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Introduction .

I
n recent years, the notion of the S-matrix has found an increas-

ing application in the treatment of collision processes, bot h
in nuclear problems and field theory . In the numerous papers
on this subject, the definition of the S-matrix itself has, however ,
not always been the same, and the connection between the dif-

ferent definitions has not always been quite clear .
When the treatment of the collision process is based on th e

Schrödinger equation, different definitions of the S-matrix sug-

gest themselves, according as the treatment is based on the time -
independent or the time-dependent Schrödinger equation. In the
first case, one is led to the original Heisenberg definition ; in
the latter case, to DYsoN's definition of the S-matrix . On the
other hand, if one starts from the equations of motion (the field

equations) in a Heisenberg representation instead of using th e
Schrödinger equation, another method of defining the S-matri x
suggests itself, which was developed by KALLÉN and by YAN G
and FELDMAN and which has proved very convenient in variou s
field theories .

In the present paper, an attempt has been made to correlat e
the various methods and to discuss which results can be derive d
without use of expansions in powers of the interaction, whic h
results are valid as long as such expansions converge, and whic h
results can be valid only as long as the possibility of boun d
states may be ignored.

I. Notation.

In order to facilitate derivations, and to condense formula s
of n'th order perturbation theory to a printable, inspectional ,

and manageable size, we introduce a symbolic notation, as fol -
lows .

1*
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Let A, B, C, . . . . be q-numbers, represented by matrice s
with a left-hand label L and a right-hand label R, indicating

rows and columns, respectively . In Dmac's bracket notation ,

A = BC means <LI AIR> = S(LIBk> dk <k I C ~R> . (1 .1 )

In most cases, we shall use for k a set of q-numbers commuting
with each other and with the unperturbed ("free particle") energy

E of the particles considered . For instance, k may be the mo-
menta of the particles, or a set of occupation numbers .

In the following ,

A=B f(EL ,ER )means <LAIR) = <LI BI R> f(EL ,ER) (1 .2 )

in any representation in which E may be considered a function
of the variables used for labels L and R . Between braces, however ,
L and R refer to the positions farthest to the left and to the right
between such braces ; thus ,

A { B • f (EL , ER) j = C means

Ç <LAk> dk <k I B I R> f (Ek, ER) = <L I C I R> .

	

(1 .3 )

We shall put

Ei -El =

	

(1 .4)

Often we shall write a product of q-numbers and insert

between or beside the factors one symbol I (pronounced "gage" )
and several symbols s ("delt"), ' ("dash"), § ("scat"), ("flat") ,
and ? (pronounced "slash") . If G denotes the position of the gag e
between or beside the q-numbers, these symbols are to be inter-
preted as follows :

Each delt at position 4 stands for a

factor - irå(EG - Es ) = (n/i) å (EGd) •

Each dash at position d stands for a

	

1 .5 )

factor DGd EGd/(EGd + a? ) = - DdG .
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Each scat at position S stands for a

factor § (EGS) (EG-Es ± ia )- 1

Each flat at position F stands for a

	

(1 .5)

factor (EGF) (EG EF ia)-1 .

In (1 .5), a is an infinitely small, real, positive number . At
the end of each calculation we take a --> O . (Occasionally, a has
a physical meaning and the convenient mathematical limit
a - ; 0 is only a good approximation, as the physical a is small,
but not really zero) .

The dash, flat, and scat at position K are easily recognized
as three ways of dividing by EGK EG	 EK ; if the quantity
divided does not vanish for EG = EF , the results of these thre e
different divisions differ by delta functions, as discussed belo w
(see Eq. (1 .9)) . If we do not want to specify which of these thre e
methods of division we have in mind, we indicate division b y
(EG - EK) by a gage (II) at position G and a slash (?) at position K .

If -i denotes the Hermitian conjugate of a matrix .

At R> = <R j A L>*,

	

(1 .6)

then the following rules are obvious :

1 . Rules valid if A and B are any expressions containing an y
dashes, scats, flats, slashes or delts :

'All = 112(§AII .+bAI!) ,

(A II)(sBll) = A 6 BI I

åAll=IIA6 ,

('A II ) t = II (At >

OA 11)t = - 11(A t ) 6 _ - sAt 11 ,

(§All) t = 11(At )b ,

(bAll)t = II(At)§ .

<L
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In general, the rule, that the Hermitian conjugate of a produc t

equals the product in reversed order of sequence of the Hermi-
tian conjugates of the factors, applies also to products interjected
with a gage and various delts, dashes, etc ., as long as we treat
these symbols as factors themselves and as long as we put

(')t

	

-s,

	

(§)t = b,

	

(b)t = § . (1 .8)

A further general rule i s

	

§AII ='AII+åAII ;

	

bAll ='AII-åAII .

	

(1 .9 )

This rule is easily verified by multiplying these equations by a n
arbitrary function of ERL continuous along the real axis, an d
integrating them in the complex ERL plane along the real axis ,
taking the limit a ---> 0 at the end. If C (a) is a path of integration
from the minimum value of ERL to a point (ERL ),,,in ia, then
parallel to the real axis to the point -(i + 1)a, then along a
semi-circle through 0 to + (1 -Oa, and from there again at a
constant distant a below the real axis to + Do, then

	

(§ A 11) f(ERL) dERL = lim A	 f(ERL)
dE

a - -> o

	

ERr, + is
(EnL) min

	

C (a)

where P is the Cauchy principal value of the integral along th e

real axis, and where the last term derives from the integral in
clockwise (negative) direction around the pole at -ia . Similarly,
we prove

(bA II ) f (ERL) dERL = PA E
R L

f(ERL)
dERL

(EizL) min

+n if(0)AI ER EL .

So, by the first equation (1 .7) ,

f(ERL)
dERL -1 7r f(0)AI Ett = EL ,

(1 .10)
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('A II ) f (ERL) dERL = P \ A T T, RL) dERL,

	

(1 .12)
,

	

RL

and by (1 .5) ,

(,5 A II) f(ERL) dLRL =- i acf(0)AI ER=EL .

	

(1 .13)

From the validity of Eqs . (1 .10) - (1 .13) for arbitrary f (ERL)
we conclude to the relations (1 .9). Also, subtracting §(ERL) and

(Em ,), we get from (1 .5 )

§ (ERL)- (ERL) =

	

1 _ 1
ERL + ia ERL - i a

-2ia

= E2
+a2 ->-2niS(ERL) JRL

for a -> 0, in accordance with (1 .9) .

2 . Rules valid only if q is a q . number not containing any, other

delts, dashes, scats, flats or slashes referring to the same gage :

(1 .9a)

1 .14)

The latter three equations easily follow from the first one to-

gether with (1 .8) and (1 .7) .
We might have started from Eqs . (1 .10) - (1 .13) as definitions

of the scat, flat, dash, and dell . This kind of definition, however ,
easily creates confusion, as shown by the following example
which is of importance also for its applications .

Consider the algebraic identity
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(ELR ELM)- + (ERM ELM)-1 + (ERM ERL)-
1

- ( ELR ELM ERM)-1 (ERM+ ELR -ELM) - O .

If the dash is defined by (1 .12), Eq. (1 .15) easily creates th e

wrong impression tha t

F11 A , B , + 'A B' + 'A'B

	

(1 .16)

would vanish . (In fact, of course, such conclusion cannot b e

drawn even from (1 .12), as the "principal value" to be taken
in the double integrations over the energies of the intermediate

state M (due to Eq. (1 .1)) and of the final L in P S dEL f(EL) F
would be defined differently for each of the three terms i n

(1 .16) .) In the Appendix A it is shown that, instead of the vanish -

ing of F, we have the important relatio n

DLR DLM + DRM DLM + DRM DRL - ~ 2 b (ELM) 8 (EMR), (1 .17 )

which means

11`4'B' + ( I~ `4')
CBI') + 'A 'B I l

= II A' B'
+'All B'+'A'B~~ _ -sAIIBb

on account of (1 .5) .

If A is any matrix, we shall frequently in the following use

the notation A(t) for the time-dependent matrix

A (t) = A exp (ERL t/ih ) .

	

(1 .19 )

If A is the time-independent matrix representing an observ-
able in Schrödinger representation, the A (t) is the matrix re -

presenting this same observable in interaction representation .
Obviously,

A (t) B (t) = (A B) exp (ERL OM),

	

(1 .20)

since Efg + EML = Em, if M is the position between the factors
A and B. Thence, any algebraic relation between time-independen t
matrices remains valid if in both members of the equation all

(1 .18)
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matrices are replaced by the corresponding time-dependen t
matrices (1 .19). Also by (1 .6)

A (t) t = A t exp (ERL t /iti) = At (t) .

	

(1 .21 )

Obviously, all matrices of the form 6A II are time-independent
in interaction representation ; that i s

åA (t) II = åA II = constant in time .

	

(1 .22 )

It is sometimes useful to calculate the value of a time-depend-
ent matrix A (t) at t ± oo. If A has no singularities for
ERL -- 0, we may reason that A (± cc) vanishes, unless we
prefer to maintain that A (± cc ) has no well-defined value a s
A (t) remains oscillatory . If the matrix considered is of the form
§ A (t) II , the result depends on the order of sequence of th e
limits a -- 0 and t -±

	

œ . In this section, we consider the cas e
that the limit a -->- 0 is taken first . Then :

lim 1 dExr, f (ERL) § A (t) I I
E

f(ERL)= lim

	

lim Ç dERi	 A exp (ERL Oh)

	

(1 .23)
t~fx a ±O,

	

ERL + T a

t~1=~ åo ~ x +~Itl/~f(a~x/ItI)Aexp(+ ax/i) .

_ OC

Before we take the limits any further, we perform the integratio n
by closing the contour through x = + i o , where exp (± ax/i )
vanishes. The pole at x = -i I t /h is enclosed by the contour
in the case of the upper signs only, so that

lim S dE f(ERL) A (t)II = 0,

	

(1 .24)
r~-~

	

,
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lim

	

dERL f(ERL ) § A (t) I I
f4-+ x

= lim
co

limo I- 2 ~t i f (- ia) A exp (- at/h)

	

(1 .25 )

-2I f(0)A1 ER, o = -27r iS dERL s(ERL) f(ERL

As this is true for arbitrary functions f(El,), we conclude that

§A(t->--x)II

	

0 ; (1 .26 )

§ A ( t + 00 )II - 2åA II ,

	

(at «1) . (1 .27 )

Similarly we sho w

bA(t -> - cc )11=-2 åA I1 .

	

(alt1«1) ; (1 .28)

A (t-~+ 00 )11 = 0 . (1 .29)

By (1 .9) or

SAIT = 1/2(§AII-b AII),
(1 .30)'A

II =1/2(§AII+A11) ,

give the resultEqs . (1 .26)-(1 .29)

âA(t-~+

	

) II =sA ll , (1 .31)

which is trivial on account of (1 .22), and

(1 .32)'A(t

	

±

	

) II = ± SAID

	

altl«1 .

Because of the ambiguity of the mathematical method used
for arriving at the results (1 .24)-(1 .32), one should justify this
method on physical grounds whenever these results are formall y
used. The main point in the above derivation is that the limit
t-4- ± co is taken last of all, while a in (1 .25) had already been
put equal to zero ; otherwise, we would have found zero instea d
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of aA II in all right-hand members of (1 .25)-(1 .32) . In other

words, we have kept a I l I small in the limits t --> f for arriv-

ing at the results (1 .25)-(1 .32) . A justification or refutation o f

such procedure is possible only after we give a a physical meaning .

Chapter IX deals with a different order of sequence of these limits .

II. Stationary states, scattering matrices, and Heisen -

berg's S-matrix .

In this chapter, we shall use the definition of HEISENBERG ' S

S-matrix given earlier by one of us 4) , but the quantities there

denoted by W, U, and å+ (-x) are represented here by the no-

tation E,	 2 iF, and

S + (x) = ~ exp (ikx) dk/2 = 1 / 2 8 (x) -
0

Here, P indicates that one should take the principal value i n

subsequent integrations over x . With this notation, and 8_ (x)

= S (x) - å+ (x), the meaning of the scat and of the flat by

(1 .10)-(1 .11) can be represented b y

§ AII =-2n iS+(Exr.) A ;

	

bAII = 2(ERL)A . (2 .2 )

H will denote the total Hamiltonian of our system . It is the

sum of the free particle energy E and the interaction V. In Schrö-

dinger representation, these quantities are represented by matrice s

which for a closed system are time-independent, but the state

vector (situation function, wave function) y's (t) is time-dependent

and satisfie s

ih ays(t) /at = H ys(t) = (E-I-V)ys(t) .

