uv') 2 l 2 3 1
i - wo

	

2

	

(Ev +Ev ,) 3

	

L~

	

Ev +Ev -

	

J' ( )
u~

When quantized, the Hamiltonian (30) will lead to the spectrum associated

with the harmonic qadrupole surface oscillations, the quanta being phonon s
of spin 2 . With this description of the lowest 2 + state, its properties can easil y

be obtained. The energy 0 + - 2+ is given by

hw = VC /B .

	

(32)

The ground state energy shift due to the P (2 ) force is obtained from th e

zero point energy

4E0-2 hw (x)-2 fiw (z =0) .

	

(33)

Assuming the 2+ state to contain the entire quadrupole matrix elemen t

with the ground state, the B(E2) value for excitation of the 2+ from the

0+ ground state is given by

2

B(E2)=-
5 Qeß f

2j/BC~

where eeßß is the effective charge of the extra-core nucleons . The effectiv e
charge of a nucleon is its own charge plus an additional positive charg e
arising from the fact that the extra-core nucleons can polarize the proto n
core to some extent . Experiments indicate that the effective charge of neutron s
in Pb 207 is about unity' s ) . In oxygen the proton core deformability seem s

to be somewhat less'- 4 ) . For our calculations we take the effective charg e

of a neutron to be unity and of a proton to be two . The factor 5 occurs
since the five quadrupole degrees of freedom contribute equally .

For the validity of this collective treatment of the P( 2) force two con-
ditions are required . First, the amplitude of the collective zero point oscil-
lation, Qave, of the quadrupole moment Q must be large enough compare d

9 *

(34)
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to the fluctuations, ô Q, of the quadrupole moment of the intrinsic state fo r
the validity of Eq. (22) . Second, the amplitude of collective oscillation must
be small enough that the lowest order perturbation theory expression for

(27) be sufficient . For the first condition it is required that

(Qave )

Q 2

	

(UV+ V, U)2
=

tw

	

civv' (Ev - E03

	

clvv, (UV Vr,+Vv Uv ,) 2

~	 -7
gvv'( Uv Vv'+ Vv Uv)21-2

Ev + Ev .

	

1 .

This says roughly that the 2 + level must lie well below the quasi-particle
excitation energies, the same condition which is required for the adiabati c
perturbation calculation of the inertial parameter B to be valid . In practice,
this condition seems to be satisfied for the first 2 + level in the s .c .s . nucle i

considered, but in all cases the 0 + , 2+ , 4+, second excited state lies near
the top of or above the gap . Another way of stating condition (35) is that th e
collective state must collect a sufficient part of the total oscillator strength ;

i .e ., that the collective B (E2) be greater than the sum of the B (E 2)'s fo r
the various two quasi-particle 2 + states . The second condition is a measur e
of the degree to which the collective oscillation is really harmonic . Although

these conditions seem quite restrictive at first sight, in certain cases, at least ,

they are not. For one degenerate level of degeneracy 2 Q, the collectiv e
oscillation has been shown to be harmonic and correctly described by th e
above treatment s) as long as the coupling parameter is not so large tha t
one is too near the transition point at which a stable equilibrium deforma-

tion occurs. Thus, in this model, the only errors in the collective treatment

are of order 2-1 even though the 2 + state lies just below or far below th e

quasi-particle excitations . In this work, the collective properties of s .c .s .

even nuclei are described by the above method. This affects mainly th e
total binding energy and properties of the 2 + first excited state . For the other

states, this effect of the P(2) force on the excitation energies is estimate d
by first order perturbation theory, using the quasi-particle states given b y
the pairing force . This is not expected to describe correctly the splittin g

of the quasi-particle levels, since there may be other equally important

effects from other components of the force which are not included in thi s
calculation .

In the case of s .c .s . odd-A nuclei, one also expects that there should b e

collective electromagnetic transitions and that a perturbation treatment o f
the P( 2 ) force is not adequate in all cases . Thus we use a collective treatment,
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analogous to that above, for the effect of the P( 2) force on the one quasi -

particle levels of these nuclei, corresponding to the coupling of the quasi -

particle to the collective oscillation . The intrinsic wave function in this case i s

lI

	

(U

	

+V Uv „)
l' To
	 	 v ' v	 v	 v	 v 	 i t two

(Q) - av

	

-
xQ. +,a

	

Ev,+Ev„

	

av'ßv„av Y'o

The quadrupole moment is given by

(mav (Q) I Q I T,, , (Q))

=

	

v•,v,, .(Uv„Vv,,,+V

	

S
(37 )

~vv' ( L v Uv Vv Vv') 2 (
1
2x Q + ~c)~

(i 	
E.v„+E„

	

vv '
v „ v '
v"~ v

where the first term is the single-particle quadrupole moment of the quasi -

particle . Ignoring the restriction on the v" sum, we may associate the secon d

term with the collective quadrupole moment Q of the corresponding eve n
system (cf. Eq. (28)) . This approximation should be good to the extent

that there are large numbers of stales contributing to the sum. The Hamil-

tonian for the intrinsic state as a function of Q contains non-diagonal as

well as diagonal terms in the one quasi-particle state and may be writte n

V-'H- U'+
~

CQ2 + Ev( av av + ßvßv)
v

+ x~ qvv'( Uv Uv,- Vv Vv')(a v av'+ßv'ßv)Q ,

the the two terms in addition to those of (29) being the quasi-particle energ y

and the cross term from 1 /2 x (Q + Q)2 . Assuming Q» Qs n , we have

dropped the term quadratic in Qs .p . In the collective Hamiltonian w e
utilize the five quadrupole degrees of freedom Q to produce the rotationally

invariant expression

Hain - U'+ 2 C ~Qµ -L B XQ~c+f Er (av av +ßvßv)
v

+ xG g vv' ( Uv Up,- Vv Vv') (a av' + ßv ßv) QFcQ .
vv',u

C and B are given by (29) and (31), respectively . We thus ignore the differ-

ence in the inertial parameters for neighbouring even-even and odd-A nuclei

(cf . Ref. 10, (136)) .

(36)

(38)
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This differs from the Bohr-Mottelson collective Hamiltonian for a vi-
brator coupled to a single particle by the factor (U„ U, - VV VV') in Hint .
The effect of this factor is that quasi-particles near the Fermi surface ar e

more weakly coupled to the oscillation, while those farther from the Ferm i

surface are coupled more strongly . It also differs from the Bohr-Mottelso n
collective Hamiltonian in that the pairing energy is included . For simplicity ,
and because the coupling is not too strong for the single closed shell nuclei ,

we have calculated the effect of the last term in (39) by second order pertur-
bation theory. In this case, the low lying one quasi-particle states receiv e

an energy shift

4Ej =
.- 2C ~ C °~ 2) hw f Ej,-Ej (U

j Uj , -V;V j ,) 2 ~J I r2 IJiz .

	

(40)

The Hamiltonian (39) will also have associated collective states, but ther e
is not yet experimental evidence for these states for s .c .s . odd-A nuclei .

III . Energy Level Systematics

A. The Shell Model Particle Wel l

The energy levels of the s .c .s . nuclei, Eqs . (9), (10), and (11), are foun d

by first calculating the quasi-particle energies, using a numerical solutio n
of Eqs . (6) and (13) . Next, the collective properties are determined as dis -

cussed in § II . C 2 and, finally, P( 2) interactions between quasi-particle s

and their coupling to the vibrations are treated by the perturbation method s
of § II . In order to proceed with such a calculation one must know
the single-particle energies for a shell model particle moving in the effectiv e

well for one particle outside of a double closed shell, and must also know
how these levels shift with A as one proceeds through the nuclear region .

When the levels of the one particle outside of the closed shell are not

known, there is some uncertainty added to the calculation . There are some

theoretical calculations for the level positions based on effective potential s
with a few parameters, from which one has some knowledge of the well . 15 ) , is )

Also, there are experimental energy level results from nuclei other than the
s .c .s . nuclei treated in this work, which can be used to determine the single -
particle energy levels in a particular region . If we wish to find, say, the single

neutron levels for a region with a closed proton shell, we look at the energy

levels of isotopes with one neutron and even numbers of protons outside
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of the closed shells . For regions with large enough proton numbers, such
that the neutrons and protons are filling different orbits (Z->- 2S), the shor t
range interaction between the protons and neutrons is small (it is zero for
our pairing force unless the particles are in the same levels) . Therefore ,
it is reasonable to calculate the effect of the even numbers of protons on th e
odd neutron as a long range force for which an intermediate couplin g
phonon calculation can be used. Such calculations have had some qualita-
tive success for heavy nuclei,'') although it is not certain that such a simpl e
treatment of the effect of the neutrons and the protons on each other is quan-
titatively correct . We have made only crude use of this method, with th e
hope of gaining some knowledge of the single-particle levels in a particular
region, working backward from the known experimental levels to try t o
find the values of the single-particle levels which are consistent with the
experimental data . In this work, both of these methods have been used t o
determine the single-particle levels . However, the lack of experimental dat a
and single-particle levels is a major uncertainty in this work .

The rate and manner in which the single-particle states shift with A
are difficult to establish . However, if the dependence is something like A -11 3

then our results are very little affected by this motion in most regions . In
none of our s .c .s . regions is there direct evidence that the change in th e
single-particle energies with A affects the accuracy of our calculations ,
particularly in view of the uncertainty in the level positions . Still, ther e
is a possibility that, when the number of particles changes as much as i t
does in, say, the Sn region, there are systematic deviations introduced .
The change in the single-particle levels with A does apparently play a n
important role in determining the levels of N = 50 . In this work, we have
not changed the energy level separation of the levels in any one region ,
although we have investigated the variation in the depth of the well i n
the binding energy calculation .

B . The Choice of Parameters ]

Once the single-particle well with its energy levels has been establishe d
for a given closed shell region, the consequences of our model are determine d
in terms of the two coupling parameters G and z . It is well established tha t
a short range residual nuclear force is necessary in a description of nuclei .
The strength of this force, which is simulated in our calculation by th e
pairing force with its coupling parameter G, can be determined in many
ways . For example, the systematic experimental odd-even mass difference
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discussed in the next section is affected very little by the long range force ,

and can thus be used to determine G to about 30 0 / 0 in most regions . Closely

related to this is the so-called energy gap of even-even nuclei . 18) In heavy

highly deformed nuclei, this shows up in the fact that the first intrinsic

excited state of an even-even nucleus usually lies above 1 Mev, while very

low intrinsic excitations often occur in the neighbouring odd-A nuclei . In

the case of the spherically symmetric s .c .s . even-A nuclei which we consider ,
there is also an energy gap in which only the collective 2 + level occurs .

The position in energy of the two quasi-particle excited stales, which li e

at or above the lop of the gap, depends strongly upon the strength of th e

coupling parameter G . In cases where an experimentally observed excited
state can be uniquely associated with a two quasi-particle excitation, on e

can make an independent estimate of G . Such a situation Occurs in the cas e

of observed states of high spin, J, and odd parity . First, the two quasi -
particles forming such a state must have opposite parity . In each mass

region considered there is always just one single-particle state of parit y

opposite from the rest, and this must be the j-state of one of the quasi-particles .
The high J value of the excited state can then determine rather uniquely

which is the second quasi-particle . The 9 - levels in Pb 204 and Pb 202 and the

7 - level in Sn i2o permit such a determination to be made . This leads t o

a value of G between 23/A and 30/A for Pb and about 19/A for Sn . The
P( 2) force is included as a perturbation in this determination .

