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Synopsi s
It is shown effectively that, while there are many unitarily inequivalent repre-

sentations of the canonical Bose-Einstein field variables, the S-matrix can b e
theoretically specified without using any particular representation. The central ide a
is that the bounded functions of finite subsets of the canonical variables, together
with their limits in a physically meaningful sense, are substantially the same fo r
all representations . On the other hand, convergence questions may depend strongl y
on the representation ; in fact, formal operators fairly typical of divergent inter -
action Hamiltonians may be rendered hermitian operators in Hilbert space by a
suitable choice of representation . Applications are made to the `clothing' of fiel d
kinematics, statistics, and canonical variables, for a theory in which only the trans -
formation properties of single particles under an arbitrary covariance group, an d
a covariant interaction, need to be specified . The results are mostly of a genera l
character, such as the existence of a physical vacuum, and the possibility o f
ascribing definite constitutions in terms of primary elementary particles to boun d
states . It is shown also that the canonical variables and occupation numbers of a
field can be described by the so-called `free-field representation' only if the phy-
sical vacuum is invariant under the dynamical development of the system in es-
sentially the interaction representation .
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Introduction

In both classical and quantum mechanics of systems of a finite number of

degrees of freedom, one has to do with so-called canonical variable s

Pi, p2, • , p, and q 1 , q 2 , . . . , q,z , which are now fairly well understood
mathematically . The theory of unbounded operators in Hilbert space ha s
provided a foundation for the use of these variables that is made in quantu m

mechanics . When the number of degrees of freedom is infinite, the situatio n

is different. The canonical variables are relatively most useful in quantu m
mechanics, and it is here that the greatest mathematical difficulties appear .

From the beginning, the success of quantum field theory has been attende d

by `infinities' in even the simplest cases . It was assumed that the canonica l

variables pi , P2, . . . , and ql , q2 , . . . , were operators, but the vectors o n
which they acted had for the most part only hypothetical character, whic h
did not appear to matter substantially for the computational use to which th e

theory was put, but made it difficult to get at the bottom of the trouble .

This difficulty about ` interacting ' systems was nevertheless accompanied
by unclouded optimism concerning the mathematical basis for the theor y

of free systems, which went unexamined for many years . One had the p's

and q ' s satisfying the basic relations p1 qk - q kp, = - i åßk (j, k =1, 2, . . .), and
it was assumed that any two such systems were equivalent, apart from th e

irrelevant complication of multiplicity, which was generally suppressed b y

assuming the p's and q ' s to act irreducibly ; upon this informal axiomati c
basis the theory rested . Within the past decade these matters have been gone

into, and it was found that this central assumption was literally in grea t

error . There were at least continuum many inequivalent such systems ; some
of the most commonly applied so-called canonical transformations, - even

that of multiplying the p's by a positive constant and dividing the q's by the

same constant (� 1)-, led to inequivalent systems ; and these facts had a
concrete analytical basis, having nothing to do with the `pathology' of un-
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bounded operators, etc., persisting when the relations were strengthene d
into the formally equivalent ones due to WEYL, which involved only alge-

braic operations on bounded operators .

A unique theory of `free' systems could be salvaged by defining the ca-
nonical p's and q's to be the specific ones treated rigorously by Coox ,

following the basic physical ideas of Focn, and of Bolin and ROSENFELD .

This set of variables proved to be especially well adapted to the progra m

of treating systems in terms of their transformation properties, as well as to

the correlation of their wave and particle aspects . Apart from the unpleas-
antly strong inhibitions on the application of canonical transformations, th e
mathematical situation in the theory of free systems developed in a satis-

factory way, and there seemed little doubt that the Fock-Cook system wa s

at least appropriate in connection with the theoretical idea of a field of com-
pletely non-interacting particles, and possibly appropriate for the physicall y

fictitious `bare ' particles . But it was not clear how the latter field and the

free physical-particle field (whose `freedom ' is experimental, and not neces-
sarily mathematical, since in all theories the physical particles involve self-

interactions) were related, and the precise character of the p's and q's for

interacting fields remained a mystery,-which in fact had conceivably t o
await a new physical idea for its elucidation .

This paper gives a mathematical interpretation of the canonical vari-

ables which, from a foundational viewpoint, obviates the uniqueness troubles

mentioned, and does so by eliminating from the mathematical formalism
features lacking in physically operational significance . While this shows that

in spirit the assumption about the essential uniqueness of the canonica l

variables was in a way partially sound, it also indicates that many taci t

assumptions need to be revised,- e . g. it shows that the zero-interaction an d

the free physical-particle canonical variables cannot be expected to b e

unitarily equivalent, even in comparatively simple cases . A significant ap-
plication is to make possible the physically effective quantization of field s
of particles whose transformation properties are non-unitary, such as th e

important type admitting an indefinite invariant inner product . It also nar -
rows slightly, but perhaps illuminatingly, the gap between the mathematica l

formulations of classical and quantum mechanics, a dynamical transfor-

mation in either theory being an automorphism of a certain C*-algebra ,
the unitary transformations of quantum mechanics being seen to play a n
essentially technical role .

In a purely mathematical way, this work relates essentially to an ab-

stract C''-algebra 91 which is invariantly attached to a real topological linear



Nr. 12

	

5

space 5' admitting a Hilbert space structure, and to a representation of th e

symplectic group on the direct sum of with its dual by automorphism s

of this algebra T . A distinguished automorphism of 21 which commutes with

the action on 21 of a distinguished subgroup of the symplectic group plays

a fundamental role in the later developments . The canonical variables ar e

in a sense affiliated with 91, which consists essentially of all bounded func-

tions of a finite number of the canonical variables, together with their uni -

form limits .
When is finite-dimensional, 91 consists of all bounded linear trans -

formations on L2 () (within algebraic isomorphism) . The general linear

group on S5 induces automorphisms of this algebra through its action o n

L 2 (.) in an obvious manner, involving normalization in terms of the deter -

minant of the transformation, and this action extends to the symplecti c
group over the direct sum of with its dual. In the case of present interes t

in which is infinite-dimensional, the Hilbert space L2 (.) can be effec-

tively formulated, and an analogous canonical unitary representation o n

L2 (5~) obtained for the orthogonal group on S), relative to any admissibl e
Hilbert space structure on ; but the full general linear group on cannot

act on L 2 (5~) in any reasonable fashion, one relevant difficulty being th e

absence of a determinant for such transformations . Nevertheless, it induce s

an automorphism of 2f, which is all that is essential for, or operationally
relevant to, kinematical and dynamical purposes, and which determines th e

corresponding unitary transformation on L2 (.), when it happens to exist,

uniquely within a scalar factor .

This has been stated in terms of a particular representation for the alge -
bra 2f of `field observables', but it is of crucial importance that the spac e

on which 2f acts can be eliminated, and that essentially only 2f as an ab-

stract algebra is fundamentally necessary or logically relevant . It is more
than conceivable that the interacting field p's and q's cannot be represented
as operators in the same representation as that in which the free-field p's
find q ' s and operators (a partially heuristic result to this effect for certai n
fields is due to HAAG), but it is still possible to obtain the interacting ones

from the free-field ones essentially by an automorphism of 2f, by virtue o f

its essentially abstract algebraic character. Such an automorphism is just

as good as the unitary operator in terms of which it has been conventionall y
assumed that a dynamical transformation in quantum mechanics is to b e
mathematically expressed, for it preserves spectral values, expectation value s
in states, the purity of states, etc . ; it has, in fact, a certain advantage, in that
it has greater operational meaning (in particular there is no phase ambi-
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guity) . Even when, in a particular representation, Sgt acts irreducibly, rela-
tively few of its automorphisms will be implementable by unitary trans -
formations, the quotient of its full group of automorphisms by the subgrou p

of those so implementable being infinite-dimensional in any reasonable
sense .

Therefore it is not surprising that the Hamiltonians of the quantum

theory of interacting fields do not appear to correspond to operators, for i t

is only in the comparatively rare event that the corresponding integrate d
motion is representable by unitary transformations that this will be the case .

For this reason and for greater operationalism, we define physical particle s

substantially in terms of the scattering operator and the field kinematics ,

without reference to the interacting field Hamiltonian, and the relativel y
explicit theoretical construction of these particles from the `pristine' one s

(the so-called ` clothing' of the particles) makes it clear that, in general, thei r

canonical operators will not be merely a similarity transform of those o f

the pristine particles . This difficulty, which is parallel to that circumvente d

by renormalization in conventional field theory, is here treated in a theo-

retically effective and mathematically rigorous manner . It appears that re-

normalizable divergences may well arise in substantial part from the at -
tempt to enforce analytically the logically unnecessary and rigorously absent

unitary equivalence between pristine and free physical-particle represen-
tations .

It may clarify our results to discuss briefly their character for the ver y

simple case when is finite-dimensional . The central uniqueness theorem

is then a variant of the fundamental result on the uniqueness of the Schrö-

dinger operators developed by STONE and VON NEUMANN, whose results are
used in the proof of our theorem. On the other hand, in its present formu-

lation, it may also be regarded as a variant of a well-known theorem o f

PLESSNER, stating that a quasi-invariant regular measure on Euclidean spac e

is equivalent to Lebesgue measure . The relevant unitary ray representatio n

on L2 (W of the symplectic group on the direct sum of a finite-dimensiona l

S, with its dual is, however, not treated in the existing literature known to us .
It may also be helpful to compare our approach with one sketched b y

von Neumann 01 ° , in which field dynamics is likewise to be expressed more

or less in terms of automorphisms of an algebra . Apart from this similarity ,
there appears to be nothing in common between the approaches . The elegant

and somewhat formal idea of von Neumann is that all the measurable

field-theoretic variables should be expressible in terms of a `type II 1 ' ring ,
whose automorphisms are expressible by unitary operators, which however
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are in general outside the ring ; it is based technically on a weakly closed
ring. The present intuitive idea is roughly that the only measurable field -
theoretic variables are those that can be expressed in terms of a finite num-
ber of canonical operators, or uniformly approximated by such ; the tech-
nical basis is a uniformly closed ring (more exactly, an abstract C*-algebra) .
The crucial difference between the two varieties of approximation arise s
from the fact that, in general, weak approximation has only analytical sig-

nificance, while uniform approximation may be defined operationally, two
observables being close if the maximum (spectral) value of their difference
is small . More technically, weak approximation depends on the particular
representation of the canonical operators, and also will be affected by a n
enlargement of the physical system under consideration, while uniform ap-

proximation is independent of the particular representation of the canonica l
variables, and is unaffected by enlargement of the system . The weak closure
in analytically relevant concrete representations (e . g., the zero-interactio n
representation) of the present algebra of field observables may well consis t
of all bounded operators, and so have little connection with a ring of type II I .

