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Synopsis .

The paper is in three parts of which the first two are mathematical . In th e
first part, a detailed proof is given of a previously announced theorem : an analyti c
function of n four vector variables invariant under the orthochronous Lorentz
group is an analytic function of their scalar products . The second part is devote d
to a preliminary study of the domain of analyticity of such invariant analyti c
functions . The third part applies the preceding results to quantum field theory .
It is shown that the vacuum expectation value (WO, ç ( xi) • • • (19(x n) Fo) =
F (n) (xi . . . . xn) where q) (x) is neutral scalar field, is an analytic function of th e
real variables xj - x j + l , j = 1, . . . n-1 in a region where all these vectors ar e
space-like. IL is shown that the values of F(n) for all values of its arguments ar e
uniquely determined in terms of its values for space-like separations, and that ,
for n = 2, 3, 4, F (fl) is determined from its values at points where all times ar e
equal. These results are applied to prove generalizations of two theorems of R . HAAG.
In effect, these theorems show that, to give different physical predictions, tw o
theories of an interacting field which satisfies the canonical commutation relations
must use inequivalent representations of the commutation relations .

Printed in Denmark .
Bianco Lunos Bogtrykkeri A/S .



Introduction .

I n a preceding paper s , the second-named author showed that the main
content of a relativistic quantum theory of a scalar field, ç(x), is con-

tained in the vacuum expectation values, F (n) , defined by

F(n > (x s , . . . xn) _ (T0 , T(x1) . . . (xn) T0), n = 1, 2, . . .

where To is the vacuum state . It was shown there that, as a consequenc e
of the transformation law of the field under space-time translations an d
the absence of negative energy states, the .distributions F(n) are boundary
values of analytic functions . The analysis of the structure of the P a) was
carried further, using a theorem, quoted there without proof, which ma y
be stated roughly as follows : an analytic function of n four-vector variables
invariant under the orthrochronous Lorentz group is an analytic functio n
of their scalar products .

The first part of the present paper is devoted to a proof of this theorem .
Because the techniques introduced in the proof have further useful appli-
cations in quantum field theory, we have given a detailed exposition .

The second part of the paper contains a preliminary study of the set ,
Tin , of symmetric n x n complex matrices, Z, defined by Zjk=zj-zk , j, k = 1 ,
.

	

n, where z1 , . . . z n are complex four vectors of the for m
with j and nj real and nj in the interior of the future light cone (this set o f

. zn is called the tube). According to the theorem proved in the firs t
part of the paper, the set En is a domain of analyticity of the invarian t
analytic function which has the physical F(n > as its boundary value whe n
all ni --)- 0. It is shown that there are points, zs, . zn , on the boundary
of the tube which yield matrices, zi •zi , of scalar products lying in the interio r
of In . From this simple geometrical fact, it follows that an invariant functio n
analytic in the tube cannot have an arbitrary invariant distribution a s
boundary value. In fact, it turns out that the boundary value has to be a n
analytic function of the real variables el • k , j, k= 1, . . . n in a certain domai n

1*
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and that the analytic function is uniquely determined once its values ar e
known in certain subdomains of the boundary of the tube .

In the third part of the paper, the results of the preceding sec-
tions are applied to the vacuum expectation values of a scalar field . It i s
shown that F (n) (x l , . . . xn ) is an analytic function of the real variable s
( .xi -x5+i)(xk-xk+I),j,k=1, . . .n-1 when all xi - .x j+1 are space-like and lie
in a certain region. It is further shown that the values of F( n > for all values o f
its arguments are uniquely determined in terms of its values for space-lik e
separation . For the cases n=2, 3, 4, an even stronger result is obtained :
F(n) is determined everywhere from its values at points where all the time s
(x i o), j= 1 . . . . n are equal . These results are applied to prove generalizations
of two theorems of R . HAAG, which can be stated roughly as follows : First ,
let there be given two theories of a field which transforms as a scalar unde r
the rotations and translations of three space at a fixed time . Suppose that
the canonical variables of the theories are unitary equivalent at that tim e
via a unitary transformation V. Then, the representations of the Euclidea n
group of the two theories are unitary equivalent via V . Second, if the two
theories just described are, in addition, invariant under the inhomogeneou s
Lorentz group and have no negative energy states and unique vacuum states ,
then the vacuum expectation values (Po, 99(x1 ) . . . (p(xn)T) are identical
in the two theories for n= 1, 2, 3, 4 . The paper closes with a discussion o f
the physical significance of this generalized Haag's theorem .

We want to emphasize that the main results of the paper, as far as th e
structure of the F (n ) are concerned (its determination everywhere in terms
of its values for space-like separated arguments), are valid in both local an d
non-local field theory .



1 . An Invariant Analytic Function of Vectors is an Analyti c
Function of Scalar Products .

The following theorem was stated without proof in I .

Theorem I .

Let f be a complex valued function of n four-vector variables, z 3 = $1- in 3 ,
j= 1, . . . n, where and z) 3 are real. Suppose f is analytic in the tube dc -
fined by

co < 3iL < O0, j= 1, . . . n,

	

0, 1, 2, 3 ;

'7 3 in the future cone, i . e . 17 21 >0,7730 >0, j = 1, . . . n

and invariant under the orthochronous homogeneous Lorentz group, L t :

	

A z ,, . . . ,z n ) = f(Azl , . . . Az,,) for A e Lt .

	

(1 )

Then, f is a function of the scalar products z3 ï ze, j, k = l	 n . It is analyti c
on the complex variety, Tt n , over which the scalar products vary when th e
vectors zi , . . . zn vary over the tube .

Outline of the Proof .

If a function is analytic in the tube and satisfies (1) for A e L t , then
(Lemma 1) it also satisfies (1) when A is an arbitrary complex Lorentz
transformation, i . e ., a matrix A IL , ,u,v = 0, 1, 2, 3, whose elements are comple x
numbers satisfying A TA =1, which means

3

Am' 1il"'v , _ g'
v

.

Fa = o

We call the set of such matrices the complex Lorentz group, S? . Furthermore,
if Azt , . . . Azn lies outside the future tube, (1) defines a single valued analytic
continuation of the function f originally given . We shall refer to the set of
points lizi , . . . Az n , for A r i, and zi , . . . zn in the tube, as the extended tube .

(2 )
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Next, (Lemma 2), we examine the sets of n vectors z 1 , . . . zn and

	

. . .

which satisfy

z?zk= j j, k=1 . . . n.

If the n x n matrix of the scalar products has rank three or four, there exist s

a complex Lorentz transformation A. such that

Az,-Ci i=1, . . . n .

If the rank is two or one, the connection between z i and

	

is more com-

plicated :

where the ai , i= 1, . . . n are complex numbers and w is a vector of zer o

length orthogonal to Az i and i= 1, . . . n . For points at which the ran k

is three or four, the invariance of an analytic function, f, of n vectors z 1 ,

. . . zn , clearly implies the single valuedness of f regarded as a function o f

the scalar products (3) . For points where the rank is two or one, a furthe r
argument is necessary and is supplied . Thus, f is a single valued function
everywhere on the variety, SJJin defined by the scalar products zizx , j, k =1 ,

. . . n . The points of i rt are labeled by the 1/2 n(n+1) scalar products . ,,

can be regarded as an algebraic variety in the space of all complex n x n
symmetric matrices . In fact, it turns out to be an open subset of the set o f

all complex symmetric matrices of rank 4 and, as such, has dimensio n

1 (n -1), 3 (n= 2), 4 n - 6 (n > 3) .
In order to be able to connect the continuity properties of invariant func-

tions of vectors with their corresponding properties regarded as function s

of scalar products, it is necessary to investigate the connection betwee n

neighbourhoods of sets of vectors and neighbourhoods of their sets of scala r
products (Lemma 3) . This connection is quite a simple one at points o f

Jt,, where the rank is three or four, but where it is two or one the situatio n

is quite delicate, because the structure of the set of points in the space o f
the vectors which map into a given point of 9)4 is essentially more complicated .
Nevertheless, the proof of the continuity of f as a function on 7t,„ can be ,

and is, carried out .
To complete the proof of the theorem, it remains to show that f is analyti c

on 9X,1 . For n 4, analyticity is a perfectly straightforward notion becaus e

t1, is an open set in complex Euclidean 1 /2 n (n +1) space. However, for n > 5 ,
Mt, is an open set on a 4 n- 6 dimensional algebraic variety and the notio n

(3)

A z = - a iw,
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of analyticity requires some explanation . For a point P of R ,,(> 5) for

which the rank is four, the tangent space to ~J2 n at P has dimension 4 n - 6 .

(Recall that the tangent space to Mn at P is the linear manifold of the spac e

of all complex symmetric matrices spanned by the tangent vectors to JJ 1
at P.) Sufficiently small neighbourhoods of P on 9)4 can be put in analyti c

one to one correspondence with sufficiently small neighbourhoods in th e

tangent space . Near such points, f can be regarded as defined in a neighbour -

hood of the origin in a complex (4 n - 6)-dimensional Euclidean space an d

its analyticity defined in the well-known way . The points of ~J2n , n > 5,

where the rank is less than four are singular in the terminology of algebrai c

geometry 2*. For them, the tangent vector space has dimension 1/2 n (n =1 )

and neighbourhoods are not locally Euclidean . (The reader may find it helpfu l

to think of the example of the light cone . In that case, the point where the

tips of the past and future cones touch is singular and its neighbourhood s
are not locally Euclidean. However, it should be borne in mind that

the actual situation is much more complicated since singular points onl y

appear on Mo for n> 5 and in the simplest case, n = 5, already form a variety

of 24 (real) dimensions .) Evidently, the above definition of analyticity doe s

not apply at such a point . It is not impossible to extend the notion of ana-
lyticity to apply there . In fact, one can do it in a number of different ways .

