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It is well known that in a first approximation white dwarf
stars are such equilibrium configurations, which masses of-
matter with completely degenerate electrons take up under the
‘influence of their gwn internal gravitational fields. The gravi-
.tational forces acton the electrons mairﬂy through a small radial
~displacement of the heavy particles relative to the electrons.
CHANDRASEKHAR [1] has in his theory of white dwarf stars taken
~account of the relativistic relation between energy and momentum
“of a particle in finding the equation of state of a relativistically
. degenerate electron gas.
We shall here investigate the influence of another relativistic
effect, namely the “‘spin-orbit interaction’’, which is well known
“from the theory of the fine structure of the hydrogen spectrum.
The star will be considered as a kind of THomas-Frrm1 atom,
~and we are thus using an approximation, which is well suited
or the problem in question, even if it is not very good in the
Qase of ordinary atoms. In the stellar interior we may namely
deal with volume elements having linear dimensions that are
small by a factor of dbout 10° in comparison with the dimensions
of the star as a whole and still large by a similar factor in com-
parison with electronic. wave lengths.
We place the origin of our co-ordinate system at the center
of the spherically symmetric star and are then going to use Dr-
RAC’s equations for elecirons in a central field.
- The angle-dependent part of the solution is well known and
is, independent of the form of the potential as a function of the
distance from the ceiiter, leading to the following two simultaneous
differential equations for two radial functions R, and R,: (cf-
A SoMMERFELD : Wellenmechanik, Ch. IV, § 7. [2)])
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eigénfunctions and eigenvalues for values of k that differ by
one, and they are changed into each other by the interchange
of +%k and —k&.

In order to treat the general case of a non-vanishing potential

gradient, when equations (4) and (5) describe coupled oscilla-
tions, we infroduce a linear combination

(ﬁ+5l‘>ﬁl — LB ViE)R
dr r fic (1)

d 14k, 1, J
<a;+ )Rg_hc( E+V+E)R,.

r

The notations used here and in the following have their usual
meaning. The quantum number k is restricted to positive and 7 _ 7
negative integers. Q = Py + a,Py, (6)
Introducing the functions P; = rR, and P, = rR, we get ' » ) .

& , ' ' ? ? ° where a; and a, are as yet undetermined constants. Multiplying

4) and (5) by a, and a, respectively and adding, we get
(;zr k)Plzé(E—VJrEO)PZ 4 (5) 1 2

. ..
. () & E—Vy—E; I
i+k>P — L ELVIE)P | s h> | O+ l
dr'r)" % hc 0l _ T , (7
, ' 5{,(11P1+iﬂalpg—]‘., 4Py — av P, = 0.
In order to deduce a wave equation that enables us to apply- r* ke dr o ke dr

the principles of quantum statistics we proceed as follows: We
) - We can now determine the ratio of the a’s and a new con-

stant, g, and arrive at a wave equation for Q of the following
form:

differentiate the first of equations (2) and substitute for

the expression from the second equation and get R .
(E—V)¥—E; k+y

9 329 4 T gt = ( »
d’P, kdP dr® L R e (070 ®)
i 1-I- P = . '
dr® r dr (3) dv .
k 1 dV . sprovided rz—&— can be treated as a constant in that region, char-
—(E V+E0){ (—E+V+E) P, — '2}—%2751)2 ’ r

acterized by a small interval of r, which we will consider.
“Equating the coefficients of P; and P, in (7) and (8) we get the

Then P, is eliminated from the bracket by the aid of the firs following two equations

of equations (2), so that we get

k 1 dV 9
9P1_[_ (E—V)—E; Y k}p — _1adv .. 2N hedr © 24 9)
dr? h%c? r ! he dr™” L av . (
?{*‘;I--—Cll"—?,‘ag: ”‘—3‘,(12.
By an exactly similar procedure we find ¢ ar 7 1
depP (E—V):—E2 I —F]{ 1 dV Writing k, for the constant v we have
2 5 — =+ P fic dr
dr® h%c? 2 he dr )
‘ i ch — kya, + ga; = 0
In the case of a vanishing potential gradient these two diffe o g } (10)
ential equations are two wave equations. They have identic kyay — ka, + ga, = 0.
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In order that the above equations have finite solutions for

For every energy value determined by this equation there is
the a’s, the determinant

2 lkl-fold degeneracy due to the angular parts of the functions.
k+g —ky
ko —k+tyg

The quantum number j is namely equal to |Ic|—~% (cf. Som-

4 MERFELD, loc. cit. Ch. IV, § 8). For the hydrogen atom e.g. the
%S;- and *Py-states both correspond to £* = 1 and are both
double. Similarly the 2P3- and 2D%-states,'f which correspond to
A k = £ 2, are both quadruple etc.

g% = k? — k2. o (11) 4 For each sign and numerical value of g the number of states
4 with energy constants lower than a maximal value E,,, char-
acteristic of the star, in a volume element in the form of a shell
4 concentric with the star, is equal to 2 I Ic‘ times the number of
4 half oscillations of the radial function Q for the maximum energy
¥ value, because” each state has one node less than that lying
] immediately above it.

