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In the present papers , the general conditions which a relativistic quantum
theory of interacting particles must satisfy are investigated and brought int o
mathematical form . Some difficulties connected with the infinite number of de-
grees of freedom are p 'inted out . Especially the fact that the canonical com-
mutation relations no longer have unique solutions must be taken into accoun t
in all discussions of field theory . It is shown that the "free field vacuum" of
the Tamm-Dancoff method and Dyson's matrix U (t i , t2) for finite t i or t2 can -
not exist . The possibility of a conventional field theory in which the fields com-
mute for equal times is investigated.

Introduction.

I n the past few years, considerable effort has been devoted t o
the question whether a field theory of conventional type plu s

renormalization may be regarded as a well defined mathematica l
scheme which is only formulated in a somewhat awkward way .
An affirmative answer to this question would mean that it i s
possible-at least in a certain idealization-to separate the pro -
blem of the interaction of elementary particles from that of thei r
existence and constitution . Of course it is quite clear that such
a separation cannot ultimately be satisfactory 2 . From a certain

point of view, it might even be correct to say that it is just thi s

The major part of this work has been done during the author's stay at th e
Institute for Theoretical Physics in Copenhagen as a member of the GER N
Theoretical Study Group .

2 To mention only one of the many arguments which have been put forward
in this connection : the presence of electromagnetic interaction is always accom-
panied by a mass contribution of the order of magnitude of the electron mas s
(mass difference proton-neutron, charged and neutral meson) . This seems t o
suggest that, in a more satisfactory formulation of electrodynamics, one shoul d
not have the "mechanical mass" of the electron as the basic constant, but some -
'thing independent of the particle type, say a cut-off length l_ Ordinary electro-
dynamics corresponds to the idealization 1 = 0, in which case the mass become s
infinite.
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undue separation which causes the divergence difficulties i n

field theory . On the other hand, we must keep in mind that ,

in essence, quantum field theory is (or rather should be) nothin g

but an extension of quantum mechanics to a system with in -

finitely many degrees of freedom in such a way that, instea d

of invariance under Galilei transformations, we have Lorent z

invariance . Now it is evident' that there is no contradictio n

between the general framework of quantum physics, the rela-

tivity principle, and the fact that we want to deal with a syste m

of arbitrarily many particles. Therefore a mathematically con-

sistent formulation of such a theory should certainly be possibl e

without introducing essentially new physical ideas to explai n

the constitution of elementary particles . This statement con-

trasts strangely with the fact that it is extremely easy to writ e

down any number of formalisms which may be regarded as th e

quantum mechanics of some hypothetical system, whereas u p

to now not a single model of a field theory has been given which

meets all consistency requirements . The aim of the present paper

is to work out some criteria of consistency to which the for-

malism must be subjected, to point out a few of the mathe-

matical difficulties connected with the infinite number o f

degrees of freedom, and to apply the results to a discussion o f

some of the basic assumptions and calculating methods of a

field theory of conventional type . In this way we come bac k

to the question mentioned in the beginning .

In Chapter I, the general assumptions are formulated and

combined in a form suitable for later application . They include

the principles of quantum physics, relativistic invariance, an d

the "particle postulates ", i . e . those requirements which ensure

that the theory can be interpreted as describing the interaction

processes of particles . Chapter II deals with some mathematica l

questions. A few simple consequences, which may be draw n

without recourse to perturbation calculations, are given in th e

first paragraphs of Chapter III . It is shown that general fiel d

theories exist, i . e . theories in which the commutation relation s

of the field operators for equal times are not fixed a priori, and

that they are just as wide in scope as are S-matrix theories . For

the case of conventional theories in which the field operator s
s This will also be discussed in Chapter I.

are required to commute for equal times, a very simple argument
shows that the so-called "free field vacuum" does not exist .
This implies that in the (old) Tamm-Dancoff method, in whic h
this concept plays an important role, additional difficulties ar e
introduced, and also that Dyson's matrix U (t i , t 2) cannot exist
if one or both of the times t 1 , t 2 are finite .The question as t o
whether a conventional theory is possible at all is investigate d
in the last paragraph by a perturbation calculation . It appears
that the requirement of commutability for equal times leave s
only a few types of models, and also that the appearance of
highly singular functions, which need careful definition and
handling, is an inevitable consequence at least in perturbatio n
calculations .

In order. to eliminate all difficulties or complications which
are not essential to the main question, the discussion has been
limited, in Chapter III, to the simplest conceivable physica l
situation, the case in which only one type of particle exists . It
is supposed to have spin zero and mass ni .

I . General assumptions and immediate consequences .

§ 1 . The postulates .

A. Quantum Physics .

We deal with a Hilbert space 1j. To every "state" of the
system corresponds a normalized vector ¶ of . 4 . If we know that
the system is in the state f, , the probability of observing a stat e

2 is given by the absolute square of the scalar product

~ - I(r 2s 11)I 2 •

To connect the abstract scheme to physical reality it is necessar y
to give the coordination between the "states" experimentall y
defined in terms of Geiger counters etc ., and their corresponding
elements lY of ij . This is called "the physical interpretation o f
the theory" .
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B. Relativistic Invariance .

The term Lorentz transformation (L. T.) will be understood
to include also translation in space and time, but not reflections ;

that is to say, we deal with the 10-parametric inhomogeneous

Lorentz group where the elements may be characterized by th e
coefficients aµ,,, b l, of the transformation

= arv xv - bt,

	

(a, v = 0, 1, 2, 3) .

The index 0 refers to the (real) time coordinate . As the scala r

product between two 4-vectors p and x we shall writ e

px = p i xi-po xo

	

( i = 1, 2, 3) .

We also consider the reflection elements sr , s i and s = Sr s i

giving the transformation s

'

	

Sr :

	

xi = -xi ,

	

xp = xp

,

	

's i :

	

x i = x i ,

	

x.o =

	

x o

s :

	

xia

	

-x,i, .

The invariance of the theory with respect to these reflections wil l

not be relevant in the context of this paper but, for the sak e

of completeness, a short discussion is included .

It is convenient to state the invariance requirements in con-

nection with A in a form introduced by WiGNER 4 : To every

element L of the Lorentz group there is attached a unitary

operator D (L) in fj so that

D (L 1) D (L 2) _ + D (L iL 2)

Mathematically speaking : in fj we must have a representation

of the Lorentz group . The physical significance of the operators

D (L) is the following . Let MT be the apparatus needed for th e

experimental realization of the state T . We can envisage another

apparatus MT, which-if viewed from a Lorentz frame E'-

would be described . in exactly the same way as Mtp is described

4 E . WIGNER, Ann. of Math . 40, 149 (1939) . See also V . BARGMAN and E . WIG-

NER, Proc . Nat . Acad . Sci . 34, 211 (1948) .

by an observer in E, i•. e . MT, differs from Myf only in space-

time orientation. Then, if L is the L . T. which carries E' over
into E, we have

tl'' = D(L)~F

for every state P .

The invariance against reflections may be formulated in a simila r
way. One difference is that the operators T, C, and J, which correspon d
to the elements sr, s t and s, respectively, could also be "anti-unitary''' .
In fact, it appears that, for the cases of physical interest, C and J are
anti-unitary whereas T is unitary . The physical significance of T i s
straightforward . We have to consider two experimental arrangement s
which are related like a right- and left-hand glove . In the case of C,
a similar general definition does not seem possible since we canno t
interchange past and future . However, for the special case of a stat e
which is localized around a point x = (x, t), one may take the time -
inverted state as the state of localization around x ' = (x,-O .