However, it can happen that physically important consequences of ordinar y

analyticity do not hold for "generalized analyticity" . In the following, w e

prove analyticity at, all points of Tt,, for n<4, analyticity at non-singula r

points for n> 5, and boundedness and continuity at singular points fo r

n > 5, and that is what is to be understood by "analytic on JJin" in the state -

ment of the theorem. It actually is sufficient to guarantee analyticity in the

sense of BOCHNER and MARTIN S

The proof of the analyticity is completed in four steps . First, differentia l

equations are derived which f satisfies by virtue of its invariance under Lt

or (Lemma 4) . The scalar products z i . zp j=1, . . . n, considered as

functions of the vectors z1 , . . . zn , satisfy these differential equations . Next,

it is shown that, in a neighbourhood of a point of 7Jt n at which the scalar
products span all solutions of the differential equations, f is expandable i n

a power series of appropriately chosen scalar products (Lemma 5) . Lemmas 6

and 7 then show that at every non-exceptional point the scalar product s

satisfy the conditions of Lemma 5 . Finally, to complete the proof, a theorem

* For n < 4, we shall refer to the points P of Tin at which the rank is less than maximum
as exceptional although, for n C 4, they are not singular in the sense of algebraic geometry .
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on removable singularities is used to show that f is analytic even at th e
exceptional points for n< 4 .

Lemma I .

Let f(z 1 , . . . z n) be analytic in the tube and invariant under the ortho-

chronous real Lorentz group, L t . Then, fis also invariant under the comple x

Lorentz group 2, as long as Az 1 , . . . Az,, is in the tube. When Az1 , . . . Azn

lies out of the tube, the relation f(Az1 , . . . Azn ) = f (z 1 . . . z,,) defines a
single valued analytic continuation of f to the extended tube .

Proof .

Let z1 , . . . z,, he a fixed point of the tube . Then, for all A in a suitabl e

neighbourhood of the identity in 2, Az i , . . . Az,, again lies in the tube . In
some sub-neighbourhood, N, we can introduce canonical coordinate s
X1 1 , . .26 such that'

1. As A runs over N, 21 , . . . A6 vary over a neighbourhood N' of the

origin in the complex six-dimensional Euclidean space with (complex)

coordinates 21, . . . 2 6 .
2. The subset of N, for which A eL f , is the subset of N' for which the

. . . 26 are real .
3. The matrix elements At`, (and therefore the vector components Y

Ai',, z"') are analytic functions of 1i , . . . 26 .

	

' o

Since an analytic function of analytic functions is again analytic, f (Az 1 ,
. . . Azn ) is an analytic function of 2 1 , . . 26 in N' . Furthermore it has the
property that for real 2 1 , . . .2 6 it is constant. Therefore it is also constan t

for complex 2 1 , . . . 26 in N' ° .
Thus, for AeNc , equation (1) is satisfied .
This result can be extended immediately in two ways . First, the argument

applies when A runs over the neighbourhood Is.N of the space inversion ,
A=Is . Second, (1) also holds if Az 1 , . . . Az,, can be connected to z1 , . . z n
by a curve

11(t)zi , . . .A(t)z,, ; O<t<1 ; A(0)=1 ; A(1)=A ,

lying entirely within the tube and such that it can be covered by a finit e
number of overlapping neighbourhoods :A.(t .1)Nzi, . . . A(t~)Nz n , lying within
the tube .

However, this last argument by no means completes the proof of (1) ,

because it is not clear that all pairs of points z 1 , . . . z,, and Azi , . . .11.zn ,
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each of which is in the tube, can be connected by a curve of the sort describe d
above . (If A is improper, it is 18 z l , . . . Is z n and 112 1 , . Azn , which have
to be connected by the curve . For simplicity of statement, we consider only
proper A in the rest of this proof . The extension to improper A is trivial) .
We shall give an explicit construction of such a curve at the end of th e
proof of this Lemma . Assuming the construction for the present, we have
completed the proof of the first statement of the Lemma .

The existence of curves of the above described type is closely connecte d
with the possibility of making a single valued analytic continuation o f
f(zl , . . . z n ) to the extended tube . For, starting from a fixed point z l , . . . . zn

of the tube, we can extend the analytic function f(Az 1 , . . . Azn) of A over
the whole complex Lorentz group, 2 . (It is the simplest possible analytic
function on 2, a constant .) f is then defined for points 11zî, . . . Azn of the
extended tube . Starting from a different point zi 	 z;t of the tube, f can
be defined for the points Mzi, . . . Mzn , Me 2. If it happens that for some
A and M, Azi = Mzß, j =l, . . .n, the single valuedness of the extension of f

would be insured by : f (z 1 , . . . zn) = f (zi, . . . zn) = f (M-1 Az1 , . . .

	

M zn) .

It is just this identity which is guaranteed by our postponed constructio n
of curves, and therefore f as extended is single valued .

The analyticity of f in the extended tube at Az 1 , . . . Azn follows from its
analyticity at in the tube, because the partial derivatives a t
112 1 , . . . Ann are expressible in terms of partial derivatives at z l , . . . . zn , e .g . ,

a f
ä (~21>~

(A2 1 , . . a f(21, . . . 2n) 	 a (2 1 )v

vo

	

a (21)v

	

a (A z l)F, '

This completes the proof of the second statement of the Lemma .
It remains to construct a curve A(t)z 1 , . . . A(t)zn ; 0<t<1, A(t) e 2 ,

beginning at an arbitrary point of the tube z 1 , . . . zn , ending at the poin t
Azl , . . . Azn of the tube, and lying entirely within the tube . The existenc e
of such a curve is obvious if A is a real (orthochronous, proper) Lorent z
transformation, because every such transformation leaves the tube invarian t
and their set is connected .

For A. complex, the required calculations are simpler in a two dimen-

sional matrix formalism in which the four vector is represented by th e
matrix

(4 )

Then the most general proper complex Lorentz transformation is of th e
form z l' - z'1`, where the four vector z '1 belongs to a matrix, Z', given by

Z

	

+ Z3

	

:1 Iz2,

	

711 G7 2

	

2 1 +

i::2

	

no - ,3 1 /

	

L21 L22)
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Z' = AZB` . (5 )

Here A and B are 2 x 2 matrices of determinant one. In particular, the most
general (orthochronous, proper) real Lorentz transformation is of this for m
with A= B . This last fact permits us to simplify our problem . Note that (5 )
can be «ritten

Z' _ (AB -1) BZB"

	

(6)

so that the most general complex Lorentz transformation is of the form o f
a real Lorentz transformation followed by a complex Lorentz transfor-
mation of the special form

Z' = CZ . (7)

It therefore suffices to consider complex Lorentz transformations of thi s
special form . The problem can he simplified further by making a suitable
real Lorentz transformation of the final vectors

Z' --~ DZ'D = (DCD- 1 ) DZD '

By suitable choice of D, we can bring C into triangular form . In fact, unles s
the proper values of C are equal, C can be diagonalized . Thus, we can
restrict our attention to C of the form

(8)

and 1T1 z
0

	

+1 )

We shall prove that, if Z is in the tube and Z ' = CZ is in the tube where C
is of the form (8) or (9), then C(t)Z is in the tube where

exp[t(~ + iB)]

	

0

	

O Et< l ,
C(t)

(

	

0

	

exp[-t(e+iB)]),

	

=exp(e + iB),

	

(10 )

(9)

C(t)=
(+ 1

0
0<1<1 ,

i ~
+ 1

respectively . Thus, it will be possible to choose the same curve independen t
of the point Z. (Actually, it will be seen that the case of the minus sign in
(11) can be excluded . )

The conditions which express in terms of the matrix Z ' the fact that th e
vector z ' =

	

- in ' lies in the tube are
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- 4 (rß ' ) 2 = det (Z' - Z' "') < 0 , (12)

=-

	

Imtr(Z')>0, (13)

as can be derived by a simple computation . Our procedure will be to deter -
mine all t and r in (8) and (9) consistent with (12) and (13) for fixe d
in the tube. We shall see that, if t and r are consistent, so are st and tr for
0 <1<1 .

Consider first the case (9) . Then, the condition (12) read s

0 > - 4 (n') 2 =det + (Zll - 711) + rZ 21 - Z 21 , _ (Z12 - 221) + rZ2 2
(2_ (Z21- Z12)-2222,

	

± (Z22- 222 )

= I r I 2 1 Z 221 2 (si * sr)+ det (Z - Z") ,

where s = 21Z22 -72271 2

This inequality can he rewritten in the for m

Ir+ 1Z221-2 s1 2 --[IZ22 I
4 I s 1 2

-IZ 22I
2
(- det (Z--Z'.))]< 0

which describes the interior of a circle in the r plane about the point

+ 1 7221 2 s .

As far as the condition (13) is concerned, we note that it is satisfied by
all points in the interior of the circle if it is satisfied by any one, becaus e
the vector ri' must pass through a vector of zero length in order to chang e
the sign of 1 0 . With the plus sign in (9), the condition (13) is always satis-
fied and never for the minus sign, as one sees by considering the case T. = O .

Evidently, if the point r is in the interior of the allowed circle, the points
tz, 0 < t < 1 will also be because the origin is in the circle and the circle i s
convex .

Now we turn to the case (8) in which C is diagonal . Here, there are also
two two-dimensional domains of C's consistent with condition (12), one o f
which is excluded by (13), as we shall see by a detailed consideration . The
boundary of the allowed domain is convex in terms of the parameters o
and 0 defined in (10) . This will have to he proved by a detailed computatio n
since the boundary is not an elementary curve .

Condition (12) for the case (8) is

0 > -4 (7)') 2 = Z121 2 m 2 + IZ2 1 I 2 IS1 2

- (Z 11 Z22 ~~ 1 + Zll Z22 St 1 ) + 2 Re (det Z) .

	

(14 )
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This condition is satisfied for -C if it is satisfied for C and, in particular ,
since by assumption . it is satisfied for C = + 1, it is also satisfied for C _ -1 .
For C = - 1, the vector z ' is not in the tube. Consequently, by the sam e
type of continuity argument which we used in connection with equation (9) ,

there must be at least two disconnected sets of C satisfying (14), one o f

which does not satisfy (13) . Another consequence of (13), which we shal l
use in the following, is Zî1 222 * O .

We divide the remainder of the argument into three parts .

