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1 . Introduction .

W
ith the recognition that the proton-proton chain reaction
may provide the greater part of the energy production of

dwarf stars i ) a type of stellar model, which has not so far been
studied in any great detail, becomes of interest . Indeed, since
the temperature enters into the rate of the proton-proton reactio n
only with a power of about four, the energy production will tak e
place in an extended region around the center of the star . Conse-
quently, the existence of the convective core, which is a pro-
nounced feature of point-source models and carbon-cycle models ,
is by no means certain. And even in cases where the convective
core exists an appreciable fraction of the energy is likely to be
produced outside the core, and it is necessary to take the varia-
tion of the flux of energy through the star into account .

Previous investigations, which are important in this connexion ,

include papers by I . EPSTEIN 2) , and by I . EPSTEIN and L . MoTZ 3) .

These papers give models for the Sun, in which the proton-proto n

reaction is taken into account . A paper by OsTEHBRoca4) gives

models for red dwarf stars, calculated on the assumption tha t

convective layers, extending downwards from the surface, exist .
A . RErz 5 ) has calculated a model which is applicable to stars
composed entirely of hydrogen and helium. It is a special case

of the type of model considered in the present paper .
The aim of the present investigation is to answer the question :

Given an energy production law of the form

e = r0 T4

	

(1 )

how do the properties of the star vary with the opacity law ?
In answering this question the methods for integrating the

equations of the equilibrium of the star will first be discusse d
(section 2). Section 3 gives the main results of using the punche d

1*
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card equipment of the IBM Watson Scientific Computing Labo-

ratory, New York City, for solving the differential equations .
Altogether twenty different opacity laws have been considered .
Detailed tables are given for eleven models . Finally, in section 4 ,
the models are used to construct the Hertzsprung-Russell diagra m
for stars composed entirely of hydrogen and helium. It will be
found that the results confirm those obtained independently by
REIZ 5 ) .

In appendix 1 the power expansions for the behaviour of th e
solutions near the center of the star are developed, while appendix 2
gives tables for the eleven models discussed in section 3 .

2 . A method for the integration of the equations

of stellar equilibrium .

2.1 . The fundamental equations . The stellar models to be
considered in the present paper are specified in the following
way : 1) The chemical composition is uniform throughout th e
star. 2) The star is in radiative equilibrium except for a possibl e
convective core around the center . Convective zones near th e
surface are not considered . 3) The radiation pressure can b e
neglected . 4) The energy production is given by a law of the form

e = Sp på T v

where e is the production of subatomic energy per gram pe r
second, p the density, T the temperature, and eo, 6, and v ,
constants . 5) The opacity is given by a law of the for m

x xO el-a T-3- s=

	

(3)

where x is the mass opacity of the stellar material and xo, a, and
s, are constants . 6) The stellar material behaves like an ideal gas .

The fundamental equations governing the structure of a sta r
of these properties are well known . In the present section the y
shall be discussed with special attention to the fact that the
energy production takes place in an extended region aroun d
the center of the star . Also, a set of variables, which is particularly
suited for solution by means of automatic computing machines ,
shall be introduced .

(2)
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The starting point is the four standard equations of a star in
equilibrium : 6)

1

	

0.4 TP-1 dP/dr

	

conu . eq. (71) )

Here r denotes the distance from the center of the star, P th e
pressure, Mr the mass contained within the sphere of radius r ,
concentric with the star, Lr the flux of energy across this sphere ,
G the constant of gravitation, a the Stefan-Boltzmann constant ,
and c the velocity of light .

The physical contents of these equations can be stated a s
follows . The first equation is the condition that the star is i n
mechanical equilibrium in its own gravitational field, i . e . that
the gravitational attraction on any element of matter will b e
compensated by the pressure gradient . Equation (7) is the
equation governing the transport of energy from the center to -
wards the surface . It assumes one of two forms, depending o n
whether the main agent of transport of energy is electro-magneti c
radiation or convective currents, or, in other words, whether th e
point in question is in radiative or convective equilibrium. In
radiative equilibrium the gradient of the radiation pressure ,
aT 4/3, becomes proportional to the flux of energy, Lrr-2 , and
the opacity per unit volume, me . Where convective currents ar e
present the matter will be in adiabatic equilibrium, with the rati o
of the specific heats equal to 5/3, valid for monatomic gases, an d
the temperature gradient is independent of the flux of energy .
Equations (5) and (6) express the relation between the micro-
scopic quantities, e and g e, and the macroscopic quantities ,
Mr and L . To these equations we must add the equation o f
state of the stellar material, in our case of a perfect gas ,

P=57î,u, -1 e T

dP/dr = - G.11r ~ r-2

	

(4)

dMr/dr = 4 z ~ r 2

	

(5)

dLr/dr = 4 2z P r°2 s

	

(6)

dT/dr - 1
- 3 (16 2z ac) -1 P Lrr. - 2 T-a

	

rad . eq. (7 a )

(6)

where It is the mean molecular weight, and 91 is the gas constant .
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The quantities x and e describe the physical behaviour o f

the stellar material, x measuring the interaction of the radiation

and the matter, e giving the output of subatomic energy . Thus
it is clear that they will depend on the physical parameters of the
matter and the chemical composition, i. e . we can write

x = (e, T, chemical composition)

e = e (e, T, chemical composition) .

The problem of computing the structure of a star with a give n
radius R, mass M, and total energy output L, is now equivalent
to finding a solution of the eq . (4) to (8) which satisfies the
boundary condition s

Mr = M

L7 = L
for r = R

	

( 9 )P

T

= 0
= surface temperatur e

Lr = 0
} for r = O .

	

(10)
11fr = 0

The surface temperature can be put equal to zero without any

appreciable error being introduced . The problem is thus one of

four simultaneous differential equations with two point boundary

conditions-the fundamental problem of all such work as th e
present .

In order to illustrate the character of the problem we will

now briefly discuss two different, though mathematically equiva-
lent, methods for solving the problem by means of stepwis e

numerical integrations, namely a) by integrating from the surfac e

and b) by integrating from the center of the star .

a) Suppose R, M, and L, to be given. If we then assume a
chemical composition we can, by stepwise integration, calculate
the run of the quantities P, T, Lr, and Mr, as functions of r,

going from the surface towards the center. In general we will
find, however, that the two conditions L r = Ilir = 0 for r = 0
are not satisfied . In order to get the proper solution we must ,

therefore, carry out a number of integration runs, varying system-
atically two chemical parameters .

b) In order to start a numerical calculation from the center
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we must assume given the chemical composition and the centra l

values of the density and the temperature, ec, and T . As the
condition that our model is physically possible we have the on e

condition that e and T must vanish for the same value of r . Such

a model can be found by carrying out integrations for systematic -

ally varied ec, say. Thus, for given composition and T, we will ,

in general, determine one definite star with certain values of R ,
L, and M. By also varying TT we can find solutions with prefixed
values of, for instance, M . In this way we have arrived at the

celebrated theorem of VOGT and RUSSELL : Given the chemical

composition and the mass of the star, the radius and luminosity
follow. Finally we arrive at the same conclusion as when dis -
cussing a), that in order to fit the solutions to given values of R
and L, as well as M, we must vary two chemical parameters .

Although the conclusions of the two discussions a) and b) ar e
equivalent, the two procedures are still quite different, in that
a) requires two parameters to be varied in order to find the
solution with given R, L, and M, while in b) four parameters
must be varied in order to obtain the same result . This is the

reason why calculations of the structure and composition of give n
definite stars, as for instance EPSTEIN ' S work on solar models ,
is carried out in the manner described as a) . Even then a con-

siderable amount of work is required before the eigensolution i s

found, and it is highly desirable to reduce the number of para -
meters to be varied to one, when a more extensive program o f
calculations of stellar models is undertaken, even at the cost o f

some accuracy. This is accomplished by the application o f
homology transformations .

2 .2 . Homology transformations . We speak of two stellar models
being homologous when values of the physical variables describin g

one of them can be obtained by multiplying the corresponding

values for the other model by definite scale factors . Denoting by

To, Lro, oo, Mro, the variables at the point ro in one model, w e
get for the point r = r l in the homologous model

rl = Cr r o
Tl = CT To

Lri

	

CLLro

	

(11 )

21 = Cee o
t1 1r1 = CM1Mr0
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The existence of models described by quantities with suffix 1 i s
established only if these variables satisfy the equations (4) to (8) .
In the case of the equations (4), (5), and (8), this is apparentl y

so, provided the scale factors satisfy suitable conditions . Equa-
tions (6) and (7), which contain the, as yet, unspecified function s
x and s, must, however, be considered in some detail . First we

have, by assumption ,

dTo/dro = - 3 (16 7r ac)-l xo (eo To) eoLro r cT 2 T~ 3

	

(12)

The condition that the configuration (11) does, in fact, satisfy

eq . (7a) i s

dTl/dr l =- 3 (16 g-r ac)- 1 x i (el Ti ) o1Lrlri 2 TT'

	

(13)

or, using (11),

CTCr 1 dTo/dro =

- 3 (16 ac ac) .-1 CeCLCr 201'3 xl (el r1) oLror0 2T 0 3
( t 4)

Comparing (12) and (14) we find that two models are homologous

if their laws of opacity satisfy the functional equatio n

x o (eo To) = C 0 CLCr ' C2 44 xi (eoCe , ToCT)

	

(15)

This will always be the case if the opacity can be written on th e

form
x = x 0 pl -a T-3- s

where a and s denote constants, while xo is a quantity whic h

varies from one model of the homologous family to the next .
In quite a similar manner we deduce from eq . (6) that in orde r

to make the homologous transformation valid we must hav e

e = Eo eaT .

An application of this result will introduce an importan t

simplification in the problem if the opacity and energy productio n

can be written as (16) and (17), where the chemical compositio n
enters only through the factors xo and eo . In that case the change
of the chemical composition will only cause the model to var y

within the same homologous family of solutions . Consequently,
once a single member of the family has been found, it will be a

(16)

(17)
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simple matter to discuss the relation between the chemical com-
position and the parameters of the stellar model, R, M, and L .

We shall now proceed on the assumption of the validity o f

the expressions (16) and (17), postponing the discussion of their

physical applicability . Then the problem is solved as soon a s

one solution with the proper boundary conditions is known .
Adopting the method b) we can now chose arbitrary values for

xo, so, and T, . By varying ee we find the solution which satisfie s

the condition e = 0 and T = 0 simultaneously for some valu e

of r, R . This will give us a stellar model with definite values o f
R, L, M, Tc, ee, xo, ro, and u . Of these quantities xo, ro, and ,u ,
are assumed to be functions of the chemical composition . If the
structure for some other values of R, L, and M, is wanted we

only have to use scale factors . Of the three conditions to b e
satisfied, one determines the central temperature . The others
impose two conditions on the chemical parameters . One of thes e

is Eddington's mass-luminosity relation, the other one is the

condition that the total energy released by nuclear processe s
equals the luminosity .

It should be mentioned that a simplification of the integratio n

procedure does not appear in the approach described in a) ,

and it is quite obvious that the method b) should be used .

2 .3. Homology invariant variables . The method for finding

the eigensolutions of the fundamental equations outlined abov e
could probably be used for the actual numerical procedure .
Additional simplifications may, however, be introduced by usin g

different variables, with the further important advantage that th e
equations become far better suited for solution with the aid o f

automatic computing machinery . Indeed, as will be demonstrate d

presently, it will be a great advantage to use as variables th e
homology invariant quantitie s

V = - d log P/d log r = GMr e r 1P- 1

	

(18)

U= d log Mr/d log r= 4 n r 3 M,: 1

	

(19)

W = d log Lr/d log r = 4 r co r3 e" T M1' Lr

	

(20 )

H = Vf(n + 1) = d log Tfdlog r
(21 )

= 3 xo (16 r ac)- i
p 2- G' Lr r 1 T-7- s
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Of these variables V and U are well known, H is closely
related to the equally well known polytropic index, n, while W

has been introduced by OSTERBROCIï and the present author 7) .
As can readily be shown, the boundary conditions for these
variables ar e

U=W=3,

	

V=H=O

	

for r = 0

	

(22 )

U=W=0,

	

V- oc, H oc for R=r .

