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Synopsis
The process of K-ionization of atoms by heavy, charged particles is analysed

by a semi-classical, time-dependent perturbation method . Non-relativistic wave
functions are used for the atomic electrons . The deflection of the bombardin g
particle in the Coulomb field of the target nucleus is shown to play an important
part in the calculation of cross sections in the low-energy region of the projectile .
Numerical calculations of K-ionization cross sections for protons turn out to b e
in good agreement with recent light-target experiments . An estimate is made o f
the effect of using relativistic electron wave functions in the present perturbation
treatment . The method developed is further applied to the pair-production proces s
caused by slow protons impinging on a heavy target element .
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1 . Introduction

T
he ejection of atomic electrons by impingement of heavy, charged par-

ticles (protons, deuterons, a-particles) is followed by the emission o f

the characteristic x-radiation of the target . Recent measurements have given
more accurate information about this effece 1-4) . The experimental cross
sections turned out to deviate greatly from the values given by the existing
theory .

The theory of the excitation of atoms by slow, heavy, charged particle s
has been considered by MOTT (5) , BETIIE 0) and HENNEBEBG (7) . The last-
mentioned author has performed extensive calculations of the K-shell ioniza-

tion cross sections . He used the Born approximation, i . c . plane waves for

the incoming particles and Coulomb wave functions with respect to th e
nucleus for the electrons, treating the interaction between the projectile and
the electron to first order . A partial justification for this procedure was given

by HENNEBERG M , and also by MOTT along somewhat different lines (5) .

This question will be treated in detail in sections 2 and 3 .
If we accept the above assumption of HENNEBEBG, the differential cross

section for ejection of a K-electron with the final energy Ef is given by

	 =	 5T z2	 dq
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(1 .2)

Here, Z 1, MI and El are the charge, mass and energy of the bombardin g
particle ; q is the momentum change of the projectile, q o its minimum value .
The electron wave functions are denoted by v . The summation in (1 .2) i s
extended over all final electron states .

HENNEBERG used non-relativistic Coulomb wave functions in (1 .2) . As

it became clear that there was considerable discrepancy between the theory
1*
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and the experiments, JA.MNIK and ZUPAN6I0 81 repeated the calculations wit h

relativistic wave functions for the electron . The relativistic increase of the

electron density near the origin resulted in an enlargement of the cros s

section for heavy elements . For elements in the middle of the periodic table ,

however, the relativistic corrections were small s .

The deviations mentioned above may be due in part to the fact tha t
the approximation of HENNEBERG does not take into account the Coulomb

repulsion between the impinging particle and the nucleus . The most recent

observations seem to support this idea(2, 3, 4)The repulsion prevents parti-

cles of low energy from getting close to the nucleus and may thus be expected

to give rise to a cross section smaller than predicted by the above-mentione d

theory . It is the purpose of the present work to investigate the energy regio n

where this repulsion effect can be expected to be of importance .

Later in the work it will be shown that the decisive parameter in thi s
connection is e = dqo, where d is half the distance of closest approach i n

a head-on collison and q o is, as before, the minimum momentum transfe r
of the bombarding particle . For values 1, ionization cross sections
much smaller than the predictions of the earlier calculations may be expected .
Only in the limit Œ «« 1 can the Coulomb repulsion be neglected and the

plane-wave procedure be considered valid .
It is just in the low-energy region, where the great divergences from th e

earlier calculations are found, that a classical treatment of the projectil e

is justified. The condition for such a treatment is (cf. § 1 .3 of ref . 10)

2 Zi Z2 e2

~ivl

where Z2 is the charge of the target nucleus and vs the velocity of the incom-

ing particle . This enables us to take the Coulomb repulsion into accoun t

by choosing an appropriate path for the projectile .

STEPHENS and STAUB(11,
12) recently reported measurements of the cros s

section for pair production by slow protons impinging on a tantalum target .

They found values smaller by a factor of over a hundred than the predic-

tions of first-order Born-approximation calculations (13) . This too may be du e

to the deflection of the proton in the Coulomb field of the nucleus . The

phenomenon is briefly considered in the last section of this work .

A summary of both the experimental and the theoretical aspects of x-ray production
by heavy, charged particles is given by MERZBACHER and Lawis in Ilandhuch der Physik 3 4
(1958) 166 .
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2. Approximations Used in the Treatment of K-ionizatio n
by Heavy Particles

The character of the process of K-ionization by heavy, charged particle s

depends on the relations between the four inverse lengths k, a, , and qo .

Z2e 2 n7Here, fik is the momentum of the ejected electron and a =	
t2

the invers e

K-shell radius . The parameter 1/d is the inverse of half the distance of
Zl Z 2 e 2closest approach in a head-on collision, d =

	

E

	

(cf . sec . 1). For the
2 1

minimum momentum transfer q o of the bombarding particle we have ,

provided dE « i,

Z 2 e4mwhere Ef is the kinetic energy of the ejected electron and ( E B =	
2

h2 is

the binding energy of the K-electron .
It is of interest to notice that the relative values of d-l , qo , and a are largely

determined by the parameter x . Thus, if we define o as the value of =
d qo for 4 E = EB , we have

1 m
da=

4Z1 N11 xz '

Z IIi

	

3
s~o

= 4 71 ) 1~1
x

da
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4Z1

o

	

golma x

For the above-mentioned quantities one has the following four possibili-

ties-corresponding, in the order mentioned, to increasing energy of the
projectile- :

1 11)

	

-< a

	

m<d

	

x> 2

	

1 Zi

	

(2.5)
qo

F.
qo=

~i a

4E= Ef +EB

and

(2 .2)

(2.3)

(2.4)
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This corresponds to a projectile which is unable to force its way into th e

K-shell . If Zl < d, we even get d E E,, so that ionization is impossible .a

2)

	

g<d< 1 , 2 Vm1x i 4 Zi ; (>l) .

	

(2 .6)

For such energies the projectile is able to penetrate the K-shell, but th e
ionization probability is very strongly affected. by the Coulomb deflection .

d<
1
-<

1
-, x>4Z1 ; (e<1) .qo

In this domain the Coulomb deflection still plays a part . (It is shown in the
present work that the earlier calculations (cf . refs. 7 and 18) are in principle
correct for

	

-> 0 .)

d<
1
-< 1 , x~<4Z 1 .

q o

Here the ionization process cannot be handled by semi-classical methods .
The relevant treatment is the one given by BETHE in his article on the passag e
of heavy, charged particles through matter, cf. ref . 6 .

In the present treatment we consider especially the energy domains 2 )
and 3) . We shall therefore assume in the following tha t

qo <<
1 .

	

(2 .9)

As will be seen later, the calculations are considerably simplified whe n

(2 .7 )

(2 .8)

k «1 .
qo

(2.10)

The condition for this inequality to hold true is nearly the saine as the
condition for (2 .9) (cf. eqs . (2 .5), (2 .6) and (2 .7)), namely

x>> 4Z1 ,

	

(2 .11 )

which is seen from the inequality

k

	

21nkv 1

	

2 mkvl 2 Z1 '_

	

(2.12)qo h (a2 + k 2) < ht 2 a k = x
.

Later it is shown that the majority of the secondary electrons are ejecte d
with energies much smaller than the K binding energy, i . e .

k<< a .