Case 1 .

x =2 e- ln (I Z2111 Z121_
1 ),

ip=2B-ao,

	

1
(15)

v =-12211 -1 1 2121 --1 Re(detZ),p = 1 21111222112121 -1 1 2211 -1 >o .

Equation (14) then read s

0>P = cosh x-(c cos y +v) .

	

(16)

Since P is periodic in y,, it suffices to consider (16) in the strip 1y I <. 7c ,
- < y < , and show that it defines a convex region there .

There are two conditions on the coefficients p and v :

	

[Id< 1 -I-,u,

	

(17 )
and

	

v+,u> 1 .

	

(18)

The first of these merely says the real part of the determinant of a matrix
is less in absolute value than the sum of the absolute values of the term s
which comprise the determinant . The second is a consequence of the fact
that for C =1, P < O by assumption, and therefore v +p cos o-o > 1 .

From (17) and (18) it follows that there exists an angle yo, 0<yoc"z ,

such that

( 19)

The expression (16) for Pmakes it clear that its behaviour in x for fixed y is :
if,ucosy,+v<1,P>Oforall x ;if,ucosy+v =1,P=0 fora = 0 andP> 0

Z12* 0 , Z21 '=O .

In this case, we can divide (14) by 217, 12 1 1 221 I, and introduce the new
variables

co = arg (211 Z22), = exp (e+ i O) ,

v +p cos yo - 1 .

For

	

11VI<J eo1, v+,u cos y>1 .
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for x+0 ; if ,u cos y+v>1, P = 0 for some x1 = x i (y)>0 (and also for

x = -xi), P< 0 for I x I < xl, and P> 0 for I x I > xi .
The discussion of the preceding two paragraphs shows that the set of x

and y satisfying P< 0 in the strip < r, - oo < x< co, is connected and
invariant under reflections in the x = 0 and y = 0 axes, being the domain :

-xi(1P)<x<xi(y), -y o <y<IPo, where xi is given by

cosh xi ,u cos y+9), xi >0 .

	

(20)

To complete the argument we will show the convexity of the function xi
as a function of y .

Differentiating (20) twice and eliminating the first derivative, x;, of x
with respect to y, we find, for I y I< yo, (sinh x1)3 xi"- ,u Q ,
where

Q = cos y (sinh x1 ) 2 ,u (sin y) 2 cosh xi

	

(21 )

= (u cos y + v) (u + v cos y) - cos y,

	

(22 )

Q = ,uv (cos y +1) 2 - [ 1- (,u - v) 2 ] cos y .

	

(23)

We assert that Q> 0 for j y I< y o . For 0 < y< -, this is an immediate con -

sequence of (21), since both terms on the right hand side of (21) are positiv e
there. For 1 /2 z < y< yo , we have cos yo< 0, and from (19), v = 1 +,u 'cos yob.
Using this last fact, we see that, when ,u >v, ,u cos y v>0, ,u + v cos y > 0 and
- cos y> 0 so that (22) immediately implies Q > 0 . Again, when l < v, we
use the form (23), and note that 1 - (u -v)2 = (1-,u + v) (1 +,u -v), and
t+v-u>0, and 1+,u-v = 1i(1-I cos 'NI) > 0, so Q>0 in this case too .

Case II .

Z12=0, Z21 * 0 (or Z12+0, Z21 =0) .

Here we define ao, e, 6, and y as in (15), but

	

v, x as follows

x = - 2 O+ 1n (2IZ21 I 2 ), 1u = I Z II II Z221 > 0 , v= -Re (det Z) .

	

(24)

Then, the basic inequality (14) takes the for m

0>P = ex (u cos y + v),

	

(25)

and the analogues of the inequalities (17) and (18) ar e

or
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and
Ivl <ca

	

(26)

v+p>0 .

	

(27 )

If Z12 0, Z21 = 0, then, in equation (24), replace the definition of x by
2

x = 2 e+ In ~212 . This case is essentially the same as that for Z 12 = 0

and Z21 � 0 and will not be discussed further . )
A discussion analogous to that in Case I shows that the region of th e

strip ' I n,

	

oo<x<oo, as determined by P<0, is given by

-oo<x<xi(v), IvI < vo < nz ,

1.c cos yo + v = 0, and ey = ,u cos y + v

Here, exp (2 x i ) xi -,u Q , where Q = ,u + v cos y >0, so that the region i s
convex .

Case M.

Here the basic inequality i s

0>P = -(a cos 1P+v) ,

with ,u, ? and v defined as in Case II . 1c and v satisfy the same inequalitie s
as in Case II, namely (26) and (27), so that there again exists a yo satisfying

,u cos yo + v = 0, 0< y o n, and the region permitted by P< 0 is the strip

y < yo, - O ° x < oo which is obviously convex .
In each of these three cases we have proved that the region of x, y space

(or what is essentially the same thing since it is obtained by a translation

and change of scale, g, 0 space) permitted by conditions (12) and (13) i s
convex. Since these regions contain the point g = 0, 0 = 0, they also con -
tain the points te, t0, 0 < t 1, corresponding to the transformations (10)
and (11) ; so the proof of Lemma 1 is complete .

Lemma 2 .

Let _ 1 , . . . zn and

	

. . .

	

be any two sets of n vectors such tha t

= z a 'z5 =

	

. ;,

	

= 1, . . . n .

	

(28)

If the rank of the n x n matrix Z is three or four (or, for n <1 2 if Z i s
non-singular), then there exists a complex Lorentz transformation, A, suc h

that
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Azîi=1, . . .n .

	

(29)

If the rank of Z is two or one (and n> 2 or n >1, respectively), a Ile
satisfying (29) will not exist, in general, but there always exists a A satisfyin g

Azi = +a i w,

	

(30)

where ai are complex numbers and w is a vector of zero length orthogona l
to

	

and Azî, i = 1, .

	

n .

Proof.

We note the known fact that, for a symmetric matrix, the rank deter-
mined from principal minors is the same as the rank determined from all
minors' . Thus, if the rank of Z is r, there exist r vectors, say z 1 , . . .
which have non-vanishing Gram determinant

0 + G (z 1 , . . . z r ) - det (zi • zj), i, j- 1, . . . r .

This result will be used tacitly many times in the following .

The first step in the proof is to establish the connection between th e
condition, G(z1 . . . zr) + 0, and the linear independence of the set of vectors
z l . . . z r . If G (z1 . . . z r )

	

0, then the set z 1 . . . z r is linearly independent .
For a relation

	

7

af zi = 0

	

(31)
j- 1

X a(zk •z .i ) = 0

	

k = 1 . . . r

	

(32)
9= 1

and these last equations have a non-trivial solution al . . . a r if and only
if det (z? • z k ) = 0, j, k = 1 . . . r . The converse, that the linear independenc e
of the set z 1 . . . z,. implies G(z 1 . . . zr ) * 0, is not true in general . For
example,

	

zl = (0, 1, 0, 0),

	

z2 = (1, 1, 1, 0 )

is a pair of linearly independent vectors having zero Gram determinant .
However, for r = 4, the converse holds, for G(z 1 . . . z4 ) = 0 implies that the
equations (32) have a non-trivial solution a l , a 0 , a3 , a4 . This, in turn ,

4

implies that there is a vector of the form

	

a i zj , with at least one al * 0 ,
j= 1

which is orthogonal to all z~ . If the z j were linearly independent, this last
4

would be impossible, since

	

a j zl would then be orthogonal to every vector .
~= 1

Thus, G(z 1

	

. z 4 ) = 0 implies that the set z 1 . . . z 4 is linearly dependent.

would imply
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Next, we show that, under certain circumstances, we can confine ou r
attention to the case n < 4 . Let z i , . . . zn and . . . Cn be two sets of vectors

such that any r+l element subset of either is linearly dependent, and th e
matrices zj • zx and Cj ' C x , j, k = 1, 2, . . . n , are equal and of rank r . For con-
venience, we may suppose that G(zi , . . . z,,) O . Expand the zj , j = r +1, . . . n
in terms of the z j , j =1, . . . r .

r
z j =

	

a.j j = r+1, . . . n .

	

(33)
a =

The a ji are expressible in terms of scalar products since they are the solu-

tions of the linear equations

z k

	

=

	

a ; zzj

	

it xk

	

. . . r .a -

r

	

j = r+1, . . . n
(34)

The equations (34) have a unique solution because G( zi , . . . 2 .) * O. Thus,
we see that, if a Lorentz transformation A. can be found satisfying (29) or

(30) for j = 1, . . . r, it will also satisfy them for j = r+1, . . . n, provided

that the rank of z i • zj = ~2 • C j is r and there are at most r linearly independ -
ent z i and ~z . These last provisos are always satisfied if r = 4 or 3. For

r = 4, we have just established the equivalence of G(zl . . . z4 ) + 0 and

linear independence of the vectors z i , z2 , z3 , z4. By the very same argument ,
it cannot happen that the rank of z t . zj is three and the number of linearly
independent zj is four . The fact that there can be "extra" linearly independ-

ent vectors when the rank of z i . z j is one or two is the source of the possi-

bility that (30), hut not (29), may hold .
Now we will construct a A satisfying (29) under the assumption of th e

preceding paragraph, i . e ., that there is at most a linearly independent set
of r z's and at most a linearly independent set of r C's and the matrix
z2 • zj = • Cj has rank r. Our preceding considerations assure us that it suf -

fices to consider the case n < 4 . The z i , i = 1, . . . n span an r-dimensiona l

linear manifold, M . For convenience, we let the Z1 , . . . z r be a linearly inde -
pendent set . Let the corresponding r-dimensional manifold spanned by th e
C , i = 1, . . . n be devoted by N. The orthogonal manifolds ML and NI

respectively, are 4-r dimensional and the intersections Mn Ml and Nn NI

contain only the vector zero . A proof of these last statements is obtained as
follows . Supplement the vectors z l , . . . Z . by zl , . . . z4 _r and the vectors

. . . Cr by

	

, .

