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§‘ 1. Introduction.!
he aim of the present paper is to give a contribution to the
study of the conneclion between the so-called summability
function v (¢) and the order function u (o) of an ordinary Dirich-

Jet series () = Zann“s. Before stating the results of the paper
n=1

we shall recall the definitions of these functions and some known
- theorems. '

Let f(s) = Zann_s be an ordinary Dirichlet series which is
neither everywhere divergent nor everywhere convergent. Let for
every inleger r >0 the number 4, denote the abscissa of summa-
" bility of the r'® order, in particular 2, the abscissa of convergence.
Then, as shown by the author ([2], and [3], pp. 99—104),

(1) 0<A A <1 and A—A  =A, —A ., (r=01,2--).

- When we follow M. Riesz and consider summability of arbitrary
order r 2> 0, the abscissa 4_exists as a function of rin the interval
0=<r <Coo. In generalization of the above inequalities the function

" ¢ = A, is a non-increasing continuous convex function with numer-

ical slope < 1 (see [6], pp- 57 and 60, and [8], p. 118). We introduce

“the number 2 (>—oc) as the limit 2 = lim 4. It follows from
r->»w

“the results just mentioned that when r increases from 0 to oo,
then 4. will be either a strictly decreasing function which tends
to Q for r— oo, Or lr will from a certain step ry, i.e. for r=>r,
be constant = Q.

We define now for every number ¢ in the interval £ <o < o0
the number r = ¢ (o) as the greatest lower bound of those values
r'>0 for which 4 ,< ¢. The function r = 9 (¢) is called the summa-
bility fanction of the Dirichlet series. It is equal to 0 for ¢ > 4, and in
the interval 2 <o =< 4; (when we suppose that £ <<4,) itis simply

! This paper is based on notes left by Professor Hararp BoHr. The manuscript
has becn prepared by Dr. ErLing FeLnER. .
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4 Nr.4

the inverse function of ¢ = 4. Hence it follows from the above
results that r = 9 (o) is a continuous convex function which in
the interval 2 <o < 4, is strictly decreasing with.numerical slope

=1, i.e. with a left derivative 9’ (4;—0) < —1 at the point 0 = ;.
Fuarther, if Xr is constant = £ from a certain step r,, then °

y (o) = r, for o — 2; otherwise v (0) > 0o for o — Q.

Contrary to the abscissa of convergence 4;, lhe abscissa 2 has

a simple function theoretical meaning (H. Bour [2], and 3], p. 124;
M.Riesz [7]). Indeed, for every o, >> £, the function f(s) represen-

ted by the series is of finite order with respect 1o ¢ in the halfl *

plane > oy, i.e. there exists a number /=0 such thal
. , 1
(2) flo+it) = O([t)

when | t|— o, uniformly for all o> o,, whereas f(s) is not regular
and of finife order in any half plane o> o, where o, < 2. For
every o> [2 we define the number x () as the greatest lower bound
of those values I =0 for which (2) holds for this value of o.
This function ux (o) is called the order function, or the Lindelof

u-function, of f(s). It is equal to 0 for o> 4,4+ 1 because the -

Dirichlet series is absolulely convergent for ¢> 4,4 1. 1t follows
from the Phragmén-Lindelsf theorem that the function x4 (o) is a
continuous convex function. Thus, denoting by w, (Z4,+1) the
smallest number wilh the property that x (o) = 0 for o= wy, the
function p (o) is (when 2 <o) strictly decreasing in the 1nter\ al
Q2 <o=w, We mention that u () ({2 <, <X o) is also the order
of f(s) in the half plane 6> g, i.e. the greatest lower bound of
those values { >0 for which (2) holds uniformly for all 6> g,.

As to the connection between ¥ (¢) and u (o) it is known (see
[6], pp- 49 and 53) that

() Zue) Sy () +1.

The present paper deals with the problem whether the above

results concerning ithe functions ¢ (o) and x (o) and the connection
between them are the best possible, i. e. whether conversely
for two functions % (¢) and x (o) which have all the properties

mentioned above there exists an ordinary Dirichlet series

(s =Za”n_s with v (¢) as sammability function and u (o) as
order function. No complele answer is obtained, but it is shown

that if we impose on the function x (o) the additional condition
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that it, too, has a numerical slope 2> 1 in the interval in which it is

strictly decreasing, i.e. that (when 2 <w,) we have u "(w,—0)
<—1, then the answer is in the affirmative. In other Words we
shall prove the following '

Main Theorem. Let v (¢) be a conlinuous convex function
defined in an interval ¢>Q(>—0o0) and equal to 0 to the right
of a certain finite abscissa wy, = Q2 and (if o w>$2) such that
¥ (w0, —0) < —1. Further, let /L(O‘) be a con[muous convex function

- defined in the same interval o> Q and equal lo 0 to the right

of a certain finite abscissa w,>Q and (f w > 0) such that

W (w —0)<—1. Fmalh], let

P ()< () Sy (o) +1
for all o> Q.

Then there exisls a Dirichlet series f(s) = >, a,n° which has
the given functions y (o) -and (o) as summabilily function and

order function, respectively.

We remark that as a consequence of the assumplions of the
theorem we have Oy =Wy, <co + 1. The condition 0, = W, 1,
which according to the above results is necessary Whether
1z (co —0) < —1 or not, therefore has not been included in the
lhemem

We do not Lnow whether there exist ordinary Dirichlet series
f(s) = Za n ° for which the order function ,u(a) is not idenlic-

.a]ly zero and does not satisfy the condltlon po(w,—0)<—1.
For the zeta-series with alternating signs

T2y = Syt

itis known that x (o) = 0 for 6 =1 and u (o) = %—a for 0 <0:

The question as to whether u’' (w, —0) <—1 therefore amounts to

. 1 :

-whether p (3) =0 <and hence u (o) = 0 for aZé and u (o) =
1 1

= —o for o §2> i.e. to the Lindeldf hypothesis & <1 + 11) ot

for every ¢> 0.