The specific formal operators of relativistic field theory and of possibl e
extensions of the theory will be treated on a later occasion, to which we
defer also the consideration of more general varieties of statistics and th e
representation of non-linear transformations on the single-particle spac e
by automorphisms of the algebra 2C of field observables . We may note that
significant progress relevant to the latter has been made by LEONARD GROSS (2) ,

while a discussion of general statistics as well as a survey of the physica l
background of the present work is given in° .

I . Field Observables

A single-particle (state-vector) structure E is defined as a syste m
B), where

	

and 5)' are real linear spaces, and B is a real non-singular
bilinear form on (,

	

Thus, for fixed x in S~ (resp . x' in

	

B (x, x ') is
a linear function of x' in .V (resp . x in

	

while for any non-vanishing x
(resp . x'), there exists an x ' (resp . x) such that B (x, x ')�0.

Example 1 .1 . Let 5~ be a real linear topological space admitting a Hilbert
space structure, let

	

be its dual, and set B (x, x ') = x' (x) .
Example 1 .2 . Let 92 be a complex Hilbert space with a distinguishe d

conjugation J . Let be the set of all elements of 931 left invariant by J, as
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a linear space, and ' the set of elements taken by J into their negative .

Set B (x, x ' ) = i (x, x '), where ( . , .) denotes the canonical inner product in

iJl ; it is easily seen that B is real-valued . This structure will be called standard .

A canonical system over E is a defined as an (ordered) pair of linear

maps p ( .) and q ( .) from and respectively, to respective commutativ e

families of self-adjoint operators on a (complex) Hilbert space (called th e
representation space) such that

e ip (x) e ia (x') = e 'B (z, x') e ia (x') eip (x)

for arbitrary x in and x' in .,' . Linearity, it should be noted, is with re-
ference to the strong operations on the unbounded linear operators on th e

representation space. That is, it is required that p (ax + by) be the closure

of ap (x) + bp (y) for arbitrary x and y in and real numbers a and b ,
and similarly in the case of q ( .) . Further, commutativity of unbounde d
self-adjoint operators is in the sense that any two spectral projections of th e

operators commute (in the usual sense) . It follows that a linear map p( .) o f
the type described is precisely one such that U (x) = eip (x) defines a unitary

representation U ( .) of the additive group of 5), whose restriction to any

finite-dimensional submanifold is continuous in the strong operator topo -
logy ; and similarly for q ( . ) .

Example 1 .3. Assume the in Example 1 .2 is countably-dimensional ,

and let e l , e2 , . . . be an orthonormal basis for . Define 5'o as the set o f
finite linear combinations of the e k (k= 1, 2, . . .), tj ' as i o , and Bo as the

restriction of B to Vo x l . This yields a single-particle space Eo = (%, Vo, Bo) .

Now let p1 , P2, . . . and q1 , q 2 , . . . be two sequences of self-adjoint ope-

rators on a complex Hilbert space K such that any two pk commute and also

any two q k commute, while e ip, s eiak t = e i sih st e iah t e ipi s . It is not difficult t o

show that there exists a unique canonical system over Eo such that p (e k)
= pk and q (iek) = qk ; and that, conversely, every canonical system over Eo

arises in this way .

A bounded linear operator T (on the representation space) is said t o

depend on submani folds Tt of .~ and 9J2' of in case T is in the weak closur e

of the algebra generated (algebraically) by the exp(ip(x)) and exp(iq(x'))
as x and x' range over 9Ji and 9J2 ', respectively . The collection of all bounded
linear operators dependent on a pair of fixed manifolds ~JJ1 and 9J2' forms
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a weakly closed ring 91 , 9r't ,, while the union over all finite-dimensiona l
tai and 9)l' of the 91n , n, forms an algebra Su whose uniform closure is calle d
the representation algebra of field observables (over E) .

Now the algebra 9X evidently depends not only on E, but also on the
particular canonical system over E involved in its definition . The next theo-
rem establishes the essential point that, as an algebra, - or physically, a s
regards operationally significant aspects-, S?X is independent of the represen-
tation employed. The corresponding abstract algebra uniquely associate d
with E (as a pair of linear spaces with a distinguished bilinear form) may
then be referred to as the algebra 9.( (E) of all (bounded) field observables over
E. This is essentially, in conventional physical language, the system of ob-
servables of the Bose-Einstein field of particles with wave functions in th e
direct sum 55 Q+ SY .

THEOREM 1 . For any two canonical systems over a single-particle space
E - (S, , ', B), there exists a unique algebraic isomorphism between the cor -
responding representation algebras of field observables that exchanges th e
bounded Baire functions of the canonical p (x) and q (x ') for all x in and
x' inj ' .

That is, denoting the one canonical system as above and the other b y
the use of the superscript ", there exists a unique algebraic isomorphis m
of S91 onto S9-C (where among the algebraic operations is included adjunction )
that takes qo (p (x)) and 97 (q (x')) into q' (p" (x)) and cp (q" (x ' )), respectively ,
for every bounded Baire function 99, and arbitrary x e, and x ' e ' . Actually
a stronger result will be established, which implies, e . g ., that such an iso-
morphism exchanges also functions of any finite number of canonical vari-
ables .

To prove the theorem, let s))1 and 9)1 ' be finite-dimensional subspaces o f
and ', respectively, that are mutually separating, in the sense that the

restriction of B to Tt x 192 ' is non-singular . Bases may then be chosen in TZ

and 932' in such a manner that B (x, x ' ) has the form xl xi + . . . + X . xr for
x and x' in 1aî and 9)2 ' , respectively, the xi (resp . x'j ) being the coordinate s
of x (resp . x ' ) relative to the basis in TZ (resp . 192') . We can now employ
the uniqueness theorem for canonical systems in the case of finitely many
degrees of freedom in the form given in (il) . According to this, the most
general such system is, within unitary equivalence, a discrete direct su m
of copies of the conventional (Schrödinger) representation. In particular,
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the restrictions pv ( .) and qv ( .) of p ( .)and q ( .) to 931 and 931 ' , respectively ,
have the forms

p (x) = po (x) x IL

	

q (x') qo (x') x IL (x e 9)2, .x ' e Tt ' ) ,

where (po ( .), q o ( .)) is an irreducible canonical system over E o = (9)1, 931' ,
Bo), Bo being the restriction of B to WI x 932', and IL is the identity operato r

on a Hilbert space L dependent on 9)1 and N. Furthermore, (po( .), qo( .))

is unitarily equivalent to the Schrödingcr system ; the precise form of this
will not be needed, but only that any two irreducible canonical system s
over a finite-dimensional single-particle space are necessarily unitarily

equivalent .

Now the bounded Baire functions of the po (x) and of the qo (x ' )
generate, as x and x' range over 911 and 931', respectively, a (weakly closed )
ring of operators The map T - T x IL is an algebraic isomorphism
of Om , m, onto the ring Wm,m , generated by the bounded Baire functions o f
the p(x) and q(x'), as x and x' range over 9Jî and 9N' respectively . (Here
`ring' is, as generally when referring to operators on a Hilbert space, a

weakly closed self-adjoint ring of bounded linear operators, that contain s

the identity operator on the space) . This is clear from the behaviour of direc t

products with an identity operator, from which it is also apparent that the
isomorphism exchanges the q) (p (x)) and (p (q (x ')) with the cp (po (x)) and
cp (q o (x')), respectively, for arbitrary x and x ' in 9J2 and 931', respectively .

It follows that there exists an algebraic isomorphism 0 M, M , of 91M, m ,

onto TM M , that exchanges the (p (p(x)) and q) (q(x')) with the (p (p" (x) )
and q' (q" (x')) for all bounded Baire functions T, and x and x' in 931 and
9J2', respectively, inasmuch as a ring , M' analogous to WM, M, would exist ,
and these two rings, by the uniqueness in the finite-dimensional case, would

be algebraically isomorphic in the appropriate manner . Moreover, B M,M,
is the unique isomorphism with the stated property, for otherwise ther e
would exist a non-trivial automorphism of W m , m, leaving fixed the cp (p (x))
and (p(q (x ')) for x in 9J2 and x' in 931' . By virtue of the isomorphism of

WM, M, there would consequently exist a non-trivial automorphism of OM, M,
leaving fixed the cp (po (x)) and qo (qo (x ' )) for x in 931 and x' in 9J2' . But the

irreducibility of the canonical system (po( .), qo( .)) over Eo implies that
$13-M, M, consists of all bounded linear transformations on the representatio n
space of the system. As is well known, every automorphism of this algebr a

is inner, which implies that an automorphism leaving fixed a set of gene-
rators for this ring of operators must be the identity .



Now, if 92 and 01' are mutually separating subspaces of 0T and Ul', re-
spectively, the restriction of OM M, to %N,nr, has precisely the properties that
characterize O N N, , so that 0M M, must extend BN, N, . Therefore there exists
an automorphism 0 0 of the algebra 0o consisting of the set-theoretic union
of the OX M M , as (101, 101 ') varies over the collection of all pairs of finite -
dimensional mutually separating subspaces of and SY, respectively, onto
the corresponding subalgebra 0X 0" of Sgt" uniquely determined by the property
that q' (p(x)) and q' (q(x ')) go into q) (p- (x)) and q) (q" (x ' )), respectively ,
for all x in x ' in .tn ', and bounded Baire functions 9) . In this connectio n
it is relevant to observe that by elementary algebra the foregoing collectio n
forms a directed system under the ordering : (E, 03i ') e in case 1n
c 0 and 031' e 12' . Now an algebraic isomorphism of one C *-algebra wit h
another preserves the norm (or operator `hound'), so that all the 0 M M, are
isometrics . Hence so also is B 0 , and it follows by continuity that 0 0 can be
uniquely extended to an algebraic isomorphism 0 from the closure of We
onto the closure of 521 0- , that exchanges the canonical operators in the de-
signated fashion .

