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I. Introduction.

Collective nuclear excitations of rotational and vibrational
character have been observed to occur systematically
throughout most of the periodic table. Such states are populated
in radioactive decay processes, and are also produced in in-
elastic scaltering reactions. In particular, the Coulomb excita-
tion process, which has been developed in recent years, has
proved a powerful tool in the study of low-lying collective excita-
tions in nuclei. '

It has been possible to interpret many of the observed features
of the collective spectra by comparing the collective modes of
motion of the nucleus with the oscillations of an irrotational
fluid® (A. Bonr, 1952; K. Forp, 1953; A. Bour and B. R. MOTTEL-
soN, 1953). In such a model, the excitation spectrum depends
essentially on the nuclear equilibrium shape; it is thus of decisive
importance that, in contrast to the case of an amorphous liquid
drop, nuclei may acquire large equilibrium deformations as a
consequence of their shell structure (RaiNwaTER, 1950).

The nuclear shape depends on the configuration of the
nucleons. In the vicinity of closed shells, the equilibrium shape
1s approximately spherical, and the expected collective spectrum
corresponds to a set of normal vibrations, of which the lowest
energy modes will be of quadrupole type.

In regions far removed from closed shells, the nuclear equi-
librium shape deviates strongly from spherical symmetry, and
the oscillation spectrum can be separated into shape oscillations
and a rotational type of motion. In such a description the rota-
tional motion is of wave-like character with the moment of inertia
depending essentially on the deformation.

* Collective nuclear excitations similar to the vibrations of a liquid drop
were first considered by N. Borr and F.KarLckar (1937).

1*
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The observed nuelear collective spectra are found to follow
such a general pattern. Thus, rotational spectra, characterized
by their numerous regularities regarding energy ratios, spin
sequences, and transition intensities, are associated with nueclei
which exhibit large quadrupole moments and have especially
been observed in the regions 150 << A < 190 and A > 225. The
moments of inertia are found to be appreciably smaller than
corresponding to rigid rotation and to increase markedly with
the deformation.*

In other regions of elements where the nuclear equilibrium
shape, especially in even-even nuclei, is more nearly spherical,
the collective excitations have been found to have many of the
characteristics of quadrupole vibrations about a spherical equi-
librium (ScHARFF-GOLDHABER and WENESER, 1955).

In the more detailed analysis of the nuclear collective spectra,
it is found that the shell structure not only determines the nuclear
equilibrium shape, but also has an important influence on other
aspects of the nuclear potential energy surface as well as on the
character of the collective flow.

Thus, the restoring force for the vibrational motion is expected
to decrease rather rapidly as one moves away from closed-shell
configurations; indeed, such an effect is observed in the trends
of the vibrational frequencies.

The structure of the collective flow manifests itself in the
mass transport associated. with this motion, which can be de-
termined from the observed excitation energies. It is found that
the rotational moments of inertia as well as the inertial para-
meters for the vibrational motion are comnsiderably larger than
corresponding to the model of irrotational flow.**

In the present paper, we consider the analysis of the moments
of inertia for rotating nuclei in terms of the motion of the nuclecons.

* For a discussion of rotational spectra and a survey of empirical data, cf.,
e. 8., Borr and MoTTELSON (1955); A. Bonr (1954). Cf. also ArLAGa, ALDER, BOHR,
and MotTeLsoN (1955) and Bowur, FréMAN, and MorTELsoN (1955) for the intens-
ity rules, and the forthcoming review article on Coulomb excitation by ALDER,
Bour, Huus, MoTTELSON, WINTHER, and ZUPANEIC.

** The detailed estimate of the moment of inertia for irrotational flow is
somewhat uncertain due to the. possible difference between the density distribu-
tion of neutrons and protons, as well as to the influence of higher multipoles in
the nuclear shape. Estimates of these effects indicate, however (cf. GUSTAFSON,

1955), that they are too small to account for the magnitude of the observed mo-
ments. : .
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The treatment follows the method discussed by IncLis (1954),
in which the kinetic energy of rotation is obtained by considering
the motion of the nucleons in the rotating self-consistent ficld.
The corresponding collective Hamiltonian for a system of
interacting nucleons is discussed in § 2, while the evaluation of
the moments of inertia is treated in § 3. For independent particle
motion in an average nuclear field, the rotational moments of
inertia are found to be approximately those corresponding to
rigid rotation. However, the correlations in the nucleonic motion
arising from residual interactions modify this result in an essential
manner, and give rise, for small deformations, to a wave-like
rotational motion. The absolute value of the moments of inertia
depends inversely on the strength of the residual interactions,
and the moments corresponding to irrotational flow are only
approached when the interactions become comparable to the
effect of the average field and so destroy the entire shell structure.
The observed moments, discussed in § 4, indicate a strength
of interaction about three times smaller than corresponding to
this strong interaction limit. Such an estimate of the interactions
appears to be consistent with that obtained from other evidence.
The residual interactions are also found to be responsible for the
transition from rotational to vibrational collective spectra in the
even-even nuclei with the approach to closed-shell regions.

