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In the present paper!, the general conditions which a relativistic quantum
theory of interacting particles must satisly are investigated and brought into
mathematical form. Some difficulties connected with the infinite number of de-
grees of freedom are pointed out. Espemally the fact that the canonical com-
mutation relations. no longer have unique solutions must be taken into account
in all discussions of field theory. It is shown that the ‘free field vacuum” of
the Tamm-Dancoff method and Dyson’s matrix U (4, £,) for finite {, or {, can-
not exist. The possibility of a conventional field theory in which the ﬁelds com-
mute for equal times is investigated.

Introduction.

In the past few years, considerable effort has been devoted to
the question whether a field theory of conventional type plus
renormalization may be regarded as a well defined mathematical
scheme which is only formulated in a somewhat awkward way.
An affirmative answer to this question would mean that it is
possible—at least in a certain idealization—to separate the pro-
blem of the interaction of elementary particles from that of their
existence and constitution. Of course it is quite clear that such
a separation cannot ultimately be satisfactory®. From a certain
point of view, it might even be correct to say that it is just this

1 The major part of this work has been done during the author’s stay at the
Institute for Theoretical Physics in Copenhagen as a member of the CERN
Theoretical Study Group.

2 To mention only one of the many arguments which have been put forward
in this connection: the presence of electromagnetic interaction is always accom-
panied by a mass contribution of the order of magnitude of the electron mass
(mass difference proton-neutron, charged and neutral meson). This seems to
suggest that, in a more satisfactory formulation of electrodynamics, one should
not have the “mechanical mass” of the electron as the bhasic constant, but some-

~‘thing independent of the particle type, say a cut-off length I. Ordinary electro-

dynamics corresponds to the idealization { = 0, in which case the mass becomes
infinite.

1*
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undue separation which causes the divergence difficulties in
field theory. On the other hand, we must keep in mind that,
in essence, quantum field theory is (or rather should be) nothing
but an extension of quantum mechanics to a system with in-
finitely many degrees of freedom in such a way that, instead
of invariance under Galilei transformations, we have Lorenlz
invariance. Now it is evident® that there is no contradiction
‘between the general framework of quantum physics, the rela-
tivity principle, and the fact that we want to deal with a system
of arbitrarily many particles. Therefore a mathematically con-
sistent formulation of such a theory should certainly be possible
withoul introducing essentially new physical ideas to explain
the constitution of elementary particles. This statement con-
trasts strangely with the fact that it is extremely easy to write
down any number of formalisms which may be regarded as the
quantum mechanics of some hypothetical system, whereas up
to now not a single model of a field theory has been given which
meets all consistency requirements. The aim of the present paper
is to work out some criteria of consistency to which the for-
malism must be subjected, to point out a few of the mathe-
matical difficulties connected with the infinite number of
degrees of freedom, and to apply the results to a discussion of
some of the basic assumptions and calculating methods of a
field theory of conventional type. In this way we come back
to the question mentioned in -the beginning.

In Chapter I, the general assumptions are formulated and
combined in a form suitable for later application. They include
the principles of quantum physics, relativistic invariance, and
the “‘particle postulates”, i. e. those requirements which ensure
that the theory can be interpreted as describing the interaction
processes of particles. Chapter II deals with some mathematical
questions. A few simple consequences, which may be drawn
without recourse to perturbation calculations, are given in the
first paragraphs of Chapter III. It is shown that general field
theories exist, i. e. theories in which the commutation relations
of the field operators for equal times are not fixed a priori, and
that they are just as wide in scope as are S-matrix theories. For
the case of conventional theories in which the field operators

3 This will also be discussed in Chapter L.
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are required to commute for equal times, a \;ery simple argument
shows that the so-called “‘free field vacuwn™ does not exist.
This implies that in the (old) Tamm-Dancoff method, in which
this concept plays an important role, additional difficulties are
introduced, and also that Dyson’s matrix U (¢, {,) cannot exist
if one or both of the times ¢, {, are finite.The question as to
whether a conventional theory is possible at all is investigated
in the last paragraph by a perturbation calculation. It appears
that the requirement of commutability for equal times leaves
only a few types of models, and also that the appearance of
highly singular functions, which need careful definition and
handling, is an inevitable consequence at least in perturbation
calculations.

In order to eliminate all difficulties or complications which
are not essential to the main question, the discussion has been
limited, in Chapter III, to the simplest conceivable physical
situation, the case in which only one type of particle exists. It
is supposed to have spin zero and mass m.

I. General assumptions and. immediate consequences.

§ 1. The postulates.
4. ‘Quantum Physics.

We deal with a Hilbert space ). To every ‘‘state” of the
system corresponds a normalized vector ¥ of ). If we know that
the system is in the state ¥, the probability of observing a state
¥, is given by the absolute square of the scalar product

w = | (P, ¥y) 2
To connect the abstract scheme to physical reality it is necessary

to give the coordination between the ‘‘states” experimentally
defined in terms of Geiger counters etc., and their corresponding

- elements ¥ of §. This is called “‘the physical interpretation of

the theory’’.
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B. Relativistic Invariance.

The term Lorentz transformation (L. T.) will be understood
to include also translation in space and time, but not reflections;
that is to say, we deal with the 10-parametric inhomogeneous
Lorentz group where the elements may be characterized by the

coefficients Ay b# of the transformation

’
xr, = a

M v Ty — by (pov=10,1, 2, 3).

The index 0 refers to the (real) time coordinate. As the scalar
product between two 4-vectors p and x we shall write

PT = P; Xi— PoTy (i=1,2,3).

We also consider the reflection elements s,, s, and s = 5.3
giving the transformations '

’ [

Spt xr; — —X;, Xy — Xy
! ’

St xr; = X, XLy = — Xy
r

S mlu = ——x'u.

The invariance of the theory with respect to these reflections will
not be relevant in the context of this paper but, for the sake
of completeness, a short discussion is included.

It is convenient to state the invariance requirements in con-
nection with 4 in a form introduced by WienNeRr?: To every

element I of the Lorentz group there is attached a unitary.

operator D (L) in ) so that
D (L) D (Ly) = & D (L4Ly)-

Mathematically speaking: in ) we must have a representation
of the Lorentz group. The physical significance of the operators
D (L) is the following. Let My be the apparatus needed for the
experimental realization of the state ¥. We can envisage another
apparatus My, which—if viewed from a Lorentz frame 2'—
would be described in exactly the same way as My is described

4 E. WIGNER, Ann. of Math. 40, 149 (1939). See also V. BARGMAN and E. Wrc-
NER, Proc. Nat. Acad. Sci. 34, 211 (1948).
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by an observer in 2, i. e. My, differs from My only in space-

time orientation. Then, if L is the L. T. which carries X’ over
into- 2, we have

Y =D ¥
for every state ¥.

The invariance against reflections may be formulated in a similar
way. One difference is that the operators T, C, and J, which correspond
to the elements s;, s; and s, respectively, could also be ““anti-unitary’’s.
In fact, it appears that, for the cases of physical interest, C and J are
anti-unitary whereas T is unitary. The physical significance of T is
straightforward. We have to consider two experimental arrangements
which are related like a right- and left-hand glove. In the case of C,
a similar general definition does not seem possible since we cannot
interchange past and future. However, for the special case of a state
which is localized around a point z = (x, {), one may take the time-
inverted state as the state of localization around z' = (z, — ).

