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I . Introduction .

R
otational spectra have, been well established as an important .

feature of the excited states in heavy nuclei . The theory o f

rotational states and the supporting evidence have been given by

Borax, MOTTLLSON, and co-workers (cf. Bolin, 1952 ; Bolin an d
MOTTELSON, 1953 ; Bonn, 1959 ; BouR and MOTTELSON, 1954 ;

Boxx, FRÖMAN, and MOTTELSON, 1955 ; ALAGA, ALDER, Bonx ,

and MOTTELSON, 1.954) .

Deviations from the simple rotational spectrum have been

found for the most part to be small and to often exhibit the charac-

ter of rotation-vibration corrections, especially in even-even

nuclei (Boris, 1954) . As is well known, such corrections arise a s

an effect of the centrifugal force on the intrinsic structure of th e

rotating system . The fact that the observed deviations are usually
small implies that the centrifugal force excites only high energy

modes of the intrinsic structur e . By high energy we mean larg e

compared to the characteristic rotational energy .

An examination of the rotational spectra in Wolfram 18 3
reveals a deviation from the simple structure, which cannot b e
accounted for by the rotation-vibration correction . It is proposed

that this deviation is caused by the action of the rotation in ex -

citing low energy states of the particle structure . When suitabl e

low energy states exist, the rotational motion is no longer separabl e

and we must treat it as strongly coupled to the degrees of freedom

in question . This effect is well known in molecules, where it ha s

been called the Rotational Perturbation (cf ., e .g ., HP:xzßr-.RG, 1950,

pp . 285-6) .

The analogy to molecules, although of great use, must no t

be carried too far when it comes to detailed discussions . For

example, in molecules the heavy particles provide a rather stabl e
field in which the electrons can move ; while in the nucleus it is1*
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the nucleons which must provide, in a self-consistent way, th e
field in which they themselves move. Also, the mass of a nucleon
compared to the nucleus is much larger than is the case fo r
electrons in molecules. One may therefore expect that most
perturbations will play a more important role in nuclei than the y
do in molecules .

We can also expect that the rotational perturbations in par-
ticular will be less important in even-even nuclei than in odd
nuclei, at least near the ground state . The reason for this is the
fact that, in even-even nuclei, the first excitation of the particl e
structure appears to be rather high (s 1 MeY), probably because
of the interaction between pairs of nucleons . Thus, there are n o
very low energy states which can be coupled to the rotation .

In the following sections, the consequences of the rotationa l
perturbations are developed, using a simplified model at the
start in order to,J ;eep the essential points foremost . Then, a rathe r
detailed application is made to the accurately measured energy
spectrum of Wolfram 183 (cf . MURRAY et . al ., 1955). From thi s
we obtain good evidence that the interpretation is well founded .
A similar analysis of other odd nuclei will be of interest, but thi s
must await the accumulation of more data .

II. Rotational Perturbations .

In order to make clear the origin and generality of the particu-
lar rotational perturbation in which we are most interested here ,
it is useful to consider a simple model . Subsequently, we shal l
generalize this model in order to make it applicable to the actual
case of nuclei . In doing so, the role of other rotational perturba-
tions will become clear .

Therefore, we first restrict ourselves to the system of a singl e
particle coupled to a rigid top by a potential . The Hamiltonia n
for this system is simply

3

1-1 = n2 + V (r) -{-

	

~2i?
(Ik - jk) 2 ,

	

(II .1 )
2 171

k 1

where p, j, and i are respectively the linear momentum, angula r
momentum, and position vectors of the particle in the system of
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coordinates corresponding to the instantaneous position of the
principal axes of the top. The vector Ï is the total angular mo-

mentum of the system ; Sx are the principal moments of inertia o f

the top ; V is the potential energy between the particle and th e

top ; and m is the reduced mass of the system .

For the analogy with nuclei it is useful to consider first th e
case where both the top and the potential V have axial symmetry .

In particular this means

,11 = ~2 = ~ . (1I .2 )

The Hamiltonian (1) can then be written in the more convenient
form

h2
H Ho + 2

R5a
(13 j3 ) 2 + ~ (I 2 - Is -jå) + RPC ,

	

(11 .3)

2

	

h 2

Ho 2 ü + V (1•) `I - ~ -
j2 ,

~ RS

with

and

RPC = -

where

h2
+ I-11-) ,

If = Ii ~ iI2 , jf = If ± iJ2 .

The term defined in equation (5) is an effect of the Corioli s

force on the particle and will be given the name "rotation -
particle coupling" (RPC) . When RPC is neglected, it is clear be -

cause of the axial symmetry, that 13 and J3 will be good quantum

numbers . These have usually been designated by K and Q ,

respectively. The Hamiltonian Ho can, in principle, be solved for
the particle motion with Q as one of the quantum numbers (for
example, see NiLssoN, 1955 ; GOTTFRIED, 1955) . Then, the energy

spectrum will be given by

E E) +203(KD)2 2(I(I } 1)-K 2 -S22) .