Remark 1 .1 . Theorem 1 shows only the algebraic uniqueness of canon-
ical systems . A system first defined by Fock in a formal manner and given
a rigorous analytical interpretation and examination by Cook (l) was shown
in (5) to satisfy the Weyl relations, thereby establishing the existence of a
canonical system in the present sense . This system has been utilized i n
heuristic and implicit fashion in much of the literature on field theory .
It seems possibly appropriate for the mathematical representation of the
partially nebulous idea of a field of `bare' particles . It is also in extensiv e
although often somewhat unconscious use for the representation of a field o f
`free physical' particles. To avoid the tacit assumption,-which will late r
appear to be an unnecessary and generally incorrect oversimplification, -
that the same mathematical representation is appropriate for both the zero -
interaction and the free physical-particle canonical operators (which involv e
the self-interactions of the particles), we shall call the mathematically and
physically distinguished representation described the zero-interaction, rathe r
than the more common `free-field', representation .

Although this representation is irreducible and the representation algebr a
91 - contains all bounded functions of any finite set of canonical operators, i t
does not consist of all bounded linear transformations on the representation
space. This can be seen from the result (5) that, if (p ( . ), q ( . )) denotes th e
bare-particle system, the systems (N( . ), q,t 0) defined by the equation
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pA ( .) = Ap ( . ), ( .) = A -1 q ( . ), are mutually unitarily inequivalent (0 <

2 < oo) . For, by Theorem 1, there must exist an automorphism of 91" taking
the system (p( .), q ( .)) into the system (p,1 ( . ), qÄ ( .)) for any A. If 9t
consisted of all bounded linear transformations on the representation space ,
then every automorphism of it would consist of transformations by a fixed

unitary operator ; but, by the cited result, no such transformation can ac-
tually take the system for A-1 into the system for a different value of A .

A specific operator in the zero-interaction representation that does not
represent an observable is the well-known one called the `total number o f

particles', where an unbounded self-adjoint operator on a representatio n

space is said to represent an observable in case every continuous functio n

vanishing outside an interval on the real axis gives, on application to th e
operator, an element of the representation algebra . (This is in keeping

with elementary physical notions ; cf. in particular Section 3, below) . In
purely mathematical terms we may state : For a standard infinite-dimensiona l
single-particle structure, if N is the self-adjoint operator representing the tota l
number of particles in the zero-interaction system (cf . below and 8)), and 9)
is a bounded Baire function on the reals that is not constant on the non-negativ e
integers, then q) (N) is not a field observable (i . e . not in A) .

Consider first the case when 99 1 (0)ßq, (1) . Let x1 , x2 , . . . be a sequenc e
of orthonormal vectors in then there is no difficulty in verifying that, fo r
any field observable R (element of PLC), limn (Rxn ' , x n ') _ (Ru, u), where

x/, ' is the vector in the bare-particle respresentation space obtained fro m
xn by injecting in a canonical fashion into the space of covariant sym -
metric square-integrable tensors over the complex extension of , while u
is the unit vector (unique within multiplication by a scalar) in the domain

of N that is annihilated by N . On the other hand, it is easily seen tha t
(g)(N) x ' , x') = q, (1) for every bounded Baire function 9) and vector x in

(the prime having the same significance as before), while (q) (N) u, u) = 0 .
Now more generally, if q' (k)� q, (k + 1), then the same argument ap-
plies, with u. replaced by the symmetric tensor product of x 1 , x2 , . . .
Xk, and xn replaced by the symmetric tensor product of u with the x'
(in).

Remark 1. .2 . The preceding work shows that the notion of a function o f

a finite number of canonical variables is independent of the representatio n

of the canonical system, in keeping with its anticipated observable character .
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Because of the non-commutativity of the canonical operators, some delicac y

is necessary in the formulation of the relevant notion of functions . To

clarify this matter we may make the definition : A function of a collection of
closed densely defined operators on a Hilbert space is a closed densely define d

operator that commutes with all unitary operators that commute with ever y
operator in the collection and their adjoints .

In particular, a function of a single normal operator in the foregoin g

sense can be shown to be precisely a Baire function of the operator i n

the usual sense when is countable-dimensional, and in a suitably extende d

sense for inseparable

	

(cf. (6) ) . Now in the case of the Schrödinger oper -

ators pi°) , p 2°>	 pr°) and ql° ) , (Jr,

	

. . , q ;.°) , on the space 0 o f
square-integrable functions of r real variables, every bounded linear oper-

ator on ,~)o is a function of the p's and q ' s in the foregoing sense, and may

be symbolized by f (p(°) ( .), q (0) ( .)) . The proof of Theorem 1 shows that for
any other canonical system (p( .), q ( .)) over the same single-particle r-
dimensional space S , there exists a unique corresponding function f (p( .) ,
q ( .)), the image under the isomorphism given by Theorem 1 of the repre-

sentation algebra of observables of the first system into that of the secon d

of the original function . This result could be extended to unbounded func-
tions, as well as to the specific functions of the canonical operators define d
by Fourier integrals, but these developments are not needed in the present

paper .

Remark 1 .3 . In the treatment of time reversal and other reversal opera-

tions, an extension of Theorem 1 to the case of conjugate-linear ring iso-

morphisms is needed . It may be stated as

COROLLARY 1 .1 . For any two canonical systems over the single-particl e
spaces (.", B) and - B), respectively, there exists a unique conjugate -
linear ring-isomorphism between the corresponding representation algebras of
field observables that exchanges the bounded Baire functions of the canonica l
p (x) and q (x') for all x in

	

and x ' in ' .

Consider first the situation in a finite number of dimensions . As before ,

a basis may be chosen so that B (x, y) has the form Ek xk yk , and the
uniqueness theorem in the finite dimensional case reduces the question t o
that of showing the existence of an appropriate isomorphism for the algebr a
of the Schrödinger representation. It is easily seen that ordinary complex

conjugation in the representation space effects (via the corresponding simi-
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laxity transformation) the required isomorphism . This isomorphism i s

unique because the product of any two such conjugate-linear ring iso-
morphisms is a full algebraic isomorphism leaving fixed the p (x) and

q(x'), and so the identity . Now in the case of an infinite number of dimen-
sions, the proof given for Theorem 1 applies with obvious changes to th e

present situation, making use of the foregoing finite-dimensional result .

2 . Transformation Properties of the Field Observables

It is axiomatic that a suitable displacement of the single-particle structur e
should give rise to a corresponding displacement of the field . For example ,

if L is any Lorentz transformation, it is generally postulated that there i s

an associated unitary operator U (L) on the state vector space of the field ,
and that these operators give (within scalar factors at least) a representatio n

of the Lorentz group . This means essentially that any change of frame i n

ordinary physical space gives a corresponding transformation on the fiel d
states . The present section is devoted to the mathematical formulation of

this correspondence, i . e ., the field kinematics, and to a generalization o f

it which permits the treatment of field statistics along parallel lines .

We are concerned here with those transformations on the direct su m

of the real linear space associated with a single-particle structur e
(S), Sa ' , B), that leave invariant within sign the skew form [u, p ] = B (x, y' )
-B (y, x'), where u = x O+ x' and v = y O y ' . A transformation leaving th e

form strictly invariant will be called symplectic, while one that reverses its

sign will be called anti-symplectic .

Theorem 2 establishes, in physical terminology, that any symplecti c
transformation group (unitary or not) gives a corresponding group of trans -
formations of the associated Bose-Einstein observables . On the other hand, i t

should be noted that the state vectors, in a particular representation of th e
field observables, need not be correspondingly transformable . In other terms ,

if L is any single-particle transformation, then there will exist in a purel y

formal way a symbolic transformation U (L) on the state vectors, special

cases of this correspondence being treated in the field theory literature ; but
in general, U (L) will not exist in a rigorous analytical sense ; and it is here
shown that, if T is a function of a finite number of canonical operators (or
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a uniform limit of such), then nevertheless U (L)TU (L) -1 can be given

satisfactory mathematical meaning . This gives then a rigorous and covarian t

scheme for ` quantizing' any given single-particle species in accordance wit h

Bose-Einstein statistics, which uses only the transformation properties o f

the single particle, and is sufficiently general to be applicable to cases wher e
there exists no invariant positive definite inner product for single-particl e

wave functions . There is no need for the single-particle space O+ , ' t o

be irreducible under the action of the ` covariance ' group, in fact it ma y
decompose continuously, making it possible to quantize simultaneously a

continuum of distinct single-particle types .

In particular, whether or not the `free-field' Hamiltonian H exists as a

bona fide operator, the motion X> eztHXe-¢tH always exists ; the question
of the existence of H as an operator has meaning only within a particular

representation of the field observables, and can be dealt with by techniques

given in (4) . (Conceivably one could ask, independently of the representa-

tion, for an H that ` represents an observable' in the sense defined in the
last section, but this requirement is so strong that all non-trivial single -

particle types are apparently eliminated thereby) . The zero-interaction

representation has the distinguished feature that any unitary single-particl e
displacement can be represented by a unitary transformation on the repre-

sentation space . From this it can be inferred that, if the single-particl e

Hamiltonian is diagonalizable, then there exists a representation for the
field observables in which the corresponding field Hamiltonian has rigorou s
existence as a self-adjoint operator .

THEOREM 2 . Let E=(5), B) be a single-particle structure . For any
symplectic (resp . anti-symplectic) transformation T on the direct sum O+ V ,
there is a unique automorphism (resp . conjugate-linear automorphism) B (T )
of the algebra of field observables over E that takes P (z) into P (Tz) for al l
z in 0

	

where P (z) is the self-adjoint generator of the one-parameter
unitary group defined by the equation

U (t) = exp [itp (x)] exp [itq(x')] exp [- 2 i t2 B (x,x')] (z = x) x' ; - oo < t < oo ) .