It is important to keep in mind that we can speak of the invariance
of the theory -with respect to these transformations only if operators
T, C, J exist which have both the correct structure relations with
each other and with the D (L), and also the physical significance
mentioned. One can show, for instance, that in all representations of
the Lorentz group, which correspond to particle systems, there exist
operators which obey the structure relations prescribed for T or C.?
It is not true, however, that every Lorentz invariant theory is auto-
matically invariant under space or time inversion, since the formal
operators T, € need not have the specified observational significance
if more than one particle is involveds.

C.. Particle Postulates.

We shall not here distinguish between ‘“elementary’” and
“compound’ particles. This is a matter of convenience rather
than of principle. As characteristic of a particle we regard the
localization of the events which may be caused by it. Thus, we

° An anti-unitary operator is an operator which transforms a linear relation
Ly W, = 0 into the linear relation bhetween the image vectors Xagy ¥, = 0
(complex conjugate coefficients!). The scalar product of the image vectors is the
complex conjugate of the scalar product of the original vectors (¥, ¥;) = (¥, ¥*.

8 For instance, J D(0) = D(— b J, I D (A) = DN J,J* = - 1, where b
is a translation, 4 a homogeneous L. T.

” The case of particles with mass zero is an exception. The statement continues
to hold, however, if m = 0 is regarded as the limiting case of a small mass.

8 T had overlooked this fact in the manuscripts mentioned in ref. 23. The
point was cleared up in a discussion with G.LtpeErs and L. L. Forpv. ~
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could use, for instance, a coincidence arrangement of two Geiger

. . . . d
counters separated by a distance d with a resolving time c3i<<~C

to single out experimentally the states containing only one particle.
If we consider all such coincidence arrangements for arbitrary
position, orientation, and velocity of the apparatus and arbitrary
distance d (which 1s only supposed to be larger than some dy;;),
then the one-particle states are those which give a negative result
in all these measurements®. The magnitude of d;, is irrelevant.
It could be taken as large as one pleases but, for practical reasons,
it will be convenient to set an upper limit to the size of the
object which we choose to call a particle.

For a theoretical analysis, it is important that the manifold
of one-particle states is thus defined as a relativistically invariant
subspace 0 of ). We can now split §® further into invariant
subspaces I)(l) and imagine this process to be carried through
as far as possible, that is to say, so far that each I)E-l) belongs
to an irreducible representation of the Lorentz group. The dif-
ferent f)gl) can be distinguished by attributes which have a re-
lativistically invariant meaning. These attributes can be con-
sidered as the attributes of the “‘particle species j7. It is therefore
just a definition of the concept ‘‘particle species’” if we say

C;. The manifold of states of one particle of type j belongs to an
irreducible representation D; (L) of the Lorentz group.

The possible irreducible representations have been classified by
Wiener?. Each of them is characterized by two numbers m and
5. These have the physical meaning of the mass and the spin
of the particle, respectively.

The representations belonging to imaginary values of m can ob-
viously not be attached to particles and, therefore, the first action of
the particle postulates must be to exclude these representations. Then,
for m > 0, the spin can take only integer or half integer values and
the representations may be described within the well-known formalism
of the wave equations of spin particles. For m = 0 there exist also
representations corresponding to a continuous spin variable. Whether
or not these representations have physical importance is yet an open
(question. They will not be considered here. S

9 The vacuum state is of course also admitted, but can be excluded in a trivial
way by single counter measurements.
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The decomposition of § ™ into the %1) becomes ambiguous if
H® contains several equivalent irreducible representations, i.e.
if we have several different particles with equal mass and spin.
This is analogous to the appearance of degenerate eigenfunctions
in an eigenvalue problem. Incidentally, it may be noted that the
eigenvalue problem for the Hamiltonian in conventional quantum
mechanics is in field theory replaced by the mathematical pro-

"blem of reducing the representation D (L) into its irreducible

components. In the degenerate case, it may be more appropriate
to consider the total space Z’f)§1) spanned by all the represen-
tations which belong to the same mass and spin as the
manifold of states for one particle. This would, for instance,
mean that instead of protons and neutrons we speak of nuec-
leons, ete.

Now going over to situations in which more than one particle
is involved, it is convenient to introduce the concept of “partial
state around a point x”’. By this we understand those properties
of the systemm which may be measured by any experimental
set-up within a large but finite space-time volume around =x.
Then, we formulate the following fundamental assumption:
C,. Whalever total state of the system we consider, the partial

state around x = (x, 1) approaches a one-particle state
for|t|—> .

For this assumption three conditions are necessary. First, we
exclude from censideration situations in which the particles fill
the total space with a finite density. Secondly, there are (per
definitionem) no “‘bound states”. Thirdly, in this general dis-
cussion we allow only normalizable state vectors (proper ele-
ments of §). This ensures that we have only a finite interaction
region outside which the particles are separated so much that
the attraction between them can be neglected. It does not mean
of course that in practical calculations we could not use plane
waves as well, if only they are handled with proper care.
Now, the experimental characterization of an arbitrary state
¥ may be given in terms of measuring results obtained in the

“distant past, for short at { = — «. As the particles may then

be considered as isolated, these results can be described by




10 ‘Nr. 12

1)

means of single-particle states. If we introduce in §;” an arbitrary

basis system f{?, a complete basis in the total B is given by the

=(N) . . . .
vectors (‘sz This symbol describes a state which asymptotically

at t = — (expreséed by the minus sign above @) has N pai‘«
ticles of types j,j ...which are in the single-particle states
k,1...etc.

If in @ one particle species occurs several times, we must
take the symmeiry principle into account.

Cs. Each particle obeys either Bose- or Fermi statistics.

+ @D.. for Bose particles

¥ —@;; for Fermi particles

The operators D (L) take a simple form in this basis system.
Each single particle state 7’ entering in @™ is transformed
independently. Thus, within the manifold of asymptotic two-
particle states @E?j’,), the effective part of D (L) is just the Kronecker
product D; (L) x Dy (L), where D;(L) and Dy (L) are the
irreducible representations attached to the particle types j and 7’
respectively. If j = j’, we must again take account of the sym-
metry principle. We indicate the effect of symmetrization by
brackets and in this case write {D]- (L) = D; (L)} The structure
of the total representation in ) may then be written

D@kﬂ+§m@+§wﬂwm@»%~

+ 2 D (L)X Dy (L) +- .