	

(2.13)
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TABLE 2 . 1

Element

	

Z 2

	

I El (keV) x ~u da

Fe

	

25	 1403 21 .8 0 .28 0 .05 1
13003 7 .2 0 .0094 0 .005 2

Mo

	

42	 240 3 26 .8 0 .56 0 .08 4
1600 2 10 .5 0 .033 0 .01 3
2400 1 8 .6 0 .018 0 .008 3

Pb

	

82	 19201 18 .6 0 .21 0 .046

1 See ref . 1 . 2 See ref. 2 . 3 See ref . 4 .

Besides, it should be noted that for the following perturbation treatment to
be valid it is a necessary condition that the charge of the projectile is muc h
smaller than that of the target nucleus, i .e. Zl « Z2 .

Table 2 .1 shows the various parameter values for some of the case s
experimentally investigated by proton bombardment .

3 . First-order, Time-dependent Perturbation Treatment of th e

K-ionization

We want to deal with the ionization process in such a way that the
Coulomb deflection can be taken into account . This may be done by a
semi-classical perturbation treatment . We express the problem in impac t

p \)/\

\

	

(t )

////
Fig. 3 .1 . Classical picture of the impact process .
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parameter form and treat the interaction between the projectile and th e

electron as the perturbation .
The differential cross section for the ejection of an atomic electron wit h

the final energy Ef is given by the general expression

d~ 2 z
dEf Ï22

Çpdp

o
Here, p is the impact parameter and co = 4E/h . In the following we shal l

dteiw t < f I V(r,
01 1 >

!.- co

2

	

(3 .1 )

consider interactions of the Coulomb typ e

e 2
V =

	

	 	 (3 .2
)

rR(t)

r is here the position vector of the electron and R (t) that of the incomin g
particle .

a. The cross section for straight-line paths of th e

incoming particle s

(i) A general theorem

We first consider the case where the projectiles follow straight-line paths ,

that is, we disregard the Coulomb repulsion of the bombarding particles b y
the nucleus. The cross sections thus obtained are exactly the same as those

z

Y

Fig. 3 .2.
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9

found if one employs the previously mentioned plane-wave method, dis -
regarding the deflection of the bombarding particles by collision with th e
electrons (cf . also ref. 14) . This is shown mathematically in Appendix I ,
but can also be seen from the fact that the cross section (1 .1) for a bombard-
ing particle with a given velocity v l is independent of its mass. The mas s
may therefore be infinitely great, and thus the particle may be treated in a
classical way .

We place our coordinate system with its origin at the nuclear centre o f
mass and its z-axis in the direction of the incoming particle . This particle
moves in the y-z plane as illustrated in fig . 3 .2 . As shown in Appendix I ,
the cross section is then given by

da

	

2 illl e 4 (,ø

	

2

dEf
=4RZ1

El h 2J
1pdp1M

p1
(3.3)

M 2, = dz2p ~ zpf eiga2K
o(90e) •

K0 is the modified BESSEL function of the third kind and zeroth order, an d

e2 = x2+ (p y) 2 .

	

(3 .4)

(ii) The matrix element for emission of K-electrons
From eqs. (3.3) we are now able to derive the cross section for K-electro n

emission for a fixed value of the impact parameter, (daK!dEf) 2, . For the elec-
trons we use non-relativistic Coulomb eigenfunctions in the form given b y
ALDER and WINTHER

(15 )

The details of the evaluation of this matrix element are given in Appendix
Il, b. By a rather lengthy procedure one reaches the following result :

Mp(1,
no =

i_mP(213)
o 1-1)(I-m)!

11 2

	

P 1 3

	

(1+m) ]
(

	

2 )

X -
2

Ni Nf' kkz

sco

di tm+1
Jm (p t) s1- m 2 cln

m2
(go )

0

	

s

x (a+ i (s - k))- (2 z+2) F2 O ..

In (3 .5), Ni and Nf' are energy normalization constants ; 1 and m denote
the angular momentum quantum numbers of the final state in the con-
tinuum ; s is defined by

(3.5)
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s2 = gô+ 12 ; 0<1< go ,

and Gmm2 is a Gegenbauer polynomial .

F2 {}=F2{21+3, 1 +1,I+1 +iri,21 +2,21+2 ;a + 7 (s -k)' a +i(sik lc)}
(3 .6)

is an Appell function, which is a hypergeometric function of two variables .
In sub-section (ii) of Appendix II, b it is shown tha t

	

F2{}= 1	

x	
a- i (

1s + k) {( in)(a-ilc) 2F1 (1+ 1,1+11 in, 21+2 ; a
-2

+
4
(s

sk
+ k

+(l

	

+i,)aa++ i(

(s

s

+

k
)k) 2

F1 1+1, 1+2+in
'

21+2 ; 	
4sk

	

ai

	

~

	

a2 + (s + k) 2
2

Here, i - Zi2u = - k (minus sign because we are dealing with negatrons) ;

v is the final electron velocity, and 2F1 ( ) are ordinary hypergeometri c
functions .

Up to this point in the development no approximations have bee n
introduced .

In the following we shall restrict ourselves to cases where the inequali-
ties (2 .9) and (2 .10) are fulfilled. Under these conditions, the contributions
to the matrix element MI, (l, in) in eq. (3.5) from 1-values larger than zero
become negligible. The F2 0 function is then considerably simplified . As
sketched in sub-section (ii) of Appendix II, h, we arrive at the resul t

G(k)= (a +i(s -k))-3F2{ }

_	 i

	

(a+ i (s- k))in-1

2s lm (a+i(s+k))in+l 1 •

An expansion of G in powers of k/s and a/s gives

3

	

2
G=s a (1_ '7)+(a) -(- 19+5åc2)+---J .

Since

m+1j 2
T ,

2

	

-1 =	 go -~	 2-y

o

	

(P 1) ( 1

	

qo)~`

	

r (It + 1) Km-t‘ (P q o)

	

(3.10)

1 ra - i (s +lc)1 (t+l ) (a i (s+k))-(1+1+ z~)
+l a+i(s -k)

	

a +i(s -k)

3 .7 )

(3.8)

(3 .9)



(see ref . 16, 7 .14.2, eq. (59), hereafter quoted as H . T. F.), we have from

eqs . (3.5) and (3 .9)

yIp (0, 0) ' 2 N2 V
f, k

gô
(P g0)2 K 2 (p q0 )

	

(3.11 )

and consequently

4 2
Ml 6 Z

dEf,

	

z El 2 2 a,23
Ni

	

Nf

	

2

qo
(p

(704
(K 2 (p qo))2,

	

(3 .12)

where ao is the Bohr radius .
Fig . 3 .3 shows the variation of I Mp (0, 0) I 2 with the impact parameter .

The greatest contributions to the ionization probability are seen to com e

1
from impact parameters for which p

	

.
qo

The expression (3 .12) contains only the leading term in a development

in powers of . From (3 .10) it may be shown, however, that also highe r
qo

terms in the cross section (corresponding for instance to higher terms i n

(3.9) or to higher 1-values) exhibit a similar dependence on p .