	

(2 .3)

Let k again be a set of variables commuting with each other

and with E. (For instance momenta, or occupation numbers) .

Starting from an arbitrary Schrödinger representation in q-space ,

we transform to interaction representation in k-space with wave

function < k 'P (t) by the method of variation of constants (use d

also in time-dependent perturbation theory) :
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ys (q, t) =
S

<gI k> exp (Et/ih)dk< k y (t),

	

(2 .4 )

where E is considered a function of the variables k . Substitution
of (2 .4) in (2 .3) gives the Schrödinger equation of interactio n
representation

i h (â/å t) < k I yt (t)

	

1

< k V i k'> exp [(E' -E) t/ik] dk' <k' I y1 (t) (l (2 - 5)

or, symbolically,

ih y (t)la t= V (t) y (t)

	

(2 .6 )

with V (t) derived from V by the definition (1 .19) .
While in many cases it is useful to treat the system as if it

were not closed and to have V itself depend on time (see Chapte r
IX), we shall now first assume that the system is closed an d
that the factor exp (E ;t/i h) of (1 .19) constitutes the only time -
dependence of V (t)' . In that case, there are ståtionary state s
(labeled by n) for which

vs, (t) _ ysn eXp (Hat/i h),

	

(2 .7 )

so that, by (2 .4) ,

< k I ~Vn ( t ) = <k l yI n > exp [(Ht - E)t/i h)],

	

(2 .8 )

where the time-independent coefficients <k l yI n > are the time-
independent wave functions-eigenfunctions of H-in k-space .

In Dirac fashion we have inserted the label n in a "ket" ;
the matrix <k I yI n > has rows and columns labeled by differen t
sets of variables ; and the fact that there is a complete orthonormal
set of eigenfunctions of H may be expressed b y

< n l yt l k > dk<kI

	

n'== <nl n' >,

	

(2 .9 )
(orthonormality)

	

dn <nl yt I k'> _ <kl k'>,

	

(2 .10)
(completeness)
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or, symbolically, b y

2P t 'P = 1 , "1'"P t = 1 . (2.11)

We shall subdivide the time-independent wave functions int o
two groups :
(1) Those stationary state eigenfunctions which vanish rapidl y
for infinite separation of the particles in our system . Such eigen -
functions we call < k

l r or briefly y, . ; they correspond to "bound
states" . They include states in which only part of the system i s
properly bound, while other particles are going off to infinit y
(see also Chapter IV) .
(2) The remainder of the eigenfunctions < k y, l n >, in genera l
no longer a complete set of functions . They are the stationary
states that are considered in such scattering problems, wher e
all the particles are free after the scattering process . We shal l
call them "scattering states" .

There are various methods for bringing some order in th e
scattering states . As asymptotically-for infinite separation of th e
particles-the scattering states satisfy the free-particle Schrödinge r
equation, one may first, crudely, represent them by a definit e
free-particle state labeled by the value ko of the variables i n
k-space . However, such free-particle state < k ko > is of cours e
no exact solution of the time-independent Schrödinger equation
which, on account of (2 .5) with (2 .8), reads

(Hn -E) <kl yl ni = S <kl Vlk' i dk ' <k' zp n) . (2 .12)

The scattering state with a plane wave part which asymptotic -
ally behaves like < k l ko > must correspond to a total energy
Hn = Eo . If we succeed in further specifying the scattering stat e
we have in mind, we use from then on ko as label of this scat -
tering state . This further specification can be given in man y
different ways, each giving the scattering state labeled by ko a
different meaning . Some of the most interesting possibilities are :
(a) By ko we denote a scattering state which asymptotically is a
superposition of the free-particle state ko and of outgoing scat -
tered waves . (By "outgoing" we mean that in xyz-space the
scattered wave gives in a given direction (0, T) asymptotically
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(r-* co) for each scattered particle a probability density depend -
ing on the scattered wave in k-space for momentum of suc h
particle in that same direction (9, (p), but not depending on th e
scattered wave for momentum in the opposite direction) .
(b) Or, by ko we might denote a scattering state which asymptotic -
ally is a superposition of the free state k o and of incoming ad-
ditional waves .
(c) Or, by ko we could denote a scattering state which beside s
the free state ko asymptotically contains incoming and outgoin g
waves in some symmetric way .

The scattering state satisfying the description (a) we shal l
denote by < k ko >, a scattering state of type (b) we shal l
call < k I L21 ko >, and one of the kind described under (c) we
shall call < k Q ko > . Let < k Y l ko > mean any of these three
types of scattering states, specification still to be given . When
ko takes all possible values, Y, Q, Q, and Y become matrices i n
k-spaces, the scattering matrices . P. is identical with the "wav e
matrix" introduced in reference 4 . Contrary to zp, both label s
are now values of the same set of variables k, but the scatterin g
states do no longer form a complete orthonormal set and there -
fore Y, S2, Q need not satisfy relations like (2 .9)-(2.11) ; con-
sequently, iY!, S2, Q in general are no unitary matrices . Still we can
be sure that scattering states belonging to two different energy
levels will be orthogonal .

On account of HT, = Eo , the Schrödinger equation (2 .12) for
the scattering states < k Y l ko > may be written symbolically a s

(ER - EL) Y = VY.

	

(2.13)

Since < k ko >-the unit matrix 1 in k-space--forms an essentia l
part of the scattering states, we write (see Appendix C)

Y = 1 + Z, (2.14)
so that, by

(ER - EL)< kLl kRi =O (2 .15 )
(2 .13) gives

(2 .16)(ER -- EL) Z = VY = V-}- VZ .

Further, we define
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B

	

VY,

	

(2.17)

so that the Schrödinger equation is reduced to two equations for
two unknown matrices B and Z :

(ER - EL) Z = B ; (2.18)

V -I- VZ = B . (2.19)

While elimination of B leads back to (2 .16) and (2 .13), we
could eliminate Z by solving for it from (2 .18) . This gives

Z = ? B (I .

	

(2.20)

The uncertainty in the meaning of Y at the beginning is her e
expressed by the uncertainty of the meaning of the slash in (2 .20) .

The question therefore arises, which meaning of the slas h
in (2 .20) corresponds to each of the interpretations (a), (b) or
(c) of the set of scattering states ( k 17 1 ko >. The answer i s
well known and is independent of the possibility of expansion .
It can be shown)' 4) tha t

§BII = -2,7Liå+ (ERL) B = { P (l /ERL)- nib (ERL)J B
(2 .21 )

is the only expression of the form (2 .20) corresponding to out -
going waves only .

bBII = {P ( 1 /ERL) - I-iS (ERL)} B

	

(2.22)

is the only expression of the form (2 .20) corresponding to in -
coining waves only, and both 'B II and sB II describe wave s
half incoming and half outgoing, but of these two only 'B I I

has the form (2 .20) .

The general validity of the above statement, that a combi-
nation of the free particle state ko with outgoing waves only i s
the solution of (2.19)-(2.20) with ? = §, will become muc h
clearer by the time-dependent methods discussed in Chapter s
V and VI .
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We shall now separately discuss the three cases (a), (b), and
(c) . In case (a), we shall denote Y, Z, and B by ¶, T, and F,
respectively. In case (b), we shall denote them by D, F, and G.
In case (c), we shall denote them by Q, P, and W. Thus, Eqs .
(2 .14), (2 .20) and (2 .17), (2 .19) will in these three cases b e
read as

zlJ =1 + T ; sZ =1 -f-1' ; Q=1 + P; (2 .23a-c)

T= § F II ; r = y G II ; P= 'WII ;

	

(2 .24a-c)

F= VT= V+VT; G= VD = V+VI' ;
(2 .25a-c)

W = VQ = V + VP .

Substituting (2 .20) with (2 .17) into (2 .14) we also find

Y = 1 + ? VY II,

	

(2 .26)
thence,

~= i + § v w l l ; sa= 1+y vDll ;

Q

	

1+ V
QII

	

~

Our definitions (2.23a)-(2 .25a) of I, T, and F are equivalent
with Eqs. (10), (11) and (15) in reference 4, where we have de -
fined HEISENBERG'S characteristic S-matrix by Eqs . (23) and (26) .
In our present notation, these equations read

R=2 SFll ; S=1+R .

	

(2.28)

Besides the quantity R expressible in terms of the wave matrix ',
we define an analogous quantity -iK, expressible in terms of th e
matrix Q, by

K=20Wll .

	

(2 .29)

Since V = Vt 'is Hermitian, (2 .17) and the Hermitian con-
jugate of (2 .17) read

B = VY, Bt = Yt V.

	

(2 .30 )

Hence, for any of our interpretations of the slash we ge t

(2.27 a-c)
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Yt B	 B t Y=O ,

and for any pair of interpretations

Y
i

B 2 - B
i

Y2 = O .

(2 .31 )

(2.32)

From the three equations (2 .31), which, by (2 .23)-(2 .25) ,
may be written

F-F t + T t F-F t T = 0,

	

a )

G- G t -J- Ft G- Gt I' = 0,

	

b) (2 .33 )

W	 W t -I- Pt W- W t P = 0,

	

c )

one easily derives the following equation s

Tfr =1,

	

a)

S2 t .Q = 1,

	

b) l (2 .34)
Q t Q = 1 T (2)2 .

We shall give a detailed proof of the last equation only, the proo f
of the two other equations (2 .34) running in the same way . First
we get from (2 .33c), by multiplication with 2 -tb(ERR ) ,

2igWII-2iaWt Il + 2iII Wt'W3-2iåWt'ti1rII = 0, (2.35)

where we have used (2 .24e) and one of the rules (1 .7) . Further ,
on account of these rules, the two last terms on the left-han d
side of this equation cancel and å Wt

II
= -(åW I I )t , so that

(2 .35) gives
K =

	

(2.36)

which shows that K as defined by (2 .29) is Hermitian . Further ,
multiplying (2 .33c) by DRL = -DLR we get, by means of (2 .24c)
and (1 .7),

WII-'Wt II -
I

Wt'W'-'Wt'WII = O .

	

(2 .37)
Dan. Mat . Fys . Medd .28, no .6 .

	

2

)
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Using the fundamental relation (1 .18), the third and fourth ter m
in this equation give

'wt II w' +sWt II wå

= (

	

(' W I I) + ( I I Wå) . (â W I I)= Pt P-(2) ;
j

(2.38)

where we have used the definitions (2 .24c) and (2.29) of P and

K and the general rules (1 .7) for taking the Hermitian conjugates
of these quantities .

Thence, (2 .37) give s

P + Pt -}- P I P-K2/4 = 0

Qt Q = (1 + Pt) (1 -I-- P) = 1 +K 2 /4 ,

i, e. (2 .34c) . The equations (2 .34, a, b) may be proved along
similar lines by multiplying (2 .33, a, b) by (ERL + ia)-1 =

(ELR - ia)-1 and using the important relatio n

IIAbBb + §AIIBb+§BII =0,

	

(1 .18a)

which follows from (1 .18) by (1 .9) and (1 .7) .

The equation (2.34a) is identical with Eq . (62) in referenc e

4, but the proof given there was not quite satisfactory .
Like (2 .9) or the first equation (2.11), Eq. (2.34 a) expresse s

the orthonormality of the scattering states < k V ko> ; but the

unit matrix 1 = < kL I kR > occurring in this equation is only a
submatrix of the unit matrix 1 = < nL nR > of (2 .9)-(2 .11) and
one has to add to the stationary states <Id Yf I ko) the bound
states < k yr in order to form a complete set of functions . (This

under the supposition that the < k Yr I ko > form at least a com-
plete set of scattering slates) . Then, Eq. (2 .10) may be written a s

S
(2.39)r

= < k I k' >

or
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or, symbolica11y4) ,

(2 .40)
r

where we have introduced the bound state matrices y r , yr with
only one column and one row, respectively. This shows that
zl' cannot be unitary if there are bound states .

For the three different pairs of interpretations of the slash ,
the equations (2 .32) take the form

Yft G -F t S2 = 0, i . e . G- F t + Tt G- Ft I' = 0, n)

1F t W-F t Q = 0, i . e . W-Ft +Tt W-F t P = 0, ß) (2 .41 )

d2 t W-G t Q = 0, i . c. W-Gt + l'tW-Gt
P=

O . y)

By multiplying (2 .41, ß) by - 2 ti å (ER,), we find

0 = 2sWll-2sFtll+2 11 Ft bWa- 2åFt'IV I I

= 2sWll+2(6F II ) t +2åFt - ')

= -iK+Rt -2 iRt K ,

where we have used the definitions of T, P, K and R along with
the rules (1 .7) and (1 .9) . The Hermitian conjugate of this equa-
tion is

11+2iK(1 +-I+R-iK.