It is important to keep in mind that we can speak of the invariance
of the theory with respect to these transformations only if operator s
T, C, J exist vhich have both the correct structure relations wit h
each other and with the D CO,' and also the physical significance
mentioned . One can show, for instance, that in all representations of
the Lorentz group, which correspond to particle systems, there exist
operators which obey the structure relations prescribed for T or C . '
It is not belle, however, that every Lorentz invariant theory is auto-
matically invariant under space or time inversion, since the formal
operators T, C need not have the specified observational significanc e
if more than one particle is involved' .

C . .. Particle Postulates .

We shall not here distinguish between "elementary" and
"compound" particles . This is a matter of convenience rather
than of principle. As characteristic of a particle we regard th e
localization of the events which may be caused by it . Thus, we

s An anti-unitary operator is an operator which transforms a linear relation
Eak ~fk = 0 into the linear relation between the image vectors Eak Yrk = 0

(complex conjugate coefficients!). The scalar product of the image vectors is the
complex conjugate of the scalar product of the original vectors (Ÿi t'

;)
=

	

TO* .
e For instance, J D (b) = D (- b) J, J D (A) = D (A) J, J' = ± 1, where b

is a translation, A a homogeneous L . T .
' The case of particles with mass zero is an exception . The statement continue s

to hold, however, if m = 0 is regarded as the limiting case of a small mass.
8 ' I had overlooked this fact in the manuscripts mentioned in ref . 23 . Th e

point was cleared up in a discussion with G . LODERS and L. L . FoeDY .
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could use, for instance, a coincidence arrangement of two Geige r

counters separated by a distance d with a resolving time å1<<
d
c

to single out experimentally the states containing only one particle .
If we consider all such coincidence arrangements for arbitrary

position, orientation, and velocity of the apparatus and arbitrary

distance d (which is only supposed to be larger than some dmin) ,
then the one-particle states are those which give a negative result

in all these measurements 9 . The magnitude of d,nin is irrelevant .
It could be taken as large as one pleases but, for practical reasons ,
it will be convenient to set an upper limit to the size of th e

object which we choose to call a particle .

For a theoretical analysis, it is important that the manifol d
of one-particle states is thus defined as a relativistically invariant

subspace 1jI1) of L.) . We can now split fj(1) further into invariant

subspaces 1).1) and imagine this process to be carried through

as far as possible, that is to say, so far that each 1j . 1) belongs

to an irreducible representation of the Lorentz group. The dif-

ferent fj7 1) can be distinguished by attributes which have a re-

lativistically invariant meaning. These attributes can be con-

sidered as the attributes of the "particle species j" . It is therefore

just a definition of the concept "particle species" if we say

C 1 . The manifold of states of one particle of type j belongs to an
irreducible representation D1 (L) of the Lorentz group .

The possible irreducible representations have been classified b y

WIGNER4 . Each of them is characterized by two numbers m an d
s. These have the physical meaning of the mass and the spi n

of the particle, respectively .

The representations belonging to imaginary values of m can ob-
viously not be attached to particles and, therefore, the first action o f
the particle postulates must be to exclude these representations . Then ,
for m > 0, the spin can take only integer or half integer values and
the representations may be described within the well-known formalis m
of the wave equations of spin particles . For m = 0 there exist also
representations corresponding to a continuous spin variable . Whether
or not these representations have physical importance is yet an open
question . They will not be considered here .

The vacuum state is of course also admitted, but can be excluded in a trivia l
way by single counter measurements .

Nr . 12
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The decomposition of 1j(11 into the l)' 1 becomes ambiguous i f
4 (1) contains several equivalent irreducible representations, i . e .
if we have several different particles with equal mass and spin .

This is analogous to the appearance of degenerate eigenfunction s
in an eigenvalue problem. Incidentally, it may be noted that th e
eigenvalue problem for the Hamiltonian in conventional quantu m
mechanics is in field theory replaced by the mathematical pro -
blem of reducing the representation D (L) into its irreducibl e
components . In the degenerate case, it may be more appropriat e
to consider the total space ElJJ 11 spanned by all the represen-
tations which belong to the same mass and spin as th e
manifold of states for one particle. This would, for instance,
mean that instead of protons and neutrons we speak of nuc-
leons, etc .

Now going over to situations in which more than one particl e
is involved, it is convenient to introduce the concept of "partia l
state around a point x " . By this we understand those propertie s
of the system which may be measured by any experimenta l

set-up within a large but finite space-time volume around x .
Then, we formulate the following fundamental assumption :

C 2 . Whatever total state of the system we consider, the partia l
state around x = (x, t) approaches a one-particle state
fort tI -

	

.

For this assumption three conditions are necessary . First, we
exclude from consideration situations in which the particles fil l
the total space with a finite density. Secondly, there are (pe r

definitionem) no "bound states " . Thirdly, in this general dis-
cussion we allow only normalizable state vectors (proper ele-

ments of l)) . This ensures that we have only a finite interactio n

region outside which the particles are separated so much tha t
the attraction between them can be neglected . It does not mean

of course that in practical calculations we could not use plan e

waves as well, if only they are handled with proper care .
Now, the experimental characterization of an arbitrary stat e

W may be given in terms of measuring results obtained in the
'distant past, for short at t = - . As the particles may then
be considered as isolated, these results can be described by



10 Nr.12 Nr . 12 1 1

means of single-particle states . If we introduce in 1) an arbitrary

basis system fr, a complete basis in the total lj is given by the

vectors OW. . . This symbol describes a state which asymptoticall y
kl •

at t = - co (expressed by the minus sign above Ø) has N par-

ticles of types j, j ' . . . which are in the single-particle state s

k, 1 . . . etc .

If in Ø(N) one particle species occurs several times, we mus t

take the symmetry principle into account .

C 3 . Each particle obeys either Bose- or Fermi statistics .

for Bose particle s

for Fermi particle s

The operators D (L) take a simple form in this basis system .

Each single particle state f 1) entering in
Ø(N) is transformed

independently. Thus, within the manifold of asymptotic two -

particle states Ø(ü), the effective part of D (L) is just the Kronecker

product D1 (L) x D1 . (L) , where D1 (L) and D1. (L) are the

irreducible representations attached to the particle types j and j' ,

respectively. If j = j ' , we must again take account of the sym-

metry principle. We indicate the effect of symmetrization b y

brackets and in this case write (Di (L) x D 1 (L)) . The structure

of the total representation in Ij may then be writte n

D (L) = 1 +D1 (L) -f-~{D1(L) x Di (L))
i

+Di(L)x D1- (L) + ••• .
i, i '

' The meaning of the + and E signs is that Ij may be decompose d

into orthogonal subspaces (namely the asymptotic 0, 1, 2 . . .

particle states) in each of which one of the terms is operating .

The identical transformation (1) refers to the vacuum state . We

have thus already incorporated the further postulat e

C 4 . There is one state in Ij which is invariant under all L T . ,

the vacuum state 0o .

Equation (1) is Important because its meaning is not restricted
to the special basis system VI') from which we started . The
(direct) sum and direct product of representations have a n
invariant group theoretical meaning . Thus, the particle postulate s
fix the structure of the representation D (L) completely. To give
an example : if we work in the center of mass system (spatial
momentum zero), then the energy spectrum must have a char-

acteristic structure : On top of a number of discrete eigenvalue s
0, m1 , we have a continuous spectrum starting at 2 m 1 and
having a branch point at each value En1 m 1 , where the n1 are
an arbitrary set of integer numbers . Similar considerations ca n
be made for the angular momentum . Generally speaking, if i n
a theory the operators Pm and M,,,. of linear and angular momen-
tum (infinitesimal translations and rotations) are given, then (1 )
affords a mathematically clean-cut criterion as to whether th e
theory is acceptable on the basis of the postulates C . Since thi s
decision is essentially a problem of group theory, it can b e
hoped that some more powerful methods of attack will be de-

veloped than those available to physicists at present .
It may be instructive to illustrate the argument leading to (1 )

by an example from wave mechanics . This may make the signi-
ficance of the basis states ow) somewhat clearer and also give
an exact meaning to statements like "at t = co the interaction
vanishes". Let us consider a non-relativistic two-body problem
without bound states . The Hamiltonian shall b e

H= ~m(Vi+ 02)+ V (Ixl - x2 +) = Ho-}- V .

