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Synopsis

The process of K-ionization of atoms by heavy, charged particles is analysed
by a semi-classical, time-dependent perturbation method. Non-relativistic wave
functions are used for the atomic electrons. The deflection of the bombarding
particle in the Coulomb field of the target nucleus is shown to play an important
part in the calculation of cross sections in the low-energy region of the projectile.
Numerical calculations of K-ionization cross sections for protons turn out to be
in good agreement with recent light-target experiments. An estimate is made of
the effect of using relativistic electron wave functions in the present perturbation
trealment. The method developed is further applied to the pair-production process
caused by slow protons impinging on a heavy target element.
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1. Introduction

he ejection of atomic electrons by impingement of heavy, charged par-

ticles (protons, deuterons, «-particles) is followed by the emission of
the characteristic x-radiation of the target. Recent measurements have given
more accurate information about this effect®™™®. The experimental cross
sections turned out to deviale greatly from the values given by the existing
theory.

The theory of the excitation of atoms by slow, heavy, charged particles
has been considered by Mort®, BETHE® and Hexneserc™. The last-
mentioned author has performed extensive calculations of the K-shell ioniza-
tion cross sections. He used the Born approximation, i. ¢. plane waves for
the incoming particles and Coulomb wave functions with respect to the
nucleus for the electrons, treating the interaction between the projectile and
the electron to first order. A partial justification for this procedure was given
by Hexneserc™, and also by Morr along somewhat different lines®.
This question will be treated in detail in sections 2 and 3.

If we accept the above assumption of HENNEBERG, the differential cross
section for ejection of a K-eleciron with the final energy E; is given by

dog _4a 4%§°° dq
dE; T R T E ), (-0

9
J=> . (1.2)
f
Here, Z;, M; and E; are the charge, mass and cnergy of the bombarding
particle; g is the momentum change of the projectile, g, its minimum value.
The electron wave functions are denoted by . The summation in (1.2) is
extended over all final electron states.
HeNNEBERG used non-relativistic Coulomb wave functions in (1.2). As
it became clear that there was considerable discrepancy between the theory
1%

S €Ly, (1) i (1) dr
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and the experiments, Jaunik and Zupanég® repeated the calculations with
relativistic wave functions for the electron. The relativistic increase of the
electron density near the origin resulted in an enlargement of the cross
section for heavy clements. For elements in the middle of the periodic table,
however, the relativistic corrections were small®.

The deviations mentioned above may be due in part to the fact that
the approximation of HENNEBERG does not take into account the Coulomb
repulsion between the impinging particle and the nucleus. The most recent
observations seem to support this idea® %, The repulsion prevents parti-
cles of low energy from getting close to the nucleus and may thus be expected
to give rise to a cross section smaller than predicted by the above-mentioned
theory. It is the purpose of the present work to investigate the energy region
where this repulsion effect can be expected to be of importance.

Later in the work it will be shown that the decisive parameter in this
connection is & = dg,;, where d is half the distance of closest approach in
a head-on collison and ¢, is, as before, the minimum momentum transter
of the bombarding particle. For values & > 1, ionization cross sections
much smaller than the predictions of the earlier calculations may be expected.
Only in the limit £ {{ 1 can the Coulomb repulsion be neglected and the
plane-wave procedure be considered valid.

It is just in the low-energy region, where the great divergences from the
earlier calculations are found, that a classical treatment of the projectile
is justified. The condition for such a treatment is (cf. § 1.3 of ref. 10)

PAVAL
= hor >, (1.3)
where Z, is the charge of the target nucleus and v, the velocity of the incom-
ing particle. This enables us fo take the Coulomb repulsion into account
by choosing an appropriate path for the projectile.

Stepuens and STaus®:1? recently reported measurements of the cross
section for pair production by slow protons impinging on a tantalum target.
They found values smaller by a factor of over a hundred than the predic-
tions of first-order Born-approximation calculations™. This too may be due
to the deflection of the proton in the Coulomb field of the nucleus. The
phenomenon is briefly considered in the last section of this work.

1 A summary of both the experimental and the theoretical aspects of z-ray production
by heavy, charged particles is given by MERzsacHER and LEwis in Handbuch der Physik 34
(1958) 166.
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2. Approximations Used in the Treatment of K-ionization
by Heavy Particles

The character of the process of K-ionization by heavy, charged particles

. . 1
depends on the relations between the four inverse lengths k, a«, =

pa and gq,.
. . Zsetm .
Here, Ak is the momentum of the ejected electron and « = o the inverse
K-shell radius. The parameter 1/d is the inverse of half the distance of
VADA e?

closest approach in a head-on collision, d = (cf. sec. 1). For the

2 Ey
minimum momentum transfer g, of the bombarding particle we have,

provided A—E<< 1,
Ey

_AE
" hn , (2.1)
AE=E;+Ep
L. — . . ZZetm
where E; is the kinetic energy of the ejected electron and | Ey | — o s

the binding energy of the K-electron.

Itis of interest to notice that the relative values of d72, q,, and « are largely
determined by the parameter ». Thus, if we define &, as the value of & =
dgy for AE = E5, we have

1 m

= — 2 2.
do 17,0, »*, (2.2)
1 ¥ m
_ 3
%o (4 7z ) M | (2.3)

and

de {a) 4 7
— == =, 2.4
£o (qﬂ)max ( )

-

For the above-mentioned quantities one has the following four possibili-

ties—corresponding, in the order mentioned, to increasing energy of the
projectile—:

1) Ll %>2|/Mlz1 . (2.5)
qo "« m

¢
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This corresponds to a projectile which is unable to force its way into the

K-shell. If %(d, we even get AE ) E;, so that ionization is impossible.

1 1 M, _

For such energies the projectile is able to penctrate the K-shell, but the
ionization probability is very strongly allecled by the Coulomb deflection.

3) a< el oz @, (2.7)
g0 @

In this domain the Coulomb deflection still plays a part. (It is shown in the
present work that the earlier calculations (cf. refs. 7 and 18) are in principle
correct for & -+ 0.)

1) d<%‘< %, W ({ ATy, (2.8)

Here the ionization process cannot be handled by semi-classical methods.
The relevant treatment is the one given by BErrE in his article on the passage
of heavy, charged particles through matter, cf. ref. 6.

