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Synopsis
It is shown that the expression for the complex of energy-momentum derived

in an earlier paper from physical arguments also follows directly from the ma-
thematical invariance properties of the theory . The usual method of infinitesimal
coordinate transformations is generalized to the case of a variational principle
where the integrant of the integral to be varied depends on the derivatives o f
the field variables of arbitrarily high order . The method is then applied sepa-
rately to the gravitational field and the matter field . The transformation pro-
perties of the complex under arbitrary space-time transformations are derived ,
and a closer specification of the notion of "local systems of inertia" is given .
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1 . Introduction and Summary

I n a generally covariant theory like EINSTEIN ' S theory of gravitation ,
where the field equations are derivable from a variational principle, it

is possible to define a large number of quantities which are "conserved" ( 1 ) .

Therefore, extra criteria are needed in order to select out of this multitud e
of conserved quantities those which have a physical meaning . In particular ,
it becomes a problem to find the correct expressions for the pseudo-tensor
of energy and momentum. For a Langrangean system where the field equa-
tions are derivable from a Langrangean density 2, which is a function o f
the field variables and their first order derivatives only and which transform s
like a scalar density under arbitrary space-time transformations, the well -
known " method of infinitesimal transformations" leads to a natural choic e
of the energy-momentum complex . *

In the case of gravitational fields, the field equations may now be writ-
ten in the Langrangean form with a Langrangean density 2 = (ga , gik)
which is a scalar density only under arbitrary linear transformations . There -
fore, in applying the method of infinitesimal transformations, one is re-
stricted to linear transformations, and the "canonical" energy-momentum
complex Oi obtained in this way does not possess all the transformatio n
properties required for a physical interpretation of its components . The
canonical complex Ole following from the invariance of 2 under arbitrary
infinitesimal linear transformations is of the for m

Og k = V -g (Tl -Fp,ik) - szkl

	

( 1)

Here, TZ is the matter tensor which appears on the right-hand side of the
gravitational field equation s

Gik Rik - 21 Jik R = - îL T¢ k .

	

(2
)

* We adopt the terminology of LORENTZ who used the denotation complex for a covarian t
quantity with tensor indices which, however, behaves like a tensor or tensor density unde r
linear space-time transformations only.
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g det {gild is the determinant of the metric tensor gik and

=
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Further,

lcl 1 a~ k m
Si

- agtm g

is the quantity introduced by EINs rEIN and by Toc 1AN (2), and Oik satisfie s

the divergence relation

_a o k
x, k =

	

k = 0 .

A simple calculation shows (3) that silet is of the form

s~kl = ki kl
+ Cliklm rn

where

	 gin	 	 kn lm

	

ln k mhikl

	

jj= -hilx=
2 x -gg '~(-g)(g g -g g ) J

Q Tclm

	

a kml = V	 g al km- am k l
z

	

x

	

2

	

( 2 g

	

a g )

On account of the antisymmetry of the last quantity in 1 and rn, llikl'n l ,,

is zero and, by (1) and (6), Oi k may be expressed in terms of the "super -

potentials" h i ks as
Oi k = kikl

	

(8)

Now, since hiks is antisymmetric in k and 1, the relation (5) is a simple con -

sequence of (8) .
Although the integrals

Pi = -1
Oi4 dxl a'x 2 dx 3

give correct values for the total energy and momentum of a closed system ,
at least if one applies quasi-Galilean coordinates, O i k is not the correct ex -
pression for the complex of energy and momentum, since it fails in a physic -

ally meaningful manner to account for the distribution of the energy an d

(3)

(4)

(5)

( 6 )

(7 )

(9)
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the energy current in space. In a recent paper in the Annals of Physics (4) ,

a different expression for the energy-momentum complex was proposed .

It is defined by
Ti k = V - g (Ti k + ti k )

	

(10)

i~-g ti k

	

~1

	

- l' -
!IC + 2 B,z k1 åf hrrl

+h rrk i .

ç - -

If Ti is eliminated by means of the field equations (2), Ti k may be expressed

in terms of a superpotential vikl as

Ti k
=~iki

l

kl

	

- ,

	

ti
-

	

lk _ 9 1Zb k h rl +b.' h rk = V -g
(g

	

) gkm g ln (13)
tii

	

r

	

r

	

7

	

in, m

	

n

and thus
Tik, k = 0 .

	

(13 ' )

For a closed system, the complex Ti k gives the same values for the total

momentum and energy

Pi = - ~ Tld dxl dx2 dx3
c

as the canonical quantity Oik in (9), at least in cases where the latter ex -

pressions give meaningful results at all . But the expressions (14) are more

general and give correct values for the energy also when the integration i s

extended over finite regions of space . This is connected with the fact tha t
T4k in contrast to O4k , transforms like a vector density under arbitrary purel y

spatial transformations

x`= f~(xy) , x4 =x4 ,

	

(15)

a property which is a necessary condition for the possibility of interpretin g
T44 and T4~ as densities of energy and energy current, respectively . More -

over, in later papers (5), it was shown that the pseudo-tensor density Ti k

defined by (10)-(13) is uniquely determined by this requirement . From

a physical point of view, it would therefore seem that Ti k is the correct ex -

pression for the complex of energy and momentum, but. the fact remain s

(12)

with

(14)
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that the method of infinitesimal transformations applied to the Lagrangea n
,£ leads to the expression Oik which speaks in favour of the canonica l

quantity O i k

In the present paper we shall see, however, that the method of infinitesi-
mal space-time transformations leads exactly to the complex Ti k if one starts
from another form of the variational principle . It is well known that the
gravitational field equations may be obtained from a non-Lagrangea n
variational principle where the integrant of the integral to be varied is th e
curvature scalar density

N= V- g R

	

(16)

which is a function of the g ik and their first and second order space-tim e
derivatives. In fact, this variational principle is usually the starting point

in the derivation of the Lagrangean principle. In contrast to the Lagrangea n

gi is a scalar density under arbitrary space-time transformations . The
method of infinitesimal transformations applied to 91 instead of therefor e
leads to a complex with more extended invariance properties and, as we

shall see in section 3, it just leads to the quantity Ti k

In section 2, the "method of infinitesimal transformations" is describe d
in the general case of field equations derivable from a non-Lagrangea n

variational principle where the integrant V in the variation integral depend s
also on derivatives of the field variables of higher than the first order . In

section 3, the method is applied to the gravitational field, where V is equal

to f x. As mentioned above, this leads directly to the relations (10)-(13) .
As an illustration, we also apply the method to the matter Lagrangean den-

sity in which case of course the well-known results of ROSENFELD and of

BELINFANTE (s) regarding the symmetrical form of the matter energy tenso r

are obtained. This is shown in section 4 . In the remaining sections, th e
transformation properties of Ti k under arbitrary space-time transformations
are investigated in some detail . The results obtained suggest a specification

of the notion of a local system of inertia .