1
9 0

Fig . 3 .3 . The probability of ejection of a K-electron as a function of the impact parameter p

for straight-line orbits . The area under the curve P I Mp 1 2 shows the contributions to the total
qo

1 1cross section from the various p-values . It is assumed that (( . The calculations are valid onl y
1

	

q o
for p((a .
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Since the Coulomb deflection becomes large for impact parameters o f

the order of or smaller than the distance of closest approach d
= ZiZ2 e2

2 E1 '
this deflection must be expected to be of importance when d is not very

1
much smaller than

q o

Up till now we have assumed a << qo, corresponding to the cases con -
sidered in eqs . (2.6) and (2 .7) . In the opposite case of qo a, the expansions

employed above are no longer valid, and, moreover, the semi-classica l

methods break down, cf. eqs . (2.8). The velocity of the projectile is in
this case larger than that of the K-electron ; therefore we may apply con -

siderations from the stopping-power calculations extensively treated b y

BETHE in ref. 6 .

The total cross section for emission of K-electrons with the final energ y
Ef is given by

dak
= 2 ~ Çp dp da

K

dEf str . 1 .~

	

dEf. p

Using an integral formula given by LOMMEL (cf. ref. 17, p . 136), we deduc e

(do-
K'\

	

25
z

2 Ml e 4 Z2

	

2 0, x 11 2

\ dEflstr . 1 .
5 Z

t El
li e aô

Ni
Nt

	

qo o

This is exactly the same formula as the one derived by Huus et al . (18 by
means of the Born approximation .

Eq. (3 .12) also enables us to calculate the cross section for K-ionizatio n

by particles scattered through a small angle, B << 1, since this cross sectio n

is expected to be the same as that for a straight-line path with correspondin g

impact parameter . (See fig . 3.5 and the explanatory text to that figure . )

We have
0)4

d
cotg

(dax

d~/

	

=
dS~

(dax
~E

/
fl -	 o	 (Ki (cotg-)) (3.14)

str . 1 .

	

f /

d a R /dSQ is the differential cross section for Rutherford scattering, an d

d 2 2 1Vfi

	

e 4 Z2

	

x 2

4

	

E

	

1
~2 2 a

I Ni 12 I N
0, 1

	

i

	

o

	

f

	

qô

(3 .13)

(3 .15)
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The cross sections (3.13) and (3 .14) have been labelled with the index str .
1 . because they are derived on the basis of a straight-line calculation . The
expressions are expected to be valid in the limit

	

O .

d6KIn fig . 3 .5,

	

is given for = 0.2 . In the same figure it is shown
cu.? /str . 1 .

how the angular dependence is influenced by the Coulomb deflection, a s
calculated below .

b . Cross sections for hyperbolic paths

(i) General procedur e

In the following we shall calculate the cross section for emission o f
secondary K-electrons, taking into account the deflection of the projectile .
We shall confine ourselves to the monopole term in the potential, assumin g
that term to be the dominating one fora « qo as in the case of the straight-
line integrals . We then have

(3.16)

daK 2+L 2
Z1

2
e

1

4 1 d e
dEf - h2 d

	 1
R (t)' r

< R

1
f, , r~R

2

1'x d t e z `o t<
il~

.t l

where e is the eccentricity of the hyperbolic path of the incoming particle .
For this path we use a parametric representation previously employed by,
among others, TER-MARTIROSYAO s) :

x = d (cosh tv + 8 )

y= d V e 2 - 1 sinh w

z= 0

R= d(e cosh i.U + 1 )

t = d (e sin h w + av) .
U1

Inserting for the electronic wave functions in eq . (3 .16) the integral represen-
tations given by ALDER and WINTHER 15) we get
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h2 d 2 Z l e 4
dEf

lt'i l 2 lNf 'k l 2 \ede
~d1

11
1

co

X
~R

R r2 e- rb + ~ d l' l' e- rb J
_t, 0

	

eR

2

~

	

1
I'ri)+iri) Ç,olx

Here,
b=a - ik +2 iku .

	

(3.19)

The integration over r is easily carried out, yielding for the factor in squar e

brackets in (3 .18)

2

	

e

	

7%

	

2
IR =Rb3-b2(1 + Rb .

The integration over time is more complicated . Using (3.17), we have

	

((''00

	

m

	

2

	

bd(scoshw+l)

	

2 l

	

v, dte1C0t IR =1dul{v3 	 b2	 (d(ecoshw+1)+bl~
(3 .21 )

	

-

	

-

x e i e (e s inh w + w )

As shown in Appendix II, c, the integration leads t o

Ib = 4b 3 e 2Ki(e 0 - 2b- 2(d+2b-1)é bd(bd +

(bd - i ~

/( bd +i$)''2+1
/

x ~ E ~/b2d2+db-2e-bde) (
bd

	

K
i$+1` e ~/b2d2 +~2 )

	

(3 .22 )
1l

	

-i ~

(bd+I~
2

K(evb2 d2 + 2 ) ~
bd - )

	

z 1

	

1

Ib=2b
-3 2e

2(E)_e
bd (bd+i~) Zz

{

	

bd -i~~
(3 .23)

(3 .20)

or

I/b
x L(2 + b~2di~)

	

l
hri~(e

V
i/b2d2+ $2)+	 zb2 2dZ 2

	

( £~~b2d2 +
~2)l}

.

	

d+~

	

is 1

Up to this point the development is exact .
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According to a multiplication theorem for the Bessel functions (H.T .F .
7 .15, eq . (19) we hav e

Ky (E lIb2 d 2 +e)
(1/b2

d2 + ~2) v
(3.24)

As

( Eb2 d 2 n 1 Kv+n(E0
2

	

v+n

	

n !

and
Ibld,L, da,

this expansion is fast converging, provided the inequality (2 .9) is fulfilled .
Applying (3 .24) to (3 .23), we deduc e

Ib -2e

	

b-3 { 2If i6. (E5) - é bd(1 -bd)
~

/

r

	

2 2

	

4 4
x 12 +

bd

b
~ie) I~~~ (E e) bd a ie 2 e

	

+i (E )

	

(3 .25)R

	

b2 d2

	

4

	

E 11
+(-2+	 	 d4	 2	 v

	

bd-ie)

	

3$2x:e+2(E~) + - - - -Jl ,

where we have written explicitly terms arising from the expansion (3.24)
with n < 2 .
Since

(1_ bdl =
ie

I

bd 2 ie bd 3 iE

	

bd 4ebd 1+ 2 (z) +3(i
e
)+~8)(i~)+

we obtain by inserting this expression into (3 .25) and taking into account
that lb Id^ da««1

b 3 Ib ,� 2 e

	

kn En

	

+ n (E e),

	

(3.26)
n =lè

where
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k0=
b3

~d

3 b4 d4 ( Z

32

	

e2 2 e
-

4

h4 d4
ki = i	

2V

b4 d4
ko = 4 ~ 2

b 6 d6
k3

	

12e

(3.26, a)

k = 2n_ 1 n' (- b
Z 2)n

(valid for n > 2) .

We can now carry out the u-integration (see eq . (3.18)) byl using an
integral representation of the ordinary hypergeometric function (H .T .F .
2 .12, eq . (1)) . In the general case the result of the u-integration is given b y

('1

	

i
0 ( 1- u ~bn du=(a ik)n 2I 1 (3 2n, l+irk, 2 ; ik2ka) ; (n>2) .