	

(II .7 )

Ail available data on rotational spectra in nuclei indicates tha t
only states with K = S2 occur in the regions of low excitation, i . e .

the spectrum has the form

E=EAR-~2~(I(I±1)-2K2) .

	

(II .8)
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This is equivalent to the statement that rotations about th e
symmetry axis require high energies, or simply that

« .

	

(II .9)

The effects of the rotation-particle coupling can be simply
investigated. For this, we first need the non-vanishing matrix
elements

(IK I I± I IK + 1) = V(I + K) (I + K -{- 1),

	

(II.10)

(IQ I iT Ij,Q+1) - ►/( .i +D)(i +~ + l ) .

	

(II .11)

Using these matrix elements we note the general property that
the RPC, preserves the quantum number (K - Q) even though it
destroys both K and Q separately . This is an important property ,
because it means that matrix elements to the lowest lying states ,
which have K - Q = 0 in common with the ground state, do not
vanish .

Whether or not the RPC will be important depends essentiall y
on the spectrum of energies for the Hamiltonian Ho . If the spacings
in this spectrum are large compared to the rotational energies ,
or, in other words, if the rotation is adiabatic with respect to th e
particle motion, then the RPC is a small perturbation and th e
simple rotational spectrum (8) is to be expected. This corresponds
to a strong coupling of the particle to the rotator . In the opposit e
limit, when the particle is almost decoupled from the rotator, th e
quantum numbers ,Q and K are not appropriate and the non -
spherical part of the coupling energy V (F) should be treated a s
the perturbation . We shall be interested in the case of partial de -
coupling . By this is meant the situation where the great mass o f
the particle spectrum is high in energy, but where there may b e
one or a few levels which are low enough so that they cannot b e
simply treated in perturbation theory. The RPC, acting through
these levels, partly decouples the particle from the rotator. In
the following section, we shall discuss this case in detail .

An important example of partial decoupling is the case Wher e
S2 = 1/2 and the rotator has axial symmetry . Because of this sym-
metry, the states S2 and - Q are degenerate and the wave functio n
is a " symmetrical combination of the two (cf. BOI-IR, 1952) .
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Then, for the special case S2 = 1 / 2 , the RPC has a diagonal
matrix element, and this contributes the so-called "decoupling

term" to the rotational spectrum (DAVIDSON and FEENBERG, 1953 ;
BOHR and MOTTELSON, 1953 ; see also equation (III .1) below) .

There are many cases of odd nuclei with S2 = 1/ 2 where thi s

decoupling effect has been met with .

Up to this point, we have been considering the simple mode l
of a particle coupled to an axially symmetric rigid top . We shall

now proceed to generalize on this model . Our first step is to rela x

the restriction as to axial symmetry . This leads to the following

four perturbations .

H' = Hi + H2 !, H3 + V' (r)

	

(II .12 )

h 2	 _	 t2

(g

	

51
81

) 1 ~ 2(I+.I+ 1 IJ-) + (J+1+ + .1-J-)
(II .13)

-I- (I+ I+ -f- I- I_)

	

V' (i•) ,

where V ' (P) is the axial asymmetry in the particle potential

energy, and the moment of inertias in (7) is now the harmonic

mean of Si and Zs'2 . All of these perturbations are such that they

do not preserve the quantum number (K - Q) . In view of the
condition (9), this means that they couple only to high energy

states . Therefore, in this case, H ' can be treated as a small per-

turbation . The analogous perturbations have been previousl y
examined by BOHR (1952) for the model of a particle interacting
with an incompressible liquid drop, in which case an explici t

expression for V ' ( r) is also obtained .

It can easily be seen, using equations (10) and (11) an d
second order perturbation theory, that Hi and H3 lead to a

renormalization of Zs', while V ' (f) and H2' lead to a renormali-

zation of EKE . The energy H3 gives in addition a new type of

term which is negative and proportional to 1 2 (I + 1)2 .
It is quite clear, both from general ideas of nuclear dynamics

and from the data on rotational spectra, that the nuclear rotationa l

motion is not that of a rigid body. In fact, the measured moment s
of inertia lie between those for irrotational flow and for a rigi d
body (cf . BOHR and MOTTELSON, 1955) . These moments depend
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on the shape of the nucleus which, in turn, depends upon th e
internal nucleon configuration . However, as long as the moments

of inertia are essentially constants of the motion, the considera-

tions above will still apply .
Small deviations from the constant values arise from the fact

that the rotational motion will distort the nuclear shape some -
what . This distortion is essentially a stretching, which increase s

the moment of inertia . Therefore, the moment of inertia can b e
expanded as a function of I (I + 1), and to first order this intro-
duces a term in the energy which is negative and proportional t o
12 (I + 1)2 . This is the so-called rotation-vibration energy and it s

magnitude depends on the deformability of the nucleus and o n
the dependence of the moment of inertia on the deformation .
Other effects of the deformability will arise if the rotation cause s

a deviation from axial symmetry . (The extreme case where th e

nucleus is not stable with respect to vibrations about axial sym-
metry, so-called y-vibrations, has been considered by Boni . and
MOTTELSON, 1953, and by WILETS and JEAN, 1955 .) Then, as

