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Introduction .

I t is a well known consequence of basic assumptions in th e
general theory of relativity that the rate of an ideal standard

clock moving with the velocity v through a gravitational field

with the potential x is determined by the formul a

da = dt V1-I-2xfc 2 -v 2 fc 2 ,

where z is the proper time of the standard clock and t is the

coordinate time in a time-orthogonal system of space-time co-
ordinatesl) . Equation (1) is equivalent to the statement that th e

proper time of a particle is a measure of the length of the tim e
track of the particle in (3 + 1)-space . It follows directly fro m

the principle of relativity and the equivalence of gravitationa l

fields and "acceleration fields " , together with the assumption

that the rate of the standard clock is equal to the rate of the

clocks in a local rest system of inertia . The last assumption im -
plies that the acceleration of an ideal standard clock relative t o

a system of inertia has no influence on the rate of the clock ,

which thus is entirely determined by its velocity .

The formula (1) is closely connected with the well-known

formula for the red-shift of spectral lines emitted by atoms situ-
ated at places with a negative gravitational potential, and gives

the clue also to a solution, of the so-called clock paradox 2 > .

On account of the inherent invariance of the length of the time

track of a particle, it is clear beforehand that no real contradict -

ions connected with the rate of moving clocks can ever arise i n

this theory .

However, just for this reason, students of the theory of rela-

tivity very often do not find the usual solution of the cloc k
1*

(1)
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paradox satisfactory . They maintain-rightly of course-that on e
has made just such assumptions about the behaviour of clocks
in gravitational fields that no paradox can occur, and they would
like to see a derivation of (1) on the basis of the dynamical law s
governing the functioning of a clock or at least of a simple model
of a clock . This desire is of a similar kind as that which, in th e
early days of relativity theory, led to attempts at deriving the
Lorentz contraction of moving rigid bodies from the laws govern -
ing the constitution of solid bodies . Against such attempts it ha s
been objected that the effects in question are much more ele-

mentary and much more directly connected with the principle s
of the theory than the laws from which they are proposed to b e
derived, so that the behaviour of moving rigid bodies and stand -
ard clocks rather represents a challenge to the theory of th e
constitution of matter and to the dynamical laws underlyin g
the functioning of clocks . This is certainly a sound objection

in the case of the contraction phenomena, since we do not at
the moment have a consistent relativistic atomic theory of soli d
bodies from which the contraction phenomenon could be de-

duced. However, the situation is somewhat different in the cas e
of the formula (1) for two reasons . Firstly, a clock may be i n

a certain sense regarded as a much simpler system than a measur -
ing rod, since, for instance, any macroscopic particle performin g
harmonic oscillations around a centre under the influence o f
elastic forces may be used as a clock . Thus, in calculating the
rate of such a clock, we can neglect all quantal effects and we
need only a knowledge of the dynamical laws governing the
motion of a macroscopic particle acted upon by an external gravi-

tational field and by a given non-gravitational force . Secondly,

as shown by EINSTEIN, INFELD, and HOFFMANN 3) , these dynam-

ical laws follow from the gravitational field equations without
further assumptions. In particular, it was shown by INFELD and
SCHILD 4) that the time track of a freely falling test particle (tha t
is, a particle of vanishing mass) in an arbitrary gravitationa l

background field, is bound to be a geodesic line in the space -
time continuum of the background field in order that the fiel d
equations can have solutions . This interesting theorem, according
to which the equations of motion appear as a kind of integrab-

ility conditions for the field equations, is closely connected with
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the non-linear character of EINSTEIN 'S field equations. It is true
that the correct equations of motion for a freely falling particle
had been derived already long ago on the basis of the principle s
of relativity and equivalence, but with the extra assumption tha t
the equations of motion do not depend on the second derivatives
of the metric tensor with respect to the space-time coordinates .
The above mentioned investigations showed, however, that the
particle dynamics is intimately connected with the foundation s
of the theory of gravitational fields and, at least from a didactica l
point of view, it may now be of some interest to derive Eq . (1 )
from the dynamics of a simple model of a clock .

Such a derivation also will allow us to formulate certain
requirements as to the construction of a clock in order to mak e
it an ideal standard clock in the sense of the general theory o f
relativity. It will turn out, of course, that a real clock can onl y
approximately be considered ideal and that the degree of accu -
racy with which. it may be said to have this property depend s
on the properties of the gravitational field in which the cloc k
is placed. For a real clock, the formula (1) is therefore also onl y
approximately true .

In recent years, the construction of accurate time measuring
instruments has made great progress and the different "atomi c
clocks" constructed in various laboratories have an accurac y
by far exceeding the accuracy of the earth's rotation. The time

does not seem far when the accuracy of such clocks is so hig h
that a direct verification of Eq . (1) is possible by comparison o f
the rates of two clocks situated at places of different gravitationa l
potential on the earth . It is therefore also of interest to verify
that the above mentioned conditions for the validity of the for-
mula (1) are satisfied by these clocks .