	

C4_r so that the resulting sets are bases for the whol e

four-dimensional space . Then the r equations
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4- r

Zar+l (z i 'zi) = 0 j 1, . . . r ,
l=1

	

t =

have rank r, so they have 4 - r linearly independent solutions

(ai r (Z2, a3, a4) •

Because the basis vectors are linearly independent, the vector s

r

	

4- r

al zl ' ~ al + rz l,
a=1

	

l= 1

constitute a linearly independent 4-r element set . Consequently, M1 has
dimension 4-r. That Mfl Ml contains no non-zero vector is equivalent t o
the statement that the equations

	

al(zl•z~) =0 j=1, . . .

	

(35)
=

have no non-trivial solution . The analogous statements for N1 and Nfl N-L
are obtained by replacing zi by Ci in the above proof .

Notice that the Gram determinant of the entire basi s

. . . Z r , Z 1 , .

	

z4- r

is the product of the Gram determinants of the sets z 1 , . . . z r and z 1, . . . z 4 r

so that the Gram determinant of

	

. . . z4_ ,. is non-zero. A similar state -

ment holds for the

	

. .

	

and we want to use these facts to show

that new bases z1, . . . z4' r and

	

for 1121 and N1, respectively, can
be chosen so that

zi
„

' Zl
„

_

	

' Sj

	

= 1, . . . 4 -I' .

Consider 1111 . Since the Grain determinant of the z1, . . . z4_ r does not
vanish, some scalar product of these vectors does not vanish, and, conse-

quently, there is at least one vector of non-zero length in M1 . Adjust it s

length to 1 and call it By induction, using the arguments of this and th e
immediately preceding paragraph, we can construct z 1 , 4 ' , . . . 24 r or-

thogonal to each other and of length one . An analogous construction hold s

for the

	

It is evidentlyT crucial for the success of theS1 , ~2 , . . . ~4-r •

construction that at each stage the relevant Grain determinants are non-
zero7 .

Now we are in a position to define the A required by (29) as the comple x
linear transformation determined by the equations

Mat . Fys .Medd.Dan .Vid.Selsk .31 . 110. 5 .

	

2

al (z l

(36)
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11zj =

	

j=l, .r,

~.z? ' =C,'

	

j

	

1, . . .4-r .
A so defined preserves scalar products by virtue of (35) and (36) :

	

r_

	

4-r

	

r

	

4- r
~

	

RRA aj ~j + Y aj+rzp [
~f~ßjzj+

	

Nj+ zj r
)

	

5=1

	

5=1

	

,, =

	

5= 1

r

	

/

	

4
~> a jfl k (A zj) . (A zk) +

	

aj+rN
RR
k+r(ll.z j ')•(11.z 7c )

	

j,k=l

	

,k - I

r

	

- r
RR

	

5-

	

rr

	

r r

ajNkj sk +

	

aj-P r
//~
~ l~k-7r~j

	

j,k =1

	

j,k= 1

r
_ Y

It is therefore the required Lorentz transformation, and the proof of Lemma 2

is complete for the rank three and four cases .
For rank two and one we must deal with the cases in which the numbe r

of linearly independent zj (or ) is larger than the rank of the matrix
z j •zk . That we cannot expect to find a A satisfying (29) in this case is clea r
from the example z 1 = (1, 0, 0, 0), z 9 = (1, 1, i, 0) ;

	

= (1, 0, 0, 0),
= (1, 0, 0, 0) of vectors satisfying (28) with a matrix of rank one ; a A

certainly cannot carry linearly independent vectors (the z's) into linearly de -

pendent vectors (the c's) .

Let Z be of rank r = 1, or 2, and let n >r . There is a subset of r vector s
z i with non-vanishing Gram determinant . They span a subspace which w e
call Ml . It is a subspace of M, the subspace spanned by all z'i , i = 1, . . . n ,
whose dimension we denote by in . The corresponding subspaces for the
vectors we denote by N] (of dimension r) and N (of dimension rn ' ) .

ßecause Ml and Ni have non-vanishing Gram determinants there is a uniqu e
decomposition of the vectors z 2 and

z i = z i +zi ' i = 1, . . . n, zzeiVI1 , 4 ' eM11 f1 M

Ci +Cz ' i = 1, . . .n,

	

eN 1 , ~aeN11 f1N .

Now the rank of the matrices

	

j = 1, . . . n must be zero,

since the rank of z;- . and ~~ ~~ is already r . Furthermore, the sub-
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spaces M1'- n 4I and N1'- n N of the 4 -r dimensional spaces 1-t1'-, and N1' can at
most be one-dimensional since they are isotropic and Ml - and N1' have non -
vanishing Grammian7 . Thus, zi ' = y i co', i = 1, . . . n, yl , . . . yn complex
numbers and (w ' ) 2 = 0, w ' z; = 0, i = 1, . . . n, and similarly

	

= S i w ,
w 2 = 0 - a) .

	

= 1, . . . n . Incidentally, we see that the dimensions HI and
m ' of M and N are r +1 at most .

Now we choose an orthonormal basis w i , i = 1, . . . 4-r for M1' and
rj i , i = 1, . . . 4 -r for Nll so that w' and w lie in the subspaces spanned
by wl , w 2 and 971, 7Î2 respectively. For r = 2, no construction is required to
obtain this property of w's and r1's . For r =1, we know the construction i s
possible because there has to be at least one vector of non-zero length ortho-
gonal to w ' (or w) and we can take it suitably normalized to be w 3 (or ah) .
Since w' is a linear combination of w l and w 2 and of zero length, it must b e
of the form a (w1 ± iw 2) and by changing the sign of w 2, if necessary, we can
arrange it so that w' = a (wi +i w2 ) . Similarly, w = b (a7 i+ i rj2 ) .

Finally, the Lorentz transformation A required by (30) is the linea r
transformation defined b y

Azi, =

	

for the r vectors zi and which span M1 and N1
11w î =a7i i=1,2, . . .,4-r .

That this is indeed a Lorentz transformation follows by an argument lik e
that used for the higher ranks . That A satisfies (30) follows from the com -
putation

Az k = Azk -~- yk a (Awl+ i Aw 2 )

( S k -åk w) + Yk a (Th -1 u 2 )

+ (yk a - å k b) (T1-IH I n2)

	

k = 1, . . . n .

Therefore, when the rank r of z i • z I is one or two, there exists a Lorentz trans -
formation, A, such that the Az, and

	

differ by multiples of a fixed vecto r
orthogonal to all Az i and

	

i = 1, . . . n, and of length zero . This com-
pletes the proof.

To round out the information provided by Lemma 2, we make thre e
additional remarks . First of all, if Z is an arbitrary complex symmetri c
n x n matrix of rank r < 4, it can be written in the form

Zip =

	

=

	

. . . n,

	

(38)

where S 1, . . . are four vectors which span a linear manifold M of dimen-
sion r. This follows immediately from the standard theorem of algebr a
which says that, if Z is a complex symmetric n x n matrix of rank r, ther e
exists a non-singular n x n matrix S such that

2*
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Z=S{	 1~01 ST
0

	

0

	

(39)

where the one in the upper left hand corner of the matrix indicated in curly

brackets stands for the r x r unit matri x8 . One can then take the components

as S.i1 , j552 , . . . i S j , followed by 4-r zeros . Equation (39) then reduce s

to (38) . At most r of these vectors can be linearly independent and, in fact ,
exactly r are because otherwise Z would have rank less than r .

Our second remark is that, if the point ~ 1 + a 1 w, . . .

	

+ anw is in the

tube and w 2 = 0 = w, j = 1, . . . n, then w and

	

are of the form

co = a(w 1 -1- i w 2 ), where w l and w 2 are real and

= 2w

	

= - 1 , wl'w 2 =0 ,

=

	

co, where ~f w 1 = 0 =

	

j= 1, . . . n ,

and

	

. . .

	

is a point of the tube .

To prove these statements, we split w into its real and imaginary parts :

w = q+ ir . Then, w2 = o implies q2 = r 2 and q -r = 0 so that q and r
are either light-like and collinear or space-like and orthogonal . The first
alternative cannot occur, because the requirement w • ; = 0 would then

force q and r to be orthogonal to a time-like vector, and the first half of
(40) follows if we choose co l and w 2 as q and r normalized to length minu s

one. The second half is easily seen if the real and imaginary parts of t

are expanded in terns of wi and co t as follows :

el7> (0lH_ ,Q~J)w2-I- $j ,

h =
aiå)wl+ 621) w 2 +n;

where '30•w, =0=~~ w 2 , j=1, . . . n ,

where ai; w1 = 0 -

	

w 2 , j = 1, . . . n . 1
(40)

The orthogonality condition ( .i - iaij) w = 0 then leads directly to a? ) = Pz' )

and 62' ) _ - Pi), and therefore

-1.1)1 _

	

- i n ; + (e1') - 16Î7)l (w 1 ± i w 2 ) .

If we write

	

it remains to verify that the point

	

, . . .

	

i s5?,-j.,

	

ra

in the tube. Because

	

w, . . . ~, + a n w lies in the tube by assumption ,
the squares of the lengths of the imaginary parts of t + aj w, j = 1, . . . n are
positive :

	

v 0:0'[yij-(ß; w1 ß5 w2)] 2 ~~'2-(ß;')2->0,

	

(41 )

where (ß .i + al) a = + iß" with ß; and ßi' real, and ßl and a defined

in (40). Clearly, (41) implies 7h2 > 0. Furthermore, ß,'' and ß; can be con-

tinuously decreased to zero without (41) losing its validity . Consequently,
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if the imaginary part of '6-j + aj w points into the forward cone, so must that

of

	

so that the point fix, . . .

	

is in the tube .

Our third remark is that, if j = 1, . . . n and w have the propertie s

w = a (wt + i w2), with co, and w 2 real and w21 = - 1 =
w22.

co l • w 2 = 0 *col -
0 = C;• w 2 for j = . . . n, then there exists a one-parameter family of

Lorentz transformations A(0), 0 c O co with the properties A(0) =

j =1, . . . n and A(0) w e°w . The transformation A(0) is defined as

the identity on vectors orthogonal to w l and w2 , but

A (0) w 1 = w 1 cos i 0 - w 2 sin i 0
(42)

A(0)w 2 = w1 sin iO+w 2 cos i0 .