I

(1)

"The meaning of the + and X signs is that ) may be decomposed
into orthogonal subspaces (namely the asymptotic 0,1,2...
particle states) in each of which one of the terms is operating.
The identical transformation (1) refers to the vacuum state. We
have thus already incorporated the further postulate-

C,. There is one state in Y) which is invariant under oll L: T.,
the vacuum state Dy.
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Equation (1) is important because its meaning is not restricted
to the special basis system @™ from which we started. The
(direct) sum and- direct product of representations have an
invariant group theoretical meaning. Thus, the particle postulates
fix the structure of the representation D (L) completely. To give
an example: if we work in the center of mass system (spatial
momentum zero), then the energy spectrum must have a char-
acteristic structure: On top of a number of discrete eigenvalues
0, m;, we have a continuous spectrum starting at 2 m; and
having a branch point at each value Zn; m;, where the n; are
an arbitrary set of integer numbers. Similar considerations can
be made for the angular momentum. Generally speaking, if in
a theory the operators P, and M,,, of linear and angular momen-
tum (inﬁnitesimal translations and rotations) are given, then (1)
affords a mathematically clean-cut criterion as to whether the
theory is acceptable on the basis of the postulates C. Since this
decision is essentially a problem of group theory, it can be
hoped that some more powerful methods of attack will be de-
veloped than those available to physicists at present.

It may be instructive to illustrate the argument leading to (1)
by an example from wave mechanics. This may make the signi-
ficance of the basis states @™ somewhat clearer and also give
an exact meaning to statements like “‘at t = = the interaction
vanishes”. Let us consider a non-relativistic two-body problem
without bound states. The Hamiltonian shall be

‘ 1 .
H=—s—(Vi+ D+ V(&%) =, + V.

¥ is an arbitrary state vector. As always in this paper, the Heisen-
berg picture will be used. ¥ is represented by a function v (%,, Z3)
thigh is interpreted as the probability amplitude for the positions
&1, Ty of the particles at { = 0. Now we consider the sequence
of unitary operators '

U(t) — etHnt e—iHl_ (2)

It may be shown that, if V decreases more strongly than L
7

with the separation of the particles, then this sequence of




12 Nr. 12

operators converges strongly for |tl—> w11l The limit for =
— o we call R. From the definition (2) it follows that

Ut 'Y = 'y — )P (3)

For t = — =

ReHOp — JHY py » (4)

If we now introduce a new basis system in such a way that ¥
is represented by the wave function ¢ (&, %,) which belonged
to the state R, ¥ in the old baSlS then the (total) Hamiltonian

takes the simple form H = ~———(V1+V2) @ (T, T,) iS now" ‘

the probability amplitude for the positions *;, ®, at f = 0 as it
would be calculated from the results of asymptotic observations
under the assumption that the particles had moved without
interaction until ¢ = 0. This new basis system is the analogue
to the @™, apart from the fact that there we have expanded
according to-a discrete set of eigenfunctions. In'ithe new basis,
H is separable into one-particle components, which corresponds
to the independent transformation of the 9 in @™, In this
example, H is regarded as the prototype for all Lorentz trans-
formations. The ‘“‘vanishing of the interaction™ at |l| = ® i§
to be understood in the sense of a strong operator convergence.
This means that the operator of the interaction energy does not
itself vanish, but that, applied to a state e™'¥ (where ¥ is
arbitrary, but fixed), it gives an image vector which has zero
length in the limit |l| — o . These remarks may serve to handle
the limits [ll% o in the time-dependent formulation of scat-
tering ploblems in a way which is both nearer to the physical
meaning and simpler in mathematics than the introduction of a
convergence” factor e—*ltl to “switch off the interaction”’. One
must only keep in mind that all the asymptotic relations are to
be regarded in the sense of a strong operator convergence.

10 This theorem provides the basis for the treatment of scattering problems
by Dirac’s time-dependent perturbation method or, in more modern language,
by means of the interaction representation.

11 A sequence of operators U, is said to converge strongly towards a limit U
if the application of (U, — U) on an arbitrary but fixed state ¥ produces a
sequence of image vectors ‘F]:. which decrease in length towards zero for k> :;

lim H (U,— 10, 7| =
k—>w
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§ 2. The S-matrix.

The same arguments which have been used in § 1 to define

the basis @™ can be carried through if everywhele we put

‘ t = 4+ o instead of t = — . Then we obtain a second com-

+
plete orthogonal basis @), The unitary operator which connects
both of them is the S-matrix

P = SO, (5)

Here, & is the array of indices (identical on both sides of the
equation) which characterizes the results of the asymptotic
observations. We simply call £ the “configuration’.

+ + - -
Sgg = (Dg| S|P = (D [S| Do (6)

is the transition amplitude from the asymptotic configuration
Eat t = —w to & alt + = + w. These matrix elements are
therefore related in the well-known way to the cross sections for
various processes. Because an L. T. changes the configuration
at { = + % and { = — o in the same way, we have

[D(),8]=0 for every L (D
and similarly

(T,S] = 0. (72)

a

In the case of time inversion, we first define the operators C

and C by
— S

where & is obtained from & by applying the single-particle time
inversion operators C; to all the one- paltlcle states [ entering
into the conﬁgulatlon. The actual time inversion operator C

must, however, not only change & into &, but also interchange
t= + ® and t = — w, i.e.

CPz = Bz <)

or
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»)_
CS=(C; SC=C. - (9a)
Now
— +
C2—= (2= (2= + 1.
Therefore
stc = ¢st (10)
and, similarly,
StJ = JS. (10a)

This is a general formulation of the principle of detailed ba-
lancing!?

The S-matrix defined by (5) would perhaps better be called
the complete S-matrix. In the majority of the work on S-matrix
theory, a distinction between elementary particles and bound
states is made, and the term S-matrix refers to the submatrix
of our S between the scattering states of the elementary particles.

§ 3. The formalism of field theory.

A complete operator system!?® in ( is given by the creation
and destruction operators of the various-particles in the different
quantum states. They will be called @}’ and al’?, respectively,
if they refer to the asymptotic configuration at ¢ = — . adt
acts on a basis vector by adding to the configuration & one particle
of type j in the state k:

o P, = mﬂ‘;ﬁ" (11)

12 It is interesting to see at what point of the argument leading to (10) the
— +

requirement of invariance under time inversion is used. C and C may always be
defined in a Lorentz invariant theory and they have the correct structure relations.
The definition (9a) is adapted to give the correct physical significance to C. Thus,
if the theory is invariant under time inversion, ¢ must also have the correct structure
relations, and vice versa. Now the relations with D (L) are correct, because S
commutes with all D (L). However, C* = 4- 1 is not obvious and thlS imposes
some restrictions on S (detailed balancing).

13 ““Complete” means that every operator in { may be approxunated by poly-
nomials in these basic operators. :
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. The corresponding destruction operator is the hermitian con-

jugate. It is convenient to fix the factor 4 so that the operators
obey the canonical commutation relations*

@ "] — @t — o
for Bose particles, (12)

@ af"y = {a® ai"m = o

=(f 74
{uk]) ng] )T> : 6]{[6]']"'

for Fermi particles. ! (13)

If we were dealing with a system with a finite number of degrees
of freedom these commutation relations alone would fix the
operators ui’, uf’* uniquely up to a unitary transformation.
In the following chapter it will be discussed that this is no longer
true in our case. In order to achieve a' unique specification
(apart from equivalence) one must require, in addition to (12)
or (13), that there exists one state (the vacuum) for which

) @y = 0 (14)
for all &k and j.