These problems are dealt with in Section 6 . Section 1 con-
tains a review of the three-dimensional formulation of particl e
dynamics given elsewhere for gravitational fields with zero vecto r
potentials, while the discussion of the most general case is give n
in the Appendix. The remaining sections are devoted to mainly
didactical remarks illustrating the close relationship between th e
formulae for the mass and energy of a particle in a gravitational
field and the Eq . (1) . In Section 2, the formula for the gravita-

tional mass of a particle is illustrated by a discussion of a few
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"gedanken"-experiments by which this formula, in principle ,

could be checked . Section 3 presents a similar discussion for

the inertial mass . Section 4 brings a derivation of the red-shif t

formula which is more closely related to the actual mechanism

of emission of photons in atomic transitions than usuall y

given in the current text books, the derivation being base d

directly on a formula describing the influence of gravitationa l

fields on the level scheme of atomic systems . Finally, in Section 5

some of the results obtained in section 3 for the non-relativisti c

oscillator are derived also for a system with large particle velo-

cities .

1 . Particle Dynamics .

The motion of a freely falling particle in an external gravi-

tational field is characterized by the statement that the time trac k

of the particle is a geodesic line . Let us, for simplicity, assume

that the system S of space-time coordinates (x i ) = (x`, ct) i s

time orthogonal*, so that the metric tensor gik , entering in th e

interval
ds2 = gik dx i dxk , (2)

satisfies the three equation s

ga4 =g4a =O . (3)

(Latin indices are running from 1 to 4, Greek indices from 1 t o
3, only) . Then, the spatial line element defining the geometry

in the three-dimensional space of our system of reference i s

simply

d 62 = Yar dxa de, with lax = gar.

	

(4)

and the dynamical action of the gravitational field is determine d

solely by the scalar gravitational potential z = z (x`, t) defined b y

g44 = - ( 1 + 2 z/ c2) •

	

(5)

It is now easily seen5) that the equations of a geodesic in

(3 + 1)-space are equivalent to a set of equations of motio n

* By means of the formulae developped in the Appendix all the considera-
tions of the present paper may easily be carried through also in the most ge-
neral case .
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in 3-space, which can be written in the form of a three-dimen-

sional vector equation . Let u be the three-dimensional velocity

vector of the particle with the contravariant and covariant com-

ponents u` and u i , respectively, defined by

x

	

c

	

dx`
uc = Sicxu , u - dt

Further, let IN denote the proper mass of the particle as measured

in a rest system of inertia ; then we define the momentum vecto r

p of the particle by the vector equation

(6)

p = rnu, (7)

where the factor of proportionality-the inertial mass of the .

particle in the gravitational field-is given b y

ma
ni

	

- .	 	 .----

	

.._ = TTtp' r .
+Y 1

	

2 xlc2
.: --	

u2 /c2

do- 2
= Ycx u ` u x is the square of the velocity vector

,dt

r

	

V 1
+ 2 xi c2 - u2 /c2

is the generalized Lorentz factor .

The equations of motion then take the form of a three -

dimensional vector equatio n

ddPi

	

a	
= K, - - m a ~i .

The left-hand side of this equation is the covariant tim e
derivative of the momentum vector defined b y

d~ pc

	

dp, 1 a Yx1. üx ~

dt

	

dt

	

2 ax`

	

'

while the right-hand side represents the gravitational force

(8)

Li 2Here,

and
1

(9)

(10)
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K = - m grad x .

	

(12)

The latter is proportional to the negative gradient of the gravi-

tational potential, the factor of proportionality-the gravitationa l

mass-being equal to the inertial mass (8) . The last term in (11 )
is due to the use of curvilinear coordinates in 3-space and i s

necessary in order to make dip` a vector under spatial coordinate

transformations .
The equations (10) have the form of usual equations o f

motion in which the change in the momentum vector p per uni t

time is equal to the force acting on the particle . They may also

be written in Hamiltonian form with the Hamiltonian or th e
total energy H of the particle in the external gravitational fiel d

given by6 )

mo c2 (1 + 2 xÎ c2 )

	

, 2
H=

	

-

	

= rnc . (13)
V 1 + 2 x/c2u2/c2

Here,

c ' = cl/ 1 + 2 x/c 2 (14)

is the velocity of light c' = dt at a place where the gravitational

potential is x 7) . Eq. (13) is the generalization of EINSTEIN ' S

energy-mass relation in the presence of gravitational fields . From

(7), (8), and (13), we get

lp12-(H 2_

	

(15)

where p I2 - p~ p` is the square of the momentum vector . Eq.
(15) is the generalization of the usual energy-momentum relatio n

for a free particle . In a static field, where z = x (x`) is time -

independent, the energy H is a constant of the motion .

When the particle is acted upon by a force a, besides the gravi-
tational force K, we have to replace the right-hand side of (10 )

by the sum K + a of the two forces . Hence, 8 )

dcp - K + a

	

( 16)dt
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For a force .a of the usual type, which does not change th e
proper mass rno, the covariant components are connecte d
with the generalized Minkowsky four-force Fi by the relatio n

Fi = {rFL (FX )} .

	

(17)

P being the generalized Lorentz factor (9) . In a static gravita-
tional field, the energy conservation law takes the for m

dH _ .a u - L uL .

Derivations of the equations (6)-(18) are found in loc .cit .
5)-8) . A short derivation of the corresponding relations for th e
more general case, where (3) does not hold and where therefore
the dynamical action of the gravitational field is described by a
vector potential as well as by the scalar potential, is found i n
the Appendix to the present paper .