The minimum value of k% is k5, because a smaller value
would cause E to be complex. (For the hydrogen atom this is
no problem, since the fine-structure constant is much smaller
than one, the lowest allowed value of k).

; The minimum radial wave length A_;, is determined as a
function of E,, and ¢ by

must vanish. .
This leads to the (secular) equation

The constant g may then take one of the two values
g =+ -k (12)

If we choose the upper sign we have the differential equation

deI+[(E~V)2~E~ E+VEe—k }QI — o, (13)

dr? h2c® ‘ 2

and with the lower sign

Q| [(E—V)2—E2 k2~1/1c2—1c3}
A — = (. 14
dr? +[ - R r? O =0 (14) , ) dV\2
The functions Q; and Qy then are two different linear com- (l _ ) R - SR (16)

binations of P; and P,. The request that P, and P, both fulfill

the boundary conditions leads to a similar request for the Q’s. °§
The equations (13) and (14) may both, independent of the

sign of g, be wriiten as

For a thickness of the shell of one ecm the total number of
states with a certain numerical value of ¢ then is equal to

) dv 3
‘ (b V) —E}
222k - 4“‘7‘[ g . ‘1’>~gzl, an

r Rt

5 dv\® |

(E—V)y—E2—{r%- ) :
iz“(é)“*‘t ‘ 29 < d1'>, _9_(9‘;1)}0 = (. (15_)
dr hice 1 ) ‘

min

ecause we need not here distinguish between g and g + 1. The
rst factor two to_ the left is due to the double sign of g.

We find the total number of states by integrating over |k |
 from g% = 0 to its maximal value, which value makes the inte-
F grand vanish, We use the relation

The above equation is in the case of a hydrogen atom iden-
tical with the iterated DIrRAC equation given by TempLE [3]. Qur -
Q is equal to his ¥ multiplied by r. In that special case the terms

dr
structure constant. o

V2 and ~<1- d->_ cancel each other, and k, is equal to the fine-

2|k |d|k| = d(g?. (18)
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The total number N of states with énergy less than E,, is : ‘we get .
then determined by 99 22 o . 12
d¥y 2dy mPuimymg Ge dy\? g
F - 9 _ —_ —_— = 7 2 __ ek~ T 9
) g max (Eﬁl— V)‘—’——E%—(z' CZ_V) % arr 7 dr 3h° [y <1‘d ) 1] ) (25)
N == 12— e Tl —q®| d(g?), (19
L S P h*c - where we have made use of the relation
and we find P Ey = mye? (26)
g | Enm VI E— %) ~ g
=5 P2 e T T | (20) - 1f the term—(r 21%) in the bracket in equation (25) is neglected,

we find CHANDRASEKHAR'S equation [5]. Our aim is, however,‘
to find the effect of this term on the mass-radius relation for white
- dwarf stars. If ‘we introduce CHANDRASEKHAR’S variables

The number of states per cubic cm is found by dividing N -
by 4nr® When all states with energy constants less than E,,
are occupied by electrons, the material density ¢ is found by

multiplying the density of states by u,my, the mass per eleciron,

: =N, =Y,
where the mass of a hydrogen atom is denoted by my. For pure i g B3 771 10° ] (27)
hydrogen the molecular weight wx, is equal to one. We get o = - ~~-< ! ) =Lyt = LIt rlTem
; 43r,u(,mﬂmoyo 2 Ge HoYo ’
Mc IHH . o dV\*1% .
e = FPRE (hmﬁ V)'*Eg - (IE—> ] . o (21) we can write. the differential equation as
Il the gravitational potential per unit mass is called U, we - 1 d( 2@> = “< 2 d(p —) (28
have Poisson’s equation: 7t dy K dy 7o dn yal’ )
d*U | 2dU : where @ has to take the value on t th ter. The b dar
E‘?+;_CF =47 Gp. (22) ; | @ . ue one at the center. e boundary

- .od
) condition is El% = () at the center. The surface is found where
The potential function Vis equal to u,mgU, so that we arrive .
. . . . .. : h tv vanishes = .

at the following differential equation for V (writing h for 2z i) . the density vanishes (at , 7712

In the limiting case when o is very near one, the limiting

2 .