Once the value of G has been determined, the coupling parameter x
of the long range part of the force may be determined from the quantitie s
it most affects, namely the position of the first 2 + states of the even-A

nuclei and the B(E2) value for the (0+_ 2 + ) transition . For any one isotop e

the experimental excitation energy can be fit with the theoretical valu e
by an appropriate choice of x, a larger G requiring a correspondingly larger

x. However, we require that in any one mass region (corresponding t o

a particular double closed shell with one kind of particles outside) on e
value of G and x or rather X (cf. below, Eq . (41)) be used for all the isotopes .
With this requirement, one can determine the G and x which together giv e

the best fit to the position of the first excited 2 + level as a function of Z

or N in an entire mass region. Where good comparison can be made, th e
G determined this way is in agreement with that determined by the pre-

vious methods .

Although the B(E2) value depends strongly on x, it also contains a
factor eeff which may vary somewhat from shell to shell . Thus, except
in the case of the Pb isotopes for which eeff is independently determined
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from E2 transition rates in Pb 207 , one can determine eeff only from the
B(E2) values and, assuming eeff to be constant in one mass region, se e
whether the variation from isotope to isotope is consistent with experiment .
The G and x determined for Pb from the B(E2) value of Pb 200 are con-
sistent with the values determined from the previous methods .

Although we did not try to determine uniquely the best values for G
and x, it is seen that both have a simple and smooth A dependence in goin g
from region to region . G varies more or less as A-1, the value 19A-1 Mev
being better for the regions from N = 28 to Sn, and G = 23A-1 being better
for N = 82 and Pb . The corresponding value of x in going from region t o
region varies more or less as A -713 is expected (cf. Ref. 10, (93)) . \Ve

consider instead the quantity X defined b y

_

	

5

	

2

	

2

	

5
l

h	 '12(

	

3 z

X
-x4~(Jlr

I J%u-x 4h 11'Iwa,
n+~) ,

where M is the nucleon mass, hwo = 41A-113 Mev, n is the total number
of oscillator quanta associated with most of the single-particle (harmoni c
oscillator wave functions) states in the region in question . That is n = 3
for the N = 28, Ni, and N = 50 regions ; n = 4 for the Sn and N = 82 regions ,
and n = 5 for the Pb . For the calculations, X was considered as a fixe d
constant in each region and hcoo was defined in each region in terms of a
representative value of the mass number A . This quantity was then foun d
to have a value of about X = 110,4-1 in each of the regions considered .
The actual parameters used will be indicated with the theoretical results .

C . Energy Levels in S.C.S. Nuclei
In this section and in the Appendix, we shall present figures and table s

from which the reader may estimate the position of all of the calculated
zero, one, and two quasi-particle states and the collective 2+ state, and
from which he may determine the calculated wave functions . In the cas e
of Pb 200 and Pb 204 , all of the calculated levels will be explicitly shown t o
indicate how the two quasi-particle states labelled by their spins, j an d
j ' , and parity are broken up by the P( 2 ) force according to the total angula r
momentum J of the resulting state . For other even-A nuclei only thos e
excited states, aside from the collective 2 + state, which correspond to two
identical quasi-particles will be indicated, and the breakup of the degenerac y

(41)
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by P( 2 > obtainable from (18)-(21) will not be shown . From such a figure ,

the positions of the other excited states corresponding to two different
quasi-particles can be obtained, aside from the effect of P( 2), as the mid -

point between the two excited states corresponding to pairs of quasi-particles

of the two types (cf. Eq. (10)) . This procedure is indicated in the figures for
pb206 and Pb 204 For the odd-A isotopes all of the one quasi-particle state s

are indicated. These are each non-degenerate levels aside from the m

degeneracy of the quasi-particle angular momentum, J = j .

1 . Pb Isotope s

The energy levels in Pb 207 define the neutron hole well quite accurately .
Since the experimental single-particle levels are known for the entire 82-12 6

neutron shell, this region should be a good one for our methods .

One also knows the positions of some of the particle levels in the next
shell from Pb 207 . Since these are unimportant in Pb 20G and grow even
less important as the number of neutron holes in the 126 shell is increased ,

they serve only to renormalize G in our calculation .
The one disadvantageous feature for the Pb isotopes is that the firs t

hole level has spin 1/2 . For this reason, in the two-hole calculation, Pb 2o s

the lowest excited state is one with two quasi-particles of angular momentum
1/2, which is simply a 0 + state. For reasonable magnitudes of G, this stat e

seems to be almost entirely spurious, and must therefore be ignored .

In the odd-A Pb isotopes the main systematic experimental feature is

the position of the i1312 state, which has been determined by a study of the
M4 isomeric transition to the f5/2 state . 10> For any reasonable strength o f

the pairing force, G, we obtain the correct position for this level . It i s
generally true that, although the absolute energies depend on the size of G
in odd-A nuclei, the relative positions of the one quasi-particle levels are no t

very sensitive to the strength of the pairing force or the P( 2) force, but depen d

mainly on the positions of the single-particle levels for any G which is
consistent with the gap .

All of the experimental odd -A Pb ground states are found within 0 . 1

Mev, as can be seen in Fig . 1 . In Pb 205 , the theoretical (1/2) - state is below
the (5/2)- state by about 0 .05 Mev, while experiment gives the groun d

state spin as (5/2)-,20> ; and the (5/2)- state might rise a little fast, since i t

is above the (3/2) - state by about 0 .1 Mev in Pb 197 , while rather uncertai n
experimental results give (5/2) - as the ground state spin . Such small devi-

ations can easily be explained by the uncertainties expected in the cal-

culations, especially by the presence of other perturbations besides the P( 2 ) .



Nr. 9

	

2 7

•z(-0
2,0

>
a)
X

1,0

f9 5
P b

Fig. 1 . Energy levels of the odd-A Pb isotopes .

The experimental points are large dots with spin and parity assignments placed on the righ t
when known . The theoretical results are the small dots joined by solid lines giving the position s
of the one quasi-particle states for G = 23/A and X = 0 .4 . The effect of the coupling of th e
quasi-particle to the collective oscillation is included by Eq . (40) for the lowest few states.
The labels on the experimental curves are the angular momenta of the one quasi-particle states .
The experimental values are taken from BERGSTROM and ANDERSSON, 19 ) the table of STROMINGER,
HOLLANDER and SEABORG, and the work of D eELEPOW and PEKEB '1 ) .
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Above about 0 .8 Mev a number of other states are arising from th e
phonons which have not been indicated in the figure . We seem to predict a
(3/2)- ground state in Pb 1 °5 and the presence of low lying (3/2)- and (1/2)-
states in Pb203 and Pb 20 1

In the even-A Pb isotopes the position of the 2 + level is known dow n
to Pb 2oo Using G ti 0 .1 Mev, this energy level is predicted quite well a s
the lowest two quasi-particle level which can give rise to a 2+ level . However ,
the B(E2) for this state in Pb206 is four times the single-particle value 22 ) ,
suggesting that the intrinsic states lie somewhat higher and that the 2 + state
is collective . The position of the 2 + level as a function of A and the valu e
of the B (E2) in Pb2o6 are accurately predicted. (Cf. § VII). However ,

of all of the s .c .s . nuclei, perhaps in Pb is the collective treatment of the
2+ state least well justified . The 2 + level and the levels correspondin g
to two identical quasi-particles appear together with some of the experi-

mental levels in Fig . 2 . Fig. 3 shows how the calculated levels vary as a
function of G .

The positions of all of the zero and two-quasi-particle levels are show n
in Figs. 4 and 5 for Pb2o6 and Pb 204 , together with the experimental values .

The agreement with experiment for Pb 2o6 is, as expected, not as good as
the results of TRUE and Fonu . 13) However, all of the experimental level s
with measured spins can be matched with quasi-particle levels to withi n
a few tenths of one Mev, except for the lowest 2 + level for which the collective
treatment gives the correct energy. It must be pointed out that our treatment,
which introduces the collective 2 + level and retains as higher excited state s
all of the J = 2 two quasi-particle states as effected by P( 2 ) in perturbation
theory, contains a spurious 2+ two quasi-particle state analogous to the
spurious 0+ two quasi-particle state of the Belyaev solution of the pairing
Hamiltonian . Thus, in Figures 4 and 5, there is one extra 0 + and one extra
2 + state . In our case as in that of Ref . 13, the ground state of Pb 206 is mostly

(p1/2)2 J = 0 so that the state composed of two p1/2 quasi-particles is mostly
spurious, the other two quasi-particle spin zero states being mostly real .
On the other hand, the lowest 2 + state of Ref . 13 and likewise our collectiv e
2 + state have large contributions from (p1/2 f512 ) and (P112 p3/2) and lesser
contributions from several other configurations, so that, with our method o f
calculating, the spurious character is spread over several of the low lyin g
2 + two quasi-particle states .

For G = 0 .128 which is chosen so as to fit the position of the 9 - leve l
in Pb 204 , and which is consistent with the data for Pb y06 , one predicts the
energy of the 9- level in Pb 2o2 to be 2 .09 as compared with the experimental
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Fig . 2 . Energy levels of even-A Pb isotopes .

Tise experimental points are large dots With spin and parity assignments placed on the right
when known . The theoretical points are indicated by small dots . Those theoretical points which
are joined by solid lines are the two identical quasi-particle states for G = 23/A and are labelled

to the left by the angular momenta of the quasi-particles . The effect of the P (2) force is no t
included for these states . The other two quasi-particle energies are found by taking the averag e

energy between the appropriate two levels (see Figures 4 and 5) . The collective 2+ theoretica l
level is shown by small dots joined by a dashed line . The experimental values are taken fro m
the table of STROMINGER, HOLLANDER and SEARoRG and the work of DZELEPOW and PEIran21 ) .
X = 0.4 .
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value of 2 .171 . The long lifetime of this level shows that it must lie below
the near lying 6-, 7-, and 8- levels . The P22' force puts the 9- below
these other states coming from (f512 i1312), but the (p1/2 11312) 6 , 7 quasi -
particle states lie well below the 9 - in Pb200 , close in Pb204 , and above
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The experimental levels, taken from Tisurs and Foxn 13), are given on the right for each spin.
On the left for each spin for G = 0 .128 is the two quasi-particle state perturbed by $il) an d
Eq. (20) (see text), the labelled unperturbed states being given to the left of the diagram .
The second column for each spin also includes the effect of $z . The lowest 2+ level, marke d
[2+], is the collective level . The state (P112)55=0 is mostly spurious and there is one spuriou s
state among the low lying 2 + quasi-particle states . The $sz2) effect is omitted in the highest states.
X = 0 .4 .

in Pb 202 Thus, we can understand why this long-lived 9- state is seen in
Pb 202 , and Pb 204 , but not in Pb' os

2 . Sn Isotopes

In the odd-A Sn isotopes nine ground states are known . In addition, sys -
tematic information about the (112)- -(3/2)+ separation is obtained from
the isomeric M4 transition, and several excited states are known in Sn 11 v

3
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The notation is the same as in Fig . 4 . The spurious character is spread over several of the lo w

lying 0+ states in this case.

Of course, Sn lol is far from the stability curve, so the single-particle wel l

cannot be obtained directly from experiment . One can learn something

about the (11/2)--(3/2)+ separation from the isotopes with 81 neutron s

and even numbers of protons ( 52Te 813 54Xe815, 56 Ba81` and 58 Cc81 9) How-

ever, one has a hard time to place the (1/2)+ state correctly with respect

to these two states and the separation between the 5/2, 7/2 states and th e

1/2, 3/2, 11/2 states is not known very well .
We tried calculations with several values of the single-particle energies .