2 . The Method of Infinitesimal Transformations for a

Non-Lagrangean System of Field s

Consider a generally non-closed system of fields with the field variable s
YA (x) and their space-time derivatives



A
a YA

	

a2 yA

Y
A

a

	

i,k=axiaxk'
. .

the field equations of which are derivable from a variational principle . Let

us first assume that the integrand V in the variation integral is an algebrai c

function of the YA and their first and second order derivatives only . The

field equations will then be of the for m

8V
_ -JA ,å yA

where the JA are the "sources " of the field depending in general also o n

variables other than the YA and their derivatives . Further, the

6V av

	

aV~ / a v
SYA aYA aYA~,i \aYAk ,i, k

are the "variational derivatives" of V with respect to Y-A . The partial de-

rivatives occurring in (18) are of a somewhat symbolic character, since the

YA YA , YA k are not in general truly independent variables . They are define d

in the following way . Consider arbitrary variations 8 YA of the YA , which

imply definite variations

aYA= (cSYA) .i, åYAk (SYA),i, k

of the YA and YAk as well as of the algebraic expression V (YA YA YA k)

The partial derivatives in (18) are now defined as the coefficients of à YA ,

à Ye, and 8 YA k , respectively, in the variation åV of V, i . e .

dV=
a Av

ôYA+aA~YA +
å

A
v

BYA k
ay

	

aYi

	

aYi, k

(summation over A, i and k! )

Since ( YA T~ = d Yx i , we can arrange the terms in (20) such as to mak e

the coefficients of à YA k and å Yk i equal . With this convention we hav e

aV

	

a V
aYA k aYk ti

(17)

(18)

(19 )

(20 )

(21)
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If the variables YA are not independent, as in some of the later applications ,
say if YA = YA' , we use a similar symmetrization rule so as to mak e

aV a Y
aYA

- aYA, .

Now, consider an arbitrary infinitesimal space-time transformatio n

x2 = xi + (x) .

In all cases considered in the following, the local variatio n

SYA = YA (x) -YA (x)
of YA (x) is of the form

å yA = uAk
i

	

YA
,k - i

where the uAz are linear functions of the field variables . Hence, by (19) ,

A

	

Ak ~~ii

	

Ak

	

~A k i~Yl =u

	

l' (u

	

- ~i S d)k -Yi,
A

l e
i

In order to assure general covariance of the field equations (17) w e

shall now assume that V is a scalar density . Therefore, we must have

8V+(Vek ) ,k =o

	

(27 )

at every point in 4-space and for arbitrary functions e i (x) . If we integrate

(27) over a finite region d2 in 4-space, we get by partial integrations for al l

functions i (x) which vanish, together with their first and second orde r

derivatives, at the boundary surface of ,S2

8Vdx=1 å Ÿ å YA dx= 0,

	

(28 )

8 V
where yA is the variational derivative defined by (18) .

Hence, by (25), after a further partial integration ,

yv
( 	 Y

u~k),
lez dx-0 .

	

(29 )
k

(22 )

(23 )

(24 )

(25 )

(26)
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Since the functions i (x) can be chosen arbitrarily inside Q, w e
the identity

8V

	

lS V

åYAYz + \BYAUA ,k
0 .

The expression (20) for the variation of V may also be writte n

sv
å

A6 YA +LI	 aÅ	 a A /
16

YA+

al/
bYi J

8 Y

	

aYk A

	

AIM
. k

If we introduce the expressions (25) and (26) for ô yA and 6 Yl into (31) ,
we get an expression containing the y and their derivatives of the first and
second order . After some rearrangements, and using the identity (30), the
equation (27) may then be written in the form

sikkLsik
Vi kl l l e k+ [vi kl +viklmmi k,l +vi klm

k,l,m =0 , ( 32)

-N.-here we have used the abbreviation s

SikBIAuAz+Ly

- ( ya V)

lYi + Y,

	

V
YA l - VS2,

	

(33)
k

	

k,l

	

k ,

vi kl

	

a	

A-

0V \

	

u A
i 	 a A 	 (LI A k m - Y-Aåm),

	

(34)a Yl

	

a
vA

m %, 7rc~

	

a Yl, m

aV
x
klm _ V

a
kml = uAk	 v

ia YA
l, m

.

Since (32) has to hold for arbitrary choice of the functions i (x), we get
the following identities :

Sik k = 0,

	

(36)

Si k = Vzkl
l

	

(37 )

vi kl + V2 lk + (Vz klm + Vzllcm),
na

=
0,

	

(38)

VZ klm + VZ lmk + VZ mkl = 0

	

Vi klm = V2 kml

	

(39 )

must hav e

(30)

(31)

(35)
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(36) shows that the quantity (33) satisfies a divergence relation and th e
method leads, apart from an arbitrary constant factor, uniquely to th e
expression (33). If we were only interested in deriving (33) and (36), w e
could have obtained this result much more easily by considering a "rigi d
infinitesimal parallel displacement" of the system of coordinates where th e
Vi are constants Ei . In that case, we have by (25) and (26 )

S YA =- Ye ej, å Yi =- YA Ei .

Introduction of these expressions into (31) and (27) gives directly, by mean s
of the identity (30),

-Ei .Si,kk -
_ 0 ,

which then leads to (36) on account of the arbitrariness in the choice of
the constants ei .

From (39) we get

mkt

	

klm

	

1

	

mkt

	

tkm

	

kl mVi +
2

	

9

Vi

	

= (Vi

	

+ Vi

	

+

	

l,,n = 0 .

	

(42)
,l,m -

Thus, if we define a new quantity Ui kl by

U kl = V kl _ 3(Vmkl l V
2
klm)

2

	

2

we get by (37) and (42)
Sik = UZxI

l

	

(44 )

This expression has the advantage that Uiki is antisymmetric in k, 1 so that
(36) is an immediate consequence of (44) .

In fact we have, by (43), (38) and (39) ,

Ui kl + UZlk = V
i

kl + jZlk _
3 [m+ Vy mllc + ~ (VZklm

-I- V,,')]
m

mki
3

4 Vm1cl_3(Vklm + Vilmk)l ' 0
JJ m

U
2
kl = - Ua

.lk
•

(40)

(41)

(43)
, m

i . e .

(45)



Nr. 14

	

1 1

We can therefore also write Uikl in the manifestly antisymmetric for m

UZ kl =
2

(Ukl - Ulk) _ ~ (Vkl - Vlk) -
6

(Vklm - Vlkm)
an\\

	

J

	

\

1 (raV (	 av

	

0V

	

1I

	

av

	

E

	

(46)

(
U2kl -

2

Sl La YA a YA )

	

uA
i+	 YA	 lzAk n,, - 3

L
uA ~ a Ÿ~

/-IÇ, 1) ~l

	

l,m , yyi

	

l,m

	

1, m_,yn

where the last term is obtained from the first by interchanging the indices
k and 1 .

Thus, the method of infinitesimal transformations leads (apart fro m
an arbitrary constant factor) uniquely to a quantity S l k which satisfies the
divergence relation (36) and which, by (44), is derivable from a "super -
potential" defined by (43), (34), (35) or (46) .

The preceding considerations are easily generalized to the case where V
is a function of the YA and their derivatives of arbitrarily high order . The
variational derivative of V with respect to YA is here defined a s

8V \7

	

a V
1)n	

a YA,
i ï , ,

	

Z 2 , . . . in
yA (47)

(Summation over n and for each n independent summation over the in -
dices

	

i 2 , . . in ! )

(47) obviously reduces to (18), if V does not depend on derivatives of YA
of higher than the second order . Similarly, we introduce the variational
derivatives of V with respect to YA YAk

	

by

n= 0

SV 0V ~	 aV ~
~

~~YAaYA , a Yz
+ n	 a v

1)

	

a YA i ~ . . . i n ,i,, . . . i
(48)

8V aV ( av 1

	

~

	

a V
A

	

+

	

(-1)n

i,k, i l >i l

	

aY k>il , . . . i

	

, il , - . . inn= 0

etc. In this general case, the method of infinitesimal transformations lead s
to the following energy-momentum complex Si k satisfying the divergenc e
relation (36) :
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8V

	

åV

	

S VSZk

	

åYAUAk+
å YAYA+å YA Yl + . . SZ V

	

k

	

k >lr

(49)

In the first place, it is clear that the identity (30) still is true, since th e
considerations in connection with the equations (27 - (30) are valid also
here. Then, if we consider a rigid displacement with i = si = constant ,
where

(50)

one easily finds that the equations (41), and consequently (36), hold als o
in this case with Si k given by (49) .