Yf is an arbitrary state vector . As always in this paper, the Heisen -
berg picture will be used . Ÿr is represented by a function (x l , x2 )
which is interpreted as the probability amplitude for the position s
xi , x 2 of the particles at t = 0 . Now we consider the sequenc e
of unitary operators

(2)

It may be shown that, if V decreases more strongly than -
r

with the separation of the particles, then this sequence o f

u (t) - etxot
é

Iat
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for t =

(3)

1 2

operators converges strongly for It

	

oo10,11 The limit

oo we call R. From the definition (2) it follows that

U (t) etat' Y' = e iH
°'' U (t - t ' )

For t=

	

oo
Re:m'J = eiH°' RY' .

	

(4)

If we now introduce a new basis system in such a way that

is represented by the wave function cp (x r , x 2 ) which belonged

to the state R, P in the old basis, then the (total) Hamiltonia n

takes the simple form H = - 2

m

(Vi + 02) . 99 (xl , x2) is now

the probability amplitude for the positions x l , x 2 at t = 0 as i t

would be calculated from the results of asymptotic observations

under the assumption that the particles had moved withou t

interaction until t = O . This new basis system is the analogu e

to the Ø(N) , apart from the fact that there we have expanded

according to - a discrete set of eigenfunctions . In ,the new basis ,

H is separable into one-particle components, which correspond s

to the independent transformation of the fki) in Øw) . In this

example, H is regarded as the prototype for all Lorentz trans-

formations . The "vanishing of the interaction" at I t I = cc i s

to be understood in the sense of a strong operator convergence .

This means that the operator of the interaction energy does no t

itself vanish, but that, applied to a state ehHt i 1 (where tl' is

arbitrary, but fixed), it gives an image vector which has zer o

length in the limit t 00 . These remarks may serve to handl e

the limits t -} oo in the time-dependent formulation of scat -

tering problems in a way which is both nearer to the physica l

meaning and simpler in mathematics than the introduction of a

convergence'factor é a lfl to "switch off the interaction" . One

must only keep in mind that all the asymptotic relations are t o

be regarded in the sense of a strong operator convergence .

10 This theorem provides the basis for the treatment of scattering problem s
by Dirac's time-dependent perturbation method or, in more modern language ,

by means of the interaction representation .
it A sequence of operators Uk is said to converge strongly towards a limit U

if the application of (U k U) on an arbitrary but fixed state Yr produces a

sequence of image vectors W
A
, which decrease in length towards zero for k4- oo

lim II(Uk -U), 'II = O .
k--co

Nr . 12

§ 2 . The S-matrix .

The same arguments which have been used. in §' 1 to defin e

the basis Ø(N>
can be carried through if everywhere we put

t = + oo instead of t = - c . Then we obtain a second coin-
+

plete orthogonal basis Ø(N) . The unitary operator which connect s
both of them is the S-matrix

Here, is the array of indices (identical on both sides of the
equation) which characterizes the results of the asymptotic
observations . We simply call the "configuration" .

+

	

,-

	

s, = <Ø'I .SIØf> = <Ø, I s I Ø >

	

(6)

is the transition amplitude from the asymptotic configuratio n
e at t = - co to ' at t = + oo . These matrix elements are
therefore related in the well-known way to the cross sections for
various processes . Because an L . T. changes the configuratio n
at t = + oo and t = - oo in the same way, we have

[D (L), S] = 0

	

for every L

	

(7)
and similarly

[T, S1 = 0 .

	

(7a)

In the , case of time inversion, we first define the operators C
+

and G by
- -

	

-

	

++

	

+
C =

	

C Ø _ ~~ ,

where is obtained from $ by applying the single-particle tim e
inversion operators C1 to all the one-particle states IT ) entering
into ,the configuration . The actual time inversion operator C
must, however, not only change into , but also interchang e
t = + co and t = - oo, i . e .

or

1 3

(5 )

(8)

(9)
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CS = C ; SC = C . (9a)

§ 3 . The formalism of field theory .

A complete operator system 13 in is given by the creation

and destruction operators of the various 'particles in the differen t

quantum states . They will be called fl and ûji)t , respectively,

if they refer to the asymptotic configuration at t = - oo • ûk1)t

acts on a basis vector by adding to the configuration one particl e

of type j in the state k :

-()to ~~$+ ~k) .

12 It is interesting to see at what point of the argument leading to (10) th e
+

requirement of invariance under time inversion is used. C and C may always b e
defined in a Lorentz invariant theory and they have the correct structure relations .
The definition (9a) is adapted to give the correct physical significance to C . Thus ,
if the theory is invariant under time inversion, C must also have the correct structur e

relations, and vice versa. Now the relations with D (L) are correct, because S

commutes with all D (L) . However, C z = ± 1 is not obvious and this impose s

some restrictions on S (detailed balancing) .
13 "Complete" means that every operator in may be approximated by poly-

nomials in these basic operators .

The corresponding destruction operator is the hermitian con-
jugate. It is convenient to fix the factor 2 so that the operator s
obey the canonical commutation relations 14

[uj1)
O'']

	

= [ u U)t
O ''t] =

0
for Bose particles,

	

(12 )
[U! ) dint] = 6ko.1i '

l
uk) a(/ ')}

	

= i irjl)t tZi')t} = o
for Fermi particles . (13)/u(i) u(i')t} - å dl k

	

1

	

-

	

kL ii• .

If we were dealing with a system with a finite number of degree s
of freedom these commutation relations alone would fix th e
operators uV), u/1 uniquely up to a unitary transformation .
In the following chapter it will be discussed that this is no longer
true in our case . In order to achieve a unique specification
(apart from equivalence) one must require, in addition to (12 )
or (13), that there exists one state (the vacuum) for which

ü(1)Ø
0=

0
k

for all k and j.
In mathematical language : tj is the space of an irreducibl e

representation of the commutator ring (12), (13), with the auxiliar y
condition (14) ; irreducible, because the operators in questio n
form a complete system .

Again we can replace the minus signs above 0 and ut in
(11) by , plus signs and .obtain a second set of creation and de -
struction operators referring now to the asymptotic configuration s
at t = + co . The two sets are of course connected by the S-matrix .

The creation and destruction operators û!)t , EV ) can be com-

bined in the well-known way to a continuous manifold of oper-
ators 01) (x) (see, for instance, Chapter III, § 1) . These operato r
fields are the " incoming fields" of YANG-FELDMAN and KALLÉN "' ;

similarly, the +99(i) (x) are the "outgoing fields". The essentia l

14 The deeper significance of this choice is that the creation operators in dif-
ferent basis systems of one-particle states are simply related . Thus, if tic = ECkIX f a ,

then uk = L C k a ak •
15 G . N . YANG and D . FELDMAN, Phys . Rev . 79, 972 (1950) ; G . DALLEN, Ark .

f. Fys . 2, 187 (1951) .

StJ = JS .