	

(23)

The differential equations satisfied by these variables are deduce d
by logarithmic differentiation of the eq . (18) to (21), making us e

of eq . (4) to (8) and also of the equations themselves . We get

dV/V = (U -I- H	 1) dr/r

	

(24)

dU/U = (3 - V -F H	 U) dr/r

	

(25 )

dW/W = (3 - (1 + å) V - (v	 1 - 8) H - W) dr/r (26)

dH/H = ((9 + s - a) H - (2 - a) V + W - 1) dr/r . (27 )

It is now apparent that we can eliminate the last physica l

variable, r, simply by choosing the independent variable among

the four homology invariants . The most convenient variable fo r
this purpose appears to be V'' and we are then left with the

equations

dU/dV = U(3 - V + H	 U) V-~ (U + H- 1)- l

	

(28)

dW/dV = W (3 - (1 -I- b) V

-(v-1 - å)H - W) V-1(U+H-1)-1

	

(29)

dH/dV = H ((9 -F s - a) H

	

li

-(2-a) V-I- W-1) V 1(U+H-1)-1 . 1

The great advantages of using the variables V, U, H, and W,

now become apparent . In fact, expressed in these variables, th e

four fundamental differential equations are reduced to thre e

differential equations and a quadrature . For, in order to retur n

to the physical variables from a solution expressed in the homolog y

invariant variables, we only have to perform a quadrature, e . g .

* A similar method has been used by LEVEE$), who choses W as his in-
dependent variable .

(30)



V

log .r/ro =

	

-I- H- 1)-i dV

	

(31 )

and then use the equations (18) to (21) . Also, the differential
equations are very convenient for treatment by means of auto-

matic computing machinery, because they do not involve expo-

nentials .

Having now demonstrated the advantage of using the vari-
ables (18) to (21) we only have to understand their behaviou r
at the boundaries before we can use them for actual computa-
tions. We have already given the boundary conditions for al l
our variables at the center and the surface of the star, eq . (22)
and (23) . Integrating, as we intend to do, from the center toward s
the surface, the new independent variable, V, varies from zer o
to infinity . In practise one must, of course, break off at some

suitably large value of V. As to the conditions at the center we
find, by inserting the values of the variables at the center in th e
eq. (28) to (30), that V = 0 is a singularity, so that a paramete r
is necessary to label a solution starting at the center. This is not

surprising, when compared with the procedure for solving th e
problem in physical variables discussed above . It is quite clear
that, also when using the new variables, it will he necessary t o
carry out trial computations, varying one parameter, before th e
solution satisfying the boundary conditions both at the center
and at the surface is found . As the parameter labeling the tria l
solutions it has been found convenient to us e

Hå = (dH/dV) v = o = (nc + 1)- 1

where ne denotes the polytropic index at the center of the star .
The numerical solution cannot be started from the center wher e
all derivater become indeterminate . We have, therefore, ex-
panded H, U, and VV, in powers of V, the coefficients of th e
series being functions of Ho' . The evaluation of the power serie s
is elementary, but rather lengthy, and has been given in ap-
pendix 1 .

Suppose now that a value of Ho' is chosen. Using the ex -
pansions of appendix 1 we can then compute H, VV, and U, for
a value of. V close to zero, e . g . V = 0 .2. From here we can con-
tinue the solution of the equations (28) to (30) to some large valu e

(32)
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of V (V = 15 is convenient) by step-by-step numerical inte -
gration. The question is now, what is the criterion that Ho' is
chosen in such a way that the solution corresponds to a con -

figuration in which P and T simultaneously tend to zero? I n

order to find this condition we observe that near the surface o f
the star we must have an approximate relation of the kin d

Poc Tq

	

(33)

where q is some positive number which is left undetermined fo r
the moment. But from this relation it follows that near the surfac e
we have

n + 1 = V/H = d (log .P) Jd (log T) = q

	

(34)

i . e . near the surface the polytropic index must tend to a finit e

positive limit . The actual value of this can now easily be found

from the eq. (30) . Near the surface we can neglect the constant s
and the functions U and W in comparison with H and V, which
increase beyond any limits . Writing no for the value of n at
the surface, we have the n

H = Vf (no + 1)

	

(35)

and we find

no + 1 = (8 + s - ) / ( 2 - - - ) .

	

(36)

The required criterion is that the quantity V/H tends to thi s

limit for large V.
It is of considerable interest to know what happens if th e

parameter Ho' is not chosen to be equal to the eigenvalue . The

numerical work shows that the solutions are extremely sensitiv e
to variations of this parameter . In fact, if Ho is chosen only
slightly below the eigenvalue, H will reach a maximum and th e

denominator U + H	 1 will become zero for some finite valu e

of V. If, on the other hand, Hå is chosen larger than the eigen -
value, H will increase so as to make n + 1 V/H< 2 .5 at
some value of V. At this point the equation of radiative equi-

librium will cease to be valid . Only if Ho' is chosen quite close t o
the eigenvalue will the solution ever reach V = 15 . Generally ,
the sensitivity of the solutions can be understood from the presenc e
of the rather large coefficient 9 + s -a in eq. (30) . In the eigen-
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solution the quantity (9 -H s - a) H - 1 + IV - (2 - a) V wil l
remain small only because the first and the last term nearl y
cancel. Any deviation from this solution will quickly be amplified ,

when the solution is followed towards larger V .

Once the eigensolution, expressed in homology invariant
variables, have been found, there remains the problem of cal-

culating the solutions expressed in physical variables . This
calculation necessitates one further integration, e . g . the quadrature
(31) . The variables M,, Lr, P, and T, could then be found by
means of the eq . (18) to (21) . The automatic computing machiner y
being available it was, however, more convenient to evaluate al l
of the physical variables by means of quadratures . From the eq .

(18) to (21) and (24) to (27) we fin d

log P =

	

dV/(U + H- 1) + constan t
v ,

log T =

	

HdV/V (U + H- 1) + constant
v a
v

log Mr = \ UdVJV (U + H	 1) + constan t
JJv ,
ÇT

log Lr =

	

1VdV/V (U + H - 1) + constant
vo

The constants of integration were chosen so that the function s
log rIR, log P/Pr, log T/TC , log Mr/M, and log Lr/L, resulted .
For log r and log Mr this made an analytic approximation of the
solutions beyond V = 15 necessary. This was derived in the
following manner .

2.4 . Expansions valid near the surface of the star . Let us ,
following C . M . and H . BoNDIe ), introduce the three homology
invariant variables

Q = - d log r/d log P = V- 1 (38)

S = -d log Mr/d log P = U/V (39)

N =

	

d log Ted log P = (n + 1)- 1 =HfV. (40)

V

	

I

(37)
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These variables are convenient near the surface where V an d

H tend to infinity. Using eq . (18) to (21) and remembering tha t

Lr = L near the surface we now get

dQ/Q = dr/r - dMr/IVlr + dT/T = (- Q + S + N) dP/P (41 )

dS/S = 4 dr/r - 2 dllr/lblr -{- dP /P = (1 - 4 Q + 2 S) dP/P (42)

dN/N - (2	 a) dP/P- (8 + s- a) dT/T- dMr/Mr

= [(2-a) - (8+ s- a)N+S] dP/P .
(43)

Owing to its close relation to V we shall find it convenient to us e

Q as the independent variable, rather than S as used by BOND I

and BOND1 . We then get the differential equation s

dS/dQ = S (1 - 4 Q + 2 S) Q-1 (S + N- Q)-1

	

(44)

dN/dQ = N((2-a)-(8+s-a)N+S)Q-1(S+N-Q)-1 . (45)

We intend to use these only for V> 15, i . e. for 0< Q 1/15 .

Also, S is small near the surface, and thus we have approximately

dS/dQ = SQ- 1 NcT 1

	

(46)
whence

S = A- 1 Q1JN°

	

(47)

where A is a constant . This approximation is better than might
at first be expected . This is duc to the fact that N, in the applica-

tions, usually is close to 1/ 4 , so that N (1- 4 Q + 2 S) (S + N- Q)- 1

remains close to unity even for rather large values of Q .
The variable N will be nearly constant equal to

No = (1 + no)- 1 = (2 - a)/(8 + s - cc)

	

(48)

near the surface . A better approximation can be found if eq .

(45) is analysed with respect to the importance of the variou s
terms . It becomes apparent that for small variations of N i t

makes sense to regard N/(N + S- Q) as a constant at the sam e
time as the variation of (2 - a) -(8 + s - a) N + S is taken

into account . In fact, this latter quantity can be writte n

- (8 =, s - a) (N - No) + S .
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At the surface we have S = 0, and near the surface the tw o
ternis are comparable . This suggests that it would be a good
approximation to write

N No = BS

	

(49)

where B is a suitable constant . For its determination we get fro m

(45)
BdSJdQ = No (No + S Q)-1SQ- l (1 - (8 + s

	

B)

or, using (46),

B=No(3-a- 17 (no+1)Q)-i .

	

(50)

Strictly, S and Q are zero where the approximations are valid .
The form given, eq . (50), suggests that slightly better results
would be obtained for finite values of Q if a coefficient B, which
is slowly increasing with Q, is used, Ti being a factor less than ,
but of the order of, unity .

We now get from eq . (38) and (41), corresponding to (31) ,

((. Q
log r /R =

	

(N + S Q)
-1

dQ .

Beginning with the most important, the order of magnitude of
the quantities is, No, Q, S, and N-No . We can therefore expan d
the integrand

(N+ S _ Q)-i = (No - Q)-i - (
1 + B) (No- Q) -2 S . . . (52)

where we have used (49) . The first term can be integrated
exactly. In the second term we use the first two terms of th e
expansion for (No - Q)-2 . In this way we ge t

logi o r/R = logl o (1 - QN(T i )

(no + 1) 2 ~

	

2 (no +1) ('i o + 2)
no+2 `1+

	 _ _	

no+3
	 QSQlog e(1 + B)

where we have used eq. (48) .
The approximation for log Mr/M is derived in the following

way. Using eq. (39) and (41) we find

(51 )
co

(53)
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log Mr/M = ~ SQ- i (N Q + S)-i dQ

	

(54)
o

Inserting the expansion (52) we find that none of the terms can
be integrated exactly, and we have to expand (No - Q)- i and
(No	 Q)- 2 in power series in QN (T 1 . Using (47) we can integrate
term by term, and get, after some reduction ,

1

	

Q

	

1

	

/Q12
logloMr/M =	 Ulo-g e -

	

--+

	

+
no + 1 No no + 2 \\No/ no + 3

+~Q
2

U 2 (1 + B) log e

As an illustration of the use of these relations we take th e
following values which have been obtained from one of th e
integrations described in section 3 . The constants of the model ar e

= 0 . 5
s = - 2 .1 .

We then find from (36 )

Ilo+1 =NV- = 3 .6 .

The integration from the center gives for V = 15 :

U = 0 .2162 .

Then, from (38) and (39),

S = 0 .014 4
Q = 0 .0667 .

From (50) we find
B = 0 .12 ,

and from (53) and (55)

logi or/R = 9.8826

	

1 0
logioMr/M = 9.9926 10 .

The expansions are equally useful for starting integrations
from the surface . In this case each solution will be specified b y
the value of the parameter A (eq . (47)) . Choosing a starting valu e
for V the expansions will provide values of N, r/R, and Mr/M.

Q \ 3

No

1

	

2

	

Q

2no-i 2 + 2no-r 3N o
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2 .5 . Invariant parameters of the models . In addition to the
functions (37), the invariant parameters, which specify th e

models, must be found . Corresponding to the homology trans -

formations each model can be characterized by four parameters .

In an obvious extension of the convention adopted by CHANDRA -

sEKI-iaa l0 ) we choose the parameters to be the following :
The ratio of central density to mean density,

F = oc/0 ,

the central temperature constant ,

E = TcR/,u M,

the constant in the mass-luminosity relation ,

LR3a+s x0

	

k 7+s

	

3
C

	

M5+s+«p7+ G1-2H

	

4 (40 3 -ac '

which, expressing L, R, and M, in solar units, becomes

log C = - 27 .0448 + 0 .3274 a- 7 .3638 s + log
ll5+s+« [17s '

and the ratio of central energy production rate to mean energ y

production rate,
D = EcM/L .

