
Det Kongelige Danske Videnskabernes Selska b

Matematisk-fysiske Meddelelser, bind 27, nr. 5

Dan. Mat . Fys . Medd . 27, no . 5 (1952)

ON TH E
INTERNAL CON STITUTION

OF R ELATIVISTICALL Y
DEGENERATE STAR S

B Y

MOGENS RUDKJØBIN G

Københav n

i kommission hos Ejnar Munksgaard

1952



Printed in Denmark

Bianco Lunos Bogtrykkeri

t is well known that in a first approximation white dwar f

stars are such equilibrium configurations, which masses o f

matter with completely degenerate electrons take up under th e
influence of their own internal gravitational fields . The gravi-

tational forces act bn the electrons mainly through a small radia l

displacement of the heavy particles relative to the electrons .
CHANDRASEKHAR [1] has in his theory of white dwarf stars taken
account of the relativistic relation between energy and momentu m
of a particle in finding the equation of state of a relativisticall y

degenerate electron gas .
We shall here investigate the influence of another relativisti c

effect, namely the "spin-orbit interaction", which is well know n
from the theory of the fine structure of the hydrogen spectrum .
The star will be considered as a kind of THOMAS-FERMI atom ,

and we are thus using an approximation, which is well suite d

for the problem in question, even if it is not very good in the

case of ordinary atoms . In the stellar interior we may namely

deal with volume elements having linear dimensions that ar e

small by a factor of about 10 9 in comparison with the dimension s

of the star as a whole and still large by a similar factor in com-
parison with electronic wave lengths .

We place the origin of our co-ordinate system at the cente r

of the spherically symmetric star and are then going to use DI -

eAc's equations for electrons in a central field .
The angle-dependent part of the solution is well known an d

is, independent of the form of the potential as a function of th e
distance from the center, leading to the following two simultaneou s

differential equations for two radial functions R I and R 2 : (cf.
A . SOMMERFELD : Wellenmechanik, Ch. IV, § 7 . [2])
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The notations used here and in the following have their usua l

meaning. The quantum number k is restricted to positive an d

negative integers .

Introducing the functions P1 = rRi and P 2 = 141 2 we get

(d
cl
r r)

Pi

	

hc
(E - V-I- Eo) P 2

(dr + r) P2 tc(
E + V +Eo)Pi .

In order to deduce a wave equation that enables us to appl y

the principles of quantum statistics we proceed as follows : We

differentiate the first of equations (2) and substitute for dP 2

dr
the expression from the second equation and ge t

d'-P i _ k dPi k_
+

_
dl' L

	

r dr

	

I•2
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+ V + Eo) Pl -

r P2 ] ~ic di•
---.-P2 .

Then P2 is eliminated from the bracket by the aid of the firs t

of equations (2), so that we get

eigenfunctions and eigenvalues for values of k that differ by
one, and they are changed into each other by the interchange
of +k and -k.

In order to treat the general case of a non-vanishing potentia l
gradient, when equations (4) and (5) describe coupled oscilla-

tions, we introduce a linear combinatio n

Q = aiPi + a2P 2 ,

where a l and a2 are as yet undetermined constants . Multiplying
(4) and (5) by al and a 2 respectively and adding, we ge t

d 2 Q [(E- V)2. -E~-k2 1
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1 dV
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1 dV
r

	

+ tc dr a t P2-
r-

a~P, - hc dr a2Pi - 0 .

We can now determine the ratio of the a's and a new con-

stant, g, and arrive at a wave equation for Q of the followin g
form :

d2Q

	

-V)2-E ô k2+gl
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r; I Q = ) ,

provided r2 dr can be treated as a constant in that region, char-

acterized by a small interval of r, which we will consider .

Equating the coefficients of P i and P2 in (7) and (8) we get the
Following two equations
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(9)

r 2 dV
Writing ko for the constant -- we have

he dr

In the case of a vanishing potential gradient these two differ-

ential equations are two wave equations. They have identical

kai - koa l + gai = 0

koal - kat + ga2 = O .
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In order that the above equations have finite solutions fo r

the a ' s, the determinant

k+ g

	

-ko

ko

	

-k+ g

must vanish .
This leads to the (secular) equatio n

g 2 = k 2 - k~ .

