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§ 1 . Introduction . l

The aim of the present paper is to give a contribution to th e

study of the connection between the so-called sum mabilit y
function p (a) and the order function ,ic (a) of an ordinary Dirich-

let series f (s) _

	

ann s . Before stating the results of the pape r
n

we shall recall the definitions of these functions and some know n
theorems .

Let As) _ anns be an ordinary Dirichlet series which i s

neither everywhere divergent nor everywhere convergent. Let for

every inleger r > 0 the number 2r denote the abscissa of summa-

bility of the r th order, in particular 2 0 the abscissa of convergence .
Then, as shown by the author ([2], and [3], pp .99-104) ,

(1) 0< .1r-Ar+i C 1 and Ar+1>7~r+1-Ar+2 (r = 0,1,2, .) .

When we follow M . RIESZ and consider summability of arbitrary
order r > 0, the abscissa Ar exists as a function of r in the interva l

0r<oc. In generalization of the above inequalities the functio n

a = At is a non-increasing continuous convex function with numer -

ical slope < 1 (see [6], pp . 57 and 60, and [8], p . 118) . We introduce

the number Q (> -cc) as the limit .Q = lim %r . It follows from
r-)-co

the results just mentioned that when r increases from 0 to oc ,

then Ar will be either a strictly decreasing function which tend s

to S2 for r->- oc, or 2, will from a certain step ro, i . e . for r> rå ,

be constant = S~ .

We define now for every number a in the interval .Q < a <oc

the number r = y (o-) as the greatest lower bound of those value s

r `? 0 for which Ar ,< a . The function r = p (a) is called the summa-
bility function of the Dirichlet series . It is equal to 0 for a> Ao and in

the interval Q < a < 2 0 (when we suppose that Q < 2o) it is simply

' This paper is based on notes left by Professor HARAI.D BOHR . The manuscrip t
has been prepared by Dr . ERLING FØLNER .
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N r . 4

the inverse function of a = Hence it follows from the above
results that r = y (o) is a continuous convex function which in
the interval Q< a< A o is strictly decreasing with . numerical slope
> 1, i .e . with a left derivative v ' (2o - 0) -1 at the point a = 2o .

Further, if A,. is constant = Q from a certain step ro, then

p (a) -÷r„ for a -~ Q ; otherwise y (a) -- oo for a -- D .

Contrary to the abscissa of convergence Ao , the abscissa Q has
a simple function theoretical meaning (H . Bolus [2], and [3], p . 124 ;
M. RIESZ [7]) . Indeed, for every a, > Q, the function Rs) represen-
ted by the series is of finite order with respect to t in the hal f
plane a> ao, i .e. there exists a number 1> 0 such tha t

(2)

	

f (a+ it) = 00115

when I t-l-)- oc, uniformly for all a> a° , whereas f (s) is not regular
and of finite order in any half plane a> ao where ao <D . For

every a> Q we define the number ti (a) as the greatest lower boun d
of those values l > 0 for which (2) holds for this value of a .
This function tt (a) is called the order function, or the Lindelö f
,u-function, of Rs) . It is equal to 0 for a> A o + i because the
Dirichlet series is absolutely convergent for a> Ao +1 . It follows
from the Phragmén-Lindelöf theorem that the function tc (a) is a

continuous convex function . Thus, denoting by w t, (< 4 + 1) the
smallest number with the property that t,c (a) = 0 for a > wt,, , the
function ti (a) is (when ,Q <cod strictly decreasing in the interva l

Q < a < co t, . We mention that tit (ao) (.Q < ao <oc) is also the orde r
of f (s) in the half plane a> ao, i . e . the greatest lower bound o f
those values 1> 0 for which (2) holds uniformly for all a> ao .

As to the connection between ip (a) and ,u (a) it is known (see

[6], pp.49 and 53) that

(a) y (a)

	

(a)+1 .

The present paper deals with the problem whether the abov e

results concerning the functions y' (a) and p(a) and the connectio n
between them are the best possible, i . e . whether conversely
for two functions 1p (a) and tc (a) which have all the propertie s

mentioned above there exists an ordinary Dirichlet serie s
f (s) =,a,in

s
with y (a) as summability function and ,cc (a) as

order function . No complete answer is obtained, but it is shown

that if we impose on the function y (a) the additional condition

Nr.4

	

5
that it, too, has a numerical slope > 1 in the interval in which it i s
strictly decreasing, i . e . that (when .S~ < cod) we have tc ' (cot,- 0)
<-1, then the answer is in the affirmative . In other words, w e
shall prove the followin g

Main Theorem . Let tp (a) be a continuous convex function
defined in an interval a > S2 (>- oc) and equal to 0 to the righ t
of a certain finite abscissa coy, > Q and (if w

V
> Q) such that

yi ((Dy, - 0) < -1 . Further, let rc (a) he a continuous convex function
defined in the some interval a> .Q and equal to 0 to the righ t
of a certain ,finite abscissa w , > .Q and (if co µ > d2) such that
y ' (cop - 0) <--1 . Finally, le t

for all a> S~ .
Then there exists a Dirichlet series Rs) = 'a,in-s which has

the given functions yp (a) and it (a) as summability function and
order function, respectively .

We remark that as a consequence of the assumptions of th e
theorem we have coy, < w., < cow -1- 1 . The condition wt,< coy, + 1 ,
which according to the above results is necessary whethe r
' (wf,,,-0) < -1 or not, therefore has not been included in the

theorem .

We do not know whether there exist ordinary Dirichlet series
f (s) = ~anli s

for which the order function y (a) is not identic-
ally zero and does not satisfy the condition ,u ' (wi,- 0) <-1 .
For the zeta-series with alternating sign s

' (s ) ( 1 - 21-s) °

	

(-1)Il }ln- s

II =

it is known that

	

a

	

1tc ( ) = 0 for a > 1 alld tG (a) = -2 -a for o < 0 :

The question as to whether, t ' (wm, -0) <-1 therefore amounts t o

whether ti (T.) = 0 (and hence u (a) = 0 for a > and ,u (a) -=

-a for a < 2 , i . e . to the Lindelöf hypothesis -2 + it) = 0 ([ t 1 £)

For every e > O .

If we restrict our attention to the summability function y (a) ,

~(a)<,a(a)<iV(a)-E-1
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we immediately see from the Main Theorem, that the known
results are the best possible, i . e . any continuous convex functio n
p (a) defined in an interval a> Q (>- oc) and equal to 0 to th e
right of a certain finite abscissa w,,i,> Q and (if co,y,> Q) such
that zp ' (w ., -0) - 1, is the sum mability function of an ordinary
Dirichlet series. Indeed, we have only to apply the Main Theorem ,
choosing ,u (a) = y (a) . This result generalizes a result of th e
author ([3], pp . 104-110) concerning the abscissae of summabilit y
of integral order, according to which the inequalities (1) are the
best possible .

In the proof of the Main Theorem certain basic example s
play a decisive role . In these examples Q = -oc (so that we are
dealing with entire functions) and the 7p-curve as well as th e
ti-curve are half lines as soon as they have left the real axis, i . e .
in the intervals-Do < a < co g, and-0c <a < wy , respectively. I t
appears immediately from the above inequalities that these hal f

lines must be parallel and that the le-line must lie above or coin-
cide with the - p-line . Further, their distance measured on a vertical
line must be < 1 . Our basic examples correspond to those extrem e

cases where the two half lines coincide or have the vertica l
distance 1 . In the special case where the numerical slope a of th e
half lines has its minimum value a = 1 examples have already bee n
constructed by the author ([4], pp . 10-14, and [5], pp.713-720) .
Generalizing these examples we construct in § 2 and § 3 example s
for an arbitrary a> 1 . (The reader need not know the example s
for a = 1 . )

In § 4 we construct from the extreme cases in § 2 and § 3 al l

intermediate cases where still both the 7p-curve and the p-curve
are half lines to the left of w,F, and cow , respectively. The Dirichle t

series obtained in § 4 are to serve as our "bricks" in the fina l
construction in § 6 in which a Dirichlet series is formed by linea r
combination of denumerably many such series . § 5 is inserte d

for the purpose of giving two lemmas concerning the summabilit y

function and the order function of a Dirichlet series obtained b y
linear combination of denumerably many Dirichlet series .

Nr.4 7

§ 2. Construction, for an arbitrary a > 1, of a Dirichlet

(I)

	

Pm+1 (m + 1) pm

for all m and let

dm = [pm B] ,

where for brevity's sake we have put 1

	

0 (0 < 0 < 1). We Ion -a
sider the Dirichlet serie s

Zann s Pl s- (pl +di ) s +p2 s-2 (P2+d2)-s+(P.,+2d2)-s+ . . .
n= 1

-s
(T)

	

(1,n) `(Pm + am) S +
)

(pm +2dm)-5 (- 171
) (Pm+ J72dm)

.s .
\II 2

m (p-

rn

s ) .

m= 1

Here we have used the notation dä u p for the mth difference wit h
span d, i . e .