If we restrict our attention to the summability function v (o),
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we immediately see from the Main Theorem, that the known
results are the best possible, i.e. any continuous convex function
y (o) defined in an interval ¢>> Q(= —o0) and equal o 0 to the
right of a certain finite abscissa w,>Q and (if w,> Q) such
that o’ (co —0)=<—1,is the summablhty function of an ordinary
Dirichlet series. Indeed, we have only to apply the Main Theorem,
choosing x(6) = (o). This result generalizes a result of the
author ([3], pp. 104—110) concerning the abscissae of summability
of integral order, according to which the inequalities (1) are the
best possible.

In the proof of the Main Theorem certain basic examples

play a decisive role. In these examples 2 = —oo (sp lhat we are
dealing with entire functions) and the y-curve as well as the
u-curve are half lines as scon as they have left the real axis, i.e.
in the intervals —oo <o <, and —o0 <o <, respectively. It
appears immediately from the above inequalities that these half
lines must be parallel and that the g-line must lie above or coin-
cide with the p-line. Further, their distance measured on a vertical

line must be < 1. Our basic examples correspond to those extreme .

cases where the two half lines coincide or have the verlical
distance 1. In the special case where the numerical slope a of the
half lines has its minimum value « = 1 examples have already been
constructed by the author ([4], pp. 10—14, and [5], pp. 713—720).

Generalizing these examples we construct in § 2 and § 3 examples

for an arbitrary o> 1. (The reader need not know the examples
for a = 1.)
In § 4 we construct from the extreme cases in §2 and $ 3 all

intermediate cases where still bolth the w-curve and the u-curve -

are half lines to the left of w,, and w,, respectively. The Dirichlet

series obtained in § 4 are to serve as our “bricks” in the final
construction in § 6 in which a Dirichlet series is formed by linear
combination of denumerably many such series. § 5 is inserted
for the purpose of giving two lemmas concerning the summability -
function and the order function of a Dirichlet series obtained by -

linear combination of denumerably many Dirichlet series.
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§ 2. Construction, for an arbitrary a=>1, of a Dirichlet

0 for ¢ >0
series with tp(o‘) = ‘u,(o‘) = { — g for ‘;?0

Let py, ps, pg,- -
satisfy the condition

1

be a sequence of positive integers which

Pryi=(m+1)p,
for all m and let
| dp = P,
where for brevity’s sake we have put é =0 (0<8=<1). We con-

sider the Dirichlet series

200, = (o )T 2 (o o) (o b 2dp)

1

—(") Gt

@

( >(pm+2d )y —
741 (0.

Here we have used the notation Ad a, for the m" dlffelence with
span d, i.e.

. m m m(m
Ad U, = up—<1>up+d+<2>”p+2d— + (=1 (m) Up t md

For such differences we shall use the known 1nequallty (see for
mstance H.Bonr [4], p. 15)

@ A2 s M5+ 1] st h—1]d ot

which is valid for d> 0, p>0,¢6-+-h>0,and h=0,1,2,---, m.
The above series has previously been considered by the author

- (18], pp.94—99), and it was shown that its abscissae of summa-
bility 4, of integral order h are determined by

A= —h6 (h=0,1,2--)

Thus £ =—o00, and ¢ (— h6) = h for h=10,1,2,---. Since y (o)
is convex, this implies that v (¢)=— ao for o= O, and hence

ek (=" <Z:> (P + md, )™
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p (o) = 0 for ¢ 0. Thus it only remains to prove that u (o) =
—ao for ¢ £0, which implies that x(¢) = 0 for ¢ > 0. _

Since (o) =y (o) it is enough to show that u(6) <—ac for
¢ < 0. Further, in order to prove this latter relation it suffices to
prove that

(3) f(s) = 0([t]" for

where h runs through the numbers 0,1,2,--- and ¢> 0 is arbi-
trary. Indeed, the inequality g (—h6-+¢) <h together with the
conlinuily of wu (o) implies that x(—h8)<h, and this lalter in-
equality for h = 0,1,2,--- together with the convexity of u (o)
implies that u (a)<—aa for ail ¢<0. ’

In the proof of (3) we shall use the fact that ZQm € s
convergent for every £>0. This fact, however, follows at once
from (1) in view of which

oc=—hl+¢,

2m+1 —&

1

T"H -0 for m— oo,
25 P

We write

h o
() = 2 A3 (p") + 2,47 (5.
m=1 m=h-+1
h
where the sum f; (s) :ZAZ;(p;s) consists only of a finite num-
m=1

ber of terms q, n_s and therefore is bounded on every line o = ¢
0

In the series Sjél (P *) we shall apply the above inequality (2)

-—h

to each of the lelms Adm(pm »m=h+1, h+2,-.--. We obtain
for m> h and s on the line ¢ =—h0+ ¢ (where o+ h>0)
|4 (e =2 | s] s+ 1| |s+h—L|d,p," "<
2 sl s 1] |sEh—1]|2mp ’1(1*"”’16*8*’1:

27" s||s+1]--- |s+h—1|2"lpm .

Since Z'Qmpm‘S is convergent we see that ZA (pm) converges
m=h

absolutely for ¢ =—h0 -+ ¢ and that its sum f2 (s) satisfies the
relation f,(s) = O (|{|"). Finally, since f(s) = f; (s) + f, (s), we see
that £(s) = 0(|¢|") for o =—hO-+¢, as we had to prove.
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0 for ¢>

[~ Q=

—ao for ¢ <0 <

§ 3. Construction, for an arbitrary a>1, of a Dirichlet
1—ao for ¢<

series with
v (o) = {
Za

0 for ¢>0
In view of the general properties of the summablhty function
-and the order function it suffices lo show that the constructed
‘series has the right order function and the abscissa of convergence
A = 0. Thus our task is to construct a Dirichlet series with

4, = 0 and 2 =—oc0 and with the given function yx (o) as order
- function.

and u(0)={

We start again with a sequence of positive integers p, <Py <
p; <+ - - which increase rapldly We assume here that they increase
50 lapldly that ZQ"’ ¢ converges for every >0 and so that

oD
2mp—8
m=p+1 ™

M—1 L

= 0(py,) and 2 Pt

= o (p3yp)
- for M— o0 and every ¢>0 and L> 0. Next, we choose integers

© 1, and d,, of the orders of magnitude pa and p2—1 respectively.
It will be convenient to choose

=[pp]+1 and d, = [p® .