In the present treatment we consider especially the energy domains 2)
and 3). We shall therefore assume in the following that

&
— < 1. (2.9)
q0

As will be seen later, the calculations are considerably simplified when
-{C»<< 1. (2.10)
9o

The condition for this inequality to hold true is nearly the same as the
condition for (2.9) (cf. eqs. (2.5), (2.6) and (2.7)), namely

x>>427,, (2.11)
which is seen from the inequality

k 2mkn 2mkoy _ 27y
g0 h(2+k%) " h2ak x

(2.12)

Later it is shown that the majority of the secondary electrons are ejected
with energies much smaller than the K binding energy, i. e.

k< a. (2.13)
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TasLE 2.1
Element Z, E, (keV) x &, do
Fe 25 1403 21.8 0.28 0.051
1300° 7.2 0.0094 0.0052
Mo 420 2403 26.8 0.56 0.084
16002 10.5 0.033 0.013
2400 8.6 0.018 0.0083
Ph 82, 1920 18.6 0.21 0.046

1 See ref.1. 2 See ref.2. 3 See ref. 4.

Besides, it should be noted that for the following perturbation treatment to
be valid it is a necessary condition that the charge of the projectile is much
smaller than that of the target nucleus, i.e. Z; {({ Z,.

Table 2.1 shows the various parameter values for some of the cases
experimentally investigated by proton bombardment.

3. First-order, Time-dependent Perturbation Treatment of the
K-ionization
We want to deal with the ionization process in such a way that the

CGoulomb deflection can be taken into account. This may be done by a
semi-classical perturbation treatment. We express the problem in impact

Fig. 3.1. Classical picture of the impact process.
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parameter form and treat the interaction between the projectile and the
electron as the perturbation.

The differential cross section for the ejection of an atomic electron with
the final energy E; is given by the general expression

do @gzdp
dE; R ),

Here, p is the impact parameter and w = AE/A. In the following we shall
consider interactions of the Coulomb type

gdte“"%]"lV(r, Hli> ) (8.1)

— oo

Zye?

VS TImRO

; (3.2)

r is here the position vector of the electron and R(?) that of the incoming
particle.

a. The cross section for straight-line paths of the
incoming particles

(i) A general theorem

We first consider the case where the projectiles follow straight-line paths,
that is, we disregard the Coulomb repulsion of the bombarding particles by
the nucleus. The cross sections thus obtained are exactly the same as those

ZA

Z,e

Fig. 3.2.
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found if one employs the previously mentioned plane-wave method, dis-
regarding the deflection of the bombarding particles by collision with the
electrons (cf. also ref. 14). This is shown mathematically in Appendix I,
but can also be seen from the fact that the cross section (1.1) for a bombard-
ing particle with a given velocity v, is independent of its mass. The mass
may therefore be infinitely great, and thus the particle may be treated in a
classical way.

We place our coordinate system with its origin at the nuclear centre of
mass and its z-axis in the direction of the incoming particle. This particle
moves in the y—z plane as illustrated in fig. 3.2. As shown in Appendix I,
the cross section is then given by

do Mi e *
dE; =da ZlL‘lh"& dp|M, |-

(3.3)
M, = S dry,yy % Ky (go0).

K, is the modified BEsseL function of the third kind and zeroth order, and

o = 2"+ (p-y)° (3.4)

(it) The malrix element for emission of K-electrons
From egs. (3.3) we are now able to derive the cross section for K-electron
emission for a fixed value of the impact parameter, (dog/dE;),. For the elec-
trons we use non-relativistic Coulomb eigenfunctions in the form given by
ALpER and WinTHER®),
The details of the evaluation of this matrix element are given in Appendix
H, b. By a rather lengthy procedure one reaches the following result:

_ 1/2
F(l—i-g)
g (3.5)
><_N Nl k1 drmrlg (pt)sl m— 2Cm+2(qo
0 s
S CERTCE SRy S

In (3.5), N; and N}’ ¥ are energy normalization constants; [ and m denote
the angular momentum quantum numbers of the final state in the con-
finuum; s is defined by
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st=qp+ 1% 0< i,
and €% is a Gegenbauer polynomial.
2is - 217k
x+i(s—k) a+i(s— Ic)}(g'ﬁ)

Fz{}=F2{2[+3, I+1,0+1+1in, 21+2, 21 +2;

is an Appell funetion, which is a hypergeometric function of two variables.
In sub-section (ii) of Appendix II, b it is shown that

1 (a—i(s+ )\ D oqqi(s+ k)\"@ritin
Fz{}=l+1(a+i(s—k)\) (m)

1

. . . ) 4 sk ,
i G b {(ﬂﬁ)(a—lk) 2F1(l+1,l+1+m, 20+2; ) (8.7

a2 (s + k)2

+ (141 i) a%zmkzﬂ, [+2 i, 21+2; &%)}
Zz e2 -
o
v is the final electron velocity, and ,F; ( ) are ordinary hypergeometric
functions.

Up to this point in the development no approximations have been
introduced.

In the following we shall restrict ourselves to cases where the inequali-
ties (2.9) and (2.10) are fulfilled. Under these conditions, the contributions
to the matrix element M, (I, m) in eq. (3.5) from [-values larger than zero
become negligible. The F, } function is then considerably simplified. As
sketched in sub-section (ii) of Appendix II, b, we arrive at the result

o . . . .
Here, n=— 7 (minus sign because we are dealing with negatrons);

Gy =(ati(s— k) Fy{}

_ iy {(w—i(s—k))w-l} (3.8)
T2s " (atiCs+ )T

An expansion of G in powers of k/s and «fs gives

_L el k) (%2 |
G‘S_S{s(l_a)+(s) 3(—19+5a2)+ ot (3.9)
Since
“ e o fh
pmet1 2, av-u-1_ L 90
S()l ']m(pt) (t qu]) T(‘u+1) Km—u(qu) (310)
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(see vref. 16, 7.14.2, eq. (59), hereafter quoted as H. T. F.), we have from
eqs. (3.5) and (3.9)
i o 1
My (0, 0) = - NyNp ¥ ?(P%)ZKZ (P90) (3.11)
0
and consequently
dog M et 72 1
— ) = Zi — S | NP NP P (K 2, 3.12
(552) - A e L e Rt G
where a, is the Bohr radius.

Fig. 3.3 shows the variation of |Mz, 0,0 |Z with the impact parameter.
The greatest contributions to the ionization probability are seen to come
from impact parameters for which p qu'

The expression (3.12) contains only tﬁe leading term in a development
in powers of % . From (3.10) it may be shown, however, that also higher

terms in the cross section (corresponding for instance to higher terms in
(3.9) or to higher [-values) exhibit a similar dependence on p.