	

(10 a )

This is a general formulation of the principle of detailed ba-

lancing 1 2
The S-matrix defined by (5) would perhaps better be calle d

the complete S-matrix . In the majority of the work on S-matrix

theory, a distinction between elementary particles and boun d

states is made, and the term S-matrix refers to the submatri x

of our S between the scattering states of the elementary particles .

Now

Therefore

and, similarly,

+
C 2 = C 2 = C 2 = + 1 .

StC = CSt (10)

(14)
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feature of field theory is that these operators ?,(i) (x) and Tti' (x) ,
which have a simple physical interpretation in terms of asymp-

totic observations, are regarded as the asymptotic limits fo r
t = ± o0 of other operators, the "actual fields" ,(i) (x) . In
symbols

v(') (x) ->- (x) for t ~ +

	

(15 )

where the arrow again indicates strong operator convergence .
These vi (x) are regarded as the basic quantities of the theory .
They are defined by their commutation relations (at least in
theories of conventional type), and the infinitesimal Lorent z
operators Pt1 and 1tiMt,,, are given as functions of them. This pro-
cedure is in complete analogy to that in quantum mechanics .
There is only one additional requirement in field theory, namely ,
that the v' (x) should have the simple relativistic transformatio n
properties of a field. The effect is to fix the M1 , as soon as the Pt
are given. This restriction is, however, not very serious in itsel f
and in fact it will be explicitly demonstrated later that theories
exist which are built on the concept of covariant operator field s
vi (x) satisfying the "asymptotic condition" (15) and which are
able to yield any S-matrix. The central question is then by what
relations the vi (x) may be defined in the basic equations of
the theory . Is it possible, for instance, to require that the fiel d
operators at points separated by a space-like distance commute ?
Although this mathematical question will not be decided in thi s
paper, we can at least exhibit some of the pitfalls which ten d
to make rather inconclusive many general statements reached by
the standard methods .

In the scheme of field theory outlined above we have one
field for every existing particle species . The extension to the cas e
in which one introduces a smaller number of fields and thereb y
a distinction between elementary and compound particles is o f
course more interesting for practical applications (meson theory) ,
but will not be considered here .

Nr. 12
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II . Mathematical Considerations .

§ 1 . Inequival.ent representations of the canonica l
commutator ring .

This section refers both to the commutation relations (12)
and the anticommutation relations (13) ; nevertheless the dis-
cussion will be restricted to, the former . Combining the indices
k and j to a single index k, the relations are brought into the
canonical form by substitutin g

qk =
l2

(uk + uk), pk = i , /--(uk

	

uk) ;

	

(16)

and pk are then hermitian operators satisfying

[gkgi] = [pkpi] = 0,

	

[pkgi] = - Zåki .

In the conventional field theories we have commutation relation s
of the form

(0- ) (1- ')] =

	

(x')] = 0 ,

[n (x ) y(x )] =

	

1. 6 (1-1') .

These are reduced to (17), for instance, by putting

qk = S fk (x) 1Ÿ (x) dx, pk = fk (x) (x) dx,

	

(19 )

where the fk (x ) are an arbitrary complete system of real, ortho-
gonal, normalized functions .

It is a well known fact that for a finite number N of degree s
of freedom there is only one (irreducible) representation of the
operators p, q of (17) (apart from equivalences) . This may be
obtained by considering the q k as multiplication operators, the
p k as differentiation operators. It is more convenient for our
purpose to work with the uk , ul and the "occupation numbers "

+

qk

'Pk = Lit u k (20)

which have integer eigenvalues ranging from 0 to co . A complet e
orthogonal system is given by the simultaneous eigenfunctions

Dan.Mat.Fys .uIedd . 29, no.12.
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of the vk . Each basis vector is then specified by an array of N
occupation numbers (v,- • v N) . Ilk acts as a destruction operator ,

uk as creation operator for the k° ' "oscillator", i . e . they decreas e
or increase vk by 1 . The "vacuum state" Øo = (0,0 . . . 0) may
be defined abstractly by

u k Ø o = 0

	

for all k .

	

(21 )

If we pass now to the limit N - r one new feature appears .

A possible. basis vector results from any distribution of intege r

numbers vk over the infinitely many oscillators . The "number"

of these possibilities is no longer countable . It is given by Hô" K 1
(No representing a countable infinite set, K i the continuum).
Thus, the straightforward extension of the method used fo r
finite N leads to a vector space lj with a continuum of ortho-

normal basis vectors . This is no longer a Hilbert space in th e

ordinary sense of the word, though the term "non-separable

Hilbert space" is used for it in mathematics .

In this connection, we must remember that, for the descriptio n
of the physical situation, there is no need for such a large space .

It is also well known that even for N = 00 there is a represen-

tation of (12) within an ordinary Hilbert space . In fact we have
used this representation in the previous discussion . It follows

from the assumption that there is one vacuum state satisfying (14) .

Starting from this assumption, the argument can be carrie d

through in essentially the same way as for finite N . The poin t

is, however, that, for infinite N, (14) is no longer a consequenc e

of (12) . In other words, there will be different irreducible re -

presentations of (12) .

One might perhaps be tempted to think that the ambiguity

left by the relations (12) or (17) is a matter of mathematica l

sophistication without relevance to field theory. However, the
following examples will show that, starting from the "standar d

representation" of (12) in f), we obtain, by the very simplest

substitutions, operators in the same space which belong t o

inequivalent representations . If one disregards the inequivalenc e

and tries to calculate a unitary matrix which connects the tw o

operator systems, one obtains infinite results .

Let us start from operators uk , u1 obeying (12) and (14),

Nr . 12
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i . e . belonging to the "standard representation" (12) . Then,
introduce the linear combination s

Uk = cosh e' u k + sznh e ut ,

Uk = slnh e' uk + cosh e' uk .

The commutation relations are unchanged. If we take e to be
infinitesimal, we have

uk = vk- uk = e tit ,

duk = Ut	 u k

Writing this formally as an infinitesimal unitary transformation ,
the generating operator i s

T =
2(utuk-

uk uk) ,

	

(24)

i . e .

Ie [Tuk ] = Euk = 8uk , 2e [Tut] = euk = dut .

It is easily seen that T is not a proper operator, but trans -
forms every vector of f) into one with infinite length . However ,
we can follow the matter a little further by going over to the
non-separable spacer in which a vector is represented by a
function y (q 1 , q 2 . . .) of infinitely many variables and

1

	

8

	

1
u k = ,/2 (qk + aq k ~ ; uk ° 1

y

/2 (qk - aaq

kOne can then work out the effect of the operation e 'ET and try

to recognize its implications for the "physically interesting

states" which are a subset of f), namely the Hilbert space f)
generated by the ut from Øo . The result is that e` E T transform s

every vector of f) into one which has a zero scalar product wit h

any second vector from f) .

(02 e iET
Ø1 ) = 0 for every Ø 1 , Ø 2 from f) .

	

(25)

Nevertheless, Øi

	

e 1 is a vector with finite norm in t) .
In order to understand how this may happen we conside r

2*

= euk .

[i
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the case of a very large but finite N . Then there is no distinctio n

between 11 and lj . The expressions (25) are slightly differen t

from zero, and of course I, Øi II = 01 11 . As N becomes larger,

the projection of Øi into the subspace belonging to a total "particl e
number" v = Xvk < n (n fixed) becomes smaller and is com-
pensated by a growth of the total probability for v < n . I.n this

way Øi moves out of I) in the limit, because there are no state s

in Ij belonging to an "actually" infinite particle number, though
the particle number may be arbitrarily large .