2. Gravitational Mass .

By putting u = 0 in (8) and (13), we get the following ex -
pressions for the rest mass rno and the rest energy Ho of a particl e
in a gravitational field :

riz o
m o = --	

V1 ± 2 / e 2 '

Ho = mo c2 l/ 1 + 2 xlc2 = mo• c'2 .

	

(20)

Hence, the mass of a body is slightly smaller on the top of a
mountain than at sea level, and for the rest energy it is the othe r
way round. Although this variation of the mass is very small
(the variation of x/c2 is of the order of 10-12 between the top o f
Mount Everest and sea level), it may be of didactical interest t o
discuss by which experiments the mass (19) in principle coul d
be measured. In this discussion, we shall for simplicity assum e
that the field is static. Clearly, it will not do to weigh the

dt
(18)

(19)
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particle by means of a balance, since the mass of the weights wil l
vary with x according to exactly the same formula (19) . A
balance can therefore only be used for measuring the prope r
mass tilo . On the other hand, if the particle is attached to the end
of a string of a given length I, the pendulum thus formed wil l
have a period T which will depend solely on the "gravitationa l
acceleration"

G = - grad z l,

	

(21 )

at least for small amplitudes and small velocities in the oscilla-
tions . Indeed, with these assumptions, the mass in may b e
treated as a constant, and it will then drop out entirely in th e
equations of motion (10) . Further, if the region in space wher e
the oscillations take place is sufficiently small, we can locally in-
troduce Cartesian coordinates x, y, z (or rather a geodesic syste m
of space coordinates in which the metric tensor y t ,ti may be treate d
as constant equal to åßx inside this region) and, for oscillation s
along the x-direction, say, the equations of motion (10) reduc e
to the usual equation of motion for a pendulu m

d2 .x

	

G
(22)

= -
l x .

df ?

Hence, we get the usual formula for the period

(23)T = 2 ~ y
/

1 /G

and measurements by means of a pendulum can therefore onl y
lead to a determination of the gravitational acceleration or th e
gradient of x at an arbitrary point .

In order to measure mo, it is obviously necessary to use a n
apparatus in which the particle is acted upon by a non-gravita-
tional force which counterbalances the gravitational force . For
instance, we may use a spring-balance, where the non-gravi-
tational force is an elastic force

	

proportional to the elongation
s of the spring :

z~ = ks .

	

(24 )

When the spring-balance has come to equilibrium, u = û = 0 ,

and the left-hand side of (16) vanishes . Thus, we get from (12) ,
(16), (21), and (24) the equatio n



mo G = ks,

	

(25)

from which we can determine tnp when G, k, and s are known .
However, it must be noted that the elastic constant k itsel f

depends on the gravitational potential x according to the formula

k = k V1+ 2 xfc2 ,

	

(26)

where k is the value of the elastic constant when the spring i s
placed at rest in a system of inertia . This fact requires a re-
gauging of the spring-balance when it is used at places wit h
different gravitational potentials .

To prove the relation (26) we have simply to make a trans -
formation from the system of coordinates S : xi = (x, y, z, ct)
to a system S : (xi) which is a local system of inertia at rest rela -
tive to S at the space-time point considered . The correspondin g
transformation equations 9) for the Minkowsky four-force are

Fi = F,, F4 = F4 1/1 -f- 2 xfc 2 .

	

(27 )

Since u = û = 0 in our case, we get by (17), (9), and (27) ,
remembering that = 0 ,

= Ir = V'I + 2 xfc2 ;

	

(28)

(29)

Further, since the relative velocity of the systems S and S is
zero, we have

s = s,

	

(30 )

which then leads to the equation (26) .

3. Inertial Mass . Harmonic Oscillator .

The mass m 0 determined by the equilibrium condition (25 )
is of course the gravitational mass, the inertial mass enterin g
only in dynamical problems . As an example, we consider
small vibrations of the particle attached to the spring-balanc e

ks = les l% 1 + 2 x/e2 .
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around the equilibrium position . For sufficiently small ampli -
tudes and velocities in the vibration, the inertial mass in oc-

curring in the vector p on the left-hand side of the equations o f

motion (16) may be treated as constant and equal to the rn o
given by (19) with the value of z taken at the equilibrium position .
Let us further assume that the elastic constant k is so big that th e
gravitational force K is negligible compared to the elastic force .

Finally, we may again, for sufficiently small amplitudes, us e

local Cartesian coordinates with the x-axis in the direction of th e
vibration. Then, the equations (16) take the form of the usual

equations of motion of a harmonic oscillato r

d2 x

mo dtz = - kx ,

x being the distance of the particle from the equilibrium position .

A solution of (31) is the harmonic oscillatio n

x = A sin wt (32)
with the frequency

w = J k/rno . (33)

Thus we have, according to (19) and (26) ,

w =

	

(klMo) (1 + 2 x/c2) = w V1 + 2 x/c2 , (34)

where Co is the frequency of the oscillator when it is placed a t

rest in a system of inertia . By measuring the frequency of the
oscillator when placed at different potentials x, we get a determ-
ination of the inertial mass .