With its definition completed by linearity, A(0) is a Lorentz transformatio n
with the required properties .

Two important consequences follow immediately from these remarks .

The first is that, if a point 4 -1 +, . . . + an w with w2 = 0, w'5 = 0 ,

j = 1, . . . n lies in the extended tube, then all points of the form sl+ aiw ,
. . . +anw do also, where al, . . . an are arbitrary complex numbers . Since

~ 1 -1-a 1 w, . . . 5 n +an w is in the extended tube, there exists a complex Lorent z

transformation A such that AU-1 + a 11J w, . . . A%-n + anAw is in the tube. Using
the second remark, we may then write Azj + a;Aw as AC? + (ßj + a'j)Aw, wher e
11~i , . . . Ain is a point of the tube, and Aw = a (wl + i w 2 ) , w1 = - 1 = w .2 and

w 1 • w 2 = Azj w 1 = A4j w 2 = 0, j = 1, . . . n . Using the third remark, we ob -

tain a family of transformations A(O) such tha t

A(0)[A;+a'Aw] =A'+é°(ßj+a 'I)Aw, j = 1, . . . n .

These equations say that the point A~1 +aiAw, . . . an' Aw can be
brought arbitrarily near to the point AWI, . . . Ain (which lies in the tube)
by a complex Lorentz transformation . Therefore, the point A 1 + aiAw ,
. . . Ag-1 -I- an' Aw and, consequently, the point ~1 + azw, . . . ~n -I- an w lie in the

extended tube .

The second consequence is that an invariant analytic function (satisfyin g
the hypotheses of Lemma 1) is necessarily single-valued on Mn . For points
of Mn where the rank of z ti •zj i, j - 1, . . . n is three or min (3, n) the state -
ment follows immediately, because f(z 1 , . . . zn) = f(~ 1, . . . .n) is a con-
sequence of zi • zj = i, j = 1, . . . n, since, by Lemma 2 there exists a
AE 2 such that Azj = S j , j = 1, . . . n. For z i • zj , i, j = 1, . . . n, of rank 2 ,
n>2, or 1, n> 1, we know by Lemma 2 that z i • zj =

	

implies Azj
Sj + aj w, j = 1, . . . n, so to show the single valuedness of f at such points of
Mn it suffices to show that
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fG- 1, . . . ~~a) = f\~1+alw, . . . ~ 92
+anw) .

Furthermore, without loss of generality, we may restrict ourselves to the cas e
in which and co have the properties w = a (col + i w 2 ) with wt and w 2 real
and 4 =w2=-1, w l •w 2 -=0, and•w1 =0=st w2,j=1, . . .n . By in-
troducing the 11(0) defined in our third remark above, we ge t

n) - f(~l + alw, . .

	

a7i w)
= f(11(0) 1 , . . .A(0)

	

-f(A(0) 1 +a 11t(0)w, . . .11(0)ß,L+a.,z11(0)w )

f(-1,

	

Sn)-fl~l+ale

	

. . . Sn,+ a ,ne °co) .

From the continuity of f at

	

. . . 7z , we see that the Iast expression vanishes
in the limit as 0 -> oo, which proves (43) .

Now we turn to the connection between the topology of the vectors
z 1 , . . . zn and the topology on Ti

n
.

Lemma 3 .

Let Z be an n x n complex symmetric matrix of rank r, 1 < r < 4 and w
an arbitrary real positive number. Then there exists a set of n four vectors
zl , . . .

z7L and a neighbourhood of them consisting of the four-vectors zt +v 1 ,
z 12 + v n with

	

Iv/1 1<w j= 1, . . . n ; u=0,1,2,3

	

(44)

such that Zii = z i •z j , i, j = 1, . . . n and t:he' matrices,

	

defined by

%i7 = (zi -I- v i )

	

vO, i. j, = 1 . . . n,

	

(45)

cover a neighbourhood of Z in the set of complex symmetric matrices of ran k
< 4, i .e., for suitably chosen y >0, every complex symmetric matrix Z ' of
rank 4 which satisfies

'Z,5 j <r7 i, j = 1, . . . n

is of the form (45) with vl satisfying (44) .

Proof .

The direct determination of the vectors v i , i = 1, . . . n satisfying (45 )
would be somewhat involved, so we make a series of transformations t o
reduce the problem to a simpler one .

We know from the first remark following Lemma 2 that the matrix Z
may be written as a matrix of scalar products : Zi7 = zi • z2 , i, j = 1, . . . n ,

(43)
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where, if Z has rank r, the vectors z 3 , j = 1, . . . n span a linear manifold o f
dimension r . That being the case, there exists an r-element linearly independ -

ent subset of the n vectors which may as well, for convenience, be take n
as z 1 , . . . z r . A new set of z's, which we denote by

	

j = 1, . . . n, is de -
fined by

z3 = z 3 j = 1, . . . r

° z 3 -

	

a3kzlc, J = r +l, . . .n .
k 1

This linear transformation from z's to z" s has determinant 1 and is there -
fore non-singular . Subsequent to this transformation, we carry out a linea r

transformation on the subspace M which normalizes and orthogonalizes the
z ;, j = 1, . . . r . The product of these two transformations is given by a
matrix A which has the property

AZAT

r

r(

	

1

	

~

	

0
0

	

~

	

0

Now, since A is non-singular, it maps neighbourhoods of z 1 , . . . z n into neigh-
n

bourhoods of

	

A 13 z3 ,
3= 1

bourhoods of AZAT in

Lemma 3, in the case

and the rest are zero .

This first simplification of the problem uses a transformation, A, whic h
depends only on the z ) , but not on which point in the neighbourhood of th e
z 3 is under consideration . The second transformation we make will b e
different for each Z', and makes the first r of the vectors z 3 + v3 orthogonal
to the rest .

Define a new set of v3 by the equations

v 3 j = 1, . . . r ,
r

v3

	

R //= v3 - ~ ß3k \zk + vk) .~ ° r -I- 1, . . . n ,
k= 1

where -the numbers ß3k, j = r+ 1 , . . . n, k = 1, . . . r, are determined fro m
the condition

v '.1•(zx+vx)=0, j = r + 1, . . . n, k=1, . . .r .

	

(46)

An elementary calculation yields

0

An3z3 and neighbourhoods of Z into ' neigh -
3 = 1

an invertible manner . Thus, it suffices to prov e
that the first r of the vectors z3 are orthonorma l

ß3i =

	

Z3x
(Z,

1 ) k i
k=1

j =r+1, . . .n, I = 1, . . .r ,
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where the indicated matrix inverse means the inverse of the r x r matrix

Zak , j, k = 1 , . . . r . The simplification of the problem achieved in the pre -
ceding paragraph enables us to write Z' = Z + B where Zjk = b jk , j, k = 1, . . . r ,

%jk =0 , j, k>r . When the. matrix elements of B satisfy BJk <, j, k

	

. .1 1

and n is sufficiently small, the estimates I Za k 1 < j = r + 1, . . . n, k = 1, . . . r ,
and I (Z '-1)kl - bkl I <n (1 -rn)- i, k, 1 = 1, . . . r, hold, so that the trans-
formation from the v ' s to the v " s has an inverse and carries small neighbour -

hoods of the origin in v space into small neighborhoods in v ' space, and vic e

versa . Thus the problem has been reduced to that of finding vi, . . . vn

satisfying

+vD•(zk+vk) l(zj+U~) Uk

	

11	 I0	 B1
10

	

(47)
v5 . (zk+ v k)

	

~

	

v 'j vk

	

)

	

, 0 ! 0

	

0 B 2

where the dividing line in the matrix is at the r th row and column and

(B1)jk = Bjk , j, k = 1, . . . r, while

(B2)jk = Bak

	

(Z' )jl (Z 1 )lm (Z' )m k
1,

	

= 1

When I Bjkl <ai, j, k = r-I-1, . . . n we have I (B2)jkI < (1 - r 0-1 .

The simple expedient of requiring vk, k =	 t o o have vanishin g
components beyond the rlh and vk, k = r+1, . . . n, vanishing component s

before the (r + 1)st in a basis in. which the vectors z k , k = 1 , 2, . . . r, are
the first r coordinate axes guarantees the orthogonality relations (46) . The
problem of satisfying the upper left hand. corner of the relation (47) then

reads in r x r matrix form

(1+v')(l+v')T= 1+B 1 ,

where 1 + v' is the r x r matrix whose kth row is composed of the component s

of z k +vk . By making the special choice of the components of vk, k -1 ,

2 . . . r, which makes 1 + v' symmetric, we are led to the solutio n

i
1+v'= [1+B 1 ] k

the right hand side being defined by its power series about the matrix B1 = O .

This series converges for sufficiently small 7p and leads to components of v '
which satisfy I (v ')t < (1 -ray) -1 , j = 1, . . . r .

To be sure that the lower right hand corner problem has a solution i n
terms of vectors with only 4 - r components, we have to be sure that the ran k

of B2 is < 4 - r. This follows immediately by an argument which we use d

.J,k' r +t, . . .12 .
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~1)k
.L~ ,,s:., 82[(4 r> 17

[sup I(B2)i)I]~•

	

(48)

Collecting the estimates of the vk and I (B 2 ) i3 we see that, when rj is suf-
ficiently small, components of the v i satisfying (45) can always be chose n
so as to satisfy (44) .

Lemmas 1 and 2 enabled us to prove that an invariant analytic function ,
f, (satisfying the hypotheses of the theorem) is necessarily a single-value d
function on Mn . The continuity of f on nll is an immediate consequenc e
of Lemma 3, because it demonstrates that small neighbourhoods of an y
point, P, oncan have pre-images in the space of vectors which are smal l
neighbourhoods of a pre-image of P.

We now turn to the proof of the analyticity of f on

Lemma 4 .

If f(zi , . zn) is a function of the vector variables zl, . . . z,., analytic
in the tube (extended tube) and invariant under transformations of L t ,
then the following equations are satisfied at every point of the tube (ex -
tended tube) .