IMpl?
Ve

P 2

I
I
|
!
I
|
|
|
L

1L —___1_ »
P} A

Fig. 3.3. The probability of ejection of a K-electron as a function of the impact parameter p
for straight-line orbits. The area under the curve qB | My |* shows the contributions to the total
o
cross section from the various p-values. It is assumed that q—(( —. The calculations are valid only
1 o &
for -
p{
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Since the Coulomb deflection becomes large for impact parameters of
Z1 Zz 62

2 Ef)’

this deflection must be expected to be of importance when d is not very

the order of or smaller than the distance of closest approach d<=

much smaller than l
9o

Up till now we have assumed « {{ gq, corresponding to the cases con-
sidered in eqgs. (2.6) and (2.7). In the opposite case of ¢, 5 «, the expansions
employed above are no longer valid, and, moreover, the semi-classical
methods break down, cf. eqgs. (2.8). The velocity of the projectile is in
this case larger than that of the K-electron; therefore we may apply con-
siderations from the stopping-power calculations extensively treated by
BETHE in ref. 6.

The total cross section for emission of K-electrons with the final energy

E; is given by .
do g ) do
(35) ‘2“§Pdp<§§>-
f/str. 1, Vo f/p

Using an integral formula given by LommEerL (cf. ref. 17, p. 136), we deduce

95 4 2
(‘E-"E> :2—nziMé%Zkgwﬂzwﬁ’ﬂz%. (3.13)
dE¢ v 1. O YoM (Rl H 90
This is exactly the same formula as the one derived by Huus et al.®® by
means of the Born approximation.

Eq. (3.12) also enables us to calculate the cross section for K-ionization
by particles scattered through a small angle, § {{ 1, since this cross section
is expected to be the same as that for a straight-line path with corresponding
impact parameter. (See fig. 3.5 and the explanatory text to that figure.)

We have
£ cotg 2}
sotg — , \
dGK> dO’R<dO'K> <LO 2) H\\2
Or) _om(09x) e 2 Kz(fcotg~)); (3.14)
<d'Q str.1. 482 \dE; P sin4% 2

dop/df2 is the differential cross section for Rutherford scattering, and

d? M, e* 72 1
R4 Juit Sk 2 I NSRT-N NLBR A i 3.15
h=7 LE, B 2 q, IN; lq% (315)
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The cross sections (3.13) and (3.14) have been labelled with the index str.
[. because they are derived on the basis of a straight-line calculation. The
expressions are expecled to be wvalid in the Limit & - 0.

do :
In fig. 3.5, X is given for £ = 0.2, In the same figure it is shown
dQ Jsr.1.

how the angular dependence is influenced by the Coulomb deflection, as
calculated below.

b. Cross sections for hyperbolic paths

(i) General procedure
In the following we shall calculate the cross section for emission of
secondary K-electrons, taking into account the deflection of the projectile.
We shall confine ourselves to the monopole term in the potential, assuming
that term to be the dominating one for « {{ g as in the case of the straight-
line integrals. We then have

o 27 (*”
giﬁzzhzdzzi&\adg
f V1
1 2
[~ m, 1<R (3‘16)
X Qdieiw%y)f . 11/)3> ,
L ;, I‘>R

where & is the ecceniricity of the hyperbolic path of the incoming particle.
For this path we use a parametric representation previously employed by,
among others, TER-MARTIROSYANT®:

x = d (coshw+¢)
y=d [/c?-—l sinh w
z=0
R=d(gcoshw+1)

(3.17)

d .
t=-—(esin hw+w).
U1

Inserting for the electronic wave functions in eq. (3.16) the inlegral Tepresen-
tations given by ALpEr and WintaER™, we get
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14
do 2 “
J_jdzz [N, |2|N0,Ic|ZS
dE;
o ol
twi 1
S_d;‘e {T(l—zn)F(l-Hn \ (1 —Ll) (3.18)
R
x{i érze_”’ dzze }}
R
/0
Here,
b=oa—-1ik+2iku. (3.19)

The infegration over r is easily carried out, yielding for the factor in square

2 e
— - +—
Rb

brackets in (3.18)
~—bR 9
I,= ( ) (3.20)

Rb® b2

The integration over time is more complicated. Using (3.17), we have

® 9 gbdlecoshw+1) 9
d(ecoshw+1)+—
b (3.21)

L2}
Ib=vl§dl‘eithR=§dw =
- o— 0
eié(esinhw-{-w)'

As shown in Appendix II, ¢, the integration leads to

bd+1§)

T .
_4p 3o 972 9 p1 —bd(
I,=4b "e 2" K;g (&) 202 (d+2b7) bd — iE

Sy o | (pd+ig s
x Koo/ 0" d® + &) - db72e e (bdﬂg) T K ()01 8) 1(3.22)

L iE-1
bd + i\ O R
b‘dtg) T Kpea (e Vb2d2+52)}

or
bd + is)’f

Iy =26 {Ze 2 Kyg(ed) e _bd(bd~i§

2 2
eb*d K, (8 Vbzdz+§2>j”-

bZdZ 7 2 32 2
xl:(?-f—m) ,“E(E[/b d 4*5)4-%2—7?_@ £l

(3.23)

Up to this point the development is exact.



Nr.13 15

According to a multiplication theorem for the Bessel functions (H.T.F.
7.15, eq. (19) we have

K, (8 ]/b2 d? +§2) =2°°7 (ﬁebz dz>n 1 K,.,(c£) (3.24)
A 5 . 2

(Vbz 2+ §2>” < 51«'—}-11, n!
As
lold o
§ T qo
and
|bld~da,

this expansion is fast converging, provided the inequalily (‘) 9) is fulfilled.
Applying (3.24) to (3.23), we deduce

T v—i&.
5, =2 e_—z_S b3 {2 K (e&) - e“bd(l —%)
i b2 q2 P ( 5) & £ £ (3 ,)5)
Tpa—ig) bd— & 9§ i1 (29 .
, b*d 4 4 €
T(2+bd~i§>b Tgek “”2(85”—___”’

where we have written explicitly terms arising from the expansion (3.24)
with n < 2,
Since

(1_17(1) ‘5: i (1—%)

i&
Ly EE[bd)? i€ (ba (i e
=iy e sl ()G ‘}’

we obtain by inserting this expression into (3.25) and taking into account
that |b]d=~dad{1

T
SR AP N 3k K (8, (3.26)
=

where
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k'_._@,_?if“(i_l
0 3ez g2 \2¢ 4
, ,b4d4
k1=l2—§2
. bt
k=T (3.26,2)
;b5
b=1e
Fon—1 | pgne . i .
, = —27_1];(— T) (valid for n > 2).