Although it is possible to choose a well which gives better results, the result s

using the well of S . G . NILssoN rl) are presented in Fig . 6 . All of the
important features which are known experimentally fit well (to about
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Fig . 6 . Energy levels of the odd-A Sn isotopes .

The notation is the same as in Fig . 1, with G = 19/A and X = 1 .1 . The single-particle level s
are taken as

	

fsl2 (0) ; 9 7/? (0 .22) ; Sila (1 .9) ; d312

	

i(2 .20) ; hil2 (2 .8 Mev) .

0 .1 Mee) . One should notice that the 0 state remains the ground state a s
A changes by six . This feature depends not only upon the pairing force ,

but also upon the P(2) force. Also the P(2) force is important for keepin g

(3/2) + the ground state spin in Sn 123 and 125, for without it the (11/2) -

would be the ground state, contrary to experiment .

For the even-A Sn isotopes shown in Fig . 7 the 7 - state in Sn i2o coming

almost entirely from the two-quasi-particle state with one (11/2)- and



Nr.9 35

6,0

5,0

4,0

;3,0

2,0

~-4 - ~

(2+)•	 •- -

	

•

	

•

	

• -

•

	

•

	

•
1,0

0,0 • • • • •
0+ 0+ 0+ 0+ 0 +

S 108 S n10 S n12 S n14 S n16

• • •

	

• •

	

• ~
0+ 0+ 0+ 0+ 0+

	

0+
118

	

120

	

122

	

124

	

126

	

12 8
Sn

	

Sn

	

Sn

	

Sn

	

Sn

	

S n
Fig . 7 . Energp levels of the even-A Sn isotopes.

The notation is the same as in Fig . 2, with G = 19/A and X = 1 .1 ; and the single-particle energie s
are given in Fig. 6 .
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one (3/2)+ quasi-particle, is moved little by the long range force. It is fi t
quite well by G = 0 .187, corresponding to 0 .0911 in Pb (G = 19/A). The
6+ state from two (11/2)- quasi-particles is also fit well, falling abou t
0.1 Mev below the 7- level when $11 and 1320 are included by (18), (19),
and (20).

However, the important experimental results for the even -A Sn isotopes
are the 2+ states. There is a maximum in the 2 + -0+ energy separation
at Sn114 23) This feature is fit in quite good detail by the collective state
which occurs for the G = 0 .187 . In this case, the higher values of G wil l
give rise to collective 2 + slates which will not fit the experimental value s
very well . Thus the combination of the 7 - and 6+ states in Sn l2o and the
detailed experimental results for the 2 + state serve to pick the value of G
accurately as 19/A.

3. Ni Isotopes

Since the levels in Ni57 are not known we must again use indirect evidenc e
to find the well . For the neutrons moving in the 28-50 shell, the 133/2-P1/2
separation is known rather well from the magnitude of the spin orbit inter -
action. One needs to know, in addition, the position of the (9/2) + and
the (5/2)- levels with respect to the p levels .

The (9/2)+ - (1/2)- separation can be estimated from the isotopes wit h
49 neutrons and even numbers of protons . The pairing-force calculatio n
is insensitive to this, since the (9/2) + state does not play a very important
role in the Ni isotopes . However, the position of the (5/2) - level is quit e
important . Fig . 8 shows a sample calculation of how the levels in 26 Fe2 9
can give some information about this level . However the well of S . G.
Nilsson'') seems adequate for these isotopes, in spite of the apparen t
inconsistency of the (9/2)+-(1/2)- separation with experimental data .

Choosing the energy levels for the neutrons from ref. 13, we carry
out the pairing force plus P(2) calculation . The results are shown in Figs . 9
and 10. The calculated ground state spins in the odd-A isotopes all agre e
with experiment to within 0 .1 ylev. The motion of the 2+ first excited stat e
in the even-A Ni isotopes is best fit by the G = 19/A .

4. 1% = 82

There are experimental results for isotopes with 82 neutrons, for proton s
in the 50-82 shell from 52Te134 to 64Gd146 For all these isotopes, most of
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Fig . 8 . Energy levels of 26 re2 .
K is the strength of the coupling of the single-neutron states to the collective proton vibration .
At K = 0, one has the assumed single-particle levels plus a phonon at 1 .5 Mev . For K = K 0 , th e
value of K is estimated from 26Fe1å, 26 Fe30, and 2S NC, the results are compared to the exper-
imental values for FeöS , which are given as large dots with energies to the right . The p 3 ., +
phonon state which is given in the figure is the one with J-1/2 .

the extra-core protons are in the (7/2) -1- and (5/2)+ levels . Therefore, only

the separation of these levels need be known very well, especially sinc e
the 1/2, 3/2, 11/2 states are well separated from these levels . We use a
separation of 1 Mev for the protons between the (5/2)+ and (7/2)+ states ,
which seems to be consistent with the levels in 51Sb i2 and 51 Sb74 . The
three higher states are taken as one state of pair degeneracy nine a t

2 .0 Mev .
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The notation is the same as in Fig . 1 with G = 19/A and X = 1 .85 . The single-parLicle energy
levels are

p3/2 (0) ; f 51 ., (0 .73) ; p i~ 2 (1 .56), and g~~ 2 (4.52 Mev) .
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Fig . 10 . Energy levels of even-A Ni isotopes.

The notation is the same as in Fig . 2 with G = 19/A, X = 1 .85, and the single-particle level s
of Fig . 9, .

Figs . 11 and 12 give the result of this calculation . For the odd-A nucle i
the ground states are correctly determined, as are the only two excited level s
whose spins are known, the 0 .163 Mew, (5/2) + level in La i3s and the 0 .145
Mev, (7/2) + level in Pr14 1

In the even -A nuclei one finds that the 2 + collective levels are wel l
determined for G = 23/A .
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Fig . 11 . Energy levels of odd-A isotopes for N = 82 .

The notation is the same as in Fig . 1 . See the text for the discussion of the well . G = 23/A and
X = 0 .975.

5 . N=50

The region with a closed shell of neutrons and various numbers o f
protons in the 28-50 shell is a poor one for our calculation for severa l

reasons . The first difficulty is that of finding the proper well for one proto n
outside of the double closed shell, i .e ., 29Cua But just as important i n
this case seems to be the fact that the percentage change in A is so grea t

before one is at the isotopes for which there is empirical information tha t
the well seems to have changed quite a bit .
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Fig . 12 . Energy levels of even-A isotopes for N = 82 .

The notation is the same as in Fig . 2 . See the text for the discussion of the well . G = 23/A and
X = 0 .975 .

Another characteristic of this region is that the Z's of the stable isotope s

are just at the values for which the p 1f2 level is being filled . From th e
information we have, this level is rather separated from the other level s

00
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Fig . 13. Energy levels of odd-A. isotopes for N = 50 .

The notation is the same as in Fig. 1 . G = 26/A, X = 1 .22, and the single-particle energy levels ar e

15/2 (0) ; p312 (0 .6) ; pî 12 (1 .8) ; 9912 (3 .4 blev) .

of the shell . As explained in § II, such a situation can result in the Bardee n
solution to the pairing force being very inaccurate .

A one-phonon intermediate coupling calculation is done, using the C u
levels to find the proton well in the same way as Fe 55 is used to find th e
neutron well. This places the p3/2, f5/2 ' p1/2 states in roughly the same posi-
tions for the single proton as the corresponding neutron states in the same
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Fig . 14 . Energy levels of even-A isotopes for N = 50 .

The notation is the same as in Fig . 2 with G, X, and the well as in Fig . 13 .

shell . One finds the f5/2 state of the order of 1 Mev above the p3/2 state .
If this is the well for the protons, it is impossible to obtain the experimental

(3/2)- ground states in 35 Br 85 and 37ßb87 with reasonable values of th e

G and x parameters .
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The notation is the same as in Fig . 1 . G = 19/A, X = 3 .06, and the single-particle levels ar e

d 312 , ( 0 ) ; f712 , (2 .5) ; p3 12, (5 .57) ; f519, (6.54 Mev) .

On the other hand, it is true that for the N = 50 isotopes the value s
of A are considerably larger than for the Cu isotopes used to determine th e
proton well . As one increases A, the spin orbit force decreases . It is possible
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The notation is the same as in Fig . 2 with G, X, and the well as in Fig . 15 .

that the flt- f5/2 and p3J2 - P1/2 separations have decreased so much a s
one goes from 63 to 85 that the (5/2) - state has come below the (3/2)-
state. If one takes such a well, with a level ordering of

f512, P3/2, P1/2, 9'912 ,
it is possible to fit all of the odd-A N = 50 ground slates as well as the know n
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excited state information, within the accuracy of these methods, if the
(9/2)+-(1/2)- separation is taken to be about 2 .0 Mel, and with G = 26/A .
(Cf. Fig . 13) .

For the even-A nuclei shown in Fig . 14 the most interesting feature
is the low 0 + excited state in 4oZrsô . From our calculation we obtain a
state of two quasi-particles of spin 1/2 about at this position for G = 23/A .
As this state must be 0 + , this is a possible explanation for the experi-
mental state. However, the state might be quite spurious, in which cas e
the real lowest 0+ excited state would be somewhat higher in energy for th e
same G. The (9/2)+-(1/2)- separation is critical in determining how spuri-
ous this state is . With only the levels in Sr88 and Zr90 it is difficult to draw
much more information from these isotopes . Incidentally, if the 0+ state
is really associated with the two quasi-particle state, we would expect a

•2+

1p

0,0

	

o+ o+-0- o+

	

o+••41- o+

	

o +- 41 -o +

	

48

	

50

	

52

	

54

	

20 °~28

	

20 Ti
28

	

24 Cr28

	

26 Fe 28

2-1-2 - Z ---~~ -
Sc 49

	

V 5 '

2f 28
i -+ z - ; ;-

53
25 Mn28

	

27 28CO Ø
23 2 8

Fig . 17 . Exact diagonalizafion of pairing force for particles moving in a j = 7/2 shell compare d
with the experimental levels of the N = 28 isotopes .

The experimental levels are indicated by dots with spin and parity assignments to the righ t
and the theoretical levels by lines with the resultant angular momentum shown to the left of
the line .
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Fig . 18 . Same as Fig. 17 except that in this case the force diagonalized is the sum of a pair -

ing force plus a P(2) force of such relative strengths that the 0 + -2 separation of the even iso-
topes is produced by the combined results of the two parts of the force, the pairing forc e

contributing two thirds and the P (2) force contributing one third to the separation .

0 + state to lie near the 2+ 1 .85 cv state in Sr". The most significan t
manner in which our Zr" results differ from previous detailed calculations 24 i

is that the f5/2 , and especially the p 3J2 , configurations are admixed, and see m

to contribute to the low energy spectrum .

The results for both even-A and odd-A isotopes are quite sensitive t o
the choice of the single-particle levels in this region, and the results show n
in Fig . 13 have been obtained only after several calculations with rather
wide freedom in the choice of the single-particle values .

6 . N=28

Although 21Scg experiments give the proton well for neutrons in a
closed shell of 28, the region is still not a good one for our calculation .
The small degeneracy of the levels in this region, i .e ., S2 eff = 4, leads to
poor Bardeen solutions . The results of the calculation with a G = 19/ A
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Fig. 19 . Same as Figs . 16 and 17, but with a relatively stronger p( 2 ) force, the pairing forc e
only contributing one third and the P(2) contributing two thirds to the 0+-2+ separation o f
the even isotopes.

and P( 2 ) force are given in Figs . 15 and 16 . Although the 2 + state is fit pretty
well as a collective state, the levels in the odd-A isotopes are not well fit .
If the low lying odd parity excited states in 23V51 and 25 Mn53 are to come
from the single quasi-particle states corresponding to elementary excitation s
to levels in the next shell, such a large long range force perturbation wil l
be needed to break down the seniority coupling scheme . Certainly, per-
turbation theory is inadequate for the long range force . The theoretical
(3/2)+ state listed in Fig. 15 is the one quasi-particle state associate d
with the d31 2 level in the shell below .