II. Relation between Collective Hamiltonian and
Nucleonic Motion.

Collective nuclear excitation spectra of vibrational or rota-
tional type are expected to occur when the corresponding col-
lective mode of motion is slow compared to the intrinsic motion
of the nucleons. When this adiabatic condition is fulfilled, the
nucleus will possess, for each state of the intrinsic structure, a
spectrum of collective excitations.

The collective motion is described in terms of a set of co-
ordinates ¢ which, in the case of rotations, represent the angles
of orientation of the nucleus; for vibrations, the collective co-ordin-

ates may be chosen to represent the amplitudes of normal
oscillations.
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The Hamiltonian for the collective motion may be obtained
by considering the nucleonic motion for slowly varying «. Ex-
panding the energy of the nucleons in powers of the time deriv-

ative ¢, one obtains to a first approximation an expression of
the type

1 .
Hco]l - E((X) + :5B (CC) (12, (1)

which thus represents the collective Hamiltonian. The first term
in this expression, which is the nucleonic energy for fixed «,
gives the potential energy for the collective motion, while the
second term, involving an inertial coefficient B (&), gives the
collective kinetic energy. Both the functions £ (a) and B («) may
depend on the intrinsic state of the nucleonic motion.

The problem of obtaining the collective nuclear Hamiltonian
is similar to the adiabatic derivation of the rotation-vibration
Hamiltonian for molecules. In the molecular case, however, the
inertial parameter B is to a good approximation given by the
nuclear motion, while the electronic contribution to the mass
transport constitutes only a small correction.

The collective nuclear co-ordinates are themselves functions
of the nucleonic variables (cf. below), and the nucleonic motion
for prescribed e« is therefore a constrained motion. The con-
straints express the condition that the shape and orientation of
the nucleonic system as a whole have the prescribed values. Thus,
if the major part of the interactions can be represented by a self-
counsistent field, the constraints are approximately satisfied if one
considers the motion of the nucleons in a field of the prescribed
shape and orientation.

We may thus find the Hamiltonian (1) by treating the
nucleonic motion in the time-dependent potential V (« (#))
(IngLis, 1954, 1955). This motion is described by a Hamil-
tonian of the form

H=2>'T,4+2>V(x,, a())+U, (2)
b2l n

where a,, represents the co-ordinates of the p™ nucleon. The
first term in (2) is the nucleonic kinetic energy, the second term
represents the average potential which is here a function of ¢, while



Nr. 1 7

the last term represents residual effects of the nucleonic inter-
actions not included in the average field.

For fixed «, we denote by v; and E; the proper functions
and energies of (2) obeying

H () y; = E; (o) y;. (3)

These energy values E; give the potential energy functions in (1).

For slowly varying «, the solution to the Hamiltonian problem
(2) may be obtained by means of a time-dependent perturbation
calculation. If there is no degeneracy in the static problem, the
energy increase of the system resulting from the motion of the
field is proportional to @? to leading order, and for the inertial
parameter in (1), appropriate to the state p,, one finds (InGLIs,
19565)

a
[ <0l Tix>1
B(ax) =21 ; —_— ¢y,

— E;—E,

iz 0
In the special case of rotations of axially symmetric nuclei,
d

the mass parameter (4) gives the moment of inertia & if 3, Bener-

ates a rotation about an axis perpendicular to the nuclear symme-
try axis.
Omne thus obtains

=i <0 J,]i> ]
3:2h2§|-—~—’ > (3)
7 Ei’“Eo

where J, is the total angular momentum of the particles about
the intrinsic x-axis, which has been chosen perpendicular to the
nuclear symmetry axis z.

The solution of the time-dependent problem (2) also determ-
ines other collective properties of the system. Thus, for the gyro-
magnetic ratio of the rolational motion, one obtains

R 1 X . . \
9r =y E £_E, (<0 ppli> <i|J,] 0> + compl. conj.), (6)
t

where the magnetic moment operator is given by
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Mz = Z (9 ls + gs so)p (7)
2

in terms of the orbital and spin contributions of the individual
particles.

The simple separation between collective and intrinsic motion
corresponding to the Hamiltonian (1) is possible when the
time-dependence of the nuclear field implies only a small modi-
fication of the motion of the individual nucleons with respect to
the field. The adiabatic treatment employed above is then appro-
priate, and the dynamic effect of the motion of the field can be
represented by the collective kinetic energy in (1).