We can now carry out the u-integration (see eq. (3.18)) by using an
integral representation of the ordinary hypergeometric function (H.T.F.
2.12, eq. (1)). In the general case the result of the u-integration is given by

(. —”‘\mb"du—(ask)" Fy(3-20, 1+in, 2; 2K ; (n=2) (3.27)
o 1—u) - O R M '

For the majority of the ejected electrons, k {{ « (¢f. eq. (3.13)). This enables
us to perform a confluence, thus getting

M43 ®
L=2¢ 2" S I K ey (c6) (3.28)
n="0
with
" ( d3)((1_doc) .do:)
B R e B
0 e/\\3" 2 ) "¢
1
]‘"1‘1“(27
I _xd
28 (3.28, 2)
1 (b
Lg‘*géglgds
1 n-1 . . 0 0 d? o\ .
ko= Fam PG -20 2 - - sz

@ is here the confluent hypergeometric function.
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As dgl = 441, we see that for sufficiently high values of %, (3.28) may
0 t4

to a good approximation be written as

e 3 4 2
I£=2e_55{l 3d52+“§z(5+8 )}Kig(a§)+oc oK i§+1<e§)} (3.29)

This equation will be useful in the following discussion of the angular
distribution.

(ii) Angular distributions of the scatlered projectiles after ionization
Equations (3.28) and (3.29) for I, give a direct expression for the depend-
ence of the cross section on ¢, i.e. on the deflection of the incident particle.
First we let the hyperbolic path of the incoming particle degenerate into
a straight line, i.e. we put ¢ >> 1 in eqs. (3.17), which corresponds to keeping
the impact parameter fixed, but letting d - 0. Eq. (3.28) is then replaced by

Tgtr1. =2 szfnﬁnffn (e9), (3.30)
o

where k,, k4, . ... are given by (3.28, a). This result is obtained in a straight-
forward manner by application of the integral formulae given in Appendix
1I, e. The terms in (3.30) correspond exactly to the terms in the straight-
line monopole expansion, the first of which is given by (3.11), since for
e >y lwehaveeé ~ pg,.

It is also useful to consider the opposite extreme case & — g, ~ 1. This
corresponds to ionization by particles scattered in the backward direction.
Putting .

K jgiy (68) = = Kyg(ed) — Kig (e8)
in (3.29), we have

[-2e3t 31( )Iszg(sf)—e?lii'g(sg)} (3.31)

We shall furthermore evaluate (3.31) for the case of £ {({ 1. Here we may
use the approximate expressions

K;e(e,6)~—In (g, &)

» 1 ' (3.32)
I\ig(é‘cf) ~ —Ec_f.

Mat. Fys. Medd. Dan. Vid. Selsk. 31, no.18. 2
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From (3.31) we then obtain

c~2e 2 Ez{dln(s §)+ }

T
Zel fe
=2¢ 2° 5 {5+-In(e E)}
qz{qﬁ 3 0°

0

(3.33)

The dominating term in this formula corresponds to the
main term in the matrix element for a particle moving on a
straight-line path with the impact parameter zero. This is
immediately seen from eq. (3.12), considering that

lim ((pgo)* K3 (Pq0)) =
P> 0
From a physical point of view this was to be expected since
the monopole effect considered does not depend on the di-
rection of the outgoing particle. Moreover, for & <{{ 1 the
region of dellection (~d) is small compared with ¢;?, the
Fig. 3.4. quantity characterizing the interaction with the electron.
Thus, the approach to the straight-line excitation probabil-
ity, for £<{<{1, is to be expected not only for backward scattering but for
any scattering angle.
Quite generally we define

y- (3.34)
e 27 Iy g,

since, in many cases, the main deflection effect is contained in the factor

exp { ~ gf} For particles scattered in the backward direction (e = ¢, ~1) with

sufficiently large » and &{{1 it is easily seen from (3.33) that

1Az

3
o 1 M (AE (3:55)
y-1+15% = 1( ) In (g, &).
For e>>1 and £21 we have
(—i§+z(55) é
Z_W:1~28 (3.36)

(see p. 204 of ref. 20).
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The case £>>1, e 1 may in principle also be handled by the aid of
asymptotic formulae for K;¢ (£), £ >> 1. Such formulae are found in Chapter 8
of ref. 17. We stress the fact that these considerations are valid only for suffi-
ciently high values of ». For smaller %, more terms in (3.28) must be taken into
account. The results of the above analysis may be used to modity the angular
distribution found from the straight-line approach in (3, a, (ii)). Choosing
£ =10.2 and a =-value of 25, we obtain for w«-particles a result which in
fig. 3.5 is compared with the corresponding curve for (dog/dQ),,. ;

(iii) Total cross sections
The total cross section for emission of a K-electron with definite energy
can be obtained from (3.28) by an integration over the eccentricity. Using

one of LoMMEL’s integral formulae (ref. 17, Chapter 5), one obtains after
an elementary but rather tedious integration

I- Swd.s-e|18|2
1
o (3.37)
R (RIS T OV ROV RO

A, B, and C are polynomials whose number of terms depends on the number
included in (3.28).

The convergence of the expressions for A, B, and C depends, as seen
from (3.28), on the parameters de and &, which in their turn may be expressed
in terms of » (cf. eqs. (2.2) and (2.3)). For sufficiently large x (%% 30
for protons) a rather good approximation may be obtained if one neglects

terms in (3.28) of higher order than n = 2. For the coefficients A, B, and C
one then finds

4o Adu 8day
9 & "5\
_lda 8(da)’
9 5\
1 4de 8f{de)?
£ -?_
do LM]_ 1
ve g M1 1
(Eg 64Z1m%4).

(3.38)
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204 \
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\ do
\\A/C: constant J5*
\pfddd .
B.(dn)m' | for £:02
10°+
dé \
%n for
acurved x-
particle path
with £ =02
and ¥ =25
10°+-
10 |
1 1 { | ! 1 |

1
0 1 20 30 40 50 60 70 80°
———= 0 (degrees)
dog
Fig. 3.5. The angular distribution, a0’ ol e-particles after K-ionization (curve A) compared

do
with the corresponding curve for straight-line orbits, < K) (curve B). The ordinate is in ar-
bitrary units. d2 [str.1. .

The angles for the straight-line curve are determined from the relation ¢ = 1 + -+ between

6
the eccentricity ¢ = and the impact parameter p. Thus, pg, =& cotg—z—.

sin -

2 do gt
The dotted curve C is proportional to the Rutherford-scattering cross section d; =7 d?
daK .
and has been normalized so as to approach | —= for small p.
A8 /sir. 1.

The curve denoted d ch/d 2 includes Coulomb-deflection effects (cf. the text). Consequently,
the ratio between the curves A and B in the region of small angles is given by the factor ¢~ 7.