To sum up : vk , vk are proper operators in the ordinary

Hilbert space 1) (according to (22)), obeying the same com-
mutation relations as uk , uk, but there is no proper unitary
transformation connecting the two operator systems, i . e . these

belong to inequivalent representations of (12). For the represen-

tation defined by the u1 , vt, there is no "vacuum state" satisfying

Vk ØO =O -

A similar example which is closer to practical calculations in
field theory is the following :

We take two free fields which obey the field equations

(E- mi) y1 (x) = 0 ,

( q - m2) y'2 (x) = 0 ,

and which coincide (including their first time derivatives) for

t= 0 ;

y'1 (x , 0) = y2 (x, 0) = y (x, 0) ,

0) = ~ z (x, 0) = (x, 0) ,

and define in the usual way for each field a splitting into a

creation and an annihilation part, for instance for y'I

u i (p) = ( 2 n) i
Ç (Ely (x) + (x)) e lr ~dx ,

ui (p) _ (2 gr)- ; (EI y (x ) - i~2 (x)) e` p
x dl- ,

32

	

2Ei =

	

+ m i .

Then the operators ul (p), ui (p) are connected to the 112 (p) ,

u2 (p) by a transformation like (22), namely

E + E
u2 (p) _ 2 E i
	 2 ui (P) + 2 E l
	 2 ui (p) .

	

( 29)

Now, if there is any state for whic h

ul (p),

	

= 0

	

for all p ,

then there is no Øô which satisfies

u, (p), 0'0 = 0

	

for all p ,

and vice versa . This may show that the "strange representations"
of (12) will almost inevitably turn up in any discussion in fiel d
theory .

We have already mentioned that similar considerations apply
to Fermi particles . The effect of the Pauli principle is to " reduce "

the number of basis vectors in f) to 2'10 , which is still the con-

tinuum .

The existence of different representations of (12), (13) was
discovered some time ago ls , but has not entered into the con-

sciousness of physicists until very recently" . A systemati c

study and classification has been made by WIGHTMAN and
GÅRDING 18 .

§ 2 . Functions of the field operators .

After the basic operators have been defined by commutation

relations of the form (18), the conventional field theories procee d

to give the Lorentz operators P11 , M 5,, (energy-momentum ,
angular momentum) as functions of the basic operators . As we

have seen, the definition (18) is not complete, but we suppos e

now that it has been augmented by some auxiliary conditio n
which fixes the representation . Then we meet with a secon d

'18 J. V . NEUIeANN, Composition Math. 6, 1 (1938) ; K . O . FRIEDRICHS, Math .
Aspects of the Quantum Theory of Fields, Interscience Publishers, New Yor k
1953, Chapter on "Myriotic Fields" .

17 VAN HovE, Physica 18, 145 (1952) ; WIGHTMAN and SCHWEBER, Phys Rev. ,
in print . I am indebted to Prof . WIGHTMAN for a preprint of this paper .

18 GÅRDING and WIGHTMAN, Proc . Nat . Acad. Sci . 40, 617 (1954) .

Ft1



22

	

Nr . 1 2

problem . Almost all simple-looking formal expressions in th e

y) (x ) , n (x), which we may think of writing down, are actually

not proper operators . In most cases, they will even have infinit e

matrix elements between any two states of l . What one would

like to have, then, is a simple criterion for the class of "sensible

functions " of the field operators, allowing to decide immediatel y

whether an expression is acceptable or not . We shall illustrate

the problem for the " standard representation" (12) with

which we have to deal in the case of the asymptotic fields 9) (x) .

Here, a criterion which satisfies practical purposes can indee d

be given easily. The method is well known. Nevertheless, som e

of the arguments may be recalled . The points I want to emphasiz e

are : 1) the characterization of the class of sensible function s

of the operators (18) depends only on the type of representatio n

for these operators, not on their physical meaning ; 2) the task

is solved for the "standard representation" and may be extende d

to others as soon as their relation to the "standard representation "

is known. This is, for instance, the case for the two examples

given in the preceding section .
Let us start from the equations (16)-(19) and assume (21) 19 .

The inversion of (19) i s

y (x) = X qk fk (x) , n (x) - XPk fk (x) •

	

( 30)

Now it is clear that all polynomials in the p k , q k (or uk , uk) ,

which involve a finite number of additions and multiplications ,

are well defined operators . We can apply them, for instance, to

any basis vector and obtain again a normalizable state . This is

not true for the continuous manifold of operators y (x ) which

are infinite sums of the uk , uk . In fact one checks easily that

y (x) transforms every basis vector Øk1.' ? . into a vector with in -

finite length. However, p (x) has at least finite matrix elements ,

and expressions like f (x) y (x) dl are well defined operator s

if f is square integrable . Hence, p (x) may be regarded as a n

improper operator in the same way in which one can regar d

eigenfunctions in the continuous spectrum as impropèr state

19 If we identify(), r (1) with ry (x), (x), respectively, the equations (16)
and (19) should be replaced by the somewhat more complicated ones which give

the splitting into creation and destruction parts (equ . (28)) .

vectors . The situation is worse for y,2 (x) which has only
infinite matrix elements . The remedy may here be found in the
following observation . If we have a power series in the u1 , uk

in which each 'terns is arranged in S-product order 20 (i . e . all de-
struction operators stand to the right), then only a finite numbe r

of terms contribute to a matrix element between two of th e
basis vectors Øk12 . . Therefore, any expression which is in S-
product order has at least finite matrix elements and may the n
be regarded in general as an improper operator in a similar
way to yi (x) . The simple way of putting two dots around an

expression is a safeguard against infinite matrix elements. If X
is supposed to be a proper operator, then X tX must have finit e

matrix elements, and vice versa . Thus one has the simple criterion :

If, in the process of rearranging an expression X (y (1), n (x) )

in S-product order, no explicit infinities occur (i. e . if the con-
tractions are finite), X has finite matrix elements . If the same is
true for XtX, then X is a proper operator .

The criterion can be extended to other "discrete" represen-
tations21 as they can be related to the standard representation by
substitutions .

III. Applications .

In the, following chapters, the specialization to the cas e

mentioned in the introduction, in which we have to deal wit h
only one type of particle, will be made . For convenience, a
short description of the formal apparatus is given first .

§ 1 . Notations .

The manifold of states of a single spinless particle of mass m
is most easily described in momentum space . An arbitrary state
is then represented by a function f (p) (p the momentum 4-vector )
which needs to be defined only for those values of p corre -

zo We use the notations of G. G . WICK, Phys . Rev . 80, 268 . The S-produc t
between A and B is indicated by double dots : AB : .

21 For the definition of discrete representation, see the papers mentioned in
ref . 18 .

Nr. 12

	

23



24

	

Nr . 1 2

sponding to a possible momentum vector of the particle, i . e .

for p lying on the positive-energy shell of the hyperboloi d
p 2 + m2 = 0 . However, it is more convenient to regard f (p) as
defined in the whole positive cone and reject the irrelevant point s
of momentum space by a factor å (p 2 + m 2 ) which must appear
in all relations of physical significance. Thus the scalar produc t

of two wave functions fl and f2 is defined by

(f2 fi) = f2 (p) fi (p) å (p2 + m2 ) dp ,

where it must always be kept in mind that the integration is
essentially one over the positive-energy cone of p only. The
transformation properties of the wave functions ar e

D (b) f = f' :

	

f' (p) = etpbf (p)

	

(translations) .

D (A) f = f" :

	

f" (p) = f (!1-1 , p) (homogeneous L . T.) .

A description in ordinary space coordinates is obtained by th e
Fourier transformatio n

f (x) = (2 zz) 2
J

f (p) eiPxå (p2 + m 2 ) dp .