There is no difficulty in showing that U ( .) is strongly continuous, an d
in deriving from the Weyl relations that U (t + 1') = U (t) U (t') for arbitrary
real t and t ' , so that P (z) is well-defined. As before, the terminology that

P (z) is taken into P (Tz) by an automorphism 8 is used to mean tha t
8 [q (P (z)] = T [P(Tz)] for all bounded Baire functions (p and for all canon-
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ical systems of operators . It is clear from the definition of P (z) and the
spectral theorem (or alternatively, from the irreducibility of the Schrödinger
canonical system) that the q) (P(z)) are actually in the representation alge -
bra T" of field observables (in every representation) .

Next, note the formula

exp [iP (z)] exp [iP (z')] exp[zi(f'(x)-f(x'))]exp[iP(z-1-z') ]

for arbitrary z = x O+ f and z' = x' O+ f' in O+ , ;)', which follows directly from
the definition of the P (z) together with the Weyl relations . Conversely, from
this formula the original Weyl relations follow on substituting the relevan t
values for z and z ' , since P ( .) extends both p ( .) and q 0. Thus there is

a one-to-one correspondence between canonical systems as originally de -
fined and maps P ( .) from Q+ S~ ' to the self-adjoint operators on a Hilber t
space that satisfy the condition given by the preceding formula . Now if
P ( .) is such a map, and if T is any symplectic transformation on O+ ' ,
it is immediate that the map P' 0, where P ' (z)=P (Tz) is of the same
type, and so defines a canonical system . The existence and uniqueness o f
the stated automorphism follow now from Theorem 1 . The case of an anti-
symplectic transformation follows similarly from Corollary 1 .1 .

It may be noted that it follows directly from the preceding formula tha t
P (z) + P (z ') e P (z + z ' ), but the linearity properties of P ( .) will not be
used in this paper .

Remark 2 .1 . In the special case of a single-particle structure such as tha t
described in Example 2 of Section 1, creation and annihilation operator s
such as are often used conventionally may be introduced. While they ar e
not at all essential for foundational purposes, they are helpful in computational
questions, their primary advantage being their invariance under comple x
scalars (that of the canonical variables being restricted to real scalars) .

COROLLARY 2 .1 . Let X be a standard single-particle structure and le t
PO be the map defined in Theorem 2 . Then the operator P (z) - iP (iz) ha s
a closure C (z) for all z in Q+ 5~' and C (2z) = ) C (z) for all non-vanishing
complex number s

The formula established in the proof of Theorem 2 shows that the one -
parameter groups generated by P (z) and P (iz) satisfy the Weyl relations
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(unless z = 0, in which case the conclusion of the Corollary is trivial) . I t

follows by an argument used in the proof of Theorem 1 that the represen-
tation space can be represented as a direct product of two Hilbert space s

in such a manner that P(z) and P(iz) are represented as the direct product s

of canonical operators over a one-dimensional space with identity operators ,

on a Hilbert space of possibly infinite dimension . From this it is readil y

deduced that it suffices, in connection with the existence of the closure ,

to establish. the existence of a closure for P1 + fa Q 1 , where (P1 , Q1) is a ca-

nonical pair in the Schrödinger representation, and a is real ; and this result

is well known. To show the homogeneity of C ( .) under complex scalars it

suffices, because of the obvious homogeneity of PG) under real non-

vanishing scalars, to treat the case when . i, and the result then is im -

mediate .

Other familiar elementary facts about the creation and annihilatio n
operators can similarly be deduced by reduction to the one-dimensional

case .

3. The Representation Structure Determined by a State of the Field

The field statistics arise only when additional structure, in the form of a

distinguished state of the field,- representing in physical terms the under -

lying vacuum state, without reference to which the occupation numbers ar e

not fully defined,-is given . The same is true of the field energy as a welt -
defined operator, rather than as a generator of a transformation on th e

dynamical variables . The occupation numbers could equally well be define d
as such generators, although they do not play this role in as physically

natural a way as the energy and momenta . Finally, `clothing' of the canon-

ical variables arises from the imposition of a definite state .

To deal with these matters, observe that any state E of the algebra it

of field observables over (, S-)', B) induces a topology on the group of non -
singular symplectic or anti-symplectic linear transformations on the single -

particle space O+ defined as the weakest one for any element A o f

E (A0 (T)) is a continuous function of the transformation T, where
O (T) is as in Th. 2, and we use, as in the following, exponential notatio n
for automorphi.sms. An E-regular transformation on C )S'')' is defined as

a non-singular symplectic or anti-symplectic transformation T such tha t

E [(A*A)O(T)] <c(T)E[A*A] ,
Mat . Fys . Medd . Dan .Vid. Selsk . 31, no .12 .
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where c (T) is a number that is independent of A. A regular state E on alt is one
such that E (AeiP (z) B) is a continuous function of z, relative to any finite -
dimensional subspace of C+ ,'' (in the conventional topology in this sub -
space,- i . e. the unique one in which it is a real linear topological space) ,
for all pairs of elements A and B of S1l . It may be noted that, in case the
representation space associated with E is separable, the foregoing func-
tions are automatically continuous if they are Baire functions, as follow s
from the proof of Theorem 3 together with the fact due to von Neuman n
that a measurable one-parameter group of unitary transformations in a
separable Hilbert space is automatically continuous .

THEOREM 3 . For any state E of the algebra s?L of field observables over a
single-particle structure E= (,, B) there is a corresponding representatio n
structure (S3, cp, A, P), unique within unitary transformation of the complex
Hilbert space St, such that : 1) cp is a homomorphism of 9f into the algebra of

all bounded linear operators on St ; 2) A is a continuous linear map of 9t into
a dense subspace of St ; 3)

[(T (A) 2(B), A (C)) = E (C*AB) ]

for arbitrary A, B, and C in 91 ; 4) P is a representation of the group a of all
E-regular transformations on 5.) C by continuous linear or conjugate-linea r
transformations on S', such that P(T) A(A)=2(AO(T)) for all A in 91 and
T rin z~ .

In case E is regular, there exists also a concrete canonical system (p"( .),
q" ( .)) over E with representation space St, uniquely determined by the con-
dition that, for every bounded Baire function f, the image under Ø of the (ab -
stract) field observables f (p (x)) and f (q (x')) is f (p"(x)) and f (g"(x')) ,

for all x and x ' in and SY, respectively . For any E-regular transformation T,

P (T) P" (z) P(T)-1 = P" (Tz) ,

where P-( .) is defined on C+

	

as in Th. 2. In case K is separable, P( . )
has a continuous restriction to any Lie subgroup .

It is well known that with any state of a C'''-algebra is associated th e
representation structure defined by (S2, 99, A), and that this structur e is unique
within unitary equivalence (cf . (9) ) . It may be noted for future use that, auto-
matically, 99(A) 2 (B) = 2 (AB) . To obtain the representation I', a repre-
sentation Po of a' on the image Sto of under A may be defined by the equa-
tion 1ô(T) A(A)=2(AO(T)) for all A in t and Tina ; that To (T) is thereby
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well-defined follows directty from the inequality that asserts the E-regularit y

of T. This regularity shows further that Po (T) is a hounded linear transform -

ation on the dense subspace fp of 4t, and so may be uniquely extended t o

a continuous linear transformation .P (T) on all of f' . There is no difficulty

in verifying that Po ( .) is a representation, and in concluding from thi s

that I' ( .) is also a representation .

Now let A (z) denote the element of 91, eip (0 , and put q' (A (z)) =A" (z) .
It is clear from the fact that 99 is a homomorphism and that A (z) satisfie s

the equation derived in the proof of Th . 2 that

A"(z) A"(z ')=exp [(i/2) [z,z ' ]] A (z+z') .

It is readily deduced that the A" (z) are unitary . The regularity condition
on E means precisely that the inner products (A - (z) f, g) are continuous
functions of z relative to any finite-dimensional subspace of 33 for ar-

bitrary fixed f and g in the dense subset go of Sî, which implies, making us e
of the unitary character of the A"(z), that the same is true for all f and g
in fi . In particular, (A"(tz) f, g) is for arbitrary fixed f and g in fi and
fixed z in S2 C a continuous function of t . Thus [A"(tz) ; - < t < co ] is

a continuous one-parameter group of unitary operators . It follows that the
group has a self-adjoint generator, which will he designated P"(z) . It is
immediate that P- ( .) satisfies the equation derived in the proof of Th . 2 ,

and so determines a concrete canonical system over E with representatio n

space fi, and having the stated property .

Now it is not difficult to show that

E(T) (X) I'( T)-1= q (XO(T) ) ,

making use of 3) and 4) . In particular, if X= f (P(z)) for some z in

then it follows that

f (P" (Tz)) = I'(T) f (P" (z)) F(T)- 1

To extend this to the case when fis the unbounded function f (1) = t, it suf-
fices to show that W is a bounded linear transformation in a Hilbert spac e
having an inverse of the same type, and if Wf(A) W-1 = f (B) for two self-
adjoint transformations A and B and arbitrary bounded Baire function s
f, then WAW-1= B . This is equivalent to showing that WA= BW. Nov B

and BW are closed transformations, and taking f to be the characteristic
function of the interval (- n, n), and letting n -÷ ce , it is easy to conclude

2*
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that WA c BW. By symmetry, W-1 B c AW-1, and transforming by W gives

the reverse inclusion, thereby completing the proof of the stated transform-
ation properties .

In dealing with the last assertion of the theorem, "Lie subgroup" may

be taken in the rather general sense of a subgroup in the algebraic sense ,

bearing a distinguished Lie group structure, together with a continuous alge-
braic isomorphism of it into the group of E-regular transformations . T o
prove the assertion, note first that for any vector u in Si of the form 2 (A),

for some A in i, I I'(T) u i is a continuous function of the E-regular trans -
formation T, since its square is E [(A*'A)B(T)], which is continuous by de -

finition of the topology on . By the density of A (alt) in a, together with th e

separability of 5 ,2, I F (T) I is the least upper bound of a sequence of thes e
continuous functions, and so is a Baire function . A result due to HILLE and
PHILLIPS (see the proof of Theorem 9 .3 .1 in [2 A]) shows that the restrictio n

of F ( .) to any continuous one-parameter subgroup is continuous. Using

canonical coordinates in a neighbourhood of the identity in the Lie group ,
the continuity for a Lie group follows from that for the case of a one-para-

meter group.