The dotted part of curve A represents the region in which the approximation formulae
for the Hankel functions break down.
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For smaller values of », higher terms in (3.28) may have a significant
effect. However, for » < 30 one may utilize the fact that the third term in
eq. (3.37) (the one including €) is greatly dominating. I'or 4 and B the
approximation (3.38) is then suflicient, but for C one must take into account
terms in (3.28) in which n » 2. The general expression for € is given by

1 dde 1 N7 (d2a2m“
C‘Eﬁ?*sz_am%o“m‘"’s?)
with
(= 1)m . . (3.39)
D7 9 2
“m 2 (m+5) (+1D2G+1)
t+i=m
XxD(-1-20,2;-2)D(-1-2j,2;-2).
Thus,
8 152 8 4061
0=F Q=" g =g g (3.39, 2)

5\&2
corresponds to the dominating term oblained from the straight-line calcula-
tions (cf. eq. (3.13)), provided we usc the approximate expressions (3.32)
for the Bessel functions in (3.37).

The general expression for the cross section for ejection of K-electrons
is given by

f 2
It should be noted that the term 5(‘3") in € (egs. (3.38) and (3.39))

dog =2—%d2

1
dE,"~ Tt Z2et | N, 12]1\7;}”“;20—?1, (3.40)

which can also be written in the form

%j; = € (dogd Ep)ypy ;. (1— f(x, £), (3.41)

where (dog/dE;)g, ;. is the dominating term in the cross section for straight-
line paths given by eq. (3.13). The correction factor f(zx, &) can then be
found from (3.38) and (3.39).

As the coefficients k, in (3.28) are calculated under the condition % {{ a,

the most consistent procedure is to use f (s, £,) when calculations are made
on the basis of (3.41).
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However, in the cases considered, the difference between f (%, &) and
f(x% &) is of no importance. In the domain of large x-values the main
correction to the cross section arises from the factor e"”f, in which one
should insert the value of £ appropriate to the electron energy considered.

c. Symmetrization of the cross sections

The above semi-classical treatment of the K-ionization process depends
on the condition » >> 4 2, and in addition requires AE(E,. If the value
of A E[E, is not very small compared with unity, one may obtain a sig-
nificant improvement of the semi-classical expressions by choosing symme-
trized values for the parameters d and £ which enter in these expressions.

The problem is analogous to the one considered in the case of Coulomb
excitation of nuclei, and the symmetrizing procedure may be justified in
the same way as for that process, cf. ref. 21, sec. II, B6.

The symmetrized parameters d and & are given by

Z1 Zy e?
s _ 9
d M1 01 02 (3.42)
ZhZae2 (1 1
S‘ T = B
£ - (UZ Ul) (3.43)
or ‘—_l
5 d(lfﬂ) 2 (3.44)
Eq
_1
2 FE; AE\) 2 ) (3 4—)
s_gabaffy ABVE 45
BTN o)

Here, v, is the velocity of the projectile after the impact. We also define
& and dj by putting 4E = Eg in the symmetrized equations.

d. The effects of screening and finite nuclear size

The screening of the Coulomb field of the nucleus by the atomic electrons
may interfere in two different manners.

a) The incoming particle is moving in a screened Coulomb field rather than
an unscreened one. The orbit described in (3.17) is therefore not quite
correct. On the other hand, we are only concerned with those energies of
the incoming particles for which d<{{*/,. This means that the motion
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in the region of considerable screening is already nearly unperturbed by
the field of the nucleus. The screening effect is thus negligible.

b) The electron—in the bound as well as in the free state—is moving in the
screened Coulomb field. This case is treated in the following ways:

1) The electron gets additional energy from the repulsion by the other
electrons. Although this energy is relatively small as compared with the
K binding energy, it is of some significance owing to the great dependence
of the cross section on & However, we may take this effect into account
by using the experimental ionization energies in the expression for AE =
Ep+ E; rather than the theorelical, unscreened ones.

2) The change of the wave functions by the screening potential falls into
two parts:

«) The so-called internal screening effect is taken into account by the use
of the screened nuclear charge Z&" ~ Z, — 0.3 rather than Z, in the expres-
sions for dog/dE, This is obviously a small correction.

£) The effect of the ouler part of the screening is a rather smooth change
of the potential, appreciable only for distances larger than 2—%, (see
Chapter 2 of ref. 22). Clearly, such a change is rather negligible for the
Qo
Zy’

For the final-state wave functions we may again argue that in the inner
region, which determines the transition matrix element, the wave function
is approximately equal to that for a free Coulomb field, except for the normali-
zation factor. However, to the extent to which the penetration through the
screened part of the field can be treated in the WKB approximation, the
normalization in the inner region is determined directly from that chosen
in the asymptotic region and does not depend on the potential in the inter-
mediate region. Thus, the use of pure Coulomb wave functions for the
continuous states seems to be rather well justified. From such an argument,
one expects the normalization factor to be affected by a factor of the order

initial states, where the wave funclions extend only to distances of about

of 97}, where 0 is the ratio of the observed to the unscreened binding
energy. However, since this correction is rather small compared with that
arising from the change in &, it is neglected here.

Finally, we consider the effect of the finite nuclear size. This effect
influences the electronic S wave functions in the neighbourhood of the
nucleus. However, the effect on the matrix elements for ionization is very
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small since the characteristic distances in the radial integrals are of the

oo 1 -,
order of the larger of the two quantities q— and d. Under the conditions here
0

considered, the characteristic distance is many times larger than the nuclear
radius, and therefore the change in the electronic wave functions caused
by the finite nuclear size is small. Moreover, this change vanishes in the
non-relativistic approximation.

e. Discussion and comparison with experimental cross sections

The present treatment of the ionization process has one feature in common
with those of HENNEBERG™ and of Jamnik and Zupanéd®. In all three
treatments the cross sections are obtained as series developments in the
quantity «/q,. Accordingly, the evaluated formulae can only be applied to
experimments where the inequality (1.3) is fulfilled, i.e. where the energy of
the incident particle is so small that e/q, is less than unity. The other approxi-
mations involved in the three methods are such, however, that they may be
said to have somewhat different regions of application.

The relativistic effects in the electron wave functions, which are im-
portant in the heavier elements (see below), are dealt with in the work of
JaMNIE and Zupanéi¢ only. .

The advantage of Henneberg’'s calculalions is that he succeeds in trans-
forming the expressions for the cross section so as to give a rather fast
convergence up to afgy = 1.

The present method is evidently most favourably applied to the region
of small energies, where the Coulomb deflection is of importance.

For bombarding energies so great that « is close to g, one thus expecls
Henneberg’s formula to represent the best approximation, but with decreas-
ing energy the Coulomb deflections rather soon become significant (for
% 2 12 Z,). In the transition region where these effects begin to play
a part and where «/g, is still not very small, none of the available treat-
ments are very reliable, since as yet no estimate has been made of the de-
flection effects for the higher multipole transitions.