	

(59)

Using the eq . (18) to (21) it can be shown that these parameters
satisfy the relations

F = (T/Tc) (Mr/M) (P/pe) -1 (r/R) -3 (U/3) (60)

E = (Mr/M) (r/R)- i (T/TO-1 V-i G (klmH)-i (G 1)

C = (Mr/D/1)5 +s+« (,. /R)-3-s (Lr/L)-l HU-2+ 0' V-7-s (62)

D ° (Lr/L) (P/Pc) -s (M,/M)- l (T/T)6 -v j17U-1 . (63)

It should be noted that the quantities on the right hand sid e

are independent of the point in the star which is used in thei r
determination . This constancy can serve as a check on the las t
stage of the calculation of the solutions .

Dan .Mat . Pys . Medd . 30, no .7 .6 .

	

2

(56)

(57)

(58)

Lj1 3a + s 'c o
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2 .6 . Convective cores . Up to this point the question of con-

vective cores has been ignored . It is, however, very easy to exten d

the already developed procedure for integrating the equations o f

equilibrium of a star to the case of a star with a convective core .
As is well known, the structure of a convective core is described b y

T = To 0 (O (64)

= ~c 0 (03/2 (65)

where 0 is the Emden function for the polytropic index n = 3/2 ,
and $ is proportional to r . The function 0, together with V an d
U expressed as functions of , have been tabulated 11 ) . Further -

more we have
H = V/ (n + 1) = 2 V/ S .

	

(66)

Suppose now that the core extends to a value of V = Veore .
Outside this point . eq . (30) replaces (66) . At Vcore all our vari-
ables, including V, U, H, and W, must be continuous, and we

can find the proper starting point for the numerical integration s
from their values on the boundary of the core . Of these V and U
are known from the tables quoted above, and H is found from

eq. (66) . The variable W, finally, can be found for any poin t

in the core, using (20), (6), (17), (64), and (65), which giv e

W - $3 Ov +3 S/2Bv -I-3å/2 $2 d$

	

(67 )
~o

	

\

This quantity is a function of and v + 3 å/2 only and has been

tabulated by the present anthor 12 ) .

Having thus determined V, U, W, and H, on the boundary
of the core we can carry out the stepwise integration of eq . (28)
to (30) to see whether the condition (36) is satisfied for large V .
If not, it is a sign that the core has not been assigned the right
extent .

2 .7 . Summary of the method . As a summary of the present
section, here is a short directory in the use of the method :

Given the four exponents, a, s, 6, and v, find the series expan-

sions valid near the center, using the formulae of appendix 1 .

It is most convenient to choose a suitable small value of V, e .g .
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0 .2, and then, by using the Taylor series, to find U, W, and H,

as polynomials in H . (If it is known already from other evidenc e

that the model possesses a convective core, this calculation an d

the following one can, of course, be omitted . )
In order to determine whether a convective core is present

or not, compute a trial solution, starting with nc = 3/2, i. e .

H~ = 0.4, and using (28) to (30) for a step-by-step integration .

1f H or U + H- 1 become zero, a convective core is actually

present . If, on the other hand, H increases so rapidly as to mak e
n + 1 = V/H smaller than 2 .5 at some point no convective cor e

is present .

Trial solutions corresponding to varying initial conditions
must now be calculated until a solution is found for which th e
polytropic index n ± 1 = V/H approaches the proper surfac e

value (36) for large values of V. The parameter to be varied is

H', in the cases of no convective core, and Veore when a core is

present . In the latter case the initial values are taken from th e
tables of the Emden functions, as described in section 2 .6 .

The run of the physical variables can now be found, r followin g

from (31), and the other variables from eliminations among the

eq. (18) to (21), or from the quadratures (37) . If the five physical
variables are expressed in units of R, Pe, M, and L, the serie s
expansions (53) and (55) will be useful .

With the complete solution thus computed the constants of

the model follow from (60) to (63) .

3 . Numerical results .

3 .1 . The use of the punched card equipment . In the preceding
section it has been shown that the calculation of the structur e

of a star with the opacity given by x = ~o el-a T-3-s and the
energy production given by e = eo eå Tv can be reduced to th e
stepwise integration of the eq . (28) to (30) . In this section we shall

describe how the calculations for the case e = so 21' 4 have been

carried out by means of the IBM punched card equipment a t
the Watson Laboratory, New York City, and the results obtaine d
will be given.

Before any numerical calculations can be made, the differ-
ential equations must be approximated so as to permit a solution

2*
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in a finite number of algebraic operations, which is, essentially ,

a problem of replacing the integrals by suitable summations . For
this purpose a process of successive approximations was used .
In the first approximation the solution was computed by repeate d

expansions, using only the first term of the Taylor series, accordin g
to the formulae

Um+~ = Um + 4 V (dU/dV)m

Wm+i = Wm + 4 V (dW/dV)m

	

(68)

Hm+~ = H,n + 4 V (dH/ dV) m

where A V stands for the constant steplength of the independen t
variable, and we have used the subscript m to denote the valu e

of the variables at the point Vm = Vo + ni A V . Thus, in the
first approximation, we get tables of the three variables U, W,
and H, which, however, do not exactly satisfy the differential

equations . These tables can then be used lo calculate good ap-

proximations for second order terms in the expansions, e .g .

1 /2 (4 V) 2 (d 2 U/dV2 )m . (J

	

- 2 Um + Um-1 (69)

and a second order run can then be computed usin g

Um+~ = Um + 4 V (dU/dV)m + ' / 2 (4 V) 2 (d2 U/dV2 )m (70)

and similarly for W and H .

The efficiency of this method depends strongly on the step -

length, 4 V, which must be chosen small in order to make th e
process converge rapidly . A value of A V of 0 .1 was found
suitable when four decimal places were carried . In fact, no

higher approximations than the second were needed .

In the course of the calculations extensive use was made o f
the excellent collection of computing machines at the IBM Watso n

Laboratory . However, the only particular technique worth men-
tioning in the present connexion is the one used for solving th e
eq. (28) to (30) by means of the model 604 electronic calculatin g

punch . This machine has a rather small capacity for numbers ,
a total of only 50 digits . It was found possible to solve the differ-
ential equations only by using two punched cards to advance th e
variables by one step. In this way numbers may be stored pro -

visionally on a card while it passes from the punch station to th e
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second reading station . Use of this technique, and of the selectiv e

circuits of the machine, made it possible to fit the variables into
the capacity of the machine . The speed of the process was 5 0
integration steps per minute . During the search for the eigen-
solutions several hundred integration runs were performed .

The other problem of the numerical solution of the equations

is the sensitivity of the solutions against variations in the initia l
values. Owing to this sensitivity any deviation of the trial valu e
of Ho from the eigenvalue will cause the solution to end at a
physically impossible point, either n = oc or n = O . The sensi-

tivity is so strong that a solution which is started from the poin t
V - 0.2 and calculated with four decimal places will rarely g o
beyond V = 6 before an impossible point is reached . Thus one
can have two starting values of H 'o at V = 0 .2, differing by one
unit in the fourth decimal, one of which will cause n to vanis h
at V = 6, while the other will send n off to infinity before V = 6 .
One way of overcoming this difficulty would be to carry more
decimals . This was, however, not possible with the 604 . Another
method is suggested by the following table, which shows som e
results of two runs :

Ho' = 0.3605

	

H~ = 0.3610

V

	

U W H

	

U W H

0.2

	

2 .9232 2.6846 0 .0708

	

2 .9233 2 .6844 0.0709
3.0

	

1 .8551 0.3200 0 .8340

	

1 .8662 0 .3213 0.868 2
5.4

	

oc
5.8

	

0 .0000

It is apparent that the two solutions, which differ widely a t
V = 5 .5 are still close together at V = 3 . It therefore suggests
itself to start further runs from V = 3, interpolating the initia l
values between the two solutions :

V = 3

U = 1 .8551 + 0 .0111 y
(71 )

W = 0 .3200 ± 0 .0013 y

H = 0 .8340 + 0 .0342 y

where y is a parameter to be determined by further integrations .
This method proved to be quite satisfactory, but had to be used
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several times for increasing values of V, usually at V equal t o
3, 6, and 10 . Only the solutions started at V = 10 could b e

followed as far as V = 15 . The result of this procedure was a

pair of solutions lying closely on either side of the eigensolutio n
for each of the intervals in V between 0, 3, 6, and 10 . The finally

adopted solution was found by linear interpolation between these

pairs, use being made of the interpolation factors y as define d

above. As a check, the final solution was compared with th e

differential equations . Usually the error in the increase of the
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solution for one step was found to be within one unit in th e

fourth decimal, and only in a single case a deviation . of as much

as four units ruas encountered. This fully justifies the procedure .

It is interesting to note that if all runs had been calculated all

the way from V = 0 .2, at least ten decimals would have bee n

necessary in the calculations .

3 .2 . The behaviour of the convective core . During the initial

stages of the work twenty different opacity laws were considered ,

viz . all combinations of a = 0.0, 0.25, 0 .5, 0 .75, and 1 .00, and

s = + 0 .5, -0.5,-2 .1, and -3 .0 . In this way the two important

cases of constant opacity (a = 1, s = -3 .0) and Kramers opacity

(a = 0, s = +0.5) and a number of intermediate cases were

covered . At the later stages only eleven of the cases were investi -

gated. However, the material gives information concerning th e

extent of the convective core for all of the twenty models . This

information is represented in figure 1 . This diagram also shows

the results of applying the criterion for the existence of a convective

core to the model in question7), 12) . It is apparent that this criterio n

alone is sufficient for a reasonably good first indication as t o

whether a core may be expected or not .

3 .3 . Invariant parameters of eleven models . Table 1 gives the

invariant parameters of the eleven models which have been con -

sidered in detail, calculated according to eq . (60) to (63) . For

R, M, and L, solar units have been used .

The principal results of an inspection of this table are th e

following :

a) For given R, M, and ,a, T, increases for increasing a and s .

Speaking in terms of figure 1, T, increases towards the uppe r

right of the diagram. For models along the line connecting Kramers

and constant opacity the central temperature is nearly constant ,

decreasing slightly towards the latter .

b) Qualitatively, the ratio ecfi varies in the same way as th e

central temperature. However, the drop of the density concentra-

tion towards the constant opacity end of the diagram is more

pronounced than is the drop of central temperature .

c) The ratio sc MIL is nearly constant, independent of the

opacity law .
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TABLE 1 .

E = E0 e T4

	

?L = 1Go (Jl -a T-3-s

Model log RT,tn M log Pc/° logee M/ L
a. s log C-x-1 0

no . log E = log F = log D

1

	

0 .00 -;- 0 .5 7 .317 1 .642 4 .076 0 .942

2

	

0 .25 + 0 .5 7 .416 2 .005

	

4 .567 0 .95 1
3

	

0 .50 + 0 .5 7 .604 2 .658

	

5 .385 0 .964

4

	

0 .25 -0.5 7 .295

	

1 .529

	

4 .761 0 .942
5

	

0 .50 - 0.5 7 .397 1 .913 5 .206 0 .951

6

	

0 .75 - 0.5 7 .615 2 .664 6 .002 0 .96 5
7

	

0 .50 - 2 .1 7 .204 1 .153 5 .761 0 .925

8

	

0 .75 - 2 .1 7 .280 1 .431 6 .022 0 .94 2

9 1 .00 -2.1 7 .434 1 .982 6 .465 0 .96 3

10 0 .75 - 3.0 7 .174 1 .040 6 .508 0 .91 5

11 1 .00 - 3.0 7 .253 1 .316 6 .716 0 .933

3 .4 . The structure of the models . In appendix 2 the variatio n

of the physical parameters through the eleven models is given .
In the calculations four decimals were carried throughout. The
figures given have been rounded to three decimals .

The figures termed variations give variations of the funda-

mental variables U, W, and H, for variations of the initial values .
They correspond to the coefficients of y as used in eq . (71) .

The corresponding variations of the initial values could not b e

determined with any accuracy .