	

(2.42)

In this way, we have obtained Heitler's integral equation `) 8)

without the use of series expansions .
Since K is Hermitian, all the eigenvalues of the matri x

1 +
Z2 are different from zero . Thus, this matrix has a reciproca l

i
(1 +

12 /
(and (2 .42) give s

R =
-iK

1+ i2 (2.43)

2*
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For the S-matrix (2 .28) we thus get

S= 1-}-R= 1 +iKJ2
(2.44)1- iK/2

in terms of the "reaction operator" K (comp. Eq. (1 .34) of
reference 1) .

In this form, the unitarity of the S-matrix is obvious, viz .

S t S = SS t = 1 .

	

(2 .45)

Multiplying (2 .41 a) by - 2 n i b (ERL) we find that the two
last terms in the left-hand member cancel and we ge t

R_= 2 aG~~

	

-2(dF 11 )t = -R t .

	

(2 .46)

Multiplication of the Eqs . (2 .33 a, b) and (2 .41 y) by - z i å (ERL)
does not lead to new information. In fact, the equations obtaine d
in this way are, on account of Eq . (2 .46), equivalent with th e
equations (2 .45) and (2 .43) .

However, by multiplying the Eqs . (2 .41) by (ERL + za )-1 =
- (ELR - ia)-1, we get by (1 .18), by a similar procedure as that
used in deriving (2 .34) from (2 .33) ,

~t 2 =St ,
iK~pt Q=+

a)

(2 .47 )
0

t Q =1 -
iK
2 . Y)

These equations determine the connection between the thre e
different types of scattering states Y denoted by ¶, SZ, and Q .
We have assumed above that the set of functions < k k„
forms a complete set of scattering states . We shall make the sam e
assumption about the set of functions < k I Y 1 ko > . Whenever
these assumptions are justified, any function expressible as a
superposition of scattering states < k I

	

1 ko> can also be ex -
pressed as a superposition of scattering states < k 1 d2 ko > or
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<k J QI k0 >, and vice versa . Therefore, matrices X,_ and X2
must exist, such tha t

S2 = il'X1 i Q = PX2 .

From (2 .47) and (2 .34 a) we then get

iK
X, =S t , X2 =1+ -

2 '

i, e. (see Appendix D )

T= DS
= Q ( 1 +iK) i

	

(2 .48)

where we have used the unitarity of the S-matrix. With (2 .48)

the equations (2 .47), (2 .34, b, c) are easily seen to be consequences
of the Eq. Pt ' = 1 . From (2 .48) we see that the scattering stat e
matrix T, corresponding to outgoing waves only, is obtained from

the matrix D corresponding to ingoing waves by multiplicatio n

on the right with the S-matrix .

If we define a matrix S by

K = - 2 tan 8,

	

(2 .49)

we have, on account of (2 .44) ,

1 + i tan ~ _ el å
S 	 _	 	 tzc5

1-i tan S

	

e-0 =
	 -

	

=- e i n,

	

(2 .50 )

where

=28

	

(2 .51)

is the Hermitian n-matrix introduced by HEISENBERG . In the

simple case of a scattering of particles by a fixed potential i n
configuration space, the eigenvalues S ' of the matrix S are th e
"phase shifts" of the scattered waves .1 2)
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III. Time-independent perturbation treatment .

We shall now try to solve the time-independent Schrödinge r

equation (2 .13) or (2 .19)-(2 .20) for the scattering states by a
series expansion in the potential V, starting from Y N 1 . Series

expansions of any quantity like Y, Z, B, etc. will be denoted by

a subscript asterisk, i . e . by Y* , Z* , B* , etc . It is seen by inspection

that the serie s

Bx: _

	

v(2 V)n-1 = 'V(?v?v?v . . . . ?v)
n=

	

n

	

n-1 factor s

z* -

	

(?v) n 1{ _ DV?v	 ?V { {
n=

	

,, =I-
n n factor s

solve the equations (2.19)-(2 .20) whenever these expansions con -

verge ; and if one assumes that it should be possible to find B

and Z from (2 .19)-(2.20) by successive approximations starting

from Z 0, it is easily seen that (3 .1) is the only solution . Thus ,

if the series converge ,

Y* == 1 -1- z* =

	

(? V)n

	

(3 .2 )
rt= 0

is the solution of (2.26) and represents a scattering state . With
the three different meanings of the slash, we thus get for the

scattering states (a), (b), and (c)

For the matrices R, K and S, defined by (2 .28)-(2.29), we then
get the following series expansions :

n
h( § V)'-1 (3 .3a)

Q
x: =

	

( , V)'t
n=0

n=
(bV)"II ; G*=1V(bV)n-1II, (3.3b)

n= 1

W* =

	

V ( ' V)n-1 {I . (3 .3c)
n=

(3.1)
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R .fi = 2 2' 6 V o V)n
-1

II

	

(3 .4 )
n= 1

K* = 2 iaV('V)n-1II,

	

(3 .5 )
n- 1

S„ = 1 + 2 1'åV(§ V) n-1 II
.

	

(3 .6 )
n= 1

The expression (3 .5) for KN shows directly that K K is Hermitian

in accordance with (2 .36). In fact, we have, according to the

general rules (1 .7) (1 .8) ,

K t = 2 iY
x

ll (V')n-1 Va =

n=1

= 2 i--aV('V)n
-1 . II = K .

n

n -
a(V ' )n-1 V I I

By direct multiplication of the series it is easily seen that th e

orthogonality conditions (2.34) are satisfied by the expression s

(3 .3) (see Appendix B) . It would now be interesting also to

calculate ¶* W . in order to get some information about th e

bound states through (2 .40) . Since

~:. =

	

v )n ll,

	

~II(Vb)n,
n=0

	

n= 0

we get by multiplication of the series

zy*

	

=

	

(§ V)i II ( Vb)
1

- ~ (ZOV)'11(vb,)n-1)

	

n '
n=o 1=0

	

n= o

From the definitions of scat and flat we ge t

A o = 1 ;

	

A l = ~ VII+IIVb = 0 ;

	

< kol Ani kn>

(3 .9 )
= ~~ kol V l kii d]c i~ k ll V l kzi

. . . .dlcn-1< kn-ll V l kni B (n),

(3.7 )

(3.8)



2 4

	

Nr . 6
n	

B(n) - Z(./ (Ei-E;-{-ia)-1 (.1 (EI -EJ ia)-1 for n> 2, (3.10)
I= Oi= o

	

j =I+ 1

n
where J G (E t,-Ei +ia)-1 and (IT (En -Ej -ia)-1 both mean 1 .

=0

	

j=n+ 1
In Appendix B, it is shown that all B(n) contain a as a factor ,

so that An ->- 0 when the limit a > 0 is taken after the integration
in (3.9) . Hence,

A n = 0 for n > 1
and

	

(3 .11 )
t = 1 ,

i . e . ¶ has PI as its inverse, and therefore is unitary .
By comparison with the exact equation (2 .40) this is seen

to be possible only if the system has no bound states . We there -
fore have come to the interesting conclusion that the series ex -
pansions (3 .3) of the scattering state matrices must diverge when -
ever the system has bound states, even if the coupling constant s
entering in V are small . This, of course, does not mean that th e
series expansion of every scattering wave function < k P I ko >
will diverge for a system with bound states ; it only means tha t
the series < k I T* ko> cannot be convergent for all ko . It also
does not necessarily mean that the expansion (3 .6) of the S-
matrix diverges, since S is unitary also when the system has
bound states . Our result merely shows that no information abou t
possible bound states of the system can be obtained by a
perturbation treatment .

If the series converge, the Eqs . (2 .48) are easily verified b y
direct multiplication of the series . Take, for instance, the equatio n

Tr,
K;: l-1

~ = Q, :
/
I1

	

a
1

	

- Q

	

K ; n

n = ' 01 2

By (3.5) and by use of the rules (1 .7), (1 .9) the right-hand mem-
ber of (3 .12) is

(3 .12)

~'(v)`~ [6 v~(v)j
n=o i=0

	

j=0

n
(3.13)
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while the left-hand member may be written

~x =

	

('v+ åv)l . (3 .14)

The equality of (3 .13) and (3 .14) is obvious if we may change

orders of sequence of summations, as both (3 .13) and (3 .14)

represent summations over terms containing arbitrary numbers

of ( 'V)-factors, with arbitrary numbers of (åV)-factors interspersed

at arbitrary positions .

Finally note that, if the expansion in (3 .12) converges, not

only P.: has an inverse Pt,, but also Q,. has an inverse

n= ( 2 il~~:)n Pt . (3 .15)

Also, by (2 .45), (2.48), and (2.34a) with (3 .11), Q = S W

is then the inverse of S2 : = W Sx

IV. Interpretation of the scattering matrix and of

the characteristic matrix S.

The scattering state < k I iF I k0 > obviously can be interprete d

as representing incident particles in free-particle state ko, and

scattered particles described by the asymptotic behaviour of th e

(outgoing) wave < k T k0 > . (Absorption from the incident

beam is described by interference of incident and scattere d

waves) . Values for differential cross sections follow directly fro m

such interpretation . (See section 2 of reference 4). They are

found by calculating the value of the probability density for on e

of the scattered particles for large radial distance in a give n

direction in xyz-space, and are found to be proportional to

the absolute square of the matrix element of the "effective scat -

tering potential" F for a transition to a final state, in which the

momentum of the particle considered is directed in the directio n

into which the scattering probability of that particle was to b e

calculated and has the magnitude corresponding to energy con-

servation .

Q .m 1 =
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Since

F~ER~ _ o = -(S-1)dERL ,

	

. (4 .1 )

the cross sections for processes in which all the particles ar e

free after the collision are uniquely determined by the matri x

elements of the S-matrix. It should be noted, however, that th e

S-matrix and the wave matrix ¶ defined in II and in reference s

2 and 4 do nol account for collision processes in which par t

of a system- is in a bound state before and after the collision .

This follows at once from the fact that the functio n

<xI WIkoj=Ç<xlk> dk<klTIko >

in configuration space represents plane waves superimposed b y

outgoing waves for all the particles. Such processes must there -

fore be described by state functions 'r which belong to th e

group of states classified as "bound states " in II .
On the other hand, it is clear that we could have starte d

from a different division of the total Hamiltonian in (2 .3) . We

could, for instance, let E denote the total Hamiltonian of a par t
of the total system plus the free particle energy of the rest o f

the system, while V is the rest of the potential not included in E.
If k now is a set of variables commuting with each other and with

this new operator E, we could formally proceed in the same wa y

as in the preceding chapters, using a kind of "partial" interactio n

representation with the Schrödinger equation (2 .6), but with a

different interpretation of the quantities occurring in the equation .

Also the division into "scattering" states and bound states would

be different in such a treatment, and we would arrive at a n

S-matrix or a "collision" matrix which in general is not simpl y

a different representation of the Heisenberg S-matrix . Such a
procedure is often used in the treatment of collisions between

elementary particles and atomic nuclei . To each division of the

total Hamiltonian in (2.3) we get in this way a corresponding

S-matrix, and the connection between these collision matrices is
not always simple. Throughout this paper, we shall explicitly

consider only the case where E is the free particle energy, but
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our considerations can easily be extended to the case where E
includes part of the interaction .

Since

S = 1 +2aF1l = 1 +§F11-F = 1 R,

	

(4 .2 )

`= 1 +§F11 = 1 + T,

	

(4 .3 )

R = T- F 11 .

	

(4 .4 )

While T = § F II in xyz-space asymptotically represents out -
going waves only2)' 4)

b F II represents incoming waves only .
Hence, while < k 7' I k 0 > gives a correct direct picture of the
scattering phenomenon as it represents a superposition of a
plane wave with spherical outgoing waves only, on the othe r
hand <k I S l k0 > represents in k-space a superposition of a
plane wave with an incoming and an outgoing spherical wave .
This gives rise to a paradox to which we shall come back in th e
discussion of the time-dependent wave function for t -- oo (see
Chapter VII) .

we get

V. Time-dependent scattering theory an d
Dyson's S-matrix .

Use of time-dependent methods in scattering theory is base d
on a simple idea : "If very long ago (formally : "in the infinit e
past, at t = - x ") there were only particles in the initial free -
particle state ko, then by now this non-stationary state will hav e
developed into the corresponding stationary scattering slate" .
OfLen one adds to this the remark that, if one for establishment
of this scattering state waits from t = -oc to t = finite, one
may as well wait till t = + oc and consider scattering as a pro-
cess taking place between t = - Do and t = + oo .

