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Synopsi s

The moment of inertia and the collective gyromagnetic ratio of even-eve n
nuclei are calculated on the basis of wave functions that take a pairing interactio n
into account through the quasi-particle formalism . The results obtained theo-
retically are found to be in reasonable agreement with experiments . The strength
of the characteristic pair-correlation matrix element to be employed is estimate d
on the basis of data on odd-even mass differences . The dependence of the cal-
culational results on the central-field parameters, as e . g . the eccentricity and th e
single-particle energy scale, is discussed . Other possible effects with particular
relevance to the odd-even mass difference and the experimentally occurring energy
gap are also surveyed .
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Introduction

The regions of deformed nuclei are empirically characterized by the oc-

currence of rotational bands in the nuclear excitation spectra . The charac-

teristic energy spacings within these bands exhibit the well-known 1(1+ 1)

dependence. The occurrence of such collective rotational states is largely

independent of the detailed character of the intrinsic motion .

If one writes the rotational energy in the for m

h2
Erot =

	

1(1 + 1 ) ,

the magnitude of the moment of inertia ; S, entering in the proportionality con-

stant, provides, however, more. of a test of the detailed nuclear model . For

even-even nuclei two more intrinsic constants determine most of the proper -

ties of the low-lying states . One is the intrinsic quadrupole moment which

determines the E2 transition strengths for gamma decay and for Coulomb
excitation. The other constant, gR, the gyromagnetic ratio of the collectiv e

flow, enters, for instance, when one measures the magnetic moment of a

higher member of the ground-state rotational band . While measures the
mass of the collective flow, gR is associated with the magnetic properties o f
the flow .

For odd-A nuclei, magnetic moments and decay probabilities within a

rotational band also depend on some of the details of the odd-particle orbita l
in addition to the said quantities connected with the even-even ground-stat e

band .

The present work is based on the "cranking model " (1) . This model cor-
responds to the approximation that the self-consistent field determining th e

single-particle orbitals is cranked around externally . The rotational energy
of the system is then calculated as the extra energy necessary for the nucleons

to follow a slow rotation . The cranking model applied on the basis of a

completely-independent-particle description gives a value of the moment o f
inertia approximately equal to that of rigid motion, provided one choose s

1*

(1)
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the equilibrium value of the deformation of the nuclear field(2' 3) . The em-
pirical values amount, however, to only 20-50 0/ 0 of the rigid moment o f

inertia .

Bolin and MOTTELSON (2) gave general arguments to the effect that a re -

sidual short-range attractive interaction between the particles-the latte r

being assumed in the first approximation to move independently in a com-

mon field-would decrease the value of the moment of inertia . They als o

studied the effects explicitly in terms of a very simplified "two-particle mo-

del" . The strength that such an additional interaction must have to reproduc e

the empirical situation was found to be of the order usually attributed to th e

short-range inter-particle force . It remained, however, to treat such an inter -

particle force in the case of a large number of particles outside of closed shells .

Such an additional inter-particle force, the pair-correlation force, whic h
allows a complete treatment even when many particles are involved, ha s
recently been introduced into nuclear physics by BOHR, MOTTELSON and

PINE0,3,5> , by BELYAEV (6) , and by SOLOVJEv 7 and other authors of the

Bogolubov school. These authors employ and adapt to nuclear physics th e

elegant and powerful methods developed by BARDEEN and others° to ex -

plain the phenomenon of superconductivity . Such a pairing interaction is firs t

of all capable of explaining the empirically encountered energy gap in th e

spectra of even-even nuclei . For an example of the empirical occurrence o f

such a gap, take for instance the region of rare-earth nuclei 150 < A< 190 .

The empirical average energy spacing of intrinsic excitations appears to b e

of the order of 150 keV (which seems to indicate a single-particle leve l

density of about one level per 300 keV) . In even-even nuclei in this region ,

however, there exist experimentally no excited states that are not of collectiv e

character below - 1000 keV. Such an energy gap cannot be explained b y

the mere assumption of an additional diagonal pairing energy, effective be-

tween the pair of particles filling the degenerate orbitals K and - K. This

would indeed forbid the breaking of such a pair, but could not prevent low -

lying two-particle excitations ; the latter would occur with an average leve l

density of one state per 300 keV or so, where about half the states woul d

correspond to excited proton pairs and half to neutron pairs .

As pointed out, the pair-correlation interaction is capable of explainin g

this very conspicuous feature of even-even spectra . Expressed in terms of the

single-particle states of the average nuclear potential, the pair-correlation

interaction thus scatters pairs of particles from the originally filled lower-

lying, doubly degenerate single-particle orbitals into the higher-lying level s

which are left unoccupied according to the earlier description . The new
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total intrinsic wave function that most effectively utilizes this additional type o f

interaction and represents the ground state is then a state with a diffuse Fer -

mi surface . In this state there exists a particular correlation between all th e
scattering pairs of particles within the region of diffuseness of the Ferm i

surface. Any excited state which thus involves the formation of a state ortho-

gonal to the ground state then necessarily spoils some of the correlation an d

is therefore associated with an excitation energy of at least about the widt h

of the diffuseness of the Fermi surface .

The investigation reported in this paper appears to bear out the contentio n
that the introduced pair-correlation interaction in the regions of deforme d
nuclei is capable of explaining quantitatively at the same time the occur-

rence and magnitude of the energy gap in the spectra of even-even nuclei ,
the even-odd-mass difference, and the magnitude of the moment of inerti a

associated with the collective rotation . A computation of the moment o f

inertia rather similar in scope to the one reported here has been carried

through by GRIFFIN and Ricii (9) . Also the investigations by MIGDAL (10) and

by HACaENBRoICH (n) contain some numerical results largely in line wit h

the results obtained in the publication cited above as well as with those o f

the present paper .

A preliminary report of the present calculations was presented at the

Conference of the Swedish Physical Society in .tune, 1959 (12) .

I . The Hamiltonian Describing the Intrinsic Motio n
of Deformed Nuclei with the Inclusion of the Pair Correlatio n

The application of the quasi-particle formalism in the nuclear cas e
is described in detail in the paper by BELYAE V (5) . For the reader's convenienc e
we shall, however, give a short account of the most important results .

Let the Hamiltonian of the (static) self-consistent nuclear field be denote d
Hs . The corresponding single-particle eigenfunctions are first characterize d

by the eigenvalue K of the angular-momentum component along the nuclea r
axis . This component is a constant of the motion provided HS exhibits cy-

lindrical symmetry . Furthermore, under the condition that the system i s
invariant under time reversal there always exist two states degenerate i n
energy, each of which is the time reverse of the other . Under the additional

requirement of cylinder symmetry these may be labelled by the component s
of angular momentum K and -K.



6 Nr. 1 6

We define such a single-particle state as v >, where v denotes both th e
K-value and the additional quantum numbers necessary for the complet e
specification of the state . It is sometimes convenient to consider such a stat e
expanded in terms of eigenstates of the angular momentum j as follows :

I v > = ~~,xK

	

(2)

We then define the conjugate I v > state, which corresponds to the nucleoni c

orbit with a completely reversed direction of motion compared with I v >, as"

I _ v) _

	

(-)Z+~-K
Cf x7 K

	

( 3)

where the phases of xK and x? K are defined in accordance with the conventions
of CONDON and SHORTLEY 1131 . As already pointed out, this definition of th e

conjugate state makes it equal to the time-reversed state TIv>, possibly
apart from a conventional phase . In the following we shall employ th e
relation

TIv)=I-v>,

	

(4)

which then fixes the arbitrary phase of T. We denote the eigenvalues o f
H s by ev . Furthermore we assume that both ev and Iv> can be taken with
sufficient accuracy from the calculations by Mo' EDSON and NILSSON

115,16 >

The remaining, most important features of the inter-particle forces, which

correspond to the very short range components of these forces, may now

(cf. references 3, 5, 6) be simulated by the said pair-correlation interaction .
In its simplified form this interaction may be written in second-quantizatio n

language
H''ir = - G

	

a,+, at,, . a-v av .

	

(5)

Eq. (5) represents the limiting assumption that the residual force acts only
when two particles move in a J = 0 state . The said force displays the main

features of the 6-force, although the latter has minor but non-negligible ef-

fects on pairs of particles in states of non-vanishing but small angular
momentum .

In this notation a one-particle state is expressed as follows in terms o f

the creation operator aÿ :

Iv)=a+ IO) .

* By redefinition of the spherical harmonics as YZm = i Z Ylm, where YZm is the conventional
spherical harmonic defined in accordance with the CONDON-SnoRTLEY 03 ) phase conventions ,
the parity sign in (3) or (-)l may be absorbed into -v) (see EvrioNDs(' 4 )) . This parity sign
is furthermore unimportant in our calculations .

(6)
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With the inclusion of Hs the total Hamiltonian takes the form

H=

	

er(avav+ a±v a-v)-G7 ci a±vatv ov .

	

(7)
vv

The great advantage of the second-quantization formalism is that it au-
tomatically ensures compliance with the Pauli principle . This principle i s
built into the formalism by the usual anti-commutation relations which th e
a v : s are required to obey.

The obvious aim is now to find an eigenfunction of the Hamiltonian (7)
that is in addition an eigenfunction of the number operato r

	

=

	

(av a, + at,

	

a -v) •

	

(8 )v

BARDEEN et al . find a convenient but approximate eigenfunction of (7) at
the cost of weakening the latter condition* and replacing it by a conditio n
for the average value of N :

<PI N IT> = n . (9)

In conformity with the fact that the number of particles is conserved onl y
on the average, the solution corresponds physically to an ensemble of nucle i
having slightly different numbers of nucleons . The procedure for treating
this new simplified problem is then to introduce an auxiliary Hamiltonian H' :

H' = H-AN, (10)

where R, treated as a Lagrangian multiplier, takes the role of the chemica l
potential. Thus A represents the energy of the last added particle .

* A method for obtaining wave functions which fulfil this condition exactly has recently
been discussed by B . BAYMAN(Y7) .
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II . The Bardeen-Cooper-Schrieffer Trial Function and th e

Canonical Transformation of the Hamiltonian Considered to a

Hamiltonian Describing Independent Quasi-Particle s

BARDEEN et al. employ a trial wave function of the following type to
minimize H' :

To = A(uv +vv av a±v)I 0 > •

In eq . (11), uv and v, are free parameters, subject only to the normalizatio n

condition, which can be fulfilled by the requiremen t

u~ + vÿ = 1, (12)

and to the auxiliary condition (9), which takes the for m

a- 22' vÿ (13)

in terms of the parameters introduced .
The variational calculation leads to the equations(3' 6 )

(ev -A) 2 uv vv

	

G~ uv vv • (uv - vv) -2 G vv u v vv = O . (14)
v'

The last term in (14) is small compared with the second (except in a regio n

near the Fermi surface) and is usually neglected or assumed to be include d
in the self-consistent field energies sy' .

If one chooses to neglect the third term, one obtains for u, and v, th e

simple expressions

s - ~ j

	

8v - 2
uv -- 1+-

v

(15 a )

(15 b )

and for the energy of the ground state the expressio n

2
<H'>+ .1<N'>=V2v,2,-d -Gv4,

	

(16)
G

	

v

* Concerning a method of accounting for this term by perturbation theory, see Appendix I .
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where the third term is again of self-energy origin and is usually neglecte d

as small compared with the second term (see the discussion below) .

In eqs . (14) and (15) we have used the definitions

Ev - J(E,-%)2+42

	

(17)
and

4 = G7u,,v v .

	

(18)
v

Provided the e,, :s (the single-particle energies of the deformed field) ar e

given and G is known, the auxiliary parameters 2 . and d can be determine d

from eqs . (18) and (13) . The interpretation of vy as the probability of the
state v being populated by a pair is borne out by eq . (13) .

An equivalent way to obtain the ground-state energy given by eq . (16)
and the corresponding wave function is provided by the BOGOLUBOV-VALA-

TIN(8 transformation to quasi-particles (the creation operator of a quasi -

particle is a linear combination of the corresponding particle operator and

the operator creating a hole of opposite angular momentum )

av = uv av -
vva±v ,

	

(19 a )

a-v = ßv = uv a_v +vv az .

	

(19 b )

In terms of ay and ßv the transformed Hamiltonian H ' is

H ' = LI' +111+H2O+ Hint

	

(20 )

when written in its normal form, i . e . with a+, /3+ in front of ß, a . In terms

of the quasi-particle operators, U ' is then a constant, HI1 is an operator

that can destroy and recreate one quasi-particle at a time (and, furthermore ,

contains only the particular combinations a,+, a,, and ß,+, ßv ), while H2' O can

either destroy or create two quasi-particles . The operator Hint contain s

products of four-quasi-particle operators and can be split up into the term s

H2'2, H31 and H4 0 (the notation should be obvious from the above) . It is

discussed in more detail by BELYAEV(6 and in Appendix I of the present

paper .