If, however, there are near-lying intrinsic states which are
strongly coupled by the motion of the field, the perturbation
treatment may break down. The nucleus must then be treated
in terms of a coupled system of collective motion and the in-
trinsic degrees of freedom involved. This situation is, for instance,
met with in the partial decoupling between the rotational motion
and the spin of the last odd nucleon in rotational spectra with
an angular momentum component of X = 1/2 along the symme-
try axis (cf. references in footnote on p. 4). Indeed, the level struc-
ture in odd-A nuclei is such that the motion of the last odd nucleon
may quite frequently be somewhat perturbed by the rotational
motion (KErmMAN, 1955; cf. also the odd-even moments of inertia
differences discussed below (p. 22)).

The simple derivation of the collective Hamiltonian con-
sidered above exhibits the main physical conditions underlying
the separation between collective and intrinsic motion. A more
detailed treatment may be obtained in terms of a canonical
transformation of the equations of motion which describe the
system of interacting nucleons. In such a way one may introduce
partly a set of collective co-ordinates «, and partly a set of co-
ordinates ¢ describing the intrinsic motion.

Various aspects of such a transformation have been considered
in a number of recent papers (A. Bour, 1954; SUssmann, 1954;
TorHOEEK, 1955; ToMoNAGa, 1955 CoeEsTER, 1955; Narar, 1955;
MarumoRrr, Yurawa, and Tanaga, 1955; ViLrars, 1955; LipxiIn,
DE Snavrr, and Tarwmi, 1955). Withoul intering into a detailed
discussion of this approach, we shall attempt, with the following
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general remarks, to indicate its relationship to the above derivation
of the collective Hamiltonian.
The transformed Hamiltonian may be written in the form

H = Hiy (q’ C}, 0‘) + Teon (a: 0‘) + Hcoupl (q’ q, @, “)’ (8)

where the first term describes the intrinsic motion for fixed «.
The second term represents the collective kinetic energy (cf.
the second term in (1)), while the last term in (8) contains
the couplings between the intrinsic and collective motion. These
couplings partly describe the effect on the nucleonic motion of
the time-dependence of the collective field, as contained in (2).
In addition, the transformation introduces a second type of coup-
ling terms associated with the fact that part of the inertial effect
implied by the first type of coupling is already contained in T,;.
The second type of coupling thus tends to sereen off the first type,
and the problem is to choose the collective co-ordinates « in such
a way that these two contributions approximately cancel; the
major part of the dynamic effects associated with the motion of
the nuclear field is then contained in Ty, and the inertial para-
meter for the collective motion is thus expected to be given by (4).

If one can in such a manner obtain a Hamiltonian in which
H.oup1 1s small, one gets approximate solutions to the wave equation
of the adiabatic form

¥ =@, (a)y; (g ), (9

where v; (¢, o) represents the intrinsic motion for fixed «, while
@, («) gives the collective motion specified by the quantum
numbers ».

An especially simple class of transformations is that which
introduces a collective motion of irrotational character.” If we
further assume incompressible flow, the collective co-ordinates
are given by (cf. Bonr and MorreLson, 1953, p. 10; A. Bongr,

1954)
= S v 0 . (10)

which represent the mass multipole moments.
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For a system such that a transformation of the type (10)
leads to separation of the motion, the collective motion can be
described in terms of an irrotational flow obeying hydrodynam-
ical equations (A. Bour, 1954). The moment of inertia is then
directly related to the density distribution; thus, for a spheroid
of constant density one obtains, for small deformations,

Sonor = 2 AM (AR)® (n

in terms of the difference 4 R between the major and minor semi-
axes. The nuclear mass number and the nucleonic mass are
denoted by A and M, respectively.

A closed-shell configuration in an anisotropic harmonic oscil-
lator field would provide a very special case in which a separation
between intrinsic and rotational motion is obtained by a transform-
ation of the type (10)*. The appropriate collective angles are
then defined in terms of the principal axes of the quadrupole
mass tensor. It has also been verified that, in this case, the expres-
sion (5) yields the irrotational moment (11) (Ineris, 1954; cf.
also p. 11 below).

For most systems, however, a transformation of the type
(10) leaves important residual coupling terms, which imply a
very intricate interweaving between the intrinsic motion and the
collective motion associated with these particular collective co-
ordinates. Still, provided the adiabatic condition is fulfilled, the
system will possess simple collective modes of excitation, since
the couplings may be incorporated in a modified collective
motion. In order to exhibit the corresponding separation of the

~Hamiltonian, a co-ordinate transformation of a more general
type than (10) is needed, and the collective flow is no longer of
irrotational character.