When the oscillating particle carries an electric charge, i t
emits electromagnetic waves of frequency v = w/22-c, and (34)

then expresses the well-known red-shift of light emitted by a
macroscopic oscillating system situated at a place of negative
gravitational potential . Of course, the system considered is no t

a good model of a quantum mechanical system like an ato m
emitting spectral lines . However, in the following section w e
shall see that the general formula (20) for the rest energy of a
particle in a gravitational field provides a simple derivation o f

the red-shift formula applicable also to atomic systems .

(31)
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For small velocities we get for the energy (13) of a particle
moving with velocity u in a gravitational field, to the first order
in u2/c 2 ,

H=Ha + ~Inou2

with mo and Ho given by (19) and (20) . Adding to this the elasti c
potential energy of the oscillator,

(35)

(36)

we get the total energy of the oscillator in the gravitational fiel d

E = H+ V= moc2 V1 + 2 x/c 2 -I- E,

	

(37)

where

a = ~ mou 2 +~ kx2 = ~ kA 2

is the usual non-relativistic expression for the energy of an oscil-
lator of mass mo, elastic constant k and amplitude A .

We shall now compare our oscillator for a given energy state ,
i . e . a given amplitude A in the gravitational field with the same
oscillator placed in a system of inertia . From (37), (38), and
(26) we get

fi= 2 kA 2 y~1 + 2 x/c2 = 8V1 + 2 x/c2 ,

	

(39)

E = ( I~o Jr 8/c2) c2 l/ l + 2 x/c2 = É V1 + 2 x/c2 ,

	

(40)
where

E = moc2 + ^,

	

9 kA2

	

(41)

is the energy of the oscillator in the system of inertia. A compari-
son of (40) and (20) shows that the oscillator as a whole has the
property of a particle at rest in the gravitational field with a
proper mass

Mo = rho + å/c2 ,

	

(42 )

(38)
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in accordance with EINSTEIN ' S energy-mass relation . This may

serve as an illustration of the fact that the formula (20) for th e

rest mass of a particle in a gravitational field holds generally,

irrespective of the nature of the mass of the particle .

4. The Red-shift of Spectral Lines .

According to Boon's theory of atomic spectra, the frequency

of the light emitted in a transition between two stationary state s

of the radiating atom is proportional to the difference in energ y

of the initial and final states . Therefore, from a didactical poin t
of view, it seems most natural to derive the redshift formula b y

a consideration of the influence of the gravitational potentials on

the energy levels of atomic systems. Let El , E2 , . . . . En, . .
be the sequence of values of the total energy of the atom in th e

different stationary states when it is placed at rest in a syste m

of inertia . According to EINSTEIN'S mass-energy relation, the pro -

per mass of the atom as a whole in the n'th stationary state i s

tVlo n = En/c 2 .

Therefore, by (20), the corresponding energy of the atom when

it is placed at rest in a gravitational field must b e

En = Nlonc2 V 1 + 2 x/c2 = EnVl + 2 xfc 2 •

	

(44) .

For the energy release in a transition between two stationar y

states we then also have

AE = 4EV1 +2 x/c 2 (45)

which, combined with Boon's energy-frequency relatio n

4E=hv, dÉ=hv, (46)

immediately leads to the redshift formul a

v = v l1 + 2 x/c2 . (47)

Thus, the energy and frequency of the photons emitted in a

definite transition by atoms at the surface of the sun and b y

(43)
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terrestrial atoms, for instance, differ by the factor l/l + 2 x/c2 .
On the other hand, a photon traveling from the sun to the earth
may be treated as a "freely falling" particle of proper mass zero

and velocity c ' = c V1 ± 2 x/c2 . Its energy in the static gravita-
tional field is then constantly equal to hv, which shows that th e
frequency is unchanged during its travel . After arrival of the
photon at the earth, its frequency may be directly compared wit h
the corresponding spectral line emitted by a terrestrial atom .

For rho -* 0, we get from (15), for the momentum of the
photon,

H h v 1a
p

'

- =

c

	

c'

	

A

where A = c ' fv is the wavelength measured with standard meas-
uring sticks . Further, we get from (13), for the "relativistic" mas s
m of the photon,

h v
In =	 .c 2

If we introduce this value for rn into the equations of motion (10) ,
we get, after dividing by the common constant factor hv ,

	

de (u,/c'2) - d

	

, 2

	

1 ay2 uxu)'

	

1 ax

(u f c ) --

	

--,2

	

( a0 )
dt

	

dt

	

2 ax' c 2

	

c ô x
with

dx`
u t =

dt
, u~u.~ - c 2 .

The equations (50) are the equations of motion of a light ray ,
as derived, for instance, by Fermat's principle10), determining
the deflection of light in a gravitational field . In this way, the
three Einstein effects-the advance of the perihelion, the red -
shift of spectral lines, and the deflection of light-appear a s
consequences of the same equations, the equations of motio n
(10) which, in turn, may be regarded as a kind of integrabilit y
conditions for the gravitational field equations .

(48)

(49)

(51)
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5. The "Relativistic" Oscillator .

In the derivation of the relation (34) from the equations o f

motion, we assumed for convenience that

u2/c'2 « 1 .

