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The causal . behaviour of field theories with non-localizable inter -
actions of the Kristensen-Møller type is discussed in the perturbatio n
approximation, with particular attention to interactions involving onl y
particles with time-like momentum vectors . Causal behaviour is under-
stood to imply that all observable particles of positive energy are pro-
pagated at a velocity less than the velocity of light . It is shown that
the causal behaviour of the non-local interaction theories is determined
both by the location of the singularities of the propagation function ,
and by the continuity of the various derivatives of the form function .
It is further demonstrated that, by choosing these derivatives to be
continuous in sufficiently high orders, the probability of observin g
signals propagating with a velocity greater than that of light may be
made to decrease more rapidly than any arbitrary inverse power o f
the distance between the points at which the signal is observed . The
relation of this work to other treatments of causality is discussed .

1 . Introduction .

C
onsiderable interest has recently been attached to discussion s

of field theories involving non-local interaction, that is, field

theories in which the interaction term in the Lagrangian involve s

the field variables at different points in space and time . Following

KRISTENSEN and MØLLEnlll , this interaction term may be

written as l

L int

	

- d4x' d4
x " .,74x " v+ (xi)

	

(x'x"x"') (p
(x") 1p (x "'), (1 .1 )

in which i (x 'x " .x"') is the form factor of the interaction an d

will in general be a product of a matrix operator and a functio n

i We shall use the notation F (123) for F (x~ x~, 3xf ) . The adjoint field is

denoted by v+, and may be taken as v+ _ t *y 4 , with v* the Hermitian con-
jugate to v . Further, the inner product of two four-vectors is indicated by
a•b=ambit =a . b-a°b° .
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of coordinates F (x ' x "x"' ) . Utilizing the various invariance con -

ditions which may be placed on F, we may expand it in momentum
space as

F (x'x"x,,,) - (2 gI)
-$

d41 1 d 41 3 G ( 1 1 13 )

xexpi [i (x'

	

x") +/3(x,,,x")[,

	

(1 .2)

where G is a function only of 1T, 1 32 , and (1 1 + 1 3 ) 2 .

Of especial importance to any investigation of a theory of thi s
type arc the questions, first, whether such a generalization of the

usual theory can bring about the desired convergence of integral s
representing matrix elements, and second, if it can do this, wha t
effects this generalization would have upon such properties o f

the theory as its causal behaviour . 13LocH (2) and KRISTENSEN (3)

have shown that, in order to gain convergence to all orders o f
the coupling constant, it is sufficient (and probably necessary )
to require that G (1 113 ) vanish if any of the vectors 1 1 , 1 3 or
I l + 1 3 is space-like. This is a rather serious restriction ; in fact,
it eliminates the possibility of obtaining the usual local theory a s
a limiting case. It has been felt that such a restriction may per -

haps lead to acausal behaviour for the particles described by
the theory. It is the purpose of this paper to investigate in some
detail the commensurability of such an assumption with th e
causality requirement, and to show in what sense we may sa y
that causality is preserved . A theory will be said to exhibit causal
behaviour if it predicts that all observable signals or particles
of positive energy are propagated only in a forward direction i n
space-time, and at a velocity equal to or less than the velocity
of light .

Discussions of the application of the requirement of causalit y
to the non-local interaction are not new, of course . For example ,
BLOCH (2) , and later CHRÉTIEN and PEIERLS") , have determ -
ined what properties the form function must possess in orde r
that the interaction be limited to a small region in space and time .
In substance, their result is that, if the form function in mo-
mentum space, G (1 1 1 3), is sufficiently smooth, then the interaction
involves essentially only field variables at points close to eac h
other. Smoothness here implies the continuity of the variou s
higher derivatives of G with respect to 42 , 1, and (1 1 + 1 3 ) 2 . This
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question is, however, somewhat different from that discussed b y
FIExz ( ' ) in his analysis of the causal behaviour of the loca l
theory of quantum electrodynamics . It was pointed out ther e
that, for the causality requirement to make sense, it is necessar y
to discuss only observable signals . This means that the predicted
matrix element for some measuring process as a whole must b e
examined. It was shown that, if a particle (specifically, a photon )
of positive energy is absorbed at an approximate distance r fro m
its point of creation, such absorption must take place at a tim e
at least r f c later than its time of emission . It is apparent that
this discussion does not correspond to that given by Bloch o r
Chrétien and Peierls . A simple demonstration of this discrepancy
is provided by a local theory in which the Feynrnan or causa l
Green's function 4r A 1 -2i/1 is replaced by its complex
conjugate A . This would certainly satisfy the conditions of Bloch ,
and Chrétien and Peierls, since the interaction would only involv e
the field variables at the same point . Nevertheless, such a theory
would not satisfy the Fierz condition, which we might cal l
"causality in the large", because the absorption of a particle o f
positive energy would actually occur before its emission . In the
course of our examination of the properties of the restricted non -
local interaction, we shall find the distinction between these con-
ditions appearing in a rather natural way .

Perhaps it should be mentioned that this work is rather
distinct from that of VAN KAMPEN (6) and others, who have
established rather general conditions on the S-matrix for scatterin g
in classical and first-quantized theories . Their interest is mainly
concentrated upon determining the properties for cross section s
and bound states following from conditions which are, in a
sense, weaker than those above, but which must be followe d
rigorously . This involves a somewhat different emphasis, re-
sulting from a different point of view concerning the causalit y
condition .

Essentially, it is possible to start from a given set of properties ,
including, say, some sort of causality condition, and from thes e
to deduce certain characteristics which must be possessed by
any theory containing these properties . This is the approach o f
van Kampen, mentioned above . On the other hand, it is als o
possible to begin with a definite theory or class of theories, and
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to deduce to what extent this theory possesses certain desired

properties . This is the approach which has been used by Fierz ,
and which will be adopted here . It contains one definite advantage ;
namely, if we begin with a causality condition, and use this t o

restrict the form of the theory, then we must, of course, use a

condition which can be expressed in specific terms, and whic h
must be adhered to rigorously . However, it has been pointed
out previously that such a condition in a quantum theory wil l

tend to be rather weak, primarily because of the inability t o

assign precise values of the momentum and position to a particl e
at two different times . Therefore, it seems better for our purpose s
to begin with that specific theory in which we are interested ,

and to examine its predictions for those processes which wil l
exhibit most clearly its causal or acausal nature . These pro-
cesses are just those which describe physical methods for meas-

uring the velocity of propagation of a particle . The more general

approach, while more difficult in application, might be expected
to throw considerable light on the structure of S-matrix theory,
particularly if the same sort of causality condition as that used
here could be formulated in a more definite manner . One o f

the problems involved in such a treatment would be the construc-
tion of certain types of localized states . We shall attempt to avoid
such difficult questions by the use of a more intuitive approach .