In mathematical language: § is the space of an irreducible
representation of the commutator ring (12), (13), with the auxiliary
condition (14); irreducible, because the operators in question
form a complete system.

Again we can replace the minus signs above @ and u' in
(11) by plus signs and obtain a second set of creation and de-
struction operators referring now to the asymptotic configurations
att = + «. The two sets are of course connected by the S-matrix.

The creation and destruction operators aQ’, @’ can be com-
bined in the well-known way to a continuous mamfold of oper-
ators ¥ () (see, for instance, Chapter III, § 1). These operator
fields are the “‘incoming fields” of Yane-FELDMAN and KALLENS;

. +o
similarly, the ¢ (x) are the “outgoing fields”’. The essential

14 The deeper significance ol this choice is that the creation operators in dif-
ferent basas systems of one-particle states are simply related. Thus, if ek =2Cryla,
then uk Lclmulr

18 C.N. Yane and D. FELbman, Phys. Rev. 79, 972 (1950); G. KALLEN, Ark.
f. Fys. 2, 187 (1951).
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feature of field theory is that these operators ¢\ (x) and ;(f) (x),
which have a simple physical interpretation in terms of asymp-
totic observations, are regarded as the asymptotic limits for
t = 4 o of other operators, the “actual fields” 4% (x). In
symbols ’

¥ (x) > g (@) for t— k@, (15)

where the arrow again indicates strong operator convergence.
These 3/ (x) are regarded as the basic quantities of the theory.
They are defined by their commutation relations (at least in
theories of conventional type), and the infinitesimal Lorentz
operators P, and M, are given as functions of them. This pro-
cedure is in complete analogy to that in quantum mechanics.
There is only one additional requirement in field theory, namely,
that the y' () should have the simple relativistic transformation

properties of a field. The effect is to fix the M, as soon as the P,

are given. This restriction is, however, not very serious in itself
and in fact it will be explicitly demonstrated later that theories
exist which are built on the concept of covariant operator fields
y; () satisfying the “‘asymptotic condition’” (15) and which are
able to yield any S-matrix. The central question is then by what
relations the u; (x) may be defined in the basic equations of
the theory. Is it possible, for instance, to require that the field
operators at points separated by a space-like distance commute?
Although this mathematical question will not be decided in this
paper, we can at least exhibit some of the pitfalls which tend
to make rather inconclusive many general statements reached by
the standard methods. ‘

In the scheme of field theory outlined above we have one
field for every existing particle species. The extension to the case
in which one introduces a smaller number of fields and thereby
a distinction between elementary and compound particles is of
course more interesting for practical applications (meson theory),
but will not be considered here. '
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I1. Mathematical Consideralions.

§ 1. Inequivalent representations of the canonical
' commutator ring.

This section refers both to the commutation relations (12)
and the anticommutation relations (13); nevertheless the dis-
cussion will be restricted to. the former. Combining the indices
k and j to a single index k, the relations are brought into the
canonical form by substituting

1 1
9 = ﬁ(uk +ub), = %(ﬁ‘”lﬁk (16)

qx and p, are then hermitian operators satisfying

[gx ) = [pepd = 0, [pra] = — idy. (17)

In the conventional field theories we have commutation relations
of the form :

v @ v E)] = @ a @) = o, }
N SN (18)
n (3 v 3] = — 16 G — 3.

These are reduced to (17), for instance, by putting

w=\k@v@ & p=\L@@a, a9
whereé the f, (Z) are an arbitrary complete system of real, ortho-
gonal, normalized functions.

It is a well known fact that for a firite number N of degrees
of freedom there is only one (irreducible) representation of the
operators p, g of (17) (apart from equivalences)‘. This may be
obtained by considering the g, as multiplication operators, the
P as differentiation operators. It is more convenient for our
purpose to work with the g, u} and the “occupation numbers™

w = uf iy (20)

‘which have integer eigenvalues ranging from 0 to . A complete

orthogonal system is given by the simmultaneous eigenfunctions
Dan.Mat. Fys. Medd. 29, no.12. . 2
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of the »,.. Each basis vector is then specified by an array of N
occupation numbers (v,- - vy). 1y acts as a destruction operator,
uj, as creation operator for the k™ “oscillator”, i. e. they decrease

or incréase v, by 1. The “vacuum state” @, = (0,0---0) may
be defined abstractly by

u, @, = 0 for all k. (21)

If we pass now to the limit N — °¢ one new feature appears.
A possible basis vector results from any distribution of integer
numbers »;, over the infinitely many oscillators. The “‘number”
of these possibilities is no longer countable. It is given by 8§ = x;
(Xo representing a countable infinite set, ®; the continuum).
Thus, the straightforward extension of the method used for
finite N leads to a vector space § with a continuum of ortho-
normal basis vectors. This is no longer a Hilbert space in the
ordinary semse of the word, though the term “‘non-separable
Hilbert space’ 1is used for it in mathematics.

In this connection, we must remember that, for the description
of the physical situation, there is no need for such a large space.
[t is also well known that even for NV = % there is a represen-
tation of (12) within an ordinary Hilbert space. In fact we have
used this representation in the previous discussion. It follows
from the assumption that there is one vacuum state satisfving (14).
Starting from this assumption, the argument can be carried
through in essentially the same way as for finite N. The point
is, however, that, for infinite &N, (14) is no longer a consequence
of (12). In other words, there will be different irreducible re-
presentations of (12). ‘

One might perhaps be tempted to think that the ambiguity
left by the relations (12) or (17) is a matter of mathematical
sophistication without relevance to field theory. However, the
following examples will show that, starting from the “standard
representation’ of (12) in §, we obtain, by the very simplest
substitutions, operators in the same space which belong to
inequivalent representations. If one disregards the inequivalence
and tries to calculate a unitary matrix which connects the two
operator systems, one obtains infinite resuits.

Let us start from operators uy, ul, obeving (12) and .(14),
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i. e. belonging to the “‘standard representation” (12). Then,
introduce the linear combinations

vx = cosh e uy -+ sinh &-uf,

v} = sinh & uy, + cosh e-u,.

(22)

The commutation relatiohs are unchanged. If we take ¢ to be
infinitesimal, we have

dup = vy — uy = eul,

(23)

duf = v} —ul = suy.

Writing this formally as an infinitesimal unitary transformation,
the generating operator is

;
T:EZ(uiui—ukuk), (24)
i.e. > .
ie [Tw] = eul = duy, ie[Tul] = ew, = dul.