4. Applications of the models .

4 .1 . The Sun . The integrations described in section 3 hav e

been used for the construction of two different models for the Sun .
During this work the integrations were only used to describe th e

central parts of the Sun, use being made of the variations explaine d

in section 3 .4, while the exterior regions were convered to a larg e

extent by the series expansions of section 2 .4 . It was found possibl e
to fit the model to a physically given opacity, which containe d

contributions from the heavy elements, free-free transitions i n

hydrogen and helium, and scattering on free electrons . Detail s
of these models have been published elsewhere 13 ) .
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4 .2 . The hydrogen-helium star . The most natural application
of the models is the construction of the Hertzsprung-Russell
diagram for stars composed entirely of hydrogen and helium ,
since the models are based on an energy production law of th e
type (1) . Indeed, the energy production by the proton-proto n
reaction is given by i4 )

E = 10-29 .0054 X2 o T4 .

Here X is the abundance of hydrogen, by mass . However, i n
such a star the opacity will be due to scattering on free electro n
and free-free transitions in hydrogen and helium, and canno t
directly be expressed in the form (16) . The principal questio n
is thus how to apply our models to stars in which these two agent s
both contribute to the opacity . In this question we choose th e
following approach .

According to the theorem of VOGT and RussELL the structure
of a star is uniquely determined by the mass and the chemical
composition . In a mixture of hydrogen and helium there is onl y
one chemical parameter . Consequently our stars form a two-

parametrical sequence, the parameters being the mass, M, an d
the hydrogen abundance, X . Consider now the two contribution s
to the opacity . In general it will, of course, be necessary to tak e
both of them into account . It seems likely, however, that in a
certain region of the (M, X)-diagram the electron scattering wil l
be negligible. The behaviour of our stars in this region will the n
be given by the model based on an opacity law of the for m

x = 2 .74 . 10 22 (1 + X) O T- 3 .5

	

(72)

where the constant is the one used in the construction of the
solar models 13 >

Correspondingly, we expect to find, in another region of th e
(M, X)-diagram, that the free-free transitions can be neglecte d
in the opacity. In this region we can then use the model based o n

x = 0 .2 (1 + X) .

	

(73)

In the remaining part of the (M, X)-diagram we must tak e
both the free-free transitions and the scattering into account .
Here we may hope that one or more of the models, based on
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opacity laws intermediate between the two already quoted wil l
be of use . As explained below this is indeed the case .

MODEL 1 .

Free-free transitions predominate .

Our first task, when using this model, is to determine the
region in the (M, X)-diagram in which the scattering is negligible .
We therefore first investigate how the opacity varies throug h
this model, using the table of appendix 2 ,

V r/R log (efec) (T/Tc)-3 . 5

0 0 .00 0.0 0
6 0 .41 0.45

15 0 .72 0.63

We see that the Kramers opacity factor increases outwards
in the star . We therefore only have to know that the scattering i s
relatively unimportant at the center to conclude that it is so
through the whole star . On the basis of the four invariant con-
stants of the model and the homology transformations we ca n
convert the condition that the ratio of scattering opacity to free -
free opacity has a definite value at the center into a relatio n
between M and X. Indeed, using eq . (56) to (59) and demandin g
that the scattering opacity of eq . (73) is less than 10 °f° of th e
free-free opacity of eq. (72) we get

log M - 1 .0597 + 3) log (1 + X) X2 ,u- 46 .

	

(74)

Table 2 gives this function together with some more data for th e
corresponding stars .

TABLE 2 .

Model 1 . The sequence for which xseattering( xfree-free - 0 .1 at
the center of the star .

X Max log M log R log Tc log ec log L/4 log LR- 2

1 .00

	

9 .38 9 .85 6 .55 0 .85 6 .49 9 .2 0

0 .75

	

9 .27 9 .75 6 .60 1 .03 6 .51 9 .2 5
0 .50

	

9 .13 9 .63 6 .67 1 .26 6 .53 9 .3 2

0 .25

	

8 .94 9 .45 6 .78 1 .61 6 .53 9 .4 1
0 .10

	

8 .80 9 .26 6 .91 2 .03 6 .50 9 .4 9

The model does not possess a convective core .
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It is apparent that the present model is valid only for ver y
red dwarfs .

MODEL 8 .

Free-free opacity and scattering opacity compete .

We shall now try to find a model which can be made t o
represent the case that the opacities from the two sources, eq .
(72) and (73), are of the same order of magnitude . It is therefore
necessary to adopt a method for combining the two contributions .

In the present survey it was judged sufficiently accurate simply
to add them together . We thus represent our physical opacity by
the expression .

xr1,y5,cnt = 2 .74 . 1022 (1 + X) Q T-3 .5 + 0.3 (1 -I- X)

	

(75)

where the customary factor of 3/2 has been applied to the scatter -
ing. We now want to find a model in which the opacity, given b y
(75), runs closely to a function of the form (16) . For this purpose
we proceed as follows : Using the tables of appendix 2 we ca n
compute the run of the actual opacity through each of our models .
We have, in fact,

x lxcenter - (elec) 1-
a
( T/ T,) - 3- -

Also, we can compute the run of the free-free opacity fro m

free-free Yfree-free, center - (elec) ( TI TO 3 .5

	

(77)

The condition that the particular model is useful in the presen t
context then becomes that there exists a relation of the kin d

(elec)1 a
( TI TG)-3_s = x Wee) ( 1ll c)-3 .5 + u

where x and y are positive .

This test was carried out for the nine models available wit h
the result that it was found that in model 8 we have

(e/ec) o .25 (TIT,)-o.9 = 0 .110 Wee) (TITG)-3.5 + 0.954

	

(79)

within an accuracy of 6°/o throughout the star .
The two terms on the right hand side of (79) represent the

contributions from the free-free transitions and the scattering .

(76)

(78)
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At the center we thus have a contribution from the free-fre e

transitions of 10 5 / 0 . At r/R = 0 .73 they contribute by 44 0 / 0 .
The present model places a strict condition on the value o f

the opacity at the center of the star . In fact, for the terms of eq .

(75) and (79) to be proportional at the center we must hav e

0 .3 • 0 .11 03 .5 =

	

1023.90 .

	

)
Pc T C

	

0 .954 • 2 .74 • 1022

	

(80

Further, the constant of the opacity law become s

;,co = 0.3145 (1 + X) .

	

(81 )

The invariant constants of the model now giv e

32 log M = 16.666 + log (1 + X) so ,u-49 .

	

(82)

This gives a one-dimensional sequence of stars . It has been
tabulated in Table 3.

TABLE 3 .

Model 8 . The sequence of stars in which the free-free transi-
tions contribute 10 °/° of the opacity at the center and 44°/, a t
rfR = 0 .73 .

X log M

	

log R

	

log Tc log e,

	

log L

	

1/ 4 log LR- 2

1 .00 0.08 9 .86 7 .20 1 .31 0 .26 0 .1 3
0 .75 9 .96 9 .76 7 .25 1 .48 0 .24 0 .1 8
0 .50 9 .81 9 .64 7 .31 1 .70 0 .22 0 .23

0 .25 9 .62 9 .46 7 .41 2 .05 0 .17 0 .31
0 .10 9 .46 9 .27 7 .53 2 .46 0 .09 0 .39

The convective core extends in this model to rfR = 0.16, includes

10 0 0 of the mass and 51 0 /0 of the energy production .

MODEL 9 .

Electron scattering predominates .

This model was computed on the assumption that % is constant .

The condition that it is useful in the present investigation is that
the opacity due to the free-free transitions is small . We therefor e
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first consider the variation of the corresponding factor through
the star :

V

	

log (e/ec) ( T/ Z c) -3 . 5

0

	

0 .0 0

5

	

0 .65

10

	

1 .03

It is apparent that the importance of the free-free transition s
increases as one moves outwards in the star, like in model 1 and 8 .
This increase continues even to the surface . Here we have, in

fact, P oc T4 so
o T- 3' 5 oc T-0 .5

	

(near the surface) . (83 )

Since there exists no region where this model is strictly applicabl e

we must contend ourselves with some reasonable condition fo r
the unimportance of the free-free transitions . As such we adopt
that they must contribute by 10 0 /0 or more only at points exterio r

to V = 15, rfR = 0.74 . Table 4 has been calculated on thi s

assumption .
TABLE 4 .

Model 11 . In the sequence of stars given the free-free transi-

tions contribute by 10 °/0 to the opacity at rfR = 0 .74 .

X

	

log M

	

log R

	

log Tc log ec log L 1 / 41og LR-2 Pr/ P c

1 .00 0 .60 9 .98 7 .58 1 .37 2 .35 0 .60 0 .03 5

0 .75 0 .48 9 .88 7 .63 1 .53 2 .33 0 .6 4

0 .50 0 .33 9 .76 7 .69 1 .76 2 .31 0 .7 0

0 .25 0 .14 9.58 7 .79 2 .10 2 .26 0 .7 8

0 .10 9 .98 9 .39 7 .91 2 .51 2 .18 0 .85 0 .056

The convective core in this model includes 24 °/° of the radius ,
22 °/° of the mass, and 78 0 / 0 of the energy production. Pr is the
radiation pressure at the center .

The Hertzsprung-Russell diagram .

The results quoted have been collected in the accompanying
HR-diagram . Additional results, for stars with log M = 0 .5, have
been plotted. With this value of the mass the radiation pressur e
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Hertzsprung- Russel l diagram for the homogeneous stars .
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becomes appreciable, and the basis of the model breaks down .

For comparison the points corresponding to the data for the Sun ,
Y Cygni and Krueger 60 A, have also been plotted (fig . 2) .

The results of the present section may be compared with
those obtained by A . REIz 5 ) . REIZ has calculated a model of the
type considered in the present paper, based on the opacity law

x = xo 0.5 T-1 .75 .

	

(84)

It is found that the present results agree well with those found
by REIZ .
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Appendix 1 .

Expansions for the central region of the star .

In this appendix the series expansions valid at the center o f
the star will be derived. V will be taken as the independent
variable throughout . Thus, clashes denote derivatives with respect
to V, and subscript zero values of the functions at V = 0, i . e .

at the center of the of the star . The formulae will be derived suc h
as to be equally useful for a star in convective and radiativ e
equilibrium at the center . Expressions whose validity is confined
to one of these cases will be distinguished by Pad. eq . or toms . eq .

written in the bracket together with its number .
It will, in this section, be convenient to introduce symbol s

for some particular functions . Thus we defin e

T = II/V

	

(85 )

g = 9 + s - a

	

(86)

S =(gH (2- 'a)V + ur - 1)1(U +H 1)

	

(87)
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P = U/(U + H	 1)

	

(88)

Q = (3-V+H-U)/V

	

(89)

A = W/(U + H - 1)

	

(90)

b = v	 8 - 1

	

(91 )

B = (3 - (1 + S) V- bH	 W)/V

	

(92)

Then the differential equations (28) to (30) can be writte n

H' = ST (93 rad . eq . )

U' = PQ (94)

W' = AB (95)

In convective equilibrium eq . (93 rad . eq .) is replaced by

Hö = Ho"' = Ho etc . = 0

	

(96 cony. eq . )

On the basis of these expressions we want to find the firs t
and higher derivatives of U and W, and the second . and higher
derivatives of H, at V = 0, subject to the conditions

Uo = Wo =3

	

(97 )

Ho=0

	

(98)

In all these derivatives Hô will enter as a parameter (cfr . section
2 .3) .

First differentiation .

Using (98) we have the Taylor expansio n

H=Ho V + 1
/2 H o V2 +- Ho V3 . (99)

Then from (85 )

T = Ho' + 1 /2 Ho" V + 6 Ho"' V 2 . . . (100)

To = Ho' . (101 )

From (87) and (88) we ge t

So = 1 (102)

Po = 3/2 . (103)
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At V= 0, Q becomes indeterminate . We can find the limitin g
value by using the standard rule of differentiating the numerato r
and denominator seperately (this rule will be used frequentl y
in what follows) and obtain

Q0=-1+H-U~ .

	

(104)

Further, using (94), we ge t

Uo = Po Qo = - (1 - Ho + Uo)

	

(105)

and solving for U o

Uo = -j (1-Ho) .

Then (104) becomes

Qo = - 5 (1	 Ho) .

	

(107)

The following quantity will also be useful

Uo + Ho = (8 Ho - 3)/5 .