We start by solving the Schrödinger equation (2 .6) for the
wave-function v(t) in interaction representation systematically .
As boundary condition, let v(to) be given . The linear relation
between v(t) and tp(to) we express by means of the "propaga-
tion matrix" U(t, to) as follows :
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<kly(t) = S<kI U ( t, to)Ik'>dk'<k'`y~(ta) (5 .1 )

or, briefly,
y (t)= U (t, to) y (to)• (5 .2)

As we assume that the Schrödinger equation (2 .6) may be used

to find y(t + dt) from y(t) for dt < 0 as well as for dt > 0,*

we may also interchange t and to in (5.2). Thence ,

y(t) = U(t, to) U(to, t)y(t),

	

(5.3a)

U(to, t) = U(t, to)-1 ,

	

(5.3b)

that is, the propagation matrix U has a reciprocal .

Substituting (5 .2) into (2 .6) we find

U (t, to) /6 t= V(t) U(t, to)

= iVexp(ERL t f it2} U(t, to),

	

(5 .4)

where V = Vt, and by (1 .21)

V(t) t = V(t) .

Let < k y (t) n > or, briefly, yin (t) form a set of solutions

of the Schrödinger equation (2 .6), complete and orthonormal at

a given time to ; that is, the relation s

Y <k( y (t) n><nyt(t)k'> = <k k ' >
n

yn (t) yr (t) = 1 or o (t) vt (t) = 1

	

(5 .6)
n

* In "integrocausal" theories, such assumption may be dropped'°)

or

<n'I yr t (t)I k>dk-<kI y(t) n> = <n' n >

~Ÿn'(t)~n(t) = < n' n> or yrt
( t) y (t) = 11

(5 .5 )

and

or



Nr.6

	

2 9

are valid at t = to . We shall now first prove conservation o f
orthonormality (5.5) even if V in (2 .3) in Schrödinger representa-

tion depends on time, as for a non-closed system .

Eq . (5.5) can in symbolic notation be written by (5 .2) as

y ( to) t U ( t, t0)' U ( t, to) y ( to) = 1 . (5 .7 )

Now, by (5 .2),

U ( t o, t o) = 1 = U ( t o, t o) t , (5 .8 )

so that the equation

U(t, to) t U(t, to) = 1 (5 .9)

is trivial for t = to . As t becomes different from to, Eq . (5 .9)

remains valid, becaus e

i h (a/a t) { U (t, 1 0) t U (t, to) }

= U(t, t o) t V(t) U (t, t o ) - { V(t) U(t, to)} t U(t, t0 ) = O .

Thence, the left hand members of (5 .5) and (5 .7) equa l

y(to) t yi (to), which was given to be equal to 1 = < n' i n > .
We shall now prove that also (5 .6) remains valid as t becomes

different from to . Indeed, the left-hand member of (5 .6) depends

on time according to

i h (a/at){ y (t)y (t) t }

= V( t ) y (t)y ( t) t -
y ( t)y (t ) t V(t) t ,

1
1

(5.11)

so, whenever y(t) y(t)t = 1, we find its time derivative to b e

equal to {V (t) - V (t)t } / i h = 0 . Therefore, y (t) y(t) t , once equal

to the unit matrix, will always remain the unit matrix, pro -

vided that y (t) yet (t) is an analytic function of t .
Next, we shall show the unitarity of U(t, to) . Making use of

the existence of a reciprocal (5 .3b) of U(t, 10) we find, by (5 .9) ,

UU t = UU t UU-1 = UU-1 = 1 .

	

(5 .12)
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Thence, U is unitary, i . e .

Ut = U-1 (5 .13)

is the reciprocal of U, and (5 .3b) gives

U (t , to) t = U (to, t) . (5.14)

We shall now first consider the case of a closed system wit h

V independent of time, so that V(t) depends on time by the facto r

explicitly given in (1 .19) only. Again we may distinguish stationary

scattering states and bound states ; in interaction representation,

the latter depend on time by (2.6)-(2.8), or

Ztla y)r( t)lat= (Hu-EL) 1Vr( t ) = V(t)~Vr(t),

	

(5.15)

while the time-dependence of scattering states Y(t) is given by

(1 .19), (2 .6), (2 .13) :

i ~a Y(t)/at= ERL Y ( t) = V(t)Y(t) .

	

(5 .16)

In Chapter II we assumed it and Ÿf to form a complete

orthonormal set of functions at t = 0 ; therefore, the solutions

y,. (t) and W(t) of (2.6) always form a complete orthonorma l

set, and Eqs. (5 .5)	 (5 .6) may be written as

T't ( t ) ( t ) - 1 ;

	

W1 ( t)Vr(t) = 0 ,

r( t) T ( t ) = 0 ;

	

(t)y)r( t ) = år'r,

	

(5.17)

yf (t) w t ( t ) + f 16 ( t)' ~r (t) = 1,

	

(5.18)
r

where all matrices may now be taken time-dependent : ir (t) ac-

cording to (2 .8), and ¶(t) according to (1 .19) .
The Eqs . (5 .4), (5 .8) are now obviously solved b y

U (t , to) = ~(t) Tt(to)+2', vr( t)~Vr( t o )
r

= ~ Ÿf exp (ERL t/i h) } { Pt exp (ERL to/i h) }

	

(5 .19)

+ eXp [ (ER to-Hr to+Hr t -EL t) /ih]
r
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Eq. (5 .8) is satisfied on account of (5 .18) ; Eq. (5.4) is satis-
fied on account of (5 .15)-(5.16) .

In fact, on account of Eqs . (5 .17), Eq . (5 .19) gives, for scat-

tering states and for bound states, respectively ,

U(t, to) W (to) = ~(t),

	

a)

U ( t, to) yr (to) = ~pr( t)•

	

b)

We see that the propagation matrix U(t, to) consists of two parts .
The first part,

S(t, to) = W (t) Wt (to),

	

(5.21 )

changes a scattering state at time to into one at time t, but de-

stroys all bound-state admixtures in the wave function . The
second part,

(5.20)

s (t, to) =

	

lpr ( t) yT ( to), (5 .22 )

takes care of the propagation of bound-state wave functions .
From (1 .22), applied to the matrices R, K, and S, which all

contain a delt, we see that

R (t) = R, K (t) = K, S (t) = S

	

(5 .23)

are constant in time. Hence, whenever (2 .48) is valid (see Ap-
pendix D), Eqs. (5 .19) and (5 .21) may also be writte n

U(t, to) = S (t , to) + s (t, to),

	

a )

S (t, to = Q ( t) ~ t ( to) = Q (t) [1 + ( 2)2]-1Qt (to), b)

where we have used the unitarity of S and the reality of K.
From (5 .21), (5 .24b), and (2 .34 a-c) it is seen that then als o

S(t, to) W (to) = W (t) ; S(t, t o) S2 ( to) = Q (t) ;

S (t, to) Q( t o)

	

Q (t),

(5.24)
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so that S (t, to) takes care of the propagation of the scattering
states Q(t) and Q (t) as well as of the scattering states ¶(t) .

We shall now consider the question of what becomes in
course of time of a state given at to = - Do and what happen s
to the wave function as t --y + oc .

First, we shall formally define

U+ (t) = U(t, -oc) = limU(t, to) ,
tu-~- ~

(5 .25a)

U

	

(t) = U(t, -}-oc) = lim U(t, to) ;
to -->oo

(5 .25b)

assuming that these limits exist .

Now, by (2 .23a)-(2 .24 a) with (1 .19) and (1 .26), (1 .27) with
(2 .28) we find

" (-oc) = 1, T(+oc) = 1+2 6 FII = S ."

	

(5 .26)

Similarly, by (2 .23b)-(2.24b), (1 .28) . (1 .29), (2 .46), and (2.28) ,

<< Q (_ oc) = St , S2 (+ oc) = 1 . ' (5 .27)

The second formula (5 .26) and the first formula (5.27) require
justification for the limit t * oo after the limit a -* 0, so tha t
a t remains small . This is justified, however, since we assumed
no time-dependence of V at all, so that we need a 0 indee d
to have (2.14)-(2.20) satisfy (2 .13) . Moreover, the first Eq . (5 .27 )
follows from the first Eq . (5 .26) and the second Eq. (5 .26) fol-
lows from the second Eq. (5.27) by Eq. (2.48) whenever that on e
is valid .

As for the bound states, yr (+ oc) is somewhat meaningless .
Formally, one may reasons)' 6> that these expressions "vanish" :

"
r(± oc) = 0" .

	

(5 .28)

(Mas) calls (5 .28) a "conditional equality" .) If the conventio n
(5 .28) is accepted, we formally find, by (5 .22), (5 .24a), (5 .25) ,

.
s(t, ? oc) = 0" ;

	

"S(t, ± oc) = Ut (t) ."

	

' (5 .29)

Thus, by (5 .21) and (5 .26),

1
"U+ (t) = (t)

	

(- x) = Vr (t) = Q(t)1+
iK

) " (5 .30a)
1
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"U (t) = T(t)

	

(+ oc) = T (t) S-1 = ,Q (t)

-1

= Q(t)(1 -2 iK) "

where we have used (2 .48), which holds also for the time-depend-
ent quantities .

This should not be construed as to mean that, if at to = - oc

the wave function contains some bound state admixtures, the n
at finite time t such bound state should have died out ; for, if
U (t) operates, say on v,. (t6 -± -oc), the time dependence o f
the last factor y4. (t6 ) in LT (t, t6 ) apparently cancels the time de -
pendence in the wave function y, . (to) on which U operates, and
the limit (5 .28) should not be used. That is, while on account
of conditional equalities we have "yY,, (- oo) = 0" as well a s
"yl. (-oc) = 0", yet lim v,. (t) t y,.(t) � 0 . Therefore, use of

f-3-- ø

(5 .28)-(5.30) should always be made with caution .
DYSON3) defines the S-matrix as U+ (+ oc) . In fact, (5 .30 a )

with (5.26) and (5 .29) gives

"S(oc, -oc)

	

U+ (oc) = P(oc) = S",

	

(5 .31 )

so that DYSON ' S definition is in agreement with the definitio n
of HEISENBERG'S characteristic matrix in references 2 and 4, as
far as (5 .28)-(5 .30) are justified, that is, as long as this matri x
is applied to scattering states only .

In this connection, it should be noted that the limits (5 .26) to o
are only "conditional equalities" ; in fact, their validity is closely
related to (5 .28) . For, if (5 .26) is true, then < k I i (- oe) ko >
_ < k I k6 ~, that is, at t = - oc, the scattering functions in
k-space (labeled by k6 ) form by themselves a complete set o f
functions (the free-particle states k6) ; and, since all bound state s
were to be orthogonal to all scattering states, there could be no
bound states at t = - Do . That is, our possibility of writin g
(5 .26) is based on granting the validity of (5 .28)-(5 .29) .

On the other hand, when we meet the necessity of considerin g
wave functions with bound state admixtures, so that we, wan t
to drop Eqs . (5 .28)-(5 .29) for them, then we should also drop
Eq. (5.26), thence Eqs . (5 .30)-(5 .31) . In that case, we have a

Dan. Mat,. Pys . Redd. 28, no .6 .
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choice between either completely abandoning the use of inter -

action representation and using Heisenberg representation, wher e
there are no such difficulties, or we shall have to settle on use o f

the more complicated Eq . (5 .19) instead of the idealization

which is the S-matrix, for predicting future states from pas t

states .
We conclude that, as far as the foregoing treatment of the

Dyson S-matrix is meaningful at all, we have

"° -Tr (-oc) Y-f (--oc) t = 1",

	

(5 .32)

so that, by (2 .34a) and (5 .32), (-oc) is unitary . Also, to the
same extent, ¶ (+ oc) is unitary, by (5 .26) with (2 .45) . Yet,
¶ (t) is not unitary for intermediate values of t, on account of

(5 .18) .
In justifying (5 .28)-(5.29), MA 6) excluded the common cas e

that, in < k I Pr (t), E might equal Hr . It may be reasoned that
(5 .28) is still conditionally valid as long as < k I yr has no ir -

regularities at E = Hr.

We shall now find explicit expressions for U+ (t) in terms of
the interaction V. If the expansions (3 .3) and (3.12) converge ,
we get from (5 .30) the following expressions for U+ (t) and U_ (t) :

U+ (t), = ~Y (t) = exp (Exr, t/ ih)

	

(§ V)n II = ~ (§ V (0) 1 II (5 .33)
n=0

	

n= 0

or

U+( t ) :~: = Q (t)(1+Il
2
r)-1 _ Q.<(t)

n

K_(t) t: = ,Q * (t ) _

	

( b V ( t))n II = Q X ( t)

	

(

	

.