_Further, we put

flll = npm

and choose the numbers ¢ _ of a slighily smaller order of magni-
tude than the p,. We set

- B [ P ] ‘
D™= (m+ 1)
We remark that the p, from the beginning must be chosen so
that certain inequalities which on account of the above demands
are fulfilled for large m will be fulfilled for all m. The inequalities
to which we refer (we shall not write them out explicitly) are
those which express that the term groups given by the braces
{:+}, in the series 1mmedlate1y below do not overlap.
Our Dlllchlet series f(s) =
term groups {-+'} (m=

F 1% now constructed from
) the m™ term group of ‘which

an

’-"
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consists of altogether (g, 1) (m+1) terms ann_s. These terms
are distributed in ¢_--1 smaller term groups [-- ]y, (»=0,1,
2,-++,q,) each of which apart from a complex sign is simply an
m™ difference (with span d_) and thus contains m-+1 terms

ann_s. More specifically, our series is defined in the following way:

f(s) =n_§1ann”3 =2 -}m:Z ﬁ{

m=1 m=1vy=0

meaning
[T = (L b v (m+ D d )™ AR (1 4y (m+ 1) dy) " =
<lm+ y (m 1) dm)itw ((Im—}— y{(m-+1) dm)—s__ (’Il> (lm+ v(m+1)d,+d,

()" (::) (L, v(m+1)d,+ mdm)*s>.

We shall now prove that this series Zann_s possesses all the

desired properties. We divide the proof into three steps.

1°. We prove f{irst that our series has the abscissa of conver-

gence 4y = 0. Since |a, | = [l{=1 for n=1,(m=1,2,---)
we see that the series is divergent at the point s = 0 and it is
consequently plain that 4, > 0. In order to show that 4,<0, i.e.
that the series is convergent for ¢>>0, we first show that our
series is absolutely convergent for ¢>>0 when we preserve the
square brackets (but not the braces). On account of a later appli-
cation we shall even show that under preservation of the square
brackets the series is absolutely convergent in the whole plane.
We do this by showing the absolule convergence in the half

plane 6 > ¢, = jj—l for h = 0,1,2,---. We write
oc h @
F&) =2 du=20 It 2,
m=1 m=1 m=h+1

h
where the first sum > {-- -} only contains a finite number of
m=1

square brackets [--

oC

“]m,». In order to prove that the second sum

{+" ) is absolutely convergent when we keep the square
m=h+41

Lo

’0’],2‘...

Nr.4 11
brackets (but not the braces) we es%é/iﬁwate each of the ¢, +1
brackets [---], , in the term {---}  with index m>h by the
inequality (2), § 2. For m>h and s in the half plane 0> a,

(where a fortiori o+ 1 > 0) we get

1 Tm | = LA™ (v (1) )
< 2" sl 1] s 1 | dl Lo

Hence the sum of the absolute values of the qm+ 1 brackets
[+ Jmyin {---} is estimated by

I N

2L T S gt D2 T sl [s 1] [s 4 n—1]dlr o
y="0
and consequently, since g, <p, . dm§pf‘n_1, and [, > p% by
Gn .

(1) %I[---]m,vléf"lsllw1]---|s+h—1

om —ac-—h+1
2% po s

where o> 0, and m>h. From this inequality we immediately

infer the stated absolute convergence in the half plane o> 0, =
—h-+1 . . m —ao—h+1 - :
———; in fact, the series 22 P 1s convergent since

the exponent —ao—~h+ 1 is smaller than —ao,—h -+ 1 = 0. Thaus,

in order to show that the series Zann_s itself (i.e. the series
without any brackets whatsoever) is convergent for o> 0, we
only have to show that the partial sums of [---], , for ¢ >0
tend to 0 for m— co. That this is the case is, however, obvious

since the sum of the absolute values of all the terms ann_s in
[-+]my fOr 0>0is

/»‘m
< \ '/m [0 — 9m[~0 - gin —ad
== J m m <2 Pm >
=0 v

which tends to 0 for m— co.
2°. Next, we shall show that 2 = —ocand x(¢)<1—ac for

e
aéa. We first remark that it will suffice to show that f(s) is

—h+1
regular for o> g, = —‘-i—, where h runs through the numbers

, and that @ NS

f(s) = O(Il‘]h) for o> o,+ .
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In fact, this will immediately imply that £ = —oc and
wlo)<h=1—ag, for h=012---,
and next, by help of the convexity of u (o) we get
1
w(e)<1—oao for all aga.

For o> ¢, we write again

(s)~7\

‘ :
ST {1
lTl"l—,—z’+1 m

. .
The first saum Z{ .-% contains only a finite number of terms

fm
m=1
a,n ' and is therefore an entire function fi (s) bounded in every

half plane ¢ > gy. In the second sum IZ’
m=h+1

of the terms {-+ Jplm=h+1,h+2-) by the above inequal-
ity (1). For m> h and s in the half plane o> o)+ ¢ we get

Qu
|{ ) hn'i'z‘;l [ ' '1"1:7’|7<—"-'2—h
y=

9 s||s+ 1] - |s+h—1]2"p %,

F(s3) =m§1<- Yt M+Z\ Y

. we estimate each .

|SHS+1“"lS—’.—h—l‘QmP;-'aa—h+1<
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we consider the behaviour of f(s) at the points s, = o, it,; on
the line ¢ = g;, where {, are the previously introduced ordinates
ty = @p;,> and we shall (even) prove that for sufficiently large M

@) JIORIEN e

For this purpese we first determine a positive integer h so that
—h+1 1 .

oy, = % < 0y <a-. For M > h we write
M—1

By (spp) + Ty (sp) + Ry (53,

m=M + 1

and we shall prove that both the “beginning” B,,(s,,) and the

Ty . K1} . 1 —ao i I
remainder” Ry, (s,,) for M- oo are equal to o(f;; *”) while

the M™ term T,(s,) for sufficiently large M is numerically

larger than 2457 %%, In this way the inequality (2) will be proved..
(1) For the “beginning” B,,(s,,) we use a rough estimate.