II1. Estimates of Rotational Moments of Inertia for the
Nuclear Shell Structure.

The expression (5) for the moment of inertia depends quite
sensitively on the character of the nucleonic motion.

* This case has also been noted by Lipxin, nE SuavitT, and Tarmi (1955),
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We first consider the limiting situation in which the intrinsic
nuclear structure may be described in terms of the independent
motion of the nucleons in the average potential. A closed expres-
sion for the sum in (5) may be obtained in the case of an aniso-
tropic harmonic oscillator potential with no spin-orbit coupling.
" For a rotation about one of the principal axes, x, one obtains

h 1 Wy — Wz)? —
ML |Gl S FRIPIY
2 Cl)y Wy C()y —5— (UZ B

2 1 (12)
(0 F o) z(nz—ny)p],

U)y~

where wy and . are the oscillator frequencies along the y- and
z-axis, while ny and n. are the corresponding oscillation quantum
numbers.

In the case of a single particle in the lowest state (nz = ny
= n; = 0), the moment (12) is just that corresponding to ir-
rotational flow of the average density distribution of the particle.
Indeed, this result is valid for the ground state in an arbitrary
potential (Wick, 1947). Again for many-particle configurations
consisting entirely of closed shells (occupation a function only
of N = nz + ny-+n;), the last term in (12) vanishes and the
moment has the irrotational value (11) with its characteristic
dependence on the square of the eccentricity (Incris, 1954).

For a closed-shell configuration, however, the nuclear equi-
librium shape is spherical and the moment of inertia vanishes.
The strongly deformed nuclei, which possess rotational spectra,
have configurations deviating essentially from closed shells. The
last term in (12) then gives important contributions implying
considerable deviation from irrotational flow in the collective
motion of the particles.*

Instead, in the limit of many nucleons, the moment of inertia
tends towards that corresponding to rigid rotation of the average
density distribution. Thus, the expression (12) approaches the
value

* Such additional terms in the moment of inertia have also been considered
by R. J. Bun-StovLE and V. F., WeisskopF (private communication), who have
treated nuclear potentials other than those of harmonic oscillator type. For such
potentials, even closed-shell configurations may give moments exceeding the
irrotational value.
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Shig = > M(yz—i—z?),J = hz‘ (ﬂ—a‘;—”g+ ng + 1/2 (13)
p

P '3 W ‘p

in the case of the ground state configuration.

This approach to the rigid moment is independent of the
potential in which the particles move, as can be seen by employ-
ing the statistical approximation. The problem is considered
most simply by going over to the rotating co-ordinate system
where the potential is independent of time, but where the Coriolis
and centrifugal forces must be added to the kinetic energy.
In the absence of rotation, the velocity distribution is isotropic
at each point, and the Coriolis forces cannot alter this situation
to first order in the rotational frequency. Therefore, to this order,
there is no net current in the rotating co-ordinate system, and
the average flow is like that of a rigid body.*

Since the first-order effects of the rotation are equivalent to
the effect of a magnetic field, the absence of an induced flow in
the rotating co-ordinate system corresponds fo the absence of
diamagnetic effects in a classical electron gas (N. Bour, 1911).

For a finite number of independent nucleons in an average
potential, there may be rather large fluctuations of the moment
of inertia (5) about the value ., Thus, if the sum (12) is
evaluated for a fixed deformation as a function of the number
of nucleons, one finds quite violent fluctuations even for 4 ~ 250
and deformations of the observed order of magnitude. However,
the fluctuations are much smaller if one considers, for each
configuration, the self-consistent deformation, obtained by mini-
mizing the total energy as a function of the deformation subject
to the constraint of constant volume. In the harmonic oscillator
case, the fluctuations then disappear, and one obtains just the
rigid moment independent of configuration.** For other potent-
ials in which the level structure is less regular, there may still
remain some fluctuations in the moment associated with the
binding of the last few particles.

* SessLEr and IFoLey (1954) have considered a problem which in certain
respects is similar to that discussed here. They find that a Thomas-Fermi treat-
ment of an atom with a net angular momentum leads to a collective flow corre-
sponding to rigid rotation.

*% The closed-shell configurations form a singular exception to this result,
since they have spherical equilibrium shape and a vanishing moment of inertia.
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Thus, if the infrinsic nuclear structure could be described in
terms of undisturbed independent particle motion, one would
expect essentially the rigid moment of inertia. However, the
inclusion of correlations in the nucleonic motion, arising from
even relatively weak interactions, has an important influence on
the collective motion and the resulting moment of inertia.*

The coupling scheme for a nuclear shell structure with the
inclusion of particle interactions depends on the competition
between the coupling effect of these interactions and the coupling
of the particles to the nuclear deformation (c¢f. Bomr and
MorreLson, 1953, § Il¢, and especially fig. 6). For small deform-
ations, where the former effect dominates, the particle angular
momenta are coupled together to a resultant J; for large de-
formations, the latter effect is dominant, and the particles are
coupled independently to the nuclear axes.