	

(5.35)

It should be remembered, however, that, according to the con-

clusion arrived at in Chapter III, the series (5 .33)-(5 .35) can

converge for all of their matrix elements only if the system considere d
has no bound states . This at the same time will ensure the validity
of the conditional equalities Eq . (5 .30) from which Eqs . (5 .33)-
(5 .35) were derived . In this same case we finally get for DYSON' s

S-matrix, by (5 .33) with (1 .27),

(5.34)
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* = 1+22 sV(§ Vy'- 1 11,

	

(5 .36)
n =

which is identical with the expression (3 .6) for HEISENBERG 'S
S-matrix, in accordance with (5 .31) .

VI . Time-dependent perturbation treatment .

An alternative method of solution for Eqs . (5.4) and (5 .8 )

is use of successive approximations . These equations are ob-

viously equivalent with the integral equation

t

U (t, to) -1 =

	

{V exp ( ERL t1/zh)) U ( t1, to) dt 1/itt . (6 .1 )
to

Integrating by parts (hoping the best for contributions with
ERL = 0 in (6.1)), using (1 .19), (5 .4), and (5 .8), we find (with

a -} 0 in the definition of the slash) ,

U(t, t o)- = - 11 v(t)? U(t, to) +11 v(t o ) ?

V? exp (ERL t 1 /i t) } V (t 1) U (t1 , to) dtl/i h .
(6 .2)

Repeating this process n times, we get

ff.

J - oGl
l{ V (t)?) Z U(t,to)- Y11 {v(to)?} xt= o

_

	

11(V?)n V exp (ERL t1 /i h) } U ( t 1, to) dti/i h .

The right-hand member contains the interaction energy V in th e
(n + 1) th power and must be assumed to go to zero for n > o0

if an expansion in powers of V is at all allowed .
Hence, we get

(t) U (t, to) = Yt (to),

	

(6 .4)
3*

(6 .3 )

lta



36

	

Nr . 6

where Y* ( t) is obtained by (1 .19) from Y* as defined by (3 .2) ,
but with the meaning of the slash in (3 .2) the conjugate by (1 .8 )
of the meaning of the slash in (6.2)-(6.3) .

Now, it was shown in Chapter III that the series Y* and thus
also Y* (t) converge only if the system has no bound states and ,
in that case, Y* has a reciprocal and (6 .4) can be solved uniquely
with respect to U (t, to) . For instance, for the special choic e
that, in (6 .3) ? = b, so that Y* = Yr* , we have, by (3 .11) ,

P* (t) iP.ø (t) t = Y'* PI exp (ERE, t/i 1Z) = 1

tl'* (t) = (ll~<(t)t)-1 .

Thus, we get from (6 .4) the solution

U (t, to) = Y'* (t) Pk (to),

	

(6 .6)

which is in accordance with (5 .19) if there are no bound states .
In the limits to - -oc and t -> + oc, (6 .6) gives results which
are identical with (5 .33)-(5.36) .

On the other hand, if there are bound states, the expansio n
Y* cannot generally converge, and Y does not have a reciprocal .
Therefore, the matrix elements of Eq . (6.4) do no longer define
uniquely a propagation matrix U (t, to), so that no information
on the propagation of the bound states is obtained by a pertur-
bation treatment .

VII. Interpretation of the time-dependent scatterin g
matrix Y' (t) and of the matrix Y''(+ oc) .

We return now to a problem left at the end of Chapter IV .
It was stressed there that the Y'-matrix gives a correct direc t
picture of a superposition of free-particle waves and outgoing '
scattered waves . This is true for the P (t) matrix as well . How-
ever, it was remarked that this was not true for the S-matri x
which, contrary to the P(0-matrix, gives us a picture of as
many incoming as outgoing scattered waves superimposed on the
free-particle waves . This makes us wonder : If '(t) gives the
correct picture for any large value of t, how is it possible tha t

(6 .5)
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S = Y' (+ oc) gives the wrong picture? We shall show that this
is due partly to the fact that (5 .26) is only a conditional equalit y
and partly to an un-physical order of sequence of taking limits ,
which is automatically introduced by making use of the S-matri x
in momentum 'space in interaction representation .

To see this, we have to recapitulate part of the well-know n
proof that a wave function of the form §F(t)II asymptoticall y
consists of outgoing waves only9) ' 4) .

For interpretation of §F(t)II in (2 .23a) as a probability ampli -
tude, we transform it back to xyz-space for one of the particles scat -

tered. If k = (k, • • • ), where ilk is the momentum of the par-
ticle considered, we have in Schrödinger representation, omittin g
a normalization constant :

T(x,••••, t) = Sd (3) k exp(ikx+ Etlih)<k••••• F(t)

(7 .1 )

	

(•27L

Çdu

	

-->-

	

o )
k2 dk

	

~

	

eilCk 	 . . . . I F I ka

	

)

	

( .
e

	

1

	

(Eo . . . .)-(E	 ) + ia

Here, u = cos 0, (we have taken x in the + z direction) and Eo
and E are energies of the particle considered, while the dot s
stand for energies of other particles participating in the collision .
Let El be the value which E should take for conservation o f
energy, so that

(Eo . . . .)- (E . . . .) = E l -E,

	

(7 .2)

and let i.k1 indicate the absolute value of the correspondin g
momentum. Further, putting

<0, 0, + k , . . . . l F l ko, . . . ) = F(i )

->
<0 0 ~kz . . . . IFlko . . .) = Fly)

we get, asymptotically (for r --+ oc), 9) ' 4)

2 7L e
E., 1/ih

•`°

	

ei kr F(+) - e- HU' F(- )

T(0' 0, I'' t)

	

kdk 	 --

	

_El E l is

(7 .3)

(7 .4)
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e f ikr

	

e± ik,r

	

ef i~rJu,te
(7 .5)

where

E- E l P.,- v 1 k. (k- kl) (7 .6 )

with

v = dE/trdk . (7 .7 )

We also use

EdE = c2 h2 kdk, (7 .8)

and complete the path of integration in the complex ,-plane t o
a contour via _ i oo for the term with F . Only the con -

tour for F(+) then encloses the pole at = -dia, and we find

for a -} 0

T (0, 0, r, t) rk,' - (4 7c
2 /rc 2 ti2 ) Fl (+) El exp [ ik 1 (r - ml t ) ] ,

	

(7 .9 )

where we put

u~l = c2 /vl = E l /tky .

	

(7 .10)

Eq. (7 .9) indeed represents an outgoing wave, however large t is .

The error made when one uses S = (oo)for (t), that is ,
using < k I R I ko > in (7 .1) instead of < k I T (t) I ko >, is in the
first place in taking the limit t -- x in the definition of R and

S by

<kIRlk0 > = lim <kI T(t)I k 0 >

	

(7 .11)
t--oc

(similar for S and T), before this quantity is substituted int o
(7 .1) and the integral over k performed . This amounts to not

combining the factors exp (Et/ih) and exp [(E1 - E) t/ih] in

(7.1) to the harmless factor exp (E1 t/ih) of (7 .4), but to writing

(

	

) 2
oz \eEtt1 (+ El)dT 0, 0, r', f

	

ir

	

h2 c 2 (ia -

x

	

+ ) e ik, r e i(~ht r)it - F(--)e

	

r ei(v,t-r) t
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and then taking the limit t --> 00 in the definition of the S-ma-

trix in the factor on the second line only, while on the first line on e

puts E Ei on account of the resonance denominator . Thus,

replacing -T' (oc) by S in the transformation to xyz-space leads ,

from (7 .12), wrongly to

R (0, O, r, t) ~ - 47'2
eE,'ttEi

lim A,

	

(7 .13)
rh 2 (22

where A is obtained by a contour via = + i oc for the term

with F", while for the term with F" the contour in the com-

plex plane must be taken along = ± i oc as v i t r :

A = F(,+) e tr.lr _ Fl ) é-i.k1T if v i t> r, (7 .14)

A = F (i+) eiklr

	

if v i t <r . (7 .15)

We see that even with the error made we still would have foun d

the correct result (7 .9) if we had kept vi t < r, that is, if

we study the asymptotic behaviour r -* oo > vi t for sone

possibly large, but anyhow finite time t . But, in using the S-matrix ,

the limit t -* oc has already been taken first inside the bracket s

on the second line of Eq . (7 .12), before we take r - oo, yes, eve n

before we transform at all from k-space to xyz-space . Therefore ,

the S-matrix (or rather its scattering part R) represents in xyz-

space not (7 .13) with (7 .15), but (7 .13) with (7 .14), or

R (0, 0,r, t) = - 4	
c2 ~
	 x {F (1+ ) e tki (r-w,t) -. F~) e- ik=( r+ wit)) (7.16)

which obviously contains incoming as well as outgoing waves .

Therefore, R does not depict the scattered wave . Only T (1)

should be used for this purpose .

In the sense of the conditional equalities (5 .26), the collisio n

process may be pictured as a steady transition from the stat e

< k k0 > with definite values Ico for the momenta at t = -oc to

a state <k I S I k 0 > at t = + oc, so that the probability P (k) of

finding the system with momenta k ~ ka after the collision is

r-)-oc,
t-> m
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P (k) = I<klSlko>i2
= I< k IR ko> I2 = 47 2 [S (E- Eo)] 2 I < k l F l koi l 2 ,

where we have used (2 .28) and (1 .5) . Since

[S (E-Eo)] 2 = h-1
~ei(E-Eo

dt•6(E-Eo) = (E1i Eo) u dt ,
•_ Ø

	

tl_~
we have

P (k) = 2 T8 (E - Eo) I< k I F l ko > I 2 ,

where T is the infinite time during which the collision has take n
place. The probability density in k-space per unit time for a
transition ko -~ k is thus' )

Pko->k= h å(E-Eo)I<klElko>12,

	

(7 .17)

where the. 6-function takes care of energy conservation . Equation
(7 .17) is in accordance with the results quoted in the first par t
of Chapter IV .

As was shown in reference 5, the same result is obtained i f
the time derivative of the probability functio n

P (k, t) = < k l P (t) I ko > l 2

at time t is defined as *

= ~t [< k l T ( t)I ko>~` <k l T ( t)Iko »

=
<koITt(t)1k> ôt

<IcIP"(t)Iko >

j ci

+ lôt <kol Yft ( t)lk> j •<klF( t)! ko >

~<<kol Pt ( t)~k><kI V(t) T (t)l k o >

-<kol Tt ( t
) V ( t)I k >< k l W(t)I ko>} ,

where we have used the Schrödinger equation (5 .16) for th e
functions '(t) and Vt (t) . Using further (1 .19), (2 .23a)-(2 .25 a) ,
we ge t

* The same idea appears in Eq (1 .68) of reference 1 .

Pko->k ( t )
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P1w-,k( t ) = itt { < lc l koi[< kol F l koi-< kol Ft l koi ]

-I-<k o l Ttlk><klF ko > - < ko l Ft l+< k l T l koi }

= ~li{<klko>[<kolF tT l ko>-< kol TtF l ko> 1

<kol ll iFt bl k i< k l F l koi

	

< kolF t l k i< k l§ F I ko>) ,

where we have used (2.33 a) and <k ko> = å (k-ko) . Finally ,

since by 1 .9a

,(Eo-E)-§ (Eo-E) +2nis(E- Eo) ,

we get for the probability density in k-space per unit time of a

transition ko- k at any time

Pka~k =-< klFlko>l 2

-8(k-ko)Çb(Eo-E')I<k ' IF ko>l 2 dk' } .
Jll

(7 .18) is in accordance with "conservation of normalization " :

åt<ko wt k) dk<kl '14> - at 1 P(k,t) dk = Ç dkPka ,k = 0

and, if k ~ ko, (7 .18) is identical with (7 .17) .

VIII . The methods of KALLEN and of YANG and FELDMAN" ) .

In the preceding sections, the S-matrix has been defined i n

terms of the state functions either in Schrödinger representatio n

or in interaction representation . Sometimes, in particular in field

theories, it is more convenient to work in a Heisenberg represen-

tation and to derive the S-matrix directly from the field equation s

without an explicit use of the Hamiltonian and the Schrödinge r

equation .
Let be any dynamical variable of the system in a Schrö-

dinger representation, i . e . is a time-independent matrix . In

interaction representation, we then have the matrix

(7 .18)
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( t )

	

exp (ERL t / ih) ,

(t) = $ (t0 ) exp [E 1 (t-to)hh] ,

where the interaction representation has been chosen identica l

with the Schrödinger representation at the time t = O . Similarly ,

we may define a Heisenberg representatio n

~rr (t) = Ut (t, 0) ~ (t) u (t, 0),

	

(8 .2 )

where U (t, to ) is the propagation matrix of Chapter V .

