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Synopsis

The moment of inertia and the collective gyromagnetic ratio of even-even
nuclei are calculated on the basis of wave functions that take a pairing interaction
into account through the quasi-particle formalism. The results obtained theo-
retically are found to be in reasonable agreement with experiments. The strength
of the characteristic pair-correlation matrix element to be employed is estimated
on the basis of data on odd-even mass differences. The dependence of the cal-
culational results on the central-field parameters, as e. g. the eccentricity and the
single-particle energy scale, is discussed. Other possible effects with particular
relevance to the odd-even mass difference and the experimentally occurring energy
gap are also surveyed.
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Introduction

The regions of deformed nuclei are empirically characterized by the oc-
currence of rotational bands in the nuclear excitation spectra. The charac-
teristic energy spacings within these bands exhibit the well-known I(/+1)
dependence. The occurrence of such collective rotational states is largely
independent of the detailed character of the intrinsic motion.

If one writes the rotational energy in the form

2

B = 55 10+1), (1)
the magnitude of the moment of inertia J, entering in the proportionality con-
stant, provides, however, more of a test of the detailed nuclear model. For
even-even nuclei two more intrinsic constants determine most of the proper-
ties of the low-lying states. One is the intrinsic quadrupole moment which
determines the E2 transition strengths for gamma decay and for Coulomb
excitation. The other constant, gp, the gyromagnetic ratio of the collective
flow, enters, for instance, when one measures the magnelic moment of a
higher member of the ground-state rotational band. While § measures the
mass of the collective flow, gp is associated with the magnetic properties of
the flow.

For odd-A nuclei, magnetic moments and decay probabilities within a
rotational band also depend on some of the details of the odd-particle orbital
in addition to the said quantities connected with the even-even ground-state
band.

The present work is based on the “‘cranking model”™. This model cor-
responds to the approximation that the self-consistent field determining the
single-particle orbitals is cranked around externally. The rotational energy
of the system is then calculated as the extra energy necessary for the nucleons
to follow a slow rotation. The cranking model applied on the basis of a
completely-independent-particle description gives a value of the moment of
inertia approximately equal to that of rigid motion, provided one chooses

1%
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the equilibrium value of the deformation of the nuclear field® 2. The em-
pirical values amount, however, to only 20-50 %, of the rigid moment of
inertia.

Bour and MotTErson® gave general arguments to the effect that a re-
sidual short-range attractive interaction between the particles—the latter
being assumed in the first approximation to move independently in a com-
mon field—would decrease the value of the moment of inertia. They also
studied the effects explicitly in terms of a very simplified ‘““two-particle mo-
del”. The strength that such an additional interaction must have to reproduce
the empirical situation was found to be of the order usually attributed to the
short-range inter-particle force. It remained, however, to treat such an inter-
particle force in the case of a large number of particles outside of closed shells.

Such an additional inter-particle force, the pair-correlation force, which
allows a complete treatment even when many particles are involved, has
recently been introduced into nuclear physics by Bour, MorrteLson and
Pmves® %9 by Beryarv®, and by Soroviev®™ and other authors of the
Bogolubov school. These authors employ and adapt to nuclear physics the
elegant and powerful methods developed by BsrpeEN and others® to ex-
plain the phenomenon of superconductivity. Such a pairing interaction is first
of all capable of explaining the empirically encountered energy gap in the
spectra of even-even nuclei. For an example of the empirical occurrence of
such a gap, take for instance the region of rare-earth nuclei 150 < A< 190.
The empirical average energy spacing of intrinsic excitations appears to be
of the order of 150 keV (which seems to indicate a single-particle level
density of about one level per 300 keV). In even-even nuclei in this region,
however, there exist experimentally no excited states that are not of collective
character below ~ 1000 keV. Such an energy gap cannot be explained by
the mere assumption of an additional diagonal pairing energy, effective be-
tween the pair of particles filling the degenerate orbitals K and — K. This
would indeed forbid the breaking of such a pair, but could not prevent low-
lying two-particle excitations; the latter would occur with an average level
density of one state per 300 keV or so, where about half the states would
correspond to excited proton pairs and half to neutron pairs.

As pointed out, the pair-correlation interaction is capable of explaining
this very conspicuous feature of even-even spectra. Expressed in terms of the
single-particle states of the average nuclear potential, the pair-correlation
interaction thus scatters pairs of particles from the originally filled lower-
lying, doubly degenerate single-particle orbitals into the higher-lying levels
which are left unoccupied according to the earlier description. The new
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total intrinsic wave function that most effectively utilizes this additional type of
interaction and represents the ground state is then a state with a diffuse Fer-
mi surface. In this state there exists a particular correlation between all the
scattering pairs of particles within the region of diffuseness of the Fermi
surface. Any excited state which thus involves the formation of a state ortho-
gonal to the ground state then necessarily spoils some of the correlation and
is therefore associated with an excitation energy of at least about the width
of the diffuseness of the Fermi surface.

The investigation reported in this paper appears to bear out the contention
that the introduced pair-correlation interaction in the regions of deformed
nuclei is capable of explaining quantitatively at the same time the occur-
rence and magnitude of the energy gap in the spectra of even-even nuclei,
the even-odd-mass difference, and the magnitude of the moment of inertia
associated with the collective rotation. A computation of the moment of
inertia rather similar in scope to the one reported here has been carried
through by Grirrin and Ricu®. Also the investigations by Mrepar® and
by Hackensroicu™ contain some numerical results largely in line with
the resulls obtained in the publication cited above as well as with those of
the present paper.

A preliminary report of the present calculations was presented at the
Conference of the Swedish Physical Society in June, 195942,

I. The Hamiltonian Describing the Intrinsic Motion
of Deformed Nuclei with the Inclusion of the Pair Correlation

The application of the quasi-particle formalism in the nuclear case
is described in detail in the paper by BELyaev®. For the reader’s convenience
we shall, however, give a short account of the most important results.

Let the Hamiltonian of the (static) self-consistent nuclear field be denoted
H,. The corresponding single-particle eigenfunctions are first characterized
by the eigenvalue K of the angular-momentum component along the nuclear
axis. This component is a constant of the motion provided H, exhibits cy-
lindrical symmetry. Furthermore, under the condition that the system is
invariant under time reversal there always exist two states degenerate in
energy, each of which is the time reverse of the other. Under the additional
requirement of cylinder symmetry these may be labelled by the components
of angular momentum K and — K.
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We define such a single-particle state as |v)», where v denotes both the
K-value and the additional quantum numbers necessary for the complete
specification of the state. It is sometimes convenicnt to consider such a state
expanded in terms of eigenstates of the angular momentum j as follows:

[v>=Zc;-'x§{. (2)
7

We then define the conjugate | —» > state, which corresponds to the nucleonie
orbit with a completely reversed direction of motion compared with |» ), as#

I—v>=]_Z(*)l”"KCj”%iK: (3)

where the phases of g} and %/ ; arc defined in accordance with the conventions
of Conpon and SmorTLEY™. As already pointed out, this definition of the
conjugate state makes it equal to the time-veversed state T'|»), possibly
apart from a conventional phase. In the following we shall employ the
relation

Tlvd=1-»>, (4)

which then [ixes the arbitrary phase of 7. We denote the ecigenvalues of
H_ by ¢&,. Furthermore we assume that both g, and |v) can be taken with
sufficient accuracy from the calculations by MorreLson and NiLsson®® 19,
The remaining, most important features of the inter-particle forces, which
correspond 1o the very short range components of these forces, may now
(cf. references 3, 5, 6) be simulated by the said pair-correlation interaction.
In its simplified form this interaction may be written in second-quantization

language
: + -
HY™' =G> ab ata_,a,. (5)
vy’

Eq. (5) represents the limiting assumption that the residual force acts only
when two particles move in a J = 0 state. The said force displays the main
features of the d-force, although the latter has minor but non-negligible ef-
fects on pairs of particles in states of mon-vanishing but small angular
momentum.

In this notation a one-particle state is expressed as follows in terms of
the creation operator a;:

[v>=dal0). (6)

* By redefinition of the spherical harmonics as Y = it Yim , where ¥4y is the conventional
spherical harmonic defined in accordance with the ConpoN-SmorTLEY(13) phase conventions,
the parity sign in (3) or (—)! may be absorbed into | ~# (see Epmonps(t4)), This parity sign
is furthermore unimportant in our calculations.
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With the inclusion of I7, the total Hamiltonian takes the form
H=D>s,(dfa, +aya_,)—G > ahat,a,a,. (7)
v v’

The great advantage of the second-quantization formalism is that it au-
tomatically ensures compliance with the Pauli principle. This principle is
built into the formalism by the usual anti-commutation relations which the
a,:s are required to obey.

The obvious aim is now to find an eigenfunction of the Hamiltonian (7)
that is in addition an eigenfunction of the number operator

N =D (g +at,a,). (&)
v
BARDEEN et al. find a convenient but approximate eigenfunction of (7) at

the cost of weakening the latter condition* and replacing it by a condition
for the average value of N:

F|N|¥>=n. 9)
In conformity with the fact that the number of particles is conserved only
on the average, the solution corresponds physically to an ensemble of nuclei

having slightly different numbers of nucleons. The procedure for treating
this new simplified problem is then to introduce an auxiliary Hamiltonian H’:

H' = H—JN, (10)

where 1, treated as a Lagrangian multiplier, takes the role of the chemical
potential. Thus 1 represents the cnergy of the last added particle.

* A method for obtaining wave functions which fulfil this condition exactly has recently
been discussed by B. Bayman(7),
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I1. The Bardeen-Cooper-Schrieffer Trial Function and the
Canonical Transformation of the Hamiltonian Considered to a
Hamiltonian Describing Independent Quasi-Particles

BArRDEEN et al. employ a trial wave function of the following type to
minimize H’:

P =Tl (w,+v,afat,) 0. (11)
v

In eq. (11), u, and v, are free parameters, subject only to the normalization
condition, which can be fulfilled by the requirement

up+vr =1, (12)
and to the auxiliary condition (9), which takes the form
n=2>" (13)
v

in terms of the parameters introduced.
The variational calculation leads to the equations®:®

(&~ A) 2w, — GO uyv, (W03 —2 G vlu,v, = 0. (14)

<
The last term in (14) is small compared with the second (except in a region
near the Fermi surface) and is usually neglected or assumed to be included

in the self-consistent field energies &,*.
If one chooses to neglect the third term, one obtains for u, and v, the

simple expressions
1 -1
= 1+i¥ , (15 a)
2 E, ‘

1 g,— 4 _
u,2,=§<1_ vE,, >, (15b)

and for the energy of the ground state the expression

2
<H’>+Z<N’>=st2v,2,—%—GZv§, (16)
v v

* Concerning a method of accounting for this term by perturbation theory, see Appendix I.
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where the third term is again of self-energy origin and is usually neglected
as small compared with the second term (see the discussion below).
In eqgs. (14) and (15) we have used the definitions

E, =}/ (e,— )+ 4 (17)
4=6>"uu,. (18)

Provided the ¢,:s (the single-particle energies of the deformed field) are
given and G is known, the auxiliary parameters 1 and 4 can be determined
from eqs. (18) and (13). The interpretation of v2 as the probability of the
state » being populated by a pair is borne out by eq. (13).

An equivalent way to obtain the ground-state energy given by eq. (16)
and the corresponding wave function is provided by the BoGorusov-Vara-
in® transformation to quasi-particles (the creation operator of a quasi-
particle is a linear combination of the corresponding particle operator and
the operator creating a hole of opposite angular momentum)

and

o, = u,a,~v,at,, (19 a)
o, =0, =u,a_,+uv,at. (19b)

In terms of «, and f, the transformed Hamiltonian H' is
H' =U'+H{;+Hyy+ H{, (20)

when written in its normal form, i. e. with «*, g% in front of 8, «. In terms
of the quasi-particle operators, U’ is then a constant, Hy; is an operator
that can destroy and recreate one quasi-particle at a time (and, furthermore,
contains only the particular combinations o o, and Sf8,), while Hy, can
either destroy or create two quasi-particles. The operator H|,, contains
products of four-quasi-particle operators and can be split up into the terms
H,,, Hj; and H,, (the notation should be obvious from the above). It is
discussed in more detail by Beryaev® and in Appendix I of the present
paper.