	

(52)

This assumption is of course not essential . As an example let us ,
as in Section 3, consider the case of a macroscopic particl e

elastically bound to a fixed point 0 ; but now we shall not assum e

that the velocities are small . However, we shall stick to the othe r

assumptions made in Section 3, viz. that the gravitational force

can be neglected, and that the potential x can be regarded as a con -

stant over the small domain of the orbit of the particle . For the

mass in the equations of motion we then have, according to (8) ,

(14), and (19)

mo

ni =
v1 -u2 /c '2 '

where mo and c ' are treated as constants . Using again local Car-

tesian coordinates, we get now, instead of (31) ,

d

	

mox
= -kx .

	

(54)
dt \)/l - 2/c' 2

The total energy E is a constant of the motion . Hence, by

(13), (53), and (36),
m c '2

	

1
mc'2 ~- V	 	 °	 - -{- - kx2 = E .

	

(55 )
U1 - x 2 /c'2 2

If ± A are the values of x at the turning points of the particle

where x = 0, the constant E in (55) may be written

E = moc'2 +-kA2 ,

	

(56)

and we get for the velocity x

lc '2 = 1 - [1 + (A2 - x2) (k/2moc'2)] -2 .

	

(57 )

(53)

(dx '
dt,
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However, the ratio k/2 moc'2 is independent of the potential z .
In fact, by (26), (19), and (14) ,

k/2 moc'2 = k/2 moc 2 .

	

(58)

Therefore, by integration of (57) over one period T = 1/v, corre-
sponding to a motion of the particle from x = -A to x = + A
and back, we get

T = t (l + 2 x /c2) I ,

	

(59)
where

= (2/c){1

	

[ 1
A

/(A 2 -- x2) (k/2 lTl0c2) j-2
}_z dx (60)

is the period of the same oscillator when placed at rest in a
system of inertia . Eq . (59) or

v =vV1-F 2x/c2

	

(61 )

is identical with (34), which thus has been derived also for a
"relativistic" system .

When
kA2/Thoc2 (< 1,

	

(62)

Eq . (60) gives of course the non-relativistic expression v = 1/T
= /k/ih0 /2 r ; which is independent of the amplitude, but i n
general the frequency will depend on A and be smaller than thi s
value. This is connected with the fact that the relativistic mas s
m is larger than the rest mass Tho which will slow down the motion.
The velocity u is therefore always smaller than the value Vk/Tho A
for the maximum velocity in the harmonic oscillation (32) :

u Vk/mo A .

	

(63)

6 . Ideal Standard Clocks .

We shall now turn to the problem, mentioned in the Introduc-
tion, of deriving the formula (1) for the rate of a clock in a
gravitational field from the dynamics of the clock . Let us firs t

Dan. Mat. Fys . Medd . 30, no.10 .

	

2
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consider a clock at rest in a static gravitational field, in whic h

case we should have, according to (1) ,

di- dt V1-{-- 2 x/c 2 .

	

(64)

As a simple model of a clock, we may take the oscillato r

treated in Section 3, consisting of a particle of proper mass riho ,

which is elastically bound to a fixed point O in the system o f

reference, the more so as any vibrating system in a certain approx-

imation has the properties of an oscillator . The time shown b y

the clock is now per definitionem proportional to the numbe r

of beats in the oscillation . The ratio co/w, determined by the
equation (34), is therefore equal to the ratio of the rates of th e

clock when placed at potential z and at zero potential, respect-

ively. Since the coordinate time t may be identified with the

time shown by the clock in the latter case, we see that (64) is a

consequence of (34) .

We shall now establish the general conditions which a cloc k

must satisfy in order that the formula (1) is valid, i . e . the condi-

tions for the oscillating system to be an ideal standard clock . In

the derivation of (34) from the equations of motion (16), we have

made a number of assumptions . First, we assumed that the

velocity of the particle in the oscillation is small compared wit h

the velocity of light, i . e . that (62) is satisfied . However, as shown

in Section 5, this is not a necessary but only a convenient as-

sumption. Next, we made the essential assumption that the gravi-

tational force moG in (16) could be neglected. Since the elasti c

force is of the order kA, the condition for this to be justified i s

that

moG/kA << 1 . (I )

If this condition is not satisfied, the equation of motion for an

oscillator in the gravitational field will not have the same for m

as in a system of inertia . It is true that a constant force mo G

added to the elastic force of an oscillator will not change th e

frequency of the oscillator, but only the equilibrium position .

However, this holds only for an exact harmonic oscillator ; for

any potential other than the one given by (36), an additiona l

constant force will change the frequency and invalidate the simple
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formula (34) . To see this, and to get an estimate of this effect ,
we let V (x) be the potential of the oscillating particle withou t
the force moG . The total potential for the system with the addi-
tional force is then

V (x) = V (x) - moGx .

	

(65)

If To and xo are the values of x corresponding to the equilibriu m
positions of the particle with and without the force moG, we have

V' (xo) = 0,

	

(66)

V ' (xo) = V ' (xo) -moG = O .