	

(108)

From (90) and (92) we now get

Ao = 3/2

	

(109)

Bo = - (1 +S) -bHo(110)

and from (95 )

Wo = Ao Bo = - 3 (1 + 6)/2 - 3 bHo/2 - 3 Wo/2 .

	

(111 )

Solving for Wo :

Wo = - 3 ((1 + 8) + bHo)/5

	

(112)

and inserting in (110)

Bo = 2 Wo/3 = - 2 ((1 + ô) + bHo)/5 .

	

(113)
Dan . Øat . Fys.Medd . 30, no .16 .
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Second differentiation .

(114)

Differentiating (100) we get

T' =
1/2 Ho + Ho V/3

and

l' o = 1 /2 Ho . (115)

Further, from (87),

S ' = (gH' -(2-a) +W')/(U -I-H-1 )

- (gH- (2-a)V +tiV- 1)(U'-;-H')(U+H-1)-2 .
(116)

Using (97), (108), and (112), we obtain

Sr, = ((5 g - 3 b - 8) H'o -10+5a- 36) 10 .

	

(117 )

Now, from (93), (115), and (101 )

FIo = So To + So To = 1 / 2 Ho + HoSô

	

(118 rad. eq . )

and solving for H', using (117) ,

H~=H'o ((5g-3b-8)H o' -10+5a-36)5 . (119rad . eq . )

Differentiation of (88) yields

P'= U ' /( U+H-1)	 U(U'+H')(U+H-1)-2 (120 )

and inserting (106 )

Pô = 3 (1 - 6 H ',)/20 .

	

(121 )

Differentiation of (89) give s

Q' = (-1 +H'-U')/V(3-V+H-U)/V2
- (122 )

(- 1 + H' U' -Q)/ V .

By the standard limiting rule we ge t

Qo = Ho" 	 U „ Q (123)
or

Qo =
112 FIo -1/2 Uä .

	

(124)
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We can now calculate

Co' =PoQo+ PoQo
(125)

= 3 Ho /4 - 3 G'14 	 3 (6 Hoe	 7 Ho + 1)/ 5 0

and, solving for Uo , obtain the result s

Uo" = 3 H 0" / 7 - 6 (6 Ha t 	 7 Ho + 1)/175

	

(126)

Qo = 2 Ho/7 + 3 (6 He- 7 Ho + 1)/175 .

	

(127)

Inserting (119) in (126) we get

Uö = 3 ((25 g - 15 b - 52) Ho e

H- (25 ,x	 15 6 - 36) Ho - 2)/175 .

	

(128 rad . eq . )

By differentiation of (90) we get

A ' = W'(U+H-1)-1	 IV (U' + H') (H + U- 1)-2
(129)

= W'(U+H-1)- 1-A(U'+H')(U+H-1)- 1

and, using (108) and (112), the limit

Ao = - 3 ((8 + 2 b) Ho + 2 6 - 1)/20 . (130)

For B' we get, from (92) ,

B ' = (	 (1+å)-bH'-W')/V-(3-(1+ 6) V
} (131 )

-bH-W)/V2 = (-(1 +6)-bH'-W'-B)/V )))

which gives the limit

(132)Bo = - 1/ 2 bH0	 1 /2 Wo .

Now the equation for W" can be derived from (95), (130), an d
(132) . Solving this equation we get

IVY = 6((86+2b 2)Ho 2 +(8+b+8à+46b)Ho'

-1 +å+26 2)/175-3bHo/7 .

	

}

Then Bo can be found :

B o =	 3((8b+2b 2)Ho 2 +(8+b+86+46b)H 0

-1 +6+26 2)/175-2 bHo/7 .

(133)

(134)

3 *
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Inserting (119) into (133) we gel

Wô =3 ((56 b + 19b2 - 25bg)H o2

+(16 + 52 b-{- 16 6	 25 a b+

	

(135 rad . eq . )

236b)Ho' -2+26+462 )/175 .

Third differentiation .

The general procedure for deriving the derivatives having
been made clear during the two first differentiations, we nee d
only give the principal results of the third differentiation .

So" = Ho" (- 10 -1- 7g- 3b)/14+[Hô2 (484+216b-280g +
12 b 2 ) + H0(398-57b+21 6 6 +105g-280a+2 4 6 b) (136)

-210	 576-}-105a+126 2]/350 .

Ho"' = 3 LHo3 (350g 2 +120b 2 -390gb -1370g +822b+1332 )

+Ho2 (525ag-285ba-315g6+1956b -1090a -945g +
513 b + 702 6 + 2018)

	

(137 )

-{-Ho(175a2 + 7562 -210a6-595a+363+490)]/700 .

I' o = 6 Ho /7 + 3 (348 Ho2 - 196 Hô + 23)/700 . (138)

Uö ' = Ho"' /3 + 2 (1 - 2 Ho) Ho /7

+4(12H0 3 	 20H02 +9Hô - 1)/175 .

Uo ' = [Ho (350 g 2 +120b 2 -390gb - 1770g-{-1062b +

2164) +H~ 2 (525ag-285ba	 315g6+1956b-745g -

1490a +393b +9426+2178) +H0 (175a2 +7562 -

210 a 6- 395 a+ 243 6 + 234)	 161/700 .

Aö = 3 Hö (-5- b)/14=, 3 [Ho'2 (8 b 2 + 144 b + 484) +
} (141 )

H0 (166b +1446-38 b-234) +862 -386+23]/700 . JJJ

(139)
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tiVo"' --bHä ' /3 +2Ha [Ho(13b+3b 2)=, 3åb+5å+5]/35 l
-I-2[Hô (2b3 -24b 2 -146 b)+H~2 (6åb2 +15b 2 -48å b

+69b-146å-146) +Hô(6å 2 b+30åb +3b 	 24å2

	

(142)

+69å+93)+2å3 +15å 2 +3å-10]/875 .

W'o ' = [H 3 (-1750 bg 2 - 944 b 3 + 2550 b 2 g + 9450 bg

	 6822 b 2 - 11988 b) + Ho2 (- 2625 b a g + 2175 bg å

+ 2025 b 2 a -1647 å b 2 + 8050 a b + 4725 bg - 3645 b 2 -

7014 b å + 1000 g +1000 g 6-15338 b - 2768 6- 2768) + } (143 rad. eq . )
Hö(-875ba 2 - 687bå2 + 1650a (' b+2975ba-2775å b

+1000à-792å2 -2426b	 2048å+10006-792

	

a	 1256)
+ 16 å 3 + 120 å 2 + 24å-80]/3500 .

Summary of the equations .

The definitions which will be needed when using the equation s
of the present appendix are given in eq . (2), (3), (86), and (91) .
The general form of the results is described in section 2 .3 .

The developments are arranged so as to be equally usefu l
for convective and radiative equilibrium . The particular formulae
to be used in the two cases are the following :

Function

	

Convective equilibrium

	

Radiative equilibrium
H~

	

Hô = 0.4

	

H 'o is the fundamental
paramete r

U 'o

	

eq . (106)

	

eq. (106)
tit~a

	

(112)

	

(112)
Hö

	

Ho" = 0

	

(119)
Uö

	

(126)

	

(126) or (128)
tiT~o

	

(133)

	

(133) or (135 )
Ho

	

Ho"' = 0

	

(137)
Uö'

	

(139)

	

(139) or (140)
Wo"'

	

(142)

	

(142) or (143)
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Appendix 2 .

The run of the physical variables through 11 stellar models .

MODEL 1 .

%o@ T-3 .5 .

V U

	

W II log r/R log P/Pe log T/Te log pli ,/M log L r/ L

0 .0 3 .000 3 .000 0 .000 - co 0 .000 0 .000 - co - 00

0 .5 2 .808 2 .253 0 .172 9 .007 9 .891 9 .962 8 .621 9 .43 1

1 .0 2 .616 1 .640 0 .330 9 .160 9 .780 9 .924 9 .037 9 .73 3

1 .5 2 .424 1 .155 0 .474 9 .251 9 .668 9 .888 9 .268 9 .86 1

2 .0 2 .234 0 .784 0 .607 9 .318 9 .552 9 .852 9 .424 9 .92 6

2 .5 2 .045 0 .512 0 .731 9 .372 9 .432 9 .816 9 .539 9 .96 0

3.0 1 .860 0 .320 0 .848 9 .407 9 .307 9 .780 9 .628 9 .97 9

3.5 1 .678 0 .193 0 .960 9 .457 9 .177 9 .744 9 .698 9 .98 9
4.0 1 .502 0 .111 1 .068 9 .493 9 .042 9 .707 9 .756 9 .99 5

4.5 1 .334 0 .061 1 .175 9 .526 8 .901 9 .670 9 .803 9 .99 8

5.0 1 .175 0.031 1 .281 9 .557 8 .754 9 .632 9 .842 9 .99 9
5 .5 1 .027 0 .015 1 .386 9.586 8 .603 9 .594 9 .874 0 .000

6 .0 0 .891 0 .007 1 .492 9.613 8 .447 9 .554 9 .900 0 .000

6 .5 0 .767 0 .003 1 .599 9 .638 8 .289 9 .515 9 .920 0 .000

7 .0 0 .658 0 .001 1 .706 9 .662 8 .130 9 .476 9 .937 0 .000

7 .5 0 .562 0 .001 1 .815 9 .684 7 .972 9 .438 9 .951 0 .000

8 .0 0 .478 0 .000 1 .925 9 .704 7 .815 9 .400 9 .961 0 .00 0

8 .5 0 .408 0 .000 2 .037 9 .722 7 .663 9 .364 9 .969 0 .00 0

9 .0 0 .347 0 .000 2.149 9 .739 7 .515 9 .328 9 .976 0 .000

9 .5 0.297 0.000 2.262 9 .755 7 .373 9 .294 9 .981 0 .00 0
10.0 0.254 0.000 2.376 9 .769 7 .237 9 .262 9 .984 0 .00 0

10 .5 0 .219 0 .000 2 .490 9 .781 7 .107 9 .231 9 .987 0 .00 0

11 .0 0 .189 0 .000 2 .604 9 .793 6 .983 9.201 9 .990 0 .00 0
11 .5 0 .164 0 .000 2 .71 .9 9 .804 6 .864 9 .173 9 .992 0 .00 0

12 .0 0 .143 0 .000 2 .834 9 .813 6 .752 9 .147 9 .993 0 .00 0
12 .5 0 .125 0 .000 2 .949 9 .822 6 .645 9 .122 9 .994 0.00 0

13 .0 0 .110 0 .000 3 .063 9 .830 6 .543 9 .097 9 .995 0 .000

13 .5 0 .098 0 .000 3 .176 9 .837 6 .445 9 .074 9 .996 0 .000

14 .0 0 .086 0 .000 3 .288 9 .844 6 .352 9 .052 9 .997 0 .000

14 .5 0 .077 0 .000 3 .398 9 .850 6 .262 9 .032 9 .997 0 .00 0
15 .0 0 .068 0 .000 3 .504 9 .856 6 .176 9 .011 9 .998 0 .000

Variation s

V

	

A U

	

d W

	

d Ii

3

	

-;-111

	

+13

	

+34 2

6

	

39

	

1

	

22 9
10

	

27

	

0

	

51 9
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MODEL 2 .

xp ~0.75 T-3.5

V U W H log r/R log P /Pe log TIT, logMr /tb1 log L,./L

0 .0 3 .000 3 .000 0 .000 co 0 .000 0 .000 - -

0 .5 2 .800 2 .263 0 .160 8.876 9 .891 9 .964 8 .591 9.41 4

1 .0 2 .600 1 .652 0 .306 9 .032 9 .778 9 .929 9 .012 9 .72 2
1 .5 2 .399 1 .164 0 .438 9 .126 9 .662 9 .894 9 .247 9 .85 5
2 .0 2 .199 0 .787 0.559 9 .195 9 .542 9 .860 9 .407 9 .922
2 .5 2 .000 0 .509 0.671 9 .251 9.415 9 .825 9 .526 9 .959
3 .0 1 .803 0 .313 0.776 9.300 9.282 9 .790 9 .619 9 .97 9
3 .5 1 .609 0 .183 0.875 9 .344 9 .140 9 .754 9 .693 9 .98 9
4 .0 1 .420 0 .101 0 .971 9 .384 8 .989 9 .716 9 .754 9 .99 5
4.5 1 .238 0 .052 1 .064 9 .422 8 .827 9 .678 9 .805 9 .99 8