we have already seen, the energies (13) lead to a renormalizatio n

of EKE and as well as providing another rotation-vibration-lik e

correction. For regions far removed from closed shells, where th e

rotational energies are small (< 100 keY), all the evidence is tha t

the rotation-vibration effects are also small . In addition, th e

evidence suggests that, as one approaches closed shells, thes e

effects will increase to a point where one would have to treat the

rotation-vibration coupling in a more exact manner than secon d

order perturbation theory . This would be an analogous situatio n

to the one considered here for the RPC. For the nuclei near magic

numbers, where one expects a spherical equilibrium shape, th e

rotation-vibration coupling is so strong that it makes no rea l

sense to speak of rotations . The collective motion then takes the

form of oscillations analogous to the surface vibrations of a

liquid drop . One has some evidence that this is the case (GoLD -

nABER and WENESER, 1955) .

We must keep in mind the fact that in nuclei the moments
of inertia arise as a collective effect of all the particles . Actually ,

the inertia of the rotational motion is intimately associated with
the RPC ; and in fact the moment of inertia can be traced back to
a second order effect of the RPC on all the particles (cf . below) .



Nr . 15

	

9

The decoupling effects which we consider here arise in cases wher e

higher order terms are important so that it is necessary to de-

scribe more explicitly the corresponding degrees of freedom .

Essentially, this is the case when there exist low lying states o f

excitation of the particle structure, or special degeneracies, a s
in the case of S2 = 11 2 with axial symmetry . Such low lying excita-
tions, with energies comparable to rotational energies, are usually

found in odd-A nuclei and we therefore expect decoupling effects

to be especially important in these cases .

Finally, it is emphasized that the RPC, which we consider

acting between low lying configurations of the rotating nucleus,

is of a very general nature (Coriolis force) and its existence is
independent of any specific assumptions about the intrinsi c
nuclear structure .

III . Mixing of Two Rotational Bands .

Let us consider the simplest possible case where the RPC

will have an important effect . This is the situation when there is a

single low-lying configuration which is coupled to the groun d
state by the RPC . In this case, the energy can be simply diagonal-
ized (cf ., e .g ., HERZBERG, 1950, p . 283) and the various limits
considered afterwards. Without the RPC there is associated with

each of the configurations a rotational band having energies *

EK(I)=EKl+ET{I(I+1) ÔK,'laa(-l)rI-'1'(I+) , ( III .1 )

where the parameter (KI) and the decoupling parameter a

depend in some way upon the nucleon configuration, and wher e
EK E is conventionally chosen so that EK(K) will have the ex-
perimental energy .

The rotational spectra corresponding to the close configura -
tions K and K + 1 will be mixed by the RPC (only states with

For reasons of simplicity, we have disregarded the rotation-vibration term
2

-EK7{i(I+1)+åK,'Ixa(-1)r+~~z(I+2)~,

	

1( a)

although there is no difficulty in including it if the accuracy of the data require s
this .
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the same I can mix) and the resulting energy spectrum will b e
given 1)3' 1-

E (I) = 112 {EK + (I)+EK(I) }
'011 . 2 )

± 112 )/{ EK+1(I) -- EK (I) )2 + 4 AK (I-K) (I + K + 1 ) 1
where.

AK =
h 2

c J_
~

J = Z,J_ .

	

(3) a
particle s

We note that the state I = K is not affected because it has no per-
turbing partner in the (K + 1) spectrum. It is clear that the para -
meter AK has roughly the order of magnitude of a rotationa l
energy, although it may be considerably smaller if the two con -
figurations have a small overlap .

The amplitudes of mixing will be expressed in the following
notation. We write the wave functions a s

tpii, L = aÎ, L T
IK +

	

L yrIK _ i ,

ciÎ+~i = 1 ,

where the superscripts H and L denote the higher and lowe r
energy solutions, respectively, and the dependence on other
quantum numbers is left implicit . In terms of the rati o

RK(I) =	 I {EK+1(I)-EK(I)ji

	

(III .6)
2 A K 1/(I- K) (I + K+ 1 )

the mixing amplitudes ar e

aH,L = I + [+ R +j/i+R
2 ]' } 	

bp
= aI ; 17 =

	

crH

* In general there is also the possibility for the RCP to connect different
states of the same parity both of which have K = 1/Y . This arises on account o f
the symmetrization of the wave function discussed before . The considerations ar e
the same as those presented here and the only difference is that we put K = - 1 / ,
in the matrix element AK .
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We have conventionally considered the particle state K + 1 t o

be higher than the state K . For the opposite case we have only t o

interchange the roles of al- and br in (7) .