	

(67)

From the Taylor expansion of V (x) around the point x o

V (x) = V (xo) +
9

V" (xo) (x - xo) 2 + 3 V„ ,
(xo) (x - xo)3 -;- . (68)

we see that the system without the force moG may be regarded a s
a harmonic oscillator with the elastic constant

.

k = V" (xa)

provided that the amplitude A satisfies the condition

V, (xo) A ~ V ,, , (xo) A

3 V„ (xa)
_

	

3 k_

	

<< 1

	

(70 )

Hence, by (67), (68), and (69),

To - xo = mo G/ k ,

	

(71 )

which is small compared with A if (I) is satisfied. The system
including the constant force moG may therefore be treated as a
harmonic oscillator with the elastic constant

k V„
(xo) = V" (To) = V" (xo) + V" , (xo) (xo - xo)

= k + V"' ( .xo) mo G /k .

	

}

Here we have used (65), (68) and (71) .

(69)

(72 )

2*
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The relative change in k due to the gravitational force i s
thus

6k/k = V " '(xo) moG/k 2,

	

(73)

and the corresponding change in the frequency w = 1/k/mo i s

6w/w = 6k/2k = V "' (xo) moG/2k2 .

	

(74)

This we may also writ e

	

~w w = 3 r V
,., (xo) A (moG

	

l 5
/

	

2

	

3k

	

kA

	

( )

showing that the degree of accuracy with which the formula (64)
is valid depends not only on how strongly (I) is fulfilled, but
also on the degree to which the "harmonicity" condition (70) is

satisfied .
In the quantum mechanical derivation of the red-shift formul a

(47) in Section (4), the assumption (I) would mean that the in-
fluence of a constant field of the strength moG on the levels of the
atomic system, "the gravitational Stark-effect ", is negligible .

In the derivation of (34) from (16) it was further assume d
that in the expression for the mass on the left-hand side o f
(16) could be treated as a constant, or more precisely, tha t

	

d7120

	

rv

	

'

	

« ZiLL

	

.

For a static field, this gives, on account of (19), (14), (21), an d
(63),

lizo

	

(ax ~~

	

2 moGu 2 mo G kA2

(1 I 2y/c 2)312 ,ôx`u

ufc .

	

«c , 2

	

c
,2mo

	

kA (77 a)

GA/c '2 « 1 .

	

(II )

Since u2 is always smaller than c'2 , (77 a) or (II) will alway s
hold when condition (I) is satisfied .

For a non-static field, we get from (76) the further conditio n

dt
(76)

or

moudx
<< kA ,

c '2 dt
(77 b)
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which by (63) and (33) may be writte n

V ino ô y/c 2_ l a x c2 « 1 .
1c a tl

	

(III)

Thus, the variation of the dimensionless quantity x/c2 during one
oscillation must be small .

Finally, the use of Cartesian coordinates in the whole regio n
of oscillation, as was implied in the derivation of the oscillato r
equation (31), is possible only if the spatial curvature can b e
neglected inside this region . This leads to the conditions

xA 2 « 1

	

(IV)

where x is the Riemann curvature constant of any "plane" sur -
face of geodesics through the point O . For the "plane" define d
by the directions of the and x2-coordinate curves in 0 th e
curvature constant x is defined by 11 )

-P1212/(Y11Y22 - Y212) ,

where Pt,4 is the Riemann-Christoffel curvature tensor forme d
by the spatial metric tensor y,ti . The corresponding curvature s
of the "(23)-" and "(31)-planes" are obtained from (78) b y
cyclic permutations of the numbers 123 .

Up to this point, the centre of the clock, 0, has been assume d

to be fixed at a definite place in the system of reference . Now,
let 0 be accelerated with the acceleration a . As long as the velo-
city of 0 is small compared with c ' , the derivation of (31) from
the equations of motion (16) will still be valid if the further
condition

maa « kA

	

(V)

is satisfied . Let y` and v` = y` be the coordinates and velocit y
of the centre 0. For the coordinates and velocity of the particle,
we have then

x ` = y ` + e` , u` = v` + tv`,

	

(79 )

where is the small vector leading from the centre 0 to the po-

sition of the particle and (` is only approximately a
vector!) When (79) is introduced into the left-hand side of (16), i t

(78)
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is seen that the equations of motion under the conditions mentione d

above again reduce to an equation of the type (31) with x re-

placed by .

By (33), the condition (V) implies that

d v = a/w = a 1/mo /k « Vk/rno . A = wA

	

(80)

i . e . the velocity acquired by O during one period of the oscillatio n

is small compared with the mean velocity of the oscillation. The
condition (V) is thus the condition for an "adiabatic accelera-

tion" of the clock . Since (80) implies A v « c ' , this condition

also gives the justification for using the simple " action at a

distance" expression = k for the force in the equations of
motion .

If (I) and (V) are not sufficiently well satisfied, we obvi -

ously have to add the extra force mo G -
t

(mov) in, (G -a)

on the right-hand side of the equations of motion (31) . This wil l
cause a change in the frequency which is given by (75), but with
G replaced by 1G - a 1 . Thus, if the acceleration of the centr e

of the clock is equal to the gravitational acceleration, as will b e

the case if the clock is allowed to fall freely, then the two effect s

dealt with in (I) and (V) will practically cancel and the equation s
of motion will have the form (31) even if (I) and (V), separa-

tely, are not well satisfied .