For an even-even nucleus, short-range attractive forces favour
a state of J = 0 (Maver, 1950; Epmonps and Frowers, 19592
Racan, 1952). For small deformations, for which the ground
state wave function may be expanded in powers of the deform-
ation, one thus has

p=9p =0)+8pT=0)+ -, (14

where § is the conventional deformation parameter for ellipsoidal
shapes defined by

4y /n AR AR
=}/ 0 & 1062 15
p Jl/; Ry R, (15)

in terms of the mean nuclear radius R, and the difference AR
between major and minor semi-axes. The first term in the wave
function (14) does not contribute to the moment of inertia (5)
and one therefore obtains

Xy

3 = const /2. (16)

* The possible significance of the residual interactions for the nuclear moments
of inertia has been suggested in a somewhat different context by Forp (1954)
and INcLis (1954). These authors anticipate an effect opposite to that obtained

below, since they assume the independent particle approximation to give irrota-
tional flow.
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The proportionality constant in (16) depends inversely on the
excitation energies for the admixed states in (14), and thus on
the strength of the interactions.

In the other limit of large deformations, one approaches the
independent particle situation with the resulting rigid moment of
inertia.

Some insight into the gradual transition between the two coup-
ling schemes may be obtained by considering a greatly simpli-
fied model, in which the whole effect of nucleons outside of
closed shells is represented by two interacting nucleons in p-states.
Choosing the field to be of harmonic oscillator type, the closed
shells may be treated collectively in terms of their resistance to
deformation and their irrotational contribution to the moment of
inertia, By varying the effective number of nucleons in closed
shells, one obtains a sequence of configurations with varying
equilibrium deformations, for which the moment of inertia may
be evaluated by means of (5). The strength of the interaction
between the nucleons outside closed shells may be characterized
by a parameter which measures the ratio of the interaction energy
to the configuration spacing Aw. This interaction parameter may
be taken as

D= — (17)

where U is the energy difference between the J = 0 and J = 2
states of the two nucleons.

Corresponding to the different values of v, one obtains from
this model a family of curves for § as a function of the equi-
librium deformation (c¢f. Fig. 1). These curves show the quali-
tative features discussed above, varying rapidly for small de-
formations and approaching e for g )) v. In the limit of v ~ 1,
in which the shell structure is destroyed by the interaction, one
approaches the irrotational flow.

The curves in Fig. 1 only cover values of § larger than about
0.6 v. For configurations nearer to closed shells, the model con-
sidered gives no stable equilibrium deformation, and instead
yields a collective spectrum corresponding fo vibrations about
a spherical equilibrium shape.

Such a general behaviour is expected to be characteristic of
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nuclear configurations which couple to J = 0 or 1/2 in the absence
of deformations, and thus in particular of the ground state con-
figurations of even-even nuclei. In fact, for such configurations,
the nuclear potential energy of deformation is proportional to 52
for small deformations. The absence of a linear term, which is

Ry
3r/'g
10 v-0
v=01
051

y

-

T
T &Y /
e frrol/
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Fig. 1. Momenits of Inertia for the Two-Nucleon Model.

The figure shows the dependence of the moment of inertia § on the nuclear
deformation f§ (cf. (15)), as estimated from the simplified two-nucleon model
discussed in the text. The diflerent curves correspond to different values of the
residual interactions, as specified by the interaction parameter v (cf. (17)). For
v = 0, the moment of inertia is equal to the value corresponding to rigid rotation,
Swig (ef. (18)), independent of deformation. For v ~ 1, the moment approaches the
value for irrotational flow, given by (11), and indicated by the dotted curve.

a consequence of the residual interactions, implies that, as one
moves away from closed-shell regions, the deforming tendency
of the particles in unfilled shells results at first merely in a de-
crease of the effective surface tension. Thus, nuclei possessing
equilibrium deformations are expected to occur only in regions
sufficiently far removed from closed shells, where the tendency
towards deformation may overcome the effect of the interactions.

An estimate of the relative importance of the residual interac-
tions may be obtained from the observed nuclear coupling
schemes. Thus, the very occurrence of even-even nuclei with
stable equilibrium deformations, as revealed by the existence of
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rotational spectra, indicates that, for these nuclei, the coupling
scheme is approaching that of independent particles. This con-
clusion is further supported by the analysis of the ground state
spins and intrinsic excitation spectra for the strongly deformed
nuclei (MoTTELSON and Niusson, 1955).