5.0 1 .066 0 .024 1 .157 9 .458 8 .655 9 .637 9 .847 9 .99 9
5.5 0 .904 0 .010 1 .249 9 .493 8 .472 9 .595 9 .881 0 .00 0
6 .0 0 .757 0 .004 1 .342 9 .527 8 .279 9 .552 9 .909 0 .00 0
6 .5 0 .625 0 .002 1 .436 9 .559 8 .078 9 .507 9 .931 0 .00 0
7 .0 0 .510 0 .000 1 .532 9 .590 7 .871 9 .462 9 .948 0 .00 0
7 .5 0 .413 0 .000 1 .629 9 .618 7 .662 9 .416 9 .962 0.00 0
8 .0 0 .333 0 .000 1 .727 9 .645 7 .456 9 .371 9 .972 0 .00 0
8 .5 0.268 0.000 1 .827 9 .670 7 .254 9 .328 9 .979 0 .000
9 .0 0 .216 0 .000 1 .929 9 .692 7 .060 9 .286 9 .984 0 .00 0
9 .5 0 .175 0 .000 2 .031 9 .712 6 .875 9 .246 9 .988 0 .00 0

10 .0 0 .143 0 .000 2 .134 9 .730 6 .700 9 .209 9 .991 0 .00 0
10 .5 0 .117 0 .000 2 .238 9 .746 6 .535 9 .174 9 .993 0 .00 0
11 .0 0 .097 0 .000 2 .342 9 .760 6 .380 9 .141 9 .995 0 .00 0

11 .5 0 .081 0 .000 2 .446 9 .773 6 .233 9 .110 9 .996 0 .00 0
12.0 0 .068 0 .000 2 .551 9 .785 6 .095 9 .080 9 .997 0 .00 0
12 .5 0 .057 0 .000 2 .655 9 .796 5 .965 9 .052 9 .997 0 .00 0
13 .0 0 .049 0 .000 2 .760 9 .805 5 .841 9 .026 9 .998 0 .00 0
13 .5 0 .042 0 .000 2 .864 9 .814 5 .724 9 .001 9 .998 0 .00 0
14 .0 0 .036 0 .000 2 .968 9 .822 5 .614 8 .978 9 .999 0 .000
14 .5 0 .031 0.000 3 .070 9 .830 5 .508 8 .955 9 .999 0 .000
15 .0 0 .027 0.000 3 .172 9 .836 5 .407 8 .934 9 .999 0 .000

VariaLions

V

	

4U

	

4YV

	

4 H

3

	

+32

	

-~- 4

	

+93
6

	

61

	

1

	

298
10

	

32

	

0

	

73 7
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MODEL 3 .

7L = yG0 ~0 .5 T-3.5

V U W

	

H log rJR log P/Pc log T/Tc logMr/M log LrfL
I i

0 .0 3 .000 3 .000 0 .000 - o0 0.000 0 .000 - - o0

0 .5 2 .792 2 .275 0 .146 8 .647 9 .890 9 .967 8 .553 9 .394
1 .0 2 .582 1 .668 0 .279 8 .805 9 .776 9 .934 8 .979 9 .70 9
1 .5 2 .372 1 .176 0 .399 8 .901 9 .656 9 .902 9 .219 9 .84 7
2.0 2 .161 0 .792 0.508 8 .974 9 .530 9 .869 9 .384 9 .91 8
2 .5 1 .950 0 .506 0 .607 9 .034 9 .396 9 .835 9 .508 9 .95 7
3 .0 1 .739 0 .304 0.698 9 .087 9 .250 9 .801 9 .605 9 .97 8
3 .5 1 .530 0 .170 0.784 9 .135 9 .092 9 .765 9 .685 9 .99 0
4 .0 1 .325 0 .087 0 .866 9 .182 8 .919 9 .726 9 .751 9 .99 5
4 .5 1 .124 0 .040 0 .945 9 .227 8 .727 9 .686 9 .806 9 .99 8
5 .0 0 .932 0 .016 1 .023 9 .272 8 .512 9 .641 9 .853 9 .99 9
5 .5 0 .751 0 .005 1 .101 9 .318 8 .271 9 .592 9 .891 0.00 0
6 .0 0.586 0.001 1 .180 9 .365 8 .002 9 .539 9 .922 0.00 0
6 .5 0.442 0.000 1 .260 9 .412 7 .705 9 .481 9 .947 0.00 0
7 .0 0 .322 0 .000 1 .342 9 .460 7 .386 9 .41 .9 9 .965 0 .00 0
7 .5 0 .230 0 .000 1 .427 9 .505 7 .056 9 .356 9 .977 0 .00 0
8 .0 0 .162 0 .000 1 .515 9 .547 6 .730 9 .294 9 .985 0 .00 0
8 .5 0 .115 0 .000 1 .604 9 .585 6 .418 9 .235 9 .990 0.00 0
9 .0 0 .082 0 .000 1 .695 9 .618 6 .128 9 .180 9 .994 0 .00 0
9 .5 0 .060 0 .000 1 .787 9 .647 5 .860 9 .130 9 .996 0 .000

10 .0 0 .044 0 .000 1 .879 9 .672 5 .614 9 .084 9 .997 0 .000
10.5 0 .034 0 .000 1 .972 9.694 5.389 9 .041 9 .998 0 .00 0
1.1 .0 0 .026 0 .000 2 .065 9 .714 5 .182 9 .002 9 .998 0 .000
11 .5 0 .020 0 .000 2 .159 9 .731 4 .990 8 .966 9 .999 0 .00 0
12 .0 0 .016 0 .000 2 .253 9 .746 4 .813 8 .933 9 .999 0 .000
12 .5 0 .013 0 .000 2 .348 9 .759 4 .648 8 .902 9 .999 0 .00 0
13 .0 0 .010 0 .000 2 .444 9 .771 4 .493 8 .873 0 .000 0 .000
13 .5 0 .008 0 .000 2 .542 9 .782 4 .349 8 .846 0 .000 0 .00 0
14 .0 0 .007 0 .000 2.642 9 .792 4 .213 8 .820 0 .000 0 .00 0
14 .5 0 .006 0 .000 2 .745 9 .801 4 .085 8 .796 0.000 0 .00 0
15 .0 0 .005 0 .000 2 .853 9 .809 3 .965 8 .773 0.000 0 .000

Variation s

V

	

4 U

	

d W

	

d H

3

	

+132

	

+19

	

+34 0
6

	

37

	

0

	

15 0
10

	

1

	

0

	

5 5
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MODEL 4 .

1L = 1L0 ~0 . 75 T-2.5

V U W H log r/ 1't log PJP, log TO', logM,.JM log L,.jL

0 .0 3 .000 3 .000 0 .000 - oo 0.000 0 .000 - co - c o
0 .5 2 .817 2 .242 0 .185 9 .049 9 .892 9 .959 8 .638 9 .44 6
1 .0 2 .632 1 .628 0 .352 9 .200 9 .783 9 .919 9 .051 9 .74 1
1 .5 2 .447 1 .146 0 .503 9 .290 9 .673 9 .881 9 .278 9 .86 6
2.0 2 .262 0 .780 0 .641 9 .354 9 .560 9 .844 9 .431 9 .92 8
2.5 2 .078 0 .513 0 .769 9 .406 9 .445 9 .808 9 .543 9 .96 1
3 .0 1 .898 0 .325 0.888 9 .450 9 .325 9 .772 9 .630 9 .97 9
3 .5 1 .721 0 .198 1 .003 9 .488 9 .202 9 .736 9 .699 9 .98 9
4 .0 1 .550 0 .116 1 .114 9 .522 9 .073 9 .700 9 .755 9 .99 4
4 .5 1 .386 0 .066 1 .223 9 .553 8 .941 9 .663 9 .801 9 .99 7
5 .0 1 .231 0 .036 1 .'330 9 .582 8 .804 9 .626 9 .839 9 .99 9
5 .5 1 .085 0 .019 1 .437 9 .609 8 .663 9 .589 9 .870 9 .99 9
6 .0 0 .951 0 .010 1 .545 9 .634 8 .519 9 .552 9 .895 0 .00 0
6 .5 0 .828 0 .005 1 .654 9 .657 8 .373 9 .514 9 .916 0 .00 0
7 .0 0 .718 0 .002 1 .763 9 .679 8 .226 9 .477 9 .933 0 .00 0
7 .5 0 .621 0 .001 1 .874 9 .699 8 .080 9 .441 9 .946 0 .000
8 .0 0.536 0.001 1 .986 9 .718 7 .936 9 .405 9 .957 0 .000
8 .5 0 .462 0 .000 2 .099 9 .735 7 .795 9 .370 9 .966 0 .000
9 .0 0 .399 0 .000 2 .213 9 .750 7 .658 9 .336 9 .972 0 .000
9 .5 0 .345 0 .000 2 .328 9 .765 7 .526 9 .304 9 .978 0 .00 0

10 .0 0 .299 0 .000 2 .444 9 .778 7 .399 9 .272 9 .982 0 .00 0
10 .5 0 .260 0 .000 2 .560 9 .790 7 .277 9 .243 9 .985 0 .00 0
11 .0 0 .227 0 .000 2 .677 9 .800 7 .160 9 .214 9 .988 0 .00 0
11 .5 0 .199 0 .000 2 .795 9 .810 7 .049 9 .187 9 .990 0.00 0
12 .0 0 .175 0 .000 2 .912 9 .819 6 .942 9.161 9 .992 0 .00 0
12 .5 0 .154 0 .000 3 .030 9 .828 6 .841 9.136 9.993 0 .00 0
13 .0 0 .137 0 .000 3 .148 9 .835 6 .744 9.113 9.994 0 .00 0
13 .5 0 .122 0 .000 3 .265 9 .842 6 .651 9.090 9.995 0.00 0
14 .0 0 .108 0 .000 3 .381 9 .849 6 .562 9.069 9.996 0.00 0
14 .5 0 .097 0 .000 3 .497 9 .855 6 .476 9.048 9.996 0.00 0
15 .0 0 .087 0 .000 3 .610 9 .860 6 .394 9.019 9.997 0 .000

Variations

V

	

4 U

	

4 W 4 H

3

	

191

	

-{-9

	

+26 0
6

	

18

	

0

	

8 3
10

	

23

	

0

	

301
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MODEL 5 .

.=

	

T-2.5

	

Nr. 1 6

V U W H log r/R log P,~P, log TIT, logM,.jM log Lr /L

0 .0 3 .000 3 .000 0 .000 - oo 0 .000 0 .000 - oo o0

0 .5 2 .808 2 .254 0 .171 8 .911 9 .891 9 .962 8 .605 9 .42 6

1 .0 2.613 1 .643 0 .323 9 .065 9 .780 9 .925 9 .023 9 .72 9
1 .5 2.418 1 .158 0 .460 9 .157 9 .667 9 .889 9 .255 9 .85 8
2 .0 2 .222 0 .785 0.584 9.225 9.549 9 .854 9 .413 9 .924

2 .5 2 .026 0 .511 0.698 9 .280 9.426 9 .818 9 .530 9 .960
3 .0 1 .833 0 .317 0 .803 9 .327 9 .297 9 .783 9 .620 9 .97 9

3 .5 1 .642 0 .188 0 .903 9 .369 9 .160 9 .747 9 .694 9 .98 9
4.0 1 .456 0 .105 0 .999 9 .407 9 .016 9 .710 9 .753 9 .99 5
4 .5 1 .277 0 .055 1 .092 9 .444 8 .862 9 .672 9 .803 9 .99 8
5 .0 1 .106 0 .026 1 .184 9 .478 8 .698 9 .633 9 .844 9 .99 9

5 .5 0 .946 0 .012 1 .276 9 .511 8 .525 9 .593 9 .878 0 .00 0

6 .0 0 .799 0 .005 1 .368 9 .542 8 .344 9 .551 9 .905 0 .00 0
6 .5 0 .667 0 .002 1 .462 9 .573 8 .154 9 .508 9 .928 0 .00 0
7 .0 0 .550 0 .001 1 .557 9 .602 7 .960 9 .464 9 .945 0 .00 0
7 .5 0 .451 0.000 1 .654 9 .629 7 .763 9 .421 9 .959 0 .00 0
8 .0 0 .368 0 .000 1 .752 9 .654 7 .568 9 .378 9 .969 0 .00 0

