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I . Introduction.

C
ollective nuclear excitations of rotational and vibrationa l

character have been observed to occur systematicall y

throughout most of the periodic table . Such states are populated

in radioactive decay processes, and are also produced in in -
elastic scattering reactions . In particular, the Coulomb excita-
tion process, which has been developed in recent years, ha s

proved a powerful tool in the study of low-lying collective excita-
tions in nuclei .

It has been possible to interpret many of the observed feature s
of the collective spectra by comparing the collective modes of
motion of the nucleus with the oscillations of an irrotationa l
fluid* (A . BOHR, 1952 ; K. FORD, 1953 ; A . Bo11x and B . R . MoTTEL-

soN, 1953) . In such a model, the excitation spectrum depends

essentially on the nuclear equilibrium shape ; it is thus of decisiv e

importance that, in contrast to the case of an amorphous liqui d
drop, nuclei may acquire large equilibrium deformations as a
consequence of their shell structure (RAINWATER, 1950) .

The nuclear shape depends on the configuration of the

nucleons . In the vicinity of closed shells, the equilibrium shape
is approximately spherical, and the expected collective spectrum

corresponds to a set of normal vibrations, of which the lowes t

energy modes will be of quadrupole type .

In regions far removed from closed shells, the nuclear equi-
librium shape deviates strongly from spherical symmetry, an d
the oscillation spectrum can be separated into shape oscillation s

and a rotational type of motion . In such a description the rota-

tional motion is of wave-like character with the moment of inerti a

depending essentially on the deformation .

* Collective nuclear excitations similar to the. vibrations of a liquid drop
were first considered by N . BOHR and F. KALCxnx (1937) .

1*
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The observed nuclear collective spectra are found to follo w
such a general pattern . Thus, rotational spectra, characterize d
by their numerous regularities regarding energy ratios, spin
sequences, and transition intensities, are associated with nuclei
which exhibit large quadrupole moments and have especially
been observed in the regions 150 < A< 190 and A> 225 . The
moments of inertia are found to be appreciably smaller than
corresponding to rigid rotation and to increase markedly with
the deformation . *

In other regions of elements where the nuclear equilibriu m
shape, especially in even-even nuclei, is more nearly spherical ,
the collective excitations have been found to have many of th e
characteristics of quadrupole vibrations about a spherical equi-

librium (SCHARFF-GOLDHABER and WENESER, 1955) .

In the more detailed analysis of the nuclear collective spectra ,

it is found that the shell structure not only determines the nuclea r
equilibrium shape, but also has an important influence on other

aspects of the nuclear potential energy surface as well as on th e

character of the collective flow .

Thus, the restoring force for the vibrational motion is expecte d

to decrease rather rapidly as one moves away from closed-shel l
configurations ; indeed, such an effect is observed in the trend s

of the vibrational frequencies .

The structure of the collective flow manifests itself in th e

mass transport associated . with this motion, which can be de-
termined from the observed excitation energies . It is found . that

the rotational moments of inertia as well as the inertial para -

meters for the vibrational motion are considerably larger tha n

corresponding to the model of irrotational flow .* *
In the present paper, we consider the analysis of the moment s

of inertia for rotating nuclei in terms of the motion of the nucleons .

* For a discussion of rotational spectra and a survey of empirical data, cf. ,
e. g., BOHR and MOTTELSON (1955) ; A . BOHR (1954) . Cf . also ALAGA, ALDER, BOHR ,
and MOTTELSON (1955) and BOHR, FROBffAN, and MOTTELSON (1955) for the intens-
ity rules, and the forthcoming review article on Coulomb excitation by ALPER ,
BOHR, Huus, MOTTELSON, WINTHER, and ZTIPANCIC .

** The detailed estimate of the moment of inertia for irrotational flow i s
somewhat uncertain due to the possible difference between the density distribu-
tion of neutrons and protons, as well as to the influence of higher multipoles i n
the nuclear shape. Estimates of these effects indicate, however (cf. GusTAFSON ,
1955), that they are too small to account for the magnitude of the observed mo-
ments .
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The treatment follows the method discussed by INGLIS (1954) ,
in which the kinetic energy of rotation is obtained by considerin g
the motion of the nucleons in the rotating self-consistent field .

The corresponding collective Hamiltonian for a system o f
interacting nucleons is discussed in § 2, while the evaluation o f
the moments of inertia is treated in § 3 . For independent particl e
motion in an average nuclear field, the rotational moments o f
inertia are found to be approximately those corresponding t o
rigid rotation . However, the correlations in the nucleonic motion
arising from residual interactions modify this result in an essential
manner, and give rise, for small deformations, to a wave-lik e
rotational motion . The absolute value of the moments of inertia
depends inversely on the strength of the residual interactions ,
and the moments corresponding to irrotational flow are only
approached when the interactions become comparable to th e
effect of the average field and so destroy the entire shell structure .