One is interested in the electromagnetic transition probabilitie s

between the mixed states . These will be given in terms of the

above mixing amplitudes and the usual y-ray transition matri x

elements. The latter are expressed in general by the formula e

(cf. NILSSON, 1955 )

+ bKK' (- 1)1 ' + K '
E2

3	 et'B(NI1) =
4Z

(9 ){(IlI'K' IIKlK'_K)

+ bM (- 1)r'+K' (I1I',-K'~IK1, - K' -K)}2(GKK') 2

where Q, G, bMl, bE2 depend upon the intrinsic wave functions .
For the diagonal transitions (diagonal in K), these have the
usual interpretation in terms of electric quadrupole moments an d

magnetic g-factors .
Thus

QKK = Q(I; ,

the electric quadrupole moment in the state K ; and

G KK = K (gK - gR),

	

(111 .11 )

related to the magnetic g-factors in the state K (cf. Bolin, and MOT-

TELSON, 1953, p. 109) .

In quadrupole transitions, the off-diagonal matrix element s
and the quantities bE2 can usually be neglected because they ar e
single-particle effects, while the diagonal matrix elements ar e

essentially the large collective electric quadrupole moments . For
magnetic transitions the term containing bml enters only in the
diagonal case K = K' = 1/2 . The factor which determines th e
effect of bMl is the ratio (see (14))

B(E2) =-
r
	 e 2 {(I2 I'K ' ~IK2, K' -K)

16z

	

( ),III . 8

(I2I',-K'j IK2,-K'=K»2 (QKx) 2
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fzz = (- 1)r' + y, (I1 I' , - 1/2 1 11/2 1 ,	 1 )
(I1 I'

1/2
I 1112 1 0 )

1

	

, I'=I- 1

(2 1+1), I ' = I

-1

	

, I' =I =, 1 .

The reduced transition probabilities between the mixed state s
(neglecting the single-particle E2 effects) are then

B(E2) = 16 ~e 2 Lara r ,Qô (I2 I 'K IK 20)

+ brbr,Qo' (I 2 I'K' ~ IK' 2 0) } 2

B (Ml) = -

43
( eh )

2

{ arar,GKK (I 1 I'K ~ IK 1 0 )
~ 2Nlc

(1 + SK,I frr'bnri] + brbr ,G"' (I 1 I'K '

	

1 0)

	

(111 . 14 )
+ arbr,GKK' (I 1 I'K' ~ 1K 11 )

T (E2) _

4z1
(
dE

)
s
B (E 2)

75~ ~ hc

(111 .15)

T(M1)

	

16~ 1 (4E 3
=	

9
	 ~

Iic )
B (1111) .

	

(III .16)

We can easily examine the extreme case where the interactin g
particle states are almost degenerate. If, for example, we tak e

K 1/2, EK)
= E()+,, and assume that the rotational family i s

degenerate in zero order, the energy spectrum is

E(I) = EA~+~K ) S +1) ± (I
K

~x-) V(I-K) (I+K
+1)JJJJJJ~,

(111 .17 )

{

1(1

(- 1 ) r
+ `la

V2

(III .12)

with

+ ar,b 1 G K'K (I 1 I ' K I IK' 1,	 1) } 2

	

J

	

K ' = K + 1 ; GKK' _ GK '

	

K

	

(111 .14a)

The transition probabilities are given in the usual way by
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while the mixing is fifty fifty, i . e .

all = Ui = aI = 1

V2

	

V2

One sees, therefore, that the decoupling can have a rathe r

large effect on the rotational spectrum, enough in some cases t o
make it almost unrecognizable as such (cf . also the decoupling
effect when K = It is not expected that this extreme case wil l
occur, except by some accident, but nevertheless it is instructive
as an example of the kind of effect which can occur . It is more
instructive to examine the opposite extreme where perturbatio n
theory is useful, and this is done in the next section .

IV. Perturbation Limit for RPC.

When the energies of the two configurations (K and K + 1) are
very different, i . e . the difference is large compared to the rota-
tional energies, we expect that the mixing can be treated as a per-
turbation . The different orders of the perturbation series ar e
simply obtained by an expansion of the equations in Section III .
The relevant expansion parameter is the ratio RK (I)- 1 . It is clear
that whether or not perturbation theory is applicable depends t o
some extent on the total angular momentum I in view of the I
dependence of RK . In general, the perturbation series become s
less useful, the larger I is .

For the energies in the perturbed ground state band, on e
obtains the formul a

E (I) Eli1 1 -Ax AKt I I 1) K I~ 1) ]O

	

K

	

E
K

l E J L (+ )

	

( +

A 2 t (E~ 1? - E~ 1~ )

+ 4E l KdE

	

+
/AK<?

4E)
}[I(I+1)-K(K-r-1)-+i2+ . .

* The result (1) is for the case where there is only one state (K ± 1) which
interacts with the ground state K . Of course, the perturbation result can jus t
as easily be obtained for the more general case where there are an arbitrary numbe r
of interacting states . In higher orders, we would then have to include states with
K ± 2, etc., and this might change the results in specific cases . Equation (1) i s
displayed in order to show the kind of effects which may be expected .