The imposed condition that Hj, vanishes identically leads to eq. (14),
whereby u, and v, are determined. As Hj; is a function only of the occu-
pation number of the quasi-particles, we are then left with a system of
non-interacting quasi-particles in the approximation that H/;, may be
neglected. Indeed, as far as the ground state, i. e. the no-quasi-particle state,
is concerned, only Hy, of the neglected H/,; term has non-vanishing matrix
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elements connected with this statet The magnitude of this coupling is thus
a measure of the lack of generality of the trial function (11). In this respect
the quasi-particle formalism forms a complement to the variational proce-
dure. The effect of H,, on the ground-state wave function is fundamentally

¥

24
24 ; 1
Qe =" = \ N vl (21)
1

= VT
. 4

as a measure of the accuracy of the approximalion. The definition may
be less suitable in cases where the level density of single-particle states
is very dilferent above and below the Fermi surface. It is quite satisfactory
for our purposes as the single-particle levels are rather evenly distributed
in the cases trecated here.

It should be noted at this point that the neglected term in (14) is also

small of the order . One may take the quantity®

G
11 of just this order /—;.
small of just this order W

The ground state ¥, of an even-even nucleus, given by (11), thus de-
fines the quasi-particle vacuum; it will be denoted {0 >)> in the following
and is characterized by the condition

W=, |05 =0. (22)

We now turn to the ground state of an odd-A nucleide. The odd particle
here occupies, say, the orbital g,.. This particle is entirely unaffected by
the pairing force, which only scatters pairs of particles. The trial function
of the ground state of such an odd-particle system is obviously

podd _ a,’fﬂ (u, + vya;at,)y|0>. (23)
vy

Now u, and », are still given by eqgs. (15), but the sums over sfates in ecs.
(13) and (18), which determine A and 4, now exclude the “blocked” »
state; furthermore, n in (13) has to be replaced by (n—1).

The effect on A is a trivial one; if »” lies near the Fermi surface (as it must
for the ground state of an odd system), 4 is not appreciably changed with
respect to the “‘even’ case of n/2 pairs. As 2,;; terms in fact contribute to (18),

. . . 1
the exclusion of one term appears again to imply an error of the order o the
eff

* The formula (21) gives values of “Qeff about 5-10 for the actual calculations we have per-
formed.
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fundamental inaccuracy of the BCS-solution. If we neglect this blocking
effect for the moment, we end up with the same «, and v, as in the “even”
cases. Therefore we still have the same quasi-particle vacuum, and we may
write ¥ in a form identical with (23):

Podd _ o105y, (23"

The additional energy of this one-quasi-particle state compared with the
vacuum state (the “‘even” case of n/2 pairs) is most easily obtained from

Hiy =2 (6 = 2) (g —0p) + 42,0, = GO} (1~ 03) } (o5 o0 + By o). (24)

v

The last term in (24) is small, again of the order comparcd with the

G
27:
sum of the first two terms, and often much smaller because of the factor
(ul —v2). The neglect of this term thus amounts to an approximation of the
same order as that due to the neglect of Hj, etc. We then arrive at the simple
relation

Hiy = 2 B,y (o5 o+ 7 B) (24°)
Y

The odd-even mass difference, which we have here defined as the dif-
ference in mass between an odd-system and the “‘even’ system® having
n/2 pairs and thus no orbital blocked, in this approximation simply equals
E,. This quantity is in turn very near to 4 for the ground state of the odd-n
system, as (g, —2)? is very small compared with 4% (usually of the order
of a few per cent).

The spectrum of excited states of an odd-A nucleus is given in this
approximation by the quasi-particle energies E,. As the single-parlicle level
density is of the order of one state per 300 keV on the average, compared
with an average 4 of between 500 and 1000 keV, this would lead to a level
density in odd-A nuclei of the order of one state per 50-100 keV for exci-
tation energies smaller than 4, which is contrary to experience™®. It appears
that of the approximations made, involving terms of the order of 2%, the
neglect of the blocking effects described on page 10 may be the most se-
rious¥®® #kE

* i.e. a system described by eq. (11) treated formally as if n were an even number.

** A comparison with the results of an exact diagonalization performed for a particular
case of six levels and three pairs (corresponding to a 20 x 20 matrix) clearly bears out this con-
tention.

**x This effect has also been studied recently by SorLoviv(1%),
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One may estimate the change in A between the even and the odd case
due to the blocking of one level by the odd particle as*

1 S TN
Aodd ~ Ae_ i
(Ae)z vy Eg) ; (25)

In obtaining this formula we have neglected terms of the type > (g, — 1) E;™
k4

as being small compared with A4 > E; ™. Asis obvious from (25), the difference
v 1
.
v Ev
The change in 4, leading to a change in u, and v, also for » * », also
affects the odd-even mass difference. If one makes the same approximations

as in deriving (25), one obtains for the odd-even mass difference P the
expression

(4¢ — A°%%) depends somewhat on the cut-off of the sum over » in

(ep—A)*
1 1\t 6 9 <=, E,
P: AG_I_ — +_ _ _————v L4 . 26
(Ae>2<zw, 1:> AR Wi &0
3
vy E,

In deriving (26) we have included the “self-energy’’ terms from (16). They
give as a result the third term in (26). While the neglect of these terms leads
to the relation P> A° to first order in § 4, the inclusion of these and of terms of
higher order results in a Psmaller than 4° by a magnitude of the order of 10°/,
in the present cases (see table II). The results of table II correspond to an
exact inclusion of the blocking effect, but are generally in line with eq. (26).%*

Of interest to us here are finally the lowest excited states in an even-even
nucleus, which correspond to the excitations of two quasi-particles. Take
as an example a state reached from the ground state by the j, operator
considered in section III. Such a state is e. g.

Y, = Bl 0>y =af at””vﬂw (m,+v,a) at,)|0). (27)

* On account of the rapid convergence of the sum in eq. (25) the choice of the cut-off energics
A+ D is not very critical provided D )} 4. Assuming a constant level density ¢ and furthermore

1
A)}i—, one obtains the estimate A°9~ AE—T. The actual calculations, in which the

“blocking”” effects have been included exactly, indicate a difference in 4 between systems with
even and odd numbers of particles of the order of 20 9/,, as exhibited in table II. These results
are roughly in agreement with eq. (25) and the estimate above.

** The arbitrariness in the choice of the cut-off energy enters (26) through the relation
between G and A, which depends more critically on the cut-off energy than does eq. (25).
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In the approximation implied by this equation (where, for » + »" ", u, and v,
are the same as in the no-quasi-particle ground state) the excitation energy
is given simply by application of Hj; as

6" GO =E, +E,.>24. (28)

As the reduction in the effective 4, i.e.in the diffuseness of the Fermi surface,
is considerable in this two-quasi-particle state, owing to the blocking of two
levels, one might be tempted to correct for this error in line with what is
done above for the one-quasi-parlicle state, and write as an alternative to

eq. (27)%

W e=abat, T @ 0" et at,) 10, (27
yEv, Y
where " and %" are thus calculated from (14) with two single-

particle levels blocked. The excitation energy of this state (27") must be
calculated via the total energies (16) obtained from variational calculations
applied to the excited state, respectively to the ground state. It is obvious
that a quasi-particle description has no advantage if one wants to include
the effects of blocking, as we should then be forced fo assume a vacuum for
the excited state different from that of the ground state.

ITI. General Formula for the Moment of Inertia and the
Collective Gyromagnetic Ratio in Terms of the Quasi-Particle
Formalism

A derivation of the formula for the moment of inertia based on the
cranking approximation has already been given in the quasi-particle for-
mulation by BeLyarv®. The exposition of ref. 6 appears not explicitly to
include the case of the single-particle angular-momentum component being
equal to 1/2. Although the explicit inclusion of this case only amounts to a
minor modification, we shall repeat the general lines of the derivation.

We first express j,, the operator associated with the rotation of the field
+.-0f an individual particle, in terms of creation and annihilation operators a*
_f;ﬁnd a. By the indices », »" we denote combinations of states for which K,

* It is easily verified that this state is orthogonal to the ground state.
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and K,. do not both equal 1/2. The indices y, ' are then reserved for com-
binations of orbitals that both have K = 1/2.

B =2 iz 1> 4y ay

I

v g | = atyasy pr Sl | -0 S afay, (29)
IZ0%
F—plj e > ai_/xa,u’}'

Employing the phase convention implied by eq. (4), one can readily prove
the relations
a1V D ===V | el =v> (30)

and
Cpljal—p' > =L~ulj > (31)

To prove (30) one may for instance use the fact that the time reflection
operator T is a product of a unitary operator and the complex conjugation
operator, to obtain

vl jal ¥ > =(Tv | T, T T >%. (32)

To arrive at (30) one has then only to employ the facts a) that j, is a Her-
mitian operator, b) that it changes sign under time reversal. To derive eq. (31)
one must in addition use the fact that the matrix elements of j, are real in
the representation employed here.

The next step is to transform eq. (29) by the canonical transformations
(19a, b), using (30) and (31). We may then write

Jz* = (o + Useo> (33)

where (j,)1; thus first destroys and then creates a quasi-particle. It can there-
fore have no matrix elements with the ground state of an even-even nucleus,
which is just the quasi-particle vacuum. On the other hand, (j,)s creates
a two-quasi-particle state from the quasi-particle vacuum [0>)>:

JR105) = D o1, 19 (v —vyuy) o5 105D
; ™ Lo v 4 pigt (34)
+Z(,ul]xl~y /(uyl’/l,’_'U,uuu’)i(“,u,’a‘u—'-ﬁ,uﬁ,u’)|O>>'
o

Now the two-quasi-particle states o« 8|0 and o850 both corre-
spond to an excitation energy I, + E,., measured with respect to the energy
of the quasi-particle vacuum. These two states differ in their sign of the



Nr. 16 15

angular-momentum component. Similarly, oc;-oc;[()» and ﬁ;ﬁ;:m)) both
have the energy E, + E,, but have K =1 and -1 respectively. Thus the
contributions from these transitions do not interfere. Although in eq. (34)
the » — and x — sums do not at first glance appear quite symmetrical with
respect to one another, their contributions to the moment of inertia are quite
analogous. We finally obtain the following formula for the moment of inertia:

v|j v >R
822]12 (<o lial ] (uvv,,,/—l)vllv,)z
— E,+E,
Tl jp | =1 e
AR
—Exr(LlﬂlJur—vﬂzzﬂ/)z} (K, =K, =1/2).
by L

Indeed the second term can be formally included in the first, provided one
remembers to take also the matrix elements between K = 1/2 and K’ = —1/2
into account. Really there is no asymmetry between the » and u terms, as
to every {»|j [¥ > transition there corresponds a {—v|j, |—%> transition,
of which only the first is counted formally in (35); further, to every {u|j,|—u'>
transition counted in (35) there corresponds a {—pu|j, | > transition which
is not written out explicitly in (35).

The collective rolation takes place perpendicularly to the nuclear sym-
metry axis and is associated with the collective angular momentum ﬁ In
an odd-A nucleus R couples with the angular-momentum component K of

>
the odd particle to form the total angular momentum [/, the nuclear spin.
On the other hand, in the ground state of an even-even nucleus we have

> > >
simply R = 1. The collective flow of protons and neutrons building up the R
also gives rise to an instantaneous magnetic moment associated with the
operator
e > ;> >
Heon1 = izlui = Z (ggsi + g7 Ii)’ (36)
4
where the sum runs over the paired nucleons. One may express this mag-
netic moment in terms of a collective gyromagnetic ratio g, defined by the
relation N
> _
Heon1 = gr R ' (37)

(The definition is of course limited to matrix elements of the operator z,;
that are diagonal with respect to the intrinsic nuclear wave function.)