It is easily seen that T is not a proper operator, but trans-
forms every vector of § into one with infinite length. However,
we can follow the matter a little further by going over to the
non-separable space § in which a vector is represented by a
function v (gy, g . ..) of infinitely many variables and

P

e Mo ) st e i)
uy = V2 Qk‘i—aqk ;U = V2 =g,

One can then work out the effect of the operation ¢'*T and try
to recognize its implications for the ‘‘physically interesting
states”” which are a subset of §, namely the Hilbert space §
generated by the 1 from @,. The result is that ¢®7 transforms
every vector of § into one which has a zero scalar product with
any second vector from b. '

(Dy, T D) = 0 for every @, P, from J. (25)

Nevertheless, @; — e'*T®, is a vector with finite norm in §.
In order to understand how this may happen we consider
2%
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the case of a very large but finite N. Then there is no distinction
between §) and ). The expressions (25) are slightly different
from zero, and of course n Qi'l H = H Dy H As N becomes larger,
the projection of @] into the subspace belonging to a total “‘particle
number” v = 2y, < n (n fixed) becomes smaller and is com-
pensated by a growth of the total probability for v << n. In this
way @; moves out of § in the limit, because there are no states
in § belonging to an “‘actually’” infinite particle number, though
the particle number may be arbitrarily large. :

To sum up: vy, v} are proper operators in the ordinary
Hilbert space §) (according to (22)), obeying the same com-
mutation relations as u, u}, but there is no proper unitary
transformation connecting the two operator systems, i.e. these
belong to inequivalent representations of (12). For the represen-
tation defined by the vy, v}, there is no “vacuum state” satisfying

Uk®£) = 0. '

A similar example which is closer to practical calculations in
field theory is the following:
We take two free fields which obey the field equations

(O—m) v, (x) = 0,
(26)
(0 — m3) yy (x) =

and which coincide (including their first time derivatives) for
t=0;

P (%, 0) = v, (Z.,0) = » (T, 0),

R 27
Py (£, 0) = 9, (2, 0) = = (&, 0),

and define in the usual way for each field a splitting into a
creation and an annihilation part, for instance for

w () = @i { e @ +in @) 7 Ea7,

d B = o i@ m@ e, (P

l/ + 1n1

Nr. 12 : 21

Then the operators u, (p), uf (_ﬁ) are connected to the u, (p),
u} (p) by a transformation like (22), namely

. o E,LE,
u, (p) ="ﬁ u; (p )+ ul (p). (29)

Now, if there is any state for which

“uy (p), Py = 0 for all p,
then there is no @, which satisfies

u (p), Py = 0 for all B,

and vice versa. This may show that the *‘strange representations”
of (12) will almost inevitably turn up in any discussion in field
theory.

We have already mentioned that similar considerations apply
to Fermi particles. The effect of the Pauli principle is to “reduce”
the number of basis vectors in §) to 2%, which is still the con-
tinuum.

The existence of different representations of (12), (13) was
discovered some time ago'®, but has not entered into the con-
sciousness of physicists until very recently!”. A systematic
study and classification has been made by WieHT™MAN and
GAirpING®S.

§ 2. Functions of the field operators.

After the basic operators have been defined by commutation
relations of the form (18), the conventional field theories proceed
to give the Lorentz operators P,, M,, (energy-momentum,
angular momentum) as functions of the basm operators. As we
have seen, the definition (18) is not complete, but we suppose
now that it has been augmented by some auxiliary condition
which fixes the representation. Then we meet with a second

1% J, v. NEUMANN, Composition Math. 6, 1 (1938); K. O. FrRieEpricHS, Math.
Aspects of the Quantum Theory of Fields, Interscience Publishers, New York
1953, Chapter on “Myriotic Fields™.

17 vaN Hove, Physica 18, 145 (1952); WicatMaN and ScaweBER, Phys Rev.,

in print. .1 am indebted to Prof. WieatMaN for a preprint of this paper.
¥ GArRpING and WIGHTMAN, Proc. Nat. Acad. Sci. 40, 617 (1954).
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problem. Almost all simple-looking formal expressions in the
¥ (%), 7 (£), which we may think of writing down, are actually
not proper operators. In most cases, they will even have infinite
matrix elements between any two states of §. What one would
like to have, then,.is a simple criterion for the class of “sensible
functions’’ of the field operators, allowing to decide immediately
whether an expression is acceptable or not. We shall illustrate
the problem for the “standard representation” (12) with
which we have to deal in the case of the asymptotic fields Jﬁo (x).
Here, a criterion which satisfies practical purposes can indeed
be given easily. The method is well known. Nevertheless, some
of the arguments may be recalled. The points I wantto emphasize
are: 1) the characterization of the class of sensible functions
of the operators (18) depends only on the type of representation
for these operators, not on their physical meaning; 2) the task
is solved for the “‘standard representation’” and may be extended
to others as soon as their relation to the “‘standard representation”
is known. This is, for instance, the case for the two examples
given in the preceding section.

Let us start from the equations (16)—(19) and assume (21).
The inversion of (19) is ‘

w(?”c)) = ZQkfk(z>’ W(%) = Zpkfk(%)' (30)

Now it is clear that all polynomials in the py, qx (0T w, u),
which involve a finite number of additions and multiplications,
are well defined operators. We can apply them, for instance, to
any basis vector and obtain again a normalizable state. This is
not true for the continuous manifold of operators w (%) which
are infinite sums of the u;, u}. In fact one checks easily that
w (x) transforms every basis vector &, into a vector with in-
finite length. However, o (ZE) has at least finite nyatrix elements,
and expressions like Sf(%) v (%) dZ are well defined operators
if f is square integrable. Hence, v () may be regarded as an
improper operator in the same way in which one can regard
eigenfunctions in the continuous spectrum as improper state

19 1f we identity (%), @ (¥) with § (%), 3 (£), respectively, the equations (16)
and (19) should be replaced by the somewhat more complicated ones which give
the splitting into creation and destruction parts (equ. (28)).
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vectors. The - situation is worse for %2 (Z) which has only
infinite matrix elements. The remedy may here be found in the
following observation. If we have a power series in the u, uj
in which each ‘term is arranged in S-product order® (i. e. all de-
struction operators stand to the right), then only a finite number
of terms contribute to a matrix element between two of the
basis wvectors (Dﬁfl\.’)... Therefore, any expression which is in S-
product order has at least finite matrix elements and may then
be regarded in general as an improper operator in a similar
way to  (€). The simple way of putting two dots around an
expression is a safeguard against infinite matrix elements. If X
is supposed to be a proper operator, then X'X must have finite
matrix elements, and vice versa. Thus one has the simple criterion:

If, in the process of rearranging an expression X (w (%), 7 (%))
in S-product order, no explicit infinities occur (i.e. if the con-
tractions are finite), X has finite malrixz elements. If the same is
irue for X'X, then X is a proper operator.

- The criterion can be extended to other “discrete” represen-

tations® as they can be related to the standard representation by
substitutions.

I1I. Applications.

In the, following chapters, the specialization to the case
mentioned in the introduction, in which we have to deal with
only one type of particle, will be made. For convenience, a
short description of the formal apparatus is given first.

§ 1. Notations.

The manifold of states of a single spinless particle of mass m
is most easily described in momentum space. An arbitrary state
is then represented by a function f (p) (p the momentum 4-vector)
which needs to be defined only for those values of p corre-

20 'We use the notations of G. C. Wick, Phys. Rev. 80, 268. The S-product

between A ahd B is indicated by double dots: AB:.