The observed moments, discussed in § 4, indicate a strength
of interaction about three times smaller than corresponding to
this strong interaction limit . Such an estimate of the interactions
appears to be consistent with that obtained from other evidence .
The residual interactions are also found to be responsible for the
transition from rotational to vibrational collective spectra in th e
even-even nuclei with the approach to closed-shell regions .

II. Relation between Collective Hamiltonian and
Nucleonic Motion .

Collective nuclear excitation spectra of vibrational or rota-

tional type are expected to occur when the corresponding col-

lective mode of motion is slow compared to the intrinsic motio n
of the nucleons . When this adiabatic condition is fulfilled, the
nucleus will possess, for each state of the intrinsic structure, a
spectrum of collective excitations .

The collective motion is described in terms of a set of co -
ordinates a which, in the case of rotations, represent the angle s
of orientation of the nucleus ; for vibrations, the collective co-ordin-
ates may be chosen to represent the amplitudes of normal
oscillations .
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The Hamiltonian for the collective motion may be obtaine d
by considering the nucleonic motion for slowly varying a . Ex-
panding the energy of the nucleons in powers of the time deriv-
ative a. , one obtains to a first approximation an expression of
the type

Heoll = E (a) + ~ B (a) a 2

which thus represents the collective Hamiltonian . The first ter m
in this expression, which is the nucleonic energy for fixed a ,

gives the potential energy for the collective motion, while the
second term, involving an inertial coefficient B (a), gives the
collective kinetic energy. Both the functions E (a) and B (a) may
depend on the intrinsic state of the nucleonic motion .

The problem of obtaining the collective nuclear Hamiltonian
is similar to the adiabatic. derivation of the rotation-vibratio n
Hamiltonian for molecules . In the molecular case, however, th e
inertial parameter B is to a good approximation given by th e
nuclear motion, while the electronic contribution to the mas s
transport constitutes only a small correction .

The collective nuclear co-ordinates are themselves function s
of the nucleonic variables (cf. below), and the nucleonic motion
for prescribed a is therefore a constrained motion . The con-
straints express the condition that the shape and orientation o f
the nucleonic system as a whole have the prescribed values. Thus ,
if the major part of the interactions can be represented by a self -
consistent field, the constraints are approximately satisfied if on e
considers the motion of the nucleons in a field of the prescribe d
shape and orientation .

We may thus find the Hamiltonian (1) by treating th e
nucleonic motion in the time-dependent potential V (a (t))

(INGLIS, 1954, 1955) . This motion is described by a Hamil-
tonian of the form

H = (xF>> a ( t))+ U,

	

(2)
n

	

n

where xp represents the co-ordinates of the pth nucleon. The
first term in (2) is the nucleonic kinetic energy, the second ter m
represents the average potential which is here a function of t, while

(1)
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the last term represents residual effects of the nucleonic inter-
actions not included in the average field .

For fixed a, we denote by vi and Ei the proper function s
and energies of (2) obeying

H (a) yi = Ei (a) yi .

	

(3)

These energy values Ei give the potential energy functions in (1) .
For slowly varying a, the solution to the Hamiltonian proble m

(2) may be obtained by means of a time-dependent perturbatio n
calculation . If there is no degeneracy in the static problem, th e
energy increase of the system resulting from the motion of the
field is proportional to å 2 to leading order, and for the inertia l

parameter in (1), appropriate to the state one finds (INGLrs ,
1955)

	 11

	

a li>I 2
B(a) = 2h2 ~

i~o E i Ea
(4)

In the special case of rotations of axially symmetric nuclei ,

the mass parameter (4) gives the moment of inertia if
~a

gener-

ates a rotation about an axis perpendicular to the nuclear symme-
try axis .

One thus obtains

<OJx li> 2
=2tz'i

	

Ei E, (5 )

where Jx is the total angular momentum of the particles about
the intrinsic x-axis, which has been chosen perpendicular to th e
nuclear symmetry axis z .

The solution of the time-dependent problem (2) also determ-
ines other collective properties of the system. Thus, for the gyro -

magnetic ratio of the rotational motion, one obtains

u x ~i> <iIJx1O>+compl . conj .), (6)< 0

where the magnetic moment operator is given by
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uz = ~ (gi lx + gs Sx) p
p

in terms of the orbital and spin contributions of the individual
particles .

The simple separation between collective and intrinsic motio n

corresponding to the Hamiltonian (1) is possible when th e

time-dependence of the nuclear field implies only a small modi-
fication of the motion of the individual nucleons with respect t o
the field . The adiabatic treatment employed above is then appro-

priate, and the dynamic effect of the motion of the field can b e
represented by the collective kinetic energy in (1) .