The relativistic effects have so far been considered only for straight-line
orbits ®, for which il is found that correclion terms of the relative order of

, 2
(Z, 0220 arise in the monopole matrix element {{ = Ciﬁis the fine-structure
&

\

conslant|. An extension of this treatment to the case of curved orbits leads

/



to integrals which are difficult to evaluate, but it seems reasonable to expect
a similar correction. Thus, a rough approximation to the relativistic straight-
line cross section may be obtained by evaluation of the expression (11) of
Jamnik and Zupandt® for the monopole excitations to lowest order in o/ g
one finds that in this case their integral I is proportional to

(1)2 v (1+6(1—y) %)

qo
her — ,
where y:l/l_(é—ZZ)Z (34{'))
6_2(3+2y)7_z
- 54y 4

(y = 1 corresponds to the nonrelativistic case).

By multiplying the cross section deduced from (3.46) by the appropriate
curvature factors found by the non-relativistic methods (cf. (3.41)) one
expects to obtain an approximate value for the cross section also in the
case of heavier target elements.

In figs. 3.6, 3.7, 3.8, and 3.9 the calculated cross sections are compared
with the experimental data. From (3.41) we obtain the differential cross
section, from which the total cross section for K-ionization is found by
graphical integration, allowance being made for the fact that there are
two electrons in the K-shell. Moreover, the formula (3.41) is modified so
as to take the screening into account in accordance with the prescriptions
given in sec. 3, d.

For the lighter elements, the theoretical values agree rather well with
the experiments and are seen to represent a considerable improvement on
those for straight-line orbits. The agreement appears to extend to x-values
as low as about 12, for which the «/q, corrections are rather large and for
which the accuracy of the present theory is therefore questionable.

For the heavier elements (Mo and Ag) the experimental values appear
to be significantly in excess of the theoretical estimates, but it seems likely
that the deviation is to be attributed mainly to relativistic corrections, which
are expected to enlarge the cross sections for these elements appreciably.
A simple estimate of these corrections, obtained in the manner described

* In eqs. (14) of ref. 8, which must be used for this purpose, there is a misprint. In the
equation for ¢ " the numerator in the coefficient of the second confluent hypergeometric function
should be 4 m + 2 instead of 4 m.
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Fig. 3.6. K-ionizalion cross section for an iron target as a function of the proton energy. In this
and the following calculations, five terms in the series development (3.39) have been taken
into account. The dotting of the theoretical curve indicates the energy region in which the
convergence of the series becomes slow and in which higher multipoles in the interaction may
begin to contribute significantly.

For comparison, the values obtained from HENNEBERG’s expression (as evaluated by
l\IESSELT(4)) are shown.
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Fig. 3.7. K-ionization cross section for a copper target as a function of the proton energy. For

further details see the text of fig. 3.6.
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mate relativistic values obtained on multiplication of the dominating termsin Jamnik and Zupan-

&es formula® by the curvature factors found by the non-relativistic methods.
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above, is seen in the figures; it appears to improve the agreement with expe-
riments considerably.

In consequence of the domination of the monopole terms, the angular distribu-
tion of the ejected electrons should be approximately isotropic.

For higher bombarding energies (qﬁ ) 1) the angular distribution of the ejected
(i}

electrons should in principle be evaluated by the methods of Massey and Monr
(cf. ref. 23)*,

4. Pair Production by Slow Protons

The cross section for pair production by protons impinging on tantalum
was recently investigated by Steraens and Staus@b 1%, Their proton
energy was I7; = 1.5 MeV. The cross section was found to be less than
2-10-%% em? and thus smaller by a factor of a hundred or more than the
value predicted by Born-approximation calculations as made by HerrLER
and Norpueru“®.

One observes that the » and &; values corresponding to this process
are about 19 and 3 respectively. The use of methods analogous to the one
applied to the K-ionization should therefore be justified.

In the present energy region we may carry through the calculations
by taking into account only the electrostatic interactions between the parti-
cles (see ref. 13).

Considerations analogous to those in 3, b, (i) lead to the conclu-
sion that only contributions from S-states play a part in the calculation
of cross sections. This is due to the smallness of the parameter k/q,
where k& is now any of the electron momenta. One has for sufficiently
small values of E,

klqe <

m _ 2
I/4E1Ml(AE 2 me?) <l/41n<1_2mcz><<1 - (4.1)
AE M Ey ’

The cross section for pair production is then given by a formula com-
pletely analogous to eq. (3.16). Following simple hole-theory arguments,

* Note the misprints in this reference.
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one inserts for the final and initial states the Coulomb wave functions for
an electron and a hole in the continuum. By using integral representations
of these functions®® one gets

do 2 4 zg
d(EYE™) ~ hzde IN, FIN_*)ede
o+°°.wt 1
) .\_die {r(1 —ip ) A +in) T —iny) T +iny) (4.2)
u \f- ( v\ ar s || [®
Sdu(l—u> Sodv \1—v> Bofr e +SRdue } s
where
L _AE
h
and

b=—ik +2ik_u
. . (4.3)
—1ky +21ik, v

Following the procedure given in 3, b, (i), we obtain a formula identical with
(3.23). This formula is valid on conditions similar to (2.9) and (2.10).
As, in the cases of interest, & is of the order of magnitude one or larger,
only small values of ¢ will contribute to the cross section. In the case con-
sidered here

kZl Zg 62 _ ]Clez GZAE

Iold= === "94E E
kZ1Zs2AE 1 AE
somd B 44 Lfag < -4
1
C~§7‘,ﬁez=0/c .

Because of this inequality only the first term of k; in the equation corre-
sponding to (3.26, a) will be of importance. The u and v integrations are
then trivial. (In the case of the general term 5®”, an F,-function will enter.)
The ¢ integration is now easily carried out, giving

do  2mdiet
- V 2 2
d(E+E_) R |N+| | NP —— 9 |Kz§(§)| (4.5)
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The expression (4.5) as a function of £ shows that the important contrib-
uting electron energies are confined to values much smaller than the
K binding energy of the target. Thus the inequality

[7.1>1 (4.6)
is well fulfilled.
An approximate formula for K;S(f) can be found from ref. 17, sec. 8.42.
Then

do Z0 geat
aEE) Ry D
Here
2V [ ZON VM,
IRt F<1> 2a0) m °
3
and (4.8)
1
S = o=
1—-e L )(

(ay is the Bohr radius).
In order to obtain the total ¢ we must perform the integrations over
E* and E-. Because of the inequality (4.6) we have

10 Emax Ema.x

— ¢, \dETe *7 k+ \dE” f(E*, E) (4.9)
El o

with

o= 27p (2 me* + BV 4 B

f= (u (2 mc®+ E+ + E))16/3

(4.10)

W=

2 E B

-2

Expanding the function f around E*+ E- =0 and introducing the notation

mc2

BEY

yi=2pume®=Z,L (4.11)

we obtain



Nr.13 33

— 2 5T,
[~ s (18, (E*+ E) l
. 71
with

(4.12)
2 |

_2u 8
01 ” (”Vl"'3>-

Consistently with (4.12) we introduce the following values for the maxi-
mum electron cnergies:

o

e (4.18)
+ 1 -

Eax = (571

Although the expansion in E*+E~ may not always be very accurate,
the crrors involved are not serious for our present purpose of obtaining
an estimate of the order of magnitude of the cross section.