	

(3 .27)

For the majority of the ejected electrons, k <K a (cf . eq . (3.13)) . This enable s
us to perform a confluence, thus getting

I~=2 e --7'2 5

	

k
n= 0

with

k0 = -

s

d3)13 d

	

da

)~2

	

2
a.

d4

k1 = i
a e2

' K-ie +n (E) (3 .28 )

> (3.28,a)
k 2 =

) 2

p1
d 6

3Iî3=
3Ge

31
9 a

d4

1 n-1
0(3-2n, 2 ;

	

2)
~ d2

a2 lnk n =
a 2n-1

	

~n !

0 is here the confluent hypergeometric function .

n > 2 .
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da 4Z1
As

o
= x , we see that for sufficiently high values of x, (3 .28) may

to a good approximation be written as

IE =2e

	

d32+ad
4
.2 4

.+E22 1 )
J

Ki(e $) +a - sli-i+i(E e)I . (3.29)

This equation will be useful in the following discussion of the angular
distribution .

(ii) Angular distributions of the scattered projectiles after ionization

Equations (3.28) and (3.29) for le give a direct expression for the depend-
ence of the cross section on e, i .e . on the deflection of the incident particle .

First we let the hyperbolic path of the incoming particle degenerate int o
a straight line, i .e . we put e »» 1 in eqs . (3.17), which corresponds to keeping
the impact parameter fixed, but letting d -~ O . Eq . (3 .28) is then replaced by

Lstr . = 2
n = 2

en l. (e0 ) , (3 .30)

where k 2 , k3 , . . . . are given by (3 .28, a). This result is obtained in a straight -
forward manner by application of the integral formulae given in Appendix
II, c . The terms in (3 .30) correspond exactly to the terms in the straight -
line monopole expansion, the first of which is given by (3 .11), since for
e»»1wehave e ~pg o .

It is also useful to consider the opposite extreme case e = eo 1 . Thi s
corresponds to ionization by particles scattered in the backward direction .
Putting

K i~+1( e $ ) =

	

Ki $ (E $)-Ki(e$)

in (3 .29), we have

IE 2e 2 3Ki~e(s)-s

	

K(e)~•

	

(3 .31 )

We shall furthermore evaluate (3 .31) for the case of « 1 . Here we may
use the approximate expression s

Kie (e,~) -ln(e,

Ki
,

	

1
t(ec5) ~,

ec S
Mat .Fys .Medd .Dan .Vid.Selsk .31, no .13. 2
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From (3.31) we then obtain

1E 2 e 2 ~ 2
d 2

	

d2
{31n (Ee e) + e2a}

= 2 e 2e 1

	

+ d
- hi(e e) .

q ô qô 3

	

~ }

The dominating term in this formula corresponds to the
main term in the matrix element for a particle moving on a
straight-line path with the impact parameter zero . This i s
immediately seen from eq . (3 .12), considering tha t

lim ((pgo)2 K 2 (pqo)) = 2 .
140-- 0

From a physical point of view this was to be expected since
the monopole effect considered does not depend on the di -
rection of the outgoing particle . Moreover, for « 1 the
region of deflection (- d) is small compared with q tV, the
quantity characterizing the interaction with the electron .
Thus, the approach to the straight-line excitation probabil-

ity, for « 1, is to be expected not only for backward scattering but fo r
any scattering angle .

Quite generally we define
	 la	

y =

	

(3.34)
e z ' Istr . d .

since, in many cases, the main deflection effect is contained in the facto r
exp { - 2-7' e . For particles scattered in the backward direction (e = e, 1) wit h

sufficiently large

	

and « 1 it is easily seen from (3 .33) that

4
y=1

+ 3 Zi ~m~(x)
21n(eC

1

	

Mi (4E) 2y = 1+ 12 Z1
m

j,l ln (e~ ~) .

we have

	 L~+2( e s)

	

_1
- K2 (e e) -

	

2 e
(see p. 204 of ref . 20) .

(3 .33)

or

For e») 1 and < 1

(3 .35)

(3 .36)
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The case »1, s = 1 may in principle also be handled by the aid o f

asymptotic formulae for Ki$ (0), $ )» 1 . Such formulae are found in Chapter 8

of ref. 17 . We stress the fact that these considerations are valid only for suffi -

ciently high values of x . For smaller x, more terms in (3 .28) must be taken into

account. The results of the above analysis may be used to modify the angula r

distribution found from the straight-line approach in (3, a, (ii)) . Choosing

= 0 .2 and a x-value of 25, we obtain for a-particles a result which i n

fig . 3 .5 is compared with the corresponding curve for (dO K/ dSQ)str . a .

(iii) Total cross section s
The total cross section for emission of a K-electron with definite energ y

can be obtained from (3 .28) by an integration over the eccentricity . Using

one of LommEL's integral formulae (ref . 17, Chapter 5), one obtains after
an elementary but rather tedious integratio n

I= ds•sIIE l 2
J

=4e-' (- )cis 2(K2(~))2 +B~Kzg(s~)K2y(~)+C(K'(~))2} .

A, B, and C are polynomials whose number of terms depends on the number
included in (3 .28) .

The convergence of the expressions for A, B, and C depends, as see n
from (3 .28), on the parameters da and , which in their turn maybe expresse d

in terms of x (cf . eqs . (2.2) and (2.3)). For sufficiently large x (x , 30
for protons) a rather good approximation may be obtained if one neglects
terms in (3 .28) of higher order than n = 2 . For the coefficients A, B, and C

one then finds

	

A = 4	 da 8 (	 da)2

	

9	
$ 2
	 + 5

$
2

_ 1 da 8 da 2
B 9 $2 5 (

$
2

_ 1 4 da 8 da 2
18 - 9 $2 15 $

2

	

(da

	

3
MI- 64 Zl m x4

.

(3.38)

2*
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904

10 3

10 2

10

10

	

20 30 40

	

50 60 70

	

800

---e (degrees )

daK
Fig . 3 .5 . The angular distribution,

d Q

	

	 , of a-particles after K-ionization (curve A) compare d
da

with the corresponding curve for straight-line orbits,	 K

	

(curve B) . The ordinate is in ar-
bitrary units .

	

dQ str . .

	

2
The angles for the straight-line curve are determined from the relation e 2 = 1 + - between

1
the eccentricity e =	 and the impact parameter p . Thus, pqo = cotg 2 .

sin -
2

	

do'

	

e 4
The dotted curve C is proportional to the Rutherford-scattering cross section

d5- = 4
ds

da
and has been normalized so as to approach	 K

do

	

for small p .
str . 1 .

The curve denoted daK /d-2 includes Coulomb-deflection effects (cf. the text) . Consequently ,
the ratio between the curves A and B in the region of small angles is given by the factor e- .27 .

The dotted part of curve A represents the region in which the approximation formula e
for the Hankel functions break down .
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For smaller values of x, higher terms in (3 .28) may have a significant
effect . However, for x 30 one may utilize the fact that the third term in
eq . (3 .37) (the one including C) is greatly dominating . For A and B the
approximation (3 .38) is then sufficient, but for C one must take into accoun t
terms in (3 .28) in which n > 2 . The general expression for C is given by

with

Thus,

a
1 4 da 1

	

d 2 az) m + i

	

C 18 9 V T $2

	

a m e 2
m= 0

(-l)m

	

~(i+1)2(j +1 )=	
2 (m+5)

	

J
i + j = m

xØ( -1-2 i, 2 ;-2)O(-1-2j,2 ;-2) .