If, however, there are near-lying intrinsic states which ar e

strongly coupled by the motion of the field, the perturbation

treatment may break down. The nucleus must then be treate d

in terms of a coupled system of collective motion and the in-

trinsic degrees of freedom involved . This situation is, for instance ,
met with in the partial decoupling between the rotational motio n

and the spin of the last odd nucleon in rotational spectra wit h

an angular momentum component of K = 1/2 along the symme-

try axis (cf . references in footnote on p . 4) . Indeed, the level struc-

ture in odd-A nuclei is such that the motion of the last odd nucleo n
may quite frequently be somewhat perturbed by the rotationa l

motion (KERMAN, 1955 ; cf. also the odd-even moments of inerti a

differences discussed below (p . 22)) .
The simple derivation of the collective Hamiltonian con -

sidered above exhibits the main physical conditions underlying

the separation between collective and intrinsic motion. A more

detailed treatment may be obtained in terms of a canonical

transformation of the equations of motion which describe the

system of interacting nucleons . In such a way one may introduc e
partly a set of collective co-ordinates a, and partly a set of co -
ordinates q describing the intrinsic motion .

Various aspects of such a transformation have been considere d

in a number of recent papers (A . BoHR, 1954 ; SÜSSMANN, 1954 ;
TOLHOEK, 1955 ; TOMONAGA, 1955 ; COESTER, 1955 ; NATAF, 1955 ;

MARUMORI, YUKAWA, and TANAKA, 1955 ; VILLARS, 1955 ; LIPIUN ,

DE SHALIT, and TALMI, 1955) . Without intering into a detaile d

discussion of this approach, we shall attempt, with the following

( 7 )
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general remarks, to indicate its relationship to the above derivatio n
of the collective Hamiltonian .

The transformed Hamiltonian may be written in the for m

H - Hint (g , 4, a) + Tenn (a, a) + Hooupi ( 4, a, a),

	

(8 )

where the first term describes the intrinsic motion for fixed a .
The second term represents the collective kinetic energy (cf .
the second term in (1)), while the last term in (8) contains
the couplings between the intrinsic and collective motion . Thes e
couplings partly describe the effect on the nucleonic motion o f
the time-dependence of the collective field, as contained in (2) .
In addition, the transformation introduces a second type of coup -
ling terms associated with the fact that part of the inertial effec t
implied by the first type of coupling is already contained in Toll .
The second type of coupling thus tends to screen off the first type ,
and the problem is to choose the collective co-ordinates a in such
a way that these two contributions approximately cancel ; the
major part of the dynamic effects associated with the motion o f
the nuclear field is then contained in Toll, and the inertial para -
meter for the collective motion is thus expected to be given by (4) .

If one can in such a manner obtain a Hamiltonian in whic h

Hooupl is small, one gets approximate solutions to the wave equatio n
of the adiabatic form

Y-f = 0v (a) vi (q , a) ,

where vi (q, a) represents the intrinsic motion for fixed a, while
Øv (a) gives the collective motion specified by the quantu m
numbers v .

An especially simple class of transformations is that whic h
introduces a collective motion of irrotational character. ' If we
further assume incompressible flow, the collective co-ordinate s
are given by (cf. BOHR and MOTTELSON, 1953, p . 10 ; A . BoHR ,

1954)

(9)

4 ac r 2, ~"

	

.

-

	

A le (~p , ~p) ,
3A ,Ra )

aA,u = (10)

which represent the mass multipole moments .
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For a system such that a transformation of the type (10 )

leads to separation of the motion, the collective motion can b e
described in terms of an irrotational flow obeying hydrodynam-

ical equations (A . Bona, 1954) . The moment of inertia is the n

directly related to the density distribution ; thus, for a spheroi d

of constant density one obtains, for small deformations ,

irrot =
5

AM (d R) 2

in terms of the difference 4 R between the major and minor semi -

axes . The nuclear mass number and the nucleonic mass ar e

denoted by A and M, respectively .

A closed-shell configuration in an anisotropie harmonic oscil-

lator field would provide a very special case in which a separatio n

between intrinsic and rotational motion is obtained by a transform -
ation of the type (10)' . The appropriate collective angles ar e

then defined in terms of the principal axes of the quadrupol e

mass tensor . It has also been verified that, in this case, the expres -

sion (5) yields the irrotational moment (11) (INGLIS, 1954 ; cf .

also p. 11 below) .
For most systems, however, a transformation of the typ e

(10) leaves important residual coupling terms, which imply a

very intricate interweaving between the intrinsic motion and the

collective motion associated with these particular collective co -
ordinates . Still, provided the adiabatic condition is fulfilled, the

system will possess simple collective modes of excitation, since

the couplings may be incorporated in a modified collectiv e

motion. In order to exhibit the corresponding separation of th e

Hamiltonian, a co-ordinate transformation of a more genera l

type than (10) is needed, and the collective flow is no longer o f

irrotational character .

III . Estimates of Rotational Moments of Inertia for th e

Nuclear Shell Structure .