	

(/

	

1
A d up - up-Crl)up+d+ 2)up+2d . . .+.(-1)m`minp+md '

For such differences we shall use the known inequality (see fo r
instance H . BOHR [4], p. 15)

( 2 )

	

I aå (p-s) I J<2
m--rt

Islls+l l . . . 1s+h-1ld" p-6-",

which is valid for d> 0, p> 0, a+ h> 0, and h = 0, 1,2,• • , in .
The above series has previously been considered by the author

([3], pp .94-99), and it was shown that its abscissae of summa-
bility .1h of integral order h are determined b y

2 k = -lrØ (h = 0,1,2,---) .

Thus Q=--o0, and 7p(-h8) = h for h = 0,1,2,•• . Since y' (a)
is convex, this implies that y (a) = - as for a< 0, and henc e

-aa for a<0 .

Let pl, 19 2 , p 3 ,- • be a sequence of positive integers whic h
satisfy the condition

series with y, (a) = a (a) = ~ 0 for a > 0
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v (a) = 0 for a> 0 . Thus it only remains to prove that ,u (a) =

- as for a< 0, which implies that p (a) = 0 for a >0 .

Since p(a)~(a) it is enough to show that p (a) < - as for
a < 0 . Further, in order to prove this latter relation it suffices to
prove that

(3)

	

f(s) = O(Iti ll ) for a =-hO+e ,

where h runs through the numbers 0,1,2, . . and e> 0 is arbi-
trary. Indeed, the inequality ,u (- hO + £) < h together with th e
continuity of p (a) implies that p(-hO) 5 h, and this . latter in-
equality for h = 0,1,2,- • • together with the convexity of p (a)
implies that,u,(a)<-aa for all a<0 .

In the proof of (3) we shall use the fact that 2 mpm E i s

convergent for every e> 0 . This fact, however, follows at once

from (1) in view of which

>0 for in>oc ,
2mP

-E

We write
li

f(s)

	

14 d„ (pni s)+
+4

dl(p-s)

h
where the sum fl(s) _ Z4d (p lu s) consists only of a finite num -

ber of terms a 72 1î-s and therefore is bounded on every line a = a0 .

In the series ~4å (pni s) we shall apply the above inequality (2 )
m--h+ 1

to each of the terms 4å (pli s), ni = h +1, h+2, . . • . We obtain
for m> h and s on the line a =-h0+£ (where a+h> 0)

I 4m(Pni s ) I52
m -hlslls+II . . . Is + h-1I dlmpm 6-"

2 r` Islis +ll . . .Is+h-1l2mprm(1-0)+hO Erl -

2-h lsI Is+1l . . . Is +h-1
I 2mp

in E .

,s

Since Z2mp / 7, E is convergent we see that Z 4r (pit s ) converges
m=h+ i

absolutely for a = -hO + £ and that its sum f2 (s) satisfies the

relation f2, (s) = O (I t I) . Finally, since f(s) = f1 (s) + f2 (s), we se e

that f(s) = 0 (I ti lt ) for a =-hO+e, as we had to . prove .

§ 3. Construction, for an arbitrary a> 1, of a Dirichlet
series with

	

0 for a> 0

	

0 for a> I
v (a) =

	

and p (v) -I a

	

-aa fora<0

	

1-aafor a< -1
= a

In view of the general properties of the summability functio n
and the order function it suffices to show that the constructe d
series has the right order function and the abscissa of convergence
Ao = 0 . Thus our task is to construct a Dirichlet series with
Ao = 0 and ,Q = - oo and with the given function p (a) as order
function .

We start again with a sequence of positive integers p t <p, <
p, < . . • which increase rapidly. We assume here that they increas e
so rapidly that ' 2'p- E converges for every e> 0 and so tha t

2mpms = o (pm) an

for M--e- oo and every £> 0 and L> 0 . Next, we choose integer s
1m and dm of the orders of magnitude pm and pnt-1 , respectively .
It will be convenient to choos e

tnt =7tPm

and choose the numbers qm of a slightly smaller order of magni-
tude than the pm . We set

---=

	

Pm
qm ~

(I n+ 1) 3 ]

We remark that the pm from the beginning must be chosen so
that certain inequalities which on account of the above demand s
are fulfilled for large ni will be fulfilled for all m . The inequalitie s
to which we refer (we shall not write them . out explicitly) are
those which express that the term groups given by the brace s
{• • •} iR in the series immediately below do not overlap .

Our Dirichlet series f(s) = 'an n s is now constructed fro m
term groups (• • • }in (m = 1,2, • • ),. the m uh term group of whic h

2m+1 -E
Pm +1
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consists of altogether
(gm+

1) (m + 1) terms a n ti s . These terms

are distributed in qm + 1 smaller term groups [ • • = 0, 1 ,

2,-, q m) each of which apart from a complex sign is simply a n

mth difference (with span dm) and thus contains m+1 term s

an
s .

More specifically, our series is defined in the following way :

where for m >1, 0 < v< q m the square bracket [• • ]m , v has th e

meaning

	

\

	

(([ . . .
]m,v = (Ç+ v (m + 1) dm\It"'rld„,(/m+ v (m + 1) dm)-S

/
+ - + ( 1)'n

)71
(Im+ v (ttt + 1) dm - -+ - mdm ) -S

)

vn i

	

We shall - now prove that this series

	

ann
s

possesses all th e

desired properties . We divide the proof into three steps .

1° . We prove first that our series has the abscissa of conver-

gence Ao = 0 . Since I an I = lm - 1 for n = lm(m = 1, 2, - - • )

we see that the series is divergent at the point s = 0 and it i s

consequently plain that A 0 > 0 . In order to show that A0 < 0, i .e .

that the series is convergent for a> 0, we first show that ou r

series is absolutely convergent for a> 0 when we preserve th e

square brackets (but not the braces) . On account of a later appli-

cation we shall even show that under preservation of the squar e

brackets the series is absolutely convergent in the whole plane .

We do this by showing the absolute convergence in the hal f

where the first sum

	

{

	

}, only contains a finite number of
m =

square brackets [ • •]m , , . In order to prove that the second sum

- 1 1

brackets (but not the braces) we esïimate each of the
qm+ 1

brackets H .• ]m v in the term {• • • Jm with index m> h by the
inequality (2), § 2 . For ni> h and s in the half plane o> crh
(where a fortiori a+ h

I

> 0) we ge t

I [

	

1 = I4d,\lm-I- v (in + 1) dn,.)
S

I

<2m-h
lslls+l

I . . . Is+h-1 Idmma-h .

Hence the sum of the absolute values of the
qm+ 1 bracket s

[

	

]m,v in {• • • lm is estimated b y

q.

l[ . . .
]m,vI

	

(q,n+ 1 )2
1n-h IslIs+11 . . . Is+h-1dlml,n a- hv= 0

and consequently, since q m < pm, dm < pm 1 , and 1m >pm by
q,,,

(1)

	

2' I [ . . . ]m,vIÇ 2-h l s l Is+ 1 I . . .Is+h -1 I 2mp„t aa-II+
1

v= 0

where a> ah and m> h . From this inequality we immediatel y
infer the stated absolute convergence in the half plane a> ah =

h
1 ; in fact, the series

	

2 mpm-"-h+1 is convergent sinc ea

the exponent -aa-h+ 1 is smaller than -aa,i - h -1- 1 = 0 . Thus,

in order to show that the series / an n s itself (i . e . the serie s
without any brackets whatsoever) is convergent for a> 0, we
only have to show that the partial sums of H .• • ] m, ,, for a> 0
tend to 0 for m-- cc . That this is the case is, however, obviou s
since the sum of the absolute values of all the terms an77 s in
[ ••]m ,v for a>0is

m / \\
.