3. Gravitational Field s

It is well known that the gravitational field may be treated as a La-
grangean system with the Lagrangean density

Ç2 = V gg2k (rik rm ril rkm) ,

the rkl being the Christoffel symbols . In fact we have for all variations of
the field variables gik which vanish at the surface of a region Q in 4-spac e

dx~~k 8gik dx=BgZk dx,

	

(52)

D

	

D

where

Y - g Gik Y - g (R ik

	

gik ß)

Therefore, the field equations are of the form

(51 )

(53)

4L å g
ik

	

= - V - g Tik'

	

(54)
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Comparing (54) with (17) we see that we are dealing with a special cas e

of the systems treated in section 2 . The field variables YA are here the quan-

tities gik, and V = 2/x is a function of the YA and their first derivatives

only. Hence,

sv

	

1å

	

1~a .~_ (02) 1
8YA x å gik

	

a gik

	

agit) I
Since g ik = gka, we have here a case where some of the YA are equal . Thus,
with the convention mentioned on page 7 equations (22) hold, i . e . ,

a2

	

02

	

å

	

å 3
a g ik

	

gki' b g ak = o g i k

However, V = 2/x is a scalar density only under linear space-tim e
transformations . Therefore, only the identities (36) and (37) can be derive d
in this case, since Vic' = ,k, a, m = 0 for linear transformation, which means
that the last two terms in (32) are missing . A simple calculation shows tha t
Sak and Va kt in this case are

Si k = 2 O i k Vz kt = 2 s i ka (57 )

with Oik and si kz given by (1), (3), and (4) . Furthermore, (30) become s
identical with the contracted Bianchi identities

C-'
i

x =

	

+ gisGrs =O .
V_g a x k

However, this equation cannot here be derived by the method used in sectio n

2, since this would require invariance of SVdx = 1

	

dx under arbitrary
x

space-time transformations .

	

Q

	

Q
We get a more satisfactory description by treating the gravitational fiel d

as a non-Lagrangean system of the type considered in section 2 wit h

N/x = V- g R/x

	

(59 )

which is a function of the g ak and their first and second order derivative s
gk and ern, . Also in this case we have an equation of the type (52), i . e . ,

(55 )

(56)

1 aV-g G2~ 1
(58)
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å

	

dx = åå:ik. å gik dx =~ Csiik 8 gik dx

	

(60)

Q

	

sz

i, e .,

	

å
~ g ik - ik

•

The reason for this is that

	

differs from by a divergence term only . In

fact, we have

~i=$3+
rl=xh r, d •

This follows at once from (1) and (8) if we remark that

(61)

V- go
r1. = v- g (Tr -I- Orr) =

x

Gr
+ ~ dg~ g~

rn-4c~]
(63)

=1(N -2) .

In the last equation, we have used the fact that $3 is a homogeneous functio n

of the grin' of degree 2 . With hiks given by (7) a simple calculation shows tha t

l

	

,
Ilr 1 (V_ g 9mn + 2 gin('/- g),

m f =

	

1	 ~- g g

.im >

m
x

	

V

	

xj/ - g

(see, for instance, the Appendix of reference [4]) .

For arbitrary variations å gik which vanish at the surface of Q, we now

have

8dx=~~k Sgik dx=x(Shrrd) d dx =0,

	

(65)

~ ~
ågik =0 .

1
V=-~ì

x

the field equations take the form (17), i . e .,

(64)

Q

	

Q S2

With

(66)

(67)
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1

	

15,E

	

1ôß
= V- g

	

(68
)r 0ik

xbgik- xSgikTik

Since 91 is a scalar density under arbitrary space-time transformations ,
all the relations (32)-(46) of section 2 are valid here . For an infinitesimal
transformation (23), we now have

a grs = gsk er k + g.rk ~s k - q ~s $i

which, by comparison with (25), give s

uAk
i

ursk = ~r
g

sk +
g

rk a s
z

Then we get in the first place from (30), (68), and (70 )

2 ra 0k 1

xk
+ 2 g2 s ~rs =0 ,

	

(71)

i . e ., the Bianchi identity (58) . Next, by (33), (59), (61), (62), and (70 )

-r
-

2 k 1[-a,~
g!.''

	

i- 6 k ,i] +~ [	 0~

	

(	
arJ

) 1 g i
r s

x

	

x a gk

	

x a gks \a gksl , l

+ 1 (	 -- g%å- 1SÉ 11r s
xagk,l

	

x

or, using (3) and the field equations (2) ,

S i k = - q Tk+2z9' i k - 1 G)-HA2 KZ',

	

(73)

with

	

[at)

	

(at)

	

H al)
= aqks

	

agksal,a
g2

\agksl/ ,iglglr,sm
g å s

	

~ å75
m

a r)
Ke l = ~~ -	a rs - i

a gk
r,s

m
gm =

	

(75)
x

	

gl, m

As shown in Appendix A, Ai is identically zero with Tj given by (62)
and (64), and Ki l becomes

Kil = ak hrrd - a~ hrrk .

	

(76)

(69)

(70)

Sik =

(72 )

(74)
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Hence,
Sik

= ~~ - g (Tik + ti k),

	

(77)

where

I//- - g tik
= - 1

oiz
+ 2 ~i/ - g ~7c _

(6~ 1
irrl _

6Z h rk)
l

X

	

\

i . e ., the quantity defined by (11). Thus, the "conserved" quantity Si k is
in this case just the pseudo-tensor density of energy and momentum define d

by (10) .
For the superpotential Uikl we get by (46), (62), and (70)

}
1 g
	 	 fj

	

r

a
	 1

	

ni /

~
kl = a

	

km
ral)

-(

a~

/ J

ks .

is
g

a / k
m
s_

3
l l 	 a% ks

	

~x Ui

	

a 9im g

	

a gi s a g sm , m

	

g

(

	

m

	

glsm
g

	

-(~t~ , (79) .

Uikl = s7,kl si lk + Bk l
2

- Bl k
2

,

where sild is the quantity given by (4) - (7) and

(78)

(80)

al)

	

l at) \

_0
gl s ~a gl

s

m/, m ~ gZ m gm
3

agl~m /, m

xBy l = g ks (81 )

4. The Matter Field

alj ks 1( a 9ks
\

The calculation of Bicl and of Uikl is completed in Appendix A and the result

is that Ui kl in the present case is equal to the superpotential xilcl given by
(13), which makes the equation (44) identical with the equation (12) for

Ti k . Thus, the method of infinitesimal transformations leads, apart from a n

arbitrary constant factor, directly to the expressions (10) - (1.3) for the pseudo -

tensor density of energy and momentum. The arbitrary factor is fixed by
the condition that the integrals Pi in (14) for "closed" systems must have

the right values and it turns out that, with V = Nix, this factor has to be equa l

to one .