The expression (5) for the moment of inertia depends quit e

sensitively on the character of the nucleonic motion .

* This case has also been noted by LIPKIN, DE SHALIT, and TALMI (1955) .
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We first consider the limiting situation in which the intrinsic
nuclear structure may be described in terms of the independent
motion of the nucleons in the average potential . A closed expres-
sion for the sum in (5) may be obtained in the case of an aniso-

tropic harmonic oscillator potential with no spin-orbit coupling .
For a rotation about one of the principal axes, x, one obtain s

ry

	

h 1 I(wy	 w z la _
tiSx = --

	

-- l / (fly + 12 z + 1 ) P2 w y w z

	

wi P

(~y .+	
w)2

	

(Ziz- rty)r,I
y

	

-

where wy and coz are the oscillator frequencies along the y- an d
z-axis, while ny and nz are the corresponding oscillation quantu m
numbers .

In the case of a single particle in the lowest state (nx = ny
= nz = 0), the moment (12) is just that corresponding to ir -
rotational flow of the average density distribution of the particle .
Indeed, this result is valid for the ground state in an arbitrary
potential (WICK, 1947) . Again for many-particle configuration s
consisting entirely of closed shells (occupation a function only
of N = nx + ny --- nz), the last term in (12) vanishes and th e
moment has the irrotational value (11) with its characteristi c
dependence on the square of the eccentricity (INGLIS, 1954) .

For a closed-shell configuration, however, the nuclear equi-

librium shape is spherical and the moment of inertia vanishes .
The strongly deformed nuclei, which possess rotational spectra ,
have configurations deviating essentially from closed shells . The
last term in (12) then gives important contributions implying
considerable deviation from irrotational flow in the collective
motion of the particles . *

Instead, in the limit of many nucleons, the moment of inerti a

tends towards that corresponding to rigid rotation of the average
density distribution . Thus, the expression (12) approaches th e
value

* Such additional terms in the moment of inertia have also been considere d
by R. J . BLIN-STOYLE and V. F . WEISSKOPF (private communication), who have
treated nuclear potentials other than those of harmonic oscillator type . For such
potentials, even closed-shell configurations may give moments exceeding th e
irrotational value .
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M (y2 + z2)p = t2

p

n
(13

)(11v	

wu

	

+ -
wy

	

~ pp

in the case of the ground state configuration .

This approach to the rigid moment is independent of th e
potential in which the particles move, as can be seen by employ -
ing the statistical approximation . The problem is considere d
most simply by going over to the rotating co-ordinate system

where the potential is independent of time, but where the Corioli s

and centrifugal forces must be added to the kinetic energy .
In the absence of rotation, the velocity distribution is isotropi c
at each point, and the Coriolis forces cannot alter this situation
to first order in the rotational frequency. Therefore, to this order ,

there is no net current in the rotating co-ordinate system, an d
the average flow is like that of a rigid body. *

Since the first-order effects of the rotation are equivalent t o
the effect of a magnetic field, the absence of an induced flow in

the rotating co-ordinate system corresponds to the absence o f

diamagnetic effects in a classical electron gas (N . Boxx, 1911) .

For a finite number of independent nucleons in an average
potential, there may be rather large fluctuations of the moment
of inertia (5) about the value çrig . Thus, if the sum (12) i s

evaluated for a fixed deformation as a function of the number

of nucleons, one finds quite violent fluctuations even for A - 25 0
and deformations of the observed order of magnitude . However ,
the fluctuations are much smaller if one considers, for each
configuration, the self-consistent deformation, obtained by mini-

mizing the total energy as a function of the deformation subjec t
to the constraint of constant volume . In the harmonic oscillator
case, the fluctuations then disappear, and one obtains just th e

rigid moment independent of configuration .** For other potent-

ials in which the level structure is less regular, there may stil l

remain some fluctuations in the moment associated with th e
binding of the last few particles .

* SussLER and For (1954) have considered a problem which in certain
respects is similar to that discussed here. They find that a Thomas-Fermi treat-
ment of an atom with a net angular momentum leads to a collective flow corre-
sponding to rigid rotation .

** The closed-shell configurations form a singular exception to this result ,
since they have spherical equilibrium shape and a vanishing moment of inertia.
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Thus, if the intrinsic nuclear structure could be described i n
terms of undisturbed independent particle motion, one would
expect essentially the rigid moment of inertia . However, the
inclusion of correlations in the nucleonic motion, arising from
even relatively weak interactions, has an important influence o n
the collective motion and the resulting moment of inertia . *

The coupling scheme for a nuclear shell structure with th e
inclusion of particle interactions depends on the competitio n
between the coupling effect of these interactions and the couplin g
of the particles to the nuclear deformation (cf . BOHR and
MOTTELSON, 1953, § II c, and especially fig . 6). For small deform-

ations, where the former effect dominates, the particle angula r

momenta are coupled together to a resultant J ; for large de -

formations, the latter effect is dominant, and the particles ar e

coupled independently to the nuclear axes .