We also performed an exact diagonalization of the pairing force plu s
P( 2 ) force under the assumption of a degenerate fm level . Fig . 17, Fig. 18 ,
and Fig . 19 give the results for three different combinations of G and P( 2 ) ,
all taken to fit the mean position of the 2 + levels in the even-A nuclei .
From these figures we see that it is possible to fit the experimental data fo r
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Fig . 20 . Coupling parameters.

The coupling parameters used in each mass region are indicated . The vertical lines indicate th e
extent to which the magnitude of the parameters may he determined by fitting the experimenta l
data .

the even-A isotopes and the low lying (5/2) - states in the odd-A isotopes with
a pairing plus a P( 2) force . The (3/2)+ state in V51 presumably is associated

with excitations from the shell below . If the fo/2, P3/2, and P1/2 states from
the next shell were included, one would obtain somewhat different results ,
and in particular the (3/2) - state might be lowered .

For regions lighter than N = 28, one would not expect our method s
Mat . Fys. Medd. Dan .Vid. Selsk . 32, no. 9 .
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to work very well . In these regions, the protons and neutrons are fillin g
the saine levels, so that the short range interaction between protons and
neutrons becomes important to the extent that the particles in the close d
shell are excited into the next higher shell . For example, there is evidence
that the double closed shell of N = Z = 20 is not strong enough for our
methods to be very accurate . Moreover, the effective pair degeneracy o f
the well becomes rather small . In conclusion, for the s .c .s . nuclei with
A> 49, we fit the energy level systematics rather well with an approximate
solution to the pairing plus PP) residual force. Only in the N = 50 case
does the change in the well with A in one region seem to give importan t
effects . The two parameters, G and X, which are obtained as likely in each
region are plotted in Fig. 20 . From this it is seen that their A dependenc e
is consistent with a volume force . This means that with only two parameter s
the low energy systematics for the intrinsic and 2 + collective states of
nuclei with one closed shell can he derived approximately .

IV . Total Binding Energies

A. Even-Odd Mass Difference s

Assuming that an interacting shell model picture is a good one, th e
binding energies of nuclei can give information about the residual interaction .
A systematic difference in the binding energies of even-odd and even-eve n
nuclei is a direct consequence of the pairing force . The P( 2 ) force, on the
other hand, produces a ground state energy shift which, though large, has
very little even-odd structure . Thus, a comparison between the experimental
odd-even mass differences of the s .c .s . nuclei which we consider and th e
theoretical ground state energy differences between odd- and even-A nucle i
can be used to help determine the magnitude of the pairing force constant G .

We define the quantities Pn and Pp

Pn(Z, N) = E(Z, N) +E(Z, N- 2) -2E(Z, N- 1), (42a)

P3, (G, N) = E(Z, N) +E(Z -2, N) -2E(Z- l, N), (42b)

where E(Z, N) is the total binding energy of the nucleus, (Z, N) . We con -
sider P . for Z closed and Pp for N closed. From (30) and (39) we see that ,
aside from the small shift due to the coupling of the quasi-particle to th e
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The Pn (Z, N) = E (Z, N)+ E (Z, N-2)-2E (Z, N-1) and P p (ZN) = E (Z, N)+ E (Z-2, N) -
2E (Z-1, N) are experimental quantities . 25 ) The theoretical curves are simply 2ET , twice the
energy of the lowest lying quasi-particle for the odd-A isotope . Curves a and b correspon d
to G = 19/A and 23/A, respectively . Curve c (for lead only) corresponds to G = 30/A .

phonons, which we ignore, the odd-even-A difference given by Pn or Pp

should just equal twice the energy of the odd-A quasi-particle, 2E» In Fig .

21, the lines represent the quantity 2E ) for the ground state for variou s
values of the coupling parameter G . The points are the experimental quanti -
ties Pn or Pp .

In each of the six pictured mass regions, the lower curve is the calculate d

mass difference value for G = 19/A, A being the representative mass numbe r
of the region . The next curve is for G = 23/A, and in the Pb region a third

curve for G = 30/A is included . The experimental points indicate that th e

data is consistent with the selected G values, but does not very strongl y
choose one over the other . Perhaps in the Pb region the two stronger value s
of G are preferred, while in the N = 28 region the lower value is better .

This is in agreement with the energy level information discussed in the
preceding section which indicates a preference for the value G = 23/A in
the Pb, N = 82, and N = 50 regions and the weaker G = 19/A in the othe r
regions .

3, 0

åi
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w
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B. Absolute Binding Energie s

In addition to the evidence for the gap, and therefore for the strength

of the short range part of the residual shell model two-body interaction ,
the total binding energy data can give evidence for the absolute groun d

state energies of nuclei . Although the residual force employed in this work

is certainly not the true force, it is hoped that in choosing a two-body inter -

action which gives the correct energy level spacing, one obtains the mos t

important portions of the nuclear states . In particular, one would like to

0

-Wo

-Wo-6o

Fig . 22. Energy diagram for non-interacting shell model particles .

be able to calculate the total binding energy of the shell model particle s

outside of the closed shells .

In a particular region let us call the binding energy of the double close d
shell nucleus W0 . Neglecting the Coulomb effect for the moment, if one add s
one extra particle (or hole) it experiences an additional binding energ y

of ao (cf . Fig . 22) . The assumptions of this work imply that as more particles

of the same type are added they fill the well defined by the isotope with on e

particle outside the double closed shells, so that, except for a possibl e
gradual change with A of so and of the energies of the well, as well as o f

the binding energy of the core, Wo, the additional binding energy due to

the outside particles is determined by single-particle energies, the two-
body interaction, and the Coulomb force . Including the Coulomb force ,

the binding energy of the isotope with one particle outside the doubl e

closed shell is

E i

E3
E2
E~
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W(l) = Wo+r0-(E(»-Er)

	

(43 )

where the Coulomb energy, Ec , is given by the Weizsäcker mass formula 26 )

as

E

	

Z(Z-1 )
~ = 0 .6	 iVlA1/3

	

ev .

The binding energy of the isotope with n particles outside of the doubl e

closed shell is

n
W(n) = W0 + .1' [ co-(ez-el) ] -VG(n)-VL(n) -

(E(cn)-Ero))

	

(45)
z= 1

where VG is the total interaction energy of the pairing force and VL is the

effect of the P( 2) force in the ground state of the n particle system.

From Eqs. (9) and (45), one find s

- W(n) -H W0 + n e0 = U' (n) +VL(n) + E(cn) - Ego)

	

(46)

for an even-A nucleus, while

-W(n)+W0 +neo = U'(n)+VL(n)+E(,n)-ET)+V(e-A)2+A2

	

(47 )

for an odd-A nucleus . In Eq . (47) the quasi-particle energy which appear s
is the smallest one for the isotope . It is difficult to know a priori the A
dependence of so and W° or whether it should be the same for all regions .

We make two calculations in each case, one holding s o constant and the
second giving co an A -113 dependence . We use the average so as determine d
from adjacent nuclei .

The most favourable case to consider is that of the Pb isotopes, for here
the experiments are accurate and one knows the binding energy of the doubl e

closed shell isotope, Pb L08 , and the isotope with one hole in the neutron

shell, Pb 207 . From these one finds 27 )

co (Pb 2Ô7 ) = - 7 .357 ± 0 .043 .

	

(48)

Using (48), one has accurate experimental values for W (n) + Wo + n e 0
for Pb 206 and Pb 204 . In Fig. 23 these values are compared to the theoretica l

ones for G = 0, G = 0.111, and G = 0 .145 . One sees that both for co constant
and for r o - A-113 the theoretical results are consistent with the data, an d

(44)
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Fig. 23 . Absolute binding energies of the Pb isotopes .

a and b are the experimental curves of -W (n) +W0 +ne 0 for e0 constant and s0- A-(113), respect-
ively ; c, cl, and e are the theoretical curves for U(n)+V L(n) for G = 0 .111, G = 0 .145, an d

G = 0, respectively . so = - 7 .357 from PbY08 and Pb'" experimental binding energies . 27 )

the value of G = about 23/A is favoured . This is consistent with the result s

of the energy level calculation . However, the errors in the experimenta l
results are large enough to make this result somewhat uncertain .

For the Ni isotopes and for the N = 82 region, one is at the beginnin g

of a major shell . However, for neither of these series of isotopes is the bindin g

energy known for the double closed shell and the double closed shell plu s

one nucleon isotopes . Therefore, one can merely determine if the results
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A .
Fig. 24 . Binding energies of the Ni isotopes .

a is the theoretical curve of U'(n) + VL (n) for G = 19/A, b is -W(n) + W0 + nea with eo -) A-(1/3) .
The curves have been fit at Ni" . Curves c and d are analogous to e and a of Fig . 23, respect-
ively .

of the theoretical calculation are consistent with the known experimenta l
results, and cannot experimentally determine the total binding energy o f
the n particles outside of the closed shells . However, the binding energy
curves have considerable structure, reflecting the two-body force by a dip
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Fig . 25 . Binding energy of the N - 82 isotopes .

a is the theoretical curve for U(n)+V1(n), b and e are the values of -W(n)+W 0 +neo fo r

so ... A .-î1J31 and so constant, respectively ; they are fit at ,54 X82 6 . Curves e and d are analogou s
to a and e, respectively, for G = O .

in the --W(n) + Wo + n so curve for the even-A and odd-A nuclei separately ,

as well as the even-odd mass difference (cf . Figs. 24 and 25). In both cases ,

after the experimental curves are normalized at the first point, the di p

is quite well reproduced if e o - A-113 but the statistics do not rule out a
constant so .
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The Sn isotopes are in the middle of a shell, forcing us once more to
fit at one isotope ; and there is very little structure to the curves except
the rise of the Fermi level and the even-odd mass difference . For this reason
we do not present the diagram . In this case the constant eo seems to b e
favoured. Of course, these results depend upon the positions of the single -
particle levels which are not too well known. The N = 50 region is also in
the middle of a shell, so the total binding energy information is not s o
useful, since one must fit at one point .

In conclusion, we see that the total binding energy data is consisten t
with the theoretical results in every case . In addition, in the Pb region, the
results can be used to help select the G which is most favourable . There
is an indication that the well depth changes as A -113 near closed shell s
and that it might have a slightly different A dependence in the middle o f
a shell than at the beginning or end . One should remember that there ar e
rather large uncertainties in both the theoretical and emperical result s
which go into drawing these conclusions .

V . Electric Quadrupole Moment s

For s .c .s . odd-A nuclei described by the collective Hamiltonian (39) ,
the total quadrupole moment operator is the sum of the single-particle
and collective operators

Qg' =4vv,(UvU,, , Vv Vv')(av' av' + ßv'ßv) +Qo
vv '

The single-particle operator, Qs p , of which we have only included th e
part diagonal in the number of quasi-particles, cannot change the numbe r
of collective quanta (phonons) ; and the collective operator changes th e
number of phonons by 1, but does not affect the quasi-particles . Thus
Q s p . contributes to the quadrupole moment in zeroth order perturbatio n
theory, while the contribution from Qo first appears in a term propor-
tional to x . For a quasi-particle of angular momentum j, the single-particl e
moment is

	

2 2

	

2
Qs.p ._

Y

	

5 - <Jl~' Y 0 ~JimL=7( U j V ,j) eeff

1
-

+ 2(J +l)
<J2 I J>(U

;
-Vf)eeff •

(49)
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For the coupled system, making the saine assumptions needed to obtain
(34), we obtain for the collective moment contributio n

2 '- 1
2eou -+ 2(J+1)<JII'2IJi(Uj-V)Ceeff,

	

(51 )

so that the total quadrupole moment is given in perturbation theory by

Q°+
	 2 .1	 1 <JII2 IJ>( U
20+1) eeff (1+ ~)

	

(52 )

Quadrupole moments are known experimentally for only four of the s .c .s .
odd-A nuclei which we consider . The experimental and theoretical moment s
calculated, using G and ~C which best fit other data, are shown in Table I .
An effective charge of two units was used in the calculation .