(III .18)

(IV . 1)
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where K labels the ground state band, and K' the interacting

band (K ' = K 1) . The quantity 4E is the energy difference ,
taken as positive, between the interacting configurations . The

necessary condition for this expansion is

Ax<
4E «1 . (IV . 2)

There are two general remarks which can be made on con -

sideration of this result . First, the RPC can significantly increas e
the moment of inertia for the ground state rotational band ; and

second, it can provide a vibration-rotation-like term which has

a positive sign . We shall look first at the former effect .

In second order perturbation theory, one sees that the moment
of inertia is increased by the factor (cf . equation (1) )

{i+ .}

	

(IV . 3)E> 4 E

and, hence, when there are appropriate low-lying configurations ,

the last few nucleons can have a rather large effect on the moment

of inertia, even when perturbation theory is still valid . . For ex-

ample, in a nucleus with A 200, each particle can he said to
contribute on the average one half of one percent of the moment

of inertia, while the last few nucleons might easily give rise to a

contribution of ten per cent . Of course, if the contribution is to o

large, perturbation theory will not be adequate, especially fo r
the higher states in the band. The empirical evidence shows a
general tendency for larger moments in the odd nuclei than i n

neighbouring even nuclei (cf . BOHR and MOTTELSON, 1955 ;
BOHR, FRÖMAN, and MOTTELSON, 1955) . This would indicate that

the last few nucleons do indeed have low-lying states, and tha t

the RPC is operating as described above . In many cases, th e

difference is so large as to indicate that a perturbation treatmen t

of the RPC is not suitable . In the next section we will discuss th e

case of 74W183 where this situation exists .

One can recall the remark made earlier that we expect the
RPC to be rather intimately connected with the moment of inertia .
In fact, INGLIS (1954) and BoHR and MOTTELSON (1955) have

shown that the total moment of inertia can be derived in time -

dependent perturbation theory as an effect of the rotation on the
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particle structure ; an effect quite equivalent to the RPC when

one takes into account all of the particles and uses second order

perturbation theory .

It is not surprising to see that the second term in (1) is propor-

tional to 1 2(1 ± 1)2. The interesting fact is that the coefficient can

in principle have a positive sign . For the particular case we have

studied here, the positive sign is obtained as long as the moment

of inertia of the interacting band (K ') is not too large compared t o

that of the band (K) under consideration . As has been discusse d
above, this type of term in the energy can arise as a direct effect of

the centrifugal force on the moment of inertia (rotation-vibratio n

interaction) or as an effect of the energy H3 (eq . (11 .12)) in second

order perturbation theory . In both cases the coefficient is negative .
The reason one can have a positive sign from the RPC is that

the 1 2 (1+ 1) 2 term first arises in fourth order perturbatio n

theory. (The same is true for the less important perturbation Hl) .
Since the RPC can usually couple to states of lower energy i t

may be rather more important than the other couplings, even
in fourth order. Thus we may expect in some cases to find an

anomalously small or even a positive "rotation-vibration"-lik e

correction .

We seem to have an example of both of these effects (renormal-
ization of moment of inertia and positive rotation-vibration cor -

rection) in the excited rotational band of 741V182 which has bee n

assigned as odd parity and K - 2 (cf ., e .g ., ALAGA et al ., 1955) .

At this excitation energy (1 .29 MeV for the first state of the band )
one expects that the level density is higher than in the ground

state region, and then the RPC may play a role, as it does in th e

neighbouring odd isotope. This seems to be the case because th e
excited band has a higher moment of inertia than the groun d

state band (15°/a higher) ; and also it has a positive rotation-

vibration-like correction, while that of the ground state band is ,

as usual, negative .
In the perturbation limit, the effect of the rotational admix-

tures on the electromagnetic transition amplitudes can he easily

obtained. To first order in (AK</4E) , the mixing amplitudes ar e

* This is for the case where the configuration K = 1 is higher in energy than
the configuration K . For the reverse case the roles of a l and kJ- are interchanged
(cf. III equation (7)).
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a I _ bf
~

1 ; aÎ
= -

bi
~ ~ ` n n ~ 1/' (I-K) (I + K + 1) . (IV . 4 )

Let us first consider transitions between rotational states i n
the same band. The following results are obtained, using equation s
(4), (111 .1 3), and (III.14) along with certain properties of the
vector addition coefficients . For E2 transitions (I' = I- 2) and
Ml transitions (I' = I- 1) within a band (K), we have respect-
ively

B(E2)

	

16
Jr

e 2 (I27 ' K I IK20) 2

?+(AK, )

Ev3QKxiÉ2

}2
;

K<+ 1 2

B (M1) =

	

en )(I 1 I' K) ~ IK 1 0)247r 2Mc
'Iz

	

2

x,

	

v2

1
-

h nr i
+ ( ~ ~-)

1~ 2 GKK~ f~~i ~

where K' = K L 1 labels the perturbing band . The values of fxx'

are given in Table I .

TABLE I .