This function satisfies the Klein-Gordon equation

(0 m2) f (x) = 0 ,

but contains only positive-energy Fourier components so that the
initial condition f (x, 0) is sufficient to determine f (x, t) for all
times . The scalar product in this formulation has the more
complicated form

(f2, f1) = 2 i f2 (x,
0) ô fl

(x, 0) dx .

	

(34)

Therefore, f (x) may not be directly interpreted as the probabilit y

amplitude for the positio n

Let ii be the destruction operator for the state fk (wave
function fk (p)) in the asymptotic configuration at t = - oo (see

Chapter I) . Then it is convenient to define the continuous mani-
fold of destruction operators ü (p) by

Nr. 12 2 5

uk, = (p) ff (p ) 8 (p2 + m2) dp , (35 a)

or 'conversely

~ (p) = Efk (p) ük, (35 b)

where it has been assumed'that the fk (p) form a complete system ,

orthogonal and normalized according to (31) . The creation

operators ut (p) are the . hermitian adjoints and the relations (35)

apply of course equally to the operators ûk, iz (p) for the asymp -

totic configuration at t = + oo .

The commutation relations are most conveniently expresse d

in the symbolic form

[u (p) ut (pi)] a (p2 + ln2) å (p' 2 + m 2 )

= 64 (p - pi) ~ (p2 + m 2 ) .

The transformation properties are :

»(b) û (p) D t (b) = e ipb u (p) (translation) ,

D (A) ü (p) Dt (A) = ü (A, p)

	

(homogeneous L. T .) .

In analogy to (32) we define

û (x) = (2 gr)^ * Ç (p)
eiPxb (p2

+ m2) dp .

The creation and destruction operators are combined to th e

"incoming field"

(x) = ~ (x) + at (x) •

	

(39)

§ 2.' The existence of general field theories .

As the û (p), üt (p) form a complete operator system, an

arbitrary operator may be expanded in a series of S-product s

of the û (p), at (p),

X = EXnm ,

	

(40)

(31 )

(32)

(33) (38)
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where Xnm contains n creation and m destruction operators ,

Xnm = Fnm
(p' ; p) ~t (P' ) 1z (p) b (p'2 + m2) ô (p2 + m2) dp' dp -

	

(40a)

Here p ' is an abbreviation of the n arguments pi • -pn ; similarly

p stands for p l . • - p in , û (p) for the product of the m destruction

factors, etc. The integration is extended over the positive-energ y

cones only. In order that X be invariant under homogeneou s
L . T., each

Fnm must be a Lorentz invariant function of it s

arguments. Invariance, of X under translations means that Fnm

contains a factor b (Ep ' -Ep) . The S-matrix must fulfil both

conditions, the operator y, (0) ("actual field" at the origin) the

first .

,tpnm
(0) = (2 7)- i

J
fnn'

(P ' ; P) ~t (P ') û (P) b (P '2 + m 2 ) ô (p 2 + m 2 ) dp' dp .

	

(41)
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This can only be so if f contains a factor S+ (LE-LT' - a)

which in turn can only arise from one of the invariant function s

hi = S+ [(EP - Ep')2 +
m2 ]

h2 = å_ [(Ep - EP ' ) ' + m2 ]

f= g 1 hi -+g2 h 2 . (44)

This also gives a separation of y into two terms y l and yt 2 - Taking

into account the 8-factor in the spatial momentum components ,
we can write

1
hl

= 2 EP [d+ (Ep + e) + å+ (Ep- s) ]

s = EE - EE' .

In the limits ! t - ; oo the factors he- ist will become

or

We writ e

where

I [Pm' is an invariant function of n vectors p ' and m vectors p,

symmetric against any permutation of the variables on eithe r

side of the semicolon. Also

fnm*
(P ' ;

p) =
fm71 (P ; P' ) (42)

i

hie ist
h 2 e is t

t -)--ço eiEPt ~ (Ep + E )
2Ep

1
e tEr-t å (Ep _ s)

2Ep

The letters E mean the energies belonging to the respectiv e

e . g . Ep = ~P 2 + nt 2 . To fulfil the asymp-

we must choose f so tha t

(except for y°1 and y1 10 ) ;

(for at least some index pairs n, ni in

order to obtain an S-matrix differen t

from the identity) .

momentum vectors ,

totic condition (15)

hm y
nm (P, t) ---> O

L~-oo

z/t
nm (P, t) + 0

t3+oo

From (41) we get yt (x), replacing f by fei (I'P-I'p') x, and

1

	

4-

2 Ep
y" (P , t) -=_ (2 n) Z S

y' (x , t) e iP
x dx

f'
(p, . p) S (E

P-e-
icE
'

E'tt
at (P ' )~(P) a (P '2 + m2 )

X S(p2 + m2)dp'dp .

1
- t1E Pt 8(Ep-s)

2Ep

To satisfy the asymptotic condition at t = - oo the function gi
must vanish in a region around s = - Ep or, in other words,

the variability domain of the 4-vecto r

q = EP-Ep '

	

(45)

must be so restricted by g1 that in the backward cone values

giving q 2 + m 2 = 0 are excluded . Similarly, g 2 must exclud e
values q 2 + m 2 = 0 in the forward cone. If this is satisfied, the n

(P)

	

(P ' ; P)
t

(P') û (P) d (EP - EP ' - P)
n,m

å (p'2 + m2) à (P 2 + ni2) dp'dp

tit (P) =

	

S gem (P' ; P) t (P ' ) ~ (P) å (EP - EP' + P)
n, m

ô (p'2 + m2) ô (p2 + m2 ) dp'dp .

t -~ + ô0
1

eiEPt ô (Ep + e)
2 EP
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As g1 and g 2 are arbitrary for the relevant values of their ar-

guments it may be expected that the frame is wide enough t o

give any S-matrix . Indeed this can be checked easily in th e

limit of very weak interaction .

§ 3 . Commutation relations of the field variables .

The representation of the field a s

y (x) = (2 n)--i E l f~z~n (p' ; p) e i (Ep -fin ' ) x ûfi (P

(5 (p '2 + m2) ô (p 2 + In2) dp' dp

and the knowledge we have obtained about the structure of the

f"m allow a few statements about the commutation relations . If

we form the product y (x ') y (x) and rearrange it in S-produc t

order we ge t

(x' ) (x) = (2 7r)-a Est ns ) ( s ) dp dp dp dp

n'

	

n-s m'-s m

ft (P') C11 . (P ') (P) (P) X
ei(~p - ET')x +(Ep- zp ' ) x

S
r'm'

(p,
; p q) rm (p, q ; p) e iEq(x ' -x) (x 2 ) dq ,

where 8 (x 2) stands for the product of the ô (p 2 + m2) for all

the momentum vectors which appear . There are s momentu m

vectors q in the last integral . The commutator [y (x ' ) yp (x)] i s

then obtained by subtracting the same term with x and x ' inter -

changed. By virtue of the asymptotic condition we must have

f10 (q ) = f ° 1 (q) = 1 .

We first look at the vacuum expectation value of (48) . Here only

the terms with in = 0 ; m ' = s = n ; n' = 0 contribute .

<0Iw(x')(x)I0 >

= (2 n)-3 Es ! S
I fs° (q) 1 2 ei (11q) (x - x) d (q + m2) dq .

Because of the relation s

id + ( ; a) = (2 n)-3S e iQ g (Q2 + a 2 ) dQ,

	

(51 )

Q o >0

Nr. 12

4+ ($ ; a)
- 4+

(- ; a) = 4 (e ; a)

	

(52)

write

i<O I [~V(x')~V(x)]IO >

= J (x ' -x ; m) +F (s) (a) 4 (x ' -x ; a) da 2
s= 2

with

	

cF(s) (V Q2)

	

s ! J
~ fsO

(q)
12

a (
E

R' - Q)
6

(q2 + zn2 ) dq .