21 For the definition of discrete representation, see the papers mentjoned in
ref, 18.

S
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sponding to a possible momentum vector of the. particle, i. e.

for p lying on the positive-energy shell of the hyperboloid
p?+ m* = 0. However, it is more convenient to regard f(p) as
defined in the whole positive cone and reject the irrelevant points
of momentum space by a factor ¢ (p® + m?) which must appear
in all relations of physical significance. Thus the scalar product
of two wave functions f; and f, is defined by

o =\ () (9 8 (0 + 1) dp, 31)

where it must always be kept in mind that the integration is
essentially one over the positive-energy cone of p only. The
transformation properties of the wave functions are

D) = f': ' (p) = ™f(p) (translations).
D) f=[": f(p) = f(A4 %, p) (homogeneous L.T.).

A description in ordinary space coordinates is obtained by the
Fourier transformation '

f(x) = (2 n)—ggf(p) ePTS (p? -+ m?) dp. (32)
" This function salisfies the Klein-Gordon equation
@O —m®) f(x) =0, (33)

but contains only positive-energy Fourier components so that the
initial condition f (&, 0) is sufficient to determine f (&, t) for all

times. The scalar product in this formulation has the more
complicated form

o to =2\ @ 0G0 (3)

Therefore, f () may not be du ectly interpreted as the pr obablllty
amplitude for the position Z.

Let &, be the destruction operator for the stdte fi (wave
function fi (p)) in the asymptotic configuration at { = — o (see
Chapter I). Then it is convenient to define the continuous mani-
fold of destruction operators @ (p) by
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ae=\a (o) f () 0 (9 + m) dp, (35 2)
or conversely

a(p) = Zh(p) T (35 b)

where it has been assumed that the f; (p) form a complete system,
orthogonal and normalized according to (31). The creation
operators u' (p) are the hermitian adjoints and the relations (35)

apply of course equally to the operators i Z(p) for the asymp-
totic configuration at t = 4 .

The commutation relations are most conveniently expressed
in the symbolic form '

[ (p) a’ (p)] 6 (p* + m*) & (p* + m*) }
| (36)
=8 (@—pHo@@*+md). -

The transformation properties are:

D (D) zi(rp) DI (b) = e91pbu( p) (translation), l -
D(A)ya(p) D' (4) — @(4,p) (homogencous L. T.). |
In analogy—r to (32) we define

2 (@) = @nyt 3(p) €76 (p + m®) dp. (38)

The creation and destruction operators are combined to the
“incoming field”

F() = ae) +al(@. (39)

§ 2. The existence of general field theories.

As the @ (p),a' (p) form a complete operator system, an
arbitrary operator may be expanded in a series of S-products

of the i (p), i’ (p),
: X = ZX™ (40)
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where X" contains n creation and m destruction operators,

A= SF s py At (p) a(p) o (pt+ m?)d(pP4-mt)dp’dp.  (40a)

Here p’ is an abbreviation of the n arguments p;- - -pp; similarly
p stands for py- - -py,,. i (p) for the product of the m destruction
factors, etc. The integration is extended over the positive-cnergy
cones only. In order that X be invariant under homogeneous
L.T., each F'™ must be a Lorentz invariant function of its
arguments. Invariance of X under translations means that F™
contains a factor § (Xp" — Z'p). The S-matrix must fulfil both

conditions, the operator v (0) (‘‘actual field” at the origin) the
first.

§™0) = 23 (o p () @(p) 6o+ ) (P ) dp dp.

™™ is an invariant function of n vectors p’ and m vectors p,
symmetric against any permutation of the variables on either
side of the semicolon. Also ‘

E@ ) = (i p). (42)

From (41) we get u (x), replacing f by fe!(ZP—2P)2 and

nm 7 2 nm —z?Z >
(P, 1) = (2 %)‘?Szp (F, )¢ d#
2E, |

’ > . . A ~ = v
— Q\]amn (p’;p)6(2;6*E_ﬁlwp)eﬁl(Zh‘ZE)tuT(p) u(p)é(p 2 1 m?)

X 0 (p?+m®) dp dp.

The letters £ mean the energies belonging to the respective

momentum vectors, e. g. Ep = Vf‘z + m?. To tulfil the asymp-
totic condition (15) we must choose [ so that

lim ™" (;, H—0 (except for ' and %),
>0 .
(for at least some index pairs n, m in
order to obtain an S-matrix different

from the identity).

lim ™™ (;, H=0

t=-+ 00

(41)

ey = S\amoip at @) aw) e @p—Zp — P
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This can only be so if f contains a factor 6, (ZE —XE — &)
which in turn can only arise from one of the invariant functions

By = 8, [(Bp— Zp) + m?)
hy = 0_[(Zp —2ZpH? + m?].
= gi1hy+ gz by (44)

This also gives a separation of o into two terms v, and y,. Taking
into account the d-factor in the spatial momentum components,
we can write

or

We write

1 B
hy = '?P[é-y (Ep -+ &) + 6+ (EP“S)]:

b

where
e=JXYE__ZXFE.

In the limits ] t ] — o the factors he ¥ will become

> ]lle-ib‘t ]lge_iat
= — o L By (Bpte) | — e BHS (Ep—s)
t~>+<‘>or | —1——e‘i‘EP‘c3(E —e) L el Y (Ep-t¢)
2E, N 2E, il
To satisfy the asymptotic condition at { = — o the function g,
must vanish in-a region around ¢ = — Ep or, in other words,
the variability domain of the 4-vector ‘
g=2p—2p (45)

must be so restricted by ¢, that in the backward cone values
giving ¢% 4+ m® = 0 are excluded. Similarly, g, must exclude
values g% 4 m? = 0 in the forward cone. If this is satisfied, then

’ 0(p®+ m*) 6 (p* + m* dp’ dp (46)

i@ = S\gm @i (0) 2 () 0 p— Zp + P)
T s+ mY 8 (pr + m) dp’ dp,
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As ¢, and g, are arbitrary for the relevant values of their ar-
guments it may be expected that the frame is wide enough to
give any S-matrix. Indeed this can be checked easily in the
limit of very weak interaction.

§ 3. Commutation relations of the field variables.

The representation of the field as
p(x) = (2 ”)*%Zsf'"" (p's p) ¢ EP=2P0=at (p') i (p)

5 (p' + m®) & (p* -+ m?) dp’ dp

and the knowledge we have obtained about the structure of the
f™ allow a few statements about the commutation relations. If
we form the product v (') v () and rearrange it in S-product
order we get

v @)@ = @ 2ot () ap ap ' ap

(47)

M mes mes , (48)
@t () @' (p) @ (p) @ (p) X ! FP— TP+ IEp—2pe

Sf“""' @50, ) ™ (P g5 p) 1FICTD 0 () dg,

where 6 (x?) stands for the product of the 6 (p® + m®) for all
the momentum vectors which appear. There are s momentum
vectors ¢ in the last integral. The commutator [y () ¥ (x)] is
then obtained by subtracting the same term with a and « inter-
changed. By virtue of the asymptotic condition we must have

) = (g = 1. (49)
We first look at the vacuum expectation value of (48). Here only
the terms with m = 0; m’ = s = n; n’ = 0 contribute.

ol (x)y )]0
= a2 Zst{| £ (@) [ FOE D 5 (g2 4 ) dg. ¢

Because of the relations

AT (Era) = (2 n)"3sei956 (Q* +adQ, (5D

Q>0
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AT (E ) — AT (—Ea) = 4‘(5;0) (562)
we can write :
—i{0 |y @)y @)]]0>
) (53)

— 4 (' —x; m) —}—S:Z:SF(S) () 4 (z' — x; a) da?
with
FO =) = st M @Po@— 0o+ mya. oo
For equal times (1’ = f)
Ollp@E)v@I0>=0

CO)Tp @) p@)]]0) = —isGE—F [1+§SF(3)(a)da2] l (55)

=—id(@—7).C.