	

2 02 1-a < ~m -acr
m

	

m

	

p m ,
i= a

which tends to 0 for m- oc .
2° . Next, we shall show that

	

-oc and ,u (a) < 1 -au fo r

a< 1 . We first remark that it will suffice to show that f (s) i s- a

f(s)= - a

	

=
12n

	

n

]t -1 lfI = 1
[ . . ]m, V

In = 1 v = 0

q,i i
-,

regular for a> ah
- h +? , where h runs through the number s

0,1, 2, . . . , and that

	

a

	

\

f(s) = 0 (I tlll) for a> ah +



1 2

In fact, this will immediately imply that S2 = - oo and

u(ah)

	

= 1 - aa h for h = 0,1,2,• •

and next, by help of the convexity of y (a) we ge t

u(a)<1-aa for all a< 1.
-- a

For a> ah we write again

h

f(s ) = .1' { . . .}m +
-

{ . .
•}m '

m=1

	

m=h+ 1

h

The first s u m-( . • }m contains only a finite number of terms
m= 1

an ti- '` and is therefore an entire function f1 (s) bounded in every

half plane a> a0 . In the second sum

	

( • }m we estimate each
in=h+ 1

of the terms {• •}m(m = h+ 1, h+2, - • -) by the above inequal -

ity (1) . For in> h and s in the half plane a> ah + e we get

{ . .
.}mI

	

2I f . . . (
mv lC2-h

lslls+ll . . . Is+h-1I2 'npin aa-h+
<

v=o

2-'IIsIls+11
. Hs+h-1I2mpm a8 .

Since Z2 'n
phi°E is convergent we infer that the infinite serie s

{• • •}m is uniformly convergent in every bounded part of th e
m=h+ 1
half plane a> a 1+ e . Consequently, since e> 0 is arbitrary, th e

function f2 (s) represented by this series is regular in the hal f

plane a > ah; furthermore, it satisfies for ah+ e< a < (say) 2 (an d

hence of course also in the whole half plane a> ah + e) the

inequality

Since f (s) is obtained as the sum of f, (s) and f. (s), we see tha t

f (s) is regular for a> ah and equal to 0(1 t I'`) for a> ah+ e as

we had to prove .

3° . We come now to the salient point, namely the proof tha t

,u, (a) > 1 - as for a < å . Let a0 be an arbitrary abscissa < å ;

For this purpose we first determine a positive integer h so that

= -h+ 1ah

	

< a0 <- . For MYI > h we write
a

	

a
m- 1

f(s 1) _

	

{ . . .} .m+{ . .
.} .}m= BM (sM)+ TM (sM)+RM0,0 ,

m=1

	

m=M± i

and we shall prove that both the "beginning" BM (sni) and th e

"remainder" R1l1(s1V1) for M -- oo are equal to o (t ,T') while

the ,M th term TM (sM) for sufficiently large M is numericall y

larger than 2117-a. .
In this way the inequality (2) will be proved .

(1) For the "beginning" Bltl (sM) we use a rough estimate .

The numerical value of each of its coefficients an * 0 is a binomial

coefficient Cm I with m< M-1 and hence it is <_ 2

	

m '

"- 1

where

IM_1 = 1M-1 + 4'1v1-1 MdM-1+ (M- 1 ) dlvl-1 ~ 2 1m- 1

for M sufficiently large . Hence, since a0 < 1 ,

2 lm--I

IBM (sm) I< 2M-1 nao = 0(2M -1 t l
lj
-ao) = 0 (2,yj-1 pa~l-

1
a
o)

)
n 1

	

-1

	

4 7

and consequently, since 1 -aa0 > 0 ,

Bm(sm) = o (pnl-aao)
= o

(tv-1 a7
°) .

(2) For the "remainder" RM(sm) we can apply the inequalit y

(1) since all occurring rn are > M> h and a0 > ah . We gel, since

-aa0 -h+ 1 <0 ,

R(s) I15 2-h j s MI IsM+1 I . . .sM+h-1

	

2inpmaau-h+1
=

m=Zj+ 1

0 (t'
`M) 0 (p 1b1aao-h-;-1 ) = 0(t j= )o(t-m-D-h+1)=o(117ääo)D!

	

DI

	

lj

1 3

we consider the behaviour of f (s) at the points sM = a0 + i 1M on
the line a = a 0 , where tM are the , previously introduced ordinate s

tM = aPM, and we shall (even) prove that for sufficiently large M

Nr . 4

f2(s)= 0(I t I'`) .

.zn

ri ao ,
n =1
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(3) We shall finally prove that the Mt" term TM(s tiz) satisfie s

the inequality

I TM (sm) > 2 t1T'0

for all sufficiently large M. The reason for the validity of thi s

inequality is that all the terms an n-s occurring in TM (sM)

(and there are rather many of them on account of the choice .

of the q,n), namely the (qM+ 1) (M+ 1) terms distributed in

the qM± 1 brackets [ ] M,v with M+ 1 terns in each bracket,

for sufficiently large M "almost point in the same direction" ;

more precisely : these terms all lie in the angle- j <v< j .

We postpone the verification of this fact for a moment an d

shall first show that when once this property is established we ca n.

immediately complete the proof . In fact, we may argue as follows .

The sum of the binomial coefficients occurring in each of th e

qM+ 1 square brackets is equal to 2 M , and every n occurring in .

the sum belongs to the interval 1M< it < 1''m and a fortiori t o

the interval 1M < n< 2 1m when M is large. Thus, for sufficientl y

large M we have

I

TM (sm)
I

> SJt TM (sM)> cos (qM -l- 1) 2 2w Vlin n°°
i„<rc<21 x

(q + 1) 2m 2 - '1>
2

2M
(M }- 1) 3 2 2pçaa°

=

1 2M

	

1ao ° = 1	 2M

	

tM 1-aa°

8(M+1) 3Pm

	

8(M+1) 3 (ac

and this last quantity is larger than 2 tMa°° for large M .

It remains to prove the decisive fact that all terms an n s in

TM (sM ) lie in the angle - 3 < v < 3 for M sufficiently large . That

this is the case is of course due to our choice of the complex

signs of the occurring coefficients an = O . We consider an arbi-

trary one of the qM+ 1 brackets [ • • ]M,v

(1m

	

(m + 1) dM)'I4 dv(IM+ v ( M + 1 ) dM)
-s .., (v 0, 1, 2

>
. . , q1v[) .

Denoting the number IM+ v (112+ 1) dm by r = r (M, v) we get

1 5

1 (r - ä1u)- S ' + . . . ._ _ + (- 1)M
(M)

(r + MdM)-S'' J .

The amplitudes of the single term s

rtt,r
(-1)A

( 1A
y (r+AdM)-t''°(A = 0 1, 2 , . ,M)

are given by

-tM 1og (r + AdM) -+- tM logr -+--Aa = - t~ g lôg
l
l -?-

A dm
+A~c =

r

	 ~ (1
AdM

)--	+tMdM log

	

r
-I-

r

	

AdM

	

Aa .

independently of v and A . In view of this, the above for-
mula for the amplitudes together with the relatio n

lim x- 1 log (1 + x) = l
x±o

yields the result that the amplitudes of the single terms i n
TM(sM) tend to 0 for M-- oo. In particular, these amplitudes

lie in the angle - 3 < v < 3 for M sufficiently large .

Thus, all our statements concerning f (s) =.Zann s are proved .

§ 4. Our "bricks" .

We shall now, for an arbitrary a >1, construct a class o f
Dirichlet series for which , again the y'-curve and ,u-curve whe n
they have left the real axis are half lines with numerical slope a ,
hut where the vertical distance from the y-half-line to the /2-half -
line no longer assumes just one of its extreme values 0 or 1, bu t
has an arbitrary value between these two limits . At the sam e
time we shall perform a trivial translation in the direction o f
the real axis . For the `sake of convenience, we characterize a
function of a which is 0 for co < a < oc and equal to -a (a- w)

r II .,,

r

When we take account of the fact that 0 < A < M and 0 < v < qM
and insert the known expressions for tM , dM , r, qm, we see a t
once that

tM dm

r

AdM
-} r and

	

-*0 for M-oc
r
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for -cc < a < w by the symbol {w ; a} . We shall prove th e
following

Theorem . For arbitrary w, a, and d such that a> 1 and

0 < d < 1 there exists a Dirichlet series /(s) =an

	

with the- a

summability function {w ; a} and the order function {w+ d; a) .

In the proof we may evidently assume that w = 0 . Also, we

may assume that 0 < d <- . We know that there exist two Dirichle ta
series fl (s) =Y a,ln

s
and f2 (s)

	

where the yr- and
p-functions of the first series are given b y

'P1 =tcl = {O ;a}

while the yr- and ,u-functions of the second series are given by

1 1
t~2 =

la.,

We now replace s by s+- 1-d in f2 (s), i . e . we consider insteada

	

\
of f2 (s) the function f3 (s) = f2 (s + 1-

d)
= ;,"n-s , The y- and

,a,-functions of f3 (s) are given by

y 3 =
l

d- 1
a

; a} and ,a 3 = {d; a} .