	

(54)

For equal times (t' = t )

< 0 I [y (x') y (x)] I 0 > = , 0
< 0 1 [~ (x' ) (x)] 1 0 > =

	

iå

	

-x')
LLI

1 +

	

F(s) (a) da 2 12

=- i å(x - x') .C .

fn0 vanish for n + 1 . 2 2

In a conventional theory (in which [y (x) yi (x ')] = 0 for
equal times) the latter alternative may be excluded . One can,
for instance, calculate the matrix element of the commutator
[y (x ') v (x)] between the vacuum and a two-particle state .
Under the assumption fi0 = 0 for n + 1, this gives

< Pl, p2 I [v (x') (x)] 1 0 >

p,+ps)x' 1 f21 (pi, p2
; q)

eig(x
-x) å

(q 2 + m2 ) dq

- e-i(pi+p.x
5j21 (Pi ' p2 ; q) e-iq (x'-x) (q2 + m 2) dq .

This expression should then vanish for arbitrary p i , p2 , x' and
x as soon as t ' = t . This can only be true if f21 is identically
zero and this, in turn, would mean that there is no elastic
scattering .

Thus, in a conventional theory, it is necessary that f ro differ s
from zero at least for some value of n $ 1 . According to (55) ,
this then implies that (x) cannot be identified with the canon -

22 The formulae (53)-(55) have been given previously by H . LEHMANN ,
Nuovo Cimento 11, 342 (1954) . The derivation here is essentially LEnMAN N ' s .

u (P)

	

(47)

(48)

(49)

(50)

29

we can

(55)

= e
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y (x) = C ati (x) with C > 1 .

	

(56)

ically conjugate momentum of the field, though one could per -

haps have 23

§ 4. Conventional theory.

We suppose the theory to be defined in terms of operator s

sp (x), i (x) obeying (18) . The commutation relations are th e

same as those for the Ø (x), (x) and it appears therefore

natural to ask whether a unitary operator R exists which trans -

forms the one set into the other .

(x) = R To (X.) Rt ,

	

(x) =Rep (x) Rt .

	

( 57 )

In other words : can y (1), n (x) belong to the same represen -

tation of the canonical commutator ring as (x), ç (x)? This

is usually assumed and, in fact, Rt is Dyson's matrix U(0 ; - oc ) .

The canonical momenta az (x) need not have simple rela-

tivistic transformation properties . But, with respect to trans-

lations in space, we shall also requir e

4-

	

4-
D (b) z (x) Dt () = at (x- b) .

	

(58)

(58) holds in all customary theories (for instance if n (x) i s

proportional to V (x)) and, indeed, any other assumption bu t

(58) would appear extremely unnatural . From (58) and the

analogous equation for sp (x) it follows that R must commute

with the space translations

[R P] = 0 .

This is also a well known fact in conventional theories (con-

servation of spatial momentum in all virtual processes) . Now th e

spectrum of
P

is continuous, apart from a single discrete eigen -

value 0 which belongs to the vacuum state O o . If we apply (59)

to Ø, we obtain

	

PR Øe PØå = 0 .

	

(60)

If R is a unitary operator, then Øö is again a normalized stat e

and (60) indicates that

2a If one drops the factor O in (55), (56), one has to take it up in the asymptoti c

condition . This is only a different way of expressing the same thing . Cf. ref . 2 1

and G . KXLLÉN, Helv . Phys . Acta 25 ; 417 (1952) .

Øô = Øo,

	

(61)

because there are no other discrete eigenstates of P. In all theories
considered so far, (61) is contradicted immediately by the for m
of the Hamiltonian . However, we can also disprove (61) without
reference to any particular form for H. This equation woul d
imply

v (P) Øo = 0

with

v (P) _ R n (P) Rt = Ep (P) + ia (P) .

Here io (P), r (P) are the Fourier transforms of y (x) and
Therefore

<aac (P)-IO> = iEP< a I~V(P)I O i ,
<0In(P)Iai = -iEP <0I (P) Ia >

<0 I [ gr (P') y (P)] I 0 %

= å(
4 P)

with C' > 1 which contradicts the commutation relations . We
conclude :

The unitary matrix R of (57) cannot exist, and the same
applies to the " free field vacuum " o f the Tamm-Danco f method . 24

2a The question may be raised as to whether the non-existence of (P ;,
represents a serious obstacle against the use of the Tamm-Dancoff method i n
practical calulations . One may argue that, loosely speaking, Øo is a state whic h
has zero expansion coefficients with respect to any orthogonal system of physicall y
interesting states . Nevertheless, the ratio of these coefficients is finite and ma -
thematically definable ; for instance, we can regard Wu as an eigenfunction of th e
momentum belonging to the continuous spectrum . It may be hoped then that
the normalization factor zero will not enter into the final expressions for phy-
sical quantities . Now it appears probable that this is indeed true as long as w e
deal with collision problems in which Ø o is only used in an intermediate stag e
of the calculations and we get back to the physical vacuum by passing to th e
limits I t i -- so . On the other hand, if the method is used for the determination .
of bound states, the situation is worse, because for these problems the differenc e
between continuous and discrete spectrum is essential and the relation of th e
final result to the basis system built up from Ø 'o cannot be eliminated . The
failure to renormalize the Tamm-Dancoff method in these cases is probably in-
timately connected to the non-existence of ØO .

(59)

for all P,

and, thus ,

= iE'<OI fv (P')9 (P)+9 (P)(P')I 0 i
vp2 + m 2

+Z 1/p 2
	 _Ms) (a) da 2 = C' S (P'- P

. s=2

	

+ a2
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Thus, if a scheme on the lines of (18) is possible at all, on e

must be careful about the type of representation for the operators .

The "obvious" choice (57) is excluded .

§ 5 . Study of the commutation relations by perturbatio n

calculation .

Do fields exist which satisfy

[v (x') lp (x)] = 0

	

for (x ' - x) 2 > 0?

	

(63)

This is a much more general question since we leave it ope n

how the conjugate momenta n (x) may be defined and what

type of representation is meant . It can be studied by going bac k

to (48) . (63) gives some integral equations for the fin' and the

question is whether these have solutions . Of course, a rigorou s

discussion appears hopeless, but a perturbation calculation i s

possible . We put

flan = (°)fnm + E (1)fnm + E 2 (2) F'nm + . . .

with the zero approximation

(o)fnm = 0

	

for n, m 0,1 or 1,0 ,

(o)foi = (0)flo - 1

corresponding to (0) yß (x) = (.x) . Then we obtain in first order ,

setting x ' = 0 ,

å (q2 + m2) dq [(t + 1)
(1)fk, t + 1

+
(k + 1 )(1) fk+1, ` (p ' , q , p) (e`(I'p-I'A'-q)x- e~qx ) = 0

for x2 > O .
For t = 0 the equation must hold for all

	

Taking the three -

dimensional Fourier transform, we have the following functiona l

equation for the f :

Here q stands for the four-vector (-

	

+ Eq ) ; similarly
P = (-P+E) and P ElEp-q .

The f-functions are Lorentz invariant functions if their
arguments are regarded as , 4-vectors with square length m 2. It i s
seen that by (66) only those fmn

-functions are coupled which
belong to the same value of v = n + in so that each value of v
may be treated independently . We discuss the first non-trivia l
case (v = 2) . Here, because of the Lorentz invariance, we ar e
dealing with functions of only one argument . It is convenient
to put

(1)f
ll

(p' ; p) = F [- (p ' -P) 2 - m2 ] ,

2 (1)f
20

(Pi , p2) = G [- (p i + p2) 2 - m2] .