" The numerical value of each of its coefficients a, + 01s a binomial

coeflicient (T) with m< M —1 and hence it is < 2™~ Thus

M -1

| By, (syp) |< 21‘1*12 o,

n=1
where

IV

M—1= by +‘qM—1 Mdy +M—Ddy =21,

Since ZQ"’p;ag is convergent we infer that the infinite series

) : for M sufficiently large. Hence, sinc <1,
Z{ . is uniformly convergent in every bounded part of the ciently farge. ience, since g,
m=h-+1 2 Iy
half plane 6> o, + ¢. Cousequenﬂy, since ts> 0 1s arl.)ltrary, the By (s | < 9M—1 Zn—a,, = 0 (2M—1] }{f{) 0 (2M—1 pa(l—ao))
function f, (s) represented by this series is regular in the half n=1 ‘

)

plane o > 0,; furthermore, it satisfies for ¢, & <o < (say) 2 (and and consequently, since 1 — ag, > 0,

hence of course also in the whole half plane o> g, +¢) tlie
inequality B, (sy) = 0 (P37 %) = o (£5; 99).

S
¢

h
f2()=0(t]).
(2) For the “remainder” R,,(s;,) we can apply the inequality
(1) since all occurring m are > M > h and o,>¢,. We gel, since
—acy,—h+1 <0,

Since f(s) is obtained as the sum of f; (s) and f (s), we see that
f(s) is regular for o> o, and equal to O (Itl ) for o> o, ¢ as
we had to prove.

. mo—aoy—h+1 __
3°. We come now to the salient point, namely the proof that Jsyth—1 ‘=Z\r 2P =

TRyesa) | = 27 syl syt 1 -

. - 1 oy —ht 1y — o, — -
w(o) Z1—oo for cr<1a. Let o, be an arbilrary abscissa <a, Ot o(py*» "t =0 (tZVI) (£,00 1+ 1y 0 (147799
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(3) We shall finally prove that the M*™ term T,,(s,,) satisfies

i 3 1‘[ . _
'JM,y — I'lt‘" (I‘ o ( >(I‘ + d\/l) Su (_ 1)M (%) (r+ MdZVI) su>.
the inequality ‘ : _ ,

- The amplitudes of the single terms

ritﬂ,(_l)/l<M>( +2d )—(Go+n.,) A=0,1,2,---,M)

<o

| Ty (sp) | = 215779

for all sufficiently large M. The reason for the validity of this
inequality is that all the terms a,n ° occurring in Ty, (sy,)
(and there are rather many of them on account of the choice.
of the q,), namely the (q,,+1) (M+1) terms distributed in

are given by

Ad
_tMlog(r_l—Zd]\/[)—f_tMlogl'_‘"An =—tMlog(1 -+ Dl>+ },;77; ==

the gq,,+ 1 brackets [-- -]y, with M+ 1 terms in each bracket, : dy,
’ . - . Y g
for sufficiently large M ‘“‘almost point in the same direction™; —Zth 08
more precisely: these terms all lie in the angle —§<v<§ r ’?“dj
’ r

We postpone the verification of this fact for a moment and

shall first show that when once this property is established we can
immediately complete the proof. In fact, we may argue as follows.
The sum of the hinomial coefficients occurring in each of the
g+ 1 square brackets is equal to 2™ and every n occurring in
the sum belongs to the interval I,<n <1/, and a fortiori to
the interval I,,<n<21, when M is large Thus, for sufficiently !
large M we have

When we take account of the fact that 0 <A< M and 0 =y < qy,

and insert the known expressions for the dogr T Gy We see at
once that

by Ay
r

M
—xn and ——0 for M—>oc
T

independently of » and A. In view of this, the above for-
mula for the amplitudes togéther with the relation
lima—? log (1+x) = 1
s R Ty, (550 = cos 5 (g, Minn % > )
| (NI)I ( M) (qI\I 1)2‘M\4. e Z .. =0 .
1, 2n=21, -yields the result that the amplitudes of the single terms in
Ty (syp) tend to 0 for M—oco. In particular, these amplitudes

] Ml o M pM 11 — g,
3@t DRI 5 M+ 1y 22Pm

2M tM 1—aoy,
I

“lie in the angle—g<v<§ for M sufficientlly large.
1 2
8 (M+1)°

M
2 1—ao,

1
S(M+ 1) M

Thus, all our statements concerning f(s) =Zann'"s are proved.

and this last quantity is larger than 2 ¢}, “% for large M.

§ 4. Our “bricks™.
It remains to prove the decisive tact that all terms a,n " in

We shall now, for an arbitrary a > 1, construct a class of
~Dirichlet series for which-again the w-curve and u-curve when
hey have left the real axis are half lines with numerical slope a,
ut where the vertical distance from the y-half-line to the y-half-
ne no longer assumes just one of its extreme values 0 or 1, but
as an arbitrary value between these two limits. At the same
ime we shall perform @ trivial translation in the direction of
he real axis. For the 'sake of convenience, we characterize a
unction of ¢ which is 0 for w < ¢ <00 and equal to —a(c— w)

Ty, (sp,) lie in the angle —g< U<§ for M sufficiently large. That :

this is the case is of course due to our choice of the complex -
signs of the occurring coefficients a,+ 0. We consider an arbi-.
trary one of the g,,+ 1 brackets [-- -]y,

(e v M+ 1) dy VA (14 v (M4 1) dyy) 75 (0= 10,1,2, -, q,).

Denoting the number {,,+ v (M+ 1)d,, by r = r(M,») we get
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for —o¢ <o <w by the symbol {w;a}. We shall prove the ~
following

Theorem For arblharJ w, a, and d such that a>1 and -

"Nr.4 17

(o) = py (o) for o< d since u, () > u, (¢). (We have used here
- the fact that the sum of two functions of { which are both
0(|¢[™ is again O(|t|) while the sum is not O (|¢[") if one of

0= d< there exisls a Dirichlet series f(s) Za n ° with the . the functions is O (| tl ) and the other is not.)

summablllty function {w; o} and the order function {w-+ d; a}.