In the cranking approximation the gyromagnetic ratio ggr takes the
form®
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E (D | 1ty | P2 Pl T, | Dy >
QR:*

8ﬂ~8

c., (38)

where J, = Z J& is the angular-momentum operator associated with the ro-
1

tation. As y, transforms under time reflection in the same way as j,, the
inclusion of the pair-correlation interaction is completely analogous to the
procedure employed on pp. 13—15. We just give the final expression

W 1%%
+(9§’—1)§’+9?§; (39)
where

Y v {vlsglvD
9‘]72‘1] S A zE T E z ( vvll‘_vvuv')z

</“IS f—p' > —p l./z|“> 2
E Bt E, (W vy — vy )"

Thus, apart from the spin contributions (given by the last two terms of (39))
to the magnetic moment of the collective flow, g5 is just the relative fraction
contributed by the protons to the moment of inertia or, in other words, the
effective charge of the collective flow. Of the last two terms of (39), W,
is the sum over all proton states and W, the sum over all neutron states of
the expression (40). The coniribution from the terms containing W is small
and is largely cancelled, as (g2 —1) is very nearly of the same magnitude
as g% and of opposite sign.

It has already been pointed out that the quasi-particle description used

(40)

. G .
here involves the neglect of terms of the order 34 at various stages. The

errors connected with the neglect of Hy, for the ground state and with the
neglect of Hyy, Hy and Hj, in calculating the excited two-quasi-particle
states enter in a fundamental way, and they are also the errors that it is
most difficult to correct for. On the other hand, the errors associated with
the blocking effects may, in many respects, be the most severe. We have
thercfore attempted a programme taking this blocking fully into account
through the use of (27") instead of (27) as the form of the two-quasi-particle
state. Including the said corrections, one obtains the following expression
for the even-even moment of inertia:
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X = 92 1< i 101 0 00 oy
= At T g (O ) )
vy (35"
7[ @ u? 1 o ™) 1 (terms involving g and u”). [
vEVY

In this formula the superscript 0 refers to the ground state, while the super-
scripts " and »” refer to the states in which the single-particle orbitals »'
and »" are blocked. '

The modification of eq. (40) is completely analogous to that of (35).

IV. Numerical Calculations of the Moment of Inertia and the
Collective Gyromagnetic Ratio

a. Energy scale of the single-particle energies ¢ and determination
of the deformation §

The relative order of the single-particle energies is probably rather well
represented by the calculations of ref. 15. A minor readjustment of the
energy differences within a shell, as may be suggested by the analysis of
experimental nuclear spectra by MoTTELSON end Nirsson®®, does not very
significantly affect either J or g of an even-even nucleus. Even though the
level order is fairly well established, the total energy scale fiw, is determined
from a condition on the extension of the nuclear matter which is somewhat
arbitrarily formulated®® as 5/3¢{r2> = R%, where, furthermore, the nuclear
radius R, has been set equal to 1.2 x AY® fermis. This then corresponds to
choosing hwg = 41 x A1 MeV. As the uncertainty of R, must be regarded
as being, say, of the order of 10 °/y, the inaccuracy of e, is probably
larger than 20 9/y. Now the scale g enters first of all in the energy denom-
inator, so from this effect alone there appears at first glance to be an un-
certainty in ¥ of, say, 20 °/s. However, the ratio Awo, which determines
the u and » values, obviously decreases when hw, is increased, and vice
versa. This effect largely cancels the first effect. Indeed, as seen from figs. 22
and 23, a 109/y decrease of Aiw, results in a net change of § by only +2 9/
or less in the range of parameters used in these calculations.

Furthermore, the single-particle energy parameters ¢, are also connected
with the eccentricity parameter 8. Indeed, for the use of the energy diagram

Mat. Fys. Medd. Dan.Vid. Selsk. 82, no, 16. 2
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of ref. 15 it is necessary to know 4. To obtain values of § we have employed
the empirical values of the quadrupole moments as determined from Cou-
lomb-excitation data. We have made use of the measurements and com-
pilations* of Q, recently made by ELEK et al.*® in the mass region 150 < A<
190 (often denoted region I in the following) and by Brrr et al.?® in the
region A>220 (region II). The experimental values of the quadrupole mo-
ments in region I exhibit an estimated accuracy of the order of 3 9/y com-
pared with one another'’. The absolute uncertainty may be greater, how-
ever. In particular the values of ELBEK et al. appear systematically to be
a few per cent lower on the average than those of most other authors, as
pointed out in ref. 19.

Assuming a homogeneous charge distribution, one obtains the well-known
relation between the intrinsic quadrupole moment and 4

Q0=5;—6ZR§(1+;6+.‘..). (41)

The main uncertainty connected with the use of this formula probably lies
in the specification of the parameter R,. We have, in using formula (41),
put R, equal to the average nuclear radius R,, which, as pointed out, is
related to the energy scale hwg. Also the analysis by RavennanL® of elec-
tron scattering data indicates a proton charge distribution such that the
charge radius R, defined as [5/3 (r?>]"? equals about 1.2 x AY® fermis.

It turns out that 6 is a most critical parameter in the calculation of the
moments of inertia. The very large uncertainty in its determination is thus
due mostly to the inaccurate knowledge of R,, furthermore to the experimen-
tal inaccuracies in the (), determination, and finally to the approximate
assumptions underlying formula (41). Indeed, as the nucleonic wave func-
tions are known in the pairing approximation, they may be used to calculate
an expectation value of the quadrupole operator. For the quasi-particle

vacuum, one obtains the simple relation®

Qo = Z Do 20y (42)
v
where
1
TP s
As the population numbers of the single-particle states as well as ¢9,
are functions of §, eq. (42) provides a relation between Q, and 4 in which,

* We are grateful to the authors cited for access to their values in advance of publication.
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however, Aw, (and thereby Ry) enters as a parameter. Formula (42) should
be considered somewhat of an improvement on (41). However, the pre-
liminary calculations by Szymanskr and B£s®, until now limited to region
I, indicate that the approximation (41) is accurate to within a few per cent
in the entire region. This corresponds to a matter distribution displaying
approximately the same eccentricity as the potential shape.

Szymanski and BEs go further to seek the equilibrium deformations Jg,.
Using the relation (42), they then compare the magnitude and trend of the
calculated Q, corresponding to d,, with the.empirical Qp-values. The pre-
liminary results indicate deviations from the experimental values of the
order of 20 9/,.

As pointed out, the use of formula (42) instead of (41) does not remove
the uncertainty in the specification of the nuclear charge radius. The
obtained from equilibrium calculations appears rather sensitive to details
of the model, and therefore uncertain.

b. The gap parameters 4, and A

The moment of inertia is very sensitive to the choice of 4, and 4,,
the energy-gap parameters of neutrons and protrons. Thus a 10 9/y increase
in the magnitude of 4, and 4, results in an average decrease in J of the
order of magnitude of 109/, (cf. figs. 20 and 21).

Now, 4, and 4,, arc determined from the average pair-correlation matrix
elements G, and G, and the single-particle level density. The exact relation
is given by eq. (18). A separate and independent treatment of neutrons and
protons, which we have implied here, appears to be adequate in the two
regions of deformed nuclei to which the calculations have been confined,
as neutrons and protons fill different shells. The assumption that the pairing
malrix element can always be set equal to a constant, G, is of course also
approximate. Indeed, as the single-particle states on the average become
less and less similar as they get more distant from one another in energy,
it appears that the overlap of two such wave functions should on the average
decrease with increasing energy difference. The contribution from the states
far below and above the Fermi surface to the sum in (18) is thus effectively
limited. This we may approximately simulate by including in the sums only
a certain number of states nearest above and nearest below the Fermi sur-
face. The effect of the arbitrariness in the choice of a cut-off point is less
severe as outside of a certain region the inclusion of some extra terms beyond

2%
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the cut-offs in many respects corresponds only to a renormalization of G
(cf. refs. 5 and 6)*

In our calculations we have included all states of the N = 3, 4, 5 shells
(N is the total number of oscillator quanta) for protons in region I (56 levels).
FFurthermore, we have taken into account all states of the N = 4, 5, 6 shells
for protons in region II and neutrons in region I (64 levels), and finally all
states of the shells N =5, 6, 7 (85 levels) for the neutrons in region II.
Compared with an earlier calculation in which only altogether 20 levels
near the Fermi surface were taken into account, the inclusion of this great
number of levels implied an increase in § by an amount of the order of
10 ¢/y for nuclei at the beginning and the end of region I, provided 4, and
A, were kept the same in the two calculations. In the middle of region I
the effect was even smaller. On the other hand, to cbtain the same A-value
in the two cases we had to use G-values 30-50 9/¢ larger in the calculation
in which the fewer levels were taken into account.

KissLinGER and SorrensonN® have analysed systematically sequences of
isotopes and isotoncs of single-closed-shell nuclei, such as the Pb and Sn
isotopes, in terms of the known shell-model states with the inclusion of the
pair-correlation interaction and a long-range P%-force. They conclude thal
the strength of the pair correlation that best fits the data corresponds to
G= g%zit with G x A = 17-28 MeV when they take single-particle levels of
one shell into account. They do not explicitly point out any systematic dif-
ference between the G x A values for neutrons and protons. Similar cal-
culations by Bro-JorcENSEN and HaaTurr®® in progress, treating nuclei
that exhibit low-lying vibrational stales, also indicate that the values of Gx 4
that best reproduce the experimental material lie between 20 and 25 MeV.
Szymanskr and Bis®, taking always the 24 levels nearest to the Fermi
surface into account, give G, x A ~ 32, G, x A ~ 25.5. Previously MoTTEL-
son® had suggested a value of Gx A4 ~ 25-30 MeV, based on an analysis
of nucleon-nucleon scattering data.

In the present calculations we have first attempted to obtain a direct
estimate of the energy-gap parameters 4, and 4,, based on empirical
evidence other than the rotational-band spacing. We have then studied how
well one value of G, x A and one value of z,, x A can reproduce the empirical
A, and 4, values in both regions. The result of this analysis (cf. figs. 7-14)
is discussed below.

* On examination of the effects of “‘blocking” it appears that the choice of the cut-off limits
is much more critical e. g. in the determination of the odd-even mass difference (see section ID).
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TasLe 1. Paramelers Defining the Single-Particle Level Spectrum Employed
: in the Calculations.

Ener-
gies Additional shifts in units of fiw,
Re- Treated ” " to be (in line with reference MN)
gion shells + found
in re-
ference : Case A \ Case B Case C
N=3]| 0.05 | 0.45 N — —
Protons 41 0.05 | 0.55 N — — The same as
62<Z2<74 s| o005 | 055 | o+ |[H11/2:—0.075 (—0.075 | case A (plus
|others: +0.1 || — some very small
I o N=4]| 0.05 0.45 o N — _ shifts of a few
Neutrons 5005|045 | N — — individual
<N< i 13/2: unchgd. — levels)
W=N=12 6| 005 | 045 | N |f113/2: unched if
|others: +0.15 || —
N=4] 0056 | 0.55 N —0.38 —0.15 —0.20 =
Protons 5] 0.05 0.70 MN hii/2; —0.2 — —0.05 é E
Z> 88 i13/2: —0.35 |[—0.35 |[—0.35 .. E
6| 0.05 | 045 | w |13 b 8
1others: unchgd. — - 2 E
11 N-5|005]| 045 | N |-0.38 015 | 0225 2 5 o
Neutrons 61 0.05 | 0.45 N i 18/2: —0.23 — —0.075 § 5 2
N>138 i 15/2: —0. —0. —0.06 7 2=
71 005 | 040 | wn |1 18722 =006 1006 }{-0.06 2 £ -
others: unchgd. [ —_ - &g E

N: S.G. Nmssox [1955] ,ref. 15
MN: B. MorreLson and S. G. Niussox [1958], ref. 16
*: S. G. Nisson, unpublished calculations.