Example 3.1 . Let E be the single-particle structure described in

Example 1 .2 . It is easily seen that every unitary transformation on M
is symplectic . Therefore, by Theorem 2, there exists for any unitary
transformation U on 931 a (unique) automorphism of the algebra of fiel d
observables over 931 taking P (z) into P (Uz), for arbitrary z in 932 . The
zero-interaction vacuum is given by

COROLLARY 3 .1 . There exists a unique regular state of the algebra of

field observables over 1' that is invariant under the field action of every uni-
tary transformation on the single-particle space 932.

The existence of at least one such state is clear from the form of th e

Fock-Cook representation, or alternatively, from the theory of the norma l
distribution in Hilbert space (cf . (5) ) . To prove its uniqueness, let E denot e
any other such state . Applying Theorem 3 and the von Neumann structure

theorem for canonical systems over a finite-dimensional space, there exist s

for any finite-dimensional subspace of 931, a non-negative operator D o f
absolutely convergent trace, on the representation space Si of a Schrödinge r

representation F of the algebra $t ' of field observables over 91, such that

E (A) = tr (F (A) D) , A in W.
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The invariance of E and the known decomposition of fi under the induce d

action of the unitary operators on 9t (cf . loc. cit .) imply that D has the form

D=Ek- o ak(n) Pk(1) ,

where Pk (N) is the projection of 9,I onto the k-particle subspace, and th e

ak (n) are non-negative constants which by unitary invariance depend only

on the dimension n of W. In the case of the standard state first described ,

all of the a k (n) vanish except when k = 0, so that by forming an approp-

riate linear combination it may be assumed that, for the given state E ,
ao (1) = 0 . Now since E is determined by its values on the 91' for large fit ,
ak (n) must be non-vanishing for some k > 0 and n > 1 . But this gives ris e
to a contradiction to the vanishing of ao (0) in the following way .

The ak (n) determine the ak (n - 1) in an explicit fashion, since if 1o i s

an (n - 1)-dimensional subspace of t, then the field observables over %o
form a subalgebra of those over 91 ; it is clear in fact that the a k (n - 1) may
be expressed as positive linear combinations of the ak (n) . By direct com-

putation it is found that, if for some fixed n, ak (n) = åkk,, then ao (n - 1) � 0 .
Hence ao (n - 1)� 0 whenever ak (n)� 0 for some k, and in particular ao (1 )
cannot vanish .

4. Covariant Single-Particle Structure s

The previous definition of single-particle structure covers phenomenolog-

ical aspects, but not the kinematical ones, which are naturally essential i n

treating field kinematics and covariant dynamics, as well as the origin o f
the state labels used in statistics . Therefore, before treating the clothing of

field statistics and kinematics, it is necessary to be explicit concerning the

single-particle kinematics and statistics . It is appropriate to define a single -
particle structure with distinguished transformation properties, or for short

a covariant particle (genus) as a single-particle structure E = (, Sy, B) ,

together with a given symmetry group G, and a linear representation of G
by symplectic or anti-symplectic transformations on O '• On this basis ,

Th. 2 gives directly the kinematics of the Bose-Einstein field observables for
a covariant particle ; the kinematics of the states, which is well-defined onl y
relative to a distinguished vacuum state, will be treated in the next section .

The statistics are somewhat more involved. In an elementary-particl e
field theory, a distinguished maximal commuting set of diagonalizabl e

single-particle operators play an essential part as state labels for single par-
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titles. In a covariant theory these operators are of group-theoretic origin .
This may be formalized by defining a `quantum number algebra' for a
covariant particle E as a maximal commutative algebra E of simultaneousl y
diagonalizable linear transformations on O+ Sa ' , contained in the envelop -
ing algebra R of the representation U. (For present purposes the topology ,
if any, in which algebras are closed is irrelevant ; for a standard single-
particle structure, the weak operator topology may be used, but all tha t
is essential is that the weak closure of E be maximal Abelian in that of i) .
In the case of the conventional scalar particle of mass In, e .g., Example 2
applies, with Jai taken as the usual space of normalizable wave functions ,
J as complex conjugation in momentum space ; and then N. consists of all
bounded linear and conjugate-linear operators on (if G is the full imprope r
inhomogeneous Lorentz group ; if G is the orthochronous group, then th e
conjugate-linear operations do not arise), while a suitable tf consists of all
multiplications by bounded measureable functions of the momentum -
energy (for either G) . This choice of E corresponds to the conventional
usage of momentum-energy as quantum numbers for scalar particles, a
particle of definite momentum-energy corresponding to a minimal projec-
tion in E, the non-existence of this in a rigorous mathematical sense (se e
below, however) corresponding to the fact that physical particles consist o f
wave packets, and do not have sharp energy-momentum .

It is important to note that all operational aspects of the particle ar e
determined by the algebra S11î and its commutative subalgebra Œ, as abstract
algebras, independently of their representation by operators in linear spaces ,
together with the mapping U( .) of G into R. In conventional theory of th e
standard relativistic particles, there is available,- and naturally in use, a s
it maximizes computational facility,-a concrete representation in whic h
U( .) is an irreducible unitary representation in a complex Hilbert space ;
but such a representation is not always possible, and in any event the fina l
physical results may be obtained without its use . For foundational pur -
poses, a better formulation of a manifold of particles than as a linear sub -
space of a vector space is as a projection in ft The particles that the theor y
contemplates as really observed correspond to the minimal projections in
the subring E, a particle packet corresponding to a non-minimal projection .
While minimal projections in the algebraic sense do not always exist (e .g . ,
in standard relativistic theory they do not), effective minimal projection s
can be introduced mathematically by using the fact that an algebra such a s
t is isomorphic to the bounded measurable functions on a measure space,
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the point of which play the role of representatives for particles with sharply
defined quantum numbers . On the other hand, this particle-phase space is
not needed operationally or logically, but only for clarification and inter-
pretation of the concepts of the theory . The commutativity of the projections
in f implies that the occupation numbers for them will commute, so the
corresponding particles may be simultaneously observed .

To give some relevant examples, as well as for correlation with standar d
relativistic theory and for their intrinsic interest, we now describe som e
special single-particle structures analogous to those of the conventiona l
theoretical meson and photon . The examples will be based on the actio n
of a Lie group G on a homogeneous space M; the `relativistic case' refers t o
that in which G is the improper inhomogeneous Lorentz group, and M is
relativistic in space-time .

4.1 . Let S'' be the space of real-valued continuous functions f on M that
vanish outside compact sets, and let ' be the space of real continuous dif-
ferential forms of maximal dimension on M, and set B (f, w) = S M fw. Let
G act as usual on t, and ' . This is a covariant single-particle structur e
which may be described as the genus of all scalar particles on It relative to
the covariance group G ; in the relativistic case, it can be identified with the
genus of all scalar particles, in the usual sense, of arbitrary mass .

4 .2 . Suppose M admits an invariant regular measure under G . The
actions of G on and

	

are then equivalent, and a physically equivalen t
particle structure is obtained by redefining

	

and ' as the spaces of rea l
square-integrable functions on M relative to the invariant measure m, and
B (f, g) = S M fg dm. Since =

	

it is possible in this case, as in standard
relativistic theory, to use only one space .

4.3 . The space of the preceding section admitted only real scalars . Th e
action of complex scalars on comes about in the following way . Suppose
there exists a transformation W on L2 (M)_ that preserves B commutes o r
anti-commutes with all the U(g), and has the property that W2 = - I . In
the relativistic case, there is an essentially unique such W on the subspace
of wave functions of real mass, i . e ., those whose Fourier transforms vanis h
outside the duals of the light-cones, namely the Hilbert transform relativ e
to the time variable . A complex structure is introduced into by definin g
multiplication by i as W. A complex Hilbert space structure arises when
there is given, in addition, a transformation J on , having distinguished
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commutation relations with the U (g), (i . e ., JU (g) J-I = U(g'), where the
transformation g-->-g' is multiplicative), and such that J 2 =1, WJ= - JW,
and B (Jf, Jg) = B (g, f,) . In the relativistic case, it is natural to take J a s

the operation representing time-reversal . It is easily seen that every element

z of can be written uniquely in the form x+ ig, where x and g are ele-
ments left fixed by J, and that attains a complex Hilbert space struc-

ture when the inner product is defined a s

[z ' , z] -B (x, x ' ) -1-B (y, g' ) + i (B (x , g ' ) - B (x', g)) ,

relative to which the U(g) are unitary or antiunitary .

4.4. The elementary-particle species of which a given genus is com-

posed are essentially in one-to-one correspondence with the minimal pro-

jections in the center of R . This center may have no rigorously minimal pro-

jections, but by means of the direct integral techniques originated by vo n
Neumann, Øi may always be decomposed as a continuous direct sum o f

factors 1 M dependent on a parameter m, and into which G has representations

UM . Taking Example 4.3 in the relativistic case, it is not difficult to show
that m can be taken as the mass, and that the elementary constituents ar e

identical (operationally) with the conventional scalar relativistic particle s

of a given (real or pure imaginary) mass . There is an analytical difference ,
in that the state vectors of Example 3, and (essentially) also these of th e
elementary constituents when ` function' is suitably generalized, are rea l

(suitably generalized) functions on M, while the conventional formalism

employs positive frequency functions on the dual of M (momentum space') ,

but these give abstractly identical representations of the Lorentz group, i . e . ,

they differ only in the labels attached to the particular elementary particles ;

cf. Section 3 of [9A] .

4 .5 . Let G be the group of real projective 3-space, and M the (four -

dimensional) manifold of all projective lines, and let G act as usual on M.

There is then no invariant measure on M under G, so that the formulatio n

of Example 1 must be used . If one used the apparently simpler and mor e

conventional type of space, that of all complex-valued continuous function s

on M, the action of G would be complex-linear, but would not be symplecti c
in any natural way, so that no field kinematics would result .