In the proof we may evidently assume that w = 0. Also, we : § 5. Two lemmas.

In this section we shall prove two lemmas concerning summa-
- bility and order of magnitude of Dirichlet series which are formed
by linear combination of infinitely many Dirichlet series.
Before passing to these theorems we start with the following

1 . -
may assume thal 0 << d < P We know that there exist iwo Dirichlet
series f, (s) = an ’ and f,(s) =D’ a'n”", where the y- and -
p-functions of the first series are given by -

v = =1{0; o} Remark. Let

fo(s)=2"a0n" fi() =2 aPn, .

while the y- and u-functions of the second series are given by
Yo =1{0;a) and u,= {E; a}. - be a sequence of Dirichlet series which we assume to be all abso-
. lulely convergent (at least) for o >a,. We assert that it is possible

We now replace s by s+ &——d in f;(s), i.e. we consider instead to determine a sequence of positive numbers E,, E,, -+ so that the

of f; (s) the function f;(s) = f, <s+%—d) =Zan' %, The - and ; nfinite series ® oy
: : o™
p-functions of f; (s) are given by M) N;;sNal , NZO Nz
vy = Id_l; a} and  uy, = {d; a}. are convergent for every sequence 50', g, with
04

We shall now show that the series

[) =)+ fi() =2 (d,+ayn* =2 an

will satisly our demands.

First, £ = —oc. Secondly, the summability fanction v (¢) i
equal to 0 for ¢ >0 since both > a,n * and 2 a7 * are con
vergent for 6> 0, and v (¢) = ®, () for every negative ¢ sinc
¥, (0) > w5 (c). (We have used here the fact that the sum of tw
series of constant terms both of which are summable of the @
order is again a series summable of the rt® order, while the sum
of lwo series of which the one series is summable of the rf
order and the olher is not, is a series which is not summable o
the r™" order.) Thirdly, the order function u (o) is equal to 0 fo
oz d since boih g (6) and py3(e) are equal to 0 here, an

0<egy<E,, 0<eg<E,- -

and that farther, when the sums of these infinile series are denoted
by Ay, Ay, -+, the series

2 ‘ gfo()+efi()+---
_and the Dirichlel series (obtained by formal calculation from (2))

3) 2 A0

will be absolutely convergen! for o 2 o, and have the same sum.
Proof. We put

oD ’ o0
ng;l a(:l)) I = KO, n;' a(I}) , n %= Klf e

Dan. Mat. Fys.Medd. 27, no.4.
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and choose the positive numbers E,, E,,--- so that the series -
ZEH K, is convergent. Then

y 81\v

N,n

(6) 0<eg<<e, O0<<egyg<ley,---

will have its r'" abscissa of summabilitg equal to the number A.

(N) |n— (The series (5) converge and the two series in (4) are absolutely

C<oc for oo,

<o {hat convergent for ¢ >.A-} r+ 2 with the same sum G (s). This
. " " follows immediately from the above remark since ey << L for
Senln@ =3 ey Sl = 5wt S el = 34,0, N=L2:-)

Proof. We have to prove that we can choose the positive
numbers ey << E,, so that the series G(s) =ZBH n~° under the
assumption (6) is summable of the r order for o> /4, but not
summable of the r® order for any o <<A. We divide the proof
into two parts.

. In this part we choose the positive numbers e, < E,, so
that the series G (s) ZB n * under the assumption (6) is sum-
mable of the rt® order for ¢ > 4. In order to obtain this result,
it is obviously enough to secure that the series

where all occurring series are absolutely convergent. (o > 0,). It
is plain that the conclusion slill holds (with the same E ’s) when .
we omit the assumption 0 <&, << E, for finitely many indices N.

Lemma 1. Lef
90 () =200 075, g,(s) =200 0%, gy (s) =2 b0, -

be a sequence of Dirichlet series (each of which possesses a half
plane of convergence). Denoting by A(N) the r'® abscissa of summa-

bility of the function g () (N=0,1,2,---) we assume that there
‘exists a namber r (= 0) such .that

G (8) =191 () + 295 () + - =2 BEn~

- becomes summable of the r'® order at the point s = /; for when
~-both of the series g, (s) =Z bg)) n* and G*(s) :Z B: n

- summable of the r*P order for ¢ > .1, then their sum G(s) =
ZBnn_s will have the same property. In the proof we shall
suppose that /4 = 0. This is of course no real limitalion since
" when 4+ 0 we may replace s by s+ /. Since the abscissae of
summability A(rl), AP ... are all smaller than 4, the series

Zbg), be), .-~ are all summable of the r® order. We have

AN < 4O = A (N=1,2,---).

It follows immediately that the w-curve of all the Dirichlet series for:
6>/ must lie under or on the curve {A-+r;1} so that all the
Dirichlet series musl be absolutely convergent for o> A-+r+41, in
particular for 6 >A+r+ 2.

Then there exists a sequence of positive numbers e, <<E,, e, << EZ, .
lwhere Ey(N=0,1,2,- ) are oblained from the above remark’
applied to the functions gy(s) (N=0,1,2,---) and A+ r+ 2’

'(7) B: :NZ{SN beN) (convergent for &y << E,).
instead of o,] such that the Dirichlel series

In our proof we make use of the fact (see [6], pp.21—22) that a

series D '@, is summable of a given order r if and only il a
no1

1) G =g ()T e gD+ 9.+ =2 B, n ",

4 .
where certain linear expressmn S, S_'lc,, a, in the first n terms of the
v=1
(5) B = bf?)-}- g bg.ll)_l_ & bf)—}- R series (with LOCfﬁCIen(S k, which depend not only on » but also
' on n and r) tends to a limit, the summability value of the series,
for every sequence &, ¢, - - such that for n—oc. We denole the expression S for the series Zbg),

2*
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the number 4 is > 0, say = 1 (since the expression just mentioned

is only valid when 4_> 0). This is of course no real limitation since

when 4 41 we may replace s by s— 4, where A4+ =1. As to

- this expression of 4, by the coefficients of the series we shall only

~use the following fact (see [6], p. 45 and [3], p. 86 and [1],
. n

be’, -+ by Tfll), Tff), -+ +, respectively, and the expression S,
for the series ZB; by 7; Then from (7) it follows that

®) L T alP+alP+

Here, the quantity 79 will for each N=1,2,--- tend to a limit _ . . i . . + .