8

	

152

	

8 406 1
5

a l =

	

9 , a2= 5 63 '
(3 .39, a)

f

	

(3.39)

It should be noted that the term
8 (1 2 in C (eqs . (3.38) and (3 .39))

corresponds to the dominating term obtained from the straight-line calcula-
tions (cf. eq. (3.13)), provided we use the approximate expressions (3.32)
for the Bessel functions in (3 .37) .

The general expression for the cross section for ejection of K-electron s
is given by

dux 2
dEf

=
~22

d 2 Z2 e 4 1
111i 1

2
I

1Vf 'k 1 2 Ul I,

which can also be written in the form

~F -

	

(d6K/dEf)str . i . ( 1 - f(, 0),

where (dax/dE
f)str . i . is the dominating term in the cross section for straight-

line paths given by eq. (3 .13) . The correction factor f (x, 0) can then be
found from (3 .38) and (3 .39) .

As the coefficients kn in (3 .28) are calculated under the condition k «< a ,
the most consistent procedure is to use f (x, C0) when calculations are made
on the basis of (3 .41) .

(3 .40 )

(3 .41)
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However, in the cases considered, the difference between f (x, Co ) and
f (x, e) is of no importance. In the domain of large x-values the main
correction to the cross section arises from the factor e'e, in which on e
should insert the value of C appropriate to the electron energy considered .

c. Symmetrization of the cross section s

The above semi-classical treatment of the K-ionization process depend s

on the condition x j» 4 Zl and in addition requires AE<E l . If the value
of d E/E l is not very small compared with unity, one may obtain a sig-

nificant improvement of the semi-classical expressions by choosing symme-
trized values for the parameters d and C which enter in these expressions .

The problem is analogous to the one considered in the case of Coulomb
excitation of nuclei, and the symmetrizing procedure may be justified i n

the same way as for that process, cf . ref . 21, sec . II, B6 .
The symmetrized parameters d and e are given by

ds Z1 Z2 e 2
(3 .42)

1171 Ul v2

or

e - Z1 Z2 e2 1 1

tt

	

U2 U l )

ds =d(1 4 E1
2

El,
1

s

	

2El((
1

4E)

	

2
1

)~ ~4E

	

- E1

	

.

Here, U2 is the velocity of the projectile after the impact .We also defin e

4 and do by putting LIE = En in the symmetrized equations .

d . The effects of screening and finite nuclear siz e

The screening of the Coulomb field of the nucleus by the atomic electron s
may interfere in two different manners .

a) The incoming particle is moving in a screened Coulomb field rather tha n
an unscreened one . The orbit described in (3 .17) is therefore not quit e

correct . On the other hand, we are only concerned with those energies o f

the incoming particles for which d « 1 / a . This means that the motio n

(3 .43)

(3.44)

(3 .45)
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in the region of considerable screening is already nearly unperturbed b y
the field of the nucleus . The screening effect is thus negligible .

b) The electron-in the bound as well as in the free state-is moving in th e
screened Coulomb field . This case is treated in the following ways :

1) The electron gets additional energy from the repulsion by the othe r

electrons . Although this energy is relatively small as compared with th e

K binding energy, it is of some significance owing to the great dependenc e

of the cross section on . However, we may take this effect into account

by using the experimental ionization energies in the expression for J E _
EB +Ef rather than the theoretical, unscreened ones .

2) The change of the wave functions by the screening potential falls int o
two parts :

a) The so-called internal screening effect is taken into account by the us e

of the screened nuclear charge Zr ZZ2 - 0.3 rather than Z2 in the expres -

sions for d6K/dEf . This is obviously a small correction .

ß) The effect of the outer part of the screening is a rather smooth change

of the potential, appreciable only for distances larger than 2Z113 (see
2

Chapter 2 of ref . 22) . Clearly, such a change is rather negligible for th e

initial states, where the wave functions extend only to distances of about 2 .2
For the final-state wave functions we may again argue that in the inne r

region, which determines the transition matrix element, the wave functio n

is approximately equal to that for a free Coulomb field, except for the normali -
zation factor. However, to the extent to which the penetration through th e
screened part of the field can be treated in the WKB approximation, th e

normalization in the inner region is determined directly from that chose n

in the asymptotic region and does not depend on the potential in the inter -
mediate region. Thus, the use of pure Coulomb wave functions for the

continuous states seems to be rather well justified . From such an argument,

one expects the normalization factor to be affected by a factor of the order
1

of 04, where 0 is the ratio of the observed to the unscreened bindin g
energy. However, since this correction is rather small compared with that

arising from the change in $, it is neglected here .
Finally, we consider the effect of the finite nuclear size . This effec t

influences the electronic S wave functions in the neighbourhood of the

nucleus . However, the effect on the matrix elements for ionization is very
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small since the characteristic distances in the radial integrals are of th e

order of the larger of the two quantities 1 and d. Under the conditions here
qo

considered, the characteristic distance is many times larger than the nuclea r
radius, and therefore the change in the electronic wave functions caused
by the finite nuclear size is small. Moreover, this change vanishes in th e
non-relativistic approximation .

e . Discussion and comparison with experimental cross sections

The present treatment of the ionization process has one feature in commo n
with those of HENNEBERG (7) and of JAMNIK and ZUPAN60 8) . In all three
treatments the cross sections are obtained as series developments in th e
quantity ofqo . Accordingly, the evaluated formulae can only be applied t o
experiments where the inequality (1 .3) is fulfilled, i .e . where the energy o f
the incident particle is so small that a fq o is less than unity . The other approxi-
mations involved in the three methods are such, however, that they may b e
said to have somewhat different regions of application .

The relativistic effects in the electron wave functions, which are im -
portant in the heavier elements (see below), are dealt with in the work o f
JAMNIK and ZUPANCic only .

The advantage of Henneberg's calculations is that he succeeds in trans -
forming the expressions for the cross section so as to give a rather fas t
convergence up to 4 qo qo - 1 .

The present method is evidently most favourably applied to the regio n
of small energies, where the Coulomb deflection is of importance .

For bombarding energies so great that a is close to q o , one thus expects
Henneberg's formula to represent the best approximation, but with decreas-
ing energy the Coulomb deflections rather soon become significant (for

12 Z1) . In the transition region where these effects begin to pla y
a part and where ofqo is still not very small, none of the available treat-
ments are very reliable, since as yet no estimate has been made of the de-
fection effects for the higher multipole transitions .

The relativistic effects have so far been considered only for straight-line
orbits (8) , for which it is found that correction terms of the relative order o f

2

(Z2 C) 2 åo arise in the monopole matrix element = c is the fine-structure

constant) . An extension of this treatment to the case of curved orbits leads
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to integrals which are difficult to evaluate, but it seems reasonable to expec t
a similar correction. Thus, a rough approximation to the relativistic straight -
line cross section may be obtained by evaluation of the expression (11) o f
JAMNIK and ZUPAN6I6 (8) for the monopole excitations to lowest order in a / qo* ;

one finds that in this case their integral I is proportional to

(a
2(y+1 )

1 qo)

2
(l+å(1) i) ,

where
y =j/i-( 4- Za) 2 (3 .46 )

å 2(3+2y) g
5+4y 4

(y = 1 corresponds to the nonrelativistic case) .
By multiplying the cross section deduced from (3 .46) by the appropriat e

curvature factors found by the non-relativistic methods (cf . (3 .41)) one
expects to obtain an approximate value for the cross section also in th e
case of heavier target elements .