- solution is, just as is that of CHANDRASEKHAR'S equation, that of

dE2V | 2dV 3)73,%“111(3'

i —ypem (Y
e 3 h%c (B = VI — By <’d 28)

“an EMDPEN equation of mdex 2 (Then all relativistic effects are
- negligible). .

Following CHANDRASEKHAR we deduce the following expres-
-.sion for the mass of the whole configuration:

N E) (hc)%( de\
M= — V2 2 29\ 29
1) omemy \G T )y, @9

In deriving (21) and (23) we have neglected such non-uni
formity in the distribution of the heavy particles as has been :
taken into account by ScHAaTZMAN [4].

Introducing as a new variable
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where the numerical factor is 2,85 u,* solar masses. (For

comparison with CHANDRASEKHAR'S resulls we have used his
adopted values of the natural constants throughout this paper).
The differential equation (28) has been integrated numerically

1 i
for three values of the parameter —. The results for the radii
Yo
and masses of the corresponding stellar configurations are given

below. For comparison, CHANDRASEKHAR’S values are also given.

Qur central densities are the same as in his models for the same
parameter values.

TasrLe I.
k \ Chandrasekhar’s values
] R e e
e I ‘ & fp=m > —<n2—¢>
[ h an/y=n,
05 oo 2,58 | 0,597 2,50 - 0,707
0,2 . .. 1,84 0,926 1,67 1,243
01 ..o . 1,55 1,091 1,29 1,519

The density distributions are given in Table II. The unit of
density is
8 7w, mymy ¢ )
B =- —‘—3—113‘ - 9,82'100 ,wegcm*""‘ .
The unit of radius is I;.
A comparison of the results with those of' CHANDRASEKHAR
shows that the radii are larger and the masses smaller than his

1
for the same values of —;. For the same value of the mass the

Yo
radius is smaller than CHANDRASEKHAR'S.

. 1 -
The limiting case of vanishing — has also been treated by .

o
numerical integration. Table III gives the variable ¢ together

with —#%%¢’ and 5 as functions of #. In this case there is no

[

definite radius measured in units of Ly, . For any value of the
parameter we have namely the following limiting form of ¢ as

a function of #:

P+ n (30)

to a value of »—1723% equal to 2,018 at the surface. .

Nr.5 ’ ‘ : 11

TasLe II.

N, L o

h Yo?

. 0,5 0,2 0,1

L
0,0........ 1,00 8,00 27,00
0,1........ 0,99 7,81 '25,71
0,2........ 0,97 7,29 22,01
0,3........ 0,94 6,44 16,59
04 ........ 0,89 5,37 11,03
0,5...0.... 0,83 4,21 6,68
0,6 ........ 0,76~ 3,13 3,86
0,7 - oonnn. © 0,69 2,22 2,20
0,8........ 0,61 1,53 1,26
0,9 .. ... ... 0,53 1,03 0,73
1,0 ........ 0,45 0,68 0,42
1,1 ... 0,38. 0,45 0,24
1,2 .0 5ee-.. 0,32 0,29 0,13
1,300 ...... 0,26 0,19 0,07
1,4 ........ 0,20 0,12 0,03
1,5 ........ 0,16 0,07 0,01
1,6 ........ 0,13 0,04 ..
1,7 ... .. 0,10 0,02
1,8 . ....... 0,07 : 0,00
1,9 .. ... 0,05 ; ..
2,0........ 0,04 ;
21 ... ..., 0,03 i
2,2........ : 0,02
2,3........ 0,01 l
24 ..., 0,00
25 ... 0,00 |

1 '
In the case of _z? = 0, however, the constant c; vanishes,
2 .

because we have here

|| —

dy
4 3

as we approach the surface. The radius might therefore be finite
in units of ;.

The limiting mass can be estimated from the data in the
table to be some 85 per cent of CHANDRASEKHAR's limiting mass.

- This, which is that of an EupEN polytrope of index 8, corresponds

A more detailed investigation of the model considered would
not be of very much interest, because we have here still neglected

the influence of exchange effects. EppINGTON's criticisms of the
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“current’” theory of white dwarf stars have therefore not yet
been properly answered, also because we have still preserved
dividing walls (here spherical) inside the star for determining
energy states instead of determining them for the star as a whole.
The present method of approach to the problem might serve as
a starting point for investigations as to the effect due to the in-
troduction of such refinements into the theory.