LEven for the largest observed deformations, there remain,
however, significant effects of the interactions as revealed espe-
cially by the systematic difference in the binding energy of even-
even and odd-A nuclei, amounting to about 1 MeV in the heavy
nuclei (cf., e. g., Mayer and JeNsEN, 1955, p. 9). A similar effect
is revealed in the conspicuously different intrinsic excitation
spectra exhibited by odd-4 and even-even nuclei. While, in the
former, the observed level spacing is a few hundred keV, corre-
sponding to the expected spacing between single-particle levels,
the first intrinsic excitation in the even-even nuclei is rarely
observed to lie below an MeV.*

These dillerences can be interpreted in terms of a pairing
effect similar to the one discussed previously (Maver, 1950) for
the coupling scheme in spherical nuclei. In deformed axially
symimelric nuclei, where the particles are filled pairwise in de-
generate orbits distinguished only by their sense of precession
about the nuclear symmetry axis, the pairing effect can be simply
accounted for in terms of the especially strong interaction
between paired nucleons associated with their similar wave
functions.

Such a pairing energy has the effect of increasing the energy
denominators in (5), except in the contribution due to unpaired
particles, and thus reducing the moment of inertia below the
value for rigid rotation. In order to obtain an estimate of this
effect, we have evaluated the sum (5), employing single-particle
wave funclions appropriate to a deformed potential with spin-
orbit coupling (NiLsson, 1955). When one includes in the energy
denominators a pairing energy estimated to be on the average
1.5 MeV for 4 ~ 150, the moment of inertia, for a deformation
of § = 0.3, isreduced by a factor of about two. From a comparison

* A striking example of this odd-even difference is provided by the comparison
between the level spectra of Wis2 and W83, recently measured by Murray, BoEHM,
Marwmrigr, and DuMonp (1955).
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with Fig. 1 the observed pairing energies are thus seen to imply
an interaction parameter v of about 0.3%,

One may employ similar methods as used in the caleulation
of § to evaluate the expression (6) for the gyromagnetic ratio
for the collective motion. Using the wave functions of NILssown
(1955), one obtains for even-even nuclei values for gr which
fluctuate rather little about the average value Z/A and are relatwely
insensitive to the strength of the pairing interaction.

IV. Discussion of Empirical Data.

The systematically occurring rotational speectra in the region
150 < A < 188 have been especially well studied. The moments
of inertia for the even-even nuclei in this region, determined
from the observed rotational level spacings, are plotted in Fig, 2
as a function of the nuclear deformation. The moments are given
in units of the value

2. e
Qg =  MARS (1 + 0.31 8+ 04482, ) (18)

associated with a rigid rotation of an ellipsoid of constant density.

The nuclear deformation is estimated from the observed
electric quadrupole moment @, of the nuclear shape which,
for an ellipsoidal nucleus, is related to g by

l/d ZRAB(1+0.168...), (19)

where Z is the nuclear charge number.

The Q-values are determined from the electric quadrupole
transition probabilities between two members of a rotational
band. The reduced transition probability for such a transition
from a state I; to a state Iy is given by

5
16 =

B(E2) = Q<L 2KO0|I; 21 K>2. (20)

* This estimate of the residual interactions also appears compatible with
the analysis of the low energy ncutron scattering data in terms of the optical
model (FesuBacH, PORTER, and WEIsskopF, 1954) which yields a mean free
path for nucleonic motion in the nuclear field a few times longer than the
nuclear radius.