In figs . 3 .6, 3 .7, 3 .8, and 3 .9 the calculated cross sections are compared
with the experimental data . From (3 .41) we obtain the differential cros s
section, from which the total cross section for K-ionization is found b y
graphical integration, allowance being made for the fact that there ar e
two electrons in the K-shell . Moreover, the formula (3 .41) is modified s o
as to take the screening into account in accordance with the prescription s
given in sec . 3, d.

For the lighter elements, the theoretical values agree rather well wit h
the experiments and are seen to represent a considerable improvement o n
those for straight-line orbits . The agreement appears to extend to x-values
as low as about 12, for which the a/qo corrections are rather large and for
which the accuracy of the present theory is therefore questionable .

For the heavier elements (Mo and Ag) the experimental values appear
to be significantly in excess of the theoretical estimates, but it seems likel y
that the deviation is to be attributed mainly to relativistic corrections, which
are expected to enlarge the cross sections for these elements appreciably .
A simple estimate of these corrections, obtained in the manner describe d

* In eqs . (14) of ref . 8, which must be used for this purpose, there is a misprint . In the
equation for q m the numerator in the coefficient of the second confluent hypergeometric function
should be 4 m + 2 instead of 4m .
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Ei aeV)
Fig . 3 .6 . K-ionization cross section for an iron target as a function of the proton energy . In this
and the following calculations, five terms in the series development (3 .39) have been take n
into account . The dotting of the theoretical curve indicates the energy region in which th e
convergence of the series becomes slow and in which higher multipoles in the interaction ma y
begin to contribute significantly .

For comparison, the values obtained from HENNEBERG'S expression (as evaluated b y
MESSELT l4l ) are shown .
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Fig . 3 .7 . K-ionization cross section for a copper target as a function of the proton energy . For
further details see the text of fig . 3 .6 .
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Fig. 3 .9 . aK for a silver target as a function of the proton energy . The relativistic effects are
here more pronounced than for molybdenum .
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above, is seen in the figures ; it appears to improve the agreement with expe-

riments considerably .

In consequence of the domination of the monopole terms, the angular distribu -
Lion of the ejected electrons should be approximately isotropic .

For higher bombarding energies (a ) 1 the angular distribution of the ejected
q 0

electrons should in principle be evaluated by the methods of MnssEY and Morin
(cf . ref. 23)* .

4. Pair Production by Slow Protons

The cross section for pair production by protons impinging on tantalum

was recently investigated by STEPHENS and STALiB(" 12 Their proton
energy was El = 1 .5 MeV . The cross section was found to be less tha n
2 . 10-32 cm 2 and thus smaller by a factor of a hundred or more than th e

value predicted by Born-approximation calculations as made by HEITEE R

and NOBDHEIM 0' 3 I

One observes that the x and o values corresponding to this proces s

are about 19 and 3 respectively. The use of methods analogous to the on e

applied to the K-ionization should therefore be justified .
In the present energy region we may carry through the calculations

by taking into account only the electrostatic interactions between the parti-

cles (see ref . 13) .
Considerations analogous to those in 3, b, (i) lead to the conclu-

sion that only contributions from S-states play a part in the calculatio n

of cross sections . This is due to the smallness of the parameter k/q o ,
where k is now any of the electron momenta . One has for sufficiently
small values of El

k ~ qo <

/4E1	
m
ml (d E - 2 Inc')

Mm (1 -
2Ea

z
)«1 .

(4.1)

4 E

The cross section for pair production is then given by a formula com-

pletely analogous to eq . (3 .16) . Following simple hole-theory arguments ,

* Note the misprints in this reference.
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one inserts for the final and initial states the Coulomb wave functions fo r
an electron and a hole in the continuum . By using integral representation s
of these functions( 15) one gets

where

(4 .2 )

da

	

2 gr
d(E E )

vd2 e4 {N+ 1 2 1 N_ 1 2 ~Ed E
• 1

(d7ei'''	 1

- iT_) I' (1 + in_) I'(1 - irp +) I' (1 + in+)

4 E
w

h

b - ik_+2ik_ u

ik+ +2 ik+ v .

and

Following the procedure given in 3, b, (i), we obtain a formula identical with
(3.23) . This formula is valid on conditions similar to (2 .9) and (2 .10) .
As, in the cases of interest, is of the order of magnitude one or larger ,
only small values of e will contribute to the cross section . In the case con -

sidered here

b~dt
kZ1 Z2 e2 kZ1 Z2 e 2 4 E

E1

	

2A E2

	

E 1

kZ1 Z2 e 2 4E 1

	

4 E
~ 2 . 2 mc2 E l 4 Zl Z2 ßel Ei

«

I
C

	

137 '
ßel

-
- U C I .

Because of this inequality only the first term of kô in the equation corre-
sponding to (3 .26, a) will be of importance. The u and v integrations ar e
then trivial . (In the case of the general term ben , an F2-function will enter . )
The e integration is now easily carried out, giving

do.

	

2n d2 e4

	

ds

	

~
d(E+E_)

_	
vi I N+12

~1v
1

2 2
é9~' -K¢~(~)

1
~ .

(4 .4)

(4 .5)
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The expression (4.5) as a function of shows that the important contrib-
uting electron energies are confined to values much smaller than th e
K binding energy of the target . Thus the inequality

I ry'r t l> 1 (4 .6)
is well fulfilled .

An approximate formula for KiO can be found from ref . 17, sec . 8 .42 .
Then

	

da

	

Z2o
é

2,7z

	

d(E+E_) = Ci Ei S	
el6/3

	

2 4

	

Tc 6å 2 e2 7
L14i

	

Ci (3

	

(1))) ao

) 7

S=(1-e 2z

	

(e2'

	

a

ll

1

(ao is the Bohr radius) .
In order to obtain the total a we must perform the integrations ove r

E+ and E- . Because of the inequality (4 .6) we hav e

+
Z10 Emax

	

Vdmax
- Ci E9 ô E+ e- 2 ~ + E_ Î(

E+ ~ E )

	

(4 .9)

Here

and

(4.7)

(4.8)

with

f (,u (2 mc2 + E+ + E-))16 / 3

z2 .u =	
2E1 ß

e- 2 (2 mcø + E++ E- )

(4 .10)

Expanding the function f around E+ +E- = 0 and introducing the notation

nlc 2
Yl = 2 ~C6111C 2 = Z2 •

Y
S nEi , (4 .11 )

we obtain
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e- 2 ZY i

Yis
/
3

(1- å1 (E+

å1 = ~` (~Y1+3)

with (4.12)

Consistently with (4.12) we introduce the following values for the maxi-
mum electron energies :

1 -å1 E +
Emax -

	

å 1

1
Emax = ~

1

Although the expansion in E+ +E- may not always be very accurate ,
the errors involved are not serious for our present purpose of obtainin g
an estimate of the order of magnitude of the cross section .