While the variables SH (t) satisfy the usual equations of

motion with interaction, the (t) satisfy the corresponding
equations of motion for a system with no interaction, i . e .

ihde(t)/dt = ERLe(t) .

	

(8 .3 )

For t = 0, we have, by our special choice of representations ,

41 (0) = (0) _

	

(8 .4)

We now introduce a new interaction representation 12) of the

dynamical variables by matrices eto (t) depending on two tim e

parameters to and t . For a fixed to they are defined as thos e
solutions of the free particle equations of motion (8 .3) which for

t = to coincide with the Heisenberg matrices ell (to), i . e .

ih ca to ( t )kit = ERL eto ( t) ,

$ta ( to) = $13 (to) •

The solution of these equations may, by (8 .1) and (8 .2), be

written as

~tp (t) = Jell (t0) exp [ERL (t - to)/ th ]

= { Ut ( t o, 0) exp [ ERL (t- to)/ ih ] }

X e(t) { U ( t0, 0) exp ]ERL ( t -
l

to)/ ih ] }

= ({ Ut ( t o, 0) exp [- ERL to/it ] }

x

	

U(to, 0) exp [-ERL tofih] }) exp (ERL t/it



Nr. 6

	

43

From the expression (5 .19) for the propagation matrix
U (t, to) we get at once

U (to, 0) exp (- EßL to/ih) = ¶ . Tt (- to) + ~ ~ r ' 1yr (- t o)

This equation simply expresses the fact that the propagation

matrix in the Schrödinger representation, i . e .

Us (t, t o) = eEo" U
(t, to)

e -Et°", (8 .8 )

is a function of the difference t - to only .

By (8.7) we get from (8.6)

(t ) = { U t (0, - to) $ U (0, - to) } exp (ERL t/ih) . (8 .9 )

The matrices 't°(t) may also be interpreted as Heisenberg

representatives of the dynamical variables of the system without

interaction . Further, since each value of to defines a space-lik e

surface ao in Minkowski space, viz. the surface of points with tim e
coordinates equal to to, the variables t°(t) correspond to the fiel d

variables il (a, x) in YANG and FELDMAN ' S notationll) . The connec-
tion between the variables $t° (t) and $tl (t) corresponding to two

such surfaces ßo and ol , respectively, is by (8.9) given by the

unitary transformatio n

( t o) = Wt°t,(t)(t) Wt° t,( t)
with

Wt°t, (t) = { Ut (0, - to) U(0, - tl) } exp (ERL t/ih)

(8 .10)

(8 .11)
= U(-t o, -tl ) exp (ERLt/th) = U(t - t o , t- tl) ,

by (5 .3b) and arguments similar to (5 .2)-(5 .3a) and (8 .7)-(8 .8) .

We now define the in- and out-variables b y

	

(t) = lim t° (t) ,

	

a )
t °=- m

	

~out (t) = lim ( t ) -

	

b)
t,~+x

(8 .7 )
= U (0, - to) .

(8 .12)
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The connection between these variables is obtained fro m

(8 .10)-(8 .11) by taking the limits to - -oc, t 1

	

-}- ae . From the
definitions (5 .25) of the U+ (t) matrix and Dyson's definition

(5.31) of the S-matrix, we get

lim U (- ta, - t l ) = lim U (t l, to) = Um U+ (tl ) = S . 1
fo -~- co

	

t o -9--

	

t-> +
f, 3 + ~

	

t, -a+ x

Hence, by (8 .12), (8.10), and (8 .11 )

$out ( t ) = St ein (t ) S,

i . e . the in- and. out-variables are connected by a unitary trans -

formation with the S-matrix as transformation matrix . Since the
relation between in- and out-variables may be obtained by

solving the equations of motion for H (t), (8 .14) represents a way

of determining the S-matrix without the use of Hamiltonian o r

Schrödinger equation. These methods of KÄLLÉN and of YANG and
FELDMAN have proved to be useful in field theory12 , and may be

applied also in cases where the system is not a Hamiltonian

system. For Hamiltonian systems, it is easy to find the connectio n
between the in- and out-variables and the matrices Q and T .
By (5.25) and (5 .30) we get

lim U(0,-to) = U(0,-I- x) = "U_(0) = 2", 1
fo .

IimU(0, -ti) = U(0, -oc) = " U + (0) = T" .
~+

Hence, by (8 .12) and (8 .9) ,

ii
e

in ( t) _ { .Qt exp (ERL Oh) = 2t (t ) (t) Q (0", ~

"&mt ( t ) = L Tt '411 } exp (ERL t/ih) = 'Tt (t) e ( t) Ÿ' ( t ) ,, ,

which is in accordance with (8 .14) on account of (2 .48) .

(8 .13)

(8 .14)

(8.15)

(8.16)
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IX. Switching on and off the interaction .

Although the results thus far obtained are satisfactory, the

treatment of the limits t ± 0c remains awkward . Trying to

define the U+-matrix as limit for t0 -± -oc of the matrix U (t, to)
we were trying in fact to solve the Schrödinger equation fo r

U+ (t) with initial condition U+ (to) = 1 without stating the exact

value of the time to . As, on account of the Schrödinger equation ,

U+ (t) does not stay constant, this problem does not really mak e

sense. Our procedure of then looking for a solution for U+ (t)

which is "unity on the average" for t-± -Do is only a makeshift ,

and leads to the complication that items that do not vanish at al l

(such as Pr (t)) yet may happen to vanish on the average for

t----> -0c) .
We shall therefore try to solve this problem now by assuming

that V--> 0 for t -- ± oc, so that we may really have U+ (t) - 1

for i --->- -oc and also a well defined limit of U+ (t) for t + oc .
For this purpose, we replace V in the original Schrödinger

equation (2 .3) by

V exp (-
l t l/h)

(9 .1 )

with extremely small, but finite positive a .

Inserting (9 .1) in the definition (1 .19) of the matrix V (t )

occurring in (2 .6), and therefore also appearing in Eq . (5 .4) ,

we have for the non-closed system in interaction representatio n

a potential

V (a ; t) = V exp [(ER', t - is I t I)/ih] .

	

(9 .2)

Thence, we have to solve the equation s

ih 8 U+ (a ; t)/0 t = { V exp (E 1, RL tlih) } U + (a ; t) for t < 0 (9 .3 )

and

if 8 U+ (a ; t )/ô t

	

V exp (E_1,RL Oh) } U + (a ; t) for t > 0 (9 .4)

with the initial conditio n

U+ (a ;-oc) = 1 .

	

(9 .5)



46

	

Nr . 6

Here we have put

En,RL = ERL + nia,

	

(9 .6)

and we shall also introduce a generalized scat § n for a division

by (E H - E1 + nia) . Thus, § 1 is equal to §, with the differenc e

that now a is not necessarily going to zero . Similarly, we intro -

duce a generalized flat bn for a division by (E H - Eb - nia) .
By Ø (a ; t) we shall denote the solution of the differentia l

equation (9 .3) which has the limit 1 for t --)--oc

lim Ø (a ; t) = 1 . (9 .7)

Similarly, X (a; t) shall denote the solution of (9 .4) satisfying

the condition

lim X (a ; t) = 1 .

	

(9 .8)
t->+ ø

Assuming that the limits in (9 .7)-(9 .8) give real (and not

only conditional) equality of Ø at -oo and of X at +oo to
unity, we conclude that

01 (a ;-x) 0 (a ;-cx) = Ø(a ;-oc)Ø t (a ; -oc) = 1, l

Xt (a ; -I- oc) X (a ; -I- a) = X(a ; + oc) Xt

	

(9 .9)
(a ; + oc) = 1 . ~

Now, consider the matrices < k I Ø (a ; t) k 0 > and < k I X (a ; t)) ko

as two sets of functions of k, labeled by ko . At t = - oc , the
first set of functions is, by (9 .9), a complete orthonormal se t
and, on account of the conservation of orthonormality an d

completeness of a set of solutions of the Schrödinger equation ,
which was shown in Eqs. (5 .10)	 (5.11) to hold also for non -

closed systems, we have for any finite time t

Øt (a ; t) Ø (a ; t) = Ø (a; t) Ø t (a; t) = 1 .

	

(9 .10)

By the same argument, we get from (9 .9)

Xt (a ;t)X(a ;t) = X (a ; t) Xt (a ; t) = 1 .

	

(9 .11)
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If the series converge, we get an explicit expression for (a ; t )
in terms of the potential V by

(n- 1

Ø,: (a ; t) - 1 + Sn

	

1 Tr (§n -i V) II ( exp (En,RL t / th)

= 1 + § 1 V II exp (E 1, RL t/iiz )

+ §2 V V I I exp (L2, RL t/ih) + . . .

+§nV§n-1 V . . . §2V§iVll exp (En

Indeed, in i Ï âØ* (a ; t)/8 t all first factors §n are canceled ,
and by

VA exp (En,RL "t/it•i) } = { V exp (E 1 , RL Oh) j {A exp (En_1,RL t / itz) } (9.13)

we may factorize out { V exp (El , RL Oh) } from the resulting
expression and just obtain { V exp (E1 , ru, t/ih) ) 0 r: (a ; t) .

Since a> 0, all terms but the first in (9 .12) vanish for t -- -x ,
which takes care of the initial condition

Ø* (a ; -x) = 1 .

In the same way, one sees that the series

x n - i
(a ; t) = 1 +

	

( r.j G bn _ i V) II exp (E-n , RL Oh)
n=1 i = o

= 1 + b1 V II exp (r= 1,RL t/It-i )

+ 2 V bl V
II

exp (E_2,RL t/iti)-}-	

+ bn Vbn-1 V . . . b2 VbI VII exp (E-n,RL t/th)+ . . .

is a solution of (9 .4) satisfying the condition X* (a ; +x) = 1,
provided, of course, that the series is convergent .

Since U+ (t) is that solution of the Schrödinger equation wit h
the potential (9 .2) which is continuous at t = 0 and satisfie s
the initial condition (9 .5), we have

(9 .12 )

L t/iti)+ . . .

(9 .14)
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U+ (a ; t) =
0(a ; t)

	

for t <0 ,

where

Ø (a) =

X (a ; t) X (a) t Ø(a) for t> 0 ,

(a ; t 0), X (a) = X( ;0)

'j

	

(9 .15 )

(9.16)

denote the values of (a ; t) and X (a ; t) for t = 0 . The ex-
pression (9 .15) for U+ (a ; t) is seen to be continuous at t = 0
and unitary for all t, on account of (9 .10), (9 .11) :

U+ (a ; t) U+ (a ; t) = U+ (a ; t) U+ (a ; t) = 1 .

	

(9 .17)

For an arbitrary state < k! y (a ; t) of the non-closed system with
a � 0, we now obviously have

y)(a ; t) = U+( a ; t) p( a ; - x),

	

(9 .18)

where y (a ; -0c) is the value of y (a ; t) for t = -x . Indeed ,
(9 .18) is a solution of the Schrödinger equation of the non-close d
system and (9 .5) takes care of the initial condition .

From (9.17) and (9.18) we get

y (a ; - oo ) = U+(a ; t) y (a ; t) .

	

(9 .19)

Hence,

y' ( a ; t ) = U+ (a ; t ) U+(a ; t o) y' (a ; t o)

	

U (a ; t, to) y (a ; t o), (9 .20)

i . e .

U(a ;t,to) = U+(a ;t)U+(a ;to)

	

(9.21a)

U+ (a ; t) = lim U(a ; t, to)

	

(9.21b)
to -*-oo

on account of (9 .5) .

If we now define a matrix S (a) as the limit of U+ (a ; t) for
t -- +0c, we get, by (9 .15) and (9 .8) ,

S (a) = lim U+ (a ; t) = Xt (a) Ø (a) = lim U (a ; t, to),

	

(9 .22)
ta-›--s,,
t~+ x

and



Nr . 6

	

49

which is unitary on account of (9 .10)-(9 .11). Hence, S (a) i s
the Dyson S-matrix for the non-closed system where the inter-
action is switched on and off. In contrast to the Heisenberg S-
matrix, the matrix S (a), according to (9 .22), with (9 .16), (9 .12) ,
(9.14), (1 .7), does not contain a factor å (Elm). This is connec-
ted with the fact that the energy is not conserved in the system
with a> O. By (9.18), S (a) is the matrix which connects an y
state vector at t = - oc with the state vector at t = + oo by

(a ; + oc) = S (a) ?p (a ; -oo).