8 .5 0 .299 0 .000 1 .852 9 .677 7 .376 9 .336 9 .977 0 .000
9 .0 0 .244 0 .000 1 .953 9 .698 7 .191 9 .296 9 .982 0 .000
9 .5 0 .199 0 .000 2 .056 9 .717 7 .014 9 .257 9 .987 0 .00 0

10 .0 0 .164 0 .000 2 .160 9 .735 6 .845 9 .221 9 .990 0 .000

10 .5 0 .136 0 .000 2 .264 9 .750 6 .686 9 .186 9 .992 0 .00 0

11 .0 0 .113 0 .000 2 .369 9 .764 6 .535 9 .154 9 .994 0 .00 0
11 .5 0 .095 0 .000 2 .474 9 .777 6 .393 9 .123 9 .995 0 .00 0
12 .0 0 .080 0 .000 2 .580 9 .788 6 .258 9 .094 9 .996 0 .00 0
12 .5 0 .068 0 .000 2 .687 9 .799 6 .131 9 .067 9 .997 0 .00 0

13 .0 0 .058 0 .000 2 .793 9 .808 6 .010 9 .041 9 .997 0 .00 0
13 .5 0 .050 0 .000 2 .900 9 .817 5 .896 9 .016 9 .998 0 .00 0

14 .0 0 .043 0 .000 3 .008 9 .825 5 .788 8 .993 9 .998 0 .00 0

14 .5 0 .038 0 .000 3 .116 9 .832 5 .684 8 .971 9 .999 0 .00 0
15 .0 0 .033 0 .000 3 .225 9 .839 5 .586 8 .950 9 .999 0.000

Variations

V

	

4U 4 W 4 H

3

	

+50

	

+6

	

+126

6

	

30

	

0

	

11 5
10

	

22

	

0

	

38 3



Nr . -16 4 3

MODEL O.

7L = 9L0 025 T-2.5

V U W H log r/R log PIP, og TIT, log Lr /L

0 .0 3 .000 3 .000 0 .000 - o0 0 .000 0.000 ~ Oc

0 .5 2 .797 2 .268 0 .154 8 .647 9 .891 9.965 8 .562 9 .403
1 .0 2 .592 1 .660 0 .292 8 .804 9 .778 9 .931 8 .986 9.71 4
1 .5 2 .385 1 .170 0 .414 8 .899 9 .660 9 .898 9 .224 9 .850
2 .0 2 .176 0 .790 0 .523 8 .970 9 .536 9 .864 9 .387 9 .920
2 .5 1 .967 0 .507 0 .621 9 .029 9 .404 9 .830 9 .509 9 .958
3 .0 1 .758 0 .307 0 .711 9 .081 9 .262 9 .796 9 .605 9 .978
3 .5 1 .550 0 .173 0 .795 9 .129 9 .107 9 .760 9 .684 9 .990
4 .0 1 .345 0 .090 0 .874 9 .174 8 .938 9 .722 9 .749 9 .995
4 .5 1 .144 0 .042 0 .950 9 .218 8 .750 9 .682 9 .804 9 .99 8
5 .0 0 .951 0 .017 1 .025 9 .262 8 .539 9 .638 9 .851 9 .99 9
5 .5 0 .768 0 .006 1 .099 9.307 8 .303 9 .590 9 .889 0 .00 0
6 .0 0 .600 0 .002 1 .174 9 .354 8 .038 9 .538 9 .921 0 .00 0
6 .5 0 .452 0.000 1 .251 9 .401 7 .743 9 .481 9 .946 0 .00 0
7 .0 0 .329 0.000 1 .331 9 .448 7 .423 9 .419 9 .964 0 .00 0
7 .5 0 .233 0.000 1 .413 9 .494 7 .090 9 .356 9 .977 0 .00 0

8 .0 0 .163 0.000 1 .498 9 .537 6 .757 9 .294 9 .985 0 .00 0
8 .5 0 .114 0 .000 1 .586 9 .576 6 .437 9 .234 9 .991 0 .00 0
9.0 0 .081 0 .000 1 .675 9 .610 6 .138 9 .178 9 .994 0 .00 0
9.5 0 .058 0 .000 1 .765 9 .640 5 .863 9 .127 9 .996 0 .000

10 .0 0 .043 0 .000 1 .856 9 .666 5 .610 9 .080 9 .997 0 .00 0
10 .5 0 .032 0 .000 1 .948 9 .688 5 .379 9 .037 9 .998 0 .00 0
11 .0 0 .024 0 .000 2 .040 9 .708 5 .166 8 .998 9 .999 0 .00 0
11 .5 0 .019 0 .000 2 .132 9 .726 4 .970 8 .961 9 .999 0 .00 0
12 .0 0.015 0 .000 2 .224 9 .741 4 .788 8 .927 9 .999 0 .00 0
12 .5 0.012 0 .000 2 .316 9 .755 4 .619 8 .896 0 .000 0 .00 0
13 .0 0 .010 0 .000 2 .409 9 .767 4.461 8 .866 0 .000 0 .00 0
13 .5 0 .008 0 .000 2 .502 9 .778 4 .312 8 .839 0 .000 0 .00 0
14 .0 0 .006 0 .000 2.594 9 .789 4 .173 8 .813 0 .000 0 .000
14 .5 0 .005 0 .000 2.687 9 .798 4 .041 8 .789 0 .000 0 .000
15 .0 0 .004 0 .000 2 .780 9 .806 3 .916 8 .766 0 .000 0 .000

Variation s

V

	

J U

	

d tiV

	

d H

3

	

+78

	

+12

	

+178
6

	

19

	

0

	

6 6
10

	

11

	

0

	

28 2



44 Nr . 1 6

MODEL 7 .

yG = yG0 ~0 .5 T-0.9

V U W H log r/ß log P/P, log T/TC logMr/M log Lr/L

0 .0 3 .000 3 .000 0 .000 - co 0 .000 0.000 oo - x
0.5 2 .824 2 .231 0 .200 9 .191 9 .892 9.957 8 .686 9.47 5
1 .0 2 .655 1 .608 0 .400 9 .338 9 .786 9 .914 9 .093 9 .762
1 .5 2 .494 1 .126 0 .600 9 .423 9 .681 9 .872 9 .312 9 .87 9

2 .0 2 .338 0 .769 0 .769 9 .483 9 .578 9 .832 9 .455 9 .93 5
2 .5 2 .180 0 .514 0 .918 9 .529 9 .475 9 .793 9 .560 9 .964
3 .0 2 .022 0 .336 1 .057 9 .567 9 .371 9 .755 9 .639 9 .980
3 .5 1 .867 0 .215 1 .190 9 .599 9 .266 9 .719 9 .702 9 .98 9
4 .0 1 .717 0 .135 1 .318 9 .627 9 .160 9 .684 9 .753 9 .99 4
4 .5 1 .573 0.083 1 .444 9 .652 9 .052 9 .649 9 .795 9 .99 7
5 .0 1 .435 0.050 1 .569 9 .675 8 .914 9 .614 9 .829 9 .998
5 .5 1 .306 0 .030 1 .693 9 .696 8 .836 9 .580 9 .857 9 .999
6 .0 1 .185 0 .018 1 .818 9 .715 8 .727 9 .547 9 .881 0 .00 0
6 .5 1 .073 0 .010 1 .943 9 .732 8 .619 9 .515 9 .900 0 .000
7 .0 0 .970 0 .006 2 .068 9 .748 8 .512 9 .483 9 .916 0 .00 0
7 .5 0 .876 0 .004 2 .195 9 .763 8 .406 9 .452 9 .930 0 .00 0
8 .0 0 .790 0 .002 2 .323 9 .776 8 .303 9 .422 9 .941 0 .000
8 .5 0.714 0.001 2 .452 9 .788 8 .201 9 .392 9 .950 0 .00 0
9 .0 0.645 0.001 2 .582 9 .800 8 .102 9 .364 9 .958 0 .000
9 .5 0 .583 0 .000 2 .712 9 .810 8 .006 9 .336 9 .964 0 .000

10 .0 0 .528 0 .000 2 .843 9 .820 7 .913 9 .310 9 .970 0 .00 0
10 .5 0 .479 0 .000 2 .975 9 .828 7 .823 9 .284 9 .974 0 .00 0
11 .0 0 .435 0 .000 3 .107 9 .836 7 .736 9 .260 9 .978 0 .00 0
11 .5 0.396 0.000 3 .239 9 .844 7.652 9 .236 9 .981 0 .00 0
12 .0 0 .361 0 .000 3 .372 9 .851 7 .572 9 .213 9 .983 0 .00 0
12 .5 0.330 0 .000 3 .504 9 .857 7 .494 9 .191 9 .986 0 .00 0
13 .0 0.302 0.000 3 .636 9 .863 7 .418 9 .170 9 .988 0 .00 0
13 .5 0 .277 0 .000 3 .767 9.868 7.346 9 .150 9 .989 0 .00 0
14 .0 0 .255 0 .000 3 .897 9 .873 7.276 9 .130 9 .990 0 .00 0
14 .5 0 .234 0 .000 4 .026 9 .878 7 .208 9 .112 9 .992 0 .00 0
15 .0 0 .216 0 .000 4 .153 9 .883 7.142 9 .093 9 .993 0 .000

Variation s

V

	

d U

	

411'

	

d H

6

	

-I-18

	

0

	

+10 8



Nr. 16 4 5

MODEL 8 .

yL = y p PO.25 T-0.9 .

V U W H log rJß log PJP, log TfTe logM,.JM log L, ./.L

0 .0 3 .000 3 .000 0 .000 - oc 0 .000 0 .000 - co -co

0 .5 2 .824 2.231 0 .200 9 .089 9 .892 9 .957 8 .661 9 .46 7

1 .0 2.655 1 .609 0 .394 9 .237 9 .786 9 .914 9 .068 9 .75 4

1 .5 2.483 1 .131 0 .554 9 .323 9 .679 9 .874 9 .289 9 .87 2

2 .0 2 .308 0 .774 0 .697 9 .385 9 .572 9 .835 9 .438 9 .93 1

2.5 2 .132 0 .514 0 .827 9 .434 9 .463 9 .798 9 .546 9 .96 2

3 .0 1 .958 0 .331 0 .947 9 .475 9 .350 9 .762 9 .630 9 .98 0

3 .5 1 .787 0 .206 1 .060 9 .511 9 .234 9 .726 9 .697 9.989
4 .0 1 .620 0 .124 1 .168 9 .542 9 .115 9 .690 9 .751 9 .994

4 .5 1 .459 0 .073 1 .275 9 .572 8 .992 9 .655 9 .796 9 .997

5 .0 1 .305 0 .041 1 .380 9 .598 8 .865 9 .619 9 .833 9 .998

5 .5 1 .161 0 .023 1 .484 9 .623 8 .734 9 .584 9 .864 9 .99 9

6 .0 1 .027 0 .012 1 .589 9.646 8 .601 9 .548 9 .889 0 .00 0

6 .5 0 .903 0 .006 1 .695 9 .668 8 .466 9 .512 9 .910 0 .00 0

7 .0 0 .791 0 .003 1 .802 9 .688 8 .330 9 .477 9 .927 0 .00 0

7 .5 0 .691 0 .002 1 .910 9 .707 8 .194 9 .442 9 .941 0 .00 0

8 .0 0 .602 0 .001 2 .019 9 .724 8 .059 9 .408 9 .952 0.00 0

8 .5 0 .525 0 .000 2 .131 9 .740 7 .926 9 .374 9 .961 0.00 0

9 .0 0 .457 0.000 2 .243 9 .755 7 .797 9 .342 9 .968 0 .00 0

9 .5 0.399 0 .000 2 .357 9 .769 7 .671 9 .311 9 .974 0 .000

10 .0 0 .348 0 .000 2 .471 9 .781 7 .550 9 .281 9 .979 0 .00 0

10 .5 0 .305 0 .000 2 .587 9 .793 7 .433 9 .252 9 .982 0 .00 0

11 .0 0 .268 0 .000 2 .703 9 .803 7 .320 9 .224 9 .986 0 .00 0

11 .5 0 .236 0 .000 2.820 9 .813 7 .212 9 .198 9 .988 0 .00 0

12 .0 0 .209 0 .000 2 .936 9 .822 7 .109 9 .172 9 .990 0 .00 0

12 .5 0 .185 0 .000 3 .054 9 .830 7 .010 9 .148 9 .992 0 .00 0

13 .0 0 .165 0 .000 3 .171 9 .837 6 .915 9 .125 9 .993 0 .00 0

13 .5 0 .147 0 .000 3 .288 9 .844 6 .824 9 .103 9 .994 0.000

14 .0 0 .132 0 .000 3 .405 9 .850 6 .737 9 .081 9 .995 0 .000

14.5 0 .118 0 .000 3 .522 9 .856 6 .653 9 .061 9 .996 0 .000

15 .0 0 .107 0 .000 3 .638 9 .862 6 .572 9 .041 9 .996 0 .000

Variation s

V

	