The imposed condition that H2'O vanishes identically leads to eq . (14) ,
whereby u,, and v,, are determined . As HI1 is a function only of the occu-

pation number of the quasi-particles, we are then left with a system o f
non-interacting quasi-particles in the approximation that Hint may be
neglected . Indeed, as far as the ground state, i . e . the no-quasi-particle state ,
is concerned, only H40 of the neglected Hint term has non-vanishing matrix
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elements connected with this state . The magnitude of this coupling is thu s
a measure of the lack of generality of the trial function (11) . In this respect
the quasi-particle formalism forms a complement to the variational proce-

dure . The effect of H4'o on the ground-state wave function is fundamentall y

small of the order
2d . One may take the quantity

_24

	

1

	

/21 )2eff

	

(8y A
v

	

-1-
- 2

1

	

(

V 4 ~

as a measure of the accuracy of the approximation . The definition ma y
be less suitable in cases where the level density of single-particle state s

is very different above and below the Fermi surface . It is quite satisfactory

for our purposes as the single-particle levels are rather evenly distribute d
in the cases treated here .

It should be noted at this point that the neglected term in (14) is als o

G
small of just this order 2 4

.
The ground state To of an even-even nucleus, given by (11), thus de-

fines the quasi-particle vacuum ; it will be denoted I 0 »» in the following

and is characterized by the conditio n

av Wo a,1 0 ii =0 .

	

(22)

We now turn to the ground state of an odd-A nucleide. The odd particl e
here occupies, say, the orbital ev . . This particle is entirely unaffected by

the pairing force, which only scatters pairs of particles . The trial functio n

of the ground state of such an odd-particle system is obviousl y

roaa = a ,+ J 1 ( u + vv av a+v) 0 > .

	

(23)
v=-v '

Now u„ and u, are still given by eqs. (15), but the sums over states in eqs .
(13) and (18), which determine 4 and A, now exclude the "blocked" v '

state ; furthermore, n in (13) has to be replaced by (n -1) .

The effect on A is a trivial one ; if v' lies near the Fermi surface (as it mus t
for the ground state of an odd system), A is not appreciably changed with

respect to the "even" case of n/2 pairs . As 2eff terms in fact contribute to (18) ,

the exclusion of one term appears again to imply an error of the order 1 , the
2 ef f

* The formula (21) gives values of
Qeff

about 5-10 for the actual calculations we have per-

formed .



fundamental inaccuracy of the BCS-solution . If we neglect this blocking

effect for the moment, we end up with the same u v and vv as in the "even"

cases . Therefore we still have the same quasi-particle vacuum, and we may

write woad in a form identical with (23) :

Jfodd - 4l-.I0 » .

	

(23 ' )

The additional energy of this one-quasi-particle state compared with th e

vacuum state (the "even" case of n/2 pairs) is most easily obtained fro m

H it = > ((e, l,) (u; -v~2,)+42uv vv -Gvv(üv-v,2)J(av a), + ßv ßv)• (24 )
v

The last term in (24) is small, again of the order d , compared with th e
2

sum of the first two terms, and often much smaller because of the factor

(uy - v,2,) . The neglect of this term thus amounts to an approximation of th e

saine order as that due to the neglect of H40 etc . We then arrive at the simple

relation

Hil

	

Ev ( av + ßv ßv) •

	

( 24')
v

The odd-even mass difference, which we have here defined as the dif-
ference in mass between an odd-system and the "even" system* having

n/2 pairs and thus no orbital blocked, in this approximation simply equal s

E . This quantity is in turn very near to A for the ground state of the odd- n

system, as (EV - .1) 2 is very small compared with A 2 (usually of the order

of a few per cent) .
The spectrum of excited states of an odd-A nucleus is given in thi s

approximation by the quasi-particle energies E . As the single-particle leve l

density is of the order of one state per 300 keV on the average, compare d
with an average J of between 500 and 1000 keV, this would lead to a leve l

density in odd-A nuclei of the order of one state per 50-100 keV for exci-
tation energies smaller than 4, which is contrary to experience (16) . It appears

that of the approximations made, involving terms of the order of 24 , the

neglect of the blocking effects described on page 10 may be the most se-
rious'*, ** m

* i.e . a system described by eq. (11) treated formally as if n were an even number.
** A comparison with the results of an exact diagonalization performed for a particula r

case of six levels and three pairs (corresponding to a 20 x 20 matrix) clearly bears out this con-
tention .

*** This effect has also been studied recently by SoLoviEv( )
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One may estimate the change in 4 between the even and the odd case
due to the blocking of one level by the odd particle as* .

4odd

	

(4
C

	

1	 (

	

'

)2

	

~ 3~-1

	

(25)

v+v'

	

v

In obtaining this formula we have neglected terms of the type

	

(ey - A) E;n
v

as being small compared with A Ev n . As is obvious from (25), the difference
v

	

' 1(4e - 4oad) depends somewhat on the cut-off of the sum over v in 3 .E,,v
The change in 4, leading to a change in u, and vy also for v v ' , also

affects the odd-even mass difference . If one makes the same approximation s

as in deriving (25), one obtains for the odd-even mass difference P th e

expression

> (EV-A)2\
u F4

2 y~y

	

v
1 -

4e
	 \	 1

\

	

~ 3
v+v' Ev /

(26)
~ t li \-1 G

E3 J + 4\v$v , v
P = e + 1(4e) 2

In deriving (26) we have included the "self-energy" terms from (16) . They

give as a result the third term in (26) . While the neglect of these terms lead s
to the relation P>4° to first order in S4, the inclusion of these and of terms o f

higher order results in a P smaller than 4 e by a magnitude of the order of 10 °/ o

in the present cases (see table II) . The results of table II correspond to an

exact inclusion of the blocking effect, but are generally in line with eq . (26) .* *
Of interest to us here are finally the lowest excited states in an even-eve n

nucleus, which correspond to the excitations of two quasi-particles. Take

as an example a state reached from the ground state by the jx operator
considered in section III . Such a state is e . g .

7"v'-v* =av ßv 10» av at,- J G (uy+vvav a±v) 10> .

	

(27 )v+v',v"

* On account of the rapid convergence of the sum in eq. (25) the choice of the cut-off energie s
D is not very critical provided D ) .4 . Assuming a constant level density O and furthermore

d))
1

, one obtains the estimate 4 °dd - d e -1 . The actual calculations, in which th e
C

"blocking" effects have been included exactly, indicate a difference in d between systems wit h
even and odd numbers of particles of the order of 20 °/°, as exhibited in table II . These result s
are roughly in agreement with eq . (25) and the estimate above.

** The arbitrariness in the choice of the cut-off energy enters (26) through the relatio n
between G and d, which depends more critically on the cut-off energy than does eq . (25) .
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In the approximation implied by this equation (where, for v v' v " , u,, and o,,

are the same as in the no-quasi-particle ground state) the excitation energ y

is given simply by application of Hil as

e ',-v") - ~ 0) = E,, . + Ev. > 4 .

	

(28)

As the reduction in the effective 4, i . e . in the diffuseness of the Fermi surface,
is considerable in this two-quasi-particle stale, owing to the blocking of tw o
levels, one might be tempted to correct for this error in line with what i s

done above for the one-quasi-particle state, and write as an alternative to

eq . (27)*
~

	

a+ a± A (ii lv v ) + v(v ~~ ) a+ a±
v ) 0 >,

	

(27 ' )v
v v ', v1'

where and Uvv v) are thus calculated from (14) with two single -4
v v°)

particle levels blocked . The excitation energy of this state (27') must b e

calculated via the total energies (16) obtained from variational calculation s

applied to the excited state, respectively to the ground state . It is obvious

that a quasi-particle description has no advantage if one wants to includ e

the effects of blocking, as we should then be forced to assume a vacuum fo r

the excited state different from that of the ground state .

III . General Formula for the Moment of Inertia and th e

Collective Gyromagnetic Ratio in Terms of the Quasi-Particle

Formalism

A derivation of the formula for the moment of inertia based on th e

cranking approximation has already been given in the quasi-particle for-

mulation by BELYAEV(6) . The exposition of ref. 6 appears not explicitly t o
include the case of the single-particle angular-momentum component bein g
equal to 1/2 . Although the explicit inclusion of this case only amounts to a

minor modification, we shall repeat the general lines of the derivation .
We first express jx , the operator associated with the rotation of the field

of an individual particle, in terms of creation and annihilation operators a +

and a. By the indices v, v' we denote combinations of states for which K„

* It is easily verified that this state is orthogonal to the ground state .
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and Kv . do not both equal 1/2 . The indices u, u ' are then reserved for com-

binations of orbitals that both have K = 1/2 .

Jzp= { < v IJz1 P' >

	

(Iv ,
vv '

+ < - v lJzl - v 'a± v a_v"}+2,~{<u1Jzl - FL ' (29 )
pp "

+<-p I Jz I u ' > a±u a F,," } .

Employing the phase convention implied by eq . (4), one can readily prov e

the relations

<v I Jz l 'v'> _ <-y'I Jxl
-v>

	

(30)
a.nd

<ulJzl u'>=<-ulJzla'>

	

(31 )

To prove (30) one may for instance use the fact that the time reflectio n

operator T is a product of a unitary operator and the complex conjugatio n

operator, to obtain

<v I Jz I v' _ < Tv I TjzT-11 7'v ' >" .

	

(32 )

To arrive at (30) one has then only to employ the facts a) that j x is a Her-
mitian operator, b) that it changes sign under time reversal . To derive eq . (31 )

one must in addition use the fact that the matrix elements of j z are real in

the representation employed here .

The next step is to transform eq . (29) by the canonical transformations

(19a, b), using (30) and (31) . We may then write

.1r = (Jx)ii + (Jx)20 '

	

(33)

where (jz)11 thus first destroys and then creates a quasi-particle . It can there -

fore have no matrix elements with the ground state of an even-even nucleus ,

which is just the quasi-particle vacuum. On the other hand, (jz)2O creates

a two-quasi-particle state from the quasi-particle vacuum 10» :

Jxp I 0»

	

v l Jx l y' >(uv vv , - v v u v") 4/4; 1 0 »
vv '

+ ~<,aIJ I-u' >(uuv~, - v~up")(a~"a~ + ß~ß;")10» •

Now the two-quasi-particle states ayßv 10» and 4410 »10» both corre-

spond to an excitation energy E,+ Ev measured with respect to the energy

of the quasi-particle vacuum. These two states differ in their sign of the
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angular-momentum component . Similarly, apt ap 10» and ßßßp+.10» both

have the energy EE + Ex, but have K = 1 and -1 respectively. Thus th e

contributions from these transitions do not interfere . Although in eq . (34)

the v - and Fc - sums do not at first glance appear quite symmetrical wit h

respect to one another, their contributions to the moment of inertia are quit e

analogous . We finally obtain the following formula for the moment of inertia :

~

	

2

-2 ~12

~'I<Éj+IE>I(

uvUV-UV~) 2
vv'

	

v

	

v

	

<,u1 .1xI-g '	 >12(uur~~

U, u,L ,) 2 }

	

(Kp =Ky,= 1/2) .

	

+ Ey ,

	

ll
)))
II

Indeed the second term can be formally included in the first, provided one

remembers to take also the matrix elements between K = 1/2 and K' = - 1/2
into account . Really there is no asymmetry between the v and ,u terms, a s

to every < v I jx I v'> transition there corresponds a < - v I jx I - v ' ) transition ,

of which only the first is counted formally in (35) ; further, to every < it I jx I -,u' >
transition counted in (35) there corresponds a < -,u I jx I ,u ' > transition which
is not written out explicitly in (35) .

The collective rotation takes place perpendicularly to the nuclear sym -

metry axis and is associated with the collective angular momentum R . In

an odd-A nucleus .h->' couples with the angular-momentum component K of

the odd particle to form the total angular momentum I, the nuclear spin .