Several basic assumptions and limitations will be introduced
here in order to simplify the discussion . The most important o f
these involves the application of perturbation theory to the cal-

culation of matrix elements involved in determining the causa l
behaviour. In particular, we shall assume that, if the results o f
the lowest order perturbation calculation indicate a causal be-

haviour, such behaviour will carry over into the higher orders .
Causality will be seen to be intimately connected with the for m
of a certain product of the Green's function 4 N and form functions
F (x 'x "x "' ) . In the higher orders, the same product is merel y
repeated a number of times . If this product is of the proper
form to ensure causality for the first non-vanishing term in th e
expansion, we may expect that the higher orders will not in-
troduce difficulties. Wherever possible, we shall attempt to in-
dicate what modifications are introduced in the higher orders .
The entire structure of our analysis might not make any sense
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if the perturbation method itself is not valid, of course . Such
questions, while important, are not to be discussed here .

For convenience, only two types of particles will be con-
sidered, one possessing charge conjugate states and spin one -
half, and one Majorana neutral particle . The fields describing
the former will be denoted by 1P and y+, and cp will be used for
the field of the neutral particle . Both the neutral particle an d
the coupling will be assumed to be scalar . At times we may find
it convenient, for giving a physical picture of the processes con -
sidered, to refer to these particles as nucleons and mesons .

Finally, we shall only be concerned with the causal or acausa l
behaviour of the 95, field ; that is, we shall only require that th e
neutral particle have a velocity less than that of light . This makes
it possible to treat the y and y + fields non-relativistically if
desirable, which can simplify the discussion . It is obvious, o f

course, that a similar treatment of the causality properties o f
the y and y+ fields could be given, with essentially no modi-

fication of the procedure .

2. Limitations on the Causality Condition .

As indicated previously, it is extremely difficult to give a n
exact criterion for causal behaviour of a theory, primarily du e
to the limitations imposed on the measuring process by th e
quantum nature of the theory . We shall now examine thi s
limitation more closely . Essentially two types of measurement s
are involved in determining causal behaviour as defined pre-
viously. These are : the determination of the location of the
particle at two different points in space-time, and the measure -
ment of the sign of the energy of the particle . If the theory i s
second quantized, then of course the points of position measure -
ment are just the points at which the creation and destruction
of the particle in the given state occur .

It is rather clear that the operator measuring the position o f
a particle, the eigenfunctions of which are the so-called localized
states of the particle, does not commute with the energy operator .
This, however, is too much to expect ; all we really would nee d
for a precise formulation of the causality condition is that th e
position operator commute with the operator determining the
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sign of the particle energy. Expressed in other words, we would
require that the localized states of the system be composed onl y
of positive (or only of negative) energy components. That this
should be so seems extremely unlikely, and we therefore expec t
that the position of the particle, or its points of creation an d
destruction, may only be defined to within a certain distance .

This distance may be taken to be of the order of the Compto n
wavelength of the particle, h/mc, which is the position uncer-
tainty we would obtain using states which are described by th e
usual minimum wave packets familiar in ordinary quantum
mechanics . Furthermore, we should also expect to be able t o
determine the sign of the energy of the particle with only a certai n
probability ; this probability may be large, but not equal to one .
With these limitations, our statement of causal behaviour be -
comes as follows : to the extent to which the energy of the particl e
is known to be positive, and to the extent to which its point s
of creation and destruction may be determined, these points mus t
be separated by a time-like distance, and the point of destructio n
must occur later than that of creation . At first glance, we might
be tempted to require also that the particle energy be greate r
than mc 2, i .e ., that the particle be real, not virtual. On the other
hand, the existence of an appreciable probability for finding a
virtual particle propagating at a velocity greater than c at a
distance from its point of creation large compared to h/mc can
also be considered to be a violation of causality . It seems reason -
able, then, to include virtual particles in our discussion. This
question does not arise in the usual local theory, for there w e
know that the range of the interaction produced by the exchang e
of a virtual particle of mass m is of the order of h/mc, no larger
than the fundamental uncertainty in the position measurement .
There appears to be no reason to expect this range to be an y
shorter in a non-local theory . Conversely, we also may regard
this as a reason for not choosing our position measuremen t
more accurate than h/mc, for the existence of virtual particle s
prevents any more accurate formulation of the causality con-
dition .

With these considerations in mind, we now may give a
general description of the type of process the investigation o f
which should prove most interesting and decisive with regard
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to causality. We might expect such processes to be the simplest
ones possible which create and subsequently destroy a meson ;

that is, the interaction of two nucleons by means of the meso n

field . The process should provide some method of determining

where and when the meson is created and destroyed ; this may
be done by determining where the nucleons which emit an d
absorb the meson change state . Furthermore, the energy of th e

meson may be determined from a knowledge of the energy

change of the nucleon involved in its emission . These require-

ments mean that the nucleon states must not be described by

momentum eigenfunctions, but rather by some sort of wav e
packets, which also permit a certain localization in space an d
time. In principle, from a knowledge of the nucleon states in

the infinite past and in the infinite future, we may deduce th e

properties of the particle field which transmits the interaction

between the two nucleons. It does not matter whether we assume
such interaction occurs by the exchange of one or many mesons ;

in either case the causality condition should be satisfied .

It also should be noted that, if the initial and final states o f

the nucleons are chosen to be free particle states, i .e., some

superposition of plane waves, then an additional interactio n

with the meson or some other field must be introduced to provid e

long range (greater than hfmc) interaction between the nucleons .

This is, of course, a consequence of the conservation of energ y

and momentum, which forbids the absorption or emission b y

free nucleons of any save virtual mesons. This additional inter -

action may either be with a prescribed external field, or els e

with the meson field or some other quantized field . In the latter

case, the additional field also should be described by state s

which are represented by wave packets . In the next section, we
shall present two types of processes which can throw light o n

the causal behaviour of the theory, and show that essentiall y

the saine answer would be obtained in an analysis of either

of them .

3. Measuring Processes .

Whether or not a theory is causal can be determined from th e

predictions it makes for various special processes . In this section ,

we shall consider several representative examples of such pro-
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cesses, which are of the general type discussed previously . We
shall show that both of these "Gedanken" experiments lead t o
a condition essentially the same as that of Fierz .