For an even-even nucleus, short-range attractive forces favou r
a state of J = 0 (MAYER, 1950 ; EDMONDS and FLOWERS, 1952 ;

RACAH, 1952) . For small deformations, for which the groun d

state wave function may be expanded in powers of the deform-

ation, one thus ha s

= v (J=0)+(J0)+	 (14)

where ß is the conventional deformation parameter for ellipsoida l
shapes defined by

_ (15)
4R N 1 .06

4 R
5 Ro

	

R o

in terms of the mean nuclear radius Ro and the difference 4 R
between major and minor semi-axes . The first term in the wav e
function (14) does not contribute to the moment of inertia (5)

and one therefore obtain s

Z5' = const M .

	

(16)

* The possible significance of the residual interactions for the nuclear moment s
of inertia has been suggested in a somewhat different context by FORD (1954 )
and INGLTS (1954) . These authors anticipate an effect opposite to that obtaine d
below, since they assume the independent particle approximation to give irrota-
tional flow.
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The proportionality constant in (16) depends inversely on th e
excitation energies for the admixed states in (14), and thus o n
the strength of the interactions .

In the other limit of large deformations, one approaches th e
independent particle situation with the resulting rigid moment o f
inertia .

Some insight into the gradual transition between the two coup-

ling schemes may be obtained by considering a greatly simpli-

fied model, in which the whole effect of nucleons outside o f
closed shells is represented by two interacting nucleons in p-states .

Choosing the field to be of. harmonic oscillator type, the closed

shells may be treated collectively in terms of their resistance t o
deformation and their irrotatiomil contribution to the moment o f
inertia. By varying the effective number of nucleons in close d

shells, one obtains a sequence of configurations with varyin g

equilibrium deformations, for which the moment of inertia ma y

be evaluated by means of (5) . The strength of the interaction

between the nucleons outside closed shells may be characterize d
by a parameter which measures the ratio of the interaction energ y
to the configuration spacing hiw . This interaction parameter may

be taken as

(17)

where U is the energy difference between the J = 0 and J = 2

states of the two nucleons .
Corresponding to the different values of v, one obtains fro m

this model a family of curves for a as a function of the equi-

librium deformation (cf. Fig . 1) . These curves show the quali-

tative features discussed above, varying rapidly for small de -

formations and approaching rig for ß )) v . In the limit of v 1 ,

in which the shell structure is destroyed by the interaction, on e
approaches the irrotational flow .

The curves in Fig . 1 only cover values of ß larger than abou t

0 .6 v. For configurations nearer to closed shells, the model con-

sidered gives no stable equilibrium deformation, and instea d
yields a collective spectrum corresponding to vibrations abou t

a spherical equilibrium shape .

Such a general behaviour is expected to be characteristic of



Nr . 1

	

1 5

nuclear configurations which couple to J = 0 or 1/2 in the absence

of deformations, and thus in particular of the ground state con -

figurations of even-even nuclei . In fact, for such configurations ,

the nuclear potential energy of deformation is proportional to ß 2
for small deformations . The absence of a linear term, which i s

N

~`ig
1,0

v=0

v =O, f

0,5-

ir'r'or M1

'Jrig

06 ~16

Fig . 1 . Moments of Inertia for the Two-Nucleon Model .
The figure shows the dependence of the moment of inertia on the nuclea r

deformation ß (cf. (15)), as estimated from the simplified two-nucleon model
discussed in the text . The different curves correspond to different values of th e
residual interactions, as specified by the interaction parameter v (cf . (17)). For
v = 0, the moment of inertia is equal to the value corresponding to rigid rotation ,
Brig (cf . (18)), independent of deformation . For v 1, the moment approaches th e
value for irrotational flow, given by (11), and indicated by the dotted curve .

a consequence of the residual interactions, implies that, as on e
moves away from closed-shell regions, the deforming tendenc y

of the particles in unfilled shells results at first merely in a de -

crease of the effective surface tension . Thus, nuclei possessing
equilibrium deformations are expected to occur only in region s
sufficiently far removed from closed shells, where the tendenc y

towards deformation may overcome the effect of the interactions .
An estimate of the relative importance of the residual interac -

tions may be obtained from the observed nuclear couplin g

schemes . Thus, the very occurrence of even-even nuclei wit h

stable equilibrium deformations, as revealed by the existence of

Q40.2
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rotational spectra, indicates that, for these nuclei, the couplin g
scheme is approaching that of independent particles . This con-
clusion is further supported by the analysis of the ground stat e
spins and intrinsic excitation spectra for the strongly deforme d
nuclei (MOTTELSON and NILssoN, 1955) .