We shall now show that the serie s

f (s) = f1(s) + f3 (s) =S~ (an +a n)
n-s

	

ann

will satisfy our demands .
First, S2 = - 0c . Secondly, the summability function yr (a) is

equal to 0 for a> 0 since both 'a;t n_
s

and laÏ:n s are con-
vergent for a> 0, and yr (a) = yr l (a) for every negative a since
yr1 (a) > yr 3 (a) . (We have used here the fact that the sum of tw o
series of constant terms both of which are summable of the r te
order is again a series summable of the r th order, while the suai

of two series of which the one series is summable of the rtt;

order and the other is not, is a series which is not summable o f
the rul order.) Thirdly, the order function ,a (a) is equal to 0 for
a > d since both pi (a) and ,a3 (a) are equal to 0 here, and

Nr.4
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lr (a) = lL3 (a) for a < d since yo (a) > ,u 1 (a) . (We have used here
the fact that the sum of two functions of t which are both
o (I t Irt) is again 0 (I t Ih) while the sum is not 0 (I t Ih) if one o f
the functions is 0(1 tih) and the other is not. )

§ 5. Two lemmas .

In this section we shall prove two lemmas concerning summa-
bility and order of magnitude of Dirichlet series which are forme d
by linear combination of infinitely many Dirichlet series .

Before passing to these theorems we start with the followin g

Remark . Let

fo ( s) =1' at') n S , f1(s)

	

a (n ) n s ,

be a sequence of Dirichlet series which we assume to be all abso-
lutely convergent (at least) for a> ao . We assert that it is possible
to determine a sequence of positive numbers Eo, E 1 , • • • so that th e
infinite series

(l)

	

~ E a(N) E
a (N)

N=0 N 1 ~
N0 N 2

are convergent for every sequence eo, e 1 , • • • with

0<eo<Eo, 0<el <E1 , . -

and that further, when the sums of these infinite series are denote d
by Al , A 2 , • • • , the series

`2)

	

eo f0 (s) + e1 f1 (s) + . . -

and the Dirichlet series (obtained by formal calculation from (2) )

IAn n
n= 1

will be absolutely convergent for a > ao and have the same sum .

Proof. We put

1a~) Irr °°=Ko ,n=1
Dan.Mat.Fys.Medd . 27, no.4 .

y' 2 = {0 ; a} and a} .

(3 )

Y I a (l) nao - K

	

.Il

	

1 ,n=1
2
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and choose the positive numbers E o , E 1 , • so that the serie s

En K is convergent . Then

a(n) I nI n-a< oc

so that
x

	

oo

	

oo

ENfN(S) ~EN ~CCn)R
s ~n

	

E1Na1n,) -~
A 11

T T
N=0

	

N=0 n=1

	

n=1 N=°

	

n= 1

where all occurring series are absolutely convergent . (a> Qo) . I t
is plain that the conclusion still holds (with the same E 's) when

we omit the assumption 0 < eN <EN for finitely many indices N.

Lemma 1 . Let

g0 (s)

	

b (,°) Tr s g i (s) __Y b(,I, ) n ,s g2
(

S ) -

be a sequence of Dirichlet series (each of which possesses a hal,

plane of convergence) . Denoting by A (,.N) the rth abscissa of summa-

bility of the function gN (s) (N = 0, 1, 2, • • •) we assume that there

'exists a number r (> 0) such tha t

A
;
,N) <Ar°) = A (N = 1, 2, • • • ) .

It follows immediately that the 'Yr-curve of all the Dirichlet series fo r

a> A must lie under or on the curve {A+ r; 1) so that all the

Dirichlet series must be absolutely convergent for u>A+r+1, i n

particular for a�A+ r+ 2 .
Then there exists a sequence of positive numbers e l <Et , e2 < E 2 , •

[where EN (N = 0, 1, 2, • .) are obtained from the above remark

applied to the functions gN (s) (N = 0, 1, 2, - ) and A+ r-I-- 2

instead of ao] such that the Dirichlet series

	

(4 )

	

G (s) = go (s) + E1 gi (s) + E 2 g 2 (s) + . . .

where

	

'(5)

	

1311 = b (°) + El b (l) + EZ bn2) + - . .

for every sequence e l , E 2 , •• such that

will have its rt,ll abscissa of summability equal to the number A .

(The series (5) converge and the two series in (4) are absolutel y
convergent for a >A+ r + 2 with the same suri G (s) . This
follows immediately from the above remark since eN < EN fo r
N=1,2,•

	

)

Proof. We have to prove that we can choose the , positive
numbers eN <EN so that the series G (s) _ B71 rr_s under the
assumption (6) is summable of the rth order for a> A, but no t
summable of the rul order for any oa <A . We divide the proof

into two parts .

1° . In this part we choose the positive numbers eN < EN so
that the series G (s) _~ Bn n-s

under the assumption (6) is sum-
mable of the r ili order for u > A . In order to obtain this result ,

it is obviously enough to secure that the serie s

G* (s) = E l g1 (S) + e2 g2 (s) + . . . _~ Bi n- s

becomes summable of the r i h order at the point s = A ; for when

both of the series go (s) =7 bR°t n-S and G* (s) =7 Bn n s are
summable of the rth order for a> A, then their sum G (s) =
L' Bn n s will have the same property. In the proof we shall

.suppose that A = O . This is of course no real limitation sinc e

when A-4 0 we may replace s by s+A . Since the abscissae o f
summability 41) , 42) , •

	

are all smaller than A, the serie s

b(l) , 2' bn2) , • - are 'all sum niable of the rth order. We have

(7)

	

BR = EN b (nN) (convergent for EN < EN) .

In our proof we make use of the fact (see [6], pp .21-22) that a

series Ian is summable of a given order r if and only if a
n=1

	

n
certain linear expression Sn =Y Icy, a, in the first n terens of the

v= 1
series (with coeffièi-enls k„ which depend not only on v but als o

on n and r) tends to a limit, the summability value of the series ,

for n---> cc . We denote the expression Sn for the series Z b (nl ) ,

2 *

N
N,n

for a > u0

b (2) n s , •I l

n
-s

n

	

,

Nr.4
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Z h (r,2) , • • • by 7'W, Tn2) , • • • , respectively, and the expression Sr ,

for the series SB;; by T1. Then from (7) it follows tha t

(8)

	

Tr*, = Er T,,1 )(

	

e2 Tn2)

Here, the quantity T77 ) will for each N = 1, 2, •

	

tend to a limi t

U (N), the summability value of the series

	

b(r,N), when n ->oo .

Hence there exist constants KN such tha t

T~N)<KN (n = 1,2, . . •) .

We now choose the positive numbers eN < EN so tha t

converges ; then for every choice of the numbers eN in the interval s

0 < Elv < eN the series (8) will be uniformly convergent in n since

it is majorized by ' eN KN . Since each of the terms eN T
r
,N )

tends to a limit for n -* oc (namely eN U (N) ) it follows that the

sum Tn of the series will also tend to a limit for n --* oc (namely

U* = e l U(1) -I- E2 U (2) -F- • • •), as we had to prove .

2°. In this part we choose the positive numbers e N < EN s o

that the series G (s) _Z ß, n-s under the assumption (6) is not

summable of the rth order for any a < A, i .e. so that the r t h

abscissa of summability is >A . I f the series g 0 (s) = ' b(r,°) n S

(with the r th abscissa of summability A) is not summable of th e
rth order at the point s = A we can use the numbers eN found

under 1 ° . In fact, we saw that G* (s) =B n s under the assump -

tion (6) is summable of the rth order at the point s -A so tha t

the series YB,1 n- s , which arises bytermwise addition of bit" n'

and ZBrz

	

cannot be summable of the rth order at the poin t

s = A and therefore must have its r th abscissa of summability

>A . However, we have not made this special assumption con-

cerning the series Y b (r,° ) ets and as a matter of fact we could

not make it in view of the applications . Hence we must proceed

differently, and we shall use the known expression for the rth

abscissa of summability A r of a Dirichlet series7 an n-s by mean s

of the coefficients of the series . In the proof we shall assume that

the number A is > 0, say = 1 (since the expression just mentione d
is only valid when 2,.> 0) . This is of course no real limitation sinc e
when A* 1 we may replace s by s--A, where 2--A = 1 . As to
this expression of A,, by the coefficients of the series we shall onl y
use the following fact (see [6], p. 45 and [3], p. 86 and [1] ,

n

pp. 70-71). There exists a linear expression S r, =G k„ a z, in the
v= 1

first n coefficients of the series (with coefficients k,, which depend
not only on v but also on n and r) such that the necessary and
sufficient condition in order that the series an nS have its rth

abscissa of summability A,, > 1 is tha t

Sr, is not equal to 0 (n-å) for any 6 > 0, or equivalently
Sr, is not equal to o(n) for any 6 > O .