In the interest of simplicity, we may begin with a case i n

which two nucleons in different potential wells interact by mean s

of the intermediate meson field, the dropping of one nucleon
from its initial state to a lower level causing the excitation o f
the system containing the other nucleon to a higher state . Since
the treatment of bound states in a field-theoretical manner woul d
introduce several complications into our discussion, we shal l
assume that the nucleons in the potential well are not describe d
by a quantized field, but merely by simple Schrödinger wave
functions . This means that we may not use a three-point for m
function, but rather consider only a non-local interaction be-

tween the meson field and a source density, represented by th e
nucleon wave functions . The corresponding problem in electro-

dynamics involves the exchange of excitation of two different
atoms by means of the radiation field . The approximation o f
treating the nucleons by Schrödinger functions is somewhat
better than the familiar semi-classical radiation theory, in tha t
the possibility of virtual-pair formation by the meson field i s
contained in our discussion . Effects corresponding to the radiative
corrections in emission and absorption are not included, however .

The use of a potential well serves to localize the emission and
absorption of the meson in space, but not in time . In order als o
to establish a time for these events, we may consider that th e
population of the nucleon states varies as a result of other un-
specified interactions with other particles . This changing po-
pulation results in a time-dependent normalization for th e
particles in each potential well :

d 3x y` (x, t) (x, t)

	

f ( t) 12,

	

(3 .1)

and might be described by introducing an additional imaginary
potential V ' = iti [In f (t)]' into the Schrödinger equation, whic h
becomes

[H° + V' (t)] y (t) = ih
81 '

H°= (h 2 f2M) p2 -I- V(x) .
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In particular, the function f (t) should be appreciably differen t
from zero only over a certain time interval .

Consider first a potential well with center at the origin . If
the potential V (x) is chosen to be spherically symmetric, the n
the solutions to (3 .2) may be written a s

~l nim = fit ( t ) u, (r) Yln 0, Ø) exp

	

i (En/t) t,

	

(3 .3 )

in which the u,, are the normalized radial parts of the energy
eigenfunctions of the unperturbed Hamiltonian H° . The Ym are
chosen to be normalized so that their square integral over al l
angles is unity .

Nov we return to our original problem of the two nucleons .
Consider two different potential wells, one with center at x, and
with particle states which have a maximum amplitude at tim e
x°, and the other with a center at y, and a maximum state am-

plitude at time y° . We denote the wave functions of the nucleon
in the first well by and those of the nucleon in the second
well by O. Then the S-matrix element for a transition in which
the nucleon in the first well goes from state nlm to n ' l 'm ' , and
nucleon 2 goes from n ' l ' m ' to nbn, will be proportional to th e
integral

I (x , y) = d4x d4y Ÿnim (y')

	

(y ')

X

	

(y' - x') yn
1

' (x')

	

(
r4 r *

l'm' (xx ) •

Here, 4r (y' - x') is some sort of Green's function describing the
propagation of the meson from the point x ' to the point y' . I t
may be assumed to contain the effects of a non-local interactio n
between the meson field and the nucleon source density . To the
lowest order in the coupling constant for the meson-nucleo n
interaction, 4T (y' - x ') becomes just a non-local modification
of the usual local Green's function ; we write it a s

4F (x) = (27)-2 Çd 4k4F (k)Ig(k 2 )1 2 expik•x,

	

(3 .5)

with g(k2) some form factor in momentum space .
Obviously, we hav e

	

nim(x ) = nin (xi

	

x) ,

	

0,1. (yr ) = m. (y'

	

y ) ,

(3.6)



12

	

Nr . 2

where ynl,n (x) is the nlrn wave function for a particle in a stat e
centered about the origin in both space and time . As usual, it
is most convenient to work in momentum space . We prefe r
spherical polar to rectangular coordinates, both for convenienc e
in handling spherical potentials and, more important, becaus e
the causality condition only involves the separation of events ,
not their relative angular orientation . Accordingly, we also in-
troduce spherical coordinates in momentum space, writing the
product of two wave functions a s

~nlm (x) 'Pn'l',ri (x) -

	

MYi (19.,9)(-i) Lfn
L, M

X dk°C (k°) exp

	

ik°x°
~

k 2 dlc .jL (kr) vR. (k) ,
t o

C (k°) _ (2 7r)- z c 5d1{exp i [k°c + (En - En, ) fh ] t) fn ( t ) fn' ( t) ,
.

v%, (k)

	

(2I~)~ r2di• J'L (kr) u ; (r) un, (r) ,n' (

	

2
°

and expanding the function ZI F' (k) as

4F (k)
Im IT ( 19'k, ~k) 4Flm (k, k°) . (3 .8)

Substituting (3 .7) and (3 .8) in (3 .4), and using (3.5), we finally
obtain

I(x-y) = 167 3

	

Crnm' ;M'Crn'm ;M"CM'M"m ;MiLYNl tÎ,

	

ILM (XII' ; L'

	

i'1 ; L"

	

L'L "l" ; L

	

L ( ~) LM (

	

.) )

ILNt (x y) = SOkmcjkjL (Icr) dk° exp
co

- ik° (x ° y °) P(k, k°) dFVn (k , k °)

with

e (k, k°) = (0)* (k °) vnn vnn,- (k)* g (Ic 2 - k ° Z ) 1 2
} (3 .10)

1 x - y I .

	

JJJ

The coefficients C appearing in (3 .7) and (3.10) are defined by

(3 .9)
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m* m'

	

mm' ; M' M'Yi Yi .
-

	

L'NI• cii, . L. YI,,

YL YL YI

	

LM GL'L"I, InL'
M

Y
i

,

and the summation in (3 .9) extends over L, L ' , L " , l " , M, M ' ,
M" , m" .

If the function f (t) ,which limits the wave function in tim e
is not chosen to decrease to zero too sharply, then e (k, k°) will
have a strong maximum at k° = (En,- E n)/tc . To see this, w e
need only recognize that C (k°) = [k° + (En - E ')/7c], where

(k°) is the Fourier integral transform of fn (t)* fn . (t) . If the
energy of the state n, En , is much greater than En., then we may
consider that a meson of positive energy - - hk°/c is created
at or about x, and destroyed near y. Therefore, the causality
condition requires that, if e (k, k°) is different from zero essentiall y
only for k° < 0 , ILM (x - y) should be different from zero only i f
y is essentially within or on the forward light cone of x . This
is just the sort of condition Fierz obtains .

Of course, the better we define the time of the meson creatio n
or destruction, the less well-defined is the energy - hk°/c . The
extent of the uncertainty in our condition may be estimated b y
choosing a particular form for f (t), for example, a Gaussia n
in time :

f(t) = exp

	

y2 t2 .