4 .6 . Let W be a finite-dimensional irreducible representation of G on a
real linear space 2, and let W" denote the contragredient representation
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in the dual space 2". In the situation of Example 1, the genus of al l
particles on M of spin type W may be defined as the covariant particl e
(5~ x 2, ' x 2", B x F; G, U x (W + W")), where F (x, f) = f (x) for x e 2 and
f e 2" . In case there exists a non-singular bilinear form on 2 that is invarian t
under W, there is a corresponding canonical correspondence of a. with 2 "
which combines with Example 4 .2 to make possible the use of only one space
as in that example . If the form on 2 is symmetric, the single-particle space
will admit an invariant non-singular symmetric, but in general indefinit e
form . This, e . g ., is the situation for the relativistic vector particles, W bein g
here the conventional representation of G on four-vectors . Theorem 2 assures
the existence of a convergent and effective field kinematics irrespective o f
whether there exists an invariant positive-definite inner product .

7 . Somewhat more generally than Example 4 .6, suppose that for a co -
variant particle in which S)' is dual to the topological linear space of Hilber t
space structure and G acts contragrediently on

	

to its action on , an d
in which B (x, f) = f (x) for x e 5~ and x ' e

	

that

	

admits a real sym -
metric continuous invariant non-singular bilinear form B'. In this event,

O+ S ' admits a distinguished complex structure and hermitian form ; a
transformation that is unitary relative to these is symplectic ; and the trans -
formations on that leave invariant the given form are represented by
complex-linear transformations on O+ SY . To see this, let 0 denote the map
y -> f of

	

onto Sb', where 1(x) = B (x, y), it is readily verified that 0 is
continuous and linear . Now define i (x + f) = - 0-1 f + Ox ; then i 2 = 1 ,
justifying the notation . If U is a linear transformation on

	

leaving B in -
variant, and V is the corresponding symplectic transformatio n

x+f ->- Ux+U'f-1 f

on 57 O+ S) ', it is straightforward to verify that iV= Vi, so that V is com-
plex-linear relative to the structure derived from i . Defining for z= x + iy
and z'=x'+iy' a form

[z, z' ] = B(x, x ' )+B(y, y)+i{B(x, y')- B(x ' , y)} ,

there is no difficulty in verifying that this is a hermitian form and that the
symplectic transformations are precisely those preserving its imaginary part .
It may also be noted that the V's commute with the canonical conjugatio n
x+ iy -> x - iy, which may be described in physical terms as a type of par-
ticle-antiparticle conjugation .
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8 . In case E = B) is as in Example 1 .2, and in case the action U( . )
of the covariance group G is given by unitary or anti-unitary transforma-

tions on JI = S) O+ ', the particle genus may be called standard ; the conven-

tional relativistic particles are of this type .

5 . Clothed Kinematics and Statistics

It will be convenient to refer to the structure obtained from the algebra

of field observables over a particle genus by adding to the system a dis-

tinguished state, as `clothed' . In so doing, we do not wish to suggest that th e

distinguished state must be the `physical vacuum', which can only b e

defined when the dynamics is specified, nor, in general, that the clothe d

structure has any operational physical meaning. The present discussion i s

purely mathematical . However, in the special case of the physical vacuum ,

the `clothing' can be said to represent the effect of the interaction, and con-

sists, so-to-speak, of a `cloud' of particles around the original `bare' on e
created by self-interactions, in a manner that will be made more explicit i n

this and the following sections .

The clothed canonical variables were defined and treated in Section 2 .

The effect of the clothing was to make the elements of the abstract algebr a
into concrete operators, substantially. This section pursues a similar effec t

on the kinematics and statistics, and deals in particular with the con-

struction of definite operators in Hilbert space that represent the clothe d
energy-momenta and occupation numbers of the field .

COROLLARY 3 .2 . Let E=(Sj, ', B ; G, U( .)) be a covariant particle

genus, let E be a state of the algebra of field observables over E, and suppose tha t

U( .) is a continuous representation of the Lie group G by E-regular transform-

ations. Then with the notation of Th . 3, and assuming the separability of

g -+ r (U(g) )

is a continuous linear representation of G on R2 ; is unitary on the subgroup G o
of G consisting of elements leaving E invariant, E (XB ( u (g) >) =E(X) for all X

in 91 ; and for any element L of the Lie algebra of Go, there is a unique self-ad-

joint operator L'v on

	

determined by the property tha t

I'(U(exp (tL))) = e"L^

The proof is somewhat similar to that for the existence of clothed canon-

ical variables, and will be omitted .
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Remark 5 .1 . In practice, Go will include translation in time, whos e
generator L is transformed by U( .) (or rather the infinitesimal transforma-
tion it induces) into the single-particle energy ; and L" is then the field
energy which is clothed in the sense of being a definite self-adjoint operato r

arising from the interaction . A variety of elementary and commonly use d
properties, e . g., the annihilation by L" of the vacuum state representative

A (I), can be read off immediately from the foregoing results .

To deal with the statistics, it is necessary to use diagonalizable rathe r
than self-adjoint operators, where a diagonalizable operator in a complex

Hilbert space R is an operator T for which there exists a non-singula r
operator W (both W and W-1 being bounded and everywhere defined)
such that WTW-1 is normal. A collection of such operators is simultaneously
diagonalizable in case the same W is effective for each of them. If T is
diagonalizable and f is a Baire function over the complex numbers, the n
f (T) is defined as Wf (T) W-1 ; it follows readily from the polar decompo-

sition for non-singular operators that this definition is unique, i . e ., f (T) i s
independent of the transformation W used to effect the diagonalization . The
spectrum of T is defined as that of WTW-1 , and is similarly unique .

Now the occupation number of a single-particle state is the special cas e
of the notion of occupation number of a linear manifold in which the mani -
fold is the one-dimensional one spanned by the state ; and any linear mani -
fold may be correlated with an operator whose range is the manifold ,
under conditions valid in all interesting concrete cases . As indicated in th e
preceding section, this operator plays a more fundamental role than doe s
the manifold itself. Therefore it is appropriate to show how suitable occu-

pation numbers may be associated with a given such operator P on th e
single-particle space . 'When this space admits a suitable complex structure ,
e . g., in case the single-particle structure is ` standard', it is appropriate t o
require that P2 = P, but to cover the more general case in which there i s
or may not be such a complex structure, it may be assumed that P 3 = - P .
For reasons indicated in the preceding section, such an operation may be
called a particle manifold, two such manifolds P 1 and P2 being simultaneously
observable in case they commute .

COROLLARY 3 .3 . Let P be a particle manifold for the particle genus F, ,
and suppose that F (t) = I +P sin t + (1 cos t) P2 is E-regular and depends
continuously on t (-co < t < Go), and that K is separable . The one-parameter
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group I'(F(t)) then has a densely defined diagonalizable generator Np, whose
proper values are integral, and annihilates the vacuum state representative A(I) .
The `occupation numbers' Np of any finite set of simultaneously observable
particle manifolds P are simultaneously diagonalizable .

By definition, the generator of the group [F(F(t)) ; - cc < t < ] has a

domain consisting of all vectors u in fi such that lim t,0 (it)-1 [F(F(t)) -I] u
exists, and transforms u into this limit . Now the mapping t ->-I'(F(t)) = V(t) ,
say, is continuous, by virtue of the assumed continuity of F( . ), and the con-
tinuity of the restriction of P( .) to any Lie subgroup, when fi is separable .

It is evident that V( .) is a representation of the additive group of the reals by

continuous linear transformations on R . Now (V 2 n) = I, so the map e i 0 V(0)
defines a continuous representation of the group of all complex numbers o f

absolute value one, in the usual topology, on R. Since this is a compact
group, a well-known result due to von Neumann implies that the latter re -

presentation is similar, via a non-singular continuous linear transformatio n

of R onto ft, to a unitary representation . The existence of a diagonalizabl e

generator Np now follows from Stone 's theorem concerning one-paramete r

groups of unitary operators . That Np has in its domain the vacuum state re -

presentative 2(I) and annihilates it, is clear from the fact that the V (t) leave

invariant 2(4

That the proper values of Np are integral is clear from the same fac t

for any generator of a continuous unitary representation of the circle group

(which can be read off from Stone's theorem) . Now let PI , . . , P, be a

finite set of simultaneously observable single-particle manifolds . The map
(ei

@I, ,
ei0r)

->Hk F(Fk (O k)), where the subscript k on F indicates the

replacement of P by Pk , is a continuous representation of a torus group on

R, and as this group is again compact, the same argument as above show s

diagonalizability .

Remark 5.2 . There is no difficulty in verifying that, in the case of a

standard single-particle structure and the zero-interaction vacuum, th e
present definition of occupation number gives the same as the conventional

definition, according to which the number of particles with wave functio n

x in the field is C (x)*C (x), where C (x) is the creation operator for an
x-particle as defined above . The relevant projection is that on the one-
dimensional manifold spanned by x, the P used above being of course the

multiple of this projection by i . However, for general states, the conventional



Nr. 12

	

2 9

definition is physically inappropriate, irrespective of the single-particle de-

finition. This can be seen by comparison with the main physical desiderat a

for occupation numbers, which are : 1) they should have integral proper

values ; 2) they should annihilate the vacuum state representative ; 3) the

total field energy or momentum (etc .) should be (at least formally) repre-

sentable as the sum of the products of the spectral values of the correspond -

ing single-particle observable with the occupation numbers of the corre-
sponding manifolds ; 4) if the vacuum state representative v is in the domai n

of the clothed creation operator C"(x) (here we deal only with the standar d

single-particle structure case), then the vector C " (x) v should represent a

state in which exactly one x-particle is present and no y-particle, for any y
orthogonal to x .

Condition 1) is satisfied by both definitions . Condition 2) is easily see n

to be satisfied by the present definition, but there is no apparent reason wh y

it should be satisfied by the conventional definition, in fact this need no t

make sense, for in general v need not be in the domain of the C (x)*C (x) .
Formally at least, this is the case if and only if C (x)" C (x) has finite expec -
tation value, and there is no difficulty in establishing that states exist i n

which C (x)*C (x) has infinite expectation value in the sense that 1 .u.b .
[E (T*T) : T s %, T`"T C C (x)*C (x)] _ + co . Condition 3) is easily validate d
in a formal way for the present definition (this suffices, as the condition i s

needed only for identification of concepts, and not for any analytical pur -

poses) by taking the case when the single-particle operator H (Hamiltonian ,
say) is of the form Ek 2k Pk , where the 2 k are real and the Pk as above (thu s
in the standard case, this H is i times the usual one ; this formulation allows

the same argument to be applied to both the standard and non-standar d
cases), then the infinitesimal generator of [P(exp (tH)) ; - oo < t < co] as
a one-parameter group (the corresponding field Hamiltonian) should b e

EkA k Npk . This is virtually immediate from the fact that P( .) is a represen-

tation. Now if H = AdE,t is the spectral resolution of H (the EA now being
such that EE _ -EA ), the integral can be regarded as a generalized sum,
and in a formal way it follows that the corresponding field operator i s

1 AdN,t , where NA is the number of particles in the manifold EA , which i s
precisely what condition 3) requires . On the other hand, with the conven-

tional definition, no such formal equality holds .