We shall now assume that the "matter" which produces the gravitational
field has the character of a tensor field described by a number of field vari-

ables Qa (x) . (For simplicity, we exclude spinors) . Further, we assum e

that this field is of the Lagrangean type, i . c ., the matter field equations ar e

of the form
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S ~

Qa -O '

where J is a scalar density depending on the Qa (x), gik (x) and their first
order derivatives, and the symmetrical matter tensor is obtained by deri -
vation of JI with respect to

	

e . ,

S S i kik V - g

In all practical cases, W does even not depend on gzik

(g ik , Qa,
TO

•

This implies that both the gravitational field equations (2) and the matter
field equations (82) are derivable from the variational principl e

8(1 +2dx=0

	

(85)
x

	

11

for independent variations of the gik and the Qa .
We may now apply the general considerations of section 2 to the non -

closed system with

V =

yA = { gik ()a) .

As we shall see now, this leads to a special case of the well-known connectio n
between the symmetrical and the " canonical" matter tensor discovered by
ROSENFELD and by BELINFANTE [6] . With V = (gik , Qa, Qa) we get from
(33), (70), and (83)

åM

	

d9Jt
,Si k r -2I/ gT2

6
Qa uak+ aQk Qai

-~)-t (5,k

	

(87 )

On the other hand, we have, by (44) and (46), in the present cas e

UkI '[ au ua~
(Î~~

uaa2 LOW,'l

	

a Q,k

	

J

Mat . Fys.Medd.Dan .Vid.Øelsk.31, no .14 .

	

2

(82 )

(83 )

(84)

(88)
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Thus, we get from (87) and (88)

with
V

	

g Tz =-g (Tt +Ti)

	

(89)

a M/2 a
V - g Ti = a Qak Q, z - (M/2) ô i (90)

2
Tk ~a (91 )

, a
ll- g

	

LL ak - a Q ~k uai=

	

~
Qa

uai

	

2~ a

Tik is the generally unsymmetric canonical matter tensor derivable fro m
the "matter Lagrangean"

(m)
= - X2/2

	

(92)

and Ti k is the term which has to be added to Ti k in order to give the sym -
metrical matter tensor T . The first term in (91) is zero on account of the
field equations (82) and, for a matter-system confined to a final part o f
3-space, the last term will give no contribution to the total matter energ y
and momentum. In fact, we have

PP' ) _ 1/ g Tt dxl dx2 dx 3 =

	

- g Ty dxl dx 2 dx3

2 c J
Ui ; À dxl dx' dx3 = ~ `, g Ti 4 dxl dx2 dx3 .

In general, PI') is not constant in time . Only the sum of the matter part
and the gravitational part, i . e . ,

Pi = -1 ~ Tt dx i dx 2 dx3 = -1 U- g [T4 +

	

dx i dx2 dx3

	

(94)

is conserved' for a closed system .

As an example, we consider the case where the matter field is a purely
electromagnetic field . Here, we have

~2 = 2 1%
g g

rt gsm
Frs FLm

Fik =Ak,i -Ai,k =-Fki .

(93)

( 95)
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As the field variables Qa we may take the components Ai of the four-potential .
Then, we get

a~

	

OM __ _ 2v_gI', ik
a A i - 0'

	

a A i, x

and the field equations (82) are the Maxwell equations

a M

	

a l

	

\
å Ai

	

xk \21/ -
FZx/ = 0 .

	

(97)

Further, since for any variation of the gi k

b (V - g grl gsm) - V

2
g

[- gik g
rl gsm

+ gsm (bz 81k
+

q åli) + grl (az åk +

	

8 gik ,

have, by (83)

a~J2 1

	

a(V - g grl g.sm)

	

l - gTik = a gik = 2 Frs Flm

	

a gi k

l

	

1
= V- g [FilFk - gik Flm Flm

which is the usual expression for the electromagnetic energy-momentu m
tensor .

On the other hand, the canonical tensor is, by (90), (95), and (96) ,

k a M/2

	

-

	

Pk
	 	 g

	

l mg Ti

	

a Al, k A l, i - (E/2) bi - -

	

g F Al1i- 4
Flm F ai •

	

(99)
u

It differs from (98) by the term V- g Ti k given by (91) . Since A i is a four -
vector, we have for an infinitesimal transformatio n

8Ar = Ai~2r -Ar,i~i = uri~Z k -A r,iei ,

	

(100)

u ak
i
- Lllrki

	

(5 rk- = -Ai .

Thus, by (91) and (96),

(96)

we

(98)

2*
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or

/OM/2\

	

1 [OM/2

	

a~2 / 2
V-g

T2x

	

Ar
6r`Ai+

2~a A
	 (5 1, Ai

aA>, arA
i
J\O

	

,i1,l

	

r,l

	

,k

	

l

=(V-
glqkl

),l Ai - -9- -
gFklAi_ fr g,FlkAi ] , l

'

	

xj/ - g Ti = -V - gl;klA
i, l

By adding the expressions (99) and (101) we get again the expression (98 )

for the symmetrical matter tensor, in accordance with the general equatio n
(89) .

In conclusion, we summarize the main results of the preceding sections .

The total pseudo-tensor density of energy and momentum Tik may be writ -
ten as the sum of a "matter part" TT` and a "gravitational part" ti k :

V - g

	

+ tix ]

	

(102)

where, by (89) - (92)

(101 )

k

	

a~(m)

	

k

	

1 f

	

a~ (m )
I/ - g Ti= Q i

	

a
- + b i ,~( m) + - uai

a Q,k

	

2

	

a Qal

a vm)

	

b 2 (m )
- uai

	

ø

	

I- le"

	

a

	

(103)
aQ,k,l

	

S Q

and, by (72)-(78),

g ti

	

-

	

Z +2I,/-g?yik_ (å 'rrl_a hr rx)
> lx

1 (M k l
x

	

a gil g
+ O R

gis+a9ksg1,81- iS2 ( .

(104)

Apart from the last two terms which give no contribution to Pin' ) , the matter
part (103) has the canonical form corresponding to a matter Lagrangea n

2(m) = - K2j2 . On the other hand, the gravitational part (104) has an entirely

different structure and it can not be derived from a Lagrangean density

according to the usual rules . This may be taken as an indication that th e
"quantization" of gravitational fields should be performed in a way which

differs from the usual rules of ordinary quantum mechanics . It is true that

Y-g tik in (104) may also be written

V gti x =j/-g ,gi k +~l i x z t ,

	

(105)
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where
kl = h2 kl- S2 h rrl + å2h rr k

is antisymmetric in k and 1 . Therefore, by partial integrations, the total gra-

vitational momentum and energy take the for m

pig) =

e
l/

- g fi4 dxl dx 2 dx3 =
c

r g

	

dxl dx2 dx3 -I- Ai ,

	

(107)

where A i depends on the gravitational variables at spatial infinity only .

Formally the gravitational field may therefore be treated as a canonical

system. But quite apart from the complications, already present on the "clas -

sical" level, which occur in the transition from the Lagrangean to the Hamil-
tonean form due to the different types of restraints (7) , we are faced with

the difficult problem of finding the correct order of factors in the transitio n

to a quantal description along the usual lines of quantum mechanics . Also

it should be mentioned that the division of Tik into a matter part and a

gravitational part is to a large extent arbitrary due to the fact that th e

matter tensor is the source of the gravitational field . By means of thes e

equations, a larger or smaller part of Tk may be eliminated in Ti k . If we

eliminate TZ entirely, we arrive at the simple and convenient expression (12 )

which depends on the gravitational field variables only .
For the total momentum and energy of the system, we then get

Pi - ~ S Ti4 dxl dx2 dx3 =
IS

S
xi4),

A dxl dx 2 dx3

which, by means of Gauss' theorem, may be written as a surface integra l

depending only on the gravitational field variables at spatial infinity .