Even for the largest observed deformations, there remain,
however, significant effects of the interactions as revealed espe-

cially by the systematic difference in the binding energy of even -
even and odd-A nuclei, amounting to about 1 MeV in the heavy
nuclei (cf., e . g ., MAYER and JENSEN, 1955, p . 9) . A similar effec t
is revealed in the conspicuously different intrinsic excitatio n
spectra exhibited by odd-A and even-even nuclei . While, in the
former, the observed level spacing is a few hundred keV, corre-

sponding to the expected spacing between single-particle levels ,
the first intrinsic excitation in the even-even nuclei is rarely
observed to lie below an MeV . *

These differences can be interpreted in terms of a pairin g
effect similar to the one discussed previously (MAYER, 1950) for
the coupling scheme in spherical nuclei . In deformed axiall y
symmetric nuclei, where the particles are filled pairwise in de -
generate orbits distinguished only by their sense of precessio n
about the nuclear symmetry axis, the pairing effect can be simpl y
accounted for in terms of the especially strong interactio n
between paired nucleons associated with their similar wave
functions .

Such a pairing energy has the effect of increasing the energy
denominators in (5), except in the contribution due to unpaire d
particles, and thus reducing the moment of inertia below the
value for rigid rotation . In order to obtain an estimate of thi s
effect, we have evaluated the sum (5), employing single-particle
wave functions appropriate to a deformed potential with spin -
orbit coupling (NILssoN, 1955) . When one includes in the energy
denominators a pairing energy estimated to be on the average
1 .5 MeV for A - 150, the moment of inertia, for a deformatio n
of ,8 = 0 .3, is reduced by a factor of about two . From a comparison

* A striking example of this odd-even difference is provided by the compariso n
between the level spectra of W'" and WI" recently measured by MURRAY, BOEHM ,
MAniereR, and DUMOND (1955) .
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with Fig. 1 the observed pairing energies are thus seen to imply
an interaction parameter u of about 0 .3* .

One may employ similar methods as used in the calculatio n
of to evaluate the expression (6) for the gyromagnetic rati o
for the collective motion . Using the wave functions of NILsso N

(1955), one obtains for even-even nuclei values for gR which
fluctuate rather little about the average value Z/A and are relatively
insensitive to the strength of the pairing interaction .

IV. Discussion of Empirical Data .

The systematically occurring rotational spectra in the regio n
150 < A < 188 have been especially well studied . The moment s
of inertia for the even-even nuclei in this region, determine d
from the observed rotational level spacings, are plotted in Fig ., 2
as a function of the nuclear deformation . The moments are given
in units of the valu e

2

	

9
rig = 5MAR5'(1 +0.31 ß+0 .44ß2 . . .)

	

(18)

associated with a rigid rotation of an ellipsoid of constant density .
The nuclear deformation is estimated from the observe d

electric quadrupole moment Qo of the nuclear shape which ,
for an ellipsoidal nucleus, is related to ß by

- 3=	 7.(_ 7Råß(1+0.16ß . . .J,

	

(19)
1/5 J

where Z is the nuclear charge number.
The Qo-values are determined from the electric quadrupol e

transition probabilities between two members of a rotationa l
band. The reduced transition probability for such . a transition
from a state Ii to a state If is given by

B (E2)
= 1 6

5
z

e 2 Q2 <Ii 2 K 0 I Ii 2 If K> 2 .

	

(20)

* This estimate of the residual interactions also appears compatible wit h
the analysis of the low energy neutron scattering data in terms of the optica l
model (FESHBACH, PORTER, and WEISSKOPF, 1954) which yields a mean fre e
path for nucleonic motion in the nuclear field a few times longer than th e
nuclear radius .
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TABLE I .

Even-even nuclei

	

Odd-A nucle i

3h2 Qo 3h 2 Q o
Isotope

~
(keV)

(10 - 2 4

cm2 )

Ref . Isotope lo S
(keV)

(10 -2 4

cm' )

Ref .

60 Nd15 0

6Y Sm152

13 1

121

4 . 8

5.6

a, b, c

b, c, d

Sm154 82 7 .5 b, c

63 E11 4" 5/2 72 7 .7 b, c

s4 Gd1u9 123 6 .6 b, c Gd"' (3/2) 62 b
Gdlss 89 8 .4 b, c Gd 157 (3/2) 56 b
Gd"' 79 9 .3 b . e

Gd"" 76 9 .8 b . c

s5Tb159 3/2 58 8 .4 b, c

BB Dy160 86 7 .1 e Dylsl (5 /2 )1 62 bDy1s2 82 7 .9 b, c Dy lss (5/2 )
DyIs4 74 9 .2 b, c