KK'
f M l t E

KK '
2

K '

(K + 1) -(2K + 3) K + 1) K is ground state ban d
(K -1) (2K -3) K- 1

(K + 1) (2K + 3) K=1 K is excited band
-(K-1) -(2K-3) K-1

One sees from (5) and (6) that, when the rotational admix-
tures are small, they do nothing more than "renormalize" what
are understood as the electric quadrupole moments and th e
magnetic g-factors . The I dependence of the transition amplitudes
remains the same as they are without the admixtures . The renor-
malization of Qo will be quite unimportant because the correction
term, in addition to being small because of (AK,/AE), is made
smaller still because the off-diagonal matrix elements Q KK are

(IV . S )

It , (IV . 6)
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expected to be unimportant compared to the intrinsic quadrupol e

moments (g .

For transitions between mixed rotational bands, in the usua l

case where the quadrupole moments of the two bands are nearl y

equal, we get simply

B(E 2)

	

16 n
e z (I 2 I'K' ~ IK 2, K' -K)2

V° Qp T QK K (

when

Qô = Qô ; K' = K + 1 ; K<* 1 /2 •

This is a result previously derived and used by ALo \ et al .

(1955). One can obtain a similar result in the M1 amplitudes, bu t
the necessary condition GKK = GK'K' is not likely t4 be fulfilled .
In equation (7) one sees that the off-diagonal particle term can b e

important because the strong collective term is cut down by th e

small factor (AK< /AE) .

V. Application to 74 W 18 3

The energy levels in the odd nucleus 74ŸW
183 have been very

accurately determined up to an energy of 450 keV from a study

of the y-transitions and internal conversion following the ß-deca y
of 733Ta183 (MURRAY et al, 1955) . The level scheme suggested b y
MURRAY et al . can be interpreted in terms of two intermixe d

rotational bands accompanying configurations with K = 1 / 2 and

K = 3/2* (cf. Fig. 1) .
A semi-empirical fit of the ground state rotational band ,

(K = 1/ 2 ), using the usual formula (11I .1) with the correction III .

(1 a), is successful in a qualitative way,, and leads to the para -
meters ET = 13 .027 keV, a = 0.1904, and 422 ) = 0 .003182 keV .
The energy of the K= 1 / 2 , I = 9%2 level (G) using these para -

meters is only some 8 keV lower than the experimental value .

* This interpretation has also been considered by CHRISTY (1954) .
Dan .Mat . Fys.Medd . 30, no . 15 .
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Nr.15

9/2	 [ss5.s ]

11/2	 [477 3]

41208 [412 .06]
1 7/2	 453.08

K =7/2 -
Fi ( 7/2 )

	

G 9/2	 308.94 [306 .73]

	

F 5/2

	

291 .71 [291 .85 ]

	

D 7/2

	

207.00 [207.10]

	

E 3/2

	

208.81 [208.69 ]

K = 3/2 -

	

C 5/2

	

99.07 [99 .29)

	

B 3/2

	

46.48 (46,31 )
A 1/2	 0

74
w 183

Fig . 1 . The level scheme in W 183 suggested by MURRAY et al . has been draw n
so as to display clearly the interpretation in terms of rotational bands . The dif-
ferent bands are horizontally displaced, and the numbers in square brackets ar e
the energies calculated using the parameters (V .1) .

Since it does not fit in with the other rotational sequences we postulate that
the level I (spin 7/2) begins a new rotational band with K = 7/2 . Because th e
RPC cannot directly mix bands with 4K> 1, the K = 7/2 band cannot mi x
with K = 1/2 or 3/2 bands . Therefore the level I can be disregarded in dealin g
with the mixing of the other two bands .

The spin for the state H has been postulated to be 7/2 rather than 5/2 as
suggested by MURRAY et al . This seems to be a reasonable assignment becaus e
of the lack of an E2 transition to the ground state . The spin 712, however, is con-
trary to the multipolarity assignment 1111 for the transition HE. This assignmen t
is based on internal conversion evidence (measurement of the K conversion coef-
ficient), but appears not to be entirely conclusive . In addition, the theory predicts
a 7/2 state with just the properties of the observed level H . A conclusive measure-
ment of this spin would of course be very interesting .

This discrepancy, however, is something one would like to
understand . In view of (1) the fact that there is a close lyin g
K = 3 /2 configuration, and (2) that the parameter 41 ) (13 .02 7
key) is 22 0/0 less than the value of Eol) (16.767 keV) in the neigh-
bouring even-even nucleus 74W182, it would seem likely that th e
8 keV discrepancy is a result of the RPC . Then, using the first
part of equation (IV.1), we can simply estimate that A, 1 = 28
keV . This only serves as a first estimate, because the 8 keV dis-
crepancey implies that a fourth order perturbation treatment i s
not valid . The large effect on the moment of inertia implies the
same thing .

The formula (III .2) has been applied to the first five levels
above the ground state, and the resulting parameters are
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EW
a~

= 15 .853 keV .

e l) = 14.050 keV.

a = 0 .1684 keV.

Ay . = 21 .735 keV. V.1 )

E~~? = 146 .74 keV .