	

(9 .23)

In all these expressions we shall now go to the limit of a - 0 ,
but we shall first assume that the series (9 .12) and (9.14) for t = 0 ,
i . e . the series 0* (a) = Ø* (a ; 0) and X* (a) X* (a ; 0), ar e
uniformly convergent for all a including the value a = 0, s o
that we can take the limit a - 0 term by term in the expansions .
Since §n -> § and bn -> for a --* 0, we then get

Ø :y, (0) =

	

(§ V)n II = Tf*
= o

X* (o)= (bV)n = sa*

n= o

on account of (3 .3a), (3.3b). As was seen in Chapter III, thes e
series can converge only if the system considered has no bound
states . The assumption made above about the uniform conver-
gence of Ø (a) and X (a) can therefore only be justified when no
bound states exist . In this case, however, we get from (9 .12) and
(9.14), by El n, RL

	

ER, for a -)- 0 ,

Ø * (O ;t) =

	

(§V(t))n ll =

	

(t)fort<0, l
n=0

	

l

(
(9 .25)

X* (O ;t) _ ~( b V(t))n ll = sa*(t)fort> 0 . 1n= o

Thus, from (9 .15), (9 .24), (9 .25), (2 .47a), and using the relatio n

iF (t) =

	

(t) S

	

(9.26)
Dan . Mat. Fys . Medd. 2S, no.6 .
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following from (2 .48), we find that, in this case ,

U+ (0 ; t)* = lim U + (a ; t)* = VI* (t)

	

(9 .27)
a-÷0

for all values of t . This equation is in agreement with the unitarity

of U+ , as the system considered had no bound states . For such

systems, Eq . (9.27) is a justification of the expectation expressed

at the beginning of Chapter V, since the state U+ (0 ; t), which at

t = - oo represents an initial free particle state ko, for finite

times will have developed into the stationary state < k ¶(t) I ko > .

Further, we get for such systems, from (9 . 21 a), (9.27), and

(5 .19)-(5 .21) ,

lim U* (a ; t, to) = 'T''* ( t ) T*t ( t o) = S* (t , t o) = U* ( t, to), (9 .28)
a--> 0

For these systems, the limit of S (a) defined by (9 .22) is also

the S-matrix of HEISENBERG, since by (9 .22), (9 .24), and (2 .47 a)

lim S* (a) = X T :,: (0) Ø* (0) = S2 t * iF* = Q . S2* S* = Sa: . (9.29)
a-* 0

Thus, in the case considered, the method of an infinitely

slowly switching on and switching off the interaction leads i n
every respect to the same results as the method used in Chapte r

V for a strictly closed system with the conventions (1 .23)-(1 .32)
for taking the limits t -} ± oo . The two methods differ only by
the sequence in which the limits a -3- 0 and t ---> + oc are taken

and, at least as far as our series expansions are sufficiently

convergent, it does not matter which limit is taken first .

It is generally believed that this result holds also in cases ,
where the series expansions do not converge, for instance, also

for systems with bound states . In particular, it is believed that

an equation like (9.27) must always be valid on account of the

"adiabatic theorem" of quantum mechanics l3) which states that

a stationary state of a closed system by an adiabatic, i. e . infinitely

slow, change of the potential goes over into the corresponding

stationary state of the closed system with the new potential . The
proof of the adiabatic theorem given by BORN and Foci( is, how-
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ever, based on special assumptions about the potential and th e
type of energy spectrum, and to our knowledge no general proo f
of this theorem has ever been given .

X. Conclusion .

The purpose of a theory of collision processes is the calculatio n
of differential and total scattering cross sections . The techniqu e
of obtaining these quantities from the matrices discussed in th e
foregoing was discussed in more detail in reference 4 . From th e
discussions of Chapter VII of the present paper, however, it i s
clear that scattering is described most directly by the matrix Yf
defined by the integral equation (2 .27 a) . In fact, in Eq. (7.18)
we obtained the density in momentum space of the transition
probability per second directly in terms of the "effective potential "
F, which by Eq . (2.25 a) is the product of the interaction operato r
V into the matrix T. In the integration over final states in a given
region in k-space, conservation of energy is then ensured by the
delta function appearing in Eq . (7 .18) .

As shown in Chapter VII, the Heisenberg S-matrix in xyz-
space for t -~ oo gives an incorrect picture of the scattering pheno -
menon, since, due to the wrong order of sequence of limits, i t
describes incoming as well as outgoing spherical waves in such
interpretation . When interpreted as a probability amplitude in
momentum space, as in the reasoning preceding Eq. (7 .17), it is
seen to determine only an infinite transition probability during
an infinite time . Although, by an artifice, one succeeds in obtaining
Eq. (7 .17) from such attempt at a direct interpretation of th e
S-matrix, a more satisfactory treatment was given by Eq . (4.1) ,
in which the right-hand member amounts to factorizing a delt a
function ô (ERL) out of the matrix R = S- 1 by writing

S-1 =R=å(ERL)R; R=`RdERL =(S-1)dERL . (10 .1 )

A comparison of (10 .1) with Eq. (2 .28), in which the delt had
the meaning defined in (1 .5), shows that

(ifs) åR II = R = 2 åFII ;

	

R = (2n/i) FI ERL=o . (10 .2)

4*
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Equation (10.2) relates R to F "on the energy shell", that is ,
to the matrix elements (L F I R) with ERL = 0 only . Outside the
energy shell, R is not really defined by (10.1). Because of the
delta functions in Eq . (7 .18), F in that equation may now be
replaced by (i/2rc) R, so tha t

Yko_÷Ts = h-1 { ~ (E-Eo) <k RI ko ) J a

ô(k -ko) S S(Eo-E')<k'Rlko ) lz dk' } .

Thus, by (10 .1)-(10 .3), cross sections for scattering in a finit e
time interval may be obtained from the S-matrix without nee d
of the consideration of infinite probabilities preceding Eq . (7 .17) .

This reasoning is, of course, based primarily on combining the
definition (2 .28) of the Heisenberg S-matrix with the origina l
definition of the ¶-matrix as a set of probability amplitudes for
given scattering states characterized by the momentum ko of the
incident particles. If any different definition of the S-matrix i s
used, its equivalence is first to be proved ; and, since the matrix
' is used, it has to be investigated to what extent every possibl e
state of a given system of interacting particles can be describe d
by it. This was the aim of the preceding chapters . The main
results obtained, old and new ones, are the following .

While the S-matrix is always unitary [Eq . (2 .45)], the Y1-ma-
trix in general is not so [Eq. (2 .40)], while the scattering matrix Q
symmetric in incoming and outgoing waves, which was define d
by the integral equation (2 .27c), is never unitary [Eq . (2 .34c)] .
The latter matrix is related to the Hermitian reaction matrix K
by Eq. (2.29) with (2 .25c) or with (2 .23 c)-(2 .24c) . The reactio n
matrix K, on the other hand, is related to the S-matrix by Eq.(2 .44) ,
and can be used for calculating phase shifts by means of (2 .49)-
(2.51) (cf. reference 1) . Further relations between the matrice s

', Q, S, and K are found in Appendix D .
The propagation matrix U (t, to), defined by Eq. (5 .2) and

expressed in terms of Y by (5 .19), has been used by DYSON for
defining an S-matrix called (oc) . This Dyson S-matrix relates
the "in"- and "out"-variables of K;iLLÉN, YANG, and FELDMA N
by Eq. (8 .14) . These variables may be interpreted as simply tw o

(10 .3)



Nr.6

	

5 3

different interaction representations of the same quantities ; the

"in" representation coinciding (as far as this is possible) wit h

the Heisenberg representation in the infinite past, and the "out"

representation in the infinite future . They also are the Heisenberg

representations of those solutions of the "homogeneous" field

equations without interaction which describe incoming or out -

going particles . (Cf. references 11 and 12) .

The definitions of U + (t) [Eq. (5 .25)], of the Dyson S-matri x
U+ (oc), and of the in and out variables are not quite satisfactory ,

unless one assumes that the interaction has been switched o n

since t = - ac, and will be switched off before t = + oc . In Chapter

IX, we defined scattering matrices for finite switching-on and-off

velocities . Now, U+ (a ; t) is given by Eq . (9.15), and S (a) of

Eq. (9.22) is the new Dyson S-matrix . The limits t -->- ± oc thi s

time have been taken first . Little can be said in general about

the properties of this matrix S (a), which for finite a does not

even ensure conservation of energy .

All these results are quite general ; for actual calculations ,

however, some special assumptions have to be made. The leas t

of these assumptions is the one discussed on pages 20-21 and in

Appendix D, that the scattering matrices ¶, S2, and Q all thre e

span the same subspace in Hilbert space . This enables us to

derive the relations (2 .48), (5 .24), and (9 .26) between the various

scattering matrices .

A treatment of the limits t - oc without taking refuge to

switching on and off the interaction leads to the "conditiona l

equalities" (5 .26)	 (5.32) and (8.15)-(8.16) . These formulas are

usually supposed to prove the general equality of the Dyso n

S-matrix to the Heisenberg S-matrix . However, this treatment

makes sense only in so far as bound states can be ignored, a s

seen from Eq. (5.28), or by comparing (5 .32) with (2 .40) . In

the more satisfactory treatment of Chapter IX, progress in thi s

proof could be made only by assuming convergence of th e

series expansions of perturbation theory . More specifically, we

assumed uniform convergence of the expansions (9.12)-(9 .14)

for all switching-on-and-off velocities of the field including th e

case where this velocity tends to zero . Then, the "improved "

version of the Dyson S-matrix given by (9 .22) was shown in Eq .

(9.29) to yield the Heisenberg S-matrix in the final limit a -} O .
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However, in Chapter III it has been shown in complet e

generality that the expansions of perturbation theory for P- used

in Chapter IX cannot possibly generally converge, if any boun d

states for the system are possible at all . (Any state, in which not

all final particles go off to infinity, is here considered a "boun d

state") . This proof is based on the disagreement between Eqs .

(3.11) and (2 .40). For the exceptional systems for which no

such bound states are possible, however, we have expressed al l

scattering matrices and related quantities explicitly in the form

of expansions . [See Eqs . (3 .3)-(3 .6), (5 .33)-(5.36), (9.12) ,

(9.14)]. In the even more exceptional case that these expansion s

really converge, these expansions satisfy all equations derived

for the quantities which they represent .

Concluding we may say that we have not been able to give a

proof of the equality of the Dyson S-matrix and the Heisenberg

S-matrix general enough to be valid also for systems with bound

states . (We purposely omitted some arguments possible on the
basis of an "adiabatic theorem" which we could not rigorousl y

prove for the systems considered) . It should, however, be remem-

bered that cross sections are determined by Eqs . (7 .18) or (10 .3)
without any discussion of what is going on at t -~ ± oc . In

principle, F in Eq. (7 .18) can be found by direct solution of th e

integral equation (2 .27 a) and subsequent use of Eq . (2 .25a) ;
or R in Eq. (10 .3) can be found by first solving for Q from Eq .

(2.27 c) and then finding W, K, R, and R by means of Eqs .
(2 .25c), (2.29), (2 .43), and (10 .1), respectively. The integral

equations (2 .27) retain their validity for systems with boun d

states .

Not discussed in this review of scattering theory are such
problems as (1) the use of exact wave functions instead of th e

nth-order Born approximation involved in our representation o f

the scattering matrices in k-space and in our treatment of all
but kinetic energy as the perturbation causing the scatterin g
phenomenon ; (2) explicit solution of collision problems for system s

allowing bound states ; (3) use of the method of analytic conti-

nuation of the S-matrix in the complex energy plane for obtainin g
additional information on systems of interacting particles ; or (4 )
solution of scattering problems by variational methods .
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Appendices .
A. We shall here prove the important relation (1 .17) :

DLR DLM + DRM DLM + DRM DRL = ge å (ELM) a (EMR)

	

(A.1)

with DRL given by (1 .5). This equation will be proved if, for

an arbitrary function f (EL , EM), the relation

X+ lim dEL dEM f (E L , EM)

x { DLR DLM + DRM DLM + DRM DRL } = Z2 f(ER, ER )

can be shown. To this purpose, we introduce new variables o f

integration x = ELR /a and y = EMR /a, so ELM = a (x - y) .