((The expression S r, here is not, of course, the same as the expres-
sion Sr, under 1° . )

We shall denote the expressions Sr, corresponding to the serie s

Y b (° ) n' ,

	

1 )0) n ' , .- by Ti° ), Tn1), • , respectively, and th e

expression S r, for the series ZBn n-s by T,5 . Since by assumptio n

the series b (r.°) n-S has its rth abscissa of summability = A = 1
we know that to any given 6 > 0 there exist infinitely man y
values of n for which

Tr," ~ > n a .

Since each of the series

	

b} n-s (N = 1, 2, • • •) has its rt h

n

abscissa of summability ArN) < A = 1 there exists for every
N = 1, 2, • • • a number AN > 0 such tha t

7
n
(N) - o 0-dN )

It suffices to show that Tn for a suitable choice of the positiv e
constants eN < EN under the assumption (6) for every b > 0 satis-
fies the inequality

ITnI> 3-n
8

for infinitely many values of n . This is equivalent to saying tha t
for some sequence 'ô 1 , 6 2 , • • • of positive numbers which tend s

KN
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to 0 there must exist a corresponding sequence of positive integer s
n l < n 2, < • • • such that the inequality

I Inn,I>
3 n rn

a

is satisfied for all m = 1, 2, • • • . As å-sequence we shall here use
an arbitrary sequence of positive numbers which tends to 0 an d
satisfies the conditions

r52> d l, 6 3 <min(41 ,4 2),•' .

We shall now indicate positive numbers e N < EN with the desired
properties . We proceed in steps .

First step . We choose a positive integer n 1 so tha t

I T ( ° ) I > n-6'

For this n = n 1 the expressions Trl), Tr! ), • • . assume certain values ,
say k11, k12, • • • . We choose the positive numbers e11 < E1 ,

e 12 <E2 ,••• so that ~

N 'e 1N I k1N I

is convergent with sum < n -`51. On the analogy of (8) we have

(9)

	

Tn = Tn° ) + s l Tel) I s 2 Tn2)+ . . . (for 0 <sN < EN) .

Hence, for every choice of e l , e 2 , • in the intervals 0 < e l < e11 ,

0<e2,<e12, .• we have

-Vl
1NI k1Nl > 2 72 1

Second step . We choose an integer n2 > n 1 so tha t

Tn°) I> 7ç°2 and also E1 I Tn1) I<

3

72- 62

The latter inequality may be obtained since å 2 A 1 . For thi s

n = n 2 the expressions Tn2), T? ) , • • • assume certain values, sa y

k32, k33, ' - - . We choose the positive numbers e L2 < E 2 , e23 < E 3 ,
so that

oo

e2N k2N l
N=2

is convergent with sum <
3

n2S2 . Then for every choice of el , s2 , • • •

in the intervals 0 < el < E 1 , 0 < eN < e2N (N = 2, 3, . •) we have,
on account of (9) ,

I Tna>I T
n
°)I -El l Tz

i
)- 2N Ik 2 ~,I >

N= 2

n2 å2- 1 n2 å2- 1 n2 V2 = 1 112 2 .
3

	

3

	

3

mth step . We choose an integer nm > n rn_1 so tha t

I T(°) I > l -6m,
n,.

	

M
and also

E1 I T (l ) I + E 2 I T (2) .I + . . . + Em -1 I T,,(''-1) I < 1 n- m .
3

The latter inequality may be obtained since am < min (A 1 , • ~m-1) •
For this n = nm the expressions Tnm), Tnm+1) . . . assume certain
values, say kmm , km,m +i , • • We choose the positive number s
emm<En, ,ern, m+1 <Em+v •• so that

.

e rnN I kmN l .
N=m

	

•

is convergent with sum < 3 nm b- . Then for every choice of e l , e 2 , • •

in the intervals 0<E l <E1 , •', 0<ern_ 1 < Ein1 ,0<sN <em\
(N = m, m+ 1, • • •) we have, on account of (9) ,

I Tnm -I Tn°' I- (EI I TRI) I + . . . + E
m-1I

T(m -1)
I) -~ e mN I kmN I >N= m

- 6 a„ - 1

	

1

	

- 1

	

5 .,~~12 m

	

3 72m

	

3 n tn

	

3 72rn .

It appears from the above that the numbers

eN =min {e1N,•••,eNN} (N=1,2,•• •

may be used to satisfy our demands under 2° .
Finally, for each N we choose the smaller one of the tw o

numbers eN found under 1° and 2° as our final eN . These eN satisfy
the demands in Lemma 1 . This completes the proof of Lemma 1 .

~

I Tn I > I
Tn° ) I -~ENI n~)I> 12 1 5 = -

N=1 N=1
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Lemma 2 . Le t

hp (s) =7 c(0)nn
s

h (s)

	

c , l) II -s h 2 (s)

	

C(2)rxn
s

	

•n

be a sequence of Dirichlet series (each of which possesses a half

plane of convergence) . We assume that all the functions h N (s) ar e

regular and of finite order in a certain half plane a> 6 0 ; further ,

denoting their orders of magnitude in this half plane by ,u N , we

assume that
I N <,u„=,u for N=1, , 2,• .

It follows immediately that the Ip-curves of the Dirichlet series for

a > a0 must lie under or on the curve {a0 + ,u ; 1) so that all th e

Dirichlet series must be absolutely convergent for a > 6 0 + y+ 1, in

particular for a > a0 + ,u + 2 .

Then there exists a sequence of positive numbers e l <E1 , e2 < E2 , • •

[where EN (N = 0, 1, 2, • • •) are obtained from the previous remar k

applied to the functions hN (s) (N = 0, 1, 2, • • •) and a 0 +,u+ 2

instead of co] such that the functio n

CR = c( 0) + el cnl) + e2 Crz") ._~ • . .

for evert . sequence e l , e2, . such tha t

(12)

	

0<e1 <e1 , 0<e2<e2,•• •

will be regular in the half plane a > 6 0 and in this half plan e

have the order of magnitude u . (The series (11) converges an d

the two series in (10) are absolutely convergent for 6 > 6 o -{- to+ 2

with the same sum HO) . This follows immediately from the

previous remark since elv <EN for N = 1, 2, . • • . )

Proof. We have to prove that we can choose the positiv e

numbers eN < EN so that the function

H (s) = h o (s ) + el h1( s ) + e 2 h 2 (s) + . .

under the assumption (12) will be regular in the half plane a > a0

and in this half plane satisfy the relation

H(s) = 0(ItI" s )

for every a > 0 but not for any 6 < O . We divide the proof int o
two parts .

1°. In this part we' choose- th positive numbers eN < EN so
that the function H (s) under t e assumption (12) will be regula r
in the half plane a > a0 and in t4iis-1half plane equal to O t 1 12+a )
for every b > 0 .

In the proof we shall use only that ,uN <. ,u for N = 0, 1, 2, •
and not that JUN <,u for N = 1, 2, • . . . Let 6 1 , b 2 , . • • be a sequence
of positive numbers which tends to 0 . On account of the assump-
tions there exist positive constants Kin_N (m = 1, 2, • . • ; N = 0,1, 2, . . • )
such that

hN (S ) I Ç Kn,iv (I t + 1)~ S- for a> 60 .

We choose the constants eN < EN so that

Nm ,Km N

is convergent for every in =. 1, 2, • • . This may be done by sub -
jecting the eN to the following demands (only in a finite numbe r
for each eN)

e1K1 1 <~, e2K1 2 <4, e3K13<~, . •

( 1 0)

	

H(s) = ho(s)+s1hl(s)+s2h2(s)+ . . .

where

(11)

n
s ,

e 2 K22 <

4

, P3 K23 < .8
1e 3 K33 <
8

. : .

Al(I tt+1)µ+8m + (2 C N KmN)(I tI+1)F`+8- <
N= m

A2(1 I I+ 1)1`+6,„ for a>a0 ,

where A l and A 2 are constants .

Then we have under assumption (12 )

It(s)I<(Iho(s)I+elIhl(S)I+ . . .+Em-lIhm-1(s) .I)+(EmIh,,(s)I+ . . .)<
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First step . We choose a complex number s 1 = ai + it 1 with
ai >ao,I1l I>1 so tha t

N_n

At the point s =ßs 1 the functions h 1 (s), h 2 (s), • • • assume certain
values k 11 , k12 , • • • . We choose the positive constants e11 <E l ,
e12 < E2 , • • • so that

~~
NJ 1 e 1Nl t'1N I

El h 1 (s2) I < 3 I t2 r-c5 2

The latter inequality may be obtained since b 2 < 4 1 . At the
point s = s2 the functions h 2 (s), h 3 (s), . . . assume certain values

k22, k33, • • . We choose the positive numbers e22 < E2 , e 23 < E3, - • -

SO that

= e2Nl k2N l

is convergent with sum < 3 t2 I ,"
- â 2 Then for 0 < ei < El ,

0<EN<e2N(N=2,3,-••) we have

l h o (si) l> I t 1 I 1 `
-å1 .