The double integration can now easily be carried out, leading t o

2	 e2

	

Z22 é 2 rty ,

6=47c 9u
0 C1Ei~lYis/ 3

/

	

2
x {Il -V1WI2+I~2) I3

~ éx

	

2n a h
(=1,2,3) =~t x2a-I-1

dx ;
t

1/2mEm+ a x
2

W =S
7c2Z22a

0

A numerical evaluation by means of this formula gives a 10-48 cm 2
10-13 6Born• This result is indeed consistent with the experimental result s
of STEPHENS and STAUB . The direct curvature effects, 27 , give rise to a
factor of about 10 -10 in the cross section. In addition comes the factor
e+2 '7 + resulting from the use of Coulomb wave functions for the positrons .
Because of the inequality (4 .6) this factor, together with the possible errors
introduced through the evaluation of the integrals in (4 .9), accounts wel l
for the remaining divergence from the earlier calculations . Hence, the
conclusion is that, in the low-energy region, the Coulomb repulsion ver y
greatly reduces the cross sections for pair production by heavy, charge d
particles .

Mat. Fys .Medd.Dan .Vid.Selsk .31, no .13.
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Appendix I

The Equivalence Between First-order, Time-dependen t

Perturbation Theory and the Born Approximatio n

at High Energies

1 . Let the physical situation be as in fig . 3 .2 . It is then easily shown (cf.

eqs . (3 .1), (3.2) and (3 .4)) that

e~wt	 e"	

S:,ol,-E(t)I dt= vx2 +(p -tJ)2+(v1 t -z)2
dt

2 i w z

	

w
=--e v, K

Ui

	

o
\U 1

(see ref. 17, p . 172) .

Introducing the energy and mass of the projectile, we find

dĴ
-4~Zi El~2~ dzyf

	

(r)dz'zlf(?'')Vi (?'' )
f

	

((

	

((

	

liLO(z-e)lw~~° co

1 v
x e v,

	

~pdpKo -e)
p

	

U1

	

U1

(AI, 1 )

(A I, 2)
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In Appendix II, a it is shown that

r1 	 (go	`0dp loo (go e) Ko (go C) =
Ki

	

To2 g o
where

rÎ = (x - x ') 2 + (y - u' ) 2 .

The cross section may thus be written a s

da =2nZi 1IlI e2 1
S drfyiJdy~fyio~ga(z z')

	

r i )
dEf

	

E l hqo

2 . Within the range of validity of the first Born approximation the above
cross section is given by

	

1

	

kfe 4
=dEf 42

Z1111i
~i41ci

dS2

exp { i (kf n i - ki no) Re l vi (r) y'f (r) dre dT

	

1

xe-I•

(see ref . 24, Chapters 11 and 12) ; hi • h •no and kf li • nl are the initial and
final momentum vectors of the colliding particle . Re is its position vector
and dre the volume element in the bombarding-particle space .

By a theorem given by BETHE(6 ) this may be written as

4

dEf

	

i
= 4 Zi 1L1 4 k J

d r y~ i yif S d r ' I/ y) f

exp { i (kf ni - h i no) (r ' - r»
x SdcO e sinO e

	

	
I kf n l -ki no4

We choose the axis of the polar coordinate system in the direction o f
the incoming particle .

Fig . A I, 1 .

	

3 *

(A I, 3)

(A I, 4)

(A I, 5)

x
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kf n l - ki no 1 2 = kf+kZ -2ki kf cos 0 e

= gô + 2 k i kf (1 - cos 0e )

qo = k i - kf .

ßi=r r

Rl = (x x', y - y', z-z') .
Consequently ,

(kf n 1 -ki no)(-li) _ -(x-x')kf sin Oe sin

-(y - y') kit. sin0 e cos q) -(z-z') kf (cos Oe - 1)+(z-z ') q o ,

and hence

I= d g) sin 0 e d 0e
exp {i (kf ni - ki no) (r' _)}

I kfn l -ki no I 4

= e ig0

	

d cp sin 0 e d 0e

exp { i [ - kf sin 0e ((x -x') sing7+ (y - g') cos q)) -kf (z -z') (cos O P-1)] }

(qô+2 ki kf (1 -cos 0e) ) 2

From simple geometrical considerations this may be written a s

e igo (z-z')
d41 sin O e d0e

exp {i [-kfri cos q)isin 0e-kf(z-z') (cos 0e-1)] )
I =	 4	 S

qo

	

(1+2kikf

	

2
	 (1 - cos 0e)1

	

A I 1 1

	

lJ

	

('

	

)

l'1 = (x - x ') 2 + (y - 0 2 .
As

s
2 n
d cp l exp - ikf r1 sin 0 e eos g'1 =2a. To (kf r l sin 0e ),

	

(AI,12)
o

e ig° (z -z')

	

Jo(kf r isin 0e)exp { - ikf (z - z') (cos 	 0e-1)}
I=2 ac	 4

	

sin Oe d O e
qo

	

( l+ 2kf l_cos o« )

qô
)

The incoming particle is supposed to suffer little momentum change i n

the collision :

Then

We define

9,

AI, 7)

(A I, 8)

(A I, 9)

(A I, 10 )

x

we have

(AI, 13)

qå « ki kf .

	

(AI, 14)
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Putting in the denominator
02

-COSBe 2
and in the numerator

cos B e - 1 0 ,

we deduce the approximate relatio n

eig^ (z

	

z') Ĥ'~
2 7I~

	

B e dD e
Jo (kf rl Be) (A I,

	

15 )4
q0

	

e0
C

	

fli l f

1+

	

a 2 - B
e,

Using an integral formula given by WATSON (ref. 17, p. 425), we find

the following expressio n

27t e igo (z z') gô "'gdq .Io (go 	 rl J)

	

.'rr eig " (z-z' '

I~

	

gô

	 	 r i Iii (q o ri) .

	

(A I, 16)

Together with (A I, 6) this gives

d6

	

e 4 k

	

eig z

dL'f -
-4azZi~I it4k2 ~ dz ~i~f dr i~f go k

(

Zkf
' )z

j'i xi(go l' i)

Introducing the kinetic energy of the bombarding particle, we finally ge t

do =2zr ZiDI1 e~ 1
dr1Vi

	

dz'1Vi~lVfeigo(z-z')riKi(gori),

	

(AI, 18)
dKf

	

El yo

which is identical with the expression (A I, 4) .

A proof similar to this one was given by FRAME as early as 1931(14) .

However, he did not calculate the probability of ionization as a functio n

of the impact parameter .