0™ the summabiligy value of the series Zng)’ when 11— 00. pp. 70—71). There exists a linear expression S, :éik,, a, in the
n first n coefficients of the series (with coefficients k,, which depend

not only on » but also on n and r) such that the necessary and

sufficient condition in order that the seriesz a, = * have its r®

abscissa of summability 4,>1 is that

Hence there exist constants K, such that
1AT) pmasy ¢ a4 e
| TN < Ky (n=1,2,-+).

T . v - ¢ -
We now choose the positive numbers ey << Ey so that S, is not equal to O (7% for any 0> 0, or equivalently
» S, is not equal to 0(11_6) for any 6 > 0.
NZ16N Ky

:{The expression S, here is not, of course, the same as the expres-

converges; then for every choice of the numbers g, in the intervals sion S_ under 1°.)
- n .

0 < gy < ey the series (8) will be uniformly convergent in n since
it is majorized by ZeNKN. Since each of the terms g Tle)
tends to a limit for n— oo (namely &y U™y it follows that the
sum T: of the series will also tend to a limit for n— oo (namely
U* =g UV 4+ e, UP L ...), as we had to prove.

2° In this part we choose the positive numbers e, << Ey so
that the series G (s) =Z B, n~* under the assumption (8) is not
summable of the rt® order for any o< A, i.e. so that the r'®
abscissa of summability is > A. If the series g, (s) = b s
(with the rth abscissa of summability /) is not summable of the
r't order at the point s =/ we can use the numbers ey found
ander 1°. In fact, we saw that G¥ (s) :ZB: n—° under the assump-
tion (6) is summable of the r™ order at the point s =4 so that
the series Z‘Bn n %, which arises by termwise addition of > b;o) n*®

- We shall denote the expressions S, corresponding to the series
0 — — s .
bel)n s, > b0 n~s, ... by 7 TI(IU,---, respectively, and the

n
expression S, for the series ZBH n~* by T,. Since by assumption
the series >, b % has ils r* abscissa of summability =4 =1
we know that to any given 6> 0 there exist infinitely many
values of n for which

I T,ﬁo) | > n?,

Since each of the series beLN)nﬁs (N=1,2,---) has its rth

K n
abscissa of summability AﬁN) <4 =1 there exists for every
N=1,2,--- a number AN> 0 such that

189 — o (),
and ZB; %, cannot be summable of the r'* order at the point
s =/ and therefore must have its r'® abscissa of summability
> /. However, we have not made this special assumption con-
cerning the series Zbio) n~® and as a matter of fact we could
not make it in view of the applications. Hence we must proceed
differently, and we shall use the known expression for the r
abscissa of summability 4_of a Dirichlet seriesz a, " ° by means
of the coefficients of the series. In the proof we shall assume that

It suffices to show that T, for a suitable choice of the positive

constants ey, << F; ander the assumption (6) for every 6 > 0 satis-

fles the inequality -
1

] Tn| > gn 4

':for infinitely many values of n. This is equivalent to saying that

for some sequence ‘6, J,, -+ of positive numbers which tends
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to 0 there must exist a corresponding sequence of positive integers

1 s
. . is convergent with s < = 2 e
ny < ny<--- such that the inequality g um <z n, . Then for every choice of ¢, ¢,,

' 1 s in the 1ntervals 0<e <H,O0<egy<e,y(N=2,3,---) we have,
| T,, Zg iy " on account of (9),

is satisfled for all m =1,2,.--. As d-sequence we shall here use : I Tn2|§| Tr(l(:)l‘Eﬂ T,ﬁ?l~2 62N|k2N{>

an arbitrary sequence of positive numbers which tends to 0 and s s 1 s h s

satisfies the condilions ng t—ony 2—5112_ =, O

0= 4y, d3=min (AI’A‘_’.): X
- ‘ m™ siep. We choose an integer n_>n, ,so that

We shall now indicate positive numbers ey, << E,, with the desired

properties. We proceed in steps.

First step. We choose a positive integer n, so that

| O] > s

o
“and also

E(| T

Tm

P | T L .. m—1 1. 5,
| TO|> 5y, FE T B | TP g™

For 1hi th ,[(1) 7 . The latter inequality may be obtained since 0, Zmin(dy,---,4, ).
or this n = n, the expressions

n’?

- assume certain values,

For this n = n_, the expressions 70, 7+ ... i
say ki, k.. We choose the posilive numbers e, < E,, . m pressions T.", Ty ’ a_ss.ume certain
e < E. - so that : values, say k... k, .. . We choose the positive numbers
12 2 em<Em,em'm+1<Em+1,---so that

@ .
N;%lenvl o
ZIemN l kle
N=m .

. . 1 .
is convergent wilth sum <5mny %, On the analogy of (8) we have *

- . 1 _ 4 .
~ t — m. Ay e e
(9 T, = T;O) g Tl(ll) & T1(12) - (for 0 <y < Ey). is convergent with sum < 3 Then for every choice of ¢, &,,

in the intervals 0<31<E1,-- 0<e, | <E

m—1?