TABLE I

Isotope j C (U2 - V2 ) Q theoretical [10- 24 cm2 [ Q experimental (10- 24 cm' )

; ,Laj as 7/2 1 .2 - .25 + .21 + .2 7

es
Pr141 5/2 1 .6 .44 - .36 - .0 5

,,Rb89 3/2 1 .0 - .47 +.15 + .1 4
23vs1 7/2 2.2 .25 - .17 + .03

The table compares the experimental and theoretical electric quadrupole moments of s .c.s .
nuclei, based on the coupled system of quasi-particle and quadrupole vibration .

It is seen that the La 139 and Rb 89 moments agree well with experiment.
The theoretical moment of Pr 141 is too large by a factor of 7, but this result
could be improved considerably by the use of a different shell model wel l
which would in turn alter particularly the quantity (U 2- V2 ) in (52) .
However, it is difficult to see how the sign of the V51 moment could be change d
within our model, for this would mean that, with only three protons beyon d
the twenty closed shell, the 17/2 shell is effectively more than half filled .
Including the d312 levels below the shell in the calculation of the V's an d
U's does not seem to have a strong enough effect to cause this . The meager
experimental data for the quadrupole moments of odd-A s .c .s . nuclei do
not provide a detailed test of the nuclear wave functions . Thus, the question
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remains open as to whether admixed configurations to the pairing forc e
wave function other than those produced by the quadrupole field may also
contribute significantly to the quadrupole moment . Also other authors have
not succeeded in explaining the V51 moment by considering configuration
mixing 28> .

VI. Magnetic Dipole Moments in Odd Nucle i
A. Magnetic Moments with Pairing and P (2) Force Model

The magnetic moment operator for the coupled system of phonon s
and quasi-particles is the sum of the quasi-particle magnetic moment an d
that of the phonon. The quasi-particle magnetic moment operator i s

N .g .

	

< v I ,u ~v'i ( Uv Uv'+ Vv Vv') (av av'-ßv'ßv)
vv '

+~< v i,a iv'> ( U , Vv'- Vv Uv) (avßv'- ßv av') ,
vv'

where ,u is the usual particle magnetic momen t

	 1	
=J ~ga + 2 1 + 1 (g,5 - ga)) ; J = 1 + 2 ,

	

(54)

is the total single-particle g-factor, an d

1 5 .585)

	

1

	

gs l -3.8261 and
gl = o

	

(55)

for protons and neutrons, respectively. The only non-diagonal terms i n
(53) are those for which v and v' are spin orbit partners . It is seen fro m
(53) that quasi-particles have the same magnetic moments as particles ,
since (U2 + V 2 ) = 1 . This is easily understood, since particles and the cor -
responding holes also have the same magnetic moments . The second term
in (53) plays no role since the collective Hamiltonian (29) cannot chang e
the number of quasi-particles . Thus, with only pairing forces, the odd- A
nuclei will exhibit single-particle values (the Schmidt line values) for thei r
magnetic moments .

The collective Hamiltonian (39) will lead to magnetic moments differen t
from single-particle values by coupling the quasi-particle to a phonon and ,
of more importance, by admixing near lying quasi-particle states . For the

gi
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first and less important effect we must know the q-factor, g R, for the phonon .
This depends upon what part of the angular momentum of the collective

2 1- state comes from the protons and what part from the neutrons . Our

model, in which the collective motion involves the extra-core particle s
together with the core (included as a renormalization effect), suggests a some -
what higher g-factor for extra-core proton than for extra-core neutro n

nuclei . However, for the calculations we have taken g R = 0 .45. The phonon
magnetic moment operator is then gRR, where R is the phonon angula r

momentum . Since neither the phonon nor quasi-particle magnetic momen t

operators can change the number of phonons, the shift of the magneti c
moment from its single-particle value will. first appear in perturbation

theory in a term proportional to x 2
In the perturbation approximation one obtains 2) from the diagonal part

of (53)
5 1	 x 2

y
-

,us'p' + 167, j ha) C ij ' (gj gR) + iii' (9i ,-gR )f

(56)

(ha) EJ, -
EJ)(UJUJ. VJVJ) J ,

where a f. and ßfy are tabulated by BOHR and MOTTELSON (Table V, Ref . 2 )

or can be taken as

(CI 2_2 (57 a)

2

afJ' - ßfJ' _ lCôii) 	
J	

[ .1(J +1)-j' (j' +1) +6 1 .

	

(57b)
2 j +

If quasi-particle states j ', j" which are spin orbit partners of each other

appear in the one phonon amplitude, there is an additional contributio n

to y from the non-diagonal part of (53) . This additional contribution is

5 1 x2

	

2ff' 2ff ..	 J	
åY= 16nJ hcoC(g5-g1)2C0

û Cocu
(1+1)(21+1 )

/(j+1-2l
\j+1+2) •

l/(1_j+ 2/ j
+2/hw EJ'-EJ

hw
co

ta + EJ ---EJ
( U, U,,, - Vv Vv') ( Uv Uv - Vv Vv , .) ( Up , Uv „ + tiv,Vv „) ,

58)

where
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2, j = 1+ 2- .

For j = j ' or j = j" this expression (without the U, V factor) is equivalen t

to IV. 8, Ref. 2 . The other cases where these terms can contribute are whe n

j=j'-1 and j=j"+l .
Using (56) and (58) and the G and z which best fit other data, we have

calculated the shift of the magnetic moment from the Schmidt line fo r

all s .c .s . nuclei for which the magnetic moments are known experimentally .

The result is that, although the shift from the single-particle moment i s

always in the right direction, it is always too small by a factor of fro m
four to ten. The reason for this is the factor (U,,, U„--VvV,r), appearing

in the collective Hamiltonian (39), which greatly weakens the couplin g

of the ground state to the collective vibration . Thus it does not seem to

be possible to understand the shift of the quasi-particle magnetic moment
of s.c .s . odd-A nuclei from the single-particle value on the basis of the
coupling of the quasi-particle to the collective oscillations . 29 )

B . Magnetic Moments with Configurations Admixed by a 6-Function Forc e

AnIMA and HORIE30) , and ISLIN- STOYLR, 31) have pointed out that a

small amount of mixing of certain kinds of configurations can produc e

large changes in the magnetic moments of nuclei, without changing appreci-
ably the pure shell model configurations upon which they base their calcula-

tions .

From the results of Section A of this chapter it is clear that the configura-

tion mixing produced by the long range part of the force is insufficien t
to account for deviations of the magnetic moments from the Schmidt lines .

Moreover, the pairing force which we use to approximate the short rang e

force does differ from an actual short range 6-force in several ways . Although
these differences do not seem to show up in calculations of the gross proper -

ties of the nuclear wave function, it is easy to see that they are extremely

important in calculating magnetic moments . If we assume that an improved
Hamiltonian, HR , is of the form of a 6-function force and a P( 2 ) force,

.j

P(2) ( Ij ), (60)

then the Hamiltonian, H, used in this work is related to this Hamiltonian by
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HR = H+ V,

	

(61)
where

V

	

v(ri,rf) b(r i - ri)-

	

G ii ,
ii

and Gil is the pairing force as defined in Chapter II . If we use V as the per-
turbation in calculating the extra configuration mixing which plays a par t
for magnetic moments, then the calculation is quite similar to that of Ref . 30 .

As these authors point out, there are only a few kinds of admixe d
configurations which can change the magnetic moments in first order
perturbation theory on shell model states . There are two such kinds o f
admixtures . First, when the unperturbed state has an even number o f
particles in both. the j1 = 11 +1/2 and the j2 = 4-1 /2 shells of a spin-orbi t
doublet, and the upper level is not filled, there are contributing configuration s
in which one particle in the lower level is elevated to the higher level, with
a total angular momentum for particles in the two levels being unity . I .e . ,
the original configuration jl' (0)g' (0) is changed to [ji'-1 (j1 ) j2 +1(j2)] (1) .
The second type is quite similar, but in this case a particle is transferre d
between the states of the particles in the odd group and its spin orbi t
partner .

Our pairing force does not admix configurations of these types and ,
since the strength of the pairing force needed in our calculations give s
about the same gap as the force used in Ref . 30 for configurations of iden-
tical particles, we can use the- same 6-force to obtain the admixed con -
figurations instead of using V . As a rough check on the consistency of
our wave functions with the experimental values of the magnetic moments ,
we carry out a configuration mixing calculation with a B-function force
with the same parameters as used in Ref . 30 . We use constant radial matrix
elements. Our calculation differs from that of Arima and Horie only i n
that (i) our ground state wave functions are admixtures of many different
configurations with mixture coefficients given by our pairing force calcula-

tion, the only configurations which are in our odd-A ground state wav e
functions neglecting the phonon admixtures, being of the type ji' (0) j2' (0 )
. . .jP-1 (0) j ; jm>, where j is the angular momentum of the ground stat e
quasi-particle ; and (ii) our wave functions contain a spread in the numbe r
of particles .

In Table II we give the results of this calculation . The wave functions
used are those parts of the one quasi-particle states which have the correc t
number of particles . The calculation was carried out for only one Sn isotope
since the results will be similar for the other two Sn isotopes in which th e

(62)



TABLE II

Magnetic moments in odd-A nuclei . ,us p . is the Schmidt value for the isotope .
The experimental values are taken from Ref. 32 .

Isotope Spin Ps . p . tt theor . l'exp

Ni"	 (3/2) - -1.91 -0.21 0
Lal-39	 ( 7/2)+ 1 .72 2 .24 2 .7 6
Prlal	 (5 / 2 )+ 4 .79 3 .92 3 .9 2
Sn lls	 ( 1 / 2 )+ -1.91 -0.70 -0.91

magnetic moment is known . In the N = 28 region our wave functions with
a fixed number of particles are almost pure configurations, so there is almos t
no change in the results of Ref . 30 .

For the most part, our results are an average of the results of configura-
tions used in Ref . 30, although this is not always true . It would take a
detailed calculation to prove that the magnetic moments of odd-A nucle i

can actually be determined by this method ; however, one sees that pertur-

bations of the type considered produce shifts of the magnetic moment s
from the Schmidt lines of the observed order of magnitude .

VII . Electromagnetic Transition Rates

In addition to the valuable information concerning parity and spin s
considered in § III, electromagnetic transition rates can yield much mor e

detailed information about the wave functions of nuclear states . We hav e
already seen how the strong enhancement of the E2 transition rates in
even -A nuclei not only can be used to identify the collective states, bu t

that the magnitude of the transition rates can help select the proper forc e
strengths for our pairing and P (2) type of force (cf . § III. B). In this chapter ,
we investigate more systematically the electromagnetic transition rates fro m

the collective 2 + states in the even -A nuclei as well as the single-particl e
part of the transitions from quasi-particle states .