4 U

	

4W 4 H

5

	

+25

	

+2

	

+81

10

	

7

	

0

	

10 6



46

	

Nr . 1 6

MODEL 9 .

x= o r-o.9

V Ü W H log r/R log P/P, log T/T, 1og114r. /M log L, ./L

0 .0 3 .000 3 .000 0 .000 - co 0 .000 0 .000 co - oc

0 .5 2 .820 2 .237 0 .189 8 .892 9 .892 9 .957 8 .618 9 .44 4
1 .0 2 .635 1 .625 0 .351 9 .042 9 .784 9 .918 9 .030 9.73 8
1 .5 2 .445 1 .146 0 .491 9 .132 9 .673 9 .880 9 .258 9.86 3

2 .0 2 .254 0.780 0.614 9 .197 9 .559 9 .844 9 .412 9 .92 6
2 .5 2 .060 0.512 0.723 9 .250 9 .440 9 .809 9 .527 9 .96 0
3 .0 1 .867 0 .321 0 .822 9 .296 9.315 9 .773 9 .616 9 .979
3 .5 1 .676 0 .192 0 .913 9 .336 9 .183 9 .738 9 .689 9 .98 9
4 .0 1 .488 0 .109 1 .000 9 .374 9 .042 9 .702 9 .748 9 .994
4 .5 1 .305 0 .058 1 .084 9 .410 8 .890 9 .665 9 .798 9 .99 7
5 .0 1 .129 0 .029 1 .166 9 .444 8 .729 9 .626 9 .840 9 .99 9
5 .5 0 .963 0 .014 1 .248 9 .477 8 .555 9 .586 9 .874 0 .000
6 .0 0 .810 0 .006 1 .330 9 .509 8 .370 9 .545 9 .903 0 .00 0
6 .5 0 .671 0.002 1 .414 9 .540 8 .175 9 .502 9 .926 0 .000
7 .0 0 .548 0 .001 1 .500 9 .570 7 .971 9.458 9.944 0 .00 0
7 .5 0 .443 0 .000 1 .588 9 .599 7 .761 9 .413 9 .958 0 .00 0
8 .0 0 .356 0 .000 1 .678 9 .626 7 .551 9.369 9.969 0 .00 0
8 .5 0 .285 0 .000 1 .771 9 .652 7 .343 9 .325 9 .977 0 .00 0

9 .0 0 .228 0 .000 1 .866 9 .675 7 .140 9 .283 9 .983 0 .00 0
9.5 0 .183 0 .000 1 .962 9 .696 6 .946 9.243 9.988 0 .00 0

10 .0 0 .148 0 .000 2 .058 9 .715 6 .761 9 .205 9 .991 0 .00 0
10 .5 0 .120 0 .000 2 .156 9 .732 6 .586 9.169 9.993 0 .00 0
11 .0 0 .098 0 .000 2 .255 9 .747 6 .421 9 .135 9 .995 0 .00 0
11 .5 0 .081 0 .000 2 .354 9 .761 6.266 9 .103 9.996 0.00 0
12 .0 0 .067 0 .000 2 .453 9 .774 6 .118 9 .073 9 .997 0 .00 0
12 .5 0 .057 0 .000 2 .552 9 .785 5 .980 9 .044 9 .997 0 .000
13 .0 0 .048 0 .000 2 .650 9 .795 5 .848 9 .018 9 .998 0 .000

13 .5 0 .040 0 .000 2 .748 9 .805 5 .724 8 .992 9 .998 0 .000
14 .0 0 .034 0 .000 2 .845 9 .813 5 .605 8 .968 9 .999 0 .000
14 .5 0.030 0 .000 2 .942 9 .821 5 .493 8 .945 9 .999 0 .00 0
15 .0 0 .025 0 .000 3 .036 9 .828 5 .385

	

8 .923 9 .999 0 .000

Variation s

V

	

A U

	

4 1V

	

d H

3

	

+53

	

+5

	

+112

6

	

19

	

1

	

59



Nr. 16 4 7

MODEL 10 .

x = xo Q o .z s

V" U W H log r/R log P/P e log TIT, logM,. /M log Lr /L

0 .0 3 .000 3 .000 0 .000 - oo 0 .000 0 .000 - oo - co
0 .5 2 .824 2 .231 0 .200 9 .232 9 .892 9 .957 8 .699 9 .47 8
1 .0 2 .655 1 .608 0 .400 9 .380 9 .786 9 .914 9 .105 9 .76 5
1 .5 2 .494 1 .126 0 .600 9 .465 9.681 9 .872 9 .324 9 .88 1
2 .0 2 .342 0 .768 0 .800 9 .524 9.578 9 .831 9 .467 9 .93 7
2 .5 2 .198 0 .514 1 .000 9 .569 9 .478 9 .791 9 .569 9 .96 6

3 .0 2 .059 0 .338 1 .156 9 .605 9 .380 9 .753 9 .645 9 .98 1
3 .5 1 .919 0 .220 1 .296 9 .635 9 .282 9 .716 9 .705 9 .98 9
1,0 1 .782 0 .141 1 .432 9 .661 9 .184 9 .680 9 .754 9 .99 4
4 .5 1 .648 0 .089 1 .565 9 .684 9 .086 9 .645 9 .793 9 .99 7
5 .0 1 .520 0 .056 1 .697 9 .705 8 .988 9 .612 9 .826 9 .99 8
5 .5 1 .398 0 .035 1 .827 9 .724 8 .890 9 .579 9 .853 9 .99 9
6 .0 1 .284 0.022 1 .958 9 .740 8 .793 9 .547 9 .876 0 .00 0
6.5 1 .176 0.013 2 .090 9 .756

	

8 .697 9 .515 9 .895 0 .00 0
7.0 1 .077 0 .008 2,222 9 .770 8 .602 9 .485 9 .910 0 .00 0
7 .5 0 .985 0 .005 2 .354 9 .783 8 .508 9 .455 9 .924 0 .00 0
8 .0 0 .901 0 .003 2 .487 9 .795 8 .416 9 .427 9 .935 0 .00 0
8 .5 0 .824 0 .002 2 .621 9 .806 8 .326 9 .399 9 .944 0 .00 0
9 .0 0 .754 0 .001 2 .756 9 .816 8 .239 9 .372 9 .952 0 .00 0
9 .5 0 .691 0 .001 2 .890 9 .825 8 .154 9 .346 9 .959 0 .00 0

10 .0 0 .633 0 .000 3.026 9.833 8 .071 9 .321 9 .964 0 .00 0
10 .5 0 .581 0 .000 3 .162 9 .841 7 .990 9 .296 9 .969 0 .00 0
11 .0 0 .534 0 .000 3 .297 9 .848 7 .912 9 .273 9 .973 0.00 0
11 .5 0 .491 0 .000 3 .432 9 .855 7 .837 9 .250 9 .977 0 .00 0
12 .0 0 .452 0 .000 3 .567 9 .861 7 .764 9 .228 9 .980 0 .00 0
12 .5 0 .418 0 .000 3 .700 9 .867 7 .693 9 .207 9 .892 0 .00 0
13 .0 0 .386 0 .000 3 .832 9 .872 7.625 9 .187 9 .984 0 .000
13 .5 0 .357 0 .000 3 .962 9 .877 7 .558 9 .168 9 .986 0 .000
14.0 0 .330 0 .000 4 .091 9 .882 7 .494 9 .149 9 .988 0 .000
14.5 0.307 0 .000 4 .216 9 .886 7 .431 9 .131 9 .989 0 .00 0
15 .0 0 .285 0.000 4 .339 9 .891

	

7 .371 9 .113 9 .990 0 .000



48 Nr . 1 6

MODEL 11 .

V U W H log r/R log PIP, log TIT, logMr/M log Lr ( L

0 .0 3 .000 3 .000 0 .000 - oc 0 .000 0 .000 - co - co
0 .5 2 .824 2 .231 0 .200 9 .134 9 .892 9 .957 8 .678 9 .47 4
1 .0 2 .655 1 .608 0 .400 9 .281 9 .786 9 .914 9 .084 9 .76 1
1 .5 2 .494 1 .126 0 .600 9 .366 9 .681 9 .872 9 .303 9 .87 8

2 .0 2 .336 0 .770 0 .759 9 .426 9 .577 9 .832 9 .447 9 .93 4
2 .5 2 .174 0 .514 0 .894 9 .472 9 .473 9 .793 9 .552 9 .96 4
3 .0 2 .010 0 .336 1 .018 9 .511 9 .367 9 .756 9 .633 9 .98 0
3 .5 1 .847 0 .213 1 .133 9 .544 9 .259 9 .720 9 .698 9 .98 9
4 .0 1 .687 0 .132 1 .244 9 .574 9 .148 9 .685 9 .750 9 .994
4 .5 1 .532 0 .080 1 .351 9 .601 9 .034 9 .650 9 .793 9 .99 7
5 .0 1 .384 0 .047 1 .457 9 .625 8 .918 9 .616 9 .829 9 .99 8
5 .5 1 .243 0 .027 1 .563 9 .648 8 .798 9 .581 9 .859 9 .99 9
6 .0 1 .111 0 .015 1 .669 9 .669 8 .677 9 .547 9 .884 0 .000
6 .5 0 .989 0 .008 1 .775 9 .689 8 .555 9 .514 9 .904 0 .00 0
7 .0 0 .877 0 .005 1 .883 9 .707 8 .432 9 .480 9 .921 0 .000
7 .5 0 .776 0 .003 1 .992 9 .724 8 .308 9 .447 9 .935 0 .000
8 .0 0 .685 0 .002 2 .103 9 .740 8 .186 9 .415 9 .947 0 .000
8 .5 0 .604 0 .001 2 .216 9 .754 8 .066 9 .383 9 .956 0 .000
9 .0 0 .533 0 .000 2 .330 9 .768 7 .948 9 .353 9 .964 0 .000
9 .5 0 .470 0 .000 2 .445 9 .780 7 .833 9 .323 9 .970 0 .000

10 .0 0 .416 0 .000 2 .561 9 .792 7 .722 9 .294 9 .975 0 .000
10 .5 0 .368 0 .000 2 .678 9 .802 7 .614 9 .267 9 .979 0 .000
11 .0 0 .327 0 .000 2 .797 9 .812 7 .509 9 .240 9 .983 0 .00 0
11 .5 0 .291 0 .000 2 .916 9 .821 7 .409 9 .215 9 .985 0 .00 0
12 .0 0 .259 0 .000 3 .035 9 .829 7.313 9 .190 9 .988 0 .00 0
12 .5 0 .232 0 .000 3 .155 9.836 7.220 9 .167 9 .990 0 .000
13 .0 0 .208 0 .000 3 .275 9.844 7.131 9 .144 9 .991 0 .00 0
13 .5 0 .187 0 .000 3 .396 9.850 7.045 9 .123 9 .992 0 .00 0
14 .0 0 .169 0 .000 3 .516 9.856 6.963 9 .102 9 .993 0 .00 0
14 .5 0 .153 0 .000 3 .636 9.862 6.883 9 .082 9 .994 0 .00 0
15 .0 0 .139 0 .000 3 .757 9 .867 6 .807 9 .063 9 .995 0.000

Variation s

V

	

d U d W d H

5

	

+14

	

+1

	

+44
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