	

,Z

	

~' f

	

a

f

(z 3 ~

	

z ;,,

	

= O . (49)
3-1

	

å z

Proof .

Let A (a), - co < a<oo, be any one parameter subgroup of real Lorent z
transformations, and z1 , . . . zn a point of the tube (extended tube) . Dif-
ferentiating the identity

* The inequality (48) can be proved by going through the classical induction proof of (39 )
estimating the size of each term. We are indebted to V . BARGMANN for pointing out (48), as wel l
as showing us a version of the proof of this Lemma which we have followed rather closely .

several times in the proof of Lemma 2 . The right hand side of (47) is a
matrix of rank < 4 . The r x r matrix 1 + Bl is of rank r, therefore B 2 is of
rank 6 4 r. (Compute the determinant of all principal minors of the right
hand side of (47), which have i + B 1 in their upper left hand corner . They
vanish if they have more than four rows and columns .) Then, by the theorem
quoted in (39), we know v, , k = r +1, . . . n, exist such that; v k • vi = (B 2 )kl ,

k, I = r+1, . . . n . Of course, there is a variety of sets of vectors vJ~, k =
r +1, . . . zi satisfying this last relation. We have to be sure that sets can b e
chosen so that their components are uniformly small when the matrix
elements of B 2 are small . It can be shown that the v 'k can always be chosen
so that
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f (11(a) z1 , . . . !1(a) zn

with respect to a, we obtai n

df	 	 af	 a(A (a) 	 0 .
da

	

a(11(a)zj),"

	

a a

= f (z i , . . . zn )

At a = 0, we have

a s

where A , is a real 4 x 4 matrix satisfying ,

and defining the one parameter subgroup . Hence

a
~~ Fcv zj v az= O .

j=1

	

9

Now, any real 4 x 4 matrix satisfying (50) generates a one parameter sub -

group, so we may take A to have zero matrix elements except for a fixe d

pair 7 12" and 2,12 , then (51) reduces to (49) and the Lemma is proved .

Considered for fixed z k , the equations (49) are a set of linear equations
a

in the 4 n unknowns a z: j = 1, . . . n, ,i = 0, 1, 2, 3 . There are at most 6

independent equations . The derivatives of any invariant function must
satisfy this set of equations at each point of the tube (extended tube) . Of

course, the coefficient matrix of the equations varies from point to point .

Lemma 5 .

If at a point, z 1 , . . . zn , of the extended tube, the number of linearl y

independent solutions of the equations (49) is e and this e dimensional linear

manifold of solutions is spanned by the solutions which come from scalar

products, then any invariant analytic function, f, may be represented in a

neighbourhood of z 1 , . . . zn of the extended tube as a convergent power
series in the e scalar products, i .e ., f is an analytic function of the e scalar

products at z 1, . . .

Proof .

In the customary nomenclature, a set of analytic functions PI) i = 1 ,

. . . m < 4 n. of the four-vector variables z 1 , . . . zn is functionally independent

(50)

(51)
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apt )
at the point z 1 , . . . zn if the Jacobian matrix - - (i = 1, . . . m labels rows ;

j = 1, . . . n, Fa = 0, 1, 2, 3 label columns) has rank ni at z 1 , . . . z,, . In other
words, the nn rows of the Jacobian matrix regarded as 4 n componen t
vectors with components labeled by j and ii are linearly independent . Since
functional independence at a point is equivalent to the requirement that th e
determinant of some ni x ni minor of the Jacobian matrix be different fro m
zero, functional independence at a point implies functional independenc e
in some neighbourhood of the point .

In this terminology, the hypothesis of the Lemma is that e functionally
independent scalar products exist . We shall denote these scalar product s
by f(z) , i = 1, . . . e . Since the Jacobian matrix has rank e, there exists a e
element subset, T, of the 4 n variables z3 /', j = 1, . . . n, ,a = 0, 1, 2, 3, such
that the determinant of the square matri x

Of(i) i=1,
. . .0, sT

is non-zero .
Then, by the implicit function theorem for several complex variables ,

the zit e T are analytic functions of f (i) i = 1	 e in a neighbourhood of
f(i) (z 1 , . . . zn) and

f (z i , .

	

.

	

= g (f(i) , . . . f (e) , h (1) , . . . h(4n-e)) ,

where g is analytic in the variables f (0 , i = 1, . . . and h( ' ) , j = 1, . . . 4 n - e
in a neighbourhood o f

. zn), . .

	

f(~)(zi , . . . zn), h(1 > (zi , . . . ti n ), . . . h(4n- e )(z i , . . . zn) .

The variables h (j) are the zf -which are not in T. The variables

	

f' i = . . .eand11

	

j . .4n- o

are obviously functionally independent in a neighbourhood of z i , . . . zn .

The derivatives of f can now be expressed in terms of the derivative s
of g as follows :

o f

	

O g Op) 4 nie 0g ah ( k )
az

	

a fd) az . +

	

ah(k) a zx

	

k=l.

However, according to the hypothesis of the Lemma, at the point z 1 , . . . zn

* See B and M, p . 39, theorem 9 .
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of

	

af(i )

	

az~

	

aia z F.c

	

7

	

ti=1

	

7

y

	

a f(Z) 4n- Q ag

h
ah")

1 äf(i)
a

2 ) az
+

	

(i) az !

	

0 .
y

	

l=1

	

7

a f (i)

	

a 17 ('i )

But regarded as vectors with 4n components, az

	

= 1, . . . e and a, N ,

i = 1, . . . 4 n - e are linearly independent . (That is what the functional
independence of the f (i) and h (i) means .) Therefore, their coefficients in this
equation must vanish . In particular,

aq

(i>=0, i=1, . . .4n-e ,ô h

so g is independent of the I& and the Lemma is proved .

Lemma 6 .

Let N be the maximum number of linearly independent vectors con-
tained in the set of 4-vectors z 1 , . . . zn , then the set of six linear equation s

zi,a X,v- zw Xjm,) = 0 ,a, v = 0, 1, 2,

	

3 ,a<v

	

(52)

for the 4 n quantities Xj2 , ,j = 1, . . . n, cc = 0, 1, 2, 3 has the ran k

N

	

1

	

2

	

1 >3 1

rank

	

3

	

5

	

I

	

6

Proof .

If R is a non-singular linear transformation of four dimensional space ,

it is clear that the set of equations (52) has the same rank as the set

[(Rzj)p (RXI).v (Rzi)v(RXf)IL ] = 0, u iv = 0, 1, 2, 3
1 = 1

for the 4 n quantities (RXA, . Then, with a suitable choice of R, the last

	

(4 - N) components of vectors Rzj , j = 1	 n can be made to vanish .
Having reduced the problem to this simplified form, we drop the R and

assume the last 4 -N of the components of the Zl vanish .

To find the number of linearly independent equations (52), consider a
possible linear dependence among the m

Hence,
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3

~ aµv ~ (z iFE
Xw

- `wX1m)
= 0

,« . .7 = 0

	

7 = 1
Fa< v

for all Xi k , i . e . ,

3 3

X xv _

= o a `dv
=1, . . .n,x=0,1,2, 3

0
<k

	

k < v
or

where we have written
Azz =O, 1=1, . . .n ,

A vl` =Al" =<v,

	

=0,,a,v=0, 1,2,3 .

Thus, the rank of the equations (52) is six minus the number of linearl y

independent skew symmetric matrices, A such that Az t = 0, i = 1, 2, . . . n .

The most general A has the form (°
A

) where A' is an arbitrary anti -

	

0

	

'

symmetric (4-N) x (4-N) matrix . The numbers tabulated in the Lemma

are just six minus the number of linearly independent A' .

Lemma 7 .

Let z 1 , . . . zn be a set of n four-vectors of which some four-elemen t
subset (or n element subset if n< 4) is linearly independent . Then, the num -
ber of linearly independent solutions of equations (52) which arise from

scalar products T M of the four vectors according t o

(_E

	

Xw -	 ,
)

Ôz w

is 4n-6 if n. > 3, is 3 if n = 2, and i if n = 1 .

Proof .

It is clear that, for n > 3, not more than 4 n -0 linearly independen t

solutions of equations (52) can be obtained from scalar products becaus e

there are at most 4 n- 6 functionally independent scalar products .
This follows immediately from equation (34), which expresses z k •zi , k, 1> 5
in terms ofzz• zi ,wherei=1,2, . . .n,j=1,2,3,4 . Of these 4n, 6, namely

i > j , i = 1, 2, 3, 4 are expressible in terms of the rest . For n = 3, 2, 1
it is obvious that there are respectively 6, 3 and 1 independent scalar pro -

ducts at most and therefore 6, 3, and 1 linearly independent solutions o f

(52) at most .
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To show that these upper limits on the number of solutions are actually

realized under the hypothesis of the Lemma, we proceed as follows .

Denote a vector in the space of solutions of (52) by (S 1 , . . . fi n ) where
the are four-dimensional vectors . This notation is chosen so that a n

invariant analytic function F generates a solution

	

F

	

O'

	

O F
. . .

F )
where

	

1

	

z i
OF

stands for the four-dimensional vector with components, vm .m . In this nota-

tion, the solution of (52) which comes from the scalar product zj •zk i s

	

(0, . . . 0, zk , 0, . . . 0, zj , 0, . . . 0),

	

(53)

jth place k

th place

	

>

and from , 2w j

By convention, we

(0, . . . 0, 2 zj , 0, . . . 0) ,
jth plac e

will accept (54) as the value of (53) for j = k .

(54)

The most general solution of (52) arising from scalar products is of th e
form 'a

Gm, . . .

	

ajk (0, . . . 0, z k , 0, . . . 0, zj , 0, . . . 0) .
j,k = 1

Here, evidently

z jlc + akj) 'k ,
k= 1

so that the antisymmetric part of the matrix au, does not contribute an d

a jk may as well be chosen symmetric .
Now, for convenience, let the first four zj (or first n if n< 4) be the linearl y

independent set whose existence is assumed in the Lemma . Then we ca n
write

(55)

where in = min (4,n) and b is an n x !n matrix of rank In . Substituting (55)

into the expression for the solution vector we see that, in the basis fo r
solution vectors provided by (z 1 , ti t , . . . zt „) , lj = 1, . . . In , j = 1, . . . n ,
the most general solution arising from scalar products is of the form of a n
n x ni matrix AB, where A is an arbitrary symmetric n x n matrix and B i s
a fixed n x nl matrix of rank m .