26
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From this follows our above statement concerning the order o f
magnitude of H (s) . In order to see that H (s) is regular for a > a 0
we remark that the series

ho(s)+ El hl(s)+ E 2 h2(s)+ . .

in the half strip a> a0, I tl < T, where T is any fixed positive
number, will be majorized by the serie s

eN KIN l (T+ OP '- 6 '
N= 1

so that it is uniformly convergent in this half strip .

2° . In this part we choose the positive numbers eN < EN so

that H(s) under the assumption (12) is not equal to 0(1 tlu-S)
in the half plane a > a 0 for any b > 0, or, in other words, tha t
H(s) is not equal to o (l tjµ-S) in the half plane a > ao for an y
S >0 . Thus it suffices to show= that to every 8 > 0 there exist
points s = a+ it with a > a 0 and l t l arbitrarily large such tha t

H(s)l> 3 itlµ-å .

We do this by showing that for a certain sequence of positiv e

numbers 81 , 8 2 , • - which tends to 0 there exists a correspondin g
sequence s i =a,+s 2 = a 2 +it 2 , •• with a 7,> a 0 and Itm l~oo
so that

IH(s,R)l>3ltrnl~`"& for a>a 0 .

On account of the assumptions we know that to every hN (s) ,
N = 1, 2, • • there exists a

p

positive number AN such that

l hN (s) = o (l t l
1`-4N) for a> a 0 .

We now choose an arbitrary sequence of positive numbers S 1, 6 2, •
-

which tends to 0 and satisfies the conditions

82 <4 1i 6 3 <min(41 ,42), • .

Our task is to choose the positive numbers eN < EN in such a
way that it is possible under the assumption (12) to find comple x

numbers sin corresponding to the numbers ôm with the above7
mentioned properties . We shall do this in a sequence of steps .
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and at the same time

E 1 I h 1 (Sm ) + E2 I h2 ( Sm) -}_
. . . + Ern-1 I hm 1 (sm ) < -311 tm I Ii-r$n.

The latter inequality may be obtained since ô, n <min (41, • ,dm-l)
At the point sm the functions hm (s), hm+1 (s), • • assume certain

values krmn' km,m+l' . . . We choose positive constants emm < Em '

em,m+ < I. m+' • . so that

-~-~ emNI kmN I
N= m

is convergent with sum < 3 I t,,, 1 o-6m. Then for 0 < E 1 < El, - . ,

0 <£m_ 1 <Em1 , 0 <eN <e772N (N = m , m+ 1, ••• ) we have

l H (sm)
I
> l h0 ( Sm) I - (El I

hl ( Sm) I + . . . + Etn-1
hm-1

(Sm)
I )

7
e n N i kmN I > I tnz

l"-Sn,
3

I tm lm-å- - 3 I tnt I
µ-Sm . = 3 I ttn I m-am .

N=m

It appears from the above that the numbers

e N =min{e1N ,

	

,eNN } (N= 1,2,••• )

may be used in order to satisfy our demands under 2° .

Finally, for each N we choose the smaller one of the tw o

numbers eN found under 1° and 2° as our final eN . These e N

satisfy the demands in Lemma 2 . This completes the proof of

Lemma 2 .

Nr . 4
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The "intermediate" case (ß) will be treated at the end of thi s
section by specializing, and slightly modifying, the construction
used in the "general" case-(y) .

Let us therefore assume for the present that wµ > wy,> S~ >-oc .
In the main, our Dirichlet series ' A n n' is constructed by linea r
combination of infinitely many of the "bricks" from § 4, i . e . by
linear combination of Dirichlet series whose summability function
and order function have the form {ca l ; a} and {w 2 ; a} with common

a> 1 and 0< w 2 - col < a (viz . with the vertical distance fro m

the p-half-line to the 'u-half-line > 0 and < 1) . This construction ,
however, requires some caution because we have to build up a t

the same time two convex curves and because each of thes e
curves may contain infinitely many vertices, i . e . points with
different tangents from the right and the left .

We call a pair (Tv, TO) of parallel (perhaps coinciding)
straight lines Ty' and TO a pair of supporting lines (in a general-
ized sense) of our ?p-curve and our ,u-curve when one of th e
lines Tv and To is a proper supporting line of the correspondin g
curve at a point outside the real axis while the other line i s
defined by the upper position of all lines with the given slop e
which lie under the other curve. If the latter line contains at leas t
one point of the curve in question, this line is of course a prope r
supporting line . In any case it is easily seen from the convexity
of the two curves 1p ,(a) and ,a (a) and the relations ?p (a) <,a (a) <

?p (a) + 1 that the vertical distance from the line Tv to the line Tµ
is > 0 and < 1 Furthermore, since y1 ' (co y, - 0) < - 1 an d
,u ' (w µ -O) <- 1 the slope -a of the two lines is <-1, i . e .
a>1 .

We start by choosing a denumerable set of abscissae a 1 , a2 , • • •

which lie everywhere°' dense in the interval D< a < wµ . Thes e
abscissae are chosen arbitrarily with the exception that we d o
not use any abscissa a at which any of the functions ? (a) and
,u (a) has different derivatives from the left and the right (i . e .
which corresponds to a vertex on any of the two curves) . For
each of the abovë'chosen abscissae a1 which lie in the sub-interva l
S2 < a< w,o of Q ._a'< wµ we consider both the supporting lin e

ST of the v'-curve at the point (a 1 ,1 (a1 )) and the supporting line S ,`
of the s-curve at the point (a z „u(a)) . For each of the abscissae

§ 6. Proof of the Main Theorem .

We are now in a position to prove the Main Theorem state d

in § 1 . Since the function f (s) = 0 has wµ = coy, = Q = -x

we need only consider the following three cases : (a) w µ = wy =

Q > - oc, (ß)wµ > co y, = D> -oc, and the "general " case (y)

wµ>w,p>Q>-o0 .

As an example of the special case (a) we can obviously us e

the series
~(s Sz+1 )

In fact, the series is absolutely convergent for o> Q, and the

function has a pole at s = Q .
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a i of the above chosen sequence which (if wy, < w /L ) lie in the

complementary sub-interval < a< wt, of S2< a< co p we con-

sider only the supporting line S( of the ,a-curve at the point ai .

The supporting lines Sµ and (in the first case) Sr are uniquely

determined since none of the two curves has a vertex at a point ai .

For each of the abscissae a i which lie in the interval Q < u <

we now determine two pairs of supporting lines (Tv , T.`) (which

may coincide), one pair being determined by ., Tv = Sr, the other

pair by Te ` = S . For the first pair we mark the point (a i ,' (a i ) )

on the line Tv = Sr; for the second pair we mark the point

' (a i„a (ai)) on the line T" = . For each of the abscissae a i which

(if w v, < w eA ) lie in the interval w., < a < wp we determine one pair

of supporting lines (Tv, TJA ) , namely the pair defined by TJA = Sl,.` ,

and for this pair we mark the point (a i , ,a (a)) on the line

TE` = SÎ` . We arrange the pairs of supporting lines (Tv, Tµ) thus

obtained (for each of our abscissae either one or two pairs) i n

a sequence

(T'f , T?) , (71' , n) , -
As mentioned above, we have marked for each of these pair s

a point on one of its lines, Tv or Tn . If we do not take notice of

the marked points, it is evident that some of our pairs of sup -

porting lines may coincide . (If for instance both the y-curve an d

the pt-curve are of the type {co ; a} with the same a, then all our

pairs of supporting lines will be identical .) If such a coincidence

between pairs occur s we shall only keep one of the coincidin g

pairs, but at the same time we shall change the point markin g

of the pairs according to the following specification . Let us assum e

that the pairs of supporting lines

r
Tm~, '

	

'

	

T), . . .

coincide .-For orientation we note that this sequence can eithe r

contain just two pairs of supporting lines, one with point-markin g

on the line Tv, the other with point-marking on the line Tµ , or

the sequence will contain infinitely many pairs of supportin g

lines. This latter case will only occur when at least one of th e

curves y (a) or ,a (a) contains a straight segment outside the axis

of abscissa . As mentioned above, we keep only one of these

where A n =~ EN aÎN ) • We shall. show that we can choose theN= 1
positive numbers E l , E 2, • so that sir fi (s) + ez, f2 (s) + - - is re -
presented by a Dirichlet series X do n' which for a > .Q has it s
summability function W (a) equal to the given function y (a) an d
its order function M(a) equal to the given function ,a (a) . How-
ever, when S2 > oc we cannot always he sure that our construe -

pairs, but we now mark more points on the pair, namely al l
points on its Tv-line which are marked on one of the line s
Tm , m Q , • • • as well as all points on its T'-line which are mar -
ked on one of the lines T~` T~` , • - • . If more than one point i sm~ ° rnE
marked on the line Tv we arrange these points in a sequence ;
analogously, if more than one point is marked on the line w e
arrange these points in a sequence .