A . Odd-A Nucle i

Electromagnetic transitions between states in odd-A nuclei will procee d
by both particle and collective types of operators . The latter type will be
most important for E 2 transitions . But since there is at present no evidenc e
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on this type of transition, we restrict ourselves to the single-particle par t
of the transition operator . For any single-particle operator, the matrix ele-

ment for a transition from a single quasi-particle state of angular momentum
ji to a single quasi-particle state of angular momentum jf is given by

(Ijfmf I 0 I jara j ) = ( U11 Uj i- ( - 1 )TV1 Vj i)< JfmfI D IJ2 m i>,

	

(63)

where <3fmf I D I ji m i > is the ordinary single-particle matrix element . In
equation (63) the factor (-1)T is + 1, depending upon whether th e
operator is even or odd under time reversal, i .e ., z0 z 1 = (-1)T 0 ; or in
terms of the matrix elements ,

< z ji m iI D I zjfmf> = ( - 1 )T <jfmf 12Iji mi>•

	

(64)

The single-particle operators for the electric and magnetic 2L pole transi-
tions are

~ (EL) = fi (r)YLI +if2 (r)o xr • grad Y L,r ,

	

(65a)

~J2 (ML) = f3 (r) L grad YLI+ f4 (r) a • grad YnL,l ,

	

(65 b )

where the fi (r) are real functions of the scalar r . From these we see that

<zJimi E (EL) I zJf mf > _ <Jf mf I E (EL) I fi n-1 i),

	

(66a)

<zjirni I ~J2 (ML) ~ zjfmf> = - <jf mf ~ E (ML) I Jilni> ,

	

(66 b )

holds for all values of L . Therefore, from equation (63 )

(mejf mf 19R (EL) I Psi mi ) = ( Ujf U1i- VIfVj i ) < Jfmf I I (EL) I ji tn i > (67 a )

( zŸf jfmf IE (ML ) Tji mi ) = ( Ujf Uji+ Vjf Vji)<Jf mf IJ2(ML)Ij i m i> . (67 b )

From equations (67 a) and (67 b) one can express the lifetimes for transi-
tions between one quasi-particle states in terms of the lifetime for transi-

tions between single-particle states with the same electrical properties ,
angular momenta, and energy separation . Calling the lifetime of the single -
particle states z s • p • 33) , the reciprocal lifetimes for the single quasi-particl e
transitions are

1

	

1
_ D

	

s . p . ,zif

	

fi
z i ~f

(68)

-with
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Dfi (illL) 2 [1 +V (Ef-A)2
+ 42 Y ( E i ~ ;,)2+ 4 2

- / I

	

(Ef-A)2

	

(ei _ 2) 2t(

	

(Ef
A)2+42)

(

	

(Ei-A)2+42~~

1 ~	 	 (8f-2)(E i -A)
Dfi (EL) =

2
1+	 _	

v(Ef-A) 2 +42 v(Ei -A)2 +4 2

-

	

//1- ( Ef-.A ) 2	 	 (Ei - A) 2

I/`(Ef - A)2 +42
)(I_

(Ei A) 2 ~ 4 2 /

where D(NIL) and D(EL) are the reduction factors for magnetic and electric
2 L pole transitions, respectively. From equation (69) one can easily see th e
effect of the pairing force upon the transition rates . If the states i and f are

e- A
both far above the position of the chemical potential, so that 	 - 1 ,

V(e -A)2 +42
the transition rate is single-particle . This is the case when the probabl.ility
of the ground state containing a configuration with particles in these state s
is almost zero . As one adds particles, A approaches the value Ef, from below ,
and both the electric and magnetic reduction factors diminish in size, bu t
the reduction of the electric transitions below the single-particle value is
faster than the reduction in the magnetic transitions . For example, when
e i - ef «« 4 , by the time A = Ef , equation (69) shows D (ML) = 1 while
D(EL) O . This is quite a different behaviour than would be predicted b y
a pure shell model or a shell model with a diagonal pairing energy. (By a
diagonal pairing force we mean a pairing force which acts within each
j-shell with no matrix elements between different j-shells) . For instance ,
in the magnetic case, the non-diagonal matrix elements of the pairing force
are very important in keeping the matrix element approximately constant
while the chemical potential, A, moves through two close lying levels. This
feature depends simply on populating both of these states equally . Since
one does not do this in either a non-interacting shell model or with a
diagonal pairing force, the magnitude of the reduction factor will var y
much more in these cases as the number of particles is changed . Generally ,
the result is that the magnetic transitions tend to vary rather more graduall y
with changes in the number of particles than the shell model result, an d
that the electric transitions can display strong reductions even in pur e
quasi-particle states . In comparing the experimental transition rates to th e
theoretical ones it is most significant to compare the experimental wit h

Mat . Fys .Medd . Dan.Vid . Sask . 82, no.9.
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Fig . 26 . M4 transition rate in odd-A Pb isotopes.

Curves a, b, c are the theoretical values of the reduction from single-particle for G = 30/A ,
23/A, and 19/A. The experimenLal values i9) are normalized aL Pb222 .

the theoretical reduction factors in order to remove the very large effects
of energy differences .

In the odd-A s .c .s . nuclei, the only lifetimes which. have been measured

are those of the isomeric states . The most complete results are for the Pb



Nr . 9

	

6 7

isotopes, for which the M4 transitions between the i13/2 and f5f2 states have

served so well to trace the position of the i13/2 state (cf. Chapter III) .

The lifetimes are measured in Pb2o7 pb293 Pb2o1 Ph199 and Phi" 19 )

The comparison of the experimental reduction factors with the predictio n
of the pairing force calculation is made in Fig . 26 . The single-particle 2 L
pole electromagnetic transition rate has an energy dependence given by
(E 2-E1)2L+1 . Using this dependence and the experimental lifetimes, ener -

gies, and conversion coefficients, one finds that the experimental reductio n

is almost constant for the five isotopes . These "experimental" reduction fac-

tors are based on a comparison with a single-particle estimate which neglects
shell effects on the nuclear radii, an approximation which could affec t
the relative M4 reduction factors, where the nuclear radius enters in th e

sixth power.
The values plotted in the figure are normalized to the Pb 207 value ,

which is unity in our model . Because of the uncertainty in the experimenta l
reduction factor, a detailed comparison with the theoretical curves may
not be significant . It is of interest, however, that, for the values of G indicate d
by other evidence, the M4 reduction factors are indeed expected to var y
only little over the isotopes considered . As already mentioned, this woul d

TABLE II I

Electromagnetic transitions in one quasi-particle states . D eXp = PexpfPs, p ,
where Ps .p_ is a theoretical estimate of the transition when treated as single -
particle .") Dtheor is for G = 0 .128 in Pb, 0.187 in Sn, and 0 .238 in RT = 50 .
a 0 is the radius parameter .

Element Transition
Assumed Level

Change

D

(a0

e
12) (a0

D

	

p
e 1 1) D theor .

Ph" ,

	

, , 1 .064 M4 4312-45/2 0 .25 0 .42 1 .0 0
Ph",	 i 13/2> f512 0 .93

Pb 20a	 , 0 .825 M4 i 18J9~f5/2 0 .30 0 .49 0 .85
Ph" ,	 0 .629 M4

i ]3/2>f5/2 0 .24 0 .41 0 .78
Pbleø	 0 .424 M4 i13/2> f51 , 0.26 0 .44 0 .7 3

Pb 19 '	 0.235 M4 3/2> f5/2 0.27 0 .46 0 .7 0
1D5

•

	

•

	

•

	

•

	

•

	

• i 18/2 --)- f5/2 0 .7 0

Su l"	 0.159 M4 h 11/2->d3/2 0 .41 0 .68 0.9 6
Sn"*	 0 .065 M4 h 11/2 -)-d3/2 0 .57 0 .95 0.9 4

SO Yeo	 0 .913 M4 g 9/2 -''Pl/22 0 .26 0 .43 0 .6 8

41Nbso	 0 .105 M4 9912-,-Pi/2 0 .20 0 .33 0 .4 8

43 Tcô	 0.390 M4 P1/2> 99/2 0 .35 0 .59 0 .65

5 *
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not have been the case if the configuration mixing introduced by the
pairing force had not been taken into account . As to the absolute value s
of the transition probabilities, the single-particle estimate for the expecte d
nuclear radius is larger by a factor of two or three than the experimenta l
value for Pb 207 ; however, there is considerable uncertainty in the theoretica l
single-particle estimate (cf. Table III, p.67) .

The lifetimes of the h1112 states are known in Sn 117 and Sn119 34j The
internal conversion coefficients, which are quite large for these transitions ,
have not been measured . However, the errors in the values of Dexp , the
experimental reduction factor introduced by using the theoretical values o f
the internal conversion coefficients 35), are less than those due to the uncer-
tainty in the single-particle estimate . The theoretical value of the M4 reduction
factor in the pairing force calculation is almost unity, since in this case th e
separation between the (1312 and hu12 levels is small compared to the gap .
These results would be approximately unaltered for any values of the pairin g
strength and of the single-particle energies which fit the spins and energy
levels, as well as the 2-1--->-0-1- transition rates of the Sn isotopes . Table III ,
in which Dtheor, the value of the reduction factor in the pairing calculation ,
is calculated with a pairing strength and single-particle energy levels use d
to give the results shown in Fig . 6, indicates that the experimental an d
theoretical results are consistent .

In the N- 50 region, lifetimes have been measured for three M4 transi-
tions between the p1J2 and (8 91 2 states : 39Y89, 41Nb91 and. 43Tc 93 21) . Using
the theroretical conversion coefficients, one finds that the reduction factor s
given by the experiments and the single-particle estimates are consisten t
with the pairing force results . The values of Dtheor quoted in the table are
calculated from the energy levels and pairing strength which leads to th e
energy levels of Fig 13. The heightened reduction in the M4 matrix ele-
ments for 41Nb50 apparently reflects the diminution in the gap due to th e
filling of the level with spin 1/2, which is far in energy from other levels ,
as discussed in § III . The relative values of the experimental reductio n
factors also show a dip for Nb 91 compared to Y 89 and Tc93 , although thi s
might not be accurate enough to be significant .

In the N = 82 region the lifetimes are known for the 0 .165 Mev M l
transition in La 13s and the 0 .142 Mev Ml transition in Pr141 . However ,

both of these transitions are "1-forbidden", and a configuration mixing
calculation of the same kind as was used for magnetic moments (§ V)
would therefore be needed in order to account for these transitions 36 ) . The
0 .024 Mev transition in Sn its is also 1-forbidden .
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In a similar way, perturbations must also admix other configuration s
to all the single quasi-particle states . The amount of admixture would
presumably depend upon the unperturbed states, and thus would vary
for a one quasi-particle state of a particular type as the number of particle s
changes. Such effects could alter some of the quantitative results, fo r
instance, in the M4 reduction factors .

B. Even-A Nucle i

1 . Single-Particle Transitions in Two Quasi-Particle State s

In the same way as the result (68) was obtained for one quasi-particl e
states, for a transition between two states which can be described as two
quasi-particle states, Ti [J1

	

[J1Jf]~ , the reciprocal lifetime is given b y

1

	

1
= D if s . p . ~

T i-> f

	

Zz~f

where z s • p • is the single-particle lifetime* for the electromagnetic (2)1'
multipole transition J-,,- J', j i -s-jf .

The best experimental comparison can be made for transitions fro m
the high angular momentum odd-parity states discussed in § III . These
states may often represent rather unique quasi-particle configurations .
We restrict our discussion to those cases in which the experimental life -
times are known.