Dan. Mat. T'ys. Medd. 80, no.1. 2
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TaBLE I.
Even-even nuclei 0Odd-4 nuclei
3n2| o, 3nt| g, |
Isotope S (10 —24 Ref. Isotope I, S (10 —2¢ Ref.
(Kev)| cm?) (keV)| om?)
coNd10 | 131 | 4.8 a,b, ¢
e2SmM2 | 121 | 5.6 | b,ec,d
Sim15¢ 82 7.5 b,c
eaEuls | 52 72| 7.7 | b,c
gaGA | 123 | 6.6 b, e Gas | (3/2) 62 b
Garss 89 8.4 b,c Gd1s? (3/2) 56 b
Gdss 79 | 9.3 b.
Gqree 76 1 9.8 b.c
g5 Th1%8 3/2 58 | 8.4 b,c
gl y1e0 86 | 7.1 e Dyt (5/2)} 62 b
Dylé2 82 | 7.9 b,c Dy183 | (5/2)
Dyt | 74| 9.2 | b,c
s Hos | 7/9 63| 86 | b,e
ggErife 90 | 7.3 f
Erlsfi
Eriss8 80 7.5 b,c,i FEr167 7/2 52 b
Er170
qoeTmiss | 19 76| 8.1 | b,c
20YD1 | 84| 7.1 | e g
Yb172
Yb174 78 9.2 b, c Yhi 52 68 8.8 b
Yb176
7, L1178 7/2 76 | 8.0 b,c,h
HI7 89 [ 71 | b,h,m HE™ | (7/2) | 75| 8.5 | b,e,h
Hf178 91 7.7 b, ¢, h,j Hf179 (9/2) 67 h,c,h
Hi180 93 | 7.2 b,c,d,h,j
25 Talsl 7/2 91 7.1 b,c,h,j, k
74 W1E2 100 | 6.9 c,d,h wiss 1/2 721 6.5 ¢, h
Wisd 112 6.2 c,h
Wisé 124 6.1 | ¢,h
sRe1s | 52 | 108 ¢, h, 1
Rels? 5/2 115 c, h,1
,0588 137 | 5.6 n
QOsles 155 | 5.2 d

Moments of Inertia and Quadrupole Moments for Nuclei in the Region
150 << A < 188,
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References and Text to Table I.

a) Smmons et al. (1955). h) McCLELLAND et al. (1955),

b) HevpeEnBURG and TemmEeR (1955). i) McGowan (1950).

¢) Huus et al. (1955). j) SteLson and McGowan (1955).
d) Sunyar (1955). k) Huus and Zupandié (1953).

e) McGowan (1952a). 1) Face and Wavickr (1955).

f) BrowN and BEcCkKER (1954). m) McGowax (1952b).

g) GramaMm et al. (1952). n) McGowan (1951).

The table lists the available evidence on the shape and moment
of inertia of nuclei in the region 150 < A < 188. Only those nuclei
have been included which appear to exhibit collective excitations of
rotational character. Thus, Sm'% and Gd'%2 have been omitted since
their low-lying collective excitations are of vibrational type, as are also
observed in the even-even nuclei just outside the considered region of A.

For the even-cven nuclei, column two lists the energies of the first
excited (2 4) rotational states, while the third column gives the
Q¢-values deduced from the electric gquadrupole transitions between
this (2 4) state and the (0 4) ground state, by means of (20). The data
are obtained from Coulomb excitation experiments and lifetime
measurements. The Q,-values represent a weighted average of the avail-
able determinations. For the even isotopes of Er and Yb, only a single
transition has been observed in the Coulomb excitation of the natural
element. This transition is tentatively assigned to all the abundant even
isotopes.

For the odd-A nuclei, the determination of the moment of inertia
and the quadrupole moment depends on the ground state spin I,. The
table lists I,-values determined from spectroscopic evidence (cf., e. g.,
HorLANDER, PERLMAN, and SeaBore (1953)) and, in parenthesis, the
more tentative values derived from rotational level spacings and radio-
active decay schemes.

The quantum number K appearing in the vector addition coef-
ficient represents the component of angular momentum along
the nuclear axis, and is a constant for a given rotational
band.

Estimates of Q, can also be obtained from spectroscopic
determinations of the ground state quadrupole moment Q of
odd-A nuclei, using the relation

I, 2I,—1

Q:QOIO+1§IO+3’ (21)

where I, is the ground state spin. The Q,-values obtained in this
manner are consistent with those derived from the transition
2*
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probabilities by means of (20). (Cf. Bour and MoTTELSON, 1955;
KamEer, 1955).

The dependence of the observed moments of inertia on the
nuclear deformation, illustrated in Fig. 2, is seen to correspond
to the behaviour expected for a shell structure with some residual
interaction (cf. § ITT). The full-drawn curve in Fig. 2 which follows
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Fig. 2. Dependence of Nuclear Moments of Inertia on the Nuclear Deformalion.

The empirical moments of inertia for even-even nuclei in the region 150 =
A == 188 are plotted as a function of the nuclear deformation. The moments of
inertia, obtained from the data in Table I, are given in units of the rigid moment
(18), while the deformation parameters § are obtained from the Q,-values in
Table I by means of (19). The nuclear radius has been taken to be R, = 1.2 A™#
10~13 cm. The full-drawn curve represents a theoretical estimate, based on the
two-nucleon model with an interaction parameter v = 1/3 (cf. Fig. 1). For com-
parison, the moment of inertia corresponding to irrotational flow is shown by the

dotted curve.

the main trend of the experimental points is obtained from the
simplified two-nucleon model and corresponds lo an interaction
parameter v = 0.33 (c¢f. (17) and Fig. 1). The scatter of the experi-
mental points about this curve is of the order of magnitude of
the estimated experimental uncertainties. However, some fluc-
tuations about a smooth curve are to be expected, associated
with specific differences of the individual nuclear configurations.