Then, 4' (k°) becomes

(k°) = ( 1 /2 y) exp - 4 y 2 [k ° + (En - En,) /kc] 2 , (3 .13)

which is also a Gaussian function . Assuming that En - En . i s
much greater than mc 2 , the meson energy is fairly well define d
as positive if y mc 2 . 'With this value of y, the uncertainty in
the time at which the meson is created, as measured by th e
width of the maximum in f (t)* f (t), is of the order of J/mc 2 .
Thus, the causality condition cannot restrict the propagation
properties of the meson to within a distance any smaller than

ct/mc 2 = k/mc . This is a rather reasonable result, since we
frequently think of the Compton wavelength as some sort o f
extension of the meson .

(3 .12)
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The uncertainty in spatial location of the points of meson

creation and destruction does not play a role in the above dis -
cussion, since this may in principle be reduced indefinitely b y

decreasing the range and increasing the depth of the potentia l
well . For example, for a squarewell potential, of range R and
depth V0, the nucleon wave function for energy E n is appreciabl e

only for r <R + V -
h 2 /2 ?l1En . For an s-state, this distance i s

much less than the meson Compton wavelength if Vo »» (m/M)mc2 .
Although the previous measuring process contains the essentia l

elements necessary to ascertain the causal or acausal behaviour ,

a major objection may be raised to it . This is that the nucleo n
was not described by a quantized field, but rather was assume d
to obey a non-relativistic Schrödinger equation. The main reason
for doing this was that we wished to consider nucleons in boun d
states, but still avoid some of the difficulties which occur in pre-

sent-day treatments of bound-state problems . Particular dif-
ficulties may be encountered in applying theories with non -
local interaction to bound states . (') On the other hand, our
principal goal is to investigate the properties of a non-loca l
interaction between two quantized fields, thus replacing one o f
the fields by an effective "source distribution", for the other
field certainly limits the scope of our discussion .

Instead of arguing, as previously, that the non-local effect s
may be described completely by an altered meson Green' s
function, we may propose a second process in which both nucleo n
and meson are treated as quantized fields . Accordingly, a scat-
tering problem involving nucleons in states of energy greater
than Mc 2 will now be considered . As remarked previously, it is
necessary to introduce an additional interaction to permit th e
emission and absorption of non-virtual mesons . We shall choos e
this additional interaction to be with the electromagnetic field ,
thus involving only the nucleons and not the neutral mesons .
The electromagnetic field will not be treated as an externa l
field, but rather as being quantized according to the usual theory .
It is necessary, however, to assume that this nucleon-photo n
interaction is local, to avoid difficulties with both the gaug e
invariance and the construction of the S-matrix .

The particular measuring experiment is illustrated sche-
matically in Fig . 1 . We consider that initially we have two
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nucleons and one photon, each described by wave packets

containing only positive frequencies. The packets of nucleon 1

and the photon appear to intersect (" collide") in a region R I in

space and time. The packet of the other nucleon, nucleon 2 ,

passes through a second region, R 2 , well separated from R I . We

NUCLEON 2

	

PHOTO N

NUCL EON>

NUCLEON Z

NUCLEON 7 PHOTON
Fig . 1 .

look for transitions to a final state in which we again have tw o
nucleons and a photon, but with nucleon 2 and the photon no w
coming from R 2 , and nucleon 1 from R 1 . The interpretation is

then that nucleon 1 has absorbed the photon, transferring this
energy to the other nucleon by the exchange of a meson, th e

energy of this meson finally appearing in the photon emitted by

nucleon 2 . If all the wave packets are chosen to be minimum

packets in either RI or R 2, and if the photons and corresponding
nucleons do not have approximately the same direction o f

motion, then the photon absorption and emission must tak e

place in and around R,_ and R 2, respectively. An analysis of the
Compton effect shows then that the nucleon must lose its ex -

citation energy by meson or photon emission within a region o f

dimensions of the order of magnitude of h/Mc . This is also

ensured if the initial and final state wave packets of nucleons
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1 and 2 are chosen so that they only overlap in regions R, and
R 2 , respectively. Then to the extent to which the regions of inter -
section, RI and R 2 , are well defined, the emission of the meso n

and its subsequent absorption occur in R, and R 2. But if the

energies of both the photons are positive, then the meson goin g
from R, to R 2 must have a positive energy, and our causalit y
condition requires that the region R 2 must lie on or within the
forward light cone of R 1 .

Now let us turn to a description of the process by our field
theory. We choose as the action I

I = J d4x L (x ) + J d4x æEM (x) + d (123) æM (123),

	

(3 .14)

where 4 is the usual free-field Lagrangian density for a syste m
of mesons, nucleons, and . the electromagnetic field, describe d
by operators g) ; y,, y+ ; AIL , respectively. The meson-nucleon
interaction density is taken as

eM (123)

	

[y+ ( 1 ) (p (2) ?p ( 3 ) - (1) (p ( 2 ) fp+ (3)] F (123), (3.15)

and the interaction of the nucleon with the electromagnetic field
is described by

LEM (x) = ie/2 [y + (x) Y,Å, A,, (x) y (x) i-p (x)

	

+ (x)1 . (3 .16)

A perturbation expansion for the S-matrix element for the
process may be found by introducing a type of interaction re -
presentation, in which only the nucleon-photon interaction i s
chosen for Hint . That is, the state vector in our interaction re -
presentation, r, is related to that vector in the Heisenberg
representation with which it coincides at to, KPH, by

[exp(t)= P -iS dt'd3x'HEM(x'), ilH,

	

(3 .17 )
t o

with P denoting the time-ordered product. We put î = c = 1 .
The S-matrix expressed in terms of operators in this repre-
sentation may be found by the method of KÄLLÉN (s) and YAN G
and FELDMAN (9) . It is then possible to write down the S-matrix
in the Heisenberg representation, remembering that the Green's
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function transforms as the product of two field operators a t
different space-time points . In the perturbation expansion, the

lowest order terms which have non-vanishing matrix element s

Fig . 2 .

between the states considered (each with two nucleons and on e

photon) will be of order e 2 or e 2g 2 in the coupling constants .
The terms of order e 2 g 2 in the matrix element are of two types ,

Fig . 3 .

depending on whether the two photons interact with different o r

with the same nucleon . Sample graphs corresponding to thes e

two types are shown in Figs . 2 and 3 . The other graphs differ

only in regard to which one or two of the particular nucleo n
line or lines the photon line is attached . An exception to thi s

Dan.Mat.Fys .Medd.29, no .2 .
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arc the disconnected graphs, which correspond to no meso n

exchange ; these give a contribution only because the initial an d
final states chosen for a particular nucleon are not orthogonal .