Regions I and 1I refer to the so-called rarc-earth region (150 < A <190) and the actinide
region (A >220) of elements respectively. The parameters x and u of columns four and five are
defined in ref. 15. Note thal we have employed only one »-value (x = 0.05). A few ad hoc changes
have been made in the level scheme obtained on the basis of the parameters listed. These are
indicated in columns seven, eight and nine for the cases A, B and C, which are discussed in the

text. Case G should correspond to the level scheme that is in best agreement with the empirical
data on level spectra of odd-A nuclei (cf. ref. 16).

When searching for empirical information from which estimates of 4,
and 4, may be obtained, one first thinks of the empirical energy gap in the
excitation spectra of even-even nuclei and of the odd-even mass differences.
As pointed out on p. 13, the quasi-particle descriplion gives an energy gap
=24, where 4 is the smaller of 4, and 4,. Indeed, the gap should be very
nearly equal to 24, as pointed out in section 2. In region I the lowest ex-
cited states clearly identified as two-quasi-particle states occur in Hf'"® and
Hf at about 1150 keV, in Er'®® at about 1100 keV, in Dy'®? at about
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1450 keV, and in GA'®® at about 1500 keV. One would, however, be inclined to
regard the empirical identification of such lowest-lying states merely as setting
alower limit on 2 4. The neglected additional interactions, as for instance the
fluctuating part of the long-range P2-force which is not already included in the
spheroidal field, would split apart the two-quasi-particle states lying very
densely just above the energy gap. Furthermore, the inclusion of the Hj, term
of Hy,; would tend to pull some of these states down below 2 4. An estimate of
the magnitude of the depression due to this term is rather difficult as a large
part of its effect is spurious (see Appendix I) and related to the fluctuations in
the number of particles introduced by the BCS wave function. A somewhat
better measure of the energy gap is probably provided by spectra in which
a great number of higher-lying two-quasi-particle states are identified, as
is the case in W2 Here the level density becomes very high at ~ 1400 keV,
which seems to indicate a gap of such magnitude for this nucleus*. Finally
there are also the effects associated with the effective reduction of 4 in the
two-quasi-particle case due to “‘blocking’’, as discussed in section 2.

Thus a more detailed experimental study of even-even spectra above
one MeV would be very informative. In particular one should be able to
see whether the lowest-lying two-quasi-particle excitations correspond to
broken neutron rather than broken proton pairs, as the evidence from mass
differences suggesls¥*,

Probably the best available information on the gap parameters can be
obtained from the study of even-odd mass differences. The mass measure-
ments by Jounson and Buanot® are the main source of empirical knowl-
edge in region I, while the extensive compilation, based on many empirical
sources including beta and alpha systematics, by ForeMan and SeaBorc?®
covers region II. We have also exploited systematics of beta-decay energies
in region I, where more extensive binding-energy data are available for
neutrons only.

The total binding energies of, for instance, a serics of isotopes having
an even value of Z, exhibit a smooth variation with N for all even-even
nucleides and a parallel smooth variation with N for the odd ones.
According to the present theory, the displacement should correspond to the
quasi-particle energy of the last nucleon.

Consider {irst the neutrons. We have defined the empirical odd-even
mass difference P, by the formula®**

* We are grateful to Professor B. R. MorTELsox~ for an enlightening discussion of this point.

** Indeed a recent analysis by C. GarLracuER(2%) of beta-decays populating higher-lying
states of even-A nuclei in region I appears to lend support to this supposition.

**+* This quantity would more correctly be labelled P, (Z, N—1/2).



Nr. 16 23

1,000

\‘\ »Ta
Ose S A v
e Ta o
\‘\_',_*{'.,Hf
s 0
L
0500

& Estimates of B, from neutron mass-Spectroscopic measurements

L4 —t— beta-decay energies

Q250

~~ Smoothed-out N-dependence of P,

0 N
86 88 90 92 94 96 98 100 102 104 106 108 MO 112 114

=3

Fig. 1. The odd-even mass difference parameter P, for neutrons in region I (150 < A < 188). The

squares refer to mass-spectrosecopic measurements by Jounsox and Baanor(25), while the circles

refer to beta-decay energy data. The dashed curve represents averaged values used in the moment
—of- inertia calculation.

Added in proof: Recently published more complete mass-spectroscopic measurements by BranNoT,

Jornsow and NIer(®®) give 100-200 keV lower P, -valuesin the region N = 108-112; see further-

more fig. 28.

P,(Z, N)- i{— E(Z,N+1)+3E(Z, N)~3E(Z, N-1)+ E(Z, N-2))

1 (44)
= 7{=8,(Z N+ 1) +28,(Z N)-5,(Z, N-1)},

where the neutron separation energy S,(Z, N) is related to the total binding
energies E(Z, N) by the formula

S,(Z, Ny =E(Z, Ny—E(Z, N—1). (45)

Analogous relations hold for the proton binding energy. Eq. (44) thus cor-
rects for a second-order N-dependence of the mass valley. In fig. 2 of the
present paper the values of P, have been extracted from Foreman and
SEABORG's binding energies by means of eq. (44). This figure may be com-
pared with fig. 3 of ref. 27, where the same data have been exploited, but
the following relation has been used:
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Fig. 2. The odd-even mass difference parameler P, for nuclei in region II (A > 224). The circles

correspond to data collected by ForEman and SraBorc(20). The dashed curve represents the
smoothed-out values of P, on which the calculations were hased.

Po(Z, N) = 3 {8,(Z, N)=5,(Z, N-1))}, (447

which allows only for a first-order N-dependence of the masses. The use
of (44) appears to give smaller fluctuations. In region 1, where the dala
are meagre, the difference between (44) and (44") also appears significant.
The values of P, derived from (44) turn out usually 50-100 keV higher
than those obtained by the use of eq. (44').

In region I, as already pointed out, the beta-decay energy systematics
are a valuable complementary source of information. From a comparison
of sequences of odd isobars connected by beta decay or electron capture
one obtains an estimate of (P,~—P,), as an odd-Z isobar corresponds to
a proton quasi-particle state and an odd-N nucleide to a neutron quasi-
particle state. In addition to using beta-decay energies from isobars it turns
out to be advantageous to study also elements having (N¥N-—Z%) = constant
(isodiaspheres®) or (3N~ Z) = constant. Indeed, one could employ any
systematic cut through the mass valley other than those mentioned. For iso-
bars, usually only a few energy differences are known. In particular, electron
capture energies are very uncertain; furthermore the elements soon get very
shortlived as one moves away from the stability minimum. Contrary to iso-
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Fig. 3. The odd-even mass difference parameter Pp for nuclei in region II. For further explanation
see fig. 2.

bars, which correspond to lines of elements almost perpendicular io the
direction of the mass valley, isodiaspheres, as well as elements corresponding
to (3N —Z) = constant, represent cuts exhibiting a small inclination to the
direction of the valley. Such lines thus contain many more studied nucleides.
On the other hand, for instance isodiaspheres also correspond to an aver-
aging over a larger region of elements.

A collection of such available data on (P,—P,), mostly taken from
Nuclear Data Sheets® and ref. 16, is given in fig. 4. The diagram shows
clearly that P, is rather consistently much greater than P, in region I. This
is also the case in region II, where the evidence is more complete (cf. figs. 2
and 3). The difference is of the order of 100 keV in region I and about
150-200 keV in region II. Fig. 4 also indicates a trend in the value of (P, —P,)
from 0-50 keV around 4 = 155 up to 150-200 keV around A = 175, and
then a decline towards zero again beyond A = 180.. However, it must be
borne in mind that the uncertainty of these energy differences is probably
more than 50 keV. If the mass valley were exactly parabolic in shape, the
beta energies would lie on straight lines. There is, however, a systematic
curvature, especially conspicuous for isodiaspheres, which we have in some
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Fig. 4. The difference Pp—Pn for nuclei in region I from beta-decay energy systematics. The circles

correspond to cuts through the mass valley characterized by (N-—Z) being constant (isodia-
spheres), the triangles to series of isobars, and the squares to series of elements with (3N—2Z)
equal to a constant. Uncertainties associated with the points are of the order of 50-100 keV.

measure taken into account graphically by drawing smooth curves through
the points. This deviation corresponds to a higher-order (N — Z)-dependence
of the mass-valley®,

Furthermore, a study of beta decay energies of even-4 nucleides gives
a measure of (P,+P,). However, a study of the available wealth of mass
data in region II indiecates clearly that there is an additional coupling ener-
gy®” 2 between the odd neutron and the odd proton that makes the mass
difference between the odd-odd and even-even nuclei smaller than P+ P,.
We define such an empirical coupling energy R, as

* The somewhat astonishing conclusion that empirically Pp is greater than P _ is suggested

already by the fact that of the stable odd-A elements the odd-N nucleides are more numerous
than the odd-Z omnes in the mass regions of interest here. For instance, among the elements
A =153, 155, ..., 185 there are 10 odd-N nucleides and seven odd-Z ones. If we assume the
distribution of masses to lie on the parabolic surfaces

I LINSE A Fn
M( )=Mu+§b( ~I1)%+ Pp s
where I = N—Z, the probability of the odd-N nucleide being stable is apparently

11’Pp-Pn
2" " "2 J

For the elements mentioned above one then obtains the estimate (PT‘—Pn):IOO keV as an
average for the whole region.
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Fig. 5, Coupling energies Rnp belween the odd proton and the odd neufron in odd-odd nuclei. The

experimental binding energies of series of nucleides, as given in ref. 26, are exploited by means
of eq. (46) of the present article for a determination of R, . The uncertainty in the obtained

values of ij is at least of the order of 50 keV. The squares in fig. 5 correspond to parti-
cularly uncertain points.

R,,(Z, N):%{[~Sn(Z+1,N)+2Sn(Z, NY-S,(Z~1, N)] ] 46)

+[~8,(Z, N+ 1)+2S,(Z, N)-S,(Z, N-1)]},

where (Z, N) refers to the odd-odd nucleus. Values of R,, are collected
in fig. 5. As expected, there are great fluctuations (to some extent probably
indicating a difference between the overlaps of the neutron and proton or-
bitals in the different cases). However, R,, appears to be greater than zero
in almost all the cases. On the inclusion of the data from other regions of
elements, as collected e. g. in ref. 28, one might conclude that, on an average,

R,,~ ngﬁ MeV. 47

This correction has been employed in region I in obtaining the values of
P,+ P, from beta-decay systematics. The corrected energies have then been
used together with the smoothed-out (Pp— Py)-values of fig. 4 in obtaining
the P,-values exhibited in fig. 1.
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Fig. 6. Average empirical values of the proton odd-even mass difference parameler Pp in region I
used in the calculalions. This dashed curve is obtained by addition of the smoothed-out (Pp-Pn)-
function of fig. 4 to the averaged P, -values of fig. 1.