The numbers in square brackets in Fig. 1 give the energie s
as calculated, using these parameters . We note that the discrepancy

has been reduced to the order of one fifth of a kilovolt. This

remainder might easily be caused by the neglect of other rotation -
vibration-like terms in the energy . Just as important, the value o f

a is now much closer to the analogous quantity in the neigh-
bouring even-even nucleus . Again, the remaining discrepanc y
might easily be a result of other higher order effects . Finally, it is

interesting to note that the matrix element Av. has the expected

order of magnitude of a rotational energy, which we had alread y
seen in the perturbation estimate above .

Making use of the parameters (1) along with equations (III.1) ,

(III .6), and (III.7), a table of mixing amplitudes can be simply

constructed .

TABLE II .

3/
2

5/
2

7/
2

.2 4-uH --_bLI

	

I .35

	

.47 . .5 1

-
a L -hHI

	

I .97

	

.94

	

.88

	

.8 6

Now al is the amplitude of K = 1 /2, b i is the amplitude o f

K = 3/ 2 , and H, L refer to the high and low energy states of th e
saine total angular momentum I . Especially for the higher angula r

momenta, the mixing is considerable, and one does not expec t

that perturbation theory would be adequate .

Having determined the mixing amplitudes we can now go on
to an examination of the electromagnetic transition probabilities .
One has a great wealth of data on relative decay probabilitie s

(cf . MuRRAY et al ., 1955) and also some data on Coulomb ex-
citation (Huus et al ., 1955 ; MCCLELLAND et al ., 1954 ; MARK et
al ., 1955 ; STELSON and MCGOWAN, 1955) . Although this data is

2*
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quite extensive and accurate it would be very useful to have

even more detailed measurements ; for example the E2/M1 mix-

tures would be quite interesting and also decisive for the inter-
pretations which follow .

The easiest transitions to discuss are those which are pur e

E2 . This is so because here the parameters are roughly known .

First, it is not expected that the collective quadrupole momen t
will vary drastically from one state to another, i . e ., we expec t

Q'o' and to be roughly equal . The fact that the moments of

inertia for these two states are closely equal can be considere d

as evidence for this . Hence, we can take

Q'
0
1 :

To the same approximation we can also use

Qs iz'iz z 0

(V.2 a)

because this is a single particle effect .

MURRAY et al . have measured only one intensity ratio for a

pair of E2 transitions. This is the ratio for the transitions HE and

HB in W183 (see Fig . 1) which they find to have the value 0 .27 .

A direct calculation, using (2), gives 0 .34, which agrees within

the accuracy of the measurements . Without the rotational admix-

ture this ratio is too small by a factor ten even for a mor e
favourable choice of Q'I"1 ' .

Making use of the same assumptions (2) we can construct a

table of relative Coulomb excitation probabilities . Thus, fixing

Qo N,6.5 . 10- 24 cm2 to fit the value given by of Huus et al . ,

(1955), we can calculate the other excitation probabilities .

The value of Bexc (E2) for the highest state is roughly one -

sixth of the values for the two low states . Without the rotationa l

admixture this would be reduced by more than a factor ten .

Recently the excitation AF has indeed been observed (cf . STELSON

and MCGowax, 1955) and the value of Bexc (E2) determined

agrees with the value given in the table, indicating that the estimate

(2) is roughly correct. Since the value for Qo is consistent with

values in the neighbouring nuclei (cf. Huus et al., 1955) the inter-

pretation seems well confirmed .
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TABLE M.

Transition	 AB AC

	

AE AF

Energy	

	

46 .5

	

99 .1

	

208 .8

	

291 . 7

1/2 --) 3/2L

	

7/2

	

5/2 L

	

1/2 ->-3/2 u 1 1/2-* 5/2e

Bexe (E2) e- 2 • 1048 em- 4 1 .6

	

2 .2 0 .099

	

0 .3 0

The above estimates show that the rotational admixtures pla y

an essential role for certain transitions . In a more quantitativ e
discussion one should consider the quantities Qô°, 12z la9l' and

big ' as parameters to be fitted by the data . The accuracy of the

present experiments is not sufficient to determine these para -

meters although it indicates that the choice (2) is a good one .
There is much more data available with respect to the Al l

transition intensities . MURRAY et al . have measured twelve in-

tensity ratios in W183 which can serve as a good test of the theory .

Because W 183 has a ground state spin I = 1 / 2 we see from (111 .1 4 )

that there are four parameters, leaving eight pieces of data whic h
the theory must fit . The Ml amplitudes are linear expressions i n
the four derived parameters a, (3, g3, gi3 .

a

	

11IC]

	

,2 vnri) (G'Iz 1.IQöa)

	

(~' . ~3 )

h 1 1/'j

	

17C

	

1 I
V

j
~ bnr1~

(G'ln'!s/V~,)

	

(V.4)

J3

	

h (G
,
1~~1 1Qoa),

	

(V .5)
(a1IC )

=
( _ MC-) ( 01.'1(0 = - g

31 •

	

(V . 6)

Note that the new parameters are defined in units of the groun d
state quadrupole moment Q . Since we are dealing with in -
tensity ratios, we are led to a set of twelve quadratic equations i n

four unknows. We have proceeded by a trial and error method ,

and have succeeded in finding values for the parameters which
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TABLE IV .