0 <egpy e,y
(N=m,m—+1,--+) we have, on ‘wcount ot 9),

Hence, for every choice of ¢, &, - in the intervals 0 <g <Tey, ©
0 <Tegy<Tegq, - - we have

‘ w ‘
: ‘ ST Y e 1 IT 2| TO|— (B TP+ 4 Ep AT 0D D e | >
IFnll zl Tgf)‘_;\g;aNl 1“[(111\)|> ny 1_N2161N| klN_' >§”1 1 T n ( 1l 4n, m—11‘n, ) N=mle le

1 1 1 _
pde Lpman Loa 1, e,

Second step. We choose an integer n, > n, so that ™ 3Mm " 3
N (1 —& Lo .
[T | > % and also Ey|T§ )[< ny "2 It appears from the above that the numbers

The latter inequality may be obtained since §, < A;. For this ey = minde, .-, ennr (N=1,2,--1)

n = n, the expressions T1(12)’ Tflg), -+ - assume certain values, say '
g L [e]
gy, Jogg, - - - . We choose the positive numbers ey, < Ey, €53 < Ej, - - - may be used to satisfy our demands under 2°.

so that Finally, for edch N we choose the smaller one of the two

numbers e,, found-ander 1° and 2° as our final ey- These ey, satisfy
the demands in Lemma 1. This completes the proof of Lemma 1.

0

o eenllaxl
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Lemma 2. Let

hy (8) :Z cflo) n %, h(s) =Z cz(ll) n % hy(s) :Z cf) n’s---

Nr. 4

n
o

H(s) = 0(|t|**%

for every ¢ >0 but not for any 6 < 0. We divide the proof into

two parts.
be a sequence of Dirichlet series (each of which possesses a half

plane of convergence). We assume that all the functions hy (s) are
regular and of finite order in a certain half plane ¢ > o,; further,
denoting their orders of magnitude in this half plane by uy, we
assume that

1°. In this part we choose’the positive numbers ey <<Ey so
that the function H (s) under tie assumption (12) will be regular
in the half plane ¢ > g, and in this'half plane equal to O (|¢]#*?)
for every 6> 0. :

In the proof we shall use only that pny=pfor N=0,1,2,---
and not that uy <<pfor N=1,2,---. Let §;,,, - - - be a sequence
of positive numbers which tends 1o 0. On account of the assump-
tions there exist positive constants K, n(m=12,---;N=0,1,2,--+)
such that

by <ty =p for N=1,2,---.

It follows immediately that the w-curves of the Dirichlet series for
o >6, must lic under or on the curve {cy+ u; 1} so that all the
Dirichlet series musi be absolutely convergent for o > oy+u-+1, in
particular for ¢ Zo,+ u+ 2.

Then there exists a sequence of positive numbers e, <<E, e, <<Eg,- - -
[where Eyy(N=0,1,2,---) are obtained from the previous remark

[hy O Ky ([ 1DF % for >0,

We choose the constants e, << E, so that

applied to the functions hy(s) (N=0,1,2,---) and o,+ p+2 i
instead of o, such thal the function N;;lneN Kon
(10)  H(s) = ho () + &, hy (s) + ey iy () + -+ - :Z c,n s, is convergent for every m =1,2,---. This may be done by sub-

jecting the e, to the following demands (only in a finite number

where for each ey)

11 C =D o (Mg & ... 1 .1
(11) n = Gy T E T e elK11<£, esz<Z’ 631(13<%’...
for every sequence e, &, - such that 1 1
82K22<Z» 93K23<§;"‘
(12) 0<eg <<e, 0<eg<ey, - )
. . . . ey Koy < s
will be reqular in the half plane 6> 0, and in this half plane 8

have the order of magnitude . (The series (11) converges and
the two series in (10) are absolutely convergent for ¢ > oy u+2
with the same sum H (s). This follows immediately from the
previous remark since ey, <E, for N=1,2,---.) :

Proof. We have to prove that we can choose the positive
numbers e, < Ey so that the function '

Th‘en we have under assumption (12)

OI= (Th O [+ e[ A D+ F ey [y )+ (el Ry () |-

A

A+ 1>“+5m+<§’ ey KmN)(l {4 1y e
H(s) = hy (s)+ &, hy ($)+ 5 by (s) + - - - ‘ : N=m

' . . . (A (JH A+ DET for 6> 0y,
under the assumption (12) will be regular in the half plane o > g, - : .

and in this half plane satisfy the relation ‘where 4, and 4, are constants.
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From this follows our above statement concerning the order of

magnitade of H(s). In order to see that H (s) is regular for o > g,
we remark that the series

ho(s)+ e hy () +e,hy(s)+---

in the half strip ¢>6,,|t|< T, where T is any fixed positive
number, will be majorized by the series ‘

(Km ‘I‘VZ en K1N> (T+ 1)#+%
N=1

so that it is uniformly convergent in this half strip.

2°. In this part we choose the posilive numbers ey < E,; so
that H (s) under the assumption (12) is not equal to O(|t|“_6)
in the half plane o> ¢, for any J >0, or, in other words, that

H(s) is not equal to o(|#[*~% in the half plane o> o, for any

6>0. Thus it suffices to show’ that to every >0 there exist
points s = o+ if with ¢ > ¢, and |¢| arbitrarily large such that

|H@|>5ltp

We do this by showing that for a certain sequence of positive -

numbers d,, d,, - - - which tends to 0 there exists a corresponding
sequence s; = o, + ily, $3 = 05+ ily, - - with 0, > ¢y and | ¢, |— oo
so that 1
—0
|H(sm)|>§[fm[/‘ » for o >aqy.

On account of the assumptions we know that lo every hy, (s),
N =1,2,--- there exists a positive number 4, such that

fhy ()| =0 (|t/#=4%) for o> 0.

We now choose an arbitrary sequence of positive numbers §,, d,, - -
which tends to 0 and satisfies the conditions

8y Ay, 8y < min(Ay, Ay), .

Our task is to choose the positive numbers e, < E,; in such a
way that it is possible under the assumption (12) to find complex
numbers s, corresponding to the numbers §,, with the above-
mentioned properties. We shall do this in a sequence of steps.