Note added in proof: The recent mass-spectroscopic measurements by BumanNor, Jounson and
NIer(®®) allow more accurate P -values as displayed in fig. 29. The deviation from fig. 6 is

notable only for A > 180,

The main problem now concerns the relation between P and 4. It has
already been discussed in some detail in section 2, where it is pointed out
that, if one assumes the same quasi-particle vacuum for the odd and the
cven case, this leads to P = A. The results of a calculation that allows for
the fact that the odd particle blocks the scattering of the pairs by its presence
and thereby changes the occupation numbers also of the other single-particle
levels, are exhibited in table II. This calculation gives the result that P
is smaller than 4 by a magnitude of the order of 10 %/ on the average, both
for neutrons and protons. The relation between P and 4 is unfortunately very
uncertain as, first, the correction is somewhat dependent on the cut-off, sec-
ondly, an important contribution comes from the ‘‘self-energy’’ term displayed
in eq. (26), thirdly, still other effects of the order 2—(;— are neglected, some
of which are discussed in Appendix I. In the calculations presented in this
article we have simply started from the assumption 4, = P;* and 4, = P;*™
(or rather some smoothed-out experimental values of P;*® and PJ*P).
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Fig. 7. The relation between values of A4, and G, in region I obtained in the calculations. For de-

tails of the single-particle spectrum employed, denoted as “case A, see table I. The points
exhibited for comparison refer to the P, -values of fig, 1.

In figs. 7-10 and 11-14 we have compared the values of 4, and a4,
obtained in the detailed calculations corresponding to constant values of
G, and G, with the empirically given values of P, and P,. It is found that
values of G, x4 ~ 18 MeV and G, x 4 ~ 25-26 MeV both in region I and II
and for a given set of ¢,:s, denoted case A, reproduce rather well the ‘‘em-
pirical” trends. For an alternative set of ¢,:s, denoted case B, we find in-
stead that G, x4 ~ 16-17 MeV and G, xA ~ 23 MeV give the best fit. It
seems plausible that case A represents rather well the situation in region I,
while region IT is presumably better described by a set of ¢,:s intermediate
between case A and case B and probably closest to case B (cf. case C of

table I). Still the similarity of the G-values used in the two regions appears
encouraging®*.

* One might also point out in connection with figs. 7-14 that the illustrated relation be-
1

tween G and / appears to be described rather well by the expression 4~ e 2@, where g is the
single-particle level density. The conditions for this relation to hold are that the level density
is roughly constant, that there is approximately the same number of levels above and below
the Fermi surface, that ¢ G ({1, and furthermore that A ))d, which is implied by the replace-
ment of sums by integrals in obtaining the expression above (d is the magnitude of the cut-off
energy above and below the Fermi surface),
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Taere II. The Odd-Even Mass Difference Parameter P when the Effect of

Blocking due to the Odd Particle is Included, Referring to Odd-N Nuclei in

Region I (TasLe I1a) and Region II (TasLE 1lc) and to Odd-Z Nuclei in
Region I (TaBLE 11b) and Region II (TasLe 11d).

TaprLe ITa
_ q0dd _ ptheor. |
A; An Ai Pnleor
i [ dd theor, 4
Nucleide G,x A 48 A; A; P 0T, A:z prXP
(MeV) (keV) (keV) (*/o) (keV) (*/a) (keV)
17 1047 895 15 977 7
aGd*® 18 1215 1068 12 1122 8 1145
19 1396 1247 11 1294 7
17 958 796 17 868 9
BGat? 18 1122 960 14 1028 8 990
19 1303 1134 13 1232 5
17 895 744 17 874 2
Dy 18 1050 887 16 1046 0 904
19 1231 1049 15 1276 —4
: 17 809 643 21 837 —3
Dy 18 965 802 17 986 —3 846
19 1141 969 15 1150 —1
17 711 | 516 27 618 13
GeErt®? 18 859 677 21 730 15 787
19 1030 846 18 903 12
18 783 557 29 733 6
Ty 19 946 732 23 881 7 732
20 1121 914 18 1048 7
18 699 397 43 531 24
e Yb' 19 869 604 30 736 15 684
20 1049 811 23 926 12
18 677 374 45 503 26
ot = 19 845 581 31 704 17 659
20 1022 786 23 892 13
18 677 375 45 488 28
1T HE 19 846 585 31 701 17 690
20 1021 790 23 893 13
18 733 529 28 700 5
A 19 883 692 22 849 4 788
20 1040 858 18 997 4
18 686 452 34 613 11
awes 19 839 623 26 785 6 788
(1.1 6) 20 997 | 796 20 945 5
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TasrLe IIb
e _ q0dd e _ ptheor,
Ap Ap Ap Pp
Nucleid € odd e theor. ¢ exp
ucieide prA Ap Ap Ap Pp Ap Pp
(MeV) (keV) (keV) (/) (keV) /) keV)
24 1270 1041 18 1149 10
a8 25 1421 1185 17 1320 7 1309
26 1586 1337 16 1532 3
24 1098 854 22 982 11
65 TH15° 25 1244 991 20 1157 7 1013
26 1409 1133 20 1399 1
24 985 713 28 834 15
gy HoO188 25 1127 856 24 1001 11 925
26 1285 1000 22 1226 5
24 917 613 33 742 19
6o T1169 25 1060 771 27 918 13 883
26 1220 922 24 1151 6
24 883 644 27 821
Lul?? 25 1025 770 25 1015 1 809
26 1208 895 26 1369 —13
24 839 632 25 830 1
s Talst 25 951 733 23 945 1 869
26 1078 844 22 1100 —2
25 822 496 40 715 13
,;Ret8s 26 948 661 30 860 9 937
27 1090 815 25 1040 5
25 803 476 41 718 11
sRels? 26 923 638 31 854 7 961
27 1057 790 25 1012 4

Column one identifies the nucleide; column two lists the chosen G-values; columns three,
four and five give the corresponding A-values for the even and the odd case, and the relative
difference in per cent. Column six shows the calculated P-value, which is compared with the
corresponding /-value of the even case in column seven. The last column gives the averaged
experimental P-value corresponding to the first diagrams of the present article. (Note that
here the so-called “even’ case corresponds to a nucleide having n/2 pairs and no single-particle
state blocked.)

The result that G, comes out considerably larger than G, is in agreement
with the fact that near the Fermi surface the velocity of the protons is smaller
than that of the neutrons owing to the Coulomb repulsion. Now the S-wave
phase shift, with which the pair-correlation force is directly associated, falls
off rapidly with increasing relative energy because of the increasing im-
portance of the repulsive core. This in turn follows from the fact that par-
ticles of higher velocity may penctrate closer to each other®.

* The authors are indebted Lo Professor B. R. MorTELsox~ for valuable comments on this point.
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TasrLe lle
A¢ _Aodd Af— Ptheor. T
n n n n
Nucleide G, % A A° A;dd A ; ptbheor- A2 PEXP
(MeV) (keV) (keV) (/o) (keV) /o) (keV)
16 639 534 16 627 2
ToaTh* 17 781 666 15 746 4 777
18 935 810 13 909 3
16 587 410 30 504 14
o Th 17 732 585 20 642 12 737
18 890 758 15 791 11
16 573 400 30 491 14
e 17 714 570 20 625 12 687
18 869 738 15 777 11
16 532 351 34 438 18
e pes 17 669 519 22 568 15 639
18 825 637 17 723 12
16 488 311 36 397 19
T 17 615 464 25 514 16 561
18 767 620 19 680 11
17 576 416 28 473 18
putt 18 725 573 21 626 14 543
19 927 734 21 976 —5
17 529 351 34 440 17
o Cm™ 18 665 505 24 558 16 574
19 839 669 20 777 7
TasLe 1Id
| qe_ qoaa ¢ _ phheor. B
A?’ AP . A?’ PW
Nucleide [ odd [ theor. e exp
G, x A A 4, A, Py 4, Py
(MeV) (keV) (keV) /o) (keV) (/) (keV)
22 846 713 16 782 8
o Pa?st 23 949 814 14 887 7 896
24 1059 919 13 1008 5
22 742 593 20 676 9
oaND 287 23 841 690 18 779 7 821
24 949 792 17 904 5
22 615 400 35 579 6
psAm241 23 718 526 27 693 3 745
24 832 648 22 827 1
22 601 383 36 563 6
os A 243 23 702 508 28 676 4 745
24 813 630 23 802 1
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to the averaged Pp curve of fig. 6.
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Pp-values of fig. 3.
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Fig. 11. The relation between 4, and G, in region I as obtained in the calculations (case B). For

details about the single-particle spectrum employed in these calculations, denoted as “case B,
see table I. The points exhibited for comparison refer to the P -values of fig. 1.
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Pp-values given in fig. 3.

V. Details of the Numerical Calculations

The numerical calculations were performed on the SMIL electronic digital
computer of the University of Lund. In the first programme used* the ¢,:s
were stored in the computer for three different eccentricities, 4 = 0.20, 0.25
and 0.30, in region I and for ¢ = 0.20 and 0.25 in region II. Furthermore
the computer was provided with a set of four different A, and 4, values,
covering the whole region of variation of these parameters. For each value
of 6 and 4 the computer was instructed to find the correct i fulfilling the
condition (13) for the sequence of given Z and N values of the elements
of regions I and II. About 1000 different matrix elements of s, and j, were
also stored, connecting all single-particle states up to and including the
N =17 shell in terms of the wave functions of ref. 15 and computed for
three, respectively two, different values of the eccentricity. When the u:s
and v:s had been determined for each 4, 4 and 4, SMIL went on to compute
Sas Was 3o Wy, G, G, the total energy, the fluctuation in the number of
particles, etc. All this information was printed. A subroutine was then used

* The programme was constructed by Dr. C. E. FrROBERG, Director of the Institute of
Numerical Analysis of the University of Lund.
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to interpolate § and W for specific values of 6 and 4, by means of all the
points eomputed, and also to find the relation between A and G for the
given eccentricities, as exhibited in figs. 7-14.

In a later programme designed also for the treatment of moments of
inertia of odd-A nuclei (see Appendix III), where the correct position of
the chemical potential with reference to the level populated by the odd
particle is very critical, we employed a different procedure. According to
this latter programme the interpolation between g,:s, stored in the memory
for a few deformations, to the correct deformation is performed first.

VI. Results of the Calculations

a. Moments of inertia of even-even nuclei

The values of the calculated moments of inertia of even-even nuclei,
corresponding to the sets of single-particle states &, as given in table I (cases A
and B), as well as to the eccentricities exhibited in figs. 15 and 16, and to
the A-values equal to the P-values of figs. 1, 2, 3, and 6, are displayed in
fig. 17 (region I) and in fig. 18 (region II). All the empirical and some of
the calculated values are listed in table 111, where the appropriate references
of the former are also given. A correction to the empirical values for the
rotation-vibration interaction is not employed for the plotted values of
figs. 17-25. Information on this point is incomplete, but the effect is of
some importance at the beginning of regions I and II, and its inclusion
amounts to a depression in Jof a few per cent, as can be studied in table 11,
thus very slightly improving the agreement with the theoretical calculations.

In region I the quantity )‘%S in case A lies consistently ~ 10 MeV™! below

the experimental values. The calculations corresponding to case B (which
case implies that the ad hoc raisc of ithe shells above Z = 82 and N = 126,
assumed according to case A, is very largely diminished) give values of &
above those of case A, particularly at the end of the region. Nevertheless,
the overall variation over the nucleides is probably less favourable than in
case A. Furthermore, in case B the single-particle states of the above-lying
shells are allowed to come down further than is tolerable on the basis of
the detailed knowledge’® about the odd-A nuclear excitation spectra at the
end of region I. Thus case A appears more realistic®.

* The interest in including case B lies, however, apart from its giving an estimate of the
effects of the inaccuracies of the single-particle level scheme, in the fact that fewer ad hoc changes
in the single-particle spectra are made in that case. Such changes are dangerous as they lead
to violations of the sum rules otherwise fulfilled by any consistent model.
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assuming R, = 1.2 x A3 f. Note that the dashed line ending at Yh7¢ represents a slight ad hoc
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Fig. 16. Values of the eccentricity parameter § in region IT used in the calculations. For references
to the experimental data see BrLL ct al.(29) and StromMINGER, HOLLANDER and SEasorg{(44):

The detailed fine structurc of the A-dependence of § appears less regular than in fig. 15, and
some of the variations may be due to experimental uncertainlies.