The set of pairs of supporting lines (with their arranged mar-
kèd points) obtained by the above procedure is now arranged in
a (finite or infinite) sequenc e

(TI,Ti), (Tii,Tzz),	
(71, , T , . . .

It is plain that each of our abscissae ai which lie in the interva l
S2 < a < w y, will occur as abscissa of a marked point on one of
our lines Tv as well as on one of our lines Ta, while each o f
the abscissae a i which (if w,,,, <wp ) lie in the interval w y, < a < cop
will occur as abscissa `of a marked point on one of our lines P .

For these pairs of supporting lines we introduce "bricks" in
accordance with § 4, i . e . Dirichlet series

fl (s)

	

an ' 11 s , t2 (s) - .1' an2' i Z , . . , fN (s) =

	

0(zv) a s , . -

such that those parts of the v-function and the ,a-function of th e
series fN (s) where these functions are positive are determine d
by the half lines over the real axis which lie on TN and TÇ̀„
respectively . This is possible since the slope - ate, of the two line s
is <- 1 and the vertical distance from TN to TN is > 0 and < 1 .

The series we are going to construct is formed by linea r
combination of these series fi (s), f2 (s), • . ; in fact, it has the form

n--s ,
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lion yields a function F(s) which does not have a limit abscissa
of summability .f2F smaller than the given number D .

In order to obtain the said properties of F(s) it is enough t o
prove, first, that the summability function i '(a) of F(s) satisfies
the equation ?P(a 1 ) = yr (a 1) for those of our a1 which lie in the
interval .Q< a < co y, (this includes that QF must be <0) and,
secondly, that the order function M(a) of F(s) satisfies the equatio n
M(a 1) = ,u (a 1) for all our a 1 . In fact, the abscissae a 1 lie every-
where dense in the interval .Q< a< w,,; so for reasons of conti-
nuity we may conclude that the equation s

(a) = p (a) and M(a) = ,u (a)

hold in the intervals S2 < a< cov and Q< a< w u , respectively ;
furthermore, since Tr (wy,) = p (cr y,) = 0 and M(wi,) = cc (wi,,) = 0 ,
we get W (a) = 0 = y (a) for a > w y, and M (a) = 0 = p (a) for
a> wf, so that the above equations will hold in the whole interva l
S2<a<oc . -

We remarked above that the constructed function F(s) when
S2 > -oc might have qv < Q and not OF = Q as desired .

There are some cases with Q > - oc when automaticall y
S2F = Q, namely when y' (a-0) ->- -oc or p' (a-0) ->.- -oc fo r
a -* D . In fact, it is impossible in these cases to prolong the given .
yp - and p-curve to the left under preservation of their convexity ,
sO that we can be sure that the constructed function F(s) wil l
have S2F = Q as desired .

In the other cases with S2>-oc we can prolong the yp - and

the p-curve to the whole interval -oc < a <oc under preservatio n

of all the properties demanded in the theorem, for instance b y
two parallel half lines with a common slope <_ min (lim y ' (a-0),

a->- Q
lim ,u' (a - 0)1 .' This we do before passing to the construction o f
a-> 2

	

1
F(s), i . e . before choosing our a 1 .

The function F(s) obtained will then be an entire functio n

with these prolonged functions y (a) and p. (a) as its summabilit y

function and order function, respectively . In order to obtain a func -
tion F 0 (s) from F (s) which has the right S2 and without changin g

the Tr-curve and the M-curve for a > S2 we may for instance ad d
the function

(s-D+ 1) =~n°- r n-5

In this way we obtain a function F"' (s) with all the desire d
properties .

We now pass to the actual constructio n
above. We determine the positive number s
successively by the following procedure .

First step . We choose a 1 = as an arbitrary positive number .
We consider the pair of supporting lines (TI, TI) belonging t o
f, (s) with its marked points and distinguish between the followin g
three cases .

1° . There exist marked points on the line TI, but not on the
line TI . If only one marked point is lying on TI we denote it s
abscissa by ao (where Q < ao < wy,) . If infinitely many marke d
points lie on TI we denote by as (where Q< as < w,v) the absciss a
of that point on rIf comes first in the given orderin g
of the marked points on T . In the present case we are onl y
interested in the Tr-function at the point Co, and not in the
LW-function at this point .

We put the demand on the sequence e2 , s t , • • • tha t

(1)

	

F(s) = e L ft( s)+ E 2f2(s ) -{ e3f3(s)+ . . .

is to have '(ao) = y(a o) . In other words, we demand that th e
ro abscissa of summability A, .0 of F(s) where ro denotes the
positive number yp (ao) is exactly equal to a o . We apply Lemma 1
of § 5 to the functions

go (S) = e t f1 ( s), g1 (ç) = /2 CO, q2 ( S)=(s ) . .

and the numbers. A = ao and r = r 0 just determined . The support -
ing lines TII, Til , •-• • of the yp -curve cut the line a = a o below
the point (a o , y(ao)) (because the point (co, y (co)) is no verte x
on the yo-curve) . Hence the rah abscissa of summability of th e
series g 1 (s), q 2 (s),

	

all lie to the left of a o while the rat ' absciss a
of summability of qo ;(s) is equal to ao . It follows from Lemma 1
that there exist positive constants e22, e23, ' ' • with the property
that the function (1) for 0 < e 2 < e22 , 0 < e3 < e 23 , • • • has its rog '
abscissa of summability equal to ao, as desired .

Dan. Mat.Fys .liledd . 27, no .4 .

	

3

of F(s) referred t o
E 1 = £ 1, e2 = e ;`, . . .

n n-s
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2° . There exist marked points on the line n but no marked
points on the line 77 . If only one marked point is lying on n
we denote its abscissa by a 0 (where ,Q< ao < aid . If infinitel y
many marked point lie on n we denote by a0 (where S2 < a0 < cod
the abscissa of that point on n which cones first in the given
ordering of the marked points on T . In the present case we are

only interested in the M-functiön at the point a0 , and 'not in the
W-function at this point .

We put the demand on the sequence e 2 , ea,- • that the func-

tion (1) must be regular for a > a0 and have M(a0 ) = /1(u0 ) .
In other words, we demand that the function (1) is to be regular
in the half plane a > a0 and in this half plane have (exactly) the
order of magnitude po, where p0 = ,u (a0 ) > O . We apply Lemma 2

of § 5 to the function s

h 0 ( s) = e1 fi (s ) , Il i (s) = f2 (s) , hu (s) = f3 ( s ) , . . .

and the numbers a0 and u0 just determined . The supporting line s

Tit Tïli , ' ' ' cut the line a = a 0 below the point (a 0 , /1(ao)) (be -
cause the point (a0 , p (co)) is no vertex on the p-curve) . Hence
the orders of magnitude of the functions h 1 (s), h 2 (s), • • • in the
half plane a > a 0 are all < po, while the order of magnitude o f
the function h 0 (s) in the half plane a> a 0 is equal to ,uo . It follow s
from Lemma 2 that there exist positive constants e 22, e23 , ' wit h
the property that the function (1) for 0 < 63 < e22 , 0 < e 3 < e 23, ' ' '
is regular in the half plane a > a 0 and has the order of magnitud e
po in this half plane, as desired .

3°. There exist marked points on the line TÎ as well as o n
the line T . We consider two abscissae a r° and aä (they may coin-

cide) where or, denotes the abscissa of the marked point or the

first of the marked points on the line TI while a~ denotes th e
abscissa of the marked point or the first of the marked point s
on the line T . By exactly the same considerations as under 1 °

and 2°, using the first time Lemma 1 and the second time Lemma 2 ,
we find two sequences of positive numbers e22, e23, - ' ' and

e 29, e23,' - • such that the function (1)for0<e2 <e22 ,0<e3 <e 23 , . . ,
where e tt = min (ez,t , e' 1) has = i (aD, is regular for

a > aö , and has M(a',,') = u (aD .