5. Transformation Properties of Tik and ti k

The energy-momentum complex is a tensor density under linear trans -
formations, only . We shall now investigate the transformation propertie s
of Tik and ti k under the most general space-time transformations . To thi s
end, we consider an arbitrary vector field ai (x) and the antisymmetrica l
tensor density

(106)
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ç~kl = ~lk = V ~ `1 (Cf
n, yn- am, n) gkm g.l n

a i (x) = gik a k (x) .

Further, the vector density
c~k = .k l
7~

	

,l (109)

which, on account of the antisymmetry of Wkl in k and 1, satisfies the di-
vergence relation

(110)

for arbitrary vector fields ai (x) .

As remarked by KoMnR (8) , the vector density k is closely related to

the complex Ti k . In fact, if we let the contravariant components of the arbi-
trary vector field ai be constants ei in a definite system of coordinates, w e

have by (108), (109), (12), and (13 )

rk _

	

V - g

	

km ln

	

i kl

	

i
z~ - E :

x
(gin, m- giyn, n) g g

	

s xi = s Ta

	

(111)

For an arbitrary vector field a i (x), we get on the other hand, sinc e

i

	

z
an, m- a gin, m+ a m gin ,

ç~kl = ai x kl ai m b 2 kl m

where b i kim is the tensor density of rank 4 defined b y

bikam _ b ilkm	 g (Sk gam_ ål ?in) .

Hence, by (109), (112), and (12) ,

	

a i Ti k + ail (xi
bikm'

m) - ai m bl

	

a'n

	

(114 )

Nov, consider an arbitrary space-time transformation (x i ) ->- (x 'i ) with

ax'z

	

axi
(x) xk, ak (x) a x ' k

rk
2s. k =0

(113)

(115)
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Since 2k is a vector density, we have

Z) 'k= l a l al Ts'
l

	

äl
al{

a
r T rk

+arm(ir
trn_ br)_

arm
> n b rtm n

where ä I = det { äk } is the determinant of the matrix äik . If we choose the

components

	

in the primed system to be constants £ i , we have

_ E i T ' k
UU

	

z

a r = aiE 2

arm- am ä $, gE v

r

	

s

	

-r

	

i

	

t` r
a , m,n -am,n ai,s E +am an a i, s,t E '

(116)

(117)

where
a2x r

-r
s

	

ax'z ax , ' '

a2 x, s
s

am, n a x m a xn'

a3 x
r

s, t= ax'i ax's a x't'
(118)

Introduction of (117) into (116) gives, since the constants ei are arbitrary ,

the following transformation law for the complex T :

T'k = k-
l ak äm

Tmt-1-
ä

at
k { är a

s
(
ir

tm
- b inm n)-(ä 8,1 ams atn +ä z

r
, s

asm
,

)
b r

tmn
) ( 119)i

	

Z i

	

i, s rn

	

r

	

z,

	

n

The last term on the right-hand side of (119) represents the deviation from

the transformation law of a tensor density . For linear transformations, where

K s -4 s, t = 0, this term is zero, in accordance with the fact that Ti k is

an affine tensor density . Moreover, for the purely spatial transformatio n

(15), we have

ax r
a 4 - a x r4 a4

	

a4, s 0 '

T= ä cck T
i

4

	

4

This equation shows that the fourth column of the matrix Tik transform s

like a vector density under the transformation (15), a property which wa s

the starting point in our derivation of Tik in (4) . The apparent distinction

of the time direction revealed in this property is not surprising, since th e

densities of energy and energy current in this description are connecte d

with the "time column" of Ti k . Actually, if a is any fixed value of the in -

(120)

(121)
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dices 1, 2, 3, 4, the atlz column Ta lc will also transform like a vector density
under the transformations

x 'a =xa,

	

= fi (xk ) with i� a, k� a ;

	

(122)

for, in that case, we have

r ax ra

	

= S r
ax'a

	

a

Tåk =aai T å
But, for a � 4, this property does not lend itself to a simple physical inter-

pretation .

Since the matter part V-g T of Tik transforms like a tensor density,
we get for the gravitational complex t i k defined by (10) and (11) the trans-
formation law

1'.k = ak
GL m t a

-I Xk
a r as l

hr
_ h lam ) - (C[ r as a t + år as ) fi dmn

	

(1 `%4 )
z

	

a z m

	

l

	

i, s "m ir

	

r

	

n

	

s, t m n

	

z, s m, n l

By means of (108), (109), and (111), one finds a convenient explici t
expression for t i k in the following way. First, we may substitute the usual

derivatives an, rn in the antisymmetrical expression (108) by covariant deriv-

atives
an, m

which are tensor components . Hence

~kl = Y g (al ; k- ak ; l )
x

ak = ~kl l = 7 _ g re/V_ g] ;1 = V g (ah k 1-ak ; l l) .

	

(125)

Then, we use the commutation law for repeated covariant derivations :

l ; k
=

a l ; k - R ak a i = (al )'k -a
;a

	

,

	

i a

	

,R

k a i

where Ilium is the Riemann curvature tensor, and Rik is its contraction .

By (125), (126), and the field equations (2) we therefore get

and

(126)

z̀~k= V- 9'Txai -~ gRå~az+V - g [(
2 l), k

- (ak ; l) ;
a] '

(127)
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Now, choose the a i equal to constants ei ; then, according to (111) ,

k = s i Tik
= V - g ( Ti + t i k) EZ~

and, by a simple calculation ,

(a l l) ; k _ (ak ;
i ) ; l

_
L(ril) k - (rit glm ), m -ran ~ml gmn - .rnzr2n glnl

ez

Therefore, since the ei are arbitrary, the equations (127), (128) yield

(128)

(129)

(130)

with
k

	

l, k

	

k , l rk lm

	

im n

	

pm k ln
t(ril) - (rii)

	

il (gm + g rmn) - rin rlm g
and

(rkl)
m

= (rki), n gmn •

fk differs from t i k by a tensor. Thus, the transformation law (124) hold s

also for €k .
By (10), (13'), and (71) tik satisfies the conservation law

(V - g

	

- ( 1/ - g g n), k = - 2 gkl, i
Tkl

	

(132)

in any system of coordinates . But, as is well known, one may always in

an infinite number of ways introduce systems of coordinates which are
geodesic at a given point 0 in 4-space, i . e ., systems in which the first

order derivatives of the metric tensor vanish at the point O . Then, at 0 ,
which we shall take as origin of the geodesic system, (132) reduces to

(131 )

i . e ., the conservation law is of the same form as in a system of inertia i n

the special theory of relativity . Geodesic systems of coordinates are there -
fore often called local systems of inertia . However, the complex t i k is not in
general zero in a geodesic system and, as we shall see in the last section ,

it seems appropriate to use this denotation only for a certain restricted clas s

of geodesic systems . In a general geodesic system, we have at the origin ,
according to (129), (131), (113), and (13),
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t i k = - å R / 2 + îif

îi = (TIP-- (rt), a

xika
= 0

	

bikame = O .

Let us now assume that the coordinate systems (x i ) and (x 'i ) in (124) ar e
both geodesic at the point 0, which means that the first order derivative s

of the äk must be zero at 0, i . e . ,

äm ,,(O) = O .