In region II both the calculations, corresponding to case A and case B,

give results very much below the empirical energy moments, particularly
at the beginning of the region, even when the vibration-rotation correction

for the empirical values is applied.
Unfortunately, however, both ¢, 4, and 4, are known too inaccurately
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TasLE III. Experimental and Theoretical Values of the Moment of Inertia
and the Collective Gyromagnetic Ratio in Region I (TasLE I11a)
and Region II (TasLE 111b).

The nucleides are identified from columns one and two. Column three shows the experi-
mental values of the moment of inertia based on the excitation energy of the first rotational
states as found, e. g., in refs. 44 and 46. Column four gives the inertia values that include the
correction for the rotation-vibration interaction. These values have been taken from ref. 45.
Columns five, six and seven show the values of the parameters 8, A pand A » assumed in the cal-

culations. The values of § given in parentheses are extrapolated. Of the quantities listed in the

o]
last colwmns, the theoretical quantities § and W are defined from eqs. (A 11-10) and (40). The
indices n and p refer to neutrons and protons respectively, Columns 10 and 13 (respectively 14)
give the final theoretical values of the moment of inertia and the collective gyromagnetic ratio.
In table IIT a, columns 8-13 refer to “case A”, only column 14 to “case B”. IYor experimental
values of gp see refs. 33 and 40.

TasrLe IIla
2 Case A i
Nucleide = Foxn | 73 oy 4, A
mMexp | pEVexp é - 1” 22 25| 2 2 2 B
®ilw 1w, — — | = -

A | (Mev)TH (Mevyt ’ | e e @Y | Wal g Ve | Case AlCase
Sm 152 49.2 47.3 0.254 3.254 | 3.502 | 22.98 | 13.20 | 38.9 | 0.619 | 0.327 | 0.341 | 0.344
154 73.2 0.289 2,720 | 3.329 | 33.67 | 16.41 | 53.9 | 0.951 | 0.436 | 0.295 | 0.299
Gd 154 48.8(a)| 46.8 0.242 3.269 | 3.320 | 21.28 | 13.19 | 36.9 | 0.567 | 0.361 | 0.367 | 0.378
156 67.4 66.7 0.277 2.731 | 2.886 | 32.45 | 17.83 | 53.9 | 0.949 | 0.553 | 0.333 | 0.339
158 75.5 75.0 0.297 2,479 | 2.705 | 38.38 | 20.10 | 62.9 | 1.160 | 0.654 | 0.319 | 0.326
160 79.7 0.303 2.320 | 2.651 | 41.42 | 20.82 | 67.0 | 1.273 | 0.687 | 0.307 | 0.311
Dy 160 69.0(a); 68.5 0.263 2.489 | 2.6561 | 34.18 | 17.98 | 55.5 | 1.064 | 0.584 | 0.318 | 0.325
162 74.4 74.0 0.277 2.330 | 2.574 | 38.54 | 19.09 | 61.6 | 1.208 | 0.634 | 0.311 | 0.310
164 81.8 0.287 2,176 | 2.501 | 41.09 | 19,99 | 65.4 | 1.183 | 0.677 | 0.304 | 0.309
Er 164 66.7 0.266 2.339 | 2.501 | 37.26 | 18.93 | 59.9 | 1.168 | 0.601 | 0.306 | 0.324
166 74.5 74.1 0.279 2.185 | 2.448 | 40.59 | 19.92 | 64.7 | 1.181 | 0.640 | 0.303 | 0.313
168 75.2 75.0 0.278 2.046 | 2.403 | 41.85 | 20.30 | 66.4 | 1.079 | 0.658 | 0.309 | 0.315
170 75.6 0.269 1.905 | 2.358 | 44.25 | 20.38 | 68.7 | 1.118 | 0.665 | 0.296 | 0.298
Yh 170 71.2 70.9 0.265 2,063 | 2.358 | 41.07 | 20.48 | 65.4 | 1.066 | 0.627 | 0.313 | 0.329
’ 172 76.2 76.0 0.270 1.913 | 2.289 | 44.35 | 21.59 | 70.1 | 1.119 | 0.661 | 0.308 | 0.322
174 78.5 0.268 1.806 | 2.224 | 45.15 | 22,10 | 71.4 | 1.236 | 0.687 | 0.305 | 0.303
176 73.1 0.265 1.788 | 2.190 | 41.41 | 21.62 | 67.1 | 1.163 |{ 0.700 | 0.324 | 0.305

Hf 176 67.9 67.5 0.248(b)| 1.812 | 2.190 | 43.88 | 16.95 | 64.3 | 1.228 | 0.578 | 0.245 | 0.301
178 64.4 64.1 0.235(b)| 1.795 | 2.250 | 39.74 | 15.34 | 58.2 | 1.149 | 0.553 | 0.245 | 0.285
180 64.3 64.1 0.224(b)| 1.997 | 2.338 | 33.14 | 14.30 | 50.1 | 0.876 | 0.517 | 0.280 | 0.292
W 182 60.0 59.6 0.213(b)| 2.004 | 2.455 | 32.67 | 11.65 | 46.8 | 0.850 | 0.412 | 0.231 | 0.254
184 54,1 53.6 0.202(b)| 2.358 | 2.5568 | 25.12 | 10.81 | 38.1 | 0.610 | 0.375 | 0.284 | 0.285
186 49,0 0.194(b)| 2.659 | 2.651 | 18.41 | 10.23 | 30.6 | 0.434 | 0.340 | 0.352 | 0.334

(2) J.O.RasuusseN and K.S. Torn, Phys. Rev. 175, 150 (1959).
(b} {from B. Eregx, unpublished.
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TasLE II1b
2 2 Case B
Nucleide e 8texp he s(lmr 5 A » 4 P 95 9 9 2 2
vl Byt e °

A | ouev) | (uevy ! oo | A | s | @S| @S Vel 2 Ve Ik

Ra 226 88.5 86.2 0.176 | 2.377 1 3.179 | 35.14 | 9.14 | 46.5 | 0.841 | 0.041 | 0.14
228 102 0.188 2.354 | 3.188 | 41.84 | 11.55 56.1 ] 1.033 | 0.141 | 0.16

Th 226 83.2 81.1 0.195 2.377 | 2.665 T10.24 18.98 62.2 | 0.990 | 0.389 | 0.29
228 103.6 103.1 0.199 | 2.354 | 2.673 | 43.55 | 19.82 | 66.5 | 1.097 | 0.428 | 0.28

230 113.2 112.9 0.205 2.281 | 2.681 | 48.82 | 21.11 73.3 | 1.217 | 0.487 | 0.27

232 120.5 0.214 | 2.134 | 2.689 | 55.96 | 23.05 82.9 1 1.321 { 0.576 | 0.26

234 |- 125 0.206 1.990 | 2,696 | 58.33 | 21,27 83.2 | 1.337 | 0.495 | 0.23

U 230 116.1 0.215 2.281 | 2.673 | 51.25 | 24.58 79.7 | 1.341 | 0.666 | 0.30
232 1271 126.8 0.224 2,134 | 2,680 | 59.08 | 26.15 89.6 | 1.510 | 0.728 | 0.28

234 137.9 137.9 0.219 1.990 | 2.687 | 62.32 | 25.23 | 91.8 | 1.499 | 0.691 | 0.26

236 132.5 0.229 1.860 | 2.695 | 68.44 | 26.99 | 100.2 | 1.545 | 0.759 | 0.26

238 133.9 0.232 | 1.741 | 2.703 | 73.76 | 27.48 | 106.2 | 1.662 | 0.778 | (.25

Pu 236 134.4 (0.230) | 1.860 | 2,252 | 70.04 | 35.25 | 110.3 | 1.703 | 1.072 | 0.32
238 136.1 136.1 0.236 | 1.741 | 2.258 | 74.92 | 36.25 | 116.5 | 1.707 | 1.103 | 0.32

240 139.9 139.5 0.240 1.652 1 2.264 | 79.50 | 36.85 | 122.0 | 1.777 | 1.124 | 0.30

242 134.8 (0.242) | 1.642 | 2.271 | 78.83 | 37.14 | 121.8 | 1.723 | 1.132 | 0.31

Cm 242 142.5 (0.243) | 1.642 ) 2.259 | 80.80 | 36.88 | 123.6 | 1.793 | 1.003 | 0.30
244 (0.243) | 1.698 | 2,265 | 76.82 | 36.87 | 119.6 | 1.655 | 1.001 | 0.31

246 139.9 (0.243) | 1.804 | 2.271 | 71.02 | 36.85 | 113.7 | 1.349 | 0.999 | 0.34

248 138.3 (0.225) | 1.891 | 2,277 | 69.94 | 36.48 | 112.2 | 1.221 | 0.990 | 0.34

Cf 248 (0.240) | 1.891 | 2.332 | 68.03 | 34.30 | 108.0 | 1.277 | 0.894 | 0.33
250 142.2() (0.225) | 1.922 | 2.339 | 69.09 | 34.28 | 109.1 | 1.200 | 0.893 | 0.33

(3) Van den Bosch, Diamond, Sjéblom, and Fields, Phys. Rev. 115, 115 (1959).

to admit any further definite conclusions. An increase of é by about 20 9/,
corresponding to the use of an R, = 1.08 x AY® fermis in eq. (41) raises
the curves by amounts that can be studied in fig. 19. A decrease in A, and
A, by 10-20 9/p is certainly admissible within the inaccuracy of the experi-
mental data, particularly in view of the uncertain relation between Pand 4%,
The effect of choosing 20 ¢/¢ smaller A-values may be studied in figs. 20
and 21.

* The recent very detailed and inclusive study of relative nucleidic masses by EVERLING,

Kon1G, MAaTTAUCH, and WapsTrA (31), based on all relevant information available, indicates that
a few per cent smaller P -values should be chosen at the end of region I

Added in proof: The recent more complete mass-spectroscopic data published by Buawnor,
Jonnson and Nigr(®®) lowers the values of A4, and Ap to be used for ,;W by up to 10-209,

as exhibited in fig. 28. The adoption of these new /-values would considerably improve the
agreement with theory for the W-isotopes.
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Fig. 19. The dependence of the calculaled moment of inertia for nuclei in region I on the ecceniricity
parameter 8. Note that the dot-and-dash line corresponds to § as obtained from the experimental
Qo-values of eq.(41) with the charge radius R, chosen equal to 1.08 x AV3f,

It may also be of interest to note the great dependence on the type of
wave funetions employed in calculating the matrix elements of j, and s,.
Thus the use of ‘‘asymptotic”’®® matrix elements, i. e, the employment of
nucleonic wave functions corresponding to the limit of very large eccentric-
ities, gives values considerably above the experimental points in region I
and of the same order of magnitude as the experimental values in region II.
As can be seen from fig. 25, the variation with (N, £) is much less favourable
than in the calculations where the more accurate nucleonic wave functions
have been employed.

It may be argued that the use of the more detailed and realistic wave
functions is consistent with the fact that we employ the level scheme of
ref. 16 and the empirical estimate of the eccentricity parameter 9.

The greater magnitude of § when the asymptotic wave functions are
employed corresponds to the fact that while a very large fraction of the
whole j, coupling strength lies between nearby states in the representation
of the detailed wave functions, some of this strength and the strength con-
necting very far-away states is collected in states 2-3 MeV distant in the
asymptotic case. When 4 — 0, the results arc not very different in the two
cases. In the case treated here the factor containing u and v cuts down the
contribution from the very close-lying states most drastically (by a factor of
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five or so). This cancellation therefore affects the asymptotic case less than
the other.

In summary, we can only conclude first that, compared with the inde-
pendent-particle value, the agreement in the magnitude of J is rather good;
in particular the ““fine structure’” of the A-dependence of § is well reproduced.
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The fine-structure variation appears largely a function of §% which latter
in the calculation is taken in turn from the accurate quadrupole determina-
tions of refs. 19 and 20. The systematic deviation between the results of
the present calculations and the empirical values may very well lie within
the inaccuracies of the parameters é and 4 and may also depend critically
on the insufficient accuracy of the nucleonic wave functions**.