F® (a) is a positive, real function and hence € > 1, unless all
f*° vanish for n'+ 1.2

In a conventional theory (in which [y (x) v ()] = 0 for
equal times) the latter alternative may be excluded. One can,
for instance, calculate the matrix element of the commutator
[9 (x) v (x)] between the vacuum and a two-particle state.
Under the assumption f*° = 0 for n + 1, this gives

Cprs pe| v (@) w ()] ] 0

= e;i(pﬁpﬁ)x'Sf“ (1> P23 @) €979 8 (¢° + m?) dg

it Iz S-le (Pl’ P2 Q) e @ —x) 5 (q* + m?) dq.

Ehis expression should then vanish for arbitrary p,, p,, &' and
x as soon as ¢’ = t. This can only be true if £2!is identically
Zero and this, in turn, would mean that there is no elastic
scattering.

Thus, in a conventional theory, it is necessary that f*° differs
from zero at least for some value of n + 1. According to (55),
this then implies that 9 (x) cannot be identified with the canon-

# The formulae (53) — (55) have been given previousl
1 y by H. LEHMANN,
Nuovo Cimento 11, 342 (1954). The derivation here is essentially LEEMANN’S.
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ically conjugate momentum of the field, though one could per-
haps have®

p(@) = Ca(X) with C>1. (56)

§ 4. Conventional theory.

We suppose the theory to be defined in terms of operators
w (%), 7 (£) obeying (18). The commutation relations are the
same as those for the § (%), ® (¥) and it appears therefore
natural to ask whether a unitary operator R exists which trans-
forms the one set into the other. ) .

p (@) =RF@ R, a@ =

In other words: can ¥ (x),n (cc) belong to the same represen-
tation of the canonical commutator ring as P (&), 7 (%)? This
is usually assumed and, in fact, R'is Dyson’s matrix U (0;— ).

The canoni¢al momenta 7 () need not have simple rela-
tivistic transformation properties. But, with respect to trans-
lations in space, we shall also require

Ry (%) R (57)

D(B)yx (F) D' (D) = = (B —b). (58)

(58) holds in all customary theories (for imstance if 7 (Z) is
proportional to ¢ (%)) and,; indeed, any other assumption but
(568) would appear exiremely unnatural. From (58) and the
analogous equation for w (%) it follows that R must commute
with the space translations

[RP] = 0. | (59)

This is also a well known fact in conventional theories (con-
servation of spatial momentum in all virtual processes). Now the

spectrum of P is continuous, apart from a single discrete eigen-
value 0 which belongs to the vacuum state @,. If we apply (59)
to @, we obtain

> >
PR®, = PPy = 0. , (60)
If R is a unitary operator, then @ is again a normalized state
and (60) indicates that
23 Jf one drops the factor C in (55), (56), one has to take it up in the asymptotic

condition. This is only a different way of expressing the same thing. Cf. ref. 21
and G. KArvEN, Helv. Phys. Acta 25, 417 (1952).
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Py = D, (61)

because there are no other discrete eigenstates of B.In all theories
considered so far, (61) is contradicted immediately by the form
of the Hamiltonian. However, we can also disprove (61) without
reference to any particular form for H. This equation would
imply :

v(P) Dy =0  for all B,
with

v (P) = R (P) Rl = Epp (B) + in (D).

Here (73), i (1?’) are the Fourier transforms of v (%) and = (z).
Therefore

iEp{al|g@)|0),

—{Ep<0|§ (P)|ad

Calm@yloy =

COln(Py|ay =
and, thus, T

Ol (P y (P)]] 0
—ﬁlE'<0IV’(P)’#’(P)+W(P)‘P(P)|0>

VBt e

= 5P D)1 +Z V ZF(S)(a)da — €' 5 (P’ —P)
| ta

with C’>> 1 -which contradicts the commutation relations. We
conclude:

The unitary matrix R of (57) cannot exist, and the same
applies to the “free field vacuwm’ of the Tamm—Dancoff method.2*

24 The question may be raised as to whether the non-existence of @'
represents a_serious obstacle against the use of the Tamm-Dancoff method in
practical calulations. One may argue that, loosely speaking, @, is a state which
has zero expansion coefficients with respect to any orthogonal system of physically
interesting states. Nevertheless, the rafio of these coefficients is finite and ma-
thematically definable; for instance, we can regard @, as an eigenfunction of the
momentum belonging to the continuous spectrum. It may be hoped then that
the normalization factor zero will not enter into the final expressions for phy-
sical quantltles Now it appears probable that this is indeed true as long as we
deal with collision problems in which @; is only used in an intermediate stage
of the calculations and we get back-to the physical vacuum by passing to the
limits |f| > o . On the other hand, if the method is used for the determination.
of bound states, the situation is worse, because for these problems the difference
between continuous and -discrete spectrum is essential and the relation of the
final result to the basis system built up from @, cannot be eliminated. The
failure to renormalize the Tamm-Dancoff method in these cases is probably in-
timately connected to the non-existence of @j.

(62)
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Thus, if a scheme on the lines of (18) is possible at all, one
must be careful about the type of representation for the operat01s
The “‘obvious” choice (57) is excluded.

§ 5. Study of the commutation relations by perturbation
calculation.

Do fields exist which satisfy
[w(x)y(x)] =0 for (x' —a)?>0? (63)

This is a much more general question since we leave it open
how the conjugate momenta 7 (%) may be defined and what
type of representation is meant. It can be studied by i(y)lmg back
to (48). (63) gives some integral equations for the ™ and the
question is whether these have solutions. Of course, a rigorous
discussion appears hopeless, but a perturbation calculation is
possible. We put

fnm — (O)fnm +g (1)fnm S (2)fnm NN (64)

with the zero approximation

>

(O)fnm : 0 for n,m-=F 0,1 or 1)01 (65)
(0)f01 _ (O)flﬂ =1

corresponding to ©gy (x) = @ (x). Then we obtain in first order,

setting &’ = 0, |

Sa (¢ + m?) dq (1 + 1) (l)fk,l+1 (P',P; q)'(eﬁipx_ei(Z‘p—Z‘p%q)x)
+ (ke DD g p) (fFEPT I T 02— ) =0

for x> 0.

For t = 0 the equation must hold for all #.. Taking the three-
dimensional Fourier transform, we have the followmg functional
equation for the f: :

S LA+ DO (P p, ) — (D) WpF L', s p)]
q

L4 1)@ (s p, PY — (ke 4+ 1) DB Pip).
E ,
P .

- Here Yy stands for the four-vector (—q + E);

(66)
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similarly
P=(-P+E)and =) —3p—3.