The constant g may then take one of the two value s

g =~vk 2 -ko .

If we choose the upper sign we have the differential equatio n

d2 Qi+ [(E- V) 2 -E',; k2 +y/k 2 -k~

dr

	

h2C

	

r3

and with the lower sign

d2 Q 11 f (E - V)2 -Eô- k2 -yk-kô1

	

= 0 .
dr2 +

	

h
z c i

	

r2

	

Qtr

	

(14)

The functions QI and Q FI then are two different linear com-

binations of PI and P2 . The request that Pi and P 2 both fulfill

the boundary conditions leads to a similar request for the Q's .

The equations (13) and (14) may both, independent of the

sign of g, be written as

d2Q

	

- V)` Eol
y	 dr} 2

dr2
i

	

ki2c-

	

/J

The above equation is in the case of a hydrogen atom iden-

tical with the iterated DIRAÇ equation given by TEMPLE [3] . Our

Q is equal
/
to his W multiplied by r . In that special case the terms

V 2 and -1 r dl) 2 cancel each other, and ko is equal to the fine -

structure constant .

For every energy value determined by this equation there is
a 2 I k I-fold degeneracy due to the angular parts of the functions .

The quantum number j is namely equal to i k
I
- 2 (cf. SoM-

MERF'ELD, loc . Cit . Ch . IV, § 8) . For the hydrogen atom e.g . the
2Sz - and 2 P2-states both correspond to k 2 = 1 and are both

double. Similarly the 2 P~- and 'N-states,t which correspond to
k = ± 2, are both quadruple etc .

For each sign and numerical value of g the number of state s
with energy constants lower than a maximal value E 71 . , char-
acteristic of the star, in a volume element in the form of a shell.
concentric with the star, is equal to 2

I
k

f
times the number of

half oscillations of the radial function Q for the aximum energy

value, because ' each state has one node lesslhan that lying
immediately above it.

The minimum value of k 2 is kå, because a smaller valu e

would cause E to be complex . (For the hydrogen atom this i s

no problem, since the fine-structure constant is much smaller
than one, the lowest allowed value of k) .

The minimum radial wave length 2.in is determined as a
function of E„, and g by

For a thickness of the shell of one cm the total number of
states with a certain numerical value of g then is equal t o

,
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because we need not here distinguish between g and g + 1 . The

first factor two to -the left is due to the double sign of g .
We find the total number of states by integrating over l k

from g 2 = 0 to its maximal value, which value makes the inte -

grand vanish . We use the relatio n

2 Lk
I d l k i = d (g2) .

	

(18)

(12)

Q = O .
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The total number N of states with energy less than Em i s
then determined by

The number of states per cubic cm is found by dividing N
by 4 rr2 . When all states with energy constants less than Err,

are occupied by electrons, the material density e is found by
multiplying the density of states by ite m'' , the mass per electron ,

where the mass of a hydrogen atom is denoted by mH . For pure
hydrogen the molecular weight y e is equal to one. We get

3~2zhrci [(Ern V )°- - E~ -- (r
d

J
/t e V 2

1

;

If the gravitational potential per unit mass is called U, w e
have PoIssoN's equation :

d 2U 2 dU

dr2 + r dr =
.4 nG e .

The potential function V is equal to ,ue II2 H U, so that wc arrive

at the following differential equation for V (writing h for 2 2h) :

d 2 V + 2dV _ 32T`y2e
nzÎ1G-V)-Eo -

( I d n
dr2 r dr
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In deriving (21) and (23) we have neglected such non-uni -

formity in the distribution of the heavy particles as has bee n

taken into account by SCHATZMAN [4] .

Introducing as a new variabl e

Em - Vm

E0

dey 2 dy

	

32
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rdr } -I J

where we have made use of the relatio n

Ep = moc 2 .