To count the number of linearly independent AB simply, write B as th e
product of a non-singular n x n matrix B' and the n x m matrix whose first

In rows form the unit matrix and whose last n - in are zero :

2a

,7=- j~j =

m

zk=

	

hkt'l, k= 1, . . .n ,
t=



Nr.5

	

3 1

B-B ' ~ 1) .
, O ll

This is always possible because B is of rank ni . The number of linearly

independent matrices AB is the same as the number of linearly independen t

matrices
(B')TAB' (06) ,

i . e ., the same as the number of linearly independent matrices of the form

(Si

,S2 )

where S 2 is an arbitrary (n - nn) x ni matrix and S 1 is an arbitrary symmetric
m x m matrix . There are obviously ni (n - m) + In (ni + 1) linearly independ-

ent of these, which immediately yields the statement of the Lemma .

Completion of the proof .

Lemmas 1 to 7 establish the single valuedness, boundedness, and con-

tinuity of f everywhere on 91 n , and its analyticity on 93i at every non -

exceptional point, i . e ., every point where the matrix z i • z3 , i,j = 1, 2 . . . n ,

has the maximum possible rank, min (4,11) . To complete the proof of the

theorem, we want to show that in those cases where the set of exceptiona l
points is not singular in the sense of algebraic geometry, viz . n = 1, 2, 3, 4 ,
f' is also analytic there. For this purpose, we use a standard theorem o n
removable singularities which asserts* : Let f he a function which is analyti c
in a neighbourhood of a point, P, with the possible exception of a variet y
passing through P, the variety being defined as the set of zeros of a functio n

analytic in the neighbourhood of P . Suppose that f is continuous or merely
bounded throughout the neighbourhood of P. Then f is analytic throughou t
the neighbourhood of P. In our case, the variety is obtained by setting the
analytic function (let (z i • z .) = O . The required analyticity and continuity
of f having been established by our Lemmas 1-7, the proof of the theore m
is complete .

2 . The varieties 912n .

As we have seen in Lemma 3, every rank < 4 complex symmetric matri x

is a matrix of scalar products of four vectors, so that Tin is a subset of th e
set of all complex symmetric n x n matrices of rank S 4 . The same Lemma

* B and M, p . 173, theorem 5 .



32

	

Nr . 5

shows that n is an open subset . It is clearly connected because it is th e

continuous image of a connected set, the tube. It is also simply connecte d
by virtue of Lemma 3, although we shall forgo a formal proof . (The idea
is, given a closed curve on Mn which has to be shrunk to a point, to construct

a closed curve of vectors in the tube whose image in Ti n is the given curve .

Then, because the tube is simply connected, the curve of vectors can b e
shrunk to a point which implies that their image can be shrunk to a point . )
Not every rank < 4 complex symmetric n x n matrix, Z, is in lD2,,, for exampl e

if Z has real positive diagonal elements it is not in 9 N1, . We shall not attempt
a quantitative characterization of 9J at this stage, but only remark that i t
need not be the natural domain of analyticity for the analytic function s

which occur in field theory . For example, the first named author showed in

his thesis° that the local commutativity conditions, I equation (11), always
make it possible to extend the analytic function determined by the three -
fold vacuum expectation value (To (I) (x i ) T(x2 ) (x 3 ) Po) beyond 9:n 2 . On the

other hand, it is clear that such functions cannot in general he extended t o
all complex symmetric rank < 4, n x n matrices because they must have
branch lines in order to conform with physical requirements . (See, for

example, the discussion of F 121 (z12 ) in I, Section 4 . )

The restriction to n x n matrices of rank < 4 is of course no restriction

at all for n < 4 so the %t,, for n < 4 are open sets in Euclidean 1/2 n (n + 1 )
space. For n < 5 the restriction to rank < 4 on an n x n matrix Z ii can h e
stated

/ 1a,1 . . . Za ,j,,

(let = 0

Z ?;21 . . Z
15 7

for each pair of f i v e element subsets i i , . . . i5 and j i , . . . j5 of 1, 2, . . . n .

The tangent spaces of 9J are determined by taking the differential of th e
left hand side of (56) . The result is a set of linear equations for the dZ i j
whose coefficients are determinants of 4 x 4 minors of Z. At any point of

E n where all determinants of 4 x 4 principal minors of Z vanish, these

equations are satisfied for any choice of dZz l . Consequently, at such a sin -

gular point, the tangent space is 1/2 n (n + 1) dimensional. On the other hand ,
as we learned in Lemma 7, the dimension at a non-singular point is 4 n - 6 .

Now we want to study the relation of the points ofi,z to those of the form
Zij = real, i,j = 1, . . . n . We will refer to such Z as physical becaus e
the arguments of the physically given vacuum expectation values are real

vectors . We remark that every physical point Z is either in the interior o f

J2n or on its boundary, because ~ k is the limit of (~ - ii 5 ) ( k ilk) as
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the 0 approach zero . No physical point Z can be in the interior of lilt i f

any of the vectors Sj , j = 1, 2, . . ., n (of which Z is the set of scalar products )
is light-like or time-like. To see this, consider a general pointgi
j = 1, 2, . . . n of the tube. The corresponding point of En is given b y

Zjk -

	

ik - I W3 1Îk + 173" 4) •

If Z ' is to be real, it is necessary that each of the &' be space-like since i t
is orthogonal to a vector inside the light cone . But then the diagonal elements
of Z',

	

= 1, . . . n, are negative so that Z ' can be a physical point
Z, Zjk =

	

j,x = 1, . . . n only if the vectors & j satisfy & =

	

- 4 O n

the other hand, as we now will show, some physical points with space-lik e
do lie in the interior of 3J2,, . Since this is a fact of considerable physica l

significance, and the geometrical relationships are rather involved, it i s

worth introducing some notation to describe the situation . We denote by
S. the set of all physical points, Z, which arise from space like vectors ,
i .e . of the form Zjk = j

	

j, k= 1, . . . n with &j real and space-like . The
subset of S,L which arises from j 1, . . . n, lying in a space-like three
dimensional linear manifold, we will denote by Tn . We will also call T.

the equal time-manifold since it is the set of matrices whose elements can

be taken as scalar products of vectors arising from vectors &j =

j = 1, . . . n., where the xi have equal first components .
We first prove that a subset of Tn lies in the interior of E n , and then

pass to neighbourhoods of that subset . Consider the vectors $;-iai j , j = 1 ,

.

	

n, where )il = ajri, CC] is a real positive number, z/ is a real unit vecto r
in the direction of the time axis, and j = 1, . . . n are real vectors with
zero component in the time direction and in one space direction, say th e

direction of the third axis . Then ,

z' =

	

(Sk- i )ik) =
g'4-ajak =

skj •

where &j is defined as &3'. plus a vector along the third axis with component aj .

The vectors &j evidently all have zero time components, so that Z' i s
in Tn . Although the point sa l , . . . &n does not lie in the tube, it must, by
Lemmas 2 and 3, lie in the eXtended tube . Furthermore, by suitable choic e
of the components of & '3 , j = 1, . . . n, it can be arranged that Z ' has rank
three . By Lemma 3, it then follows that vectors lying in neighbourhoods o f
& j have scalar products which cover full neighbourhoods of Z' in IIJ2 n . Thus,
the fact that the particular points Z' chosen above lie in In implies that th e
physical points which arise from all . 41 , . . . En lying in a suitably smal l

Mat . Fys . Medd . Dan .Vid. Selsk . 31, no . 5 .
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neighbourhood of the chosen

	

also lie in

	

This shows that Tn n 9n .

and Sn n Un have the same dimension as Tn and Sn , respectively .
Not all of Sn lies in 92,z , but we will not attempt to prove this now nor

to characterize those points of S. which lie on the boundary of l)2 n . We
content ourselves here with the simplest consequences of the precedin g
results on T. and Sn . The set Sn fl ~n has been shown to be of the sam e
dimension as Sn and to contain, for suitably chosen e, all real symmetri c
matrices Z ' of rank 4 satisfying ~ Zak - • k ~ < e . This set is a real environ-
ment for an analytic function defined on Mn ; an analytic function f is
uniquely determined all over Ti n if its values are given on this set . We shall
see in the next section that this result has important physical consequences .

The points of T,z are always of rank 3 so that for n ~ 5, Tn fl n lies
in the singular subset of 9N„n where the ordinary definition of analyticit y
fails . The set T4 n 9J24 is of (real) dimension nine while S4 n ll4 is of dimension

ten so that T4 fl R4 is not a real environment . On the other hand, Ti fl MI ,

T2 fl M. 2 and T3 fl l3 have the same dimension as Si fl JJl , S 2 fl •9Jl 2 and
S3 n JJ2 3 , so that they form real environments for analytic functions on M I ,
9J12 , and M 3 , respectively .

3 . Physical Applications .

Some physical applications of the theorem of Section 1 were alread y
discussed in I (See, for example, the formulation of local commutativity
given in I equation (11) .) They arise, like those to be discussed below ,
when the theorem is applied to the invariant analytic functio n

F (n) (z i , z 2 , . . . zn-1)

whose boundary value, as all 71 2 ->-0, j - 1, 2, . . . n, is the vacuum expect-
ation value

	

Fe") (i . . . sin- i) = ( To, cP (xi) . . . 95' (xn) 'o )

Here, in a notation somewhat different from I, we have writte n

zj _

	

ig j and &i = xi - x~
i i j - 1, . . . n-1 .