The f-functions are Lorentz invariant functions if their
arguments are regarded as 4-vectors with square length m?. It is
seen that by (66) only those f™"-functions.are coupled which
belong to the same value of v = n -+ m so that each value of »
may be treated independently. We discuss the first non-trivial
case (v = 2). Here, because of the Lorentz invariance, we are
dealing with functions of only one argument. It is convenient

to put
Wfi(p's p) = F[— (p' — p)* — m?],
207 (pl, pa) = G [—(py + po)? — m?].

Then (66) with £ = 1, { = 0 gives a functional equation for
F(x) and G (x) which may be solved. One finds the general
solution?

.

ijf(x):a(a;)=%+3+0x. (67)

The case » = 2 which we have considered corresponds to dn
interaction Hamiltonian which involves (at least in the first

rorder) only terms containing three factors of the field variables

(three-coupling). Thus (67) says that, in first approximation,
there are only three types of three-coupling, compatible with our

general assumptions. The A-coupling gives rise to the field
equation

A
O—m)yp(x) = V(@ (68)
and the interaction Hamiltonian

) Vo= S¢3(‘a§) d.

B and C produce derivative couplings. We single out the case 4
for further discussion. Taking advantage of the a- representation
in whlch the founulae are more compact, we can write

My () — —SAR (@, 15 * (1): day. (69)
25 The calculatmn is given in the CERN manuscript 7/RH-1, Copenhagen,
March 1954. -
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The extension of the argument to the second order is straight-
forward. One finds

@y (z) = .QSAR (@, D AR (1,2): 92 (2) ¢ (1): duy dy.— (70)

This agrees with the formal solution of (68) by the method of
Yang-FeLpMan and Kirvfn apart from the fact that there we
would obtain the additional term

SAR (2, 1) Ag (1, 2) 4D (1, 2) ¢ (2) day das.

Now, because of (38), (39), an operator of the form {f(x — x})
p (x,) dx; can only be a multiple of ¢ (&) (if it is supposed to
have well defined matrix elements). Such a term would be
without physical interest and is furthermore excluded here by
the asymptotic condition.

In the third order we meet with the well known difficulties
from products of singular functions. It is inferesting to note that,
in a perturbation calculation, this is an inevitable consequence
of (83), irrespective of the definition of the conjugate momenta
or of the form of the Hamilton function. The mathematical
reason is that (63) implies in the lowest order a “local” inter-
action, i.e. an expression for g (x) involving products of
@ (x) at the same point. In the higher orders we obtain the
contractions of these powers of ¢ (x'), that is to say products of
- A-functions of the “closed loop’ type. It is not the object of
this paper to discuss whether these difficulties are really serious
or whether they could be overcome in a satisfactory manner by
a careful definition of the limiting processes. We shall here merely
indicate the extension of (69), (70) to the third order.

The troublesome terms are those which involve two con-
tractions in the commutator [Py (x) Dy (x)]. They ate

o = SAR @, 1) dg (x, 3) Ap (1, 2) 4 (2, 3) 4V (2, 3) @ (1) dx; dx, daxy,

b= {0 @ 1) A e, 8) Ax (1,2) 41, 3) 4D (2,8) ¢ (2) day divy iy

_ SAR (@, 1) Ag (2, 3) Ap (1, 2) 4 (2, 3) 4D (1, 3) @ (2) da, dx, da,

- 19
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‘There is some ambiguity in these. expressions, most evident in
the case of o which contains 4 (&) 4® (§). A calculation in

momentum space with a suitable order of 1nteg1 atlon gives the
convergent result

a*— 4 m?

@ ~ S A (x — :rl)\ lza 2)2 A (xl x; @y ¢ (xy) dx, .
. Y2 m

If we put

- [/az——llm
Fla—a) = \gﬁ(a i Ar @ ),

then we can write for equal times of T and x
o« ~ \F(m—xl) A(T—a) ¢ (2) day,

and this may be compensated by a teun from [®y (x) Oy (T)]
if we put

By (x) ~ \F (xr— ) 92 () du,.

The same techniE[ue of shifting the rctardation sign from one of
the functions 4z (%, 1), 4 (x, 3) may be applied in the case 8-

and y. If we add to g and y the antisymmetric Supplcment
arising from [Py () Dy (T)], we have
V4n @, 1) dn (2, ) ¢ () {4n (1, 2) 4 (1, 3) 40 (2, 3)
— AR (3,2 A3, 1) AV (2, 1)] + [y (1,2) 4 (2, 3) AV (1, 3)
—Ar(3,2) 42, 1) 4V (1, 3)]} dov, dav, docs.

The two square braékcts we call K; and K,, respectively, and
. SKI ® (2) dvlcz = S Dy (g, x5, P ¢ (P)l ] .(Pz +m?*) d P,
SKQ 9 (2) duey — Scpz (x1, @5, PY g (P) 6 (P2 + m?) d P.

Similar to e, @ and @, may be defined as convergent expres-

sions which vanish: for space-like (xy—x3) and which are

antisymmetrical in x, x;. We can split them like A (x; — xg)
3*
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into a retarded and an advanced part. For equal times of x
and x we can use

Ap (B, 1) Ag (x, 3) P4 (1,3) = A(T, 1) dg (x, 3) P4 (1, 3).

. . 3
Such expressions may be compensated by a sultable.term in @y,
These remarks seem to indicate that it is possible to carry

on the expansion (69), (70) to higher orders, but a more thorough
investigation of this point is necessary.

Summary.

An investigation is made of the possibility ot defining a theory
which is in accord with the principles of quantum. physics and
special relativity and which describes the interaction pr(icesses
of particles. There is no coritradiction_between' the‘se thle'e -re«
quirements, and a simple mathematical expression for the
combination of them is given in equation (1). One may then
regard field theory as an extension of quantum r.nechanlcs tc: a
system with infinitely many degrees of freedor'n in .suc.h ;1 ‘\Vz;y
that (1) is satisfied. The fact that we are dealing with %n initely
many degrees of freedom gives rise to some mathematical pro-
blems which--though not generally recogmze?d—have been solfred
to a large extent. They involve the ambiguity of the canonical
commutation relations

P> 1) = — 0; bk, I=1,2. -0

. :
and the question how to recognize whether some function F (p, q)
is a proper operator, an improper operator or a senseless ex-
pression.

In comparison with the general set up of a relativistic quantum

theory of particles the conventional field theories introduce som:1
additional requirements. The basic variables :eu‘e there s?pposfe

to have 1) the simple relativistic tL'ansforll}atlf)n properties 0h a
field, 2) vanishing commutators for equal times, va‘nd 3) they
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should satisfy the asymptotic condition (15). Taken together these
requirements imply a very strong restriction and it is not clear
whether they are not actually incompatible if equ. (1) is taken
into account?®, We have proved that if 2) is dropped we have
again the wide class of possible theories allowed by the general
considerations of Chapter I. The same holds of course if hoth
1) and 3) are dropped. It does not seem to help, however, to
leave out only 1) as long as we still want relativistic invariance
of the S-matrix.

In the lowest orders of a perturbation expansion the assump-
tions are compatible and have physical significance as borne

out by the experience from quantum electrodynamics and
p-decay.
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