67 Ho1b5 7/2 63 8 .6 b, c

63
Er1s4 90 7 .3 f

Erlss

Er"' 80 7 .5 b, c, i Era" 7/2 52 b
Er17o

ss Tml6s 1/2 76 8 .1 b, c
70 Yb 17o 84 7.1 e, g

Yb 17 2

Yb 174 78 9 .2 b, e Yb 173 5/2 68 8 .8 b
Yb 17s

71I , u175 7/2 76 8 .0 b, c, h
72Hf17s 89 7 .1 b, h, m Hfl" (7/2) 75 8 .5 b, c, h

Hf"' 91 7 .7 b, c, h, j Hfl" (9/2) 67 b, c, h
Hf"' 93 7 .2 b, c, d, h, j

73Ta1s1 7/2 91 7.1 b, c, h, j, k
76W" 2 100 6 .9 c, d, h W 183 1/2 72 6 .5 c, h

W 184 112 6 .2 c, h
W13s 124 6 .1 c, h

76
Re135 5/2 108 c, h, 1

Re" , 5J2 115 c, h, 1
76 0s" "

Os"'

137

155

5 . 6

5 .2

n

d

Moments of Inertia and Quadrupole Moments for Nuclei in the Regio n
150<A c188 .
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References and Text to Table I .
a) SIMMONS et al . (1955) . h) MCCLELLAND et al . (1955) .
b) HEYDENBURG and TEMMER (1955) . i) McGowAN (1950) .
c) Huus et al . (1955) . j) STELSON and McGowAN (1955).
CD SUNYAR (1955) . k) Huus and ZUYANCIC (1953).
e) McGowAN (1952a) . 1) FAGG and WALICKI (1955) .
f) BROWN and BECKER (1954) . m) McGowAN (1952b) .
g) GRAHAM et al . (1952) . n) McGowAN (1951) .

The table lists the available evidence on the shape and moment
of inertia of nuclei in the region 150 < A < 188 . Only those nuclei
have been included which appear to exhibit collective excitations o f
rotational character . Thus, Sm' 50 and Gd'52 have been omitted sinc e
their low-lying collective excitations are of vibrational type, as are als o
observed in the even-even nuclei just outside the considered region of A .

For the even-even nuclei, column two lists the energies of the first
excited (2 +) rotational states, while the third column gives th e
Q 0-values deduced from the electric quadrupole transitions between
this (2 +) state and the (0 +) ground state, by means of (20) . The data
are obtained from Coulomb excitation experiments and lifetim e
measurements . The Q 0-values represent a weighted average of the avail-
able determinations . For the even isotopes of Er and Yb, only a single
transition has been observed in the Coulomb excitation of the natura l
element . This transition is tentatively assigned to all the abundant even
isotopes .

For the odd-A nuclei, the determination of the moment of inertia
and the quadrupole moment depends on the ground state spin I0 . The
table lists Io-values determined from spectroscopic evidence (cf ., e . g . ,
HOLLANDER, PERLMAN, and SEABORG (1953)) and, in parenthesis, th e
more tentative values derived from rotational level spacings and radio -
active decay schemes .

The quantum number K appearing in the vector addition coef-
ficient represents the component of angular momentum along
the nuclear axis, and is a constant for a given rotational
band.

Estimates of Q0 can also be obtained from spectroscopi c
determinations of the ground state quadrupole moment Q of
odd-A nuclei, using the relatio n

_

	

IO 2 I, -

1(1+ 1Q

	

Q ° 2 IO+ 3 '

where lo is the ground state spin . The Q0-values obtained in this
manner are consistent with those derived from the transition

2 *

(21)
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probabilities by means of (20) . (Cf. Born( and MOTTELSON, 1955 ;

KAMEI, 1955) .

The dependence of the observed moments of inertia on th e

nuclear deformation, illustrated in Fig . 2, is seen to correspond

to the behaviour expected for a shell structure with some residua l
interaction (cf. § III) . The full-drawn curve in Fig . 2 which follows

0.5 -

0,4 -

0,3 -

0,2 -

0,1

o

Of

	

0,2

	

0,3

	

0,4

	

05
Fig. 2. Dependence of Nuclear Moments of Inertia on the Nuclear Deformation .

The empirical moments of inertia for even-even nuclei in the region 150 <
A < 188 are plotted as a function of the nuclear deformation . The moments of
inertia, obtained from the data in Table I, are given in units of the rigid momen t
(18), while the deformation parameters ß are obtained from the Q0-values in
Table I by means of (19) . The nuclear radius has been taken to be Ro = 1 .2 A115

10-1 ' cm. The full-drawn curve represents a theoretical estimate, based on th e
two-nucleon model with an interaction parameter v = 1/3 (cf . Fig . 1) . For com-
parison, the moment of inertia corresponding to irrotational flow is shown by th e

dotted curve .

the main trend of the experimental points is obtained from th e

simplified two-nucleon model and corresponds to an interactio n
parameter v = 0 .33 (cf . (17) and Fig . 1) . The scatter of the experi-
mental points about this curve is of the order of magnitude o f

the estimated experimental uncertainties. However, some fluc-

tuations about a smooth curve are to be expected, associate d

with specific differences of the individual nuclear configurations .
The strength of interaction (v - 0 .33), revealed by the em -

pirical moments of inertia, is just of the magnitude estimated
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from the observed nuclear pairing energies (cf . pp. 16-17 above) .
Such residual interactions, while of major significance for th e
collective flow, are still a factor of about three smaller than thos e
which would destroy the basic nuclear shell structure .