The double integration can now easily be carried out, leading to

62 Zéz e 2 7Yy

oc=47>— 150« am
Yay N EE 0y ih
2
x{11~61WIZ+(§1¥) 13}
with
@ e 2mah
Ii(=1’2’3)=s mdx;t=—: \
¢ X ]/2 mE} (414, 2)
_g. 20 €
W=8x Zz2a0' ]

A numerical evaluation by means of this formula gives ¢ ~ 10~ em? ~
107" o34, This result is indeed consistent with the experimental results
of SterueENs and Staun. The direct curvature effects, e*zng, give rise to a
factor of about 10-'° in the cross section. In addition comes the factor
¢"27+ resulting from the use of Coulomb wave functions for the posilrons.
Because of the inequality (4.6) this factor, together with the possible errors
introduced through the evaluation of the integrals in (4.9), accounts well
for the remaining divergence from the earlier calculations. Hence, the
conclusion is that, in the low-energy region, the Coulomb repulsion very

greatly reduces the cross sections for pair production by heavy, charged
particles.
Mat. Fys. Medd. Dan.Vid. Selsk. 81, no. 13. 3
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Appendix I

The Equivalence Between First-order, Time-dependent
Perturbation Theory and the Born Approximation
at High Energies

1. Let the physical situation be as in fig. 3.2. It is then easily shown (cf.
egs. (3.1), (3.2) and (3.4)) that

» gtwt d ] gtwi
L L
S_wlrﬁ(t)l Vo ]/ocz-l-(p~y)2+(U1t~z)Z

(AL 1)
U1 0 Ulg
(see ref. 17, p. 172).
Introducing the energy and mass of the projectile, we find
547 JZ N arvr @@ ar @@
(A1, 2)

% ( —z)gpdeo( )KO (;:Q').
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In Appendix II, a it is shown thal

” , ri Ky ri)
\OPC[PKO(QUQ)KO(%Q)=“1 2((;{)0 L, (AL 3)
where

1= (-2 (y -y
The cross section may thus be written as

do Myt 1 N
E:2%%Eﬁzasdfwfw5df Py €0 K (qor). (A4

2. Within the range of validity of the first Born approximation the above
cross section is given by

do 1 a0tk
- LozEmr e a0
dE; 4=n® Z1 M s Ic@-Sd

(A1, 5)

2
X

\exp {20 B} pe (045 (0) i, e

|£c“£l

(see ref. 24, Chapters 11 and 12); k;- h-ng and k;+ I+ ny are the initial and
final momentum vectors of the colliding particle. R, is its position vector
and dt, the volume element in the bombarding-parlicle space.
By a theorem given by Berae® this may be written as
do

_ 2 3,
iE,~ AN

e ks " -
fﬁE:SdTWiW;SdI Vi Yy
exp{i(k;n; — k; ng) (2" ~ )}

x \dedf,sin 0
S @ ¢ S e lkfﬂl_killol4

J (A1, 6)

We choose the axis of the polar coordinate system in the direction of
the incoming particle.

A\ Y

Fig. AL 1. 3%
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The 2
en | kpy = keyng | = K3+ K% — 2 Iy ey cos 6,
=qg+ 2k k;(1—cosh,) (AL, 7)
qo = ky— k.
We deline
Ry=r-r
, , , (A1, 8)
Ri=(x—2a, y—y, z-2)
Consequently,
(kpny = kyno) (—By) = —(x—a") kysinf, sin ¢ ] (AT, 9)
~(y—y") kpsinO, cos ¢ —(z~2") ky (cos 0,— 1)+ (z—2') qq, [ ’
and hence
e exp {i (kr 11 ~ ki no) (' — 1)}
I= 6,d0 =t
Sd(psm e @0 [ kpny— I nglt
— ¢l <z—2'>Sd<psin 6,d0, (A1, 10)
5 exp ! i[—kysinf.((x—x") sing+(y—y)cosg)—ki(z—z") (cosf,—~1)] }
(g5 +2k; ke (1 —cosB,) )?
IFrom simple geometrical considerations this may be writlen as
iqo (2—2") @ ESN A . : N A G _
;¢ - \ do, sin 6, 0, exp{i[—kericos gy sinf,—ki(z~z ?z(cos 6.~}
@) 2 o by
1+F2—(1~0050e)) (AT 11)
0
= (e~ +(y-y)%
As
27
S dp, exp {— ik; rysin g, cos (,vl}: 27 Jy (kyrysin ), (A1, 12)
0
we have ’
ige (z—2") (° o i —{ / -
J= 98 8 Ssin HedGeJo(]\frlslnﬁg)S};})I{c iky(z—z") (cos b, 71_)k L1
0 0 (1 2 (1-e 0508)) (AL13)
o

The incoming particle is supposed to suffer little momentum change in
the collision:

3 < key k. (AT 14)
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Putting in the denominator
2

1- cos@emf

and in the numerator
cost,—1~0,

we deduce the approximate relation

iqo (z—2°) (*7F Jo (ker1 0 3
I~2x% e—T» \eedog—i(#«%. (A1, 15)
o Vo (1 + %fﬁz)
9

Using an integral formula given by Warson (ref. 17, p. 425), we find
the following expression

iS4

= — K (qor). (AT, 16)

2 g7 o (z—2") qg Q“ydy ']0 (qO r y) 7 o (z—z")
g 1+ y)? qo key Ky

g4 Lk,

Together with (A I, 6) this gives

do 2 .2 €t ]ffS 5 o el E=E)
do _ o e €k o 5y OO0 ). AL 17
iE, A [1h41ci drzpzwfgdrwzipf T ri Ky (g ) (AL 17)

Introducing the kinetic energy of the bombarding particle, we finally get

do 211/[151 1

A s Vv vt O K (er), (AL 1)

which is identical with the expression (A I, 4).