Tasre III.

7 P [ — ¢ | efe. n ¢ |~ e,
0,0.. .. ... 1,0000 | 0,0000 | 1,000 3,9 | 0,3747 | 1,2453 | 0,008
01........ 0,9984 | 0,0003 | 0,995 4,0 | 0,3667 | 1,2563 | 0,007
0,2, c...n 0,9934 | 0,0026 | 0,980 4,1 | 0,3590 | 1,2669 | 0,006
03.... ... 0,9853 | 0,0088 | 0,955 4,2 | 0,3516 | 1,2768 | 0,006
0. ... 0,9740 | 0,0203 | 0,920 4,3 | 0,3445 | 1,2862 | 0,005
0,5, nnn 0,9600 | 0,0386 | 0,876 4,4 | 0,3377 | 1,2049 | 0,005
0,6, ... 0,9433 | 0,0643 | 0,823 4,5 | 0,3311 | 1,3088 | 0,004
07, enn. 0,9244 | 0,0978 | 0,763 4,6 | 0,3248 | 1,3120 | 0,004
0,8........ 0,9035 | 0,1389 | 0,697 4,7 | 0,3187 | 1,3194 | 0,003
0,9.. ... 0,8811 | 0,1868 | 0,628 4,8 | 03120 | 1,3270 | 0,003
Lo 0,8576 | 0,2402 | 0,558 4,9 | 0,3072 | 1,3338 | 0,003
Ll 0,8332 | 0,2978 | 0,489 50 | 0,3017 | 1,3407 | 0,003
1,2, ... 0,8084 | 0,3580 | 0,424
I 0,7836 | 0,4195 | 0,364 55 | 02771 | 1,371 | 0,0018
LA 0,7589 | 0,4806 | 0,310 8,0 | 0,2561 | 1,395 | 0,0012
L5, 0,7346 | 0,5406 | 0,262 6,5 | 0,2381 | 1,416 | 0,0009
NI 0,7109 | 0,5984 | 0,221 7,0 | 0,2225 | 1,433 | 0,0007
L7 0,6879 | 0,6536 | 0,186 7,5 | 0,2087 | 1,448 | 0,0005
8. ..., 0,6657 | 0,7058 | 0,156 8,0 | 0,1966 | 1,461 | 0,0004
L9, 0,6443 | 0,7544 | 0,131 8,5 | 0,1858 | 1,473 | 0,0003
2,00 0,6239 | 0,8000 | 0,110 9,0 | 0,1762 | 1,484 | 0,0002
21 0,6043 | 0,8424 | 0,092 9,5 | 0,1675 | 1,493 | 0,0002
2,2... ... 0,5857 | 0,8815 | 0,078 | 10,0 | 0,1596 | 1,501 | 0,0002
23........ 0,5679 | 0,9179 | 0,066
24, ... 0,5510 | 0,9515 | 0,056 | 15 0,1087 | 1,56 0,000034
25, . 0,5349 | 0,9826 | 0,048 | 20 0,0825 | 1,59 0,000012
2,6, 0,5195 | 1,0112 | 0,041 | 25 0,0665 | 1,61 0,000005
2,7, .. 0,5049 | 1,0377 | 0,035 | 30 0,0558 | 1,62 0,000003
2,8........ 0,4910 | 1,0624 | 0,030 | 35 0,0481 | 1,63 0,000002
29.. ..., 0,4778 | 1,0855 | 0,026 | 40 0,0422 | 1,64 0,000001 .
3,00 0,4652 | 1,1067 | 0,023 | 45 0,0376 | 1,65 0,000001
31 0,4532 | 1,1266 | 0,020 | 50 0,0340 | 1,65 -
3.2, 0,4418 | 1,1448 0,017 55 0,0310 } 1,66
33........ 0,4308 | 1,1620 | 0,015 | 60 0,0284 | 1,66
34, 0,4204 | 1,1781 | 0,014 | 65 0,0263 | 1,67
35.. ... 0,4104 | 1,1933 | 0,012 | 70 0,0245 | 1,67
3,6..... ... 0,4009 | 1,2075 | 0,011 | 75 0,0229 | 1,68
37........ 0,3018 | 1,2210 | 0,009 | 80 0,0215 | 1,68
38 ... 0,3831 | 1,2333 | 0,008 | 85 0,0202 | 1,68

90 0,0191 | 1,69
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