Now consider condition 4), assuming the single-particle structure to be
standard. Let Px denote the projection on the single-particle space whose
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range is the one-dimensional manifold spanned by x . We proceed quit e
formally, making no attempt at analytical justification . The vacuum state v
is A(I), and is taken by the clothed creation operator C"(x) into A(C(x)) .
Now a state vector u in a' represents a state containing one .x-particle pro -
vided r(e"P)u = eat u, and one containing no q-particle in cas e

F(eetPy) u = u .
Taking now

u = A (C (x)), r(ei t Py) u = A(C (eztP ., x)) = A (C ( eztx)) = eit A (C (x))

[by the homogeneity of A and C( .) under complex scalars] =eat u . On the
other hand,

r(e"P„ ) u = A (C (e¢tP,x)) = A (C (x)) = u .

With the conventional definition, no such formal development is possible .
On the other hand, there may well be no x -� 0 such that v is in the domain
of P (x) .

The question arises as to whether an interpretation of the C (x)*C (x)
as particle numbers in some sense is possible . In terms of (physically fic-
titious, but conceptually graphic) 'pristine' particles, by which we mean th e
particles constituting the field, in their original state of zero interaction ,
before the physically real interaction is 'switched on', such an interpretatio n
can be given. These pristine particles are devoid of self-fields and have a
certain resemblance to the `bare' particles introduced in a variety of current
theories, but in view of the great analytic complexity and lack of uniformit y
in these treatments, we shall not attempt a precise comparison between th e
`pristine' and `bare' particles . The `switching on' of the interaction changes
the vacuum state of the field from the zero-interaction vacuum, relative t o
which the pristine particles proceed independently of each other in accord-

ance with their respective single-particle kinematics, to an equilibrium stat e
for the given interaction, representing the `physical vacuum' . In this state ,
no `physical' particles are present, in the sense that the vacuum representa-

tive is annihilated by the occupation numbers as just defined ; but a large ,
possibly infinite, number of pristine particles may be present . The total
number of pristine particles will be represented by L' k C (ek)*C (ek ), where
the e k constitute a complete orthonormal set in the single-particle space ; this
operator will generally have no more than formal existence, i . e ., be iden-
tically infinite from a physical viewpoint . The total number of physical par-
ticles, on the other hand, is the generator of the one-parameter group P(eU7),
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oo < l < oo (where I is the identity operator in the single-particle space ,

assumed standard), which will exist as a finite diagonalizable operato r

under the stated relatively weak regularity conditions .

Remark 5 .3 . ` Physical particle ' as used here is not the same as th e

conventional theoretical concept, which is tied to the use of the zero-inter-
action representation for the incoming and outgoing fields . An `empirical '

physical particle,	 a theoretical counterpart to that observed in reality,-

may be defined as one whose wave function is in the subspace of Sl' in whic h

the total number of particles is unity . There need be no natural way to build

up St from these empirical particles (if indeed they exist in substantial num -

bers), and in fact the existence of bound states is a contra-indication for this .
The present physical particles may be designated as `primary' in distinction
from the `empirical' ones, since they evidently constitute the theoreticall y

basic concept . Either type of particle may be defined as `elementary' in cas e
the transforms of its wave functions under the covariance group span a n
irreducible subspace (under the group) . There is no mathematical reaso n

why the elementary empirical particles should in general transform equi-

valently to the elementary primary ones which are given independently of
the interaction. A heuristic argument suggests that, when the scattering auto-

morphism depends continuously on a coupling constant, the empirical par-

ticles should have the same discrete quantum numbers (spin, etc .) as cor-
responding primary particles (correspondence being in the sense that th e
empirical particle wave function is in the closure of the image under . o f

the subalgebra of bounded functions of the canonical variables for the pri-

mary particle), but may well differ in continuous quantum numbers (= the
mass, in standard relativistic theory) . In principle such mass differences ar e
computable, but it should be noted that there need be no empirical particl e

corresponding to a given primary particle, as the entire corresponding sub -
space of R may consist of states composed from at least two primary par-

ticles, and even when it contains a single-particle state there is no theoretica l
assurance of uniqueness .

Another point of difference between the representation structure obtaine d
above, and the zero-interaction structure commonly used for the representa-
tion of free physical fields, is that,-apart from a heuristic continuity argu-

ment,-conceivably, the occupation numbers of a maximal simultaneously

observable set of single-particle manifolds do not generate a maximal com-
muting set of operators in fi . Since fS is spanned by the transforms of v under
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the bounded functions of the clothed canonical operators, s is spanned by
states each of which is built up from a finite number of primary particles .
Lack of maxi .mality would mean that distinct states could have identical
constitutions in terms of elementary primary particles . This would suggest
the existence of a certain type of bound state, i . e ., an r-particle state whos e
transforms under the covariance group span a subspace not transformin g
according to the direct product of r elementary-particle types . The circum-
stance cited in the preceding paragraph seems, however, more likely to accoun t
for the physical existence of bound states .

It is noteworthy also that, although any finite set of occupation number s
of commuting projections is simultaneously diagonalizable, this need no t
always be the case for all occupation numbers of a maximal simultaneousl y
observable set of single-particle manifolds . The elementary physical inter-

pretation is thereby not materially affected, since virtually any experiment
can be interpreted in terms of a large finite set of states, and since, if th e
physical system under consideration is `enclosed in a large box', simultane-

ous diagonalization can be effected under reasonable regularity conditions ,
despite the infinity of the number of single-particle states, due to the. discrete-
ness of the single-particle manifolds which then ensues, together with the
compactness of the group of all unitary operators in a maximal Abelia n
algebra of operators on Hilbert space that is generated by its minimal pro-

jections, which renders applicable the argument given above . Nevertheless
it is possible that this complication may be significant in relation to con-
vergence questions in a fully covariant theory .

For similar reasons, it is no essential loss of generality, in dealing with a
finite set of states, to assume that the clothed particle operators are in th e
zero-interaction representation ; but materially wrong or self-contradictory

results may then ensue if it is further assumed that the occupation-numbe r
operators may be defined in the conventional way . While this may appear
to be a plausible simplifying assumption, its cogent character is indicate d
by Corollary 3 .1, which implies that the only field in which the clothed canon-
ical variables and occupation numbers are unitarily equivalent to those of
the zero-interaction theory is the trivial one without interaction . In fact, i t
asserts even more strongly that the occupation numbers are self-adjoint in
the intrinsic Hilbert space metric in fi (in which the clothed canonical vari-
ables are self-adjoint) only if there is no interaction ; i . e ., roughly speaking ,
the `wave' and the ` particle' operators cannot be made simultaneously self -
adjoint .
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6. Collision Dynamics

In the light of the foregoing and the literature on the relation of abstrac t

C h'-algebras to quantum mechanics, it is clear that the appropriate definitio n

of a dynamical transformation is as an automorphism of the algebra of fiel d

observables . This is physically more operational as well as mathematicall y

more natural than the conventional assumption that a dynamical transfor-

mation is represented by a unitary operator . In fact, it makes little sense in

itself to ask whether a given automorphism is inducible by a unitary trans -

formation, as it may be so induced in certain representations but not i n

others .

Thus a conventional-type dynamics would be given by the assignment t o

each ordered pair s, s ' of `space-like' surfaces with s ' later than s of an

automorphism as,s ,, of the algebra of field observables, this automorphism
being interpreted as the transformation of a dynamical variable on s int o
the corresponding variable on s ' , which interpretation requires the mathe-

matical assumption that as, s , = Such a dynamics would be

(Lorentz-) covariant in case 0(g) a s, s, O (g)-1 = a ,g o) g (s , ) for every trans -
formation g of the Lorentz group, where 0(g) is the automorphism of th e

algebra of field observables that corresponds to g in accordance with Theo -

rem 2, while g (s) denotes the space-like surface into which s is carried by g .

For a collision dynamics, corresponding to the partial simplification of the
foregoing in which only the limit of a s, ,,, as s and s' tend to the infinite pas t

and future respectively, there is a single automorphism a, and the dynamic s

is covariant when a commutes with all the B (g) . In the following, we restric t
attention to the analogue of this type of dynamics, which may quite possibl y

be all that is observable physically, and in any event plays a fundamenta l

theoretical role .

In principle, the specification of a completely determines the collisio n

dynamics . Given any ` incoming' state E of the algebra of field observables ,
the corresponding `outgoing' state is Ea , where for any field observable X,

Ea (X) = E (Xa), the action of a and other automorphisms being writte n

exponentially when convenient . But to make any connection with what i s
physically observed, it is evident that the states must be `labeled' in identifi-

able terms, and here the essential and material complication arises that,
roughly speaking, it is not the absolute state E that is observed, but rather it s
deviation in a certain sense from the `physical' vacuum state .

Mat. Fys . Medd . Dan .Vid . Seisk. 31, no . 12 .
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Conventionally, the physical vacuum state and the related notion of phy-

sical particle are introduced, through the use of the total field Hamiltonian ,
in a fashion that leads rapidly to divergences . In addition to the low mathe-

matical viability of this approach, it is relatively unoperational . A simple r

and more direct approach involves rather the definition of the vacuum from

the `scattering ' automorphism a, a basic desideratum being invariance under
a . In addition in a covariant (e . g. relativistic) theory, it should also be inva-

riant under the covariance group (e . g. the Lorentz group), or at least unde r

the associated transformations used to label the single-particle states (e . g . ,
translations in space-time, whose generators give the energy-momentum ope-

rators). Physically these requirements may be expected to determine essen-

tially uniquely the physical vacuum for the automorphisms describing rea l
interactions, as otherwise there should be a hitherto unobserved selection rule .