These contributions, which include all those from terms of order e 2,

will be essentially negligible if the change in the mean momentu m

of one or the nucleons is large compared to the spread o f

momenta in the nucleon wave packet . Similarly, terms cor -

responding to graphs of the type shown in Fig . 3 refer to pro -

cesses in which the meson involved is virtual . Contributions
from these may also be shown to be negligible unless R 1 and R .
are separated by a distance less than h/rnc . In fact, with the

restricted type of form factor in which we are particularly in-

terested, these terms are identically zero . We are thus left only

with graphs such as shown in Fig . 2 . One part of the matrix

element for the particular graph illustrated is

I = e 2g 2/8 d (1 . . . 8) F (123) F (456) yid (7) Art ( 7 ) y (7 -1)
(3 .18)

xAF(2 - 5) Pb(3 ) y e (4)(6 - 8) Ame(8)Yta ya(8) ,

in which yea and ?Pb are the initial state wave functions of nucleons
1 and 2, and ye and V d are the final state wave functions . The

other parts differ only by permutations of the initial and fina l

state wave functions . The initial and final state potentials of th e
electromagnetic field are denoted by Ate and Art . Here again

AF (x) is the Feynman Green's function for the meson field .

The essential propagation properties of the meson field ar e
rooted in AF and in the form factors .

The wave functions via, ye , and Ame refer to particles which

pass through region R 1 , whereas VI), 1Vd, and Art describe particle s

passing through R 2 . If we denote by x,_ the midpoint of the region
R1 , and by x2 the midpoint of R 2 , then we may define new trans-

lated wave functions y' by the condition s

y'a (x)

	

1Va (x + x1)

	

?VQ (x)

	

'Vb (x + x2 )

	

~Vc (x) = ye (x + xi)

	

Vd (x) ° ~Vd (x + X2)

	

(3 .19)

	

A Me (x) = Am' , (x + xl)

	

Avt (x) = Art (x + x2) .

Then, the primed wave functions should all be in the form o f

packets passing through the origin ; that is, at time t = 0 they
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should be minimum packets with center at x = 0 . The matri x
element (3 .18) may be written more simply in terms of the
Fourier transforms of the wave packets and Green's functions .
The wave functions are expanded a s

TVa (x) = (2 .7)-2 S d4k va (k) 1+2 (k) 8 (k 2 + M 2 ) exp i k • x ,

A (x) = (2 7)-2 ~ ~ dok 4'r (k) are (k)
1
+2

(k) å (k 2 ) exp i k • x ,
r-1,2.

with similar formulas holding for the other functions . Here ,
Nj (k) is a unit vector in the direction of polarization r, and, a s
a consequence of the supplementary condition on the potentials ,

k~N (k) = 0, r = 1,2,

	

(3 .21)

for transverse polarizations r = 1,2 . The functions va must
satisfy

8 (k 2 + M2 ) (y k,u + iM) va = O .

	

(3 .22 )

Using the expansions (1 .2) and (3 .20) for the form function an d
the wave functions, we obtain

I = e 2 g 2 /8 d4k M1 (k) M 2 (k) AF (k) exp i k • (x 2 - x1 ), (3 .23)

with

Mi (k) _ (2 fir)-a d4k 1 dox i Nµ Uc (k1 + xl -k) Ycc

	

+2'1	
-
	 ill)

(k i x 1) NI

and

2X v a (
k

1) a se (1) 1	 ±
e(k1) 1+e(x i ) 1+e (kl + x1 - k)

	

(3 .24)

2

	

2

-X å (ki + M2) å (x1)2 å [k 1 + x1	 k)2 + M2 ] G (k+

	

1 +

	

k,- k,- x 1) ;

M2 (k) = (2 7)-2 d4k2 d4 x 2

	

Nv vå (k2)Yv
Çk 2 ~x 2 +i1ll )

r

	

(k2 + x2)2 + M 2

X v

	

,2
k a x2)	

+ e (k2 ) -{- e (x 2 ) 1-~e (k2 - k~-- x 2 )

	

(3 .25)b(1.2 +

	

) rr(

	

2

	

2

X å (k 2 +M2)b(x2)S [(k 2 -k+x2)2 -I-11/ 2]G(k 2 + x 2 -k 2 , x 2 + k) ;

QF (k) = - 2 i (2 7r)-2 [k 2 + M2 - Ier 1 . (3 .26)
2*
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In general, the form of M1 (k) and M2 (k) will depend upon

the particular choice of the form factor in momentum space,
G (li , 13), and on the form of the wave packets selected . How-
ever, two properties of considerable importance for our purpose s

may be deduced without further specialization . The first of these

is that

M1 (k) = M 2 (k) = 0

	

for
Ice

< 0
k°<0 ,

which means that only the positive frequency components o f
4 F. (k) need enter into our analysis . Of course, (3 .27) does no t

eliminate contributions from space-like vectors k with k° < 0 ,
but such vectors may all be transformed into vectors with positive

frequency components by proper Lorentz transformations . We

shall in fact later require that the propagation Green's functio n
be such that the virtual particles described by k2 > 0 give only

short-range effects .
Consider the definition (3.24) for M1 (k) . The integrals con-

tain a factor

å(ki-~-1112)å(xi)S[(ki+xi-k)2+M2]1+e(k1)1 	 }
e(x1)1 + e(k1 I x 1-k))

2

	

2

	

2

	

J
= å (' + M2) ô (xi) ô [k 2 + 2 k 1 ' x 1 2 k . (k 1 + x 1)]

	

(3 .28)

X
1+e(k1 ) 1+ e (x1) 1+e(k1+x1-k)

	

I
2

	

2

	

2

	

J

But if a and b arc two time-like vectors, a • b is positive if a° and b °
are of opposite signs, and negative if they are of the same sign .
Hence,

k 2 +2k 1 x1 -2k••(k 1 +x1)<0 (3.29)

for all vectors k such that k2 < 0, k° < O . Thus, for these vector s
the å-function is always zero, and the integral vanishes identically .
A similar argument holds for M2 (k) . Therefore, our integratio n
in (3.23) only need go over space-like vectors k, and over time -
like vectors with k° O .