Transition lexp

	

ttheo 0/,E 2 (theo)
Relative

E2/M2 phase s

73A	 110

	

.6 ('_ )
CA	 (28)

	

28

	

10 0
CB	 30

	

20

	

3 ('F )
DB . . :	 (400)

	

400

	

100
DC	 900

	

1100

	

1

	

('F )
EA	 220 370

	

20

	

(_ )
EB	 1400 830

	

10 ( =F )
EC	 (144) 144

	

5 ('F )
FA	 1330 840 10 0
FB	 460 9 (z )
FC	 60 87 70 (T- )
FD	 (300) 300 .8 ( = F )
FE	 47 82 20 ('F )
GC	 (1790) 1790 1.0 0
GD . . :	 65 67 10 (=F )
HE_	 1860 2500 10 0
I3C	 15900 12000 2 ('F )
HD	 (1900) 1900 2 ('F )
HE	 490 840 10 0
HF	 160 130 50 ('F )
HG . . :	 110 280

	

1 ('F)

fit the data extremely well considering the uncertainties involved' .

The fit is presented_ in Table IV .

Since transition probabilities are a good lest of wave functions ,

this fit is considered as evidence that the general ideas employed

are correct. It would be very interesting to have more measure-

ments, particularly on the E2/M1 mixtures . The theory predict s

the percentage of E2 in the M1 radiation, and also the relativ e
phases . Such measurements would be a further very exactin g

test of the theory, particularly in the cases where there are rela-

tively large admixtures .

* One of the uncertainties in our wave functions has to do with the possibility
that the upper (K = 3 /2) band is perturbed by a still higher band with the sam e
parity and K = 112 or 0/, . In fact the high moment of inertia for this band (cf . (1))
indicates that this may he the case .



Nr . 15

	

2 3

Caption to Table IV.
We compare here the relative transition probabilities measured by MURRA Y1

et al. to those calculated with the expressions (III . 13) and (III. 14) . For con-
venience, we use natural units (is = c = 1 ; one atomic mass unit = 931 MeV ;
10 13 cm-i = 197 MeV ; 1O°° sec- 1 = 658 MeV ; e° = 1.37 -1) and then the para-
meters which give the fit are (in MeV) .

a = + 0.037

	

= -T- 0 .100 gs = ± 0 .042 [Îi3 = ± 0 .006 .

The theoretical quantity tabulated i s

i =10°TR e2 \Q12 1 2 1
and this has the dimensions (MeV) , in natural units.

The experimental quantities are relative intensities of y-ray lines from a
given level . Thus we have normalized the intensities in a given group so that on e
of the experimental values agrees with the corresponding theoretical value for I .
This intensity is put in brackets in the table . In the last two columns we hav e
also included the percentage of E2 radiation and its phase relative to the Ml
radiation as predicted by the theory with the above parameters . The E2/Ml
phases are not unique because a fit of the intensity ratios determines the MI
parameters only up to an overall sign relative to the E2 parameters . However ,
once this sign is fixed by a measurement of one of the E2/M1 phases, the res t
will be determined by the fit . la the table we have given the E2/M1 phases t o
correspond with the signs of the parameters as written above .

The transition FB was not seen by MURRAY et al. because it is masked b y
very intense radiation of nearly the same energy, originating in level I (compar e
transitions ID and IT in Fig . 1) . Our calculation shows that this transition (FB )
is quite comparable in intensity to the others from level F and therefore it shoul d
be possible to see it, for example, in Coulomb excitation, where the level Cis no t
excited . Actually the relative intensity FB must be included in an accurate estimate
of B (E2) for the level F when this is measured by Coulomb excitation (the valu e
for B e ,e(E2) by STELSON and McGowAN, is calculated by neglecting FB) .

It is probably possible to improve the fit by a more exhaustive analysis usin g
fou r parameters as above, or by including as parameters the E2 matrix element s
which have only been roughly estimated here . However, the fit as presented, i s
probably sufficiently good so that we can say there is some sense in the idea s
underlying it .

The percentage E2 mixtures in the table are presented only as an indicatio n
of the order of magnitude predicted by the theory . The rough estimates as t o
the E2 matrix elements make the values somewhat uncertain .



Conclusion .

We have seen that the RPC can have a rather important effect
in an odd nucleus as exemplified by 74W'83 . It is not expected
that this is an atypical case . For example, the systematic effec t
on the moment of inertia has been noted already (cf. above) .
In some cases (e . g., 73

Ta181
71Lu175and 63Eu153), the excited

state which might cause a rotational admixture has been seen .
More data in such nuclei would be very revealing . From the
discussion above it would seem that Coulomb excitation is a n
excellent tool with which to look for the admixed band, becaus e
the mixing greatly enhances the excitation probability for thes e
higher states .

The author offers his thanks to Drs . A . Bona and B. R . Mo-r -
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many stimulating discussions and suggestions . He is also grateful
to the Canadian National Research Council for a Postdoctorat e
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