Then (66) with k = 1, 1 = 0 gives a functional equation fo r
F(x) and G (x) which may be solved. One finds the genera l
solution'

P (x) = G (x) = x + B ± C,x .

	

(67)

The case v = 2 which we. have considered corresponds to a n
interaction Hamiltonian which involves (at least in the firs t
order) only terms containing three factors of the field variable s
(three-coupling) . Thus (67) says that, in first approximation ,
there are only three types of three-coupling, compatible with ou r
general assumptions . The A-coupling gives rise to the field
equation

(D - m2) 1P (x ) = 2v2 ('x)
and the interaction Hamiltonian

V = y,2 (x) dx .

B and C produce derivative couplings . We single out the case A
for further discussion . Taking advantage of the x-representation
in which the formulae are more compact, we can writ e

(1)y)
(x)

	

- 1 AR (x , 1 ) : T 2 (1) : dx l .

	

(69)

25 The calculation is given in the CERN manuscript T/RH-1, Copenhagen ,
March 1954 .
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(64)

(65)

(68)
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The extension of the argument to the second order is straight -

forward . One finds

(2)v (x) _ .2 S AR (x , 1) AR (1 , 2) : T2
(2) q) (1) : dx i dx 2 .

	

(70)

This agrees with the formal solution of (68) by the method o f

YANG-FELDMAN and KÄLLÉN apart from the fact that there we

would obtain the additional term

AR (x , 1 ) A R (1, 2) A (1) (1, 2) q) (2) dxi dx 2 .

Now, because of (38), (39), an operator of the form f (x	 xi)

cp (x i) dx i can only be a multiple of qp (x) (if it is supposed t o

have well defined matrix elements). Such a term Would be

without physical interest and is furthermore excluded ' here by

the asymptotic condition .

In the third order we meet with the well known difficultie s

from products of singular functions . It is interesting to note that,

in a perturbation calculation, this is an inevitable consequenc e

of (63), irrespective of the definition of the conjugate momenta

or of the form of the Hamilton function . The mathematical

reason is that (63) implies in the lowest order a "local" inter -

action, i . e . an expression for (1) zp (x) involving products of

(x') at the same point . In the higher orders we obtain th e

contractions of these powers of 9' (x '), that is to say products o f

A-functions of the "closed loop" type. It is not the object of

this paper to discuss whether these difficulties are really serious

or whether they could be overcome in a satisfactory manner by

a careful definition of the limiting processes. We shall here merely

indicate the extension of (69), (70) to the third order .

The troublesome terms are those which involve two con-

tractions in the commutator [ (2) yß (x) (1), (x)] . They at e

a = S AR (x , 1) AR (x , 3) A R ( 1 , 2) A (2, 3) 4 (1) (2, 3) 9' (1) dxl dx 2 dx

ß = S A R (x, 1) A R (x, 3) 4R (1, 2) 4 (1 ,

y

	

4R (x, 1) 4R (x, 3) 4R (1, 2) 4 (2,

35

There is some ambiguity in these . expressions, most evident i n
the case of a which contains 4 O 4(1) (O) . A calculation i n
momentum space with a' suitable order of integration gives th e
convergent result

.

	

.

	

~

	

~_ .Z
-

	

- ... 2

c c - 4R (x - xi) Jda
fr

a2 - m2)2

A

	

a) ~ (xr) dxi .
m

If we put

F(x - xi)

	

da I/a2
. ~ 2n2

4R (x xi ; a) ,
'~2m (a-m )

then we can write for equal times of x and x

cc 5 F (x x i ) J (x - xi) 9 (xi) dxi ,

and this may be compensated by . a term from [ (3)lY (x) ~0) rp (x) ]
if we put

(3)y,' (x)

	

d, (x - xi) : zN2 (xi ) : dxi .

The same technique of shifting the retardation sign from one o f
the functions 4R (x, 1), 4R (x, 3) may be applied in the case ß
and y . If we add to ß and y the antisymmetrr ic supplemen t
arising from [(2)yß (x) T ip (x)], we have

A R (x , 1) 4R (x, 3) 9' (2 ) {[A R ( 1 , 2) 4 (1, 3) 4 (1) (2 3)

- AR (3, 2)A (3 , 1 ) 4(1) (2 , 1 )] + [4 R (1, 2) 4 (2, 3) 4 (1) (1, 3)

-4 R (3, 2) A (2, 1) 4 (1) (1 3)]} dxi dx 2 dxi .

The two square brackets we call Ki and K2 , respectively, and

S K1 q)(2 ) dx2= 01(x i ,x3, P)9 (P) ô (P 2 +n12.)dP,

K2 4) (2 ) dx 2 =
5

Ø2 (x i, x3 , P) 9), (P) 8 (P 2 + m 2) d P .

Similar to a, Øi and 0 2 may be defined as convergent expres-
sions which vanish for space-like (xi - x 3 ) and which are
antisymmetrical in

	

x 3 . We can split them like 4 (x i - x 3 )
3 *

3) 4 (1) (2, 3) q) (2) dx i dx2 dx 2

3) 4 (1) (1, 3) q) (2) dx i dx 2 dx 2



36 Nr . 12 Nr. 12
3 7

into a retarded and an advanced part . For equal times o f

and x we can use

dR(x ,
1 ) 4 R(x > 3) ØR( 1 , 3) = JR(x,1)d(x,3)Ø

R (1, 3) ,

4 R (x, 1 ) 4 R (x , 3) ØA ( 1 , 3 ) = a (x , 1 ) JR (x, 3) ØA (1 , 3 ) .

Such expressions may be compensated by a suitable term in (3) 4f) .

These remarks seem to indicate that it is possible to carry

on the expansion (69), (70), to higher orders, but a more thoroug h

investigation of this point is necessary .

Summary.

An investigation is made of the possibility of defining a theory

which is in accord with the principles of quantum physics an d

special relativity and which describes the interaction processes

of particles . There is no contradiction between these three re-

quirements, and a simple mathematical expression for th e

combination of them is given in equation (1). One may then

regard field theory as an extension of quantum mechanics to a

system with infinitely many degrees of freedom in such a wa y

that (1) is satisfied . The fact that we are dealing with infinitely

many degrees of freedom gives rise to some mathematical pro-

blems which-though not generally recognized-have been solve d

to a large extent . They involve the ambiguity of the canonica l

commutation relations

[Pk , qt y =

	

16kt ;

and the question how to recognize whether some function F (p, q)

is a proper operator, an improper operator or a senseless ex-

pression .
In comparison with the general set up of a relativistic quantu m

theory of particles the conventional field theories introduce some

additional requirements . The basic variables are there supposed

to have 1) the simple relativistic transformation properties of a

field, 2) vanishing commutators for equal times, and 3) they

should satisfy the asymptotic condition (15) . Taken together these
requirements imply a very strong restriction and it is not clea r
whether they are not actually incompatible if equ . (1) is taken
into account 26 . We have proved that if 2) is dropped we hav e
again the wide class of possible theories allowed by the genera l
considerations of Chapter I . The same holds of course if both
1) and 3) are dropped . It does not seem to help, however, t o
leave out only 1) as long as we still want relativistic invarianc e
of the S-matrix .

In the lowest orders of a perturbation expansion the assump-
tions are compatible and have physical significance as born e
out by the experience from quantum electrodynamics and
ß-decay .
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