/

	

\ 2

If the term - I r
dr

	

, -
I in the bracket in equation (25) is neglected ,

we find CHANDRASEKHAR'S equation [5]. Our aim is, however ,
to find the effect of this term on the mass-radius relation for whit e
dwarf stars . If we introduce CHANDRASEKHAR 'S variable s

r=an, y=yo4' ,
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we can write. the differential equation a s
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where q) has .to take the value one at the center . The boundary

condition is d9 = 0 at the center . The surface is found wher e

the density vanishes (at r =

In the limiting case when
1

is very near one, the limiting
y o

solution is, just as is that of CHANDRASEKHAR'S equation, that o f

an EMDEN equation of index 2 . (Then all relativistic effects ar e
negligible) .

	

r
Following 'CHANDRASEKHAR we deduce the following expres-

sion for the mass of the whole configuration :
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where the numerical factor is 2,85 ,u,T 2 solar masses. (For

comparison with CHANDRASEKHAR ' S results we have used hi s

adopted values of the natural constants throughout this paper) .

The differential equation (28) has been integrated numericall y

for three values of the parameter 1~ . The results for the radii
U o

and masses of the corresponding stellar configurations are give n

below. For comparison, CHANDRASEKIAR'S values are also given .

Our centr al densities are the same as in his models for the same

parameter values .
TABLE I .

d P
~2
r)
di) ,q°n1

	

0,5	

	

0,2	

	

0,1	

The density distributions are given in Table II . The unit o f

density is
8 Tr ,Cre 772rI711o C 3

B 3

	

9,82 .105 g cm-3 ._h3

The unit of radius is 1 1.

A comparison of the results with those of . CHANDRASEKHA R

shows that the radii are larger and the masses smaller than hi s

for the same values of 12 . For the same value of the mass th e
g o

radius is smaller than C1-IANDRASEKHAR ' S .

The limiting case of vanishing 2 has also been treated by
Y o

numerical integration . Table III gives the variable (p togethe r

with -q ' and P- as functions of n . In this case there is no

definite radius measured in units of 1 1yß 1 . For any value of th e
parameter we have namely the following limiting form of 97 as

a function of 71 :

TABLE H .

\

	

IJ02

r

11

0,5

	

0,2 0, 1

0,0	 1,00 8,00 27,0 0
0,1	 0,99 7,81 25,71.
0,2	 0,97 7,29 22,0 1
0,3	 0,94 6,44 16,59
0,4	 0,89 5,37 11,03
0,5	 0,83 4,21 6,68
0,6	 0,76`-- 3,13 3,86
0,7	 0,69 2,22 2,2 0
0,8	 0,61 1,53 1,2 6
0,9	 0,53 1,03 0,7 3
1,0	 : . 0,45 0,68 0,4 2
1,1	 0,38 0,45 0,2 4
1,2	 0,32 0,29 0,1 3

11,34 ..
.	 0,26 0,19 0,0 7

,	 0,20 0,12 0,0 3

1,65 ..
.	

1	
0,1 6
0,13

0,0 7
0,04

0,0 1

1,7	 0,10 0,0 2
1,8	 0,07

	

0,0 0
1,9	 0,0 5
2,0	 0,0 4
2,1	 0,03
2,2	 0,02
2,3	 0,0 1
2,4	 0,0 0
2,5	 0,00

In the case of
ô

= 0, however, the constant cl vanishes ,

because we have here

(P

	

n

	

(31)

as we approach the surface. The radius might therefore be finit e
in units of ll .

The limiting mass can be estimated from the data in th e
table to be some 85 per cent of CHANDRASEKHAR's limiting mass .
This, which is that of an EMDEN polytrope of index 3, correspond s

to a value of - yl2
d(p

equal to 2,018 at the surface .

A more detailed investigation of the model considered woul d
not be of very much interest, because we have here still neglecte d
the influence of exchange effects . EDDINGTON ' S criticisms of the

d- n .2
dr1 n =1 11

R

1 1

Chandrasekhar's value s

R

11

2,5 8
1,8 4
1,55

0,59 7
0,92 6
1,091

2,5 0
1,6 7
1,29

0,70 7
1,24 3
1,519

(30)
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"current" theory of white dwarf stars have therefore not yet

been properly answered, also because we have still preserve d

dividing walls (here spherical) inside the star for determinin g

energy states instead of determining them for the star as a whole .