The 7- to 6+ El transition in Sn 170 is reduced about 2 .5 x 10 -$ com -
pared to a single-particle estimate . Since there are no possible shell mode l
configurations in this region of isotopes which would lead to El transitions ,
any shell .model theory would lead to a transition rate of essentially zero .

The half-life of the 2 .2 Mev state in Pb 206 is 1 .25 x 10 4 sec .22)' 37 )

We predict that this 7 - state is mainly a combination of an i1312 quasi -
particle coupled with a P3/2 quasi-particle and an f512 quasi-particle . The
2 .00 and 1 .68 Mev 4+ states to which the 7- states decay by E3 transi -
tions are mainly combinations of the (f512p312)4 and (f5î2)4 two quasi -
particle states . For these main parts of the wave functions the E 3 single -

* zz ~f in Eq . (70) is related to Moszkowski's ti ~f in Ref . 33 by

1

	

/

	

= (2J' +1)(2j i + 1) I i1' (J fJ' JgJ ; .11L)12I

	

1Zs
2

. p
f.)

Moszkowski .

(70)

s .p .
t i ~ f
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particle transition is forbidden . There will also be a certain amount of th e

(f5/2 (7/2)4 and (p3/2 f7/2)4 two quasi-particle states in these 4 + states, which

allow the E3 transitions ; however, we expect the transition rate to be fa r

below single-particle . In units of the single-particle estimate, the transitio n

9-(67m )

4+

4 +

204
Pb

Fig. 27 . Decay of the 9- state in Pb 2 "

strengths for the 0 .202 and 0.516 Mev transitions are of the order of 0 .3 ,
which seems to be somewhat large from the considerations mentione d

above. However, it is difficult to estimate the amount of mixing of quasi -

particle configurations which does occur .
The half-life of the 9- state in Pb 204 is measured to be 4 .02 x 10 3 sec 38 )

for decay into two 4+ states by a 0 .912 and a 0 .622 Mev E5 transition .
The 9- state is mostly a state of an 113/2 and an f5/2 quasi-particle couple d

0,622

E

0,911 7

, E 5
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to their maximum spin . We find that the 4 + final state for the 0 .912 Mev

transition is mainly a state of two f5/2 quasi-particles, while the 4+ state

associated with the 0 .662 Mev transition is mainly one with one f5/2 and

one p3/2 quasi-particle . Of course, these states are so close in energy tha t

9-C3,6 h )

0,12 9

E4

	1

0,78 7

E5

T

Q547

E 5

5 -

4 +

4 +

P
;02

Fig . 28 . Decay of the 9- state in Pb ao z

one can expect an admixture of these configurations . Table IV shows that
the 0 .622 Mev transition is consistent with a description that it proceed s
via a two quasi-particle transition between the states which are expecte d

to dominate, the reduction factor being about 0 .7 . The 0 .912 Mev transi-
tion, however, is enhanced compared to the theoretical value by a facto r
of the order of 100 if the transition proceeds via ( î 13l2 f512)9 ß (f512)4 +
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TABLE IV

Electromagnetic transitions in two quasi-particle states . G = 0.128 (in Pb) .
The column titled "Assumed Level Change" indicates the type of the quasi -

particle which changes during the transition. Where two assumptions have

been made for the spin assignments, the states might be admixtures, wit h

the first assignment having the heaviest weight . Dexp is given in units of

(~eff e) 2

Element Transition Assumed Level Change
o =

(

	

e 1p2) (aoDe 1 1) D theo r

Ph", . . 0 .516 E3 [ i 13/2P3/21 7_ +[ L 13/2f5/21 7_ 0 .26 0 .45 0 .98 x prob .

~[17J2P3/21 4 + +[f7/2f5121 4+
of f712 quasi -

particle in
0 .202 E3 [ i 1312P8/21 7_ +[h3(2f5/21 7_

4+ stue
~1712P3/21 4} + [/ 7/215/214, 0 .18 0 .2 9

Pb", . 0 .912 E5 [15J2 i 13J21 9_ ~[f5J2P3/21 4+ 47 112 0 .5 8

[15J2 L 13121 9_ ~[15/2P3/21 4+ 2 .6 6 .2 0 .7 3

0 .622 E5 [1512 i 13J21 9_~[f5/2P3/21 41_ 0 .4 0.94 0 .73

[15/2 i l3/21 9 _

	

[/5/21 2 4+
7 17 0 .5 8

Pb202 . . . 0 .787 E5 [15/2 i 18J21 9_ ~[15/21 2 4} 37 88 0 .5 6

[1512 i13/21 9_~ [15I 2 P312 1 4+
2 .1 4 .9 0 .3 4

0 .547 E 5 [f5/2 /13/21 9_+)' [15/2 P3/21 4+
0 .31 0 .74 0 .3 4

[15/2 i13/21 9_ ~ [15/21 24+ 5 .6 13 0 .5 6

0.129 E4 [ i13/215/21 9_- U18/2 P8121 4_ 0 .29 0 .60 0 .1 5

Sn'"

	

. . . 0 .089 E 1 2 .5 x 10 -5 0

Even if the 4 + state is taken as a (f5f2 P3/2)4 two quasi-particle state, thi s
E5 transition is enhanced by a factor of perhaps 5 .

In Pb 202 there is a situation which is almost identical to the one in

Pb 204 (cf . Fig . 28)39), 40) : a 0 .787 Mev E5 transition which might be expecte d

from energ,, considerations to be largely \ between(i1312f5J2)9 and (t5', 2 ) 24

y two quasi-particle states, and a 0 .547 Mev ES transition which might b e

expected to be largely ( i 1312 f512)9_~(f5J2P3J2)4+, corresponding to the 0 .912

Mev and 0 .622 Mev transitions in Pb 204 , respectively .

For the 0 .547 Mev transition, a reduction factor of 0 .34, which result s

from the pairing force calculation with the assumption of a ( i 1312 f512) 9 - ~

(f512 P312)4+ transition, is consistent with the experimental results . However ,
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the 0 .787 Mev transition seems to be strongly enhanced above the theoretica l
value, resembling the 0 .912 Mev transition in Pb Y04

The 9- state in Pb 202 decays with a 37°/ ° probability into a 5 - state
by a 0.129 Mev E4 transition . 3 ) As explained in § III, the 5^ state as-
sociated with the ( i1312 f512) two quasi-particle states is placed above th e
9- state by a P(2) force in perturbation theory, while the 5- state lies lowest
in the ( i 1312 P312) two quasi-particle configuration . Moreover, these results
are in agreement with the detailed calculations in Pb2o641) We thus expect
the 0 .129 Mev E4 transition in Pb202 to correspond to a transition betwee n
the ( i1312 f512)9- and (i1312P3/2)5- two quasi-particle states . Table IV shows
that a theoretical reduction factor of 0 .15 is consistent with the experimental
results if we use this interpretation .

2 . The 2 + -4-0 + E 2 Transitions

As indicated in the discussion of the choice of parameters, the B(E2)
values for the lowest 2 + -4-0+ transition of the collective state may b e
used to determine the effective charge . 42 ) In Table V we list the experimental
B(E2) values together with the theoretical values for the s .c .s . nuclei for
which the 2+ level has been seen . The theoretical values are calculate d
using (34) with e eff = 1 for the closed proton shell nuclei and eeff = 2 for
the closed neutron shell nuclei .

It is seen that the correct value of the B(E2) is obtained for Pb 206 with
use of the experimentally measured effective charge eeff = 1 .1 13 ) . The S n
B(E2) values are also reasonably well accounted for by e eff = 1 . For the
Ni isotopes a somewhat larger value of eeff seems to be required--about
eeff = 1 .4 . All of the closed neutron shell nuclei seem to require an effectiv e
charge well above unity to fit the few measured values, as expected. How-
ever, the value ee4f = 2 seems to be a little too high . A value eeff = 1 .5 would
give a better fit to the B(E2) of these nuclei.

In conclusion, the experimental values for the reduction in the M 4
transition rates in the odd-A Pb isotopes appear to be rather constant ,
which is consistent with the theoretical reductions for the values of G use d
in this work. The theoretical reduction factors for M4 transitions in the other
odd-A s .c .s . nuclei are also consistent with experiment, in all cases the reduc-
tion factor being not less than 0 .5 (and greater than 0 .7, except in rather
unusual cases) . This result can be extended qualitatively to other nuclei .
In every case, the pairing correlations will tend for magnetic transition s
to maintain the transition rate near the single-particle value even as particles
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TABLE V . B(E2) values

The theoretical and experimental B (E2) 0+ -±2 + reduced transition prob -
ability is shown for s .c .s . nuclei . The value eeff = 1 is used in computin g
the theoretical value for Pb, Sn, and Ni, and e eff = 2 for N = 82, N = 50 ,
and N = 28 . In the fourth column the " single-particle" estimate B (E 2)S

p
= 3 10-5 A4/3

e2 10-48 cm4 was used ; and in the last column the experi-
mental references are given.

Isotope

B(E2)ex p
e' 10 -48 cm4

B ( E2 )ex p
e' 10-48 cm 4

B ( E2)exp
Ref .

Theoretical Experimental
B(E2) s p ,

Ph"'	 0 .13 0 .14 4 (22)
Pb zo4	

0 .2 2
Pb"'	 0 .2 9

Pb"	 0 .3 3
Sun "	 0 .25 0 .18 11 (44)
Sn14 0 .20 0 .20 11 (44)
Sn 16 0 .26 0 .21 12 (22)
Snus	 0 .29 0 .23 13 (22)
Sn1z0	 0 .28 0 .22 13 (22)
Sn 722	 0 .25 0 .25 14 (22)
Sn 124	 0 .20 0 .21 12 ( ~2~ )
Ni~B	 0 .020 0 .072 11 (45 )
NiGO	 0 .046 0 .091 1.3 (45 )
Ni62	 0 .071 0 .083 11 (45 )
Ni64	 0 .068
Xe laa	 0 .3 4
Bal"	 0 .5 1
CO"	 0 .73 0 .36 16 (46 )
Nd14z	 1 .0 1
Sr88	 0 .180 0 .13 12 (46 )
Zr"	 0 .11 3
Ti"	 - 0 .07 8
Gr52	 0 .16 0 .085 14 (46 )
Fe54	 0 .23

are placed in the levels involved in the transition--a result which might
explain the striking constancy in the M4 reduction factors throughout
the periodic table . 43 )

For even-A nuclei, we conclude that our results for quasi-particle
transition rates are consistent with experiment within the accuracy obtain -
able by our methods, with the possible exception of an enhancement o f
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certain E5 transitions in Pb 204 and Pb2o2 . For the collective states, the

lifetimes can be used to determine the effective charge . In addition ,

in Pb 2os we can use the experimentally measured value of eeff to help

select G .
As the systematic experimental data is extended, the transition rate s

will provide a detailed test of the wave functions obtained with this model .

VIII. Summary

An approximate calculation of the properties of nuclei with one closed

proton or neutron shell is attempted. Using the approximation method s

introduced by the theory of superconductivity, we have calculated th e

effects of those parts of the short range part of the residual interactio n
which are common to the pairing force, obtaining the quasi-particle energie s

for several strengths, G, of the pairing force . The deformed field approxi-

mation is used to calculate the effect of the relatively long range part of th e

nuclear force, and in particular to determine the positions and B (E 2)' s
of the 2+ collective states in the even-A isotopes .