Ic2
kf o

	

(1 + rd 2 ) 2

	

qo k i kf

(A I, 17)
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Appendix II

Mathematical Details of the Calculation s

a. An integral formula involving two modified Bessel functions
of the third kind and of zeroth order

The integral in eq. (A I, 3) can be written

I1 = PdP Ko(qoe) Ko(goo ') =dp Ko(goP) Ko(g0 j r1 pl ) . (AII, 1 )

The last integration is performed in the (p, T) -plane, where is the angl e

(P,? i) •

Using the relatio n

2'Ic Ko 001. 0 10 00 P) = ` K0 ( q 0 I El -E D

	

r 1 >p

	

(A II, 2 )
n

and the corresponding one for r1 < p (see H.T .F. 2, Chapter 7), we ge t

I1 = Ko (g o r i) S rPdP Io (goP) Ko (g o P) + Io ( g o ri) P dP Kg ( goP) = A+ B . (A II, 3 )
o

It is easily shown by application of well-known integral formulae tha t

rl
A = Ko (qo r1) (Ko (qo r1) Io (q o r1) + Ki ( q o r1) Ii (qo r1))

2 (A II, 4)

B = Io (qo ri) (It i (qo r i) - Kg (g o r1))

ri
A+B = Kl( g a rl)(Io Kl +Ko I1)

(A II, 5 )

or

	 I' 1
I1 2 go K1(go r1) •

b. Evaluation of the straight-line matrix element

(i) General procedure

When the non-relativistic Coulomb eigenfunctions are put into eq . (3 .3) ,

the p-part of the integration is easily carried out :
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3 9
„.7r

dT im q'
Ko (qo (r2 sin 2 0 + p 2 - 2 pr sin 0 cos (y)

1/2 )

.

=2r l
jl~m (qo r sin 0) Im (q op), r sin 0 > p

1Km (qo p) Im (qo r sin 0), r sin 0 < p

= 2z~ od t ~9+ 2 J,,b (pt)Jm (rtsin0)
q o

(see H .T.F. 7 .14, 2, eqs . (77) and (57)) .
Then

[21+ 1 (1-m) ! 1~2 1
1\'t p (1, m) 2~cNi Nf'(- 1)m 	

4~ (I +m!)] 2 j/ 27E

x SG°d t
of2+

2Jm(pt)~redrsin0d0e-" igorcos 0
q o

x Pi (cos 0) R i (~~ Jm (rt sin 0)

=i/7ti=in a, a= -Z2 .

The 0-part of the integral is given by

le = d O sin 0 e iga r cos Ø Pm (cos 0) J. (rt sin 0) .

	

(A II, 8 )
0

Introducing the Gegenbauer polynomials, we obtai n

iØ= ( - l~m~~m)fde(SlllO)m e iqu rcos Ø C m m m2 (COSe)J(l'tSlll 0 ) ~

(cf . ref. 17, p . 379, eq. (1)) .
Here

(A II, 6 )

(A II, 7)

with

( - 1)m(2111)!il-m~~27L(rS) 2 t ~ an Cm m 2

2 n1!

	

\ s i

o

	

(A II, 9)
gol Ii 1(sr)

s 2 = t2 + qô .
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From this we hav e

M p ( l , m) V ;-r IV iNf,x ~2nm
m)

I~
21~ 1( m )(1+ )

x dt 1 m+1 J( ts
m-

2
c

m +2 (Cto )

	

m p)

	

1-m s

	

`~ x

	

1

	

x 10

	

r -2 2e arJ

	

(l+2 `sl)ßt (r/2) .

Expressing the ordinary Bessel function J l + i (s r) in terms of a Whitt -
2

aker function, we obtain the following radial integral :

2-2a- 2i-1 -1 2 _ 1 ((''
Ir

	

T + 3
	 -S 2

1
dTe-" ltilo i+ ~(2isr) 111_1

a+
~

	

2ikr) . (A lI, 11 )	 (1	
2~

	

c o

This integral can be evaluated by means of a formula given by ERDÉLYI(25) :

.0
e-"

~ô,a +2 (2isr)DI
zr7 a +~( -2ikr)

_ (2is)' +1(- 2ik)a+l(a+i(s-k))

	

r(21+ 3)

2is

	

-2ikxF2 21+3, 1+1, 1+1 +i71, 21+2, 21+2 ;	
a +i(s - k)'a +i(s-k)j

Eq. (3.5) is now easily derived.

(ii) Simplification of some hypergeometric function s

1 . Using relations given by APPELL and KAMP1 DE Fi~.x1ET( 26 ), we find

a 1 F2 (al + 1 , fi, fi', av al ; x, y) - (al -- fi-- fi') F2 (al, ß, fi', a l, al ; x, g)

+ßF2 (al , f3+ 1, f', al, al ; x, y) +ß' F2 (a l, f, fi ' +1, al, al ; x, g)

_ ( 1 - x) ß (1-g)-ß {[(al-ß-fj')- (fj'-ß) (1-x)-1 1

x2F1 (ß' (1 ''al ; (1- x)(1- y ) )
	 xy	

) ~
+[(1x) 1 +(1 -~) 2Fl+1,al ; -

x)(1 - rg) .

1/2

	

AII, 10 )

A II, 12 )

, (A II, 13)
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Putting

(A lI, 14)
x=

a +i(s -k)

-2 ik_
g a +i(s -k) '

we deduce
1

	

a -i(s+k)-(l+1)

	

i(s+k)\-(1+1--i~p )

	

l'2

	

1+1()

	

(,z±

i(s-k)~

	 1	 1(-in) (a-ik) 2h1 (1+1, 1+1 +in , 21+2 ;	
4sk

x

	

9~ (A II, 15 )
a -i(s +k)

	

a2+	
(s+Ic)

	

(1+1.+i~) a	
a+i (s -k) j,i (1+1, 1+2+

	

2 1+2 ;	 4
	 sk	

+

	

)
~ .

a+ i
	 (s+4 2

	

a2 +(s+k) 2

2. According to H.T .F. 2 .8, eq. (9) we have

n~l ) znz( -in)=

((l +z)-i 'l -1) (_l i~) . (A II, 16 )

Using the analogous formula for 2F1 (1, 2+ in, 2 ; -z), we easily deduce eq . (3.8) .

c. Some integrals leading to modified Bessel functions
of the third kind and of complex order

In eq . (3 .21) we treat the terms in the integral separately .

In ~
dI.v ei Binh +

-cc

we make the transformation

av -> - ca ' ,
which leads to

II-2e 2Ki(e )

(cf. ref . 17, p . 182, eq. (10)) .

2F1 (1, 1+in, 2 ; -z)

(AII, 17 )

(A II, 18)
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I

	

dIU e
i ;= (esinhw +w) -bdscosh w

	

2

	

~ -0o

(A II, 19)

In

we put

e w = y .

12

- co dy e2 ((-y ( i~ ~ bd)
y

	

+bd) )

Making the substitution

we obtain

Hence,

2

	

ebd - I~)

i e

(bd
bd+ 2I

	

~Erb 2 d 2 +~ 2 )2 _

	

.

Then

y2(bd - = t ,

(A II, 20)

I-(2

	

cc ix dt	
e

( a-4c(b z ds
+s~4) )

(cf. ref.

The

17, p. 183, eq. (15)) .

integrals

I - S dwelhw+w0 w3
-x

(A II, 21 )

and
0 0

I

	

dLU
=

	

e
i$ (a sinh w+ w)-w- bd scosh w

4

may be treated in exactly the same way as I2 .

Thus,
1+ i_

bd -

	 	 ~

	

/
I3=2Ibd+is~

' 2
K-i i~l£ ~~

b2d2+s~ 2

1

-1 +

14 2
(bd+ i~\I 2

bd I~

	

(e j/b2 d 2 I~ 2 ) .

(A II, 22)

(A II, 23)

(A II, 24)
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