	

(135 )

We shall further choose

ak (0) = bk

	

(135 ' )

which does not imply any essential restriction . In that case, the transfor-

mation law (124) at the origin 0 of our geodesic systems takes the for m

k _ . k ~r (0)

	

kmn
t i

	

t i

	

ai, m, n t) .7.

Here, äz, m ' may be any set of numbers symmetrical in the indices i,
in, and n .

The question is now whether the coefficients äÉ (m°) n can be chosen such
that the ttik become zero at 0. It is easily seen that this is not always possible,

for the diagonal sum ti e is obviously invariant under the transition from on e

geodesic system to another . In fact, we get from (136)

(136)

ti i = t i i , (137 )

since the last term in (136) vanishes by contraction of the indices i and k
on account of the symmetry of äz,m,' and the antisymmetry of b r im' in the

indices i and in .

Further, since by (134) ,

t % _ (110' i (110' a = 0

	

11

	

(138)
tii = - 2 Rix ,

it is clear that a transformation (136) cannot make t ik zero, unless the cur -

vature scalar is zero at the point O . On the other hand, since ÎZi = ti = 0

and the transformation equations (136) hold also for t2 , it seems always

possible to choose a geodesic system in which all components tik vanish .

In the following sections, we shall see that this is really the case for a

large group of geodesic systems, the "locally normal" systems of coordinates .
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6 . Normal Coordinates

Among the coordinate systems which are geodesic at a given point 0, th e
normal coordinates introduced already by RIEMANN for 2-dimensiona l
surfaces, play a distinguished role . They are defined as follows . Let (x i)
be an arbitrary system of coordinates . Then, the geodesics may be define d
by the equations

d2xi

	

i dxk dxa

d ~2
+ rxa

dA d ~

=

0 '

where the parameter . is defined only up to a linear transformation . For
all geodesics, except the null-lines, 2 is proportional to the invariant 4-distanc e
s. Now, consider all the geodesics passing through the point O . They are

i
defined by the vector tangents at 0 with components ß i = d~ (0) . In a cer -

tain finite domain around 0, there will be only one of these geodesics passin g
through a given point P . We may therefore characterize this point by the
four numbers

i
xi

= ßi (lp- 2a), ß2 = d~ (0)

which are the normal coordinates of Riemann . They are uniquely determine d
since they are unchanged by a linear transformation of the parameter 2 .
If P approaches 0, the line joining 0 and P defines an infinitesimal vecto r
at 0 with the contravariant components dxi and dx i in the two systems o f
coordinates, respectively . Obviously, we have at 0 d. = dx i , i . e ., 4(0) _
and the components of any tensor are identical in the two systems at th e
origin O. Thus, for instance,

(139)

(140)

gik (0) = Six (0),
0

Rikam (0) = R ikam (0) (141 )

In this way, a uniquely defined normal system x i is connected with every
x i-system . An arbitrary transformation of the x i-system (x i ) --> (x 'i) ob-
viously induces a linear transformation (Xi)-, (x'i) of the adjoint normal
systems . The normal systems of coordinates are as close to the rectilinea r
systems of flat space as possible in a general Riemannian space . From their
definition it follows that any geodesic passing through the origin 0 is de -
scribed by a linear parameter representation in normal coordinates, i . e . ,

x i - ß i (a, - 20)
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with constant ßi . Thus,

d2xi

t n.
= ßEx2 l( 2' d

= 0

and, by means of the equations (139) written in normal coordinates, we ge t

rxi (x) x k xi = 0

	

(142)

at all points in 4-space . The equations (142) or the equivalent equations

ri, xl () xk x i = 0

	

(143 )

represent a sufficient and necessary condition for the system of coordinate s
to be a normal system .

By repeated differentiations of these equations, one finds, as shown in
Appendix B, the following values for the derivatives of the metric tenso r
at the origin 0 :

	

g ix,i( 0 ) = 0

	

a

	

0

	

1

	

I
m (0) = g'im, i, k (0) _ - [Rilink (0) + Rimlk (0 )1

	

b } (144)

g ix, 1, m, n (0) = 3 [R iixm ; n (0) + R imkn ; l (0) + Rinki ; m (0)]

	

c j

where Riimk (0) is the Riemann curvature tensor at 0. In a small surrounding
of 0, we have the following approximate expression for g ik (x) :

	

gik (x) = gik (0) +
2 g

ik, 1, m (0) xi xm i 3~ gik, 1, m, n (0) x i xm xn

	

(145)

with coefficients given by (144) . The linear terms are lacking, since a nor -
mal system, according to (144 a), is a special type of a geodesic system .
By means of (12), (13), and (144), we have at the point 0

T .xv	 g km i n
z

	

3
(gin, m,

	

g im, n, g g

V- g

	

km in
3 x (Rimin +R ilmn - R inlm Rilnm) g g

--
v- g Rilkl = - ~/-gg Rkli-gTZ_ 1j/

- RBi .x

	

2 x

1

	

(146)
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Here, we have used the symmetry properties of the Riernann tensor and the

expression for the contracted curvature tensor .

A comparison of (146) with (10) and (134) give s

°k - _ R kli

	

S i2 xx

tik- 0

at the origin of a normal system of coordinates .
Similarly, we get at 0 by (12), (13), and (144 )

° k, r

	

(g
y	 	 °

	

l n
` %; in , m,h r-gim,n,1,r)

9 km

(147 )

- V	
g(Rinml ; r + R ilmr ; n + R irmn ; Rimnl ; r- R ilnr ; m- R i rnm ; l) g

km gln

(148)

3 x

On account of the symmetry properties of the Riemann tensor and the Bi-

anchi identities, this may be written

T i 1> r - - 2
~3 Kg(Ril1Ll;

r Rirlk; l )

Further, we have

Rirlk. l = Rlkir . l - - Rlkrl . i
_ Rlkli

; r - Rr ; i - Rk r •

Thus, at the origin of a normal system, we hav e

- -
4v3

;g (Rik ; r- Rkr ; i )`ri>r2

	

•

In accordance with (13 '), the right-hand side of (149) vanishes on account
of the contracted Bianchi identities if we put r = k and sum over k .

7. Locally Normal Coordinates. Local Systems of Inertia

in Empty Spac e

The normal coordinates (x i) considered in the preceding section ar e
uniquely determined by the conditions (141), (142) . Usually, however, one
is interested only in systems of coordinates which are locally normal, i . e . ,

(149)
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where (142) is satisfied only approximately in a small region around th e

origin. In this connection, one can distinguish between locally normal sy -

stems of first order, second order, and third order, according as to whether

only the first, the first and the second, or all three equations (144), respectively,

are satisfied. The locally normal systems of first order are obviously just

the geodesic systems . Starting from an arbitrary system of coordinates (xi ) ,
the locally normal systems of n'th order may be obtained by a transformatio n
of the form

xi = Pln) (x),

	

(150)

where Poo (x) is a polynomial of degree n + 1 in the coordinate difference s
xi - 4 with suitable coefficients . Here, (xo) denotes the coordinates of th e

point 0 in the (x i)-system . As shown in Appendix C, the locally normall y

systems of order 2, for instance, are obtained by the transformatio n

x2 = x2,- rkl(0 ) (xk --xp) (xl
-x0) + Bklm(0)

(xkx
0) (xl-x0) (xm - Pon) (151 )

with

i

	

1

	

i

	

z

	

i

	

r

	

z

	

r

	

x
B klm = [ I kl,m +rlm,k +rmk, +rrk

z
l lm +rrl rmk +1 rmrkl ]

If we omit the last term in (151) we get the usual transformation leading t o

the geodesic systems .
Let us now first consider a domain of 4-space where there is no matte r

present, i . e ., where

Ti =0, R -0, Rik r -O .