The present method of approach to the problem might serve as

a starting point for investigations as to the effect due to the in-

troduction of such refinements into the theory .

elee 9) - 1'12 9)' elec.

0,0	 1,0000 0,0000 1,000 3,9 0,3747 1,2453. 0,00 8
0,1	 0,9984 0,0003 0,995 4,0 0,3667 1,2563 0,00 7
0,2	 0,9934 0,0026 0,980 4,1 0,3590 1,2669 0,00 6
0,3	 0,9853 0,0088 0,955 4,2 0,3516 1,2768 0,00 6
0,4	 0,9740 0,0203 0,920 4,3 0,3445 1,2862 0,00 5
0,5	 0,9600 0,0386 0,876 4,4 0,3377 1,2949 0,00 5
0,6	 0,9433 0,0643 0,823 4,5 0,3311 1,3038 0,00 4
0,7	 0,9244 0,0978 0,763 4,6 0,3248 1,3120 0,00 4
0,8	 0,9035 0,1389 0,697 4,7 0,3187 1,3194 0,00 3
0,9	 0,8811 0,1868 0,628 4,8 0,3129 1,3270 0,00 3
1,0	 0,8576 0,2402 0,558 4,9 0,3072 1,3338 0,00 3
1,1	 0,8332 0,2978 0,489 5,0 0,3017 1,3407 0,003
1,2	 0,8084 0,3580 0,424
1,3	 0,7836 0,4195 0,364 5,5 0,2771 1,371 0,001 8
1,4	 0,7589 0,4806 0,310 6,0 0,2561 1,395 0,001 2
1,5	 0,7346 0,5406 0,262 6,5 0,2381 1,416 0,000 9
1,6	 0,7109 0,5984 0,221 7,0 0,2225 1,433 0,000 7
1,7	 0,6879 0,6536 0,186 7,5 0,2087 1,448 0,0005
1,8	 0,6657 0,7058 0,156 8,0 0,1966 1,461 0,0004
1,9	 0,6443 0,7544 0,131 8,5 0,1858 1,473 0,0003
2,0	 0,6239 0,8000 0,110 9,0 0,1762 1,484 0,0002
2,1	 0,6043 0,8424 0,092 9,5 0,1675 1,493 0,0002
2,2	 0,5857 0,8815 0,078 10,0 0,1596 1,501 0,0002
2,3	 0,5679 0,9179 0,06 6
2,4	 0,5510 0,9515 0,056 15 0,1087 1,56 0,00003,
2,5	 0,5349 0,9826 0,048 20 0,0825 1,59 0,00001 ;
2,6	 0,5195 1,0112 0,041 25 0,0665 1,61 0,00000!
2,7	 0,5049 1,0377 0,035 30

	

. 0,0558 1,62 0,00000;
2,8	 0,4910 1,0624 0,030 35 0,0481 1,63 o,00000;
2,9	 0,4778 1,0855 0,026 40 0,0422 1,64 0,0000 0
3,0	 0,4652 1,1067 0,023 45 0,0376 1,65 0,0000 0
3,1	 0,4532 1,1266 0,020 50 0,0340 1,6 5
3,2	 0,4418 1,1448 0,017 55 0,0310 1,6 6
3,3	 0,4308 1,1620 .

	

0,015 60 0,0284 1,6 6
3,4	 0,4204 1,1781. 0,014 65 0,0263 1,6 7
3,5	 0,4104 1,1933 0,012 70 0,0245 1,6 7
3,6	 0,4009 1,2075 0,011 75 0,0229 1,6 8
3,7	 0,3918 1,2210 0,009 80 0,0215 1,6 8
3,8	 0,3831 1,2333 0,008 85 0,0202 1,6 8

90 9,9191 1,69 . .
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