There are, however, also other effects which might be responsible for
the deviation. They are connected with the limitations in the form of the
interaction Hamiltonian assumed and with the approximate character of
the BCS solution®* corresponding to the given Hamiltonian.

As pointed out in connection with eq. (5), the assumed type of nucleonic
interaction, given by that equation, admits scattering of pairs solely in
K = 0 states. In particular, the scattering in the K =1 state, that is the inter-
mediate two-quasi-particle state in the cranking formula, is neglected. The
inclusion of such an interaction would probably tend to depress somewhat
the lowest-lying K = 1 states. By thatl effect alone the energy denominators
of eq. (35) would be somewhat cut down and I correspondingly increased.

The inclusion of such effects is of interest also for the following reason:
In the limit of an infinite nucleus, 4 - oo, the level density of single-particle
states increases proportionally to A. As G, owing to the decreasing overlap,

1
tends to zero as e thus 4 in this limit goes towards a constant®. Finally,

all the contributing states g, are swallowed up by the energy gap, and the
term containing u and v makes J vanish identically in this limit. This con-
sideration of the limiting behaviour of the solution appears to bear out the
contention that some terms are missing in the Belyaev expression which
would contribute the irrotational moment in the limil considered?®. It
remains to be shown, however, whether the terms present e. g. in the é-force,
but neglected in the pairing interaction, can bring about the expected be-
haviour in the limit of A - co®#%,

* This is also concluded from an analysis of experimental data in ref. 19.

** The effect of the usnally neglected terms in (14) and (24), largely taken care of by eqs.
(A T-6)—(A I-8), was included in one calculation. It was found to increase ¥ by only a few per
cent, however (cf. fig. 24). Note added in proof: Calculations employing the expression (35" for
the moment of inertia so far performed for neutrons of Sm?'%2, Gd%, Dy¢ and W82 render
a moment of inertia 6, 3, 2, and 16 per cent, respectively,lower than calculations on the basis
of eq. (35), under the assumption of the same value of G . According to table Il a calculations

that take blocking into account in addition require slightly larger G-values to fit the odd-even
mass difference. The preliminary results thus indicate that, all in all, the inclusion of the com-
plicated ,,blocking effects’”” leads Lo values of the moment of inertia of the order of 10°%/, lower.
The disparity with empirical findings is therefore increased. .

*#* The present calculations by Prange(®2) appear to support such a supposition.
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b. The collective gyromagnetic ratio g,

The calculated value of g, for even-even nuclel is exhibited in figs. 26

Jp
Sn+3p

an increase in 6, which affects §, and ¥, in very much the same way. That

and 27. As g is approximately equal to , it is less sensitive to e. g.

Z

Z+N
the fact that we have employed a value of A4, considerably larger than 4,,.
Furthermore, *‘fine structure’” effects in figs. 26 and 27 are due in particular
to the fact that it is mainly the nucleons outside of closed shells (z, n) that
contribute to J, and ¥,, whence the relevant ratio of comparison should

be

the value of g comes out smaller than the ratio is largely due to

z
rather than .
z+n ! Z+N

within a sequence of isotopes at the beginning and the end of shells. At
the end of the shells the holes play the parts of the particles at the beginning
of the shells, and so the trend of g5 within a series of isotopes is reversed.
Fig. 26 also exhibits a comparison with experimental values of g, for even-
even nuclei, taken from a recent compilation by BopensTEDT®® . The ex-
perimental errors are very large, as indicated in the figure. The values to
the left correspond to measurements by Gorpring and SHARENBERG(M),
involving an angular-distribution measurement of the £2 gamma radiation
emitted in the decay of the [irst rotational state. This state has been reached
by Coulomb excitation and, during its very short lifetime, it is under
the influence of a strong external magnetic field. Owing to paramagnetic
effects connected with the unfilled atomic 4f shell the strength of this field
is very much increased at the nucleus, which enhances the angular effects
studied. However, as the atomic configurations are not known with sufficient
accuracy, the interpretation of the angular-distribution measurements in
terms of g becomes very uncertain. Indeed, on the basis of new atomic
wave functions calculated by Kanamori® and Stissmann®®, BopensTEDT
et al®® have adjusted the values of gg originally given®., The experimental
points on the right side in fig. 26 are based on very similar experiments®?,
involving, however, a population of the rotational state by beta decay in-
stead of by Coulomb excitalion.

In view of the uncertainties of the experimental values, the agreement
with the present calculations cannot be considered unsatisfactory.

The former ratio exhibits a much faster variation

* We are very much indebted to Dr. BopensTtEDT for his kind permission to guote his
values of g, in advance of publication.
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Fig. 28. Collective gyromagnetic ratios of even-even nuclei in region I. The theoretical values cor-
responding to the single-particle level scheme of “case B”, 4, = P,, Ap =Py, and Ry = R, =

1.2 x 1072 f,, are represented by the solid line. The measured gp-values, with experimental

errors as listed by BopenstepT(33), are exhibited for comparison. (The calculated values of
gy corresponding to “‘case A”, which can be found in table III b, show rather slight deviations

from those of “case B”.) Note added in proof: A recent measurement by BopeNsTEDT et al. on
Erl% renders, with employment of the new (r—%) values for 4 f electrons calculated by Jupp and
Linperen (UCRL-9188, unpublished), a very accurate value of g = 0.32£0.02, This is in

excellent agreement with the theoretical results. (Private communication from D. SHIRLEY.)
Furthermore, a recent measurement by Stiening and Deutsch (Phys. Rev. Letters 6, 421 (1961))
gives gn = 0.3610.06 for Gd®,

Turning now to odd-A nuclei, many data are available from magnetic-
moment measurements and M1 branching ratios within the ground-state
rotational bands. From such information g and g, may be determined.
In the limit in which the Coriolis coupling (and furthermore the difference
in 4 between the odd and the even nucleide) may be neglected, this g,
is simply the same as that of the adjacent even-even nucleus. The effect
of the Coriolis force, coupling the near-lying one-quasi-particle states, can
now be accounted for in first approximation by a renormalization of g,
and g, with respect to their adiabatic values®®. An analysis of the experi-
mental material in terms of the simple unperturbed formulae therefore
yields the renormalized values g% —gp+0gp and g% =g% +08gg, where
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(1) 6W(1) »
bR (v) = d”<g~gR>+~F<—)<gs~gl>- (48)

In eq. (48) 63 is the contribution of the odd particle to the moment of
inertia connecting the one-quasi-particle state v with other states of the
same kind. If the quasi-particle formulation is sufficiently accurate to
estimate this difference, 63" (») should be very nearly equal to the odd-even
difference in moments of inertia®?. Some of this difference, however, might
be due to the effects of blocking. Blocking effects contributing to g, may
also be included in eq. (48) through 63W. Similarly, sW(») is the con-
tribution to the expression W of the odd particle occupying the orbital »
Now 43 is always a positive quantity. This is normally the case also
with 6W(1). As the first term always dominates, in all cases of practical inter-
est dgp is positive for protons (g, =1, ¢, =5.66) and negative for neutrons
(g;=0, gs=—3.83). Indeed, in their analysis of the empirical values of
gr and gy for odd-A nuclei BernsteiN and pE Boer“? find values of g
for odd-N nuclei on the average 0.1 magneton lower than those for the odd-Z
nuclei. This is qualitatively in agreement with (48). One might now at-
tempt to apply (48) as a correction to the values found by the straight-

forward analysis, in order to obtain the unperturbed values ¢%. If one inserts
Mat.Fys. Medd. Dan.Vid. Selsk. 32, no. 18. 4
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in this formula for 3" the empirical odd-even differences in the moment
of inertia and estimates the somewhat smaller second term by its “‘asymp-
totic” expression?®, one usually finds too large corrections d¢s. Now, the
spin matrix elements empirically turn out to be systematically much smaller
(about 50 /o) than thosc calculated from the single-particle wave functions.
This is evidenced e.g. by the plots of magnetic moments (theoretical and
experimental) exhibited in ref. 16. This reduction may be explained in
terms of the spin polarization effect®” whereby e. g. in the case of an odd
proton the spin-dependent part of the two-nucleon interaction tends to align
the spins of the neutrons parallel to, and the spins of the other protons anti-
parallel to, the direction of the odd-proton spin. This polarization then ef-
fectively diminishes the magnetic dipole strength. Even with a 50 9/ reduc-
tion of the latter term the correction factor dgj still appears somewhat too
large. In view of the uncertainty of the correction dgp, clearly one cannot
point to a definite disagreement with the theoretical gp-values. One might
tentatively say, however, that the experimental gr-values are on the whole
10-20 9/ smaller than the calculated ones“®.
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Appendix 1

On the Quasi-Particle Approximation

The calculations reported in the main text rest on various approximations
leading up to the simple quasi-particle formulation employed. We will start
the discussion from the Hamiltonian (7) as given, including its diagonal
parts. The trial wave function (11) and, analogously, the canonical trans-
formation (19) introduce a non-conservation in the number of particles,
leading to wave functions describing an ensemble of nuclei rather than a
specilic nucleide. Some problems, in particular the occurrence of spurious
states, are associated with the résulting fluctuations in the number of par-
ticles. We will defer till later a few remarks on the relevance of these fluctu-
ations to our present problems. First we will discuss the various approx-

G
imations of relative magnitude 9 that have to do with the neglect of H{, etc.

The Hamiltonian (7) after the canonical transformation (19a, b) takes
the form (20). Of interest here are the explicit expressions of the H{ ,-terms
Hjs, Hz and Hy,. These have all been listed by Brrvaev®, but we give
them here for the sake of completeness and in a form that is particularly
simple as we have limited ourselves to the case of a constant matrix element G.

We first consider the problem of odd-even mass differences. The ground
state of the odd system is affected by Hj; in contrast to the even ground state.
This interaction is of the form

’ 2 + I
Hy =G> (- vd) oy B D wy vy (o oy + i) +cc. (AL-D)
v v’
The effect of Hg; on a one-quasi-particle state is therefore

Hy ol |0>=+6G D (W~ vd) uy vy ok 0. (AI-2)
4

The depression —3 E™ of the ground state »" due to Hj; is given in lowest-
order perturbation theory by

OEW (Hyy) = Gzlzi(l—fj—z). (AI-3)
8< E, E

Using (18), one easily obtains an upper limit to § E®:

SED (H3,) sg . (AT-4)
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This perturbation estimate is actually rather accurate as the close-lying
lower levels have small matrix elements because of the factor (u2-—u2).
We have computed (AI-3) numerically for some nuclei scattered over region I
and have there obtained results between 50 and 80 °/y of the upper limit
in (AI-4).

Furthermore, the Hjy-term is of the form

Hiy=G D w2 vl of B ah B+ c. c. (A1-5)
=

This couples the quasi-particle vacuum with four-quasi-particle states and
the one-quasi-particle state with five-quasi-particle states. In both cases Hy,
thus creates four new quasi-particles. Therefore, the first-order contribution
is the same in the two cases within this formalism, except that in the second
case the state », with which one quasi-particle is associated, is excluded in
the sum. An estimate of the difference in depression due to H,, indicates

. . . G .
that this energy difference is less than or of the order of —, i. e. a few tens
of keV. 4

Furthermore, there is the effect of the neglect of the last term in eqs.