In that case, we have, according to (10) and (130) ,

T i k = V-gtik , tik= ii

In empty space, it seems natural to define a local system of inertia as a

system in which not only the metric tensor is locally constant to the first
order, but in which also the complexes Tik and 1ik vanish at the origin. From

this point of view, only normal systems of at least second order should b e

called local systems of inertia, for only in such systems we have, accordin g

to (146), (147), and (153) ,

Tik (0) = t i k (0) = i ik (0) = 0 .

	

(155)

(152)

(153)

(154)
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If the system considered is normal of even higher order, tik is also locall y
constant, for by (149) and (153 )

Tr= tik r ° 0

	

(156)
at the origin .

On the other hand, inside matter where Vic , Rk, and in general also R
are different from zero, we have by (147) in any normal system of at leas t
second order

fi k (0) _ -di`R(0)/2x .

	

(157 )

Thus, the gravitational complex t.ik does not vanish, unless Tz = Rix = 0 as ,
for instance, in the case where the matter is a purely electromagnetic field .
Moreover, from the considerations in section 5 it follows that it is not possibl e
at all to find a geodesic system in which tik vanishes exactly . Only the com-
plex fik can in general be transformed away completely by introducin g
locally normal systems of second order . Inside matter, these systems thus
hardly deserve the name of local systems of inertia . In a subsequent paper ,
it will be shown in another connection that it is more natural to reserve this
denotation for a class of systems which are only approximately locally
normal systems of coordinates .

Appendix A
From (62), (64),

xhrrl

	

(~Îglmt+2glm7Îm),l

	

(A 1 )

with

a ap

i° V- g, im
a xm

we get, for arbitrary variations of gik ,

åfi =sl ågi +grSS S ~1 +3gr à29k+ 3 ml àglm +27?l, åglm +2g.ak ~rli , k • (A2)

Differentiation of the relation

1
~yl = - 2 ~i glm ~ g

l m

yields

(A 3)

8ylk = - [(z7glm),
Sgam + y1 glm aglkm ] (A 4)
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1
6

71 i, k=- 2
L01 U im), i,

k å Ulm+
(~7 9'lm), k (5 9'i m + (~13'lm), i~ gk+ Uim a 917,1] •

After introduction of these expressions into (A 2) and some rearrange -

ment of terms, 6I) may be written

r 1
8 _ ~] 2 (6i 6m 18i Sin) - gik Ulm S 9imic

+
[32

(m 6m + a l y]m) - 2
Ur

r 'I Ulm - 2 grk
yl Ulm) .

r] 8 U lk

Hence, by definition ,

_

	

= 2 ni,
m_

U rs (?? Ulm), r, 8

	

(
n go?) .

r Us - 2 rl Ulm Ur, s

	

(A 7 )

aUk
2 (bi1m + 1il s rkre) 3 Urry1 Ulm

2 Skr
(11 Ulm), r

	

(A 8)

+ { 2 im_Urs (y~Ulm),r,sUs s (n Uim), r-2i UlmUrss ~
3 1m

(A 5)

aI
=Uli k -

-1

2
(616m+8i S m) - U 2k Ulm • (A9)

These expressions are easily seen to be in accordance with the identities (66) .

From (A 9) we get, using the relatio n

yli =- 2iUimUi m '
ik

= [~7Ui -~7g
ik

UlmU
l
i
m
i,k=

[1
79

iik +9~Uik
k =

(A 10)

(All )

which shows that the last term in (74) is zero . Further, by (A 8) and (A 9) ,

aa ~krn -I ag~~` r =ôi~9m+ yll
6

kn2Ur r Uim9kr (
1
1Ulm),r

,

\

	

i ,
.

[

al')	 a	 	 lm-
2 Ui

kl

	

kr

	

l m

a U lk -~
a gr,~, r

Ui

	

~7l + Ur

	

Ukr (~7 Ulm), r Ui ,
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3 3

/ al)

g k r~

. ivrm =
[~

a 2 (a l aim + a l am) gi
r~

glm
gkr

(77 glm), i g r
l

lm m l
(113

)

= grr ii + 2 gkriir gkr (y1
girt),

i g rm .

~

Thus, we gel for the quantity Ak of (74),

[- ir

	

im + ni
glm gir

m
- (g lm, r g

l
i
m
- gim, i

l m
g im gi

	

ylgr y =0 , (A 14)Ak =

on account of (A 10) and the relation

= 9
,
1s gi lg t m

which follows from the equation

gil g kl = a k

by differentiation .

Further, we have

aI)
g in =

L
ry? (a r arse + am

	

gim g rs gryn
agism

	

2

	

(A 17)

_ 17 gm + 2 gin' a?m % h rrl

	

J

which by (75) leads to the expression (76) for Kk 1 .
Finally, we have to calculate the quantity Bk 1 defined by (81) in the

text . For the first term we get by (A 12)

(A 15)

(A 16)

[

	 af)

	

ar)

	

g
k n

a gin

	

\a gZi,tm , m~

ai
nn

+ ni an _
2

gir
Î gin - gir (n gin), r g

kn

= ai
gkn

in + Îi gkl -
12 ak n grr glm

(Îrn gin + I gin, m)
9,k n

for the second and third terms by (A 9 )

a r)

	

kn = 9
al a m + am al

	

im

	

kn ~ al km +

	

kl + lm

	

k n

	

a g in~- gm

	

7( v n

	

i

	

) -y1 g gin gm - 2 i gm

	

j gi g ~7 gin,m g >

_ 3 [fa
	 a ~

/

gkn = -
3

2

(ai a
n

+ am an) gkn - glm ~7 gin
gkn] ,

	

\ g l

	

m

	

m

=- b ai(27e rn),m-(g gki),i + 3 ak glm) ,

Mat . Fys. Medd . Dan. V id. Selsk. 31, no . 14 .

	

3



34 Nr . 1 4

Hence ,

x Bi l= 2 å
i
(77 gnm + 2 gkm

m) - 2 å
i

(~79 1m +2 qlmm)+3åi (rlglm), m

- 6 å
i(

y/ gkm ), m +r/i gkl + 2 gi l - 6(rl gkl ), i

A 18)

Bil - Bik = åi hr rk - r5k hl rl +
2

1 [615x
( 71 glm)

	

gkm)],
m• (A 19)

and

On the other hand, we have by (6), and (7) in the tex t

sikl - silk 9 hZ kl + ~l [åi (n
gkm) - åi (n g.lm

)
j , m

~kl V=g

	

kn lm in k m
2h~

	

g in (g an g - g m g )+ åi _ (n2 glm),
m åi (r/ 2 gkm), m I

Hence, by (64), (80) ,

kl - kl si lk

	

kl

	

lk = Y'/	 g

	

kn lm

	

in kmUi - si

	

+ Bi - Bi

	

- g in (gm g - gm 9' )

	 g

	

km in

	

k l
(gin, m g i,m, n) g g - i ,

where xi kl is given by equation (13) in the text .