The second general property of M1 (k) and M2 (k) deals with
their smoothness when considered as functions of the vector k ;
that is, the continuity of their derivatives of a given order with
respect to k . It may be shown that, if G (l i , 1 3) and the various

(3.27)
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functions v (k), a r (x) are sufficiently smooth, and n is any
finite positive integer, then the derivatives of Mi (k) and M2 (k)
with respect to k and of nth order are continuous everywhere ,
except possibly at k 2 = 0 . This is not a completely trivial pro-
perty, for the presence of the product of the various 6-function s
might be thought to introduce discontinuities in some highe r
order. For example, the integra l

i
I (a) _ dx

si
dg å (x + g - a)

	

(3 .30)
0

	

o

does not possess a continuous first derivative I' (a) everywhere .
In our case, the integral M~ (k) is actually an integral over a
five-dimensional surface embedded in the eight-dimensiona l
space spanned by kig , %it, . This surface is formed by the inter-
section of the surfaces

k2i + M2 = 0, xi = 0 ,

(kl +xl - k) 2 +M2 = 0 ,

and depends upon k as a parameter. The desired smoothnes s
results from the fact that the vectors kit, and depend upon

the five independent variables of the surface and on the para -
meter k in a continuous manner, a condition which is not met
for (3 .30). For the proof, it is necessary, among other points ,
to show that the equations (3.31) have a solution for all value s
of k 2 > 0 and of k 2 < 0, k°> 0 . This means that mesons of all
momenta are to be involved in the matrix element (3 .23) .

With these properties in mind, and with reference to th e
matrix element (3.23), we see that our causality condition take s
a particularly simple form . It is : if e (k) M,_ (k) M2 (k) vanishe s
for k 2 < 0, k° < 0, and possesses only discontinuities in its deriv-
atives corresponding to those of the form factors entering into
its definition, then the integra l

I = e 2 g 2 /8 dok e (k) 4F (k) exp i k • (x2 - xi )

must be essentially different from zero only if x 2 is on or withi n
the forward light cone of x 1 . The relation of this condition to



22

	

Nr . 2

that obtained from our previous measuring process, expresse d
in (3 .9), is now apparent.

We are fairly sure of the validity of the use of a perturbatio n

expansion to describe the interaction of the nucleon with th e

electromagnetic field, but it is a much more doubtful techniqu e
for treating the meson-nucleon interaction . It would certainly b e

desirable to know the effect of terms of higher order in g z o n
the matrix element, in the very least . Some of these terms will
refer to processes such as the creation and annihilation of virtua l
nucleon-anti-nucleon pairs by the meson field . Neglecting th e

possibility of an interaction of these nucleons with the electro-
magnetic field, these pairs may presumably be removed by som e
sort of renormalization . In any case, their only effect will be t o

modify somewhat the propagation function 4 F (k) appearing in
(3 .23) . Since it introduces no more difficulty, we shall henceforth
anticipate this modification, and replace 4F (k) by some effective
Green's function 4F' (k) . Other terms will refer to nucleon self -
energy effects and may involve the electromagnetic field in a
rather complicated manner . Nevertheless, it is easy to see that
such effects do not in essence change the argument . However,

one type of term which is definitely not included in our con -

siderations is the meson analogue of the radiative corrections t o
scattering. These essentially replace the meson-nucleon vertice s
in Figs. 2 and 3 by some complicated vertex parts . We shall not

discuss the effects of such processes here, save to remark tha t

in a certain sense, for our purposes, they may be equivalen t
to modifying the form factor F (123) somewhat . Whether or no t
they affect the causality properties depends to a certain exten t
upon the conditions which we obtain for F (123) .

4. Asymptotic Expansion of the Integral .

We have seen that our causality condition requires a knowledg e
of the behaviour of the integral

I (x) = dok (k) 4 F (k) exp i k . x

	

(4 .1 )

for I x I »» 1/In . In this section, we shall determine the propertie s
of this integral in terms of the properties of 4 F (k) and the func-
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tion (k) . It should be noted first that the singularities of th e
integrand can be of two major types . First, the function 4F (k)

may introduce either poles or distributed singularities cul-
minating in branch points . Thus the zeroth order term in a
perturbation expansion of 4F, which is just Feynman's 4 F , has
simple poles at k° = f I/ k 2 + m 2 i e, c > 0 . Furthermore, th e
function o (k) may have discontinuities in either itself, or in it s
derivatives . We introduce here the requirement that G (l i , 1 3 )
may possess such discontinuities only along the surfaces ll = 0 ,

= 0, or (11 + 13 ) 2 = O . Then the discontinuities of O (k) wil l
be limited to the surface k 2 = O .

It is possible to separate these two types of singularities int o
different terms. For example, the function Q (k) (k 2 + m 2 ic)- 1

may be written a s

(k , k°)

	

[

	

(k , k°)

	

Q (k , k00°)

	

(k , k+)

	

1 1

} (4 .2 )
	 (k , IL)	 +	 Q(k,k°)

+

	

~
(k°- k°)(k+

- Iç00 ) (k°- k+) (IL -k+)

	

J

where
= ~ V/k2+m2+ ie .

	

(4 .3)

Then the term in brackets in (4 .2) no longer possesses the pole s
at k° = k+ or k° , while the second and third terms do not hav e
the discontinuities of P (k) . Distributed singularities may b e
handled in the same manner, save that now the coefficients of
the subtracted terms should be otherwise analytic function s
which coincide with (k) 4F (k) along the branch cut . After thi s
is performed, the function O (k) 4F (k) may be written as the
sum of two functions, f (k) and g (k), in which f (k) has no
singular points other than the discontinuities of O (k), and g (k)
has only poles and branch points corresponding to those o f
4F (k) . Furthermore, g (k) can have no singularities in the
region k 2 < 0, k° < 0, for here (k) 0, and the coefficients o f
the subtracted terms must be zero . We now may consider
the Fourier transforms of the two functions f(k) and g (k) sepa-
rately .
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Consider first the integra l

I1 (x) = (2 7)-2 dok f (k) exp i k • x .

	

(4 .4 )

It is convenient to expand h (x) in spherical harmonics, obtaining

11 (x) = i/(2 n3) > i'YÎ ('19', 99 ) IZm (r , x°),

	

(4 .5)
lin

where

	

S 0 dk Iim (r, x°) =

	

k l -1- j1 (kr) dk° fim (k, k°) exp - ik°x° ,
ø

f (k) =

	

Yi ( 9'k, 99 k) fim (k, k°) kl-1 •

Im

An asymptotic expansion for I;n (r, x°) may be obtained by a
method which is a slight generalization of that given by WILLis (10 )
If fim (k, k°) is square integrable, then we may writ e

I11,, : (r , x°) = L L Sdkk1+1 j,(kr)expa lk
cc 1 ->-0ce,±0 0

X rdk° fim (k, k°) exp [- ik°x°- a 2 I el] .~
We know that, save on the surface k 2 = k02 , f (k, k°) possesses
continuous derivatives of order N + 1, for any finite N. Then
we have

(R)
vfF -vv

(0 , 0) kr` -v k"' + I~N, k2 >
kot .