Summarizing, we have by this first step found a positive

Nr.4

	

35

constant e and positive constants e 22, e 23, ' ' • such that the func-
tion (1) for 0 < E2 < e22 , 0 < e3 < e23 , - has the property that it s
W-curve will pass through the marked point or the first of th e
marked points on Tz (if such points exist) and the M-curve wil l
pass through the marked point or the first of the marked point s
on TI (if such points exist) .

Nth step . (N> 2) . We assume that by the 1 St , 2 11x , . • • (N-1)ul

step we have determined positive constants e, 4,-

	

an d
(by the (N-1)th step) positive constants eN i (j = N, N+ 1,

	

)
such that the functio n

F(s) = ei ft (s)+ . +
4-1 fN-i

(s)+ EN ÎN (s) -I

+ eN+l fN +1 (s) + • • • _ A nn'

for 0<eN <eNN„0<eN,+i <eN,N 1 , . . . has the property tha t
its ë-curve passes through the first N--1 of the marked point s
on TI, through the first N-2 of the marked points on Ti , ' ' ' ,
through the first of the marked points on TN_1, and that it s
M-curve passes through the first N-1 of the marked points o n
TI, through the first N-2 of the marked points on TÎI
through the first of the marked points on T~ _ 1 • It is plain how
this is to be understood when one of the supporting lines T'1' o r
TT` only has one marked point or none at all .

We choose an arbitrary constant er, in the interval 0 < eN < eNN
and shall show that we can find positive constants eN+1,N+1 <

eN,N+1 , eN+1,N+2eN,N+2, '' . such that the function

F(s) = er fi (s) + . . . + ems, fN (s) + eN + 1 fN + l (s) +(3)

+eN+2fN+2(s)_h

for0<eN+ .1<eN11 N+x,0<eN+ .,<eN1_1,N+2, . . has the pro-
perty that its W-curve passes through the first N of the marked
points on TI', through the first N-1 of the marked points o n
T1vI; , through the first of the marked points on Tom, and that
its M-curve passes-through the first N of the marked points o n
TI , through the first N-1 of the marked points on Ti , • • . ,
through the first of the marked points on T~ .

(2)

3*
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It is evident that the conclusion from the (N-1)' step stil l
holds good under the new conditions sinc e

0<EN<eNN and 0<Ej <eN+l,i <eN j (,jN+ 1,N+2,• •) .

Thus we have only to make sure that the ¶-curve (M-curve )
passes through the Niel marked point on Ti (TÌ ), through th e
(N-1)th marked point on TIÎ (TIM, - , through the first marke d
point on TN ( TN) .

We consider the J ul pair of supporting lines (TJ', TJ
(J = I, II, • , N) . Let do (where .Q< a'o < (Dzj,) and aö (where
Q < a',;< vim) denote the abscissae of the (N-{- 1 -J) th marked
point on the lines T and Tau. , respectively (if they exist) .

First, we put the demand on the sequence eN+ EN+2 , - -
that the function (3) (if a 'o exists) has YP (aô) = 2p (a rc) ) . In othe r
words, we demand that the r'o' t abscissa of summability

Ar of
F(s), where ro denotes the positive number 71 )(4), is exactly
equal to do . We apply Lemma 1 of § 5 to the function s

g o ( s) = E i. f1 (s ) + , . . +
EJ

fJ (s ) + • - + e, fN (s) ,

q l (s) = fN + (s ) , q2 (s ) = fN + .2 (s) , . . ,

and the numbers A = a'0 and r = ro just determined . The sup-
porting lines TP (P + J) of the yp -curve cut the line a = a o helow
the point (aå, y(aô)) (because the point (do , (ao)) is no vertex
on the lp-curve) . Hence the 2•ßh abscissae of summability of the
series fP (s), P J, all lie to the left of a'o , while the rol' abscissa
of summability of fa (s) is equal to a'o . It follows immediately
that the roll abscissa of summability of go (s) is equal to do , whil e
the 4h abscissae of summability of g1 (s), g2 (s), - • • are smalle r

than ao, It follows from Lemma 1 that there exist positive con-
stantsJeN+1,N+1' JeN+ 1,N+2' ' ' with the property that the func -

tion (3) for 0<EN+l<JeN+1,N+r'O<EN+2<JeN'+1,N+2, . . . ha s
its rö abscissa of summability Aro equal to c/o .

Next, we put the demand on the sequence E N+1 , eN+2'• . tha t
the function (3) (if aö exists) must be regular for a> aä an d
have M(aö) =,o(aö) . In other words, we demand that the func-
tion (3) is to be regular in the half plane a> a o and in this hal f

plane have (exactly) the order of magnitude yo where yo = u (aô) > O .

We apply Lemma 2 of § 5 to the functions .
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ho (s) = e t 1.1 (0 + . . . ~ 6' (s) + . . . + EN fN (s) ,

X2 1 (s) = fN+1 (s)' h2 (s) - IN+2 (s) ,

and the numbers aö and ,u, just determined . The supporting line s
TP, P+J, cut the line a = aö below the point (agi, 7c (aö)) (because
the point (aö, ,u (aö)) is no vertex on the ,u-curve). Hence the
orders of magnitude of the functions fr (s) in the half plane
a> aö for P+J are smaller than ,uo, while the function fa (s) i n
the half plane a> o has the order of magnitude Ito . It follows
immediately that the order of magnitude of the function ho (s) i n
the half plane a > aö is equal to Ito, while the orders of magnitud e
of the functions h 1 (s), h 2 (s), . - . in the half plane a> aä are
smaller than rc o . It follows from Lemma 2 that there exist positiv e
constants Je

N+1,N+1' JeN+1,N+2' • • • with the property that th e

have the desired properties (under step N) .

The conclusion is still missing, namely that the sequenc e
E, e2, - • - found above is such that the functio n

(4)

	

F (s) = el ft (s ) + E2 f2 (s) + • ' - _~A t t

has the desired properties. This, however, follows at once from
the remark that

	

•

< EN +1 < eN +1, N+1 Ç eN, N+ 1

O < E N+ 2 <eN +2,N +2~ e N +1,N +2 eN,N + 2

so that (4) gets the, properties of (3) from the arbitrary ste p
N (N=1,2,-•-), q.e.d .

This completes the proof of the Main Theorem in the "general "
case (y) w~ > wy, > Q > - cc .

function (3) for0<EN
<Je

N+1,N+1 , 0<eN+2<JeN+1,N+2,- . .
is regular for a > a'o' and has M(aö) _ ,u (aö) .

It follows from the above that the number s

e N--l, - min ke

	

. NN, j,

	

N+l, j'

	

' e' N+1,j - '
1e"

N+l, j, . . , '
N e

, ,
N+1, j

(J =N + 1,N+

-s
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The remaining case (ß) ca t, > wv = S? > - oo can be treated i n

a similar way as the general case. However, a small modification

is necessary, due to the fact that the v-curve does not leave th e

real axis, but consists of the interval S2 < a < no on the real axis .

If we are in a case where the pair of functions y (a) and ,u (a')

can be prolonged no modification is of course necessary . since

the prolonged curves fall under case (y) . In any case, the "bricks "

fl (s), f2 (s) . • • are obtained in the same way as before, but if w e

proceed as before (in the case where y (a) and >u (a) could no t

be prolonged) by the determination of the numbers el', E2, • • • i t

is plain, since no marked points occur on the lines T'8 of our

pairs of supporting lines (Ti, Tom), that we have taken care only

of the M-function, but not of the Y1-function.' However, from the

determination of the pairs (7N, TAM it follows that all the Dirich -

let series fim, (s) are convergent for a> Q, for all the lines TN

pass through the end-point S2 of the yi-curve .

In order to obtain that (4) also becomes convergent for a> 2 ,

and hence '(a) = 0 for a> S2 as desired, we choose a sequence

a > ail > ' --eQ . By our first step we add the demand to th e

previous demands that (1) is also to he convergent for s = at ,

and in order to obtain this situation we use a result obtained i n

the first part of the proof of Lemma 1 in the case r = 0, namely

the result that if the Dirichlet series 9 1 (s), g 2 (s) , • - • are summabl e

of the r1' order at the point s = A, then the positive number s

e 1 , e2 ,

	

can be chosen so that the Dirichlet series G* (s)

gl (s) + e2 g 2 (s) -H . . . _~ B72 et' becomes summable of the r th

order at the point s = A when only 0 < el < e l , 0 < e 2 < e 2 , -

In our Nth step we add the demand to the previous demand s

that (3) is also to be convergent for s = 4 . Except for thi s

slight modification our previous method remains unchanged .

Thus the proof of our Main Theorem is completed .
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