(14), leading to the expressions (15) for u, and v,, which approximation
is also of the order —Ci
24

It is of course possible to take the neglected term in eqs. (14) into account

in an approximate way by treating it as a perturbation. The modified form
of the population parameter v2 is then

~2 1 (;:})
U1J = ; 1 - E ) (AI'G)
2 .,,
where :
G ,
(fﬁ) = (87)- ’10) <1 + 21;:;1}) (AI'7)
and
E, -V (570 + 4 (AI-8)

The quantities of the unperturbed case, given by eqs. (16a, b), (17) and
(18), are denoted by an index zero in the relations above. Obviously, v2
is not at all affected at ¢, = 4y, and the correction also tends to zero for [&,- A0l
very large, while the largest correction occurs for fe,—Ag| ~ G. On the assump-
tion that the unperturbed solutions i, and 5, tulfil (13) exactly, the perturbed



54 Nr. 16
u, and v, given by (AI-6) correspond to a small error in the number of

particles: K ]
~ g2 § &~ %o -
én ~ 5 Vi| cyl (AI-9)

) v

which error may ecasily be compensated for ad hoc.
Furthermore, in terms of this same approximation, the expression for

i simol _
Hy; is simply Hiy = > E, (o o, + 85 B,). (A1-10)
v

Thus (AI-10) is formally identical with (24°) although the last terms of
(14) and of (24) have been included to obtain (AI-10). The energy gap is
still associated with the same A. This 4, however, now corresponds to a
somewhat different value of & according to eq. (18), as w, and v, are slightly
changed. It may also be pointed out that the modification of »2 brought
about by this perturbation method is largely equivalent to a small renormal-
ization of G. The effect on the moment of inertia of the inclusion of the
perturbation terms discussed may be studied in fig. 24.

As far as the odd-even mass differences are concerned, the total result
of the effects discussed should normally not exceed an order of magnitude
of 50 keV. There remain effects due to fluctnations in the number of par-
ticles (see below), and the effects of the change of the quasi-particle vacuum
due to the blocking by the odd particle, discussed in the main text.

It may be appropriate in this connection to make a few comments on
the two-quasi-particle states and the empirical energy gap in even-even
nuclei. The H{;-term gives an excess energy of the lowest two-quasi-particle
states compared with that of the ground state:

SE® (H{) =2E,, (A1-11)

which is just twice the uncorrected value of the odd-even mass difference.
Most important among the neglected Hj-terms is here probably Hj,, which
we write out explicitly below:

Hiy =~ G2 > { (G ul+ vjvp) ag B By o l
vy (A1-12)
1ty ty 0y (& oyt + B B By o+ 25 B By )} |

It gives rise to matrix elements of the following type (we here denote the
two-quasi-particle state® o S5 [0>> by [v—»))):

* We here limit ourselves to two-quasi-particle states in which the two-quasi-particles
refer to the same orbital ».
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L= |Hip|v—v>> = — G (AI-13)
E=v'V | Higlv—v>> = — G(Eul + v202) (v +v), (AI-14)

There is thus first a negative diagonal element which is of the order of 5-109/,
of the energy gap in our case. Even more important, however, appears the
effect of the non-diagonal matrix clements (AI-14) connecting the rather
dense-lying two-quasi-particle states with one another. The factor (u2u2 +

Mﬁ) It has a value close
E E,

to 1/2 when &, and ¢, refer to single-particle levels near the Fermi surface,
as one would expect to be the case with the lowest-lying two-quasi-particle
states. Thus the factor containing u and v causes no considerable reduction in
the matrix elements. Furthermore, there are a number of states that are rather
close-lying. The effect of the Hy, terms therefore at first sight appears disastrous
to the whole concept of the energy gap; in fact it is very largely spurious,
however. To illucidate this point it is useful to refer to the ““degenerate model”,
where all the single-particle states ¢, are degenerate in energy®. In this
case all u:s and v:s are equal. Therefore, all off-diagonal matrix elements

1
v2vl) can also be written as 5(1 +

of Hyy are equal, and their value lies between g and &; let us call them

(i%, where » depends on the shell-filling parameter g
n 1n ‘
#=1-—(1-==|. Al-15
? Q( 2 !2) (AL-15)

1f we diagonalize the Hgy-matrix with réspect to the two-quasi-particle states,
we find that the state ¥, = > o 70> exhausts the strength of the mairix
v

apart from what is associated with the difference between the terms (AI-13)
and (A1-14). The contribution to the energy in the state ¥, is [~ G — (2 —1)xG].
The depression due to the Hg, interaction should thus amount to something
of the order of half or more of the energy gap*. This state ¥, is, however,
just the lowest spurion occurring in the degenerate model, as is demonstrated
by Bour and MoTTELSON in ref. 5. Its occurrence as a BCS state is con-
nected with the extra degree of freedom introduced through the ensemble
of states having slightly different numbers of particles. In the non-degenerate
case, to the extent to which there is an energy gap at all, there must be a
certain number Q' of states ¢, lying within a distance 4 above and below 2.

* Indeed the exact inclusion of couplings in higher orders brings this state all the way down
to the ground state(®) (communication from B. MoTTELSON).
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The K = 0 quasi-particle states associated with these levels now all fall
densely above the energy gap. In between them, all matrix elements given
by eq. (AI-14) are roughly constant. With respect to these states we have
a matrix representation of Hy, of the same type as that with respect to the 2
two-quasi-particle states in the degenerate case. The state that absorbs most
of the strength of the coupling of Hgj between the near-lying two-quasi-
particle states is largely spurious in analogy with the degenerate case.
There also remain to be discussed effects that have to do with the number
of particles of the BCS wave function. The first effect, which is related to
the variation in the average number of particles in the quasi-particle ap-
proximation, is of very small magnitude, and we include it only for the
sake of completeness. The relative difference in the number of particles
between a two-quasi-particle state |v—»)> > and the ground state is

< vaINI—w>>~<<O|N|0>>=2(ug~v3)=2€vT_l. (A1-16)

v

Similarly, comparing the ground state of an odd-A nucleus with the even-
even nucleide corresponding to the vacuum state, one obhtains for the dif-
ference in the average number of particles

C{PINTPYY=C(LOINJ0>> = up— 03, (AI-17)

Provided ¢, lies near the Fermi surface, as is the case for the ground odd-A
state and the lowest excited even-even state, the deviation dn is rather small*,
Now the solutions of H' = H—AN are stationary with respect to variations
in the number of particles. That is to say, the quasi-particle solution corrects
for the error in the number of particles dn by subiraction of an energy
dnx 2y, where A, refers to the quasi-particle vacuum. However, a small

increase in the number of particles raises 4 by ;lean. A good estimate
of the error due to this effect should be n

1di
SE®(8n) = + =— (dn)?, AI-18
(@Om) =+ 5= (3n) (A1-18)
where the plus sign corresponds to ¢, {4 and the minus sign to g, > 4. In

the cases treated in the present investigation the error from this source in

* It is thus apparent that in comparing odd-even mass differences of e. g. isotopes one
should compare the odd-A nucleide with the average of the two adjacent even-even nucleides;
this average is the appropriate quasi-particle vacuum in the odd-A case.
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odd-even mass differences should be of the order of + 5 keV. This effect
obviously concerns also the energies of the two-quasi-particle states. The
effect on the lower-lying excitations, according to eqgs. (Al-16) and (AI-17),
is twice that in the odd-A case, i. e. of the order of 10 keV. The higher-
lying two-quasi-particle states are shifted by amounts of the order of a few
hundred keV owing to this effect.

Furthermore there is an effect that is due to the fluctuations in the number
of particles of the Bardeen wave functions. We introduce a mean square
deviation defined by

o =(NZY—(N)? _ (A1-19)

For the ground state we have
CCOINI0D>=CLOINT0Y>2 = ST 4 u2vl. (A1-20)
v

In the calculations performed for the regions of deformed nuclei a typical
value of oy is 3. The fluctuations are somewhat smaller for a one-quasi-
particle state, where

{CY[NB|w) YL v|N|») 2 = Z4u,,v,,, (AI-21)

Vv
which for the odd-A ground state is smaller by about one than the expression
(AI-20). In the actual cases this leads to a oy-value about 59y smaller.
The actual wave function thus corresponds to an ensemble of nucleides
with slightly different numbers of particles. Thus, for instance, the BCS wave
function corresponding to U2 contains a very large fraction of U?** and U238
and also of Th** and Pu®®* Now on the average the variation in the total
energy of nucleides, as one moves between the shells, is expected io be
somewhat concave upwards (at least if 4, and 4, are kept constant over
the Bardeen ensemble). This effect in the Bardeen approximation would
therefore cause a greater reduction of the binding energy of the state that
displays the larger mecan square deviation in the number of particles. An
estimate of the influence this will have on the odd-even mass differences
requires, however, a somewhat more detailed study of the parameters of

the self-consistent field as functions of N and Z.

* One would think that this effect would iron out in the theoretical results the rather detailed
dependence on Z and N exhibited by the experimental moment of inertia. That this is not the
case is due to the fact that the mixed-in components correspond to fictitious nuclei having all
parameters except A in common with the (Z N )-nucleus in question, such as 4,, 4, and in
particular the cccentricity parameter d. As the dependence of § on A alone is weak, the fluc-
tnations are therefore unimportant in this respect.



58 Nr. 16

Appendix 11

Single-Particle Matrix Elements of j_

As pointed out in Appendix A of ref. 15, the interactions between the
(spherical) harmonic oscillator shells N and ¥ +2 due to the quadrupole
deformation of the potential can easily be taken into account if one first
transforms to the slightly distorted coordinates & ~ x]/w—x ctc. as defined in
eq. (A5) of the reference cited. The wave function given in the tables of
that reference should then be considered as expressed in these distorted
coordinates, in terms of which we have

L=all—-bfi, (ATI-1)
where
0 0
t - —7 — e — : -
L l(ﬂac CB??) (AII-2)
and#®
d 0
- —in— —. All-

A similar relation holds for the y-component, while
I="0.

The exact expressions for a and b are given in (A13) of ref. 15. The
expansions up to the lowest order in ¢ are

a=1+%62+... (ATI-4)
1
b=5d+. .. (AI1-5)

The operator I now connects states only within the N-shell of these new
coordinates, while ff connects the shells N and N+2. This is most easily
seen if we express I and f. in terms of the operators I7,, R and S defined
in ref. 43. Thus

L =)2[SI;-R I, (ATI-6)
I —|/2[S"I',-RTI} (AIL-7)

* Such an operator f o s encountered e. g. in the theory of elasticity.



Nr.16 59
fo=V2IR I7-STI),) (ATI-8)
f=V2IRI,-S"T]). (AT1-9)

We have defined f, as f,—if, and f_ as f, +1f,; f, is then associated with an
increase in 4 by one unit. The operator I", gives rise to an increase in n,
by one unit, R* and $* both raise n, by one unit, but R* also raises 4 by
one unit while $* lowers 4 by one unit. From these relations it is obvious
that I* connects states with the same N while 7’ has elements only between
states with N values different by two. The matrix elements in the asymptotic
representation are also ftrivially obtained from these relations.

In evaluating the contribution from Tt to the moment of inertia it proved
essential, however, to employ the exact wave functions of ref. 15, as is
discussed in the main text.

On the basis of eq. (AII-1) one may write the expression for the moment
of inertia in the form

8=§(1+i62)+8f, (ATI-10)

where § is the moment of inertia obtained when the coupling of the quad-
rupole part of the nuclear potential between the shells N and N+2 is
neglected. The term ¥, represents solely the contribution of the term 7‘
in (AII-1). It only amounts to about 5 /¢ of the whole moment of inertia.
As the states connected by _F lie two shells apart, the pairing effects are
negligible. The detailed level order within the shells is also unimportant

for an estimate of this small correction term. In the case of a pure-harmonic-
oscillator model one finds

‘ 1.
& Srig = Z Sirrot . (A II-1 1)

In addition, the effect of the coupling between the shells is manifested
. . 1 o0& pps . . .
in the correction term 1 6%3. This term is associated with the extra nodes

in the wave functions of one shell that are due to this coupling; it is smaller
3
—-

Srig

than J; by a factor
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