The strength of interaction (v ~ 0.33), revealed by the em-
pirical moments of inertia, is just of the magnitude estimated
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from the observed nuclear pairing energies (cf. pp. 16—17 above).
Such residual interactions, while of major significance for the
collective flow, are still a factor of about three smaller than those
which would destroy the basic nuclear shell structure.

The estimated value of v refers to the nuclei in the region
150 < A < 188;the observed variation with 4 of the nuclear pairing
energy suggests that v varies approximately as A—1/3,

As discussed in the previous section, one expects with the
approach to closed-shell configurations a transition from rota-
tional to vibrational collective spectra, especially in the even-
even nuclei. For the two-nucleon model (cf. p- 14 above), the
transition occurs when the deformation becomes comparable to
0.6 v. Such’ transitions are in fact observed to ocecur in the neigh-
bourhood of Sm and Os, where the deformations are aboul
p = 0.2.

Since the transition from vibrational to rotational spectra
takes place when the nuclear coupling scheme is approaching
that of independent particle motion, the transition region may be
characterized, approximately independently of », by a moment
of inertia equal to a certain fraction of Jrig- A tentative estimate
for this fraction may be obtained from the two-nucleon model,
which yields Jpm = 0.23 Jpg- This would imply that rotational
spectra should occur in even-even nuclei only when the energy
E, of the first excited (2 ) state satisfies the relation

3 h? 32 h®

Ee < 0285, ~ MARY (22)

Excitation energies appreciably smaller than this limit have
been observed only in the heavy element regions (4 > 225) and
(150 << A < 190) and in the relatively light elements around
A =24 and 4 = 8 (cf, e. g., SCHARFF-(GOLDHABER, 1953). The
systematic occurrence of rotational spectra in the former regions
is well established, and tentative evidence for a rotational spec-
trum in Mg* is provided by the observed 4 + state with an energy
about three times that of the 2 -1 state.® .

* Also in Be® there is tentative evidence for a 4+ state, whose energy is
about 3.7 times that of the 2 4 state (cf., e. 8., AJZENBERG and LAURITSEN, 1955);
for this nucleus the large deformation indicated by the collective excitations may
also be described as a tendency towards g-particle formation (cf. WHEELER, 1937).
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In other regions of elements the condition (22) is not satisfied,
and the observed collective excitation spectra in even-even nuclei
exhibit the expected vibrational character (ScHARFF-GOLDHABER
and WENESER, 1955).

Another feature of the nuclear moments of inertia, which
may be understood in terms of the residual nucleonic interactions,
is the observed difference between the moments of even-even
and neighbouring odd-A nuclei. It is found that the latter are
systematically larger than the former, by an amount varying
from a few per cent up to as much as 40 per cent, while there
appear to be no corresponding differences in the deformations
(cf. Table I).* This increase in the moments of inertia for the
odd-4 nuclei may represent the especially large confribution to
(5) of the last odd particle which, in general, possesses low-lying
states of excitation. Similar odd-even differences in the gyro-
magnetic ratio gz are thus also to be expected.

In such cases where an appreciable fraction of the rotational
angular momentum is associated with the motion of a single
nucleon, one expects significant higher-order corrections to the
adiabatic treatment, implying small deviations from the simple
rotational energy spectrum (cf. p. 8 above).

Perturbations of this type are revealed in the very accurately
determined energy spectrum of W% (Murray et al., 1955), and
have been accounted for in terms of the non-adiabatic coupling
between the two lowest intrinsic configurations (KErman, 1955).
The detailed analysis of these perturbations permits a determina-
tion of the corresponding matrix element in (5), and it is found
that the resulting conftribution to J is just of the magnitude of
- the difference between the moments of inertia for W18 and W12,

We wish to acknowledge the stimulus we have derived from
contacts with experimental physicists working in the field of
nuclear spectroscopy, many of whom have kindly communicated
to us results of their investigations prior to publication. We have

* The similarity of the quadrupole deformations in the even-even and odd-A
nuclei has also been noted by Hevypeneura and TemmeRr (1955). Evidence for
odd-even differences in the moments of inertiain the region A > 225 has been dis-
cussed by Bour, FrROMAN, and MoTreLson (1955).
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also benefited from many enlightening discussions with Professor
Niers Bongr, as well as with members of and visitors to the CERN
Theoretical Division and the Institute for Theoretical Physies.

Institute for Theorelical Physics
University of Copenhagen
and
CERN (European Organization for Nuclear Research)
Theoretical Study Division, Copenhagen.
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