1 ' ~~ (n)
f-- +

v v (0,0) kn_ y

k" +

	

+, k 2 ( k,°2 .
. v_0

	

k°>0 .

n 71) fn_vv (0 ,0)kn- o k.ov+ßN . k2lk02 ;
0

1

	

k°<0 ;

(4.6)

(4.8)

where

f+-v v (0,0) - L

	

L
I03ic° 2 +k+0

an
y

ay
ae-v~kovf (Ic , k°) ,

fn
+v v (0,0) = L

	

L

	

an-v	 avf(j~ ,

	

l
k2 37c"- k* O + akn-v akOv k°) ,

_

	

n-v vf
n vv (0,0)

k2+k02-k°LO -akn-vak0vf (k, k°)•

4.9)
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The use of the subscript plus and minus signs is in cognizanc e
of the fact that the derivatives of the function f (k, k°) may be
discontinuous across the surface k2 k 02 . The remainders in
(4 .8) may be written as

N
RN

-
1

57
IN) fN -v Ok , ßk°) kN-v k° v 0< ß< 1 . (4.10 )N! .,--I vv o

If we introduce

a LO

	

,k

	

1
(a 1a2) =

o k

lc~ + i
Jz (kl') exp - alk

.
dkc° exp [- ik°x° a l k° I ] ,

+ (a ia2) = S dkkl+hjl(kr) expce ikdkoexp [-ik°x°	 a2 k°] ,
o

	

k

k
(a ia 2 ) = Sdkki +1 ji (kr)exp-a lkdk°exp[-ik °x°+a 2 k °] ;

0

an-v av
and denote

a aln_v
^a2v p (aia2 ) by cpn-vv (a

la 2) ,

we have

-o

	

(4 .12)

+ fn+vv(0,0pn+vv(ala2)+
fn vv (0 ,0

)T
n -vv (a la2)] + RN •

The remainder here is given by

C+
N-vv (ala2 ) + C-+ rPN + vv (a la2) + C-- ti ._ vv (a1 a 2)] ; (4.13)

the coefficients C maybe shown to be finite if fN-v v is of bounde d
variation . We shall henceforth make this assumption . All that
remains in order to obtain an asymptotic expansion for Iin (r, x°)
is to evaluate the coefficients g n-vv (ala2) . In general, this ca n
be done only in terms of an infinite series in either r/x° or x°fr ,
according as r is less than or greater than x°1 . We find, for
r >x° l

lm (r , x°)
(

N-1

	

n n

a , =
I,
±0 a

I.

	

~(n-!)

	

(n: [f','
-vv (0 0) 9

2 1.-" (a la2 ),Ÿo
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9:9 n-
+

v v

	

= 21+1 ( 1)n+1 r-n-1-3 + .Sn v ,

mn =vv

	

= 21+1
(+

i)n+1 ()v r-n-1-3 + Snv ,

eF
vv

(ala2) =

	

921-;vv (ala 2) - ~
Ix v

(a la2) ,

G_>
(n + l )

_

	

(1 ~)!(20)!

	

(x°'I)z6-n 1
(2a -n+v)a!(2a--n -1) t

in which only terms of order

	

04) have been retained . If Iin
is rewritten as

	

N-

	

n72

1
I

	

a1 ~0 (z,->-o(17 !

	

{
99n-vv

(a la 2) [ff +vv (0 , o )

	

no

	

v= o

-- f+-vv (0,0)] +gin -vv
(alas)

	

(0 ,0) - f+-v
(0,0)1) + 11N ,

we see that It,, (r, x°) decreases in a space-like direction mor e
rapidly than r'1 -1-3 if fn-vv(k,k°) is continuous across the surfac e
k 2 = k 02 . The coefficient of the term of order r' in an asymptoti c
expansion is thus of the order of magnitude of the discontinuit y
in the n-4th derivative of e (k) . This agrees with a simple cal-

culation of the effect of a discontinuous form factor upon th e
propagation of signals .

Similarly, if I x° r, we have

	

9)1+v v

	

= 2' + (_) 1 (+
on

-1- 1 x0-n-1-3
(r/x°) 1 s,,, ,

	

n _vv

	

= 21-1-1 (-)1-v (-i) +1 x0-n-1-3 (r/x0) 1 S
n,, ,

e+-"v (a la 2 = 9,1+Y
v (alas) _ Øri-v v

(a1ä 2) ,

(1+a)!(2a+21+n+1)!
r x° 2 a

2a+21+n-v+2)(a)!(2a+21+1)!
(1.40)2

1

	

)

In this case, IL, (r, x°) decreases in a time-like direction More
rapidly than x°-n-1-3 if fn-vv (k, k°) is continuous across the
light cone.

The case of r = I x° I , that is, on the light cone itself, require s
special. attention. For r _ I el, neither the infinite series in
(4 .14), nor that in (4.16), converges, and hence our method fo r
obtaining the asymptotic expansion breaks down . We might argue
on physical grounds that the indeterminacy of the behaviour

4 .14)

Snv =

4.15 ;
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on the exact surface r = x°, which is of zero measure, should
introduce no difficulty. A more careful analysis, however, re -

quires that we examine the behaviour of the integral of I (r, x°)
taken over some small volume element spanning the light cone ,
in the limit in which this element is located far from the origin .
If this is done, we see immediately that at worst the decreas e
with distance from the origin goes only as rn-2, for function s
with discontinuities in the nth derivative. Thus no real problem
is presented by this singular case.

The continuity of the derivatives of e (k), and hence of
f (k, k°), may be related to the continuity of the derivatives of
G (l i , 1 3 ) with respect to (13 + 13 ) 2 = k 2 . We are particularly

interested in the case where G (l,, 13 ) vanishes for (l,, + 1 3 ) 2
greater than zero . For this type of form factor, e (k) will have
derivatives of order 2 n continuous across the surface k 2 = 0 ,
if G (1,, 1 3) has derivatives with respect to (1, + 1 3)2 of order n

which are continuous across (1, + 1 3 ) 2 = O . The factor two
arises from the fact that e (k) contains the product of two form

factors. The discontinuities in the derivatives of the other factor s

in M, (k) and M 2 (k) will play no part if the first n derivatives

of G (1,, 1 3 ) with respect to (l, + 1 3)2 are zero at (1, + 1 3 ) 2 = 0 ,
as they must be if G is to vanish identically for 1, + 1 3 space-like .