On the other hand, in the ground state of an even-even nucleus we hav e

simply R = Î The collective flow of protons and neutrons building up the R
also gives rise to an instantaneous magnetic moment associated with th e

operator
(

	

~

~con = Î~å +gålå)
,

å

	

å

where the sum runs over the paired nucleons . One may express this mag-

netic moment in terms of a collective gyromagnetic ratio gR defined by the
relation

(37)

(The definition is of course limited to matrix elements of the operator ~ucoii

that are diagonal with respect to the intrinsic nuclear wave function .)
In the cranking approximation the gyromagnetic ratio gR takes the

form(2)

(36)

-)-
rucoll = gRR
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h 2

gR
'<ØalyzI .N><0,9141Øa>

(38)+c . c . ,

where Jx =

	

is the angular-momentum operator associated with the ro -

tation . As ,ux transforms under time reflection in the same way as jx ,

inclusion of the pair-correlation interaction is completely analogous t o

procedure employed on pp . 13-15 . We just give the final expression

c,
W p

	

p n Wn
gR

	

+(gs- 1 )	
ks

	

s ~

where

the
the

(39)

1~~_ N 7 < p' ljxlv><v1sx1y	 >(~~~ - vyu~ ) 2

2h. 2

<~sx I-

	

> <t6' I ix I,u>(Ut,

	

u,u
) 2

Thus, apart from the spin contributions (given by the last two terms of (39) )

to the magnetic moment of the collective flow, gR is just the relative fractio n
contributed by the protons to the moment of inertia or, in other words, th e

effective charge of the collective flow . Of the last two terms of (39), WI,

is the sum over all proton states and Wn the sum over all neutron states of
the expression (40) . The contribution from the terms containing W is small

and is largely cancelled, as (0-1) is very nearly of the same magnitud e

as g's and of opposite sign .

It has already been pointed out that the quasi-particle description use d

here involves the neglect of terms of the order
24d

at various stages . The

errors connected with the neglect of H40 for the ground state and with th e
neglect of H40 , H31 and H22 in calculating the excited two-quasi-particl e

states enter in a fundamental way, and they are also the errors that it i s

most difficult to correct for . On the other hand, the errors associated with
the blocking effects may, in many respects, be the most severe . We have

therefore attempted a programme taking this blocking fully into account

through the use of (27 ') instead of (27) as the form of the two-quasi-particl e

state . Including the said corrections, one obtains the following expressio n

for the even-even moment of inertia :
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In this formula the superscript 0 refers to the ground state, while the super -

scripts v' and v " refer to the states in which the single-particle orbitals v '

and v " are blocked .
The modification of eq . (40) is completely analogous to that of (35) .

IV . Numerical Calculations of the Moment of Inertia and the

Collective Gyromagnetic Rati o

a. Energy scale of the single-particle energies e„ and determinatio n

of the deformation å

The relative order of the single-particle energies is probably rather wel l
represented by the calculations of ref . 15 . A minor readjustment of the

energy differences within a shell, as may be suggested by the analysis o f

experimental nuclear spectra by MOTTELSON end NILssox( 16), does not very
significantly affect either or gR of an even-even nucleus . Even though th e

level order is fairly well established, the total energy scale h wo is determined

from a condition on the extension of the nuclear matter which is somewhat

arbitrarily formulated (15) as 5/3 <r 2 > = Ro, where, furthermore, the nuclea r
radius Ro has been set equal to 1 .2 x A 113 fermis . This then corresponds t o
choosing h wo = 41 x A-113 MeV. As the uncertainty of Ro must be regarded

as being, say, of the order of 10 °/o, the inaccuracy of h wo is probably
larger than 20 0 /0 . Now the scale hwo enters first of all in the energy denom-

inator, so from this effect alone there appears at first glance to be an un -

	

certaint y in N of, say, 20 °

	

However, the ratio	
4

3

	

2S

	

y,

	

/o .

	

hwo , which determine s

the u and v values, obviously decreases when hwo is increased, and vice
versa. This effect largely cancels the first effect . Indeed, as seen from figs . 2 2

and 23, a 10 0 /o decrease of hwo results in a net change of by only ±2 °/ o

or less in the range of parameters used in these calculations .

Furthermore, the single-particle energy parameters ev are also connected
with the eccentricity parameter 6 . Indeed, for the use of the energy diagra m

	

Mat . Fys . Medd. Dan.Vid . Selsk . 32, no . 16 .

	

2

( ~(w u(°) - u (°) U (°)) 2
~(v v)_ ~(o) \ v v

	

v' ~

v' Y..

(f-r(u(,v'v") u(° ) + u`ti 'v") U(j,°) ) 2 + (terms involving

	

and it ") .
v + v'v"

~- 2 h2~

	

vn I/'xl v' i 1 2
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of ref. 15 it is necessary to know 6 . To obtain values of 6 we have employe d

the empirical values of the quadrupole moments as determined from Cou-
lomb-excitation data . We have made use of the measurements and com-

pilations' of Q 0 recently made by ELBEK et al . (19) in the mass region 150 ; A <

190 (often denoted region I in the following) and by BELL et al. (20) in the
region A>220 (region II) . The experimental values of the quadrupole mo-

ments in region I exhibit an estimated accuracy of the order of 3 0 / 0 com-
pared with one another (19) . The absolute uncertainty may be greater, how -
ever . In particular the values of ELBEK et al . appear systematically to b e
a few per cent lower on the average than those of most other authors, a s

pointed out in ref. 19 .
Assuming a homogeneous charge distribution, one obtains the well-know n

relation between the intrinsic quadrupole moment and ô

Q 0 =
4

å ZRz11+2S + . .

The main uncertainty connected with the use of this formula probably lie s

in the specification of the parameter R z . We have, in using formula (41) ,
put Rz equal to the average nuclear radius R 0 , which, as pointed out, i s

related to the energy scale h coo . Also the analysis by RAV LNHALL (21) of elec-

tron scattering data indicates a proton charge distribution such that the
charge radius Rz defined as [5/3 <r2>]1l2 equals about 1 .2 x A113 fermis .

It turns out that d is a most critical parameter in the calculation of the

moments of inertia . The very large uncertainty in its determination is thu s
due mostly to the inaccurate knowledge of Rz , furthermore to the experimen-
tal inaccuracies in the Q0 determination, and finally to the approximate

assumptions underlying formula (41) . Indeed, as the nucleonic wave func-

tions are known in the pairing approximation, they may be used to calculat e
an expectation value of the quadrupole operator . For the quasi-particle

vacuum, one obtains the simple relation(6 )

Q0 =

	

gv 2vv ,

	

(42)
v

where

(41 )

°qvv 15" < v l r2Y2ol v >• (43)

As the population numbers of the single-particle states as well as qvv „

are functions of 6, eq. (42) provides a relation between Q0 and 8 in which ,

* We are grateful to the authors cited for access to their values in advance of publication .
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however, h w 0 (and thereby R0) enters as a parameter . Formula (42) should

be considered somewhat of an improvement on (41) . However, the pre-

liminary calculations by SzYMANSKI and BÉs(22) , until now limited to regio n

I, indicate that the approximation (41) is accurate to within a few per cent

in the entire region. This corresponds to a matter distribution displayin g

approximately the same eccentricity as the potential shape .

SZ MANSKI and Ms go further to seek the equilibrium deformations Seq .

Using the relation (42), they then compare the magnitude and trend of the
calculated Q0 corresponding to 6eq with the empirical Q0-values . The pre-

liminary results indicate deviations from the experimental values of the

order of 20 °/0 .

As pointed out, the use of formula (42) instead of (41) does not remov e

the uncertainty in the specification of the nuclear charge radius . The å
obtained from equilibrium calculations appears rather sensitive to detail s
of the model, and therefore uncertain .

b . The gap parameters A n and 4p

The moment of inertia is very sensitive to the choice of 4 n and 4 9 ,

the energy-gap parameters of neutrons and protrons . Thus a 10 0 / 0 increase
in the magnitude of A n and 47, results in an average decrease in of the
order of magnitude of 10 0 /0 (cf . figs . 20 and 21) .

Now, 4 n and 4 p are determined from the average pair-correlation matri x

elements Gn and G7, and the single-particle level density . The exact relatio n
is given by eq. (18) . A separate and independent treatment of neutrons an d
protons, which we have implied here, appears to be adequate in the tw o

regions of deformed nuclei to which the calculations have been confined ,
as neutrons and protons fill different shells . The assumption that the pairin g
matrix element can always be set equal to a constant, G, is of course als o
approximate. Indeed, as the single-particle stales on the average becom e
less and less similar as they get more distant from one another in energy,
it appears that the overlap of two such wave functions should on the averag e
decrease with increasing energy difference . The contribution from the state s
far below and above the Fermi surface to the sum in (18) is thus effectively
limited. This we may approximately simulate by including in the sums only

a certain number of states nearest above and nearest below the Fermi sur -
face. The effect of the arbitrariness in the choice of a cut-off point is les s
severe as outside of a certain region the inclusion of some extra terms beyon d

2*
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the cut-offs in many respects corresponds only to a renormalization of G
(cf . refs . 5 and 6)* .

In our calculations we have included all states of the N = 3, 4, 5 shell s
(N is the total number of oscillator quanta) for protons in region I (56 levels) .
Furthermore, we have taken into account all states of the N - 4, 5, 6 shell s
for protons in region II and neutrons in region I (64 levels), and finally all
states of the shells N = 5, 6, 7 (85 levels) for the neutrons in region II .

Compared with an earlier calculation in which only altogether 20 level s
near the Fermi surface were taken into account, the inclusion of this grea t
number of levels implied an increase in Zy' by an amount of the order of
10 0 /0 for nuclei at the beginning and the end of region I, provided A n and
49 were kept the same in the two calculations . In the middle of region I
the effect was even smaller . On the other hand, to obtain the same A-valu e

in the two cases we had to use G-values 30-50 °/o larger in the calculatio n

in which the fewer levels were taken into account .
KISSLINGER and SORENSON123> have analysed systematically sequences of

isotopes and isotones of single-closed-shell nuclei, such as the Pb and Sn
isotopes, in terms of the known shell-model states with the inclusion of th e
pair-correlation interaction and a long-range P 2 -force . They conclude tha t

the strength of the 'pair correlation that best fits the data corresponds to

const
G = -

	

with G x A = 17-28 MeV when they take single-particle levels of

one shell into account . They do not explicitly point out any systematic dif-

ference between the G x A values for neutrons and protons . Similar cal-
culations by BRO-JØRGENSEN and HAATUFT(23a) in progress, treating nucle i
that exhibit low-lying vibrational states, also indicate that the values of G x A

that best reproduce the experimental material lie between 20 and 25 MeV .

SzvmANSKr and BFs (22) , taking always the 24 levels nearest to the Ferm i
surface into account, give Gp x A = 32, G n x A ti 25.5 . Previously MOTTEL -

soN(3) had suggested a value of G x A 25-30 MeV, based on an analysis

of nucleon-nucleon scattering data .
In the present calculations we have first attempted to obtain a direc t

estimate of the energy-gap parameters 4 n and 4p, based on empirica l

evidence other than the rotational-band spacing . We have then studied how

well one value of Gn x A and one value of G p x A can reproduce the empirical

A n and 4 p values in both regions . The result of this analysis (cf. figs . 7-14)

is discussed below .

* On examination of the effects of "blocking" it appears that the choice of the cut-off limit s
is much more critical e . g . in the determination of the odd-even mass difference (see section II) .
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TABLE I . Parameters Defining the Single-Particle Level Spectrum Employe d

in the Calculations .

Re- Treated

Ener -
gie s

to be
Additional shifts in units of 71w o

(in line with reference MN )
gion shells x foun d

in re-
ference : Case A

	

Case B Case C

N=3 0 .05 0 .45 N -
Protons 4 0 .05 0 .55 N - - The same a s

62_<_Z

	

!4 * jh 11/2 : -0 .075 f-0.075 case A (plu s
5 0.05 0 .55

'others :

	

+ 0.1 l - some very small

N = 4 0 .05 0 .45 N shifts of a few

Neutrons 5 0 .05 0 .45 N - individua l

90 < N < 112 ft 13/2 : unchgd. I - levels)
6 0.0 5.05 0 .45 N

+ 0 .15 t -

N - 4 0 .05 0 .55 N -0.38 -0.15 -0 .20

	

ti
Protons 5 0 .05 0 .70 MN h 11/2: -0.2 - -0.05

	

E
Z>88 fi 13/2 : -0.35 (

	

0.35
,ri

0 .3 5
6 0.05 0 .45 N (

11
tethers : unchgd .

-

-

N = 5 0 .05 0 .45 N --0 .38 0 .15 -0.22 5
Neutrons 6 0 .05 0 .45 N i 13/2 : -0 .23 - -0.07 5

N � 138 1 15/2 : -0 .06 : f-0.06 -0 .06
7 0 .05 0 .40 MN

others : unchgd . -

	

a

N : S. G . NIassoN [1955] ,ref . 1 5
MN : B. MOTTELSON and S . G. NILssoN [1958], ref . 1 6
* :

	

S . G . NILssoN, unpublished calculations .