Appendix B

A system of normal Riemann coordinates in 4-space is characterize d

by the equations (143) which have to be satisfied at each point . Hence ,

omitting the ° over the symbols, thus writing xi, g ik, . . . instead of

	

gik, . .

1 i, rs (x) x r x s = O .

	

(B 1)

If we differentiate this equation twice with respect to x k and x l, and here-

after with respect to xm , we get the following two equations :

A 20)

(ri, rs), k, l (x) xr xs + 2 L(ri, kr), + (ri, lr), k~ xr + 2 ri, kl (x) - 0

	

(B 2)



Nr . 14

	

35

(ri, rs), k, 1, m (x) x r x s + 2 [(f, m r), k, l -I- (ri, k r), 1, m + (ri, l r), k, m] x r

(B 3)

+ 2 [ (ri,km),l-I-(ri.lm),k+(-ri,kl),m~ - 0 •

For the values of .ri, kl and (ri„ ia), m at the origin 0, we thus get, by puttin g

x i = 0 in these equations,

ri,kl=0

	

(B4)

Aiklm

	

S (I i, kl), m (ri, kl), m + (ri, lm), k + (ri, mk), l - 0 .

	

(B 5 )
(klm )

Here, as in the following, the symbol S in front of a term containing the
(kim )

indices k, 1, and m means addition of the two terms obtained by cyclic

permutation of these indices .
Similarly, one finds, by differentiation of (B 3) with respect to xn and

afterwards putting xi = 0, at the point 0 the relation

Ailmnk + Biklmn = t) (B 6)

A ilmnk = S (ri, am ) , n, k
(lmn )

B iklmn S (ri. ka), m . n •
(lmn )

with

The equation (B 4) is equivalent to

g ik, ° 0

showing that the system is geodesic at O .
The Christoffel symbols are defined b y

ri,k1 - 2(gik,l +gil,k - gkl,i )

Introduction of these expressions into (B 5) gives

1
Aiklm - S gik, l, m - 2 S gkl, m, i- 0 ,

(kam)

	

(kam )

which is equivalent t o

2 Aikim + Akilm = 3 g ik, 1, m + 32 (g il, k, m + g im, k, l g lm, i, k) - 0 .

(B 8)

(B 9)

3*
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Hence, since gik, 1, m is symmetrical in i and k,

gik, Z,m - - (ri, lm), k - - (rk, lm), i' (B 10 )

Similarly, we get for Aitmnk and Biklmn in (B 7), after a simple rearrangement

of terms,

A ilmnlc - S rn, n,k 2 S g lm, n, i, k•
(lmn)

	

(Iran )

3

	

1
B ikimn = 9 gik, 1, m, n +

	

S [gil, m, n, k - gkl, m, ra, i l •
(lmn )

Since the last term on the right-hand side of (B 11), as well as the first ter m

on the right-hand side of (B 12), is symmetrical in i and k, we ge t

Biklmn Bkilmn - S [gil, m, n, k gkl, m, n, i] - A ilmnk A klmni

	

(B 13 )
(lmn)

On the other hand, we have by (B 6 )

B iklmn - Bkilmn - (A ilmnk Aklmni) ,

which means that these differences must be zero . Hence, by (B 12) an d

(B 6),
2

	

2
gik, I . m . n - 3 Biklmn - - 3 Ailmnk

(B 14 )
2

	

2
gik, l, m, n

	

3 S (ri, lm), n, k

	

3 [(ri, lm), n + (ri, mn), 1
+

	

nl), mi, k
(lmn)

	

)

At the origin 0, where (B 4) and (B 8) hold, the Riemann curvature tensor

Rikim and its derivatives arc now given by

R iklm

	

kl), rrn - (ri, km), l

R iklm ; n - R ikim, n - (ri, kl), m, n - (ri, km), l, n •

Hence, by (B 5), (B 10) ,

Rilmk + R imlk - 2 (ri, lm), k (j i, kl), m - (ri, mk), l
= 3 (ri, lm), k

and

gik, 1, nt = 3 (Rilmk + Rimlk)

(B 11 )

(B 12 )

(B 16)
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Similarly, by (B 15), (B 6), (B 7) and (B 14) .

S Rilkm ; n - S [(ri, kl), m, n (ri, lm), n, k] =

	

2 S (ri, lm), n, k
(lmn)

	

(lmn)

	

(lmn)
and

gik, 1, tin n = 3 S R)ilkm ; n = 3 [ Ridkm . n +Rimkn ; l ±Rinkl ; m1 •
(lmn )

The equations (B 8), (B 16), and (B 17) are just the equations (144) use d
in Section 6 .

Appendix C

We shall in this Appendix consider the transformations leading fro m
an arbitrary system of coordinates xi to a normal system xi with origin a t
a given point O . Put

x2 = f' (x),

37

(B 17 )

a xi_	
a x k

2
ak,1

	

ax k
å

xl'
. . .

a 2 xi

2 - a
XI'

	

a2
x 2

ak a xk ' ak . l
a xk a xl

CI )

xi = gi (x) ,

i

	

zi 1

	

i
al CCk = a1 ak = 'lc -

By means of (C 2), the Christoffel transformation formula e

°/x) =

	

+ 4
i ~ s

a k a l
t
r

r
st (x)rkl

	

ar a7c . l
may be written

4, l H- Tst (xm ) åk åÿ = å1 rkl (x) •

	

(C 3 )

if we multiply this equation by PP, we get by Eq. (143) in the text the
following differentio-functional equations for the functions g i (x)

a2 i

	

a 9,8 axkxl
a x°ka x°l +r st(gm(x))

a x°k axl =0 .

	

(C4)

Four independent solutions of (C 4) satisfying the conditio n

i

gi (0 ) = X0, a xk
(o) = ak

define the transformation to normal coordinates .

(C 2)
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If we are interested in locally normal systems only, we need not conside r
the values of gi (x) in large distances from 0 . From the inverse relation (C 3) ,
i . e .,

at, 1 (x) -1- I' st (x) ak (x) aT (x) = ar (x) rk1 (x)

	

(C 5)

we get at 0, remembering that 4 (0) = åk and 1'k 1 (0) = o ,

4(0) =PÎcl( 0)

	

(C 6)

which, apart from a factor 2 is identical with the coefficient of the quadrati c
term in the transformation (151) .

Now, differentiate (C 5) with respect to x m :

4,1, m(x)+h st,r (x) am ak al +rst(x)(ak,mal+k a i, m )

= air, m 1-'Ta (x) ar I kl, m (x)

	

(C 7)

At 0, this give s

4,1,m(0)+I k1, m(0)=aer,m(0)rlcl( 0 ) +rk1,m(0)• (C 8)

Thus, since ak,1, m is symmetrical in the indices k, 1, m, we get, by (C 6)
and the equation

"'km (0) + r 1m, k ( tl ) + I'mk, (0) = 0

	

(C 9 )

valid in a locally normal system (see (144 b) and (B 5) in Appendix B) ,

at,1,m(0)_

	

s [rkl,m(0)+ r rm( 0)T 1(0)]

	

(C 10)3 (kam )

which is identical with the coefficient Bklm (0) in the transformation (151) .
Thus, the latter transformation leads to a locally normal system of the secon d
order. Proceeding in this way, we can by further differentiations of (C 7 )
and subsequently putting xi = 0 derive expressions for the values of stil l
higher derivatives of ak at 0 and, thus, determine the coefficients in th e
higher order terms in the polynomial Pin) (x) of Eq. (150) which define s
the transformations to the locally normal systems of arbitrarily high order .
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