A proof similar to this one was given by FrRaME as early as 193104,
However, he did not calculate the probability of ionization as a function
of the impact parameter.
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Appendix 11
Mathematical Details of the Calculations

a. An integral formula involving two modified Bessel functions
of the third kind and of zeroth order

The integral in eq. (A 1, 3) can bhe written

oo N1
11=SOPdPKO(%Q)KO(%Q):2nSdEKo((IoP)KOOIolZl*B')- AIL 1)

The last inlegration is performed in the (p, ¢)—plane, where g is the angle
(P> 11)-
Using the relation

0 7T
27 Ky (qo11) Lo (qo ) = \Ko (qolri—pDde, ri>p (A1l 2)
S

and the corresponding one for r; { p (see H.T.F. 2, Chapter 7), we get
81 e

L=K, (QOTl)gOde 1y (90P) Ko (q02) + 1o (40 rl)\pdpffﬁ(%p) =A+B. (AL 3)
v) iy

It is easily shown by application of well-known integral formulae that
2 ,
A=Ky (gor) 5 (Ko (qo11) fo (90 1) + K1 (g0 71) 11 (g 1))
) (AL 4)
I
B = I, (gor1) 5 (K (g0 11) = K5 (g9 11))

or

2
ALB— 1511(1 (qory) Ty Ky + Ko 1))
(AL, 5)

I
I - 2*(1—0]{1 (gopr)-

b. Evaluation of the straight-line matrix element

(1) General procedure

When the non-relativistic Coulomb eigenfunctions are put into eq. (3.3),
the g-part of the integration is easily carried out:
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ATl
\ do e " P K, (go (r?sin®0 + p®— 2 prsin 0 cos p)'/?)

—7T

IKm (gorsin®) I, (qop), rsinfi>p

7 . ATl 6
lK (qop) 1, (gorsin®), rsint {p ( b)
20\ d t—~;Jm(pt)Jm(rtsine)
o

(see H.T.F. 7.14, 2, eqs. (77) and (57)).
Then
20+1(1-m) ! 1
M, (I, m) = 2 N, Nk * (- 1)™ —
+00 t v
x Sdt;ngm (Pt)Srzdz-sinB 467 paoreos® L (ATI, 7)
x PP*(cos B) R, ( )J (rtsin®)
with
— __ @
=ilk=1ina, a 7
The 6-part of the integral is given by
o TT
Iy = \ d0sin 6% e0s0 pm (005 0) T (rtsin 0). (AL, 8)
J0

Introducing the Gegenbauer polynomials, we obtain

—_ m
Ig = ( 1))m1(nz’m) Sd@(sm@)"”’l ’q"’cosecl mZ(LOSG)J (rtsin0)

(AL, 9)

ommt

(cf. ref. 17, p. 379, eq. (1)).
Here
=+ gp.
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From this we have

/ Y= g Q{20+ ((—m)1|V2,_
M,, (1, m) = |/ N;NE o z{ CRRETSY
ad — n‘§ +=
x Sodt L, (pys TR (%) (ATI, 10)

*® 1
% Sor2 drr 2e*"J % (sr)y Ry (rf2).

Expressing the ordinary Bessel function J, .1 (sr) in terms of a Whitt-
2

aker function, we obtain the following radial integral:

o2l Zl~l 1y 1L
ly=—————s* dre_‘”J[ 1(21'31')M ) 1(—24kr). (Al 11)
I(i+3) Jo T2 BRORAS

This integral can be evaluated by means of a formula given by ERDELY1®5):
e
. T A4 9 7 14 D /s
Sodz ¢ Mo,z+%(“ isr) M—m,H%( 2ikr)

=i T2k T (e i(s— k) @D (21 +3) (A1, 12)
2is  —2ik |
+i(s—k)’oc+i(s—k)f'

XF2{21+3 [+1,1+1+in, 20+2, 21+2;

Eq. (3.5) is now easily derived.

(ii) Simplification of some hypergeomelric funclions
1. Using relations given by Apperr and KampE pE FErier®), we find

oy Fo(ay+1, 8, 8, o, o5, ) = (o ~B=B") Fy (o, B, 'y 0tq, 0015 2, u)
+BFy (g, B+1, 8, 0, a5, y) + B Fo(og, 8, B +1, oq, 045 2, 1)

= (1-a)P (1—y)‘ﬂ'{[(%—ﬁ—ﬁ’%(ﬁ’—ﬁ) (1-a)?

x o F (/3,5'» %; (T-?fh)

A R e P L A xgct(ll—w)}

(AL, 13)
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Putting
p=1+1
B =1+1+1iy
T (A1, 14)
Cati(s—k)
=2k
Y=t iGs—1)°

we deduce

[ 1 Je—i(s+k) HD( 'l(sf]) @1+
2 I+1(oc+z(s~1\)) oc+1(s~]\))

1 .
i) i) o Fy (141, 1 L, 2042
Py ey {( in) (a—ik), 1( +1+in, 21+ 2

45k
s (s+"1c)/2) (AT, 15)
. a+i(s—k) . ) 4 sk
+ (I+1+in)a 21 (st k) 2F]_(l+l, +2+1in, 2 I+2,O€2 n (s+1«)2>}'
2. According to H.T.F. 2.8, eq. (9) we have
(1,149, 2;-2) = 2 ( ”7) =@ )"t — 1)(——~. (AT, 16)

Using the analogous formula for ,F; (1, 2+i%, 2;—z), we easily deduce eq. (3.8).

c. Some integrals leading to modified Bessel functions
of the third kind and of complex order

In eq. (3.21) we treat the terms in the integral separately.
In

e GO

Il:deeiEBSinhw-HEw (AII, 17)

— 00

we make the transformation

w—> —-w,

which leads to

. |
=26 2 Ke(e &) (AIL 18)
(cf.ref. 17, p. 182, eq. (10)).
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In
1—2: Szw Bif(esinhw+w)—bdscoshw (AII 19)
— o0
we put
e =y.
Then

I *Sm;d!_l_eg((—y(—i&—bd)ﬁ @&+ b))
3 g
oyl &

Making the substitution
g5 (bd i) =1,
we obtain
T

\de_ i§ 0 tl—i‘s
Hence,
ié
bd +i&\2 e s
Iz:(bd—is) K_;e(e)/b?d® + &%) (A1, 20)
(cf. ref. 17, p. 183, eq. (15)).
The integrals
13=Sozlwez’&(ssinhwfl—w)er—decoshw (A1l 21)
and
]4 _ go(}w ei§ (esinhw + w)—w—Dbd e cosh w (A I 22)

¥—o0

may be treated in exactly the same way as I,.
Thus,
L+eg
bd+ i\ 2
=2
L (bd—is

K. ele)/p2d®+ &) (AT, 23)

—14+14&

bd+i&) 2 5 s R
I, =2 (Bﬁig) Ky_e(e)/b2d® 1 £%). (ATI, 24)
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