The most important systematic experimental feature for the even- A
s .c .s . isotopes is the position of the first excited 2 + state . This state, whic h

is of collective character, has a rather constant energy above the groun d
state, and is often quite a bit lower in energy than the next higher excite d
states, thus lying in the gap between the ground state and the intrinsi c

excited states .
We find a simple explanation for this 2 + state. This state, which in our

work is always the first excited quadrupole vibrational level, is located
below the first states of two quasi-particles, sometimes rather far below ,

as in the case of the Sn isotopes . In every case, the second excited vibra-
tional level is among the quasi-particle states so that it becomes mor e

difficult to explore the possibility of higher collective states .

Also in even-A nuclei we find that we can approximately derive not
only the positions of the 2+ levels, but also the positions of the levels of
high angular momentum with values of the pairing and P (2) force which

do not differ much from region to region, except for the A dependenc e
of a volume force .

For the odd-A isotopes, the most significant systematic experimenta l
feature is the gradual change in the positions of the states which correspond
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to our one quasi-particle states, motions which are much smoother tha n
those predicted by an independent shell model .

In the odd-A isotopes . the positions of the quasi-particle levels do not
depend upon the strengths of the pairing and P( 2 ) force so much as upo n
the separation of the single-particle energy levels, for values of the pairin g
force which are consistent with the data in the even-A isotopes . The ground
state spins are determined within the accuracy expected . In Pb, where both
the single-particle well is known and systematic measurements for the posi-
tion of the i1312 states have been made, we find that we can quite accuratel y
and rather unambiguously predict the relative position of the i1312 state .

The even-odd mass data gives values for the gap which are in agree -
ment with our results . The determination of the absolute binding energy
involves questions which are beyond the scope of our methods, but the
experimental data seems to be consistent with our results .

Very little data is available on quadrupole moments of s .c .s . nuclei ,
but our calculated values are in fair agreement with experiment whe n
one considers the change which can occur with the inclusion of small
admixtures of configurations other than those arising from a pairing plu s
P( 2 ) interaction . The magnetic moment data is much more extensive .
Although for our wave functions the calculated magnetic moments ar e
too close to the single-particle values, the small admixture of other con-
figurations can change these moments by amounts of the right order t o
agree with experiment .

The main systematic results from the theoretical study of the collectiv e
part of the electromagnetic transition rate is the theoretical value for th e
effective charge . The main systematic feature which we have calculated
for electromagnetic transitions between quasi-particle states is the tendency
for the M4 reduction factors to remain rather constant for the i 1312 - f5/2
M4 transitions in the Pb odd-A isotopes, which seems to be indicated b y
the experiments . This feature depends essentially on the strongly mixe d
configurations which occur in our calculation . Qualitatively, this result
would tend to lead to a rather constant reduction factor for magnetic transi-

tions compared to electric transitions, which is a possible explanation for
the striking constancy in the M4 reduction factors, while the E 3 reductio n
factors are widely varying .

We conclude that the simple model which we have tried has bee n
successful in deriving the observed low energy systematic features of s .c .s .
nuclei, and that our results might serve as a good basis for a more detaile d
quantitative investigation .
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Appendix

In this Appendix we list the quantities needed to obtain the nuclear

energy levels and wave functions for typical strengths of the pairing forc e

parameter, G, and long range force parameter, X, which are consistent
with the known energy levels . For each region, the single-particle energies ,

ej , are given, with the subscript giving the angular momentum of the level .

Using Eqs . (9) and (10), the quasi-particle energies are determined for

each isotope by

	

and A, which is listed in the table .

The properties of the collective state are conveniently calculated fro m

the quantities 9,l and , which are included in the table for each isotope ,
defined by



78 Nr . 9

(U;V .,-i-V U.,)2
1 (

	

)

	

Y
~

J	 7	 J	 	 2 '1 (G')3l1r2i11-_,

	

A(1)j\ û

= ( V1' +Vj37 ' ) 2 	 1 ~ •, +1 (Coj'j) (jlr	 lJt)
A(2)

	

+ E~,)

	

10 uJ

	

2'3- ~J r 2 J'>,û
,

where <j 1r 2 I j>û is defined in Eq. (41) . The relation of these quantities

to the collective parameters B and C of Eq . (3) is given by

	

1 ß	 1

	

B= --	2a2
4at < r2>w

	

C = 1 [1 -2a~I1-	 1-

	

2 a

	

~< I r2 I>û

Z = 82, holes in the N = 126 shell (Pb isotopes) for G = 0 .111 Mev .

£p1/2 = 0, ss,J2 = 0 .57,
Epa/2

= 0 .90, ci 1312 -
1 .634, Ef7f2 2 .35 Mev.

A (Mev) d (Mev) S?T (Mev- 1) ~ (Mev- 3)

206	 0 .11 0 .25 0 .40 0.5 0

205	 0 .25 0 .34

204	 0 .33 0 .42 0 .52 0 .4 2

203	 0 .42 0 .4 8

202	 0 .52 0 .53 0.56 0.3 3

201	 0 .60 0 .5 5

200	 0 .69 0 .58 0 .57 0 .2 7

199	 0 .78 0 .6 0

198	 0 .88 0 .63 0 .56 0 .2 0

197	 0.97 0 .64

A(3)

A(4)
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Z = 50, neutrons in 50-126 shell (Sn isotopes) for G = 0 .187 Mev .

ed512
= 0,

cg712
= 0 .22,

e,112 = 1 .90, sd3~ 9 = 2 .20,
ehll/2

= 2.80 Mev .

A A (Mev) d (Mev) ~2C (Mev-1) (Mev3 )

108 . . . . . . . . . . . . . . . . . 0 .17 0 .97 0 .33 0 .06 1

109 . . . . . . . . . . . . . . . . . 0 .29 0 .98

110 . . . . . . . . . . . . . . . . . 0 .44 0 .98 0 .34 0 .05 7

1.11 . . . . . . . . . . . . . . . . . 0 .60 0 .9 7

112 . . . . . . . . . . . . . . . . . 0 .76 0 .94 0 .33 0 .049

113 . . . . . . . . . . . . . . . . . 0 .97 0 .9 0

114 . . . . . . . . . . . . . . . . . 1 .20 0 .89 0 .32 0 .044

115 . . . . . . . . . . . . . . . . . 1 .43 0 .9 2

116 . . . . . . . . . . . . . . . . . 1 .64 0.96 0 .34 0 .04 8

117 . . . . . . . . . . . . . . . . . 1 .81 1 .0 0

118 . . . . . . . . . . . . . . . . . 1 .97 1 .03 0 .35 0 .05 2

119 . . . . . . . . . . . . . . . . . 2 .12 1 .05

120 . . . . . . . . . . . . . . . . . 2 .26 1 .07 0 .35 0 .05 4

121 . . . . . . . . . . . . . . . . . 2 .40 1 .08

122 . . . . . . . . . . . . . . . . . 2 .53 1 .07 0 .34 0 .05 7

123 . . . . . . . . . . . . . . . . . 2 .65 1 .0 6

124 . . . . . . . . . . . . . . . . . 2 .78 1 .03 0 .32 0 .060

125 . . . . . . . . . . . . . . . . . 2.88 1 .0 0

126 . . . . . . . . . . . . . . . . . 3 .01 0.96 0.29 0 .06 0

127 . . . . . . . . . . . . . . . . . 3.12 0.9 0

128 . . . . . . . . . . . . . . . . . 3 .24 0 .83 0 .22 0 .05 3

129 . . . . . . . . . . . . . . . . . 3.36 0 .72

Z = 28, neutrons in 28-50 shell (Ni isotopes) for G = 0 .331 Mev .

E 7,312 = 0, 81.512 = 0 .78, E p1J2 = 1 .56, sg912 = 4.52 Mev .

A A (Mev) A (Mev)

	

I

	

~?C (1ev 1)

	

~ ~ (Mev 3 )

58	 - 0 .31 0 .80 0 .11 0 .024

59	 - 0.09 0 .9 4

60	 0 .14 1 .04 0 .18 0 .02 8

61	 0 .38 1 .1 1

62	 0 .59 1 .15 0 .21 0 .03 2

63	 0 .84 1 .1 6

64	 1 .09 1 .14 0 .21 0.03 2

65	 1 .39 1 .08

66	 1 .64 0.99 0.15 0 .02 2

67	 1 .99 0 .8 1
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N = 82, protons in 50-82 shell for G = 0.173 Mev .

eg7/2
= 0,

Ed5f2 -
1 .0, E = 2 .0 Mev .

A ~ (Mev) (Mev) ?f (Mev1)
~ (Mev- 3 )

134 . . . . . . . . . . . . . . . . . 0 .41 0 .54 0 .13 0.05 3
135 . . . . . . . . . . . . . . . . . 0 .29 0 .6 5

136 . . . . . . . . . . . . . . . . . 0 .17 0 .73 0 .22 0 .06 5
137 . . . . . . . . . . . . . . . . . 0 .05 0 .7 8
138 . . . . . . . . . . . . . . . . . 0 .09 0 .83 0 .26 0 .05 8
139 . . . . . . . . . . . . . . . . . 0 .22 0 .8 8
140 . . . . . . . . . . . . . . . . . 0 .37 0 .92 0.30 0 .04 8
141 . . . . . . . . . . . . . . . . . 0.52 0 .9 6
142 . . . . . . . . . . . . . . . . . 0.66 0 .99 0 .34 0 .05 1
143 . . . . . . . . . . . . . . . . . 0.78 1 .0 2
144 . . . . . . . . . . . . . . . . . 0.93 1 .06 0 .38 0 .05 5
145 . . . . . . . . . . . . . . . . . 1 .05 1 .0 9
146 . . . . . . . . . . . . . . . . . 1 .15 1 .11 0 .41 0 .05 7

N = 50, protons in 28-50 shell for G - 0 .291 Mev.

E3,512 = 0, c ps/2 = 0 .6, E2,1f2 = 1 .8, Eg912 = 3 .4 Mev .

A A (Mev) d (Mev)

	

~ tC (Me- v- 1) (Mev 3)

83 . . . . . . . . . . . . . . . . . . 0 .16 0 .98
84 . . . . . . . . . . . . . . . . . . 0 .36 1 .01 0 .21 0 .03 8
85 . . . . . . . . . . . . . . . . . . 0 .58 1 .0 1
86 . . . . . . . . . . . . . . . . . . 0 .82 0 .98 0 .22 0 .03 7
87 . . . . . . . . . . . . . . . . . . 1 .10 0 .9 2
88 . . . . . . . . . . . . . . . . . . 1 .44 0 .86 0 .18 0 .03 0
89 . . . . . . . . . . . . . . . . . . 1 .83 0 .8 3

90 . . . . . . . . . . . . . . . . . . 2 .24 0.84 0 .10 0 .01 1
91 . . . . . . . . . . . . . . . . . . 2 .59 0.9 3
92 . . . . . . . . . . . . . . . . . . 2 .85 1 .00 0 .15 0 .025
93 . . . . . . . . . . . . . . . . . . 3 .08 1 .0 4

N = 28, protons in 20-28 shell for G = 0.385 Mev.

Ed312
= 0, 617/2 = 2 .5,

E1,312 =
5 .57,

Et-512
= 6.54 MeV .

A A (Mev) J (Mev) nC (Mev-1 ) ~ (Mev 3 )

50	 1 .90 1 .12 0 .088 0 .01 0
51 . . . . . . . . . . . . . . . . . . 2 .19 1 .2 2
52 . . . . . . . . . . . . . . . . . . 2 .48 1 .26 0 .13 0 .01 4
53 . . . . . . . . . . . . . . . . . . 2 .77 1 .25
54 . . . . . . . . . . . . . . . . . . 3 .08 1 .18 0 .14 0 .01 3
55 . . . . . . . . . . . . . . . . . . 3 .45 1 .02 0 .13 0 .011
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