Thus far we have been concerned only with the integral P .
The discussion of the Fourier transform of g (k) ,

12 (x) = (2 n)-2 d4k• g (k) exp i k x,

	

(4.17 )

is fortunately very simple . We have already remarked that g (k)

contains only singularities in the regions k 2 < 0, k° > 0, and
k 2 O . If these singularities all lie in the lower half of the comple x

k° plane, then 1 2 (x) vanishes for x° < 0 . Similarly, if they lie

in the upper half plane, then 12 (x) vanishes for .x° j O . This
follows directly from an evaluation of 1 2 as a contour integral

in the complex k° plane, a procedure justified by the meromorphic

nature of g (k) . Thus, in order that 1 2 (x2 - x,) give contributions
only for x 2 within or on the forward light cone of x,_, it is necessary

that g (k) should have poles only at points k° = K°, where

lm K° < 0 if Re K° > O . If we had arranged conditions so that the

meson absorption occurred at x, and its emission at x 2, then
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the requirement would have been lm K° > 0 if Re K° < 0 . How-
ever, since the sign of k° may be changed by a Lorentz trans-
formation only if l e i < I k j , then our requirements also become
sufficient if we demand further that no singularities exist wit h
Re K° < k 1 . Since poles a finite distance from the real axis giv e
rise to terms which are damped exponentially, the above re -
striction should only involve those poles near this axis .

The results of the analysis presented in this section may b e
summarized as follows . Suppose that the singularities of th e
propagation function 4F (k) lie in the second and fourth quadrant s
of the complex k° plane, and at least a distance k from the
imaginary axis, and that the function (k) has continuou s
derivatives of the first n orders . Then the integral I (x 2 -x 1) i s
composed of two terms, one of which is different from zero onl y
for (x 2 - .x 1 ) 2 < 0, x9 - æ> 0, and the other of which decrease s
in any space-like direction or time-like direction more rapidly
than the inverse n + 4 power of x 1 - x 2 I or xi - x2, respectively .
Furthermore, the decrease of this second term along the surface
x°I = r is sufficiently rapid so that its integral with respect t o

x 2 over some small region centered at < x 2 > decreases a s
J x l --<x2 > It -I- 3

5. Discussion .

The results of the previous section point out rather clearl y
the distinction between the work of Fierz, and that of Bloch an d
of Chrétien and Peierls . The basis of the argument of Fierz i s
that, save for a part which damps out rather rapidly, the positiv e
frequency part of the Feynman Green's function 4 F propagates
only into the forward light cone . The part which damps out is
unobservable due to the complementarity existing between tim e
and energy . This result is essentially dependent upon the location
of the poles of the propagation function in the complex k° plane .
By the analysis given here, we find that our integral 1 2 , which
is obtained from a process selecting only positive frequenc y
components of the propagation function, also represents a signa l
propagating only into the forward light cone . The differenc e
between the analysis of Fierz and ours is that the unobservabl e
damped-out term he obtains is, in our case, included in th e
integral P .
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The analyses of Bloch and Chrétien and Peierls, on the
other hand, are mainly concerned with the effect of discontinuitie s
in the form factor . We have found it convenient to include such

discontinuities in the integral P. It might be suspected, then, that
their analyses are in some way comparable to that which w e
gave for P. This is true in a formal sense if we generalize th e
interpretation given to the "source function" introduced b y
Chrétien and Peierls . The physical interpretation given to thei r

integral containing the form function is considerably different

from that which we have attached to ours, however. A type of

connection between the two may be established, nonetheless .

For this purpose we define a four-point "form factor", F (1346), b y

F(1346 = S d (25) F(123) A' (2 - 5) F (456),

	

(5 .1)

in which 4F (2 - 5) is just that part of the propagation functio n

remaining after subtracting off the singularities, in the manner

of the last section . Then we may say that our demonstration

that Il (x2 - x 1 ) decreases rapidly with increasing distanc e

j x 2 - xl I or x°,	 x° is somewhat equivalent to showing that

F (1346) decreases rapidly as the distance from the points 1 an d

3 to the points 4 and 6 increases . More exactly, and followin g

the notation of Chrétien and Peierls, we show that, for function s

99 (46) which are appreciably different from zero only whe n

4 and 6 are near the origin, cp (13) decreases as a certain inverse

power of the distance of 1 and 3 from the origin, where cp (13)

is defined by

cp (13) = d (46) F(1346) (p (46) .

	

(5 .2 )

We found that the power of decrease of (13) depended upo n

the degree of smoothness of the Fourier transform of F (1346) .

Written in this manner, the similarity between our investigation
of h and the investigation by Chrétien and Peierls of the functio n

" (13) = d (2) F (123) m (2)

	

(5 .3)

is rather obvious . The different methods used for obtaining con-

ditions on the asymptotic expansions is purely a matter of pre-
ference. In view of this similarity, it is not surprising that sub-
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Nr. 2

stantially the same condition is obtained here as was obtained

by Chrétien and Peierls .
It seems fairly clear that, for a field theory with non-loca l

interaction, two rather different types of conditions are obtained ,
both of which must be satisfied for causal behaviour . The firs t

relates to the location of singularities, demanding that they occu r

only in the second and fourth quadrants in the k° plane, and at

least a distance Ile I from the imaginary axis . This type of con-

dition must also be satisfied for a local theory . In practice it

restricts the particular choice of a Green's function .

The presence of a non-local interaction, however, introduces
an additional amount of freedom into the theory, by means o f

the form function G (11 , 1 3 ), which is not completely determined .

This in turn creates the possibility for introducing discontinuou s
factors into the integrands of the integrals giving matrix elements .

for certain processes . These discontinuities will in general giv e

rise to a type of acausal behaviour, unless the function G (l i , 13 ), .

considered as a function of the variables 11, 13, (I i -I- 1 3 ) 2 , is
sufficiently smooth. The probability for observing signals trans-

mitted with velocities greater than that of light decreases essentiall y

more rapidly than an inverse 4 + 6 power of the spatial distanc e
between the points of observation, if the G function has continuou s
deriviatives of the nth order .

The particular problem which we encounter in practice i s

that we -wish, for reasons of convergence, to use form factors
which vanish if either li, 13 or (I, + 1 3 ) 2 is greater than zero .

Certainly then G may not be an analytic function of these variables .

On the other hand, we may construct a G fulfilling these con-
ditions, and yet possessing continuous derivatives of any pre -
assigned finite order . Thus we may require the "acausal signals "

to decrease more rapidly than as any pre-assigned finite invers e
power . This is the extent to which causality may be preserved .

in our theory with non-local interaction .

The author is deeply indebted to Professor C . MOLLER, mag .
scient . P . KRISTENSEN, and Dr. R . HAAG for many helpful discus-
sions and suggestions on this problem . He wishes to express hi s
gratitude to Professor NIELS BOHR for extending the hospitality o f
his institute during the time this work was performed .
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