Let f (EL, EM) = g (ELR, EMR) ; then,

a->-

0~ x(x -y)
dx dy g(ax, ay) (x2+ 1) [(x-y) 2 + l i

+	 y (y -x)	 +	 xy	

(y2 + 1) [(y-x) 2 + 1] (x2 + 1) (y 2 + 1) 1

11

	

x2- xy+ yz

~o J~J

dxdyg(ax , ay) (x+i)(x-i)(y2+1)(x-y+ 0(X-y -i )

As the integrand vanishes at infinity as x-2, we may close the

contour in the complex x-plane; for instance, in positive directio n
through + i 0o around the poles i and y + i . Thus, (A.3) yields

X = lim
a->0
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X = lim 2 n i \ dy

a .->- O

[-1 - iy -f- y 2]g(ia,ay)

	

[- 1 -I- i y -I-y2] g(ay-I- ia, ay)
2i(y2--1)(2i-y)(-y)+

	

(2i +y)y1)2 i

_

	

lim [ g (ia, 2ia) + g (2ia, ia) - g (ia , ia) ]
a->- 0

= n2 g (0 , 0) _ f (ER , ER),

	

j

which completes the proof of (A .2) and (A.1) or (1 .17) .

73. Next, we shall show by direct multiplication of the series
(3 .7) that P* VI* = 1 . By (3 .7) we have

=0

	

n=0 (=

	

(Vb)
1 '(~V)n-l II I

	

(B .1 )
111

with

Ao = 1, A 1 = § V II +II Vb = 0

	

(B .2 )

and, for n > 2 ,

\ L I A n IR> = <L I V I k l j dk 1 <k1 I V I k2i dk 2 . . . dkn_1 (kn_1 I VIR>S(n),

n

S (n) = Y B (n) ,
1=0

n- 1
Bi(n)

= J
t (EL -Ei -ia)-1 • y t (ER -EJ -f- ia) -1 .

i

	

i

0

	

7i- 1
Here, y

G
(EL -Ei -ia)-1 and

J G
(ER -Ei + ia)-1 both mean 1 ,

i=1

	

i- n
further Ei means ER for i = 1 = n and Ei means EL for
j = 1 = 0 .

From these definitions we get the following connection be -
tween the expressions B 1 (n + 1) and B1 (n) :

-c

X
} A . 4

(B .3
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Bi (n -I- 1) = BI (n) (ER-En -I- ia)-1 for 0 < 1 < n

Bn(n+1) =
13n(n)

	

EL-ER-ia
(EL -En- ia) (ER- En+ ia )

Bn (n + 1 ) = Bn (n) (EL- En - Ia)-1.

Hence,

n- 1
(n -1- 1 ) _ .'Bi(n +l) +Bn(n+1)+Bn+1(n-}--1 )

i =o

	 EL	
(EL

	

ER -ia

	

(B.5)

-(ER-En+ia)--+ -
(EL-En- ja) (ER - En -i- ia )

-}- (EL -En - ia)-1 1

Since the last term in this expression is equal t o

Bn
(n) (EL -En- ia) (ER-En-{- ia) '

it goes to zero as a -k 0, and we get from (B .5) the formula

S (n+ 1) = S (n) • (ER-En + ia)-1 .

	

(B .6 )

Now, for n = 2, we have

3 (2) _ (ER -EL + ia)-1 (ER-El -}- ia)- 1

-I- (EL - El - ia)-1 (ER -El -I- ia)- 1

J- (EL-El- ia)-1 ( EL - ER - ia)- 1

ia
(EL-E l -ia)(EL-ER -ia) (ER-E l + ia)

Hence,

n
=

	

B I (n) • (ER - En -I- ia)- 1
o

+ Bn (n)

ia

=0 for a~0 .

S (n) = 0 for n .>_ . 2,

	

(B .8)
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i . e ., by (B.2), (B.3) and (B.1) ,

An = 0 for n > 1 ,

Il wx=1 .

Besides (B .9) we have, however, als o

=1 . (B .10)

To complete the proof of this equation, we have, accordin g

to the considerations of Chapter III, Eqs . (3 .7)-(3 .11), only t o

show that the quantities

	

n I-1

	

n

	

l
B (n) =

	

(.j G(E I -Ei -{-ia)- (E I -Ej -ia)-1 for n>2 } (B .1 1

	

I=o i = o

	

j=I-h1

	

)))

are either identically zero or at least contain a factor a and, hence ,

(11'go to zero for a

	

0 . In (B .11),

	

(E 0 - Ei ~-- ia)-1 and
i= o

n

J G (En - Ej	 ia)-1 both mean 1 . A common denominator D
= n + 1

of the fractions in the sum (B .11) i s

D= (it (Ei - Ej - ia),

	

(B.12)
0 <i<j< n

where the product is extended over all pairs of indices i <j
among the numbers 0, 1, 2 . . . n . Hence,

B(n) = N(a ;Eo,El, . . . .En)

	

(B .13)
D

where the numerator N is given by
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=

	

(-1)I (j C'(Ei- Ej -ia) .
I=0

	

0 <i<j< n

Here, the prime on l means that, in the product over all inde x
pairs i< j, the factors with i = 1 and j = I should be left out .
N (a ; E0 • En) is an algebraic function of the variable s
(a ; E0 , E l , • • • En ) which has no singularities for any valu e
of these variables . Further, we see that

N(a ; Eo, . . . En) = N(E p . . . En) + Ni,

	

(B .15 )
where

N (E0 . . . En) =

	

(-1)I

	

E i -Ej ) = N(O ; Ep . . . En ) (B .16 )
i =o

	

o <i<j< n

is the function obtained by putting a = 0 in (B .14), while Ni
is a function which contains at least one factor a .

Thus, our statement will be proved if we can show tha t
N (E0 , . . • En) is identically zero for all values of the independen t
variables (E0 , E1 . • • En ) . Let us first assume that all variables
E0 , . • • En are different and different from zero ; then we can
take out an 1-independent factor (It (Ei - Ej) and we get

o<i<j< n

N

	

J L (Ei --Ej) • C(n),

	

(B .17 )
0< i < j < n

where
1

-1)I -- ---
(Ei-EI) •

	

(EI -Ëj )
o <i<I

	

l<j< n

	

Ii

	

n

t (m t i) (E I -Em)- I .

	

I=0

	

=0 .

However, C (n) can be proved to be zero for all non-vanishin g
values of (E0, El . . . En) which are different from each other .

n JG (Ei -Ej -ia)
N(a ;Eo . . . En ) = Y

	

0<i<j< n
I=0(-1)I f.)l (Ei -El -ia). (.jl(E I-Ej - -ia

0 <i<I

	

I <j< n

C (n) =

(B .18)

B .14)
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For the proof we consider the algebraic equation of degre e
n> 1 :

A factor (x	 Ek ) is found in the numerators of all terms i n
the sum over 1, except in the term with 1 = k . Therefore, sub-
stitution of x = Ek leaves only the one term with 1 = k which
gives

f( ED - ln - 1 = o .

	

(B.20)

Thence, the algebraic equation (B.19) of degree n has at least (n + 1 )
roots x = Eo, El, E2 • • • • En . This is possible only if the equatio n
is an identity in x. Then, the coefficient of x n must vanish. Thi s
coefficient is (for n 1) just equal to C (n) defined by (B .18) .
Hence, C (n) and consequently N is zero for all non-vanishing an d
different values of the variables (Eo, El, • En) . But, since
N(Eo, • . En) is a continuous function of these variables, N
mustthen be zero for all values of Eo, E1 • • En , which completes
the proof of the equation (3 .11) in Chapter III, i . e . Ÿf is unitary
if the series is so strongly convergent that the series and W

can be multiplied term by term .

C. Throughout this paper, ko means a particular set of values
of the free particle variables k and quantities like < k Y ko >
are thus matrices in k-space and

I
ko > is an eigenket of the

k-variables corresponding to the eigenvalues ko (plane waves) .
On the other hand, ko is also used to label some of the stationar y
states (the scattering states) of the total system . For a reader wh o
is accustomed to Dirac's notation, this may lead to confusion ,
since he might regard

I
ko > as identical with one of the scattering

states n > of the total system. To him, the matrix < k I Y ko >
in case of bound states may seem to be an incomplete matrix ,
i. e . a "non-square" matrix, as k labels a complete set of plan e
waves used in Fourier analysis of the field, while ko labels an
incomplete set of functions . He may easily remedy this as follows .

First, complete < k I Y ko > to a "square" matrix < k I',, I n >
by adding columns of zeros : <kl Y, n lko> = < k•I Ylko> ; < k1 Yu, r >
= O . The subscript nz reminds us of the fact that Y, n is defined

x -Ern

	

1 = 0 .

	

(B .19)z
i

~ G~rn~P,
~I= U

	

7m=U

	

EP -Em
f(x)
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in "mixed" (k and n) representations. In zeroth approximation ,
then, < k

l
Ym l n > equals a matrix <k I lm l n > , which consist s

of the unit matrix 1 in k-space bordered by colums of zeros :

< k l 1 ,ni ko) = 8(k-ko) ;

	

< k

	

r> = 0 . Thus ,

<kl Ymi n > - < kl lmin>+<klZmin> .

The matrix 1 m obviously has the property 1m 11 = 1 in k-
space, while 1r, lm is a matrix in n-space with matrix element s

< kol 1 ,t,, 1 ,Rl ko> = < kol koi, < ko1 1 ,t,, 1 ml r" >
<r'Iln,1,1k:0 > _ < r'1111m, lr

" >
= 0

(even for r ' = r") . We may then introduce matrices completel y
in k-space by Y = Ym1m (thence, Y t = 1 m Ytn) . These matrice s
in k-space are the ones appearing in the text ; for instance, Y, Z ,
B, ¶, T, F, Q, G, Q, P, W, R, K, S, 1 are matrices of this type ,
as well as their Hermitian conjugates Yt, Z t , etc .

These matrices, therefore, are obtained from the correspondin g
"mixed" matrices Ym, Y,tn , etc., by first stripping the latter o f
their columns or rows of zeros, (thus changing < k

l
Ym

I
n > into

< k Y1 ko >, < n I Y11 k > into < ko I Y i I k >, or a product lik e
< n' I Y,, Z„, n" > into < lco I Yt Z

l
ka >, etc .), and then ignoring th e

difference in interpretation of the labels k and k 0 , treating the latte r
as if it labels a complete set of plane waves just like k does .

D. It should be noted that, by assuming that each of the thre e
sets < k Y l k 0> (with Y = ¶ or Q or Q) forms a set of function s
of k sufficiently wide to express any scattering state linearl y
in terms of them, we did not assume that the < k l Y I k 0> would
form a complete set in which to express every function of k .

That is, we did not preclude the existence of bound states . Never-
theless, for ensuring the existence of matrices X I and X2 as de-
scribed at the top of page 21, somewhat special assumptions ha d
to be made about the lack of linear dependence of the differ -
ences between the sets of scattering states

	

Q, and Q on the
bound states 9Pr .

The necessity of these special assumptions for the validity o f
(2 .48) can be made clearer by deriving the alternative form
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which the relations (2 .48) will take when these conditions are

not fulfilled. In general, we find from (2 .45), (2 .47), and (2.40) ,

Ÿf = 7f S t S = tlftP t .QS = (1 -1yryi) .QS ,
r

~= 11f 11+2n
(1+ 2 -1= 7f 7f Q(1+ i2 -

i

\
= (1-Q(1+

iK
2 )

- 1

r

Thence, also

7fS t = (1 - Z yr ,Pr)D, tIf (1 +2J=( 1 ~yryr)Q -

These relations differ from the ones on page 21 by the occurrence

of the factor

( 1 - ~~Vr~Vr) _ w7ft •
r

From the discussions on pages 18-19, however, it is clear

that this factor ( k ' W W k" > acts as the unit matrix whenever

it acts on pure scattering states W. Indeed ,

( vf vfr) w= lf (wt w) _ ~P 1 = 7f ,

by Eq. (2 .34 a) . Our assumption made in words on page 20 no w

amounts to assuming that also

(7fPt) Q_ (WWt)Q = Q .

In as far as this is the case, the above formulas reduce to the one s

on page 21 .
To the authors it seems quite possible that this assumptio n

may turn out to be superfluous, that is, perhaps one can prove

the automatic general validity of these equations . For various
simple systems, such as the potential scattering of two particles ,

the mentioned equations are trivial indeed . However, for more
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complicated systems, in which there may be bound states and
scattering states belonging to the same degenerate energy level ,

we have not been able to find a general proof . As long as no proof

of sufficient generality is available, we regard these equations a s

a somewhat special assumption, on which Eqs. (2 .48), (5 .24) ,

and (9.26) are based .

Purdue University,
Lafayette, Indiana

an d
Institute for Theoretical Physics,

University of Copenhagen.
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