Finally, when O is moving with the finite velocity v, we ge t
again, under the conditions (I) - (V), an equation of the oscil-
lator type (31) for the motion of the particle, but with mo re -
placed by

in = 1110 P(0),

	

(81)

where

P(O) _ { 1 + 2 x/c2 - v 2 /c 2 {-

	

(82)

is the generalized Lorentz factor corresponding to the velocity o f
the centre . By a consideration similar to that which in Section 2

lead to the equation (26), we now get for the elastic constan t

k = k/P (0),

	

(83)
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where k is the value of this constant in a local rest system o f
inertia for the centre O .

Hence, under the above conditions, the frequency w of an
oscillator moving with the velocity v in a gravitational field mus t
be connected with the proper frequency w of the same oscillator
at rest in a system of inertia by the formul a

w= W1/1 + 2 x/c2 v2/c2 ,

in accordance with the formula (1) for an ideal standard clock .

For given G,	 , and a, it is obviously always possible to

choose the parameters of the clock th = l/k/th0 and A such that
the conditions (I) (V) are satisfied, i . e . it is always possible
to construct clocks which are "ideal " under given circumstances .
On the other hand, the degree of accuracy to which a given cloc k
(given k, m ° and A) may be regarded as ideal depends of course

on the use we want to make of it (i . e . on G,	 	 and a) . Let us

now see to what degree of accuracy the relations (I) - (V) are
satisfied by the "atomic clocks" in order to decide whether th e
variations in the rate of the clock due to variations in the gravi-
tational field of the earth could in principle be measured b y
means of such clocks . It is a common feature of these clock s
that atomic systems like ammonia molecules act as the "balance"
of the clock . The vibrations of the atoms in the molecule, which
in this connection may be treated as a classical mechanical
system, are to a high degree of accuracy harmonic oscillations .
The frequency of the oscillation is of the order

w , 10 1 ° sec-1 .

	

(85)

Since the mass of the oscillating particle is of the order

m ° , 10-24 g1.

	

(86)

the system may be represented by a harmonic oscillator with an
elastic constant

k = w2m°

	

10-4 gr/sec2 .

	

(87)

(84)
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The amplitude A of the oscillator cannot be larger than atomic
dimensions . In the conditions I, and II we can therefore pu t

A

	

10- 8 cm, c '

	

c = 3 . 10 1° cm/sec, G

	

10 3 cm/sec 2 (88)

for terrestrial gravitational fields .
Hence,

mo G/k A 10-9 (89)

GA/ c' 3 10-25
(90)

Further, a straight-forward calculation shows that the quantity o n
the left hand side of (IV), for a point at the surface of the earth ,

is of the order a2x AJ

	

(GA/c' 2 ) • (Air) where r is the radius of th e
earth.

are c 2

The conditions (I) - (V) are therefore amply satisfied and the
condition (V) is of course also well satisfied even for accelera-

tions considerably larger than the gravitational acceleration . We
also see that the oscillator is highly non-relativistic, sinc e

W2A21c'2

	

10-17 << 1

	

(91 )

From (75) and (89) we now ge t

6w/co

	

10-9 (V " ' (x°) A/3 k) .

	

(91 )

Thus, if we are aiming at an accuracy of the order of 10-12 , th e
quantity on the left-hand side of (70) which determines the degre e
of harmonicity of the oscillator must be smaller than 10-3. How -
ever, as pointed out on p . 22, the accuracy to which the clock
may be considered "ideal" increases considerably if the atomi c
systems which constitute the balance of the clock are freely
falling in the gravitational field, since the effects dealt with i n
(I) and (V) then almost completely cancel .

In concluding, I wish to thank Dr. D. FRIscH for pleasant
and illuminating discussions on problems connected with th e
atomic clocks .

Institute for Theoretical Physics ,
University of Copenhagen .



Nr . 10

	

2 5

Appendix .

In this Appendix, we shall give a short derivation of th e
three-dimensional equations of motion in the most general case ,

where (3) is not satisfied and where the dynamical action of th e

gravitational field is described by a vector potential

yt = g G4/v- g44

	

(A . 1 )

as well as by the scalar potential defined by (5) . In this case ,

we have, instead of (4), the spatial metric tensor y lx given by

da 2 = y c c d.x` dx,", y cx = g i, + yc yx •

	

(A. 2)
Let

da = ds/ic = V- gik dx i dxk /c

	

(A. 3)

be the real quantity measuring the length of the time track of a
particle in (3 + 1)-space, and let F .c be the covariant components
of the non-gravitational four-force . Then, using an arbitrary

parameter representation, the equations of the time track may b e

derived from the variational principl e

a.:

	

A s
å Ihoc~~-gikx i •xk d2-Fi åxidi dA = O,

	

(A . 4)
J~,

	

~,

	

d A

where åxi are arbitrary variations of the space-time coordinates

x i vanishing for A =

	

and

dxi

	

dx i d r

dA

	

dr dA
(A . 5)

Since A. may be chosen arbitrarily, we can, for instance, use th e

time coordinate t = x 4 /c as parameter, in which case åx4 = 0

in (A . 4) and x` _
dx'

t = u` is the three-dimensional velocity .

Further, in this case one easily gets

dz 1/	

(-a =
~ V gikæik = [(VI +2x/c2-yLütlc~~-u2/c2l~

	

1/Î', (A. 6)
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where T is the Lorentz factor in this most general case, and u 2

=

	

With this expression for r, the connection between
Fi and the components

	

of the three-dimensional force is then
again given by (17) .