The first consequence of the theorem is that F ( '' ) ( 1 , . . . $n,_i) is an ana-
lytic function of the real variables Zig _ z • s~~ i, j = 1, . . . n-1 in an open

subset of the set where all j are space-like, i, e . in the notation of the precedin g
section, as long as Z belongs to a certain open subset of Sn _ 1 n J2n_i . This con-

* See B and M, pp . 33-34, for the definition of a real environment in Euclidean space . Th e
same definition works here because a neighbourhood of a non-singular point in Mn is essentially
a Euclidean neighbourhood.
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elusion follows immediately from the analysis which showed that S n _ 1 fltn_ 1
is a real environment in iPtn1 . (Recall that Ti n is the set of all comple x
symmetric matrices of the form zi •z .i , i, j = 1, 2, . . . n, with z i in the tube .
Of course, on Tin for n > 5, the ordinary definition of analyticity has n o
meaning at the exceptional points where the rank of z i •zj is less than 4 . See

the discussion in the outline of the proof in Section 1 .
Furthermore,'the vacuum expectation valu e

(To , ,r (x1) . . . qP (fi n) T0 )

is uniquely determined from its values for space-like separated x 1 , . . . xn . I t

is possible to regard this result as a quantitative formulation of the intuitiv e

feeling that in a Lorentz invariant theory the equivalence of descriptions i n
different Lorentz frames should somehow restrict the possible correlation s

between the values of physical quantities at different points in space time .

For F (2) (e 1),

	

2 ), and F0>(1, / 3) an even more striking result
holds :

	

(T0 , (x i) iP (x2) T0), (T0 , T (xi) (P(x2) m (x3) T0) ,
and

	

( 1 0 , rP (x l) iP (X 2) T (x3) (P (x4) 7j 0)

are uniquely determined from their values ut equal times, i . e ., in the notation
of the preceding section from their values for Z 13 _ $i . $3 with ZrT1 , T2 ,T3 ,
respectively . We want to emphasize that all three of these results hold i n
both local and non-local field theory .

The most important application of the 'preceding remarks we know of

is to the proof of the following theorems which are extensions of results
stated by R . HAAG 1 0

Theorem (Generalized HAAG's Theorem First Part) .

Let two theories (distinguished by a subscript j = 1, 2) of a neutral
scalar field be given whose canonical variables are related at time t by a
unitary transformation, V :

U~ å R)(p i

	

, t)Uf;å, R)-1=9~(Rx+å, t)

	

1 =1, 2 (57 )

U.; (å, R),zi j(x, t)R)-1 =n ~Rx+c, t)

	

j 1, 2 . (58)

(Transformation law of field variable and canonical conjugate under
Euclidean transformation . )

{ 75 (x, t), (P i (y , t )) =
1 1~(x -

J)

	

=1 1, 2

-T3. (x, t), .Tcjy, t)J - 0, [Trx, t), (p .(->y ~ t)~ = 0
(Commutation Relations)

(59)

3 *
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T 2 (1, t) = V4't ~x, t) V -1
7c2 (x, t) = V, 1

	

t) V-i .

	

(60)

Dere (,a, R) represents the Euclidean transformation : rotate by R and trans -

late by å; the unitary transformations, L'(å, R), give the correspondin g
transformations of the states in the two theories .

Then
U2 (' R)=VU1 (z R) V -1 .

	

(61 )

If each of the theories contains a unique normalizable state W0j , j =1, 2 ,
invariant under Euclidean transformation :

then

c P02
= ViW 0i ,

where c is a constant of absolute value I .

U (r.r, R Ito)

	

7-fo) J =1 , 2 ,

Proof .

From (57), (58), and (60) we can easily derive that the operator s

Ul (c R)-1V
-1

U2 ( R)V

	

(62)

commute with q) 1(*, t) and t) for all x . Because the i and 7i form

an irreducible set s of operators, (62) must be a constant multiple of th e

identity operator : w (å, R) 1 and

U 2 (å R) = w

	

R) VU1(å R)V -1 .

	

(63)

From (63), it follows that ( R) - w (, R) is a continuous unitary on e

dimensional representation of the Euclidean group and therefore w (å R) =1 . 1 1

This completes the proof of the first half of the theorem . To prove the secon d
half, note that

	

L, c R)

	

= o l
and (63) imply

	

1(

	

oI

of q'02 •

* That (p l (Z, t) and 7tx ( .z t) form an irreducible set is what we mean by our assumptio n
that the theory is a theory of the scalar field (p l . This assumption is made for simplicity. In a
theory in which the field çol interacted with a spinor field, y, one would only have to introduce
the hypothesis that T,., v, i, form an irreducible set, together with the appropriate exten-
sion of (57) . . . (61), to obtain an analogous theorem .

U2 (å R)V f01 =VT01 .

Thus, by the uniqueness of 11'02, V W,» is a multiple, c ,
is unitary, I c = 1 .

Since V
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It should be noticed that only the properties of the fields and state s
under Euclidean transformation at time t have been used in the proof o f
the theorem. To one accustomed to the formalism of non-relativistic quantum
mechanics, the conclusion of the theorem is in no way surprising ; V always
exists in such theories . Of course, there, V is a function of time, and physic -
ally different theories will give a different time dependence for V . The sur -
prise comes when, following HAAG, one combines the preceding assump-
tions with those of relativistic invariance .

Theorem (Generalized HAAG ' S Theorem Part II) .

Let two theories of a neutral scalar field be given satisfying the hypo -
theses of the preceding theorem . Let the theories be invariant under inhomo-

geneous Lorentz transformations (a,A) and suppose the fields transform a s
follows :

U1 (a,4.)991 (x) U1 (a,A)-1 = T j (Ax+a)

	

j = 1, 2 .

	

(64)

Suppose further that the states Poi are invariant under in homogeneou s
Lorentz transformation

U.l (a, A) Ÿfoi

	

j = 1, 2,

	

(65)

and that no states of negative energy exist.

Then the first four vacuum expectation values are equal in the tw o
theories .

(POl , T1 (°r l) . . . 9) 1 \`~ya) 71 01) _ (n2 , ç2 (xl) . . . T2 (xn) W-02)

	

(66 )

Proof.

From the preceding theorem we have for equal times xi = .x2 = . . = :

(1 01, 81(x1) . . . 4~1( xm) poi) _ ( Vt ol, V m1(x1) V 	 Vrp1(xn) V 1VW o1 )

( 02,

	

(x1) . . . Ç0 2(xn) If02) •

Thus, all vacuum expectation values are equal for equal times in the tw o
theories . For n =1, 2, 3, 4, equality for all times x° + + . . . + x° fol -
lows from equality for equal times by the argument presented earlier i n
this section. This completes the proof. The hypotheses about the absenc e
of negative energy states and the existence of the vacuum are necessary i n
order that the vacuum expectation values be boundary values of analyti c
functions to which our previous analysis applies .

It should be noticed that we have not made the assumption that the tw o
theories transform according to equivalent representations of the inhomc)-
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geneous Lorentz group ; our hypotheses do not exclude a priori the possi-
bility that the two theories have different bound states, for example . Further ,
we have not assumed any particular transformation law for the operators rr

under Lorentz transformations and time translations . Only the behaviour o f

z(, t) for one particular time under Euclidean transformations is needed .
The uniqueness of the vacuum state is crucial to the argument . If it

were possible to form normalizable states of zero three-momentum fro m

states of mass greater than zero, the hypothesis of a unique normalizabl e
state of zero three-momentum would be unnatural and the second theore m
physically trivial . V could then carry iP01 into a superposition of Po, and
those other states of zero three-momentum . However, Wigner's analysis o f

the unitary representations of the inhomogeneous Lorentz group 12 shows
that states can never be normalizable which are superpositions of states o f

mass greater than zero and have zero three-momentum, and Haag's theorem

is very far from physically trivial .

As a particular case one can take the field ca l to be a free field satisfying

( q +nt 2 ) sr (x) = 0 , [ (Pi(x) , (p1(y)J
i-t

4 (x - O)

Then we conclude : no theory of interaction exists in which the ordinar y
representation of the annihilation and creation operators is used and the firs t

four vacuum expectation values differ from their free field values . If relativisti c

theories of interaction exist with vacuum expectation values, F (n) , differen t
from the free field values for n = 1, 2, 3, G., either they must use other repre-

sentations of the canonical commutation relations or they do not satisfy th e

canonical commutation relations al all . (This is essentially HAAG ' S con-
clusion10 .) This result shows that the situation which was found by WIGHT -

MIAN and ScHwEBEn l3 in a special non-relativistic example is typical o f

relativistic theories of interaction which satisfy the canonical commutatio n

relations (if such exist at all) : For each different value of the coupling con-
stant one must use an inequivalent representation of the commutation rela-

tions (assuming that different values of the coupling constant will give ris e

to some difference in the vacuum expectation values F(n) for n = 1, 2, 3, 4 . )
Of course, the converse is not true ; inequivalent representations of the com-

mutation relations need not always give rise to physically distinct theories .

From both the aesthetic and physical point of view, the version of th e
generalized Haag 's theorem proved here is somewhat deficient because i t
only asserts the equality of the first four vacuum expectation values . It seems
physically plausible that two theories in which the two-particle propagator ,

the vertex part, and the two-particle scattering for all energies are identical
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(as they must be if the first four vacuum expectation values are identical )

should be completely identical . On this basis, one would conjecture th e

aesthetically more satisfying result that all vacuum expectation values coin-

cide, which would (from the work of I Section 5) indeed imply the physica l

equivalence of the two theories . To prove this result along the lines of the

present paper would require one to establish a unique analytic continuatio n

out of the equal time-manifold T. into 2n ; it would require an analysis

going essentially beyond what we have presented in . Section 1 . (In fact, it
is not difficult to see that under the hypothesis of Section 1, the analyti c
continuation is not unique for n > 4. )

A second matter which the present paper leaves untouched is the questio n

of the existence of theories which use representations of the commutatio n
relations different from those of a free field . If it turns out that no such repre-

sentation gives rise to a relativistically invariant theory which is physicall y

interesting, that would be very strong evidence of the incompatibility of th e

canonical commutation relations, relativistic invariance and interaction . I n

fact, it would show that the fact that a field strength renormalization con-
stant is infinite in quantum electrodynamics u4 is not a special consequenc e
of the Hamiltonian of the theory, but a general result arising from relativisti c

invariance. .
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