Regions I and lI refer to the so-called rare-earth region (150 < A <190) and the actinid e
region (A >220) of elements respectively . The parameters x and s of columns four and five are
defined in ref . 15 . Note that we have employed only one x-value (x = 0 .05) . A few ad hoc change s
have been made in the level scheme obtained on the basis of the parameters listed . These are
indicated in columns seven, eight and nine for the cases A, B and C, which are discussed in the
text . Case G should correspond to the level scheme that is in best agreement with the empirica l
data on level spectra of odd-A nuclei (cf . ref . 16) .

When searching for empirical information from which estimates of A n

and 4 p may be obtained, one first thinks of the empirical energy gap in the

excitation spectra of even-even nuclei and of the odd-even mass differences .

As pointed out on p . 13, the quasi-particle description gives an energy ga p
> 24, where A is the smaller of 4 p and 4 n . Indeed, the gap should be ver y

nearly equal to 24, as pointed out in section 2 . In region I the lowest ex-

cited states clearly identified as two-quasi-particle states occur in Hf 178 and
Hf180 at about 1150 keV, in Er l ° 8 at about 1100 keV, in Dy162 at about
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1450 keV, and in Gd156 at about 1500 keV. One would, however, be inclined t o
regard the empirical identification of such lowest-lying states merely as settin g
a lower limit on 2 A . The neglected additional interactions, as for instance the

fluctuating part of the long-range P 2-force which is not already included in th e

spheroidal field, would split apart the two-quasi-particle states lying ver y
densely just above the energy gap . Furthermore, the inclusion of the H2 2 term
of Hint would tend to pull some of these states down below 24 . An estimate o f
the magnitude of the depression due to this term is rather difficult as a larg e
part of its effect is spurious (see Appendix I) and related to the fluctuations in

the number of particles introduced by the BGS wave function. A somewhat

better measure of the energy gap is probably provided by spectra in whic h
a great number of higher-lying two-quasi-particle states are identified, a s
is the case in Wla2 Here the level density becomes very high at 1400 keV ,

which seems to indicate a gap of such magnitude for this nucleus* . Finally
there are also the effects associated with the effective reduction of 4 in th e
two-quasi-particle case due to "blocking", as discussed in section 2 .

Thus a more detailed experimental study of even-even spectra abov e
one MeV would be very informative . In particular one should be able t o

see whether the lowest-lying two-quasi-particle excitations correspond t o

broken neutron rather than broken proton pairs, as the evidence from mas s
differences suggests** .

Probably the best available information on the gap parameters can b e

obtained from the study of even-odd mass differences . The mass measure-

ments by JOHNSON and BHANOT
(25) are the main source of empirical knowl-

edge in region I, while the extensive compilation, based on many empirica l
sources including beta and alpha systematics, by FOREMAN and SRABORGi2fi j

covers region II . We have also exploited systematics of beta-decay energie s
in region I, where more extensive binding-energy data are available for

neutrons only .

The total binding energies of, for instance, a series of isotopes havin g

an even value of Z, exhibit a smooth variation with N for all even-even

nucleides and a parallel smooth variation with N for the odd ones .

According to the present theory, the displacement should correspond to th e

quasi-particle energy of the last nucleon .
Consider first the neutrons . We have defined the empirical odd-eve n

mass difference P. by the formula'* *

* We are grateful to Professor B . R. MOTTELSON for an enlightening discussion of this point .
** Indeed a recent analysis by C . GALLAGHER( 24 ) of beta-decays populating higher-lying

states of even-A nuclei in region I appears to lend support to this supposition .
*** This quantity would more correctly be labelled P, (Z, N-1/2) .
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Fig . 1 . The odd-even mass difference parameter Pn for neutrons in region I (150 < A < 188). The

squares refer to mass-spectroscopic measurements by JOHNSON and BHANO'r (25), while the circle s
refer to beta-decay energy data . The dashed curve represents averaged values used in the momen t

-of- inertia calculation .
Added in proof : Recently published more complete mass-spectroscopic measurements by BHu eoT ,
JOHNSON and NIEx( 3 °) give 100-200 keV lower Pn-values in the region N = 108-112 ; see further-

more fig . 28 .

Pn (Z, N)
4 `

-E(Z, N+1) +3E(Z,N)-3E(Z, N- 1) -i-E(Z, N-2)}
} (44

)=4{ -S(Z, N+1) +2Sn (Z, N)-Sn (Z, N-1)) ,

where the neutron separation energy Sn (Z, N) is related to the total binding
energies E(Z, N) by the formula

Sn (Z, N) = E(Z, N)-E(Z, N-1) .

	

(45)

Analogous relations hold for the proton binding energy . Eq. (44) thus cor-
rects for a second-order N-dependence of the mass valley. In fig . 2 of the
present paper the values of Pn have been extracted from FOREMAN and
SEABORG ' S binding energies by means of eq . (44) . This figure may be com-
pared with fig . 3 of ref. 27, where the same data have been exploited, but
the following relation has been used :
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Pn

MeV

~-..,/

	

I ' , from cc- and p-systematic s

Same as above, but more uncertain evidenc e

Smoothed-out A- dependence of P,

O,goo-	 A	
298 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 '

Fig . 2 . The odd-even mass difference parameter Pn for nuclei in region II (A > 224) . The circles

correspond to data collected by FOREMAN and SEABORG (26 ) . The dashed curve represents th e
smoothed-out values of P. on which the calculations were based .

P. (Z, N) = 2{Sn (Z, N)-Sn(Z, N- 1 )},

	

(44' )

which allows only for a first-order N-dependence of the masses . The use

of (44) appears to give smaller fluctuations . In region I, where the data
are meagre, the difference between (44) and (44 ') also appears significant .
The values of P. derived from (44) turn out usually 50-100 keV higher

than those obtained by the use of eq . (44' ) .
In region I, as already pointed out, the beta-decay energy systematics

are a valuable complementary source of information. From a compariso n

of sequences of odd isobars connected by beta decay or electron capture

one obtains an estimate of (Pp -Pn), as an odd-Z isobar corresponds to
a proton quasi-particle state and an odd-N nucleide to a neutron quasi -

particle state . In addition to using beta-decay energies from isobars it turn s

out to be advantageous to study also elements having (N-Z) = constant

(isodiaspheres(28)) or (3 N - Z) = constant. Indeed, one could employ any
systematic cut through the mass valley other than those mentioned . For iso-

bars, usually only a few energy differences are known . In particular, electro n
capture energies are very uncertain ; furthermore the elements soon get very

shortlived as one moves away from the stability minimum . Contrary to iso -

'Løoo

0750

0,500

0.250
Y
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Fig . 3 . The odd-even mass difference parameter Pp for nuclei in region II. For further explanatio n

see fig . 2 .

bars, which correspond to lines of elements almost perpendicular to the
direction of the mass valley, isodiaspheres, as well as elements correspondin g
to (3 N- Z) = constant, represent cuts exhibiting a small inclination to th e
direction of the valley . Such lines thus contain many more studied nucleides .
On the other hand, for instance isodiaspheres also correspond to an aver -
aging over a larger region of elements .

A collection of such available data on (P2, - Pu), mostly taken from
Nuclear Data Sheets(29) and ref. 16, is given in fig . 4 . The diagram shows
clearly that P2, is rather consistently much greater than P. in region I . This
is also the case in region II, where the evidence is more complete (cf . figs . 2
and 3) . The difference is of the order of 100 keV in region I and abou t
150-200 keV in region II . Fig. 4 also indicates a trend in the value of (P2,-P.)
from 0-50 keV around A = 155 up to 150-200 keV around A = 175, an d
then a decline towards zero again beyond A = 180 . . However, it must b e
borne in mind that the uncertainty of these energy differences is probabl y
more than 50 keV . If the mass valley were exactly parabolic in shape, th e

beta energies would lie on straight lines. There is, however, a systemati c
curvature, especially conspicuous for isodiaspheres, which we have in some
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Fig . 4 . The difference Pr -Pn for nuclei in region I from beta-decay energy systematics . The circle s

correspond to cuts through the mass valley characterized by (N-Z) being constant (isodia-
spheres), the triangles to series of isobars, and the squares to series of elements with (3N-Z)
equal to a constant . Uncertainties associated with the points are of the order of 50-100 keV .

measure taken into account graphically by drawing smooth curves throug h
the points. This deviation corresponds to a higher-order (N- Z)-dependence
of the mass-valley* .

Furthermore, a study of beta decay energies of even-A nucleides give s

a measure of (P7 ,-I-PO) . However, a study of the available wealth of mas s
data in region II indicates clearly that there is an additional coupling ener-
gy(2?, 28) between the odd neutron and the odd proton that makes the mas s

difference between the odd-odd and even-even nuclei smaller than P 7,+Pn .
We define such an empirical coupling energy Rnp as

* The somewhat astonishing, conclusion that empirically Pp is greater than Pr is suggeste d

already by the fact that of the stable odd-A elements the odd-N nucleides are more numerous
than the odd-Z ones in the mass regions of interest here . For instance, among the element s
A = 153, 155, . . ., 185 there are 10 odd-N nucleides and seven odd-Z ones . If we assume the
distribution of masses to lie on the parabolic surfaces

P
M(I) = Mo+~b(I-Is)'+ Pn

P

where I = N-Z, the probability of the odd-N nucleide being stable is apparentl y

2Y.+ 2b n)
For the elements mentioned above one then obtains the estimate (P75Pn) n100 keV as an

average for the whole region .
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Fig. 5 . Coupling energies Rnp between the odd proton and the odd neutron in odd-odd nuclei . The
experimental binding energies of series of nucleides, as given in ref . 26, are exploited by means
of eq . (46) of the present article for a determination of Rnp . The uncertainty in the obtaine d
values of Rnp is at least of the order of 50 keV. The squares in fig . 5 correspond to parti -

cularly uncertain points.

R

	

, ~\r - 1
np(G ) - 8 { [ - sn(z+1,N)+2sn(z,N)-sn(Z-1,N) ]

+[ -Sp (Z, N+1) +2sp (z, N) -Sp (Z, N-1)]) ,

where (Z, N) refers to the odd-odd nucleus . Values of Rnp are collected
in fig . 5 . As expected, there are great fluctuations (to some extent probably
indicating a difference between the overlaps of the neutron and proton or-
bitals in the different cases) . However, Rnp appears to be greater than zero
in almost all the cases . On the inclusion of the data from other regions o f
elements, as collected e . g . in ref . 28, one might conclude that, on an average ,

R

	

20-30
MeV .np- A

This correction has been employed in region I in obtaining the values o f
Pp + Pn from beta-decay systematics . The corrected energies have then been
used together with the smoothed-out (Pp-Pn)-values of fig . 4 in obtainin g
the Pn-values exhibited in fig . 1 .

(47)
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Fig . 6 . Average empirical values of the proton odd-even mass difference parameter Pp in region I

used in the calculations . This dashed curve is obtained by addition of the smoothed-out (P p -Pn) -

function of fig . 4 to the averaged Pnvalues of fig . 1 .

Note added in proof : The recent mass-spectroscopic measurements by BHANOT, JOHNSON and
NMEa(30 ) allow more accurate P -values as displayed in fig . 29 . The deviation from fig . 6 i s

notable only for A > 180 .

The main problem now concerns the relation between P and A . It has
already been discussed in some detail in section 2, where it is pointed out

that, if one assumes the same quasi-particle vacuum for the odd and th e

even case, this leads to P = A . The results of a calculation that allows for

the fact that the odd particle blocks the scattering of the pairs by its presenc e
and thereby changes the occupation numbers also of the other single-particl e
levels, are exhibited in table II . This calculation gives the result that P

is smaller than A by a magnitude of the order of 10 0 /0 on the average, both
for neutrons and protons . The relation between P and A is unfortunately very

uncertain as, first, the correction is somewhat dependent on the cut-off, sec-

ondly, an important contribution comes from the "self-energy" term displaye d

in eq . (26), thirdly, still other effects of the order 2GA are neglected, som e

of which are discussed in Appendix I . In the calculations presented in thi s
article we have simply started from the assumption A n = P,,7 '' and 4 p = P x°p
(or rather some smoothed-out experimental values of Pn '' and P2,Xp ) .

0 .75 0

0 .500
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Fig. 7 . The relation between values of A n und G. in region I obtained in Ilse calculations. For de-
tails of the single-particle spectrum employed, denoted as "case A", see table L The point s

exhibited for comparison refer to the Pn-values of fig. 1 .