The next result is to the effect that, for any given covariant automorphism ,

a physical vacuum exists, together with an associated analytical structur e
adequate for the fundamental physical interpretations . To fix the ideas, this
distinguished automorphism will be called the `scattering' automorphism .
A state invariant under this automorphism and under a distinguished sub -
group Go of the covariance group, which is not a non-trivial convex linear

combination of two other such states, is called a ` physical vacuum' relativ e

to Go and the automorphism .

THEOREM 4 . For any covariant scattering automorphism of the algebr a
21 of field observables over a covariant particle genus, and any maximal Abelia n

subgroup Go of the covariance group G, there exists a physical vacuum state .
The corresponding representation space Pt is irreducible under the joint action

of the clothed field observables, the scattering automorphism, and the clothe d

unitary representation of Go . In case the single-particle structure is standard,
or more generally if there exists a state of 21 invariant under all of G, then a
physical vacuum relative to all of G exists .

The states of 21 form a compact convex subset 4 of the dual, in its wea k
topology relative to W . The scattering automorphism a and the Abelian sub -
group Go act on the dual to 21 continuously and in such a fashion as to leav e
invariant 4 . A well-known variant of a fixed-point theorem due originally
to BIRKHOI F and KELLOGG allows the conclusion to be drawn that the sub -

collection of states invariant under a and Go is non-empty. It is easily seen

that this subcollection is again compact and convex, and so by the Krein-
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Milman theorem contains an extreme point, which is a physical vacuu m
state as defined above . The irreducibility of the joint action on Si of 9) (9f) ,
Go (via PG)), and the unitary operator S determined uniquely by the con-
dition S A (X) = A (X e), for all X in 9T, follows by a trivial variation of the
proof of Th . 5 .3 in [7] .

Now suppose there exists a state Eo of 91 that is invariant under the actio n
of all of G,-such as the zero-interaction vacuum in the case of a standard
single-particle structure. Varying the foregoing proof by replacing A by th e
subset consisting of the least convex closed subset of 4 containing Eo an d
all of its transforms by positive and negative powers of a, one still obtain s
a closed convex set of states, each of which is invariant under G, and the
totality of which is invariant under a . By the same fixed-point theorem, 'ther e
exist elements of this subset that are invariant under a . The sub-collection
of all such elements is again a compact convex set, and so by the Krein -
Milman theorem contains an extreme point, which is then a physical-vacuum
state relative to all of G and the given scattering automorphism .

Remark 6 .1 . By this result, the main burden of obtaining a convergen t
dynamics is shifted onto the problem of setting up the scattering automor-
phism for the physical system under consideration. The material simplification
brought about by the use of an automorphism rather than a unitary operator
is that its form. and existence are independent of the employment of specia l
representations, while the S-operator itself will be unitary in general only i n
one particular representation, which it is part of the theoretical problem *
to determine . To illustrate this point, consider a purely hypothetical theor y
in which S is given in a purely formal manner as exp [ig Ek QE, where the
single-particle structure is assumed standard, and Q k = q (ek) ; e l , e 2 , . . .
being a complete orthonormal set in the single-particle space . There is no
doubt that Ek Qk fails to exist as an operator in the zero-interaction repre-
sentation, nor is there any other apparent canonical system over a single -
particle Hilbert space in which this formal expression would appear to
define an operator . Nevertheless a corresponding automorphism can be set
up fairly briefly, and it follows that S can be represented by a bona fide
unitary operator in a certain Hilbert space .

* As here formulated . In certain other current approaches (e . g . those of HAAG, K ALLEN and
WIGr-TTMAN, and of LEHMANN et al .) it is essentially part of the postulates of the theory that th e
S-operator is unitary in the zero-interaction representation . This is a substantial implicit restric-
tion on the interaction, and in fact no example of such a theory with real particle creation ha s
yet been constructed .

3*
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Remark 6 .2 . The situation is particularly simple in the case of the single -

particle structure of Example 3, Section 1, which is often used in approxi-
mate non-covariant theories . The typical interaction Hamiltonian in thes e

theories is a linear form in the Pn and Q. whose coefficients are bona fid e
operators in Hilbert space . In certain cases the coefficients of the P. vanish
(or do so after a suitable transformation), and the transformation Qn - 3

an Q n , Pn -÷ Ç'Pn , with an ->0 sufficiently rapidly will generally conver t
a divergent such hamiltonian into a hermitian (densely-defined) operator

in a Hilbert space . As the time-ordered exponential of the interaction Hamil-

tonians (in the interaction representation), the formal S-operator induces a
(scattering) automorphism which is a Stieltjes product integral of automor-

phisms generated by such Hamiltonians, and the crucial point in its existenc e

has always been the finiteness of the generator, which follows as indicated .

In particular, when the coefficients are operators in Hilbert space such tha t
each is bounded, a transformation of the indicated type exists .

Remark 6 .3 . For the validity of Theorem 4 and its physical interpreta-
tion, it is not essential that the scattering automorphism a be onto . The only

difference is that if a is merely into, the emergent S-operator will be merel y

isometric, and not necessarily unitary . This corresponds to a type of dis-

sipative process for which there is no indication in elementary-particle phy-
sics, but which could conceivably be applicable in thermodynamical situa-

tions .

It is not even altogether essential that a be into ; it would suffice sub-

stantially for it to be given as a homomorphism of the algebra l( of fiel d

observables in a concrete representation, into the bounded operators on th e

representation space . The physical vacuum state E is then defined as satis-
fying E(X) = E(X'') in case the field observable X is such that Xa is in W ,

together with invariance under Go and ergodicity as before, and its existenc e

follows from an extension of the fixed-point theorem mentioned to mappings
from points to convex sets (cf . [1 A]) . The mapping in question takes a stat e
E0 invariant under Go into the set of all states E l of. f such that El (X)
Eo (Xa ) whenever Xa is in W. As an illustration, consider the purely hypo-

thetical theory with standard single-particle structure in which S is given i n
a formal way as exp [iEkbkQ r], where b l , b 2 , . . . is a bounded sequence of

real numbers, and r is a positive integer. This is a quite divergent and

generally intractable expression, but it may be shown without particula r

difficulty that, in the zero-interaction representation, it can be formulated as
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a homomorphism of f into the bounded operators . It then follows that ther e

exists a representation in which a may be represented by an isometri c

transformation S defined in a certain subspace of R, in the sense that A (Aa)

= SA (A) whenever A and A a are both in ~i . Actually, it is plausible that the

image under the homomorphism described is % itself, in which case S woul d

be unitary and defined on all of S, but the verification of this would be tech-

nically tedious and is not required for the existence of a physical vacuum i n

the foregoing sense .

Remark 6.4 . We are not in a position to treat the uniqueness and the regu -

larity of the physical vacuum, but both seem very plausible for the case of a

theoretical description of real particles, and considerably more far-reachin g

assumptions are commonly made . One such assumption, which we are un -

able to substantiate theoretically, is that the clothed canonical variable s

act irreducibly on R . The justification is that, in a formal way, S and th e
clothed kinematics are given as functions of the canonical variables, so tha t

from the irreducibility under the action of all of these, as stated in Theorem

4, it is reasonable to conclude the irreducibility under the canonical vari-

ables alone. It may well be true that, whenever a and the action of Go o n

the field observables are limits in some suitable sense of inner automor-

phisms,-which is a way of formulating the plausible requirement that th e

theory be obtainable as a limit of cut-off theories,-then this irreducibilit y

follows. However, not enough is known at present concerning the approx-
imation of the scattering automorphism by inner ones either to make thi s

line of attack effective, or to demonstrate its insufficiency .

Remark 6 .5 . It should be noted that even when the physical vacuu m

state is not invariant under all of G (this is state in the sense of expectatio n

value ; the corresponding state vector in S is always invariant under all o f

G), the physical results of the theory, i . e ., the S-matrix elements betwee n

finite-particle states labeled by the given maximal Abelian family of quantu m
numbers, are nevertheless fully invariant . For although a transformation g

of G will in general change the physicel vacuum state E into a new state Eg ,
defined by the equation Eg (X) = E (X0 (U ( g)) ), a similarity transformation o n

the quantum numbers, by U (g), is required, resulting in a new maximal

Abelian Algebra conjugate to the original one ; and due to the covariance o f

the scattering automorphism, the two effects cancel .

Remark 6 .6 . It may be noted that there are a variety of algebras similar
to the algebra of field observables as defined above that could be used in
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place of it without any essential change in the foregoing . Theorems 1-4
would be substantially unaffected if 91 were replaced by the C*-algebra s
generated by all bounded Baire (or continuous, or uniformly continuous )
functions of the canonical variables ; and would be valid in modified for m
for the C*-algebra generated by the continuous functions vanishing at in-
finity of the canonical variables . Which of these algebras to use would appea r
to be mainly a matter of technical convenience . On physical grounds, it ma y
be expected that the resulting representation spaces relative to the physica l
vacuum (and accompanying structures) would be identical ; this is quit e
parallel to the circumstance that the L 2-completions of the Baire functions ,
continuous functions, and polynomials in [0,1] are identical . There is no
difficulty in formulating in precise mathematical terms the relatively weak
regularity assumptions on the physical vacuum under which the S-matri x
finally obtained will be independent of the type of algebra employed . It i s
important to note also that the foregoing work applies to the still more ge-
neral formulation of dynamics in terms of transformation of the linear
forms that define expectation values in states (in mathematical terms, onl y
the dual of the scattering automorphism is really needed) . In this situation,
the unitary S-operator would:have to be replaced by a bilinear form on R
(the S-matrix), but otherwise Theorems 3 and 4 are substantially unaffect-
ed . A dynamics of this type is essentially completely determined by th e
knowledge of the vacuum expectation values Eva, [ e0' (out) (0 e iP (in) ) ] as
a function of the two single-particle wave functions z and z ' .

The author is indebted to the Office of Naval Research for support during
the preparation of part of this paper . He is presently a Fellow of the Nationa l
Science Foundation, on leave from the University of Chicago .

The author is grateful to Professors NIELS Bonn and BØRGE JESSEN for
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for Theoretical Physics and the Mathematical Institute, University of Copen-
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