The estimated value of v refers to the nuclei in the region
150 < A < 188 ; the observed variation with A of the nuclear pairin g
energy suggests that v varies approximately as A-1/3 .

As discussed in the previous section, one expects with the
approach to closed-shell configurations a transition from rota-
tional to vibrational collective spectra, especially in the even-
even nuclei . For the two-nucleon model (cf. p . 14 above), the
transition occurs when the deformation becomes comparable t o
0.6 v. Such transitions are in fact observed to occur in the neigh-
bourhood of Sm and Os, where the deformations are about
ß = 0.2 .

Since the transition from vibrational to rotational spectr a
takes place when the nuclear coupling scheme is approaching
that of independent particle motion, the transition region may b e
characterized, approximately independently of v, by a moment
of inertia equal to a certain fraction of f ri g . A tentative estimat e
for this fraction may be obtained from the two-nucleon model ,
which yields = 0.23 i5rig . This would imply that rotational
spectra should occur in even-even nuclei only when the energ y
E2 of the first excited (2 4-) state satisfies the relatio n

3h2

	

32h 2

E2
<

0.23 ,1rig ~ 1l1AR ô

Excitation energies appreciably smaller than this limit hav e
been observed only in the heavy element regions (A > 225) an d
(150 <A< 190) and in the relatively light elements aroun d
A = 24 and A = 8 (cf ., e . g ., SCHARFF-GOLDHABER, 1953) . The
systematic occurrence of rotational spectra in the former region s
is well established, and tentative evidence for a rotational spec-
trum in Mg24 is provided by the observed 4 + state with an energ y
about three times that of the 2+ state . `

* Also in Be e there is tentative evidence for a 4+ state, whose energy is
about 3 .7 times that of the 2 + state (cf ., e .g ., AJZENBERG and LAURITSEN, 1955) ;
for this nucleus the large deformation indicated by the collective excitations may
also be described as a tendency towards a-particle formation (cf . WHEELER, 1937) .

(22)
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In other regions of elements the condition (22) is not satisfied ,
and the observed collective excitation spectra in even-even nucle i
exhibit the expected vibrational character (SCHARFF-GOLDHABE R
and WENESER, 1955) .

Another feature of the nuclear moments of inertia, which

may be understood in terms of the residual nucleonic interactions ,
is the observed difference between the moments of even-eve n

and neighbouring odd-A nuclei . It is found that the latter are

systematically larger than the former, by an amount varyin g

from a few per cent up to as much as 40 per cent, while ther e

appear to be no corresponding differences in the deformation s

(cf. Table I) .* This increase in the moments of inertia for th e
odd-A nuclei may represent the especially large contribution t o
(5) of the last odd particle which, in general, possesses low-lying

states of excitation. Similar odd-even differences in the gyro-

magnetic ratio gR are thus also to be expected .

In such cases where an appreciable fraction of the rotational

angular momentum is associated with the motion of a single

nucleon, one expects significant higher-order corrections to th e

adiabatic treatment, implying small deviations from the simple

rotational energy spectrum (cf . p . 8 above) .
Perturbations of this type are revealed in the very accuratel y

determined energy spectrum of W183 (MURRAY et al ., 1955), and

have been accounted for in terms of the non-adiabatic couplin g

between the two lowest intrinsic configurations (KERMAN, 1955) .
The detailed analysis of these perturbations permits a determina-

tion of the corresponding matrix element in (5), and it is foun d

that the resulting contribution to is just of the magnitude o f

the difference between the moments of inertia for W183 and W182 .

We wish to acknowledge the stimulus we have derived fro m

contacts with experimental physicists working in the field o f
nuclear spectroscopy, many of whom have kindly communicate d

to us results of their investigations prior to publication . We have

* The similarity of the quadrupole deformations in the even-even and odd-A
nuclei has also been noted by HEYDENRURG and TEMMER (1.955) . Evidence fo r
odd-even differences in the moments of inertia in the region A > 225 has been dis -
cussed by BOHR, FROMAN, and l\,IOTTELSON (1955) .
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also benefited from many enlightening discussions with Professo r

NIELS BOHR, as well as with members of and visitors to the CERN

Theoretical Division and the Institute for Theoretical Physics .

Institute for Theoretical Physics

University of Copenhage n

and

CERN (European Organization for Nuclear Research )

Theoretical Study Division, Copenhagen..
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