In figs . 7-10 and 11-14 we have compared the values of 4 n and 49

obtained in the detailed calculations corresponding to constant values o f
Gn and G T, with the empirically given values of Pn and P9 . It is found that
values of Gn x A 18 MeV and G7, x A 25-26 MeV both in region I and I I
and for a given set of ev :s, denoted case A, reproduce rather well the "em-
pirical" trends . For an alternative set of e : s, denoted case B, we find in -
stead that G 2, x A 16-17 MeV and G. x A 23 MeV give the best fit. I t
seems plausible that case A represents rather well the situation in region I ,
while region II is presumably better described by a set of e v : s intermediate
between case A and case B and probably closest to case B (cf. case C of
table I) . Still the similarity of the G-values used in the two regions appears
encouraging* .

* One might also point out in connection with figs . 7-14 that the illustrated relation be -

tween G andA appears to be described rather well by the expression 4 e eG, where P is the
single-particle level density. The conditions for this relation to hold are that the level density
is roughly constant, that there is approximately the same number of levels above and belo w
the Fermi surface, that e G ((1, and furthermore that A ))d, which is implied by the replace-
ment of sums by integrals in obtaining the expression above (d is the magnitude of the cut-off
energy above and below the Fermi surface) .
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TABLE H . The Odd-Even Mass Difference Parameter P when the Effect of
Blocking due to the Odd Particle is Included, Referring to Odd-N Nuclei i n
Region I (TABLE II a) and Region II (TABLE II e) and to Odd-Z Nuclei in

Region I (TABLE IIb) and Region II (TABLE II d) .

TABLE Il a

de
n
_ d

n
odd dn

e_ Ptheor
n

	

.

Nucleide Gn x A d~ d
n
odd de ptheor.

n
de Pexp

n
(MeV) (keV) (keV) (°/o ) (keV) (°/°) (keV)

17 1047 895 15 977 7

saGdlse 18 1215 1068 12 1122 8 1145
19 1396 1247 11 1294 7

17 958 796 17 868 9

s4

Gdls'
18 1122 960 14 1028 8 99 0
19 1303 1134 13 1232 5

17 895 744 17 874 2

ssD Y 1G1 18 1050 887 16 1046 0 90 4
19 1231 1049 15 1276 -4

17 809 643 21 837 -3å
e
DY163

18 965 802 17 986 -3 84 6
19 1141 969 15 1150 -1

17 711 516 27 618 1 3
cs

Erlev
18 859 677 21 730 15 78 7
19 1030 846 18 903 1 2

18 783 557 29 733 6
1
;
ôYb 1r1 19 946 732 23 881 7 73 2

20 1121 914 18 1048 7

18 699 397 43 531 2 4loôYb l' a
19 869 604 30 736 15 68 4
20 1049 811 23 926 1 2

18 677 374 45 503 2 6
10, 2 Hfl" 19 845 581 31 704 17 65 9

20 1022 786 23 892 13
18 677 375 45 488 28

107 72 1E179
19 846 585 31 701 17 69 0
20 1021 790 23 893 1 3

18 733 529 28 700 51 70 49w183 19 883 692 22 849 4 78 8
20 1040 858 18 997 4

18 686 452 34 613 1 1lo4urlsa
19 839 623 26 785 6 78 8

(1 .18) 20 997 796 20 945 5
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TABLE Il b

4e _ 4odd 4 e _ptheor .
P

	

P P

	

P

Nucleide G x A
P

g
P

4odd
P

g
P

Ptheor.
P

g
P

Pexp
P

(MeV) (keV) (keV) ( , ! Q ) (keV) 0/0) (keV )

24 1270 1041 18 1149 1 0

0E0'3 25 1421 1185 17 1320 7 130 9

26 1586 1337 16 1532 3

24 1098 854 22 982 1 1

,,Tb " 9 25 1244 991 20 1157 7 101 3

26 1409 1133 20 1399 1

24 985 713 28 834 1 5

67 Ho 16 ' 25 1127 856 24 1001 11 92 5

26 1285 1000 22 1226 5

24 917 613 33 742 1 9

s 9 Tm 169 25 1060 771 27 918 13 88 3

26 1220 922 24 1151 6

24 883 644 27 821 7

7YLu 175 25 1025 770 25 1015 1 80 9

26 1208 895 26 1369 -13

24 839 632 25 830 1

i3Ta 181 25 951 733 23 945 1 86 9

26 1078 844 22 1100 -2

25 822 496 40 715 1 3

75Rei95 26 948 661 30 860 9 93 7

27 1090 815 25 1040 5

25 803 476 41 718 1 1

75Re 1B7 26 923 638 31 854 7 96 1

27 1057 790 25 1012 4

Column one identifies the nucleide ; column two lists the chosen G-values ; columns three ,
four and five give the corresponding 4-values for the even and the odd case, and the relativ e
difference in per cent . Column six shows the calculated P-value, which is compared with th e
corresponding 4-value of the even case in column seven . The last column gives the average d
experimental P-value corresponding to the first diagrams of the present article . (Note that
here the so-called "even" case corresponds to a nucleide having n12 pairs and no single-particl e
state blocked . )

The result that G p comes out considerably larger than Gn is in agreement
with the fact that near the Fermi surface the velocity of the protons is smaller

than that of the neutrons owing to the Coulomb repulsion . Now the S-wav e

phase shift, with which the pair-correlation force is directly associated, fall s
off rapidly with increasing relative energy because of the increasing im -
portance of the repulsive core . This in turn follows from the fact that par-
ticles of higher velocity may penetrate closer to each other .

* The authors are indebted to Professor B . R . MoTTELSON for valuable comments on this point .
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TABLE I1 e

4 e
n
_dod d

n
v

n
e _ptheor

n

	

.

Nucleide G ry x A gn dodd d e ptheor . 4 e j~es P

(MeV) (keV)
n

(keV)
n

(°/ 0 )
n

(keV)
n

( 0/0

n

(keV )

16 639 534 16 627 2
1øoTh22 ° 17 781 666 15 746 4 77 7

18 935 810 13 909 3

16 587 410 30 504 1 4
1

y ~
Th 231 17 732 585 20 642 12 73 7

18 890 758 15 791 1 1

16 573 400 30 491 1 4
1Ÿ

2
U23a 17 714 570 20 625 12 68 7

18 869 738 15 777 1 1

16 532 351 34 438 1 8
1.49 39 u235

17 669 519 22 568 15 63 9
18 825 687 17 723 1 2

16 488 311 36 397 1 9
1

9
Pu239

17 615 464 25 514 16 56 1
18 767 620 19 680 1 1

17 576 416 28 473 1 8
1

9
4Pu2g1 18 725 573 21 626 14 54 3

19 927 734 21 976 - 5

17 529 351 34 . 440 1 7
1:SCm245

18 665 505 24 558 16 57 4
19 839 669 20 777 7

TABLE II d

d e _ dodd _ ptheor .
~

e
P

	

P p

	

P
Nucleide G x A

	

g
P

dodd
P

g
P

ptheor.
P

e
P

pexp
P

(MeV)

	

(keV) (keV) (°/0 ) (keV) ( 0/0 (keV )

22 846 713 16 782 8

91
Pa231 23 949 814 14 887 7 89 6

24 1059 919 13 1008 5

22 742 593 20 676 9
931%4) 237 23 841 690 18 779 7 82 1

24 949 792 17 904 5

22 615 400 35 579 6

95Am241 23 718 526 27 693 3 74 5
24 832 648 22 827 1

22 601 383 36 563 6

95 Am2`43 23 702 508 28 676 4 74 5
24 813 630 23 802 1
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Fig . 10 . The relation between zi p and Gp in region II (case A) . The exhibited points refer to the
Pp -values of fig . 3 .
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Fig. 11 . The relation between A n and Gn in region I as obtained in the calculations (case B) . For
details about the single-particle spectrum employed in these calculations, denoted as "case B" ,

see table I. The points exhibited for comparison refer to the Pnvalues of fig . 1 .
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Fig . 13 . The relation between do and G. in region II (case B) . The exhibited points refer to th e
Pnvalues given in fig . 2 .
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Fig. 14 . The relation between 4p and Gp in region II (case B) . The exhibited points refer to th e

Pp -values given in fig. 3 .

V. Details of the Numerical Calculation s

The numerical calculations were performed on the SMIL electronic digital
computer of the University of Lund . In the first programme used* the ep : s
were stored in the computer for three different eccentricities, 8 = 0 .20, 0 .2 5
and 0 .30, in region I and for ô = 0 .20 and 0.25 in region II . Furthermore
the computer was provided with a set of four different 4 n and 4 p values ,
covering the whole region of variation of these parameters . For each valu e
of 6 and 4 the computer was instructed to find the correct A fulfilling th e

condition (13) for the sequence of given Z and N values of the element s
of regions I and II . About 1000 different matrix elements of s x and jx were
also stored, connecting all single-particle states up to and including the
N = 7 shell in terms of the wave functions of ref . 15 and computed for
three, respectively two, different values of the eccentricity . When the u : s
and v :s had been determined for each A, 4 and 6, SMIL went on to comput e
çn , Wn , çp , Wp , G n , Gp , the total energy, the fluctuation in the number o f
particles, etc . All this information was printed . A subroutine was then used

* The programme was constructed by Dr . C . E . FxöBEEG, Director of the Institute of
Numerical Analysis of the University of Lund.

0.250
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to interpolate a and W for specific values of S and d, by means of all th e
points computed, and also to find the relation between A and G for the
given eccentricities, as exhibited in figs . 7-14 .

In a later programme designed also for the treatment of moments o f
inertia of odd-A nuclei (see Appendix III), where the correct position o f

the chemical potential with reference to the level populated by the od d
particle is very critical, we employed a different procedure . According to
this latter programme the interpolation between e,, : s, stored in the memor y
for a few deformations, to the correct deformation is performed first .

VI . Results of the Calculations

a. Moments of inertia of even-even nucle i

The values of the calculated moments of inertia of even-even nuclei ,
corresponding to the sets of single-particle states a„ as given in table I (cases A
and B), as well as to the eccentricities exhibited in figs. 15 and 16, and to
the A-values equal to the P-values of figs. 1, 2, 3, and 6, are displayed in
fig . 17 (region I) and in fig . 18 (region II) . All the empirical and some o f
the calculated values are listed in table III, where the appropriate reference s
of the former are also given . A correction to the empirical values for th e
rotation-vibration interaction is not employed for the plotted values o f
figs . 17-25 . Information on this point is incomplete, but the effect is o f
some importance at the beginning of regions I and II, and its inclusio n
amounts to a depression in a of a few per cent, as can be studied in table III ,
thus very slightly improving the agreement with the theoretical calculations .

In region I the quantity 2a in case A lies consistently - 10 MeV-1 below

the experimental values . The calculations corresponding to case B (whic h
case implies that the ad hoc raise of the shells above Z = 82 and N = 126 ,
assumed according to case A, is very largely diminished) give values of a
above those of case A, particularly at the end of the region. Nevertheless ,
the overall variation over the nucléides is probably less favourable than i n
case A. Furthermore, in case B the single-particle states of the above-lyin g
shells are allowed to come down further than is tolerable on the basis o f
the detailed knowledge (16) about the odd-A nuclear excitation spectra at th e
end of region I . Thus case A appears more realistic* .

* The interest in including case B lies, however, apart from its giving an estimate of th e
effects of the inaccuracies of the single-particle level scheme, in the fact that fewer ad hoc change s
in the single-particle spectra are made in that case . Such changes are dangerous as they lea d
to violations of the sum rules otherwise fulfilled by any consistent model .
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Fig . 15 . Values of the eccentricity parameter å in region I used in the calculations . The values o f
å are obtained by means of eq. (41) from the quadrupole moments given by ELDEK et . al .( 18 ) ,

assuming R z = 1 .2 xA113 f. Note that the dashed line ending at Y b176 represents a slight ad ho c

correction of the Yb 176 point . Such a correction is in line with the level diagram of ref . 15 .

02 5
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0 .1s.

Ooo
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Fig. 16. Values of the eccentricity parameter ö in region II used in the calculations . For reference s
to the experimental data see BELL et al, ( 20) and STROMINGER, HOLLANDER and SEAB0RG(44) :
The detailed fine structure of the A-dependence of à appears less regular than in fig. 15, and

some of the variations may be due to experimental uncertainties .

In region II both the calculations, corresponding to case A and case B ,

give results very much below the empirical energy moments, particularl y
at the beginning of the region, even when the vibration-rotation correctio n

for the empirical values is applied .

Unfortunately, however, both 6, 4 n and 4 p are known too inaccurately
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TABLE III . Experimental and Theoretical Values of the Moment of Inertia
and the Collective Gyromagnetic Ratio in Region I (TABLE III a)

and Region II (TABLE IIIb) .