With this choice of 2, the variational principle A. 4) takes
the form

s
t

{ SL (x i , u`) + -a. , 8x` } d t = O,

	

(A. 7)
t ,

where
L (x`, u', t) _ - moc l/(c' - yx u x)2 - u2

	

(A. 8 )

is the Langrangian of the particle in the gravitational field .
Here, x` = x` (t) as a function of the time t is varied in such a

way that åx ` = O for t = { 1 . In the expression for the La -
1 2

grangian, c ' = el /1 + 2 x (x`, t)/c2 is the quantity introduced by
(14), but in the present case, (y, � 0), the velocity of light de -
pends on the direction of propagation and c ' is now the velocity
of light in a direction perpendicular to the space vector y,7 ) .

As in (8), the mass of the particle in the gravitational fiel d
is defined as m = rho r, but with the Lorentz factor given by
(A. 6), i . e .

III = 111oT =

	

-	 	 lll p
_

	

1 i 2
[ (V1 + 2 xlC' yp, u''/c)2

	

u2 / c2 J ~

is now a function of the four potentials (ye , x) as well as of th e
velocity u . For the canonically conjugate momentum to the co -
ordinate x`, we thus get, by (A . 8) and (A. 9) ,

d L
act

	

= InLt i + Inyc (c'- yx ux) = p t + m.yc (c'- yY u x) . (A. 10)
a x z

Thus, am L differs from the momentum p, = mu, of the particle
by a term depending on the vector potential in analogy with th e
case of a particle in an electromagnetic field .

The equations of motion following from the variational prin-
ciple (A. 7) are

(A. 9)

dact_ åL r„

dt

	

ôxL
+ c~ ` (A. 11)



Nr. 10 2 7

By (A. 9) the Lagrangian (A . 8) can also be written

L =

	

m [(c - yx iïx ) 2 - u 2] . (A. 12)

Thus, by (A . 10) and (A . 12), we get for the Hamiltonian H cor -
responding to the Lagrangian L

H =- 7t,x` - L = ni (u,u`) + in (Y, u`) [ c'

	

Yx ux ]

/

	

(A.13)

+ in [(c' - Yx ux)2 - u2 ] ,

which leads to the following expression for the energy of th e
particle in the gravitational field :

H = mc' (c' Yx u x) .

	

(A. 14)

In the special case y, = 0, Eqs . (A . 9), (A. 14) are identical with
the equations (8), (13) in Section 1 .

By using the definitions (A . 10, 13) of 7c, and H, and the
equations of motion (A . 11), we get for the time derivative of H

dH
=aigu`

+ 7,u` _åL - OL u-aL
u ` _

	

aL , (A . 18)
dt

	

at

	

ax `

	

au'

	

d t

and, by (A . 14), a, in (A. 10) may be written

7rc = pc + Hy,/c' .

	

(A. 16)

Thus, the left-hand side of (A . 11) takes the form

dit = df` + kR,,u--
a
~ I Yc~ c'+ H

d
(Yilc') .

Further, we get by a simple calculation from (A. 8) and (A . 14)

aL =-- layx,~uxuin-H ac

	

aYxx)

	

(A . 17 )
rex `

	

2 ax `

	

c' Vax` ax`

so that the equation of motion may be writte n

dep i

	

0L

	

d
dt=

	

- (axle')
Y''

lc

	

å tt Yc/
c - Hit (Y1/ c )

(A. 18)
H a c'

	

ay,t }-

	

u
c ' ,åx `

	

ax`
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By this explicit use of the conservation law (A . 15) for the
energy, we have achieved that the right-hand side of (A . 18) ,
the force acting on the particle, does not contain the acceleration ,
but only the coordinates and the velocity of the particle . This
expression for the force can be simplified by introducing the
antisymmetric spatial tensor co t ,, which is connected to the loca l
rotation of our system of reference with respect to the loca l
systems of inertia . The latter is defined by12 )

~cxlc =
Ç

a + -

	

(Yxlc')-Ç-	
+Yx

	

(Yclc' ) .

	

(A. 19)
ax

	

c at,

	

axx

	

c' at .

By a somewhat lengthy, but elementary calculation, (A. 18) can
be written in the for m

dd p` _ ac - (k ux) Yclc' + mG ~

1 -yxuxlc')2(	
ax ~Fe'

aY
'

axG

	

at )

	

1 Yc aYx~

	

~
( c -Yx u

x
) cuc,tud

+ 2 c' at
ux u .

If we put y, = 0, these equations are reduced to the simpl e
equation (16). Further, in the case of stationary weak fields ,
where time derivations and products of the potentials y, and x
can be neglected, we get for the gravitational forc e

(
_d+

	

, w ~x = aYx aY `

	

(A. 22)
ax`

	

ax` axx

In a rigid system rotating with constant angular velocity rela -
tive to a system of inertia, the equation (A . 22) for K1 gives the
usual expressions for the centrifugal and Coriolis forces which
therefore are valid for arbitrary velocities of the particle 13), the
only effect of relativity in the equations of motion being the
velocity dependence of the mass according to the formula (A . 9) .

with

-I- V1 + 2 x/c2

(A. 20)

(A . 21)
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