The nucleides are identified from columns one and two . Column three shows the experi-
mental values of the moment of inertia based on the excitation energy of the first rotationa l
states as found, c . g ., in refs. 44 and 46 . Column four gives the inertia values that include th e
correction for the rotation-vibration interaction. These values have been taken from ref . 45 .
Columns five, six and seven show the values of the parameters S, A n and d p assumed in the cal-
culations . The values of å given in parentheses are extrapolated . Of the quantities listed in the

0
last columns, the theoretical quantities ,5 and W are defined from eqs . (AII-10) and (40) . Th e
indices n and p refer to neutrons and protons respectively . Columns 10 and 13 (respectively 14 )
give the final theoretical values of the moment of inertia and the collective gyromagnetic ratio .
In table III a, columns 8-13 refer to "case A", only column 14 to "case B" . For experimental
values of gR see refs . 33 and 40 .

TABLE III a

2 2

	

torr Case A gR
Nucleide S exp j2 2exp dn d p

1 1 xliw c ltw~
2 0 2 0 2

z 5
2 2

Case A Case B
1

	

A (MeV) (MeV) h2 5 -
p 12z 1~n t

zll
P

Sm 152 49 .2 47 .3 0 .254 3 .254 3 .502 22 .98 13.20 38 .9 0.619 0 .327 0 .341 0 .344
154 73 .2 0 .289 2 .720 3 .329 33 .67 16 .41 53 .9 0 .951 0 .436 0 .295 0 .29 9

Gd

	

I 154 48 .8(a) 46 .8 0 .242 3 .269 3 .329 21 .28 13 .19 36 .9 0 .567 0 .361 0 .367 0 .37 8
156 67 .4 66 .7 0 .277 2 .731 2 .886 32 .45 17 .83 53 .9 0 .949 0 .553 0 .333 0 .33 9
158 75 .5 75 .0 0 .297 2 .479 2 .705 38 .38 20 .10 62 .9 1 .160 0 .654 0 .319 0 .32 6
160 79 .7 0 .303 2 .320 2 .651 41 .42 20 .82 67 .0 1 .273 0 .687 0 .307 0 .31 1

Dy 160 69 .0(a) 68 .5 0 .263 2 .489 2 .651 34 .18 17 .98 55 .5 1 .064 0 .584 0 .318 0 .32 5
162 74 .4 74 .0 0 .277 2 .330 2 .574 38 .54 19 .09 61 .6 1 .208 0 .634 0 .311 0 .31 0
164 81 .8 0 .287 2 .176 2 .501 41 .09 19 .99 65 .4 1 .183 0 .677 0 .304 0 .30 9

Er 164 66 .7 0 .266 2 .339 2.501 37 .26 18 .93 59 .9 1 .168 0 .601 0 .306 0 .32 4
166 74 .5 74 .1 0 .279 2.185 2 .448 40 .59 19 .92 64 .7 1 .181 0 .640 0 .303 0 .31 3
168 75 .2 75 .0 0 .278 2 .046 2 .403 41 .85 20 .30 66 .4 1 .079 0 .658 0 .309 0 .31 5
170 75 .6 0 .269 1 .905 2 .358 44 .25 20 .38 68 .7 1 .118 0 .665 0 .296 0 .29 8

Yb 170 71 .2 70 .9 0 .265 2 .053 2 .358 41 .07 20 .48 65 .4 1 .066 0 .627 0 .313 0 .329
172 76 .2 76 .0 0 .270 1 .913 2 .289 44 .35 21 .59 70.1 1 .119 0 .661 0 .308 0.322
174 78 .5 0 .268 1 .806 2 .224 45 .15 22 .10 71 .4 1 .236 0 .687 0 .305 0.303
176 73 .1 0 .265 1 .788 2 .190 41 .41 21 .62 67.1 1 .163 0.700 0 .324 0.305

Hf 176 67 .9 67 .5 0 .248(b) 1 .812 2 .190 43 .88 16 .95 64 .3 1 .228 0.578 0 .245 0.301
178 64 .4 64.1 0 .235(h) 1 .795 2 .250 39 .74 15 .34 58 .2 1 .149 0.553 0 .245 0 .285
180 64 .3 64.1 0 .224(b) 1 .997 2 .338 33 .14 14 .30 50 .1 0 .876 0.517 0 .280 0 .292

W 182 60 .0 59.6 0 .213(b) 2 .004 2 .455 32 .67 11 .65 46 .8 0 .850 0.412 0 .231 0 .254
184 54 .1 53 .6 0 .202(b) 2 .358 2 .558 25 .12 10 .81 38 .1 0 .610 0.375 0 .284 0 .285
186 49 .0 0 .194(b) 2 .659 2 .651 18 .41 10 .23 30 .6 0 .434 0.340 0 .352 0 .334

(a) J . O . RASMUSSEN and K . S . Tarn, Phys . Rev. 115, 150 (1959) .
(b) from B . ELBEK, unpublished.
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TABLE IIlb

2 2 Case 13
Nucleide -a exp

c~,or r
2'S

å
d n 4p

2 2 22
1 i xltw° xliw° 2 W

- W g R
A (MeV) (MeV) )ïä

	

n fr2 p n fi2

	

p

Ra 226 88 .5 86 .2 0 .176 2 .377 3.179 35 .14 9 .14 46 .5 0 .841 0 .041 0 .1 4

228 102 0 .188 2 .354 3 .188 41 .84 11 .55 56 .1 1 .033 0 .141 0 .1 6

Th 226 83 .2 81 .1 0 .195 2 .377 2 .665 40 .24 18 .98 62 .2 0 .990 0 .389 0.2 9

228 103 .6 103 .1 0 .199 2 .354 2 .673 43 .55 19 .82 66 .5 1 .097 0 .428 0.2 8

230 113 .2 112 .9 0 .205 2 .281 2 .681 48 .82 21 .11 73 .3 1 .217 0.487 0.2 7

232 120 .5 0 .214 2 .134 2 .689 55 .96 23 .05 82 .9 1 .321 0.576 0.2 6

234 125 0 .206 1 .990 2 .696 58 .33 21 .27 83 .2 1 .337 0 .495 0 .2 3

U 230 116 .1 0 .215 2 .281 2 .673 51 .25 24 .58 79 .7 1 .341 0.666 0 .3 0

232 127 .1 126.8 0 .224 2 .134 2 .680 59 .08 26 .15 89 .6 1 .510 0 .728 0 .28

234 137 .9 137.9 0 .219 1 .990 2 .687 62 .32 25 .23 91 .8 1 .499 0 .691 0 .26

236 132 .5 0.229 1 .860 2 .695 68 .44 26 .99 100 .2 1 .545 0 .759 0 .2 6

238 133 .9 0 .232 1 .741 2.703 73 .76 27 .48 106 .2 1 .662 0 .778 0 .2 5

Pu 236 134 .4 (0 .230) 1 .860 2 .252 70.04 35 .25 110 .3 1 .703 1 .072 0 .3 2

238 136 .1 136 .1 0 .236 1 .741 2.258 74.92 36 .25 116 .5 1 .707 1 .103 0 .3 2

240 139 .9 139 .5 0 .240 1 .652 2 .264 79 .50 36 .85 122 .0 1 .777 1 .124 0 .3 0

242 134 .8 (0 .242) 1 .642 2 .271 78 .83 37 .14 121 .8 1 .723 1 .132 0 .3 1

Cm 242 142 .5 (0 .243) 1 .642 2 .259 80 .80 36 .88 123 .6 1 .793 1 .003 0 .3 0

244 (0 .243) 1 .698 2 .265 76 .82 36 .87 119 .6 1 .655 1 .001 0.3 1

246 139 .9 (0 .243) 1 .804 2 .271 71 .02 36 .85 113 .7 1 .349 0 .999 0 .3 4

248 138 .3 (0 .225) 1 .891 2 .277 69 .94 36 .48 112 .2 1 .221 0 .990 0 .34

Cf 248 (0 .240) 1 .891 2 .332 68 .03 34 .30 108 .0 1 .277 0 .894 0 .3 3

250 142.2(a) (0 .225) 1 .922 2 .339 69.09 34 .28 109 .1 1 .200 0 .893 0 .33

(a) Van den Bosch, Diamond, Sjöblom, and Fields, Phys . Rev. 115, 115 (1959) .

to admit any further definite conclusions . An increase of å by about 20 0 / 0

corresponding to the use of an II, = 1 .08 x A113 fermis in eq. (41) raises
the curves by amounts that can be studied in fig . 19 . A decrease in A n and

4 p by 10-20 o /0 is certainly admissible within the inaccuracy of the experi-
mental data, particularly in view of the uncertain relation between P and A* .
The effect of choosing 20 0 / 0 smaller A-values may be studied in figs . 20

and 21 .

* The recent very detailed and inclusive study of relative nucleidic masses by EVERLINC ,
KöNIG, MATTAUCH, and WAPSTRA (31 ), based on all relevant information available, indicates tha t
a few per cent smaller Pn-values should be chosen at the end of region I .

Added in proof : The recent more complete mass-spectroscopic data published by BuANOr ,
JOHNSON and NsER( S0 ) lowers the values of A n and 4 p to be used for 74 W by up to 10-20°% 0

as exhibited in fig . 28 . The adoption of these new d-values would considerably improve th e
agreement with theory for the W-isotopes .



Nr. 16 4 1

(MeV)

15 0

1 0

50 .
r~ E

646d

	

660Y

	

68Er

	

7215

	

72 H8

Experimenta l

	

Valuescorrexponding to rigid rotation

	

74W

0	
Theoretical (case A)	 (case B)

	

A

150 152 154 156 158 160 162 164 166 168 170 172 174 176 17B 180 182 184 18 6

Fig . 17 . Moments of inertia of even-even nuclei in region I . The figure exhibits by the crossed
line the rigid moment of inertia corresponding to Ro = 1 .2 x A 123 f . The empirical values given
as filled circles do not include any correction for the rotation-vibration interaction . The dashed
and dot-and-dash lines refer to calculations corresponding to the choice of Li p = Pp and Jr = Pr

with an assumed single-particle level spectrum e 1, as given according to the alternative case s

A and B of table I .

O"

	

+-+

6P 5m -yam

+-+- +

(MeV )

25 0

2 0

15 .- .,_'--•--.

1 0

50

96
Cm

	

98
C f

Rigid rotatio n

Experimenta l

Theoretical (case A )

-u- (case B )

0	 il

	

1	 A	
224 226 228226 228 230 232 234230 232 234 236 238236 238 240 242 242 244 246 248248 25 0

12T h

R a
8 6

Fig. 18. Moments of inertia of even-even nuclei in region II . For explanation see fig. 17.



42

	

Nr. 1 6

(Mev5'

loo -

50 -

75 -

64
Gd

62 5m

~+--- Experimenta l
--------- Theoretical CcaseA) i

e

Ro - 1 .2 x A113 f
-

	

b .l .ta ex p

Ro= 1 .08zA1~ f

150 152 154 156 158 160 162 164 166 168 I70 172

	

174 176 176 180 182 164 186 A

Fig . 19 . The dependence of the calculated moment of inertia for nuclei in region I on the eccentricit y
parameter 6. Note that the dot-and-dash line corresponds to S as obtained from the experimenta l

Q 0-values of eq . (41) with the charge radius R, chosen equal to 1 .08 x A l ' s f .

It may also be of interest to note the great dependence on the type o f

wave functions employed in calculating the matrix elements of jx and sx .
Thus the use of "asymptotic" (15) matrix elements, i . e . the employment o f
nucleonic wave functions corresponding to the limit of very large eccentric-

ities, gives values considerably above the experimental points in region I

and of the same order of magnitude as the experimental values in region II .

As can be seen from fig . 25, the variation with (N, Z) is much less favourable
than in the calculations where the more accurate nucleonic wave function s
have been employed .

It may be argued that the use of the more detailed and realistic wav e
functions is consistent with the fact that we employ the level scheme o f
ref. 16 and the empirical estimate of the eccentricity parameter 8 .

The greater magnitude of when the asymptotic wave functions ar e

employed corresponds to the fact that while a very large fraction of th e
whole jx coupling strength lies between nearby states in the representatio n

of the detailed wave functions, some of this strength and the strength con-

necting very far-away states is collected in states 2-3 MeY distant in th e
asymptotic case . When 4 -4 0, the results are not very different in the tw o
cases . In the case treated here the factor containing u and v cuts down the

contribution from the very close-lying states most drastically (by a factor o f

2 5

o
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five or so) . This cancellation therefore affects the asymptotic case less tha n
the other .

In summary, we can only conclude first that, compared with the inde-
pendent-particle value, the agreement in the magnitude of is rather good ;
in particular the "fine structure" of the A-dependence oft is well reproduced .

yo Th
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The fine-structure variation appears largely a function of b*, which latter

in the calculation is taken in turn from the accurate quadrupole determina -
tions of refs . 19 and 20 . The systematic deviation between the results o f
the present calculations and the empirical values may very well lie withi n
the inaccuracies of the parameters å and d and may also depend criticall y
on the insufficient accuracy of the nucleonic wave functions*' .

There are, however, also other effects which might be responsible fo r
the deviation . They are connected with the limitations in the form of th e
interaction Hamiltonian assumed and with the approximate character o f
the BCS solution** corresponding to the given Hamiltonian .

As pointed out in connection with eq . (5), the assumed type of nucleoni c
interaction, given by that equation, admits scattering of pairs solely i n
K = 0 states . In particular, the scattering in the K = 1 state, that is the inter -
mediate two-quasi-particle state in the cranking formula, is neglected. The
inclusion of such an interaction would probably tend to depress somewha t
the lowest-lying K = 1 states. By that effect alone the energy denominator s
of eq. (35) would be somewhat cut down and .a correspondingly increased .

The inclusion of such effects is of interest also for the following reason :
In the limit of an infinite nucleus, A co, the level density of single-particl e
states increases proportionally to A . As G, owing to the decreasing overlap ,

1
tends to zero as q, thus A in this limit goes towards a constant 16l . Finally ,

all the contributing states av are swallowed up by the energy gap, and. the
term containing u and v makes vanish identically in this limit . This con-

sideration of the limiting behaviour of the solution appears to bear out th e
contention that some terms are missing in the Belyaev expression whic h
would contribute the irrotational moment in the limit considered (10). It

remains to be shown, however, whether the terms present e . g . in the S-force ,

but neglected in the pairing interaction, can bring about the expected be-
haviour in the limit of A-> oo*** .

* This is also concluded from an analysis of experimental data in ref. 19 .
** The effect of the usually neglected terms in (14) and (24), largely taken care of by eqs .

(A I-6)-(A T-8), was included in one calculation . ft was found to increase s by only a few per
cent, however (cf . fig . 24). Note added in proof : Calculations employing the expression (35') for
the moment of inertia so far performed for neutrons of Sm' e2 Gdis ~ Dy 160 , and W'82 render
a moment of inertia 6, 3, 2, and 16 per cent, respectively, lower than calculations on the basi s
of eq . (35), under the assumption of the same value of G ?, . According to table lIa calculation s

that take blocking into account in addition require slightly larger G-values to fit the odd-eve n
mass difference . The preliminary results thus indicate that, all in all, the inclusion of the com-
plicated ,,blocking effects" leads to values of the moment of inertia of the order of 10 0/ 8 lower .
The disparity with empirical findings is therefore increased .

*** The present calculations by PRANGE( 32 ) appear to support such a supposition .
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b. The collective gyromagnetic ratio g R

The calculated value of gR for even-even nuclei is exhibited in figs . 26

and 27 . As gR is approximately equal to ~ n
	 pc it is less sensitive to e . g .

p
an increase in å, which affects ap and an in very much the same way. That

the value of gR comes out smaller than the ratio z + N is largely due to

the fact that we have employed a value of 4 v considerably larger than 4 n .

Furthermore, "fine structure" effects in figs . 26 and 27 are due in particular
to the fact that it is mainly the nucleons outside of closed shells (z, n) tha t

contribute to ap and an , whence the relevant ratio of comparison should

be

	

	
+

n
rather than zZN . The former ratio exhibits a much faster variatio n

z
within a sequence of isotopes at the beginning and the end of shells . At
the end of the shells the holes play the parts of the particles at the beginnin g

of the shells, and so the trend of gR within a series of isotopes is reversed .

Fig . 26 also exhibits a comparison with experimental values of g R for even -
even nuclei, taken from a recent compilation by BODENSTEDT(33) * . The ex-

perimental errors are very large, as indicated in the figure . The values to

the left correspond to measurements by GOLDRING and SHARENBERG("

involving an angular-distribution measurement of the E 2 gamma radiatio n

emitted in the decay of the first rotational state . This state has been reached
by Coulomb excitation and, during its very short lifetime, it is unde r

the influence of a strong external magnetic field . Owing to paramagneti c

effects connected . with the unfilled atomic 4f shell. the strength of this fiel d
is very much increased at the nucleus, which enhances the angular effects

studied. However, as the atomic configurations are not known with sufficien t

accuracy, the interpretation of the angular-distribution measurements i n
terms of gR becomes very uncertain . Indeed, on the basis of new atomi c
wave functions calculated by KANAMORI(35) and SUSSMANN (3s) , BODENSTED T

et a1(33) have adjusted the values of g R originally given 1341 . The experimental
points on the right side in fig . 26 are based on very similar experiments (37) ,
involving, however, a population of the rotational state by beta decay in -

stead of by Coulomb excitation .
In view of the uncertainties of the experimental values, the agreement

with the present calculations cannot be considered unsatisfactory .

* We are very much indebted to Dr . BODENSTEDT for his kind permission to quote his
values of gR in advance of publication.
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Fig. 26. Collective gyromagnetic ratios of even-even nuclei in region I . The theoretical values cor-
responding to the single-particle level scheme of "case B", 4 a - Pn , 4p = Pp , and Ra = Rw =-
1 .2 x 10-13 f., are represented by the solid line. The measured g R-values, with experimental
errors as listed by BODENSTEDT( 33 ), are exhibited for comparison . (The calculated values of
gR corresponding to "case A", which can be found in table III b, show rather slight deviation s
from those of "case B" .) Note added in proof : A recent measurement by BODENSTEDT et al . o n
Er i" renders, with employment of the new(r 3 ) values for 4 f electrons calculated by JUDD and
LINDGREN (UCRL-9188, unpublished), a very accurate value of gR = 0.32 ± 0 .02 . This is in
excellent agreement with the theoretical results . (Private communication from D . SHIRLEY . )
Furthermore, a recent measurement by Stiening and Deutsch (Phys . Rev. Letters 6, 421 (1961))

gives gn = 0 .36 ± 0 .06 for Gd16'.

Turning now to odd-A nuclei, many data are available from magnetic -
moment measurements and Ml branching ratios within the ground-stat e
rotational bands . From such information g R and gK may be determined .
In the limit in which the Coriolis coupling (and furthermore the differenc e
in 4 between the odd and the even nucleide) may be neglected, this g R
is simply the same as that of the adjacent even-even nucleus . The effect
of the Coriolis force, coupling the near-lying one-quasi-particle states, ca n
now be accounted for in first approximation by a renormalization of gK
and gR with respect to their adiabatic values(38) . An analysis of the experi-
mental material in terms of the simple unperturbed formulae therefor e
yields the renormalized values gR = gR + SgR and gK = gx + ågK , where

65 5m

	

6aGd
72W 74W

Q10



Nr. 16

	

49

g8
0.40.

0.3 0

0.20

90T h

010

B2U

	

94 Pu

	

96 C m

2
Å

"---i Theoretical

000
22 226 221226 228 230 232 234230 232 234 236 238236 28 240 24 4242 244 246 24250 2

A	
5 2

Fig . 27 . Collective ggromagnetic ratios of even-even nuclei in region II . The theoretical values re -
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åV1)(v)

	

å W (1 )
ågR (v ) =

	

(gl gR) +	 (v)
(g8- gi ) .

	

(48)

In eq. (48) å,a (1) is the contribution of the odd particle to the moment o f
inertia connecting the one-quasi-particle state v with other states of th e

same kind. If the quasi-particle formulation is sufficiently accurate t o

estimate this difference, åß (1) (v) should be very nearly equal to the odd-eve n
difference in moments of inertia ( 39 ) . Some of this difference, however, might

be due to the effects of blocking . Blocking effects contributing to ågR may

also be included in eq . (48) through åi (1) . Similarly, åW(1) (v) is the con-
tribution to the expression W of the odd particle occupying the orbital v .

Now åa (1) is always a positive quantity . This is normally the case als o

with åW (1) . As the first term always dominates, in all cases of practical inter -
est ågR is positive for protons (gl = 1, g s = 5 .56) and negative for neutron s

(g1 = 0, g8 = - 3.83) . Indeed, in their analysis of the empirical values o f

gR and gK for odd-A nuclei BERNSTEIN and DE BOER (40) find values of gR
for odd-N nuclei on the average 0 .1 magneton lower than those for the odd- Z
nuclei . This is qualitatively in agreement with (48) . One might now at -

tempt to apply (48) as a correction to the values found by the straight -
forward analysis, in order to obtain the unperturbed values g 0R . If one inserts

Mat.Pys .Medd .Dan.VId .selsk .32, no .16.
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in this formula for år the empirical odd-even differences in the moment
of inertia and estimates the somewhat smaller second term by its "asymp-

totic" expression(15) , one usually finds too large corrections ågR . Now, the

spin matrix elements empirically turn out to be systematically much smaller
(about 50 °/o) than those calculated from the single-particle wave functions .

This is evidenced e . g. by the plots of magnetic moments (theoretical an d

experimental) exhibited in ref . 16 . This reduction may be explained in
terms of the spin polarization effect(41) whereby e. g. in the case of an odd

proton the spin-dependent part of the two-nucleon interaction tends to alig n

the spins of the neutrons parallel to, and the spins of the other protons anti -

parallel to, the direction of the odd-proton spin . This polarization then ef-

fectively diminishes the magnetic dipole strength . Even with a 50 0 /0 reduc-

tion of the latter term the correction factor ågR still appears somewhat too

large. In view of the uncertainty of the correction ågR , clearly one cannot
point to a definite disagreement with the theoretical gR-values. One might
tentatively say, however, that the experimental gR-values are on the whol e

10-20 °/o smaller than the calculated ones (42)
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Appendix I

On the Quasi-Particle Approximatio n

The calculations reported in the main text rest on various approximation s
leading up to the simple quasi-particle formulation employed . We will star t
the discussion from the Hamiltonian (7) as given, including its diagona l
parts. The trial wave function (11) and, analogously, the canonical trans-
formation (19) introduce a non-conservation in the number of particles ,
leading to wave functions describing an ensemble of nuclei rather than a
specific nucleide. Some problems, in particular the occurrence of spuriou s
states, are associated with the resulting fluctuations in the number of par-
ticles . We will defer till later a few remarks on the relevance of these fluctu-
ations to our present problems . First we will discuss the various approx -

G
inrations of relative magnitude

d that have to do with the neglect of Hint etc .

The Hamiltonian (7) after the canonical transformation (19a, b) takes
the form (20) . Of interest here are the explicit expressions of the Hint- terms
H 2 , H31 and H40 . These have all been listed by BELYAEV (s), but we give
them here for the sake of completeness and in a form that is particularl y
simple as we have limited ourselves to the case of a constant matrix element G .

We first consider the problem of odd-even mass differences . The ground
state of the odd system is affected by H3 1 in contrast to the even ground state .
This interaction is of the form

Hsl = G

	

(u v - Uv) av ßv Y uv' oy , (4, av' + ßv ßv') + c . c .

	

(AI-I )
v

	

v '

The effect of H 1 on a one-quasi-particle state is therefore

H3 1 av, 0>= + G f (u,2,- vv)uv,vv,avßv av 10> .

	

(AI-2)

The depression -åE(1) of the ground state v ' due to H3 1 is given in lowest-
order perturbation theory b y

6E 0) (Hsi) '=
G2

8

(1-
42 )

E,

	

E,~
(AI-3 )

Using (18), one easily obtains an upper limit to åEM :

åE(1) (H1) < (AI-4)
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This perturbation estimate is actually rather accurate as the close-lying
lower levels have small matrix elements because of the factor 0,2 -4).
We have computed (A I-3) numerically for some nuclei scattered over region I
and have there obtained results between 50 and 80 0/0 of the upper limit
in (AI-4) .

Furthermore, the H4 0-term is of the form

H40 = G

	

u,2, vv„ av ~v av Nv + c . c .

	

(AI-5)
vv "

This couples the quasi-particle vacuum with four-quasi-particle states an d
the one-quasi-particle state with five-quasi-particle states . In both cases H4 0
thus creates four new quasi-particles . Therefore, the first-order contributio n
is the same in the two cases within this formalism, except that in the secon d
case the state v ' , with which one quasi-particle is associated, is excluded i n
the sum . An estimate of the difference in depression due to H40 indicates

that this energy difference is less than or of the order of 4, i . e . a few tens
of keV .

Furthermore, there is the effect of the neglect of the last term in eqs .
(14), leading to the expressions (15) for u„ and vv , which approximation

is also of the order G
2 4

It is of course possible to take the neglected term in eqs . (14) into account
in an approximate way by treating it as a perturbation . The modified form
of the population parameter vÿ is the n

Û = 1

	

(Sv 	 	
(AI-6)v

É„
where

G
(EV -A) = (a„ -2,o) 1 +	

2 Éy

V2

	

2
Ev = (£v-) + 4

The quantities of the unperturbed case, given by eqs . (15a, b), (17) and
(18), are denoted by an index zero in the relations above . Obviously, v,2,
is not at all affected at e, = 2 0 , and the correction also tends to zero for I er - 2 0
very large, while the largest correction occurs for I ev-A0 I - G. On the assump-
tion that the unperturbed solutions û v and $„ fulfil (13) exactly, the perturbe d

and

(AI-7)

(AI-8)
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uv and vv given by (AI-6) correspond to a small error in the. number of
particles :

Sn ^

	

42

	

6v-4

	

°

	

(AI-9)
E v

which error may easily be compensated for ad hoc .
Furthermore, in terms of this same approximation, the expression fo r

Hil is simply
Hil =

	

E1 ( av av +ßv

	

ßv) .

	

(AI-10)
v

Thus (AI-10) is formally identical with (24 ') although the last terms of
(14) and of (24) have been included to obtain (AI-10) . The energy gap is

still associated with the same 4 . This 4, however, now corresponds to a

somewhat different value of G according to eq . (18), as uv and vv are slightly
changed . It may also be pointed out that the modification of vv brought

about by this perturbation method is largely equivalent to a small renormal-

ization of G . The effect on the moment of inertia of the inclusion of the

perturbation terms discussed may be studied in fig . 24 .
As far as the odd-even mass differences are concerned, the total resul t

of the effects discussed should normally not exceed an order of magnitud e

of 50 keY . There remain effects due to fluctuations in the number of par-
ticles (see below), and the effects of the change of the quasi-particle vacuu m

due to the blocking by the odd particle, discussed in the main text .

It may be appropriate in this connection to make a few comments on

the two-quasi-particle states and the empirical energy gap in even-eve n
nuclei . The Hit-term gives an excess energy of the lowest two-quasi-particle

states compared with that of the ground state :

åE (2) (Hil) = 2Ev ,

	

(AI-11 )

which is just twice the uncorrected value of the odd-even mass difference .

Most important among the neglected Hans-terms is here probably H22 , which

we write out explicitly below :

rr
H2 2 = GY l (uv uv' + vv vv') av ßv ßv' av ,

v v'

	

11 (A I-12 )
-}- uy Uv LZy, vv ' (av av' av' av + ßv ßv ßv' ßv + 2 cc;,', ßv ßv av.)

)

	

1

It gives rise to matrix elements of the following type (we here denote th e
two-quasi-particle state* aÿ ßv 10» by I v- v») :

* We here limit ourselves to two-quasi-particle states in which the two-quasi-particle s
refer to the same orbital v.
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«- vv I H22I v - v » = - G

	

(AI-13)

«-v ' v ' IH2 2 I v-v« =-G(u,2,uv .+vvvv,) (v ' +v) .

	

(AI-14)

There is thus first a negative diagonal element which is of the order of 5-1 0 0 ß o
of the energy gap in our case . Even more important, however, appears the
effect of the non-diagonal matrix elements (AI-14) connecting the rather
dense-lying two-quasi-particle states with one another . The factor (4112,,, +

	

1 /

	

(E,- .1) (E

	

A)vvvv,) can also be written as
2

1 +

	

E Ey

	

I . It has a value clos e

	

\

	

v v
to 1 /2 when e, and Ey . refer to single-particle levels near the Fermi surface ,

as one would expect to be the case with the lowest-lying two-quasi-particl e
states . Thus the factor containing u and v causes no considerable reduction i n
the matrix elements. Furthermore, there are a number of states that are rathe r
close-lying . The effect of the H2 2 terms therefore at first sight appears disastrou s
to the whole concept of the energy gap ; in fact it is very largely spurious ,
however. To illucidate this point it is useful to refer to the "degenerate model" ,
where all the single-particle states E, are degenerate in energy (5) . In this
case all u :s and v :s are equal . Therefore, all off-diagonal matrix element s

of H22 are equal, and their value lies between
2

and G ; let us call them

Gx, where x depends on the shell-filling parameter

x= 1 -~(1-2~) . (AI-15)

If we diagonalize the H22-matrix with respect to the two-quasi-particle states ,
we find that the state Yfs =

	

av fl,, I 0 > > exhausts the strength of the matrix
v

apart from what is associated with the difference between the terms (AI-13 )
and (A I-14) . The contribution to the energy in the state Y's is [- G- (SZ -1) x G] .
The depression due to the H22 interaction should thus amount to something
of the order of half or more of the energy gap* . This state P's is, however ,
just the lowest spurion occurring in the degenerate model, as is demonstrate d
by BOHR and MOTTELSON in ref. 5 . Its occurrence as a BCS state is con-
nected with the extra degree of freedom introduced through the ensembl e
of states having slightly different numbers of particles . In the non-degenerate
case, to the extent to which there is an energy gap at all, there must be a
certain number Q' of states E,, lying within a distance A above and below 2 .

* Indeed the exact inclusion of couplings in higher orders brings this state all the way down
to the ground state s ) (communication from B . MoTTELSOw) .
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The K = 0 quasi-particle states associated with these levels now all fal l

densely above the energy gap . In between them, all matrix elements given
by eq . (AI-14) are roughly constant . With respect to these states we hav e

a matrix representation of H22 of the same type as that with respect to the Q
two-quasi-particle states in the degenerate case . The state that absorbs most

of the strength of the coupling of H2 2 between the near-lying two-quasi-
particle states is largely spurious in analogy with the degenerate case .

There also remain to be discussed effects that have to do with the numbe r

of particles of the BCS wave function. The first effect, which is related t o
the variation in the average number of particles in the quasi-particle ap-

proximation, is of very small magnitude, and we include it only for the

sake of completeness . The relative difference in the number of particle s
between a two-quasi-particle state I v-v > > and the ground state is

« v -vlNl- vv >«« O I N I O >> =2 (4 - vv) =2EÉ )1 .

	

(AI-16)

Similarly, comparing the ground state of an odd-A nucleus with the even -

even nucleide corresponding to the vacuum state, one obtains for the dif-
ference in the average number of particle s

«vlNlv-« O I N I O )~ =uÿ- vv .

	

(AI-17 )

Provided e, lies near the Fermi surface, as is the case for the ground odd- A

state and the lowest excited even-even state, the deviation 6n is rather small* .

Now the solutions of H' = H-2N are stationary with respect to variation s

in the number of particles . That is to say, the quasi-particle solution correct s

for the error in the number of particles Sn by subtraction of an energy

6n x 2o, where do refers to the quasi-particle vacuum . However, a smal l

increase in the number of particles raises A by
dR

x 6n . A good estimate

of the error due to this effect should be

1 dA
SE(I) (6n) = t 2 dn (Sn)2,

	

(AI-18)

where the plus sign corresponds to e,,< A and the minus sign to E,iA . In
the cases treated in the present investigation the error from this source in

* It is thus apparent that in comparing odd-even mass differences of e . g . isotopes one
should compare the odd-A nucleide with the average of the two adjacent even-even nucleides ;
this average is the appropriate quasi-particle vacuum in the odd-A case .
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odd-even mass differences should be of the order of 5 keV . This effect
obviously concerns also the energies of the two-quasi-particle states . The
effect on the lower-lying excitations, according to eqs . (AI-16) and (AI-17) ,

is twice that in the odd-A case, i . e . of the order of 10 keV. The higher -

lying two-quasi-particle states are shifted by amounts of the order of a fe w

hundred keV owing to this effect .
Furthermore there is an effect that is due to the fluctuations in the number

of particles of the Bardeen wave functions . We introduce a mean square
deviation defined by

aN=<N2-<_N>2 . (AI-19)

For the ground state we hav e

« 0 1 N2 10»ß-«OI N IO» 2= Z 4 4,v,2, . (AI-20)

In the calculations performed for the regions of deformed nuclei a typica l
value of aN is 3 . The fluctuations are somewhat smaller for a one-quasi-

particle state, wher e

« v IN 2 1 v «-« v I1V Ivii 2 =~44,uÿ,

	

(AI-21 )
v +v '

which for the odd-A ground state is smaller by about one than the expression
(AI-20) . In the actual cases this leads to a CNvalue about 5 0/o smaller .

The actual wave function thus corresponds to an ensemble of nucleide s

with slightly different numbers of particles . Thus, for instance, the BCS wav e

function corresponding to U236 contains a very large fraction of U234 and U23 8

and also of Th234 and Pu238e . Now on the average the variation in the tota l
energy of nucleides, as one moves between the shells, is expected to b e
somewhat concave upwards (at least if 4 n and 4 1, are kept constant over
the Bardeen ensemble) . This effect in the Bardeen approximation woul d
therefore cause a greater reduction of the binding energy of the state tha t

displays the larger mean square deviation in the number of particles. An
estimate of the influence this will have on the odd-even mass difference s
requires, however, a somewhat more detailed study of the parameters o f
the self-consistent field as functions of N and Z .

* One would think that this effect would iron out in the theoretical results the rather detaile d
dependence on Z and N exhibited by the experimental moment of inertia . That this is not th e
case is due to the fact that the mixed-in components correspond to fictitious nuclei having al l
parameters except A in common with the (ZoN„)-nucleus in question, such as

	

4 p and i n

particular the eccentricity parameter ô . As the dependence of

	

on A alone is weak, the fluc-
tuations are therefore unimportant in this respect .
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Appendix I I

Single-Particle Matrix Elements of jx

As pointed out in Appendix A of ref. 15, the interactions between the
(spherical) harmonic oscillator shells N and N+2 due to the quadrupol e

deformation of the potential can easily be taken into account if one first

transforms to the slightly distorted coordinates x Vco x etc . as defined in
eq. (A 5) of the reference cited . The wave function given in the tables o f
that reference should then be considered as expressed in these distorte d
coordinates, in terms of which we have

Ix =alx - b fz,

	

(AII-1 )
where

ltx

	

a
Ix

-

	

l

	

' (AII -2 )

and"*

(+-) .
f =

A similar relation holds for the y-component, whil e

Iz =1z .

The exact expressions for a and b are given in (A 13) of ref. 15. The
expansions up to the lowest order in 6 are

(AII-3)

a=1+182+ . . .
8

b = 1 8+ . . .
2

(AII-4)

(AII-5)

The operator lx now connects states only within the N-shell of these new

coordinates, while fx connects the shells N and N+ 2 . This is most easily
seen if we express 1,1 and fz in terms of the operators 1Z , R and S defined

in ref. 43. Thus

1+ = V2 [S rz - R* I'Z ]

	

(AII-6 )

It =V2[S* I'Z -RIz]

	

(AII-7 )

* Such an operator I x is encountered e . g . in the theory of elasticity .
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f+ = V 2 [R* 1 - S I'z]

	

(A II-8)

f =V2 [R rz - S* lz ] .

	

(AII-9)

We have defined f+ as fx -ify and f_ as fx +ify ; f+ is then associated with a n
increase in A by one unit . The operator rz gives rise to an increase in nz

by one unit, R * and S * both raise ni by one unit, but R * also raises A by

one unit while S * lowers A by one unit . From these relations it is obviou s

that I t connects states with the same N while ft has elements only betwee n

states with N values different by two . The matrix elements in the asymptoti c

representation are also trivially obtained from these relations .

In evaluating the contribution from I t to the moment of inertia it proved

essential, however, to employ the exact wave functions of ref . 15, as is
discussed in the main text .

On the basis of eq . (AII-1) one may write the expression for the moment
of inertia in the form

Nr . 16

~ =~(l+
462)+ iSf, (AII-10)

where is the moment of inertia obtained when the coupling of the quad-
rupole part of the nuclear potential between the shells N and N+ 2 is

neglected . The term ,af represents solely the contribution of the term f
t

in (AII-1) . It only amounts to about 5 0 / 0 of the whole moment of inertia .

As the states connected by -P I lie two shells apart, the pairing effects are
negligible . The detailed level order within the shells is also unimportant
for an estimate of this small correction term . In the case of a pure-harmonic -
oscillator model one finds

1

	

lcs,

	

S 2- ~ i

	

~,5 rig =

	

•4 Sirrot (All-11 )

In addition, the effect of the coupling between the shells is manifeste d

in the correction term 1 å 2 This term is associated with the extra node s

in the wave functions of one shell that are due to this coupling ; it is smaller

than ~f by a factor	 .
2Srig
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