Nr. 4 27

First step. We choose a complex number s; = o, -+ if, with
01> 0y, || > 1 so that ‘ '
N

C/) I hy (sy) |> I b IM_(SI'

At the point =5, the functions h, (s), h, (s), - - - assume certain

- values kyy, ki, -+ . We choose the positive constants e, < E;,
ey << Eg, -+ so that

[}
N‘;EIN ky |

. . 1 .
is convergent with sum < [¢ ["1=% Then for 0 < En < e
(N=1,2,--+) we have -

Z : 1 -
[H ()| 2 ko ()| —2 g [Ty | = 5114

Second step. We choose s, = o, + it, wilh o, > g,

ty| > 2 so that
‘ho (s2) i = | ty [“—-3_62
and at the same time
E[hy (s)] <% |ty l,u—62_
The latter inequality. may be obtained s‘ince 8, < 4. At the

point s == s, the functions h, (s), by (s), - -+ assume certain values
kg, kgg,- - -. We choose the positive numbers ey, < E,, €55 << E5,- - -

- 80 that

[ra]
AgzezN | ko |

. : 1 _ '
-is convergent with sum < 3 |, [“~%. Then for 0 <& < Ej,

0<ey<eyy(N=2, 3{,“; -+) we have

| H (s2) | > | hy (sp) | — E; | hy (s5) I‘;{ZB%N | kyn | >

u—s, 1 oy Xy s, _ 1 ju—s
|t 2”5“2!“ Zﬁﬁltzw 2"—‘5“21“ %

m™ step. We choose s,, = o, +it, with 6, >0, and |t | >m

80 that

] hO (Sm) | > | fm IMA(SM
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and at the same time

. 1 -3
E1 ‘ h] (.S‘m) [ + E2 l h? (Sm) l _{A R + ]j,m—l t hm—l (Sm) I < g[ fm|u ™
min(dy,- -, 4,,_1).
- assume certain
mmi1 - Wechoose posiLjve conslants e, << E_
- so that

The latter inequality may be oblained since §, <
At the point s, the functions h,, (s), A, (s),"
values k .k

e <EL 10

m,m+1

oc
N;:nemN | kle

. 1 _
is convergent with sum < gl t |“ 9. Then for 0 <& < Ey,---,

0<e, <E, ,0<ey<<e,(N=m,m+1, -+) we have

lH(S )l>ih[)(s )[_(Ellhl(s )I+ +Em~1lhm——](sm)l)_

— | 5,
Z;mmN‘kle>[tm|’u Ls.,.___ lt llu 6,"_— lt \‘u m_gltmlu .

It appears from the ahove that the numbers

ey (N=1,2,--4)

may be used in order to satisfy our demands under 2°.

Finally, for each N we choose the smaller one of the two
numbers ey found under 1° and 2° as our final ey, These ey
satisfy the demands in Lemma 2. This completes the proof of
Lemma 2.

ey = min{e n, -

§ 6. Proof of the Main Theorem.

We are now in a position to prove the Main Theorem stated
in § 1. Since the function f(s) = 0 has o, = v, = 0 =-—0o0
we need only consider the following three cases: (a) w, = w, =
R>—oc0, (Hw,>w, =0>—cc, and the “general” case (y)
Wy >co >0 > —co.

As an example of the special case (a) we can obviously use

the series

L

Ps—0Q+1)=>n"

In fact, the series is absolutely convergent for o>, and the
function has a pole al s = Q.
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The “intermediate” case (f) will be treated at the end of this
section by specializing, and slightly modlfymg, the construction
used in the “‘general” case (y).

Let us therefore assume for the present thatw, 2> w,, > Q >—o0.
In the main, our Dirichlet series ZA °is comtrucled by linear
combination of infinitely many of the “bricks” from § 4, i.e. by
linear combination of Dirichlet series whose summability function
and order function have the form {w;; a} and {®,; a} with common

1. . . .
=1 and O§a)2—w1§a (viz. with the vertical distance from

the y-half-line to the g-half-line 2> 0 and < 1). This construction,
however, requires some caution because we have to build up at
the same time two convex curves and because each of these
curves may conlain infinitely many vertices, i. e. points with
different tangents from the right and the left.

We call a pair (TY, T'”) of parallel (perhaps c011101d1ng)
straight lines TV and T a’pair of supporling lines (in a general-
ized sense) of our w-curve and our w-curve when one of the
lines 7% and T* is a proper supporting line of the corresponding
curvé al a point outside the real axis while the other line is
defined by the upper position of all lines with the given slope
which lie under the other curve. If the laller line contains at least
one point of the curve in quesiion, this line is of course a proper
supporting line. In any case it is easily seen from the convexity
of the two curves ¢ (o) and u (o) and the relations p (o) < u (6) <
y (o) + 1 that the vertical distance from the line T¥ to the line 7*
is 20 and <1. Furthermore, since 9" (w,—0) <—1 and
# (0, —0)<—1 the slope —a of the two lines is <—1,
az>1.

We start by choosing a denumerable set of abscissae ¢y, gy, - -
- which lie everywhere’dense in the interval Q<o <w,. These

abscissae are chosen arbitrarily with the exception that we do
not use any abscissa ¢ at which any of the functions v (¢) and
(o) has different derivatives from the left and the right (i.e.
which corresponds to a vertex on any of the two curves). For
~each of the abové ‘chosen abscissae o; which lie in the sub-interval
‘ .Q<c<cul, of 02 <= a/“<i W, we con51del both the supporting line
87 of the y-curve at the point (o;, 9 (¢,)) and the supporting line S¥
of the y-curve at the point (o, u(g;)). For each of the abscissae

1. e.
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palrs but we now mark more points on the pair, namely all
points on its T¥-line which are marked on one of the lines

TY o Tm »+ -+ as well as all points on its 7" line which are mar-

ked on one of the lines 7% , T.,,---. If ‘more than one point is

- marked on the line T¥ we arrange these points in a sequence;
analogously, if more than one point is marked on the lme T we
arrange these points in a sequence.

The set of pairs of supporting lines (with their arlanged mar-
" ked points) obtained by the above procedure is now arranged in
- a (finite or infinite) sequence

(T8 T5). (1% Th). -, (T8, T8).

It is plain that each of our abscissae o; which lie in the interval
2 <0< w, will occur as abscissa of a marked point on one of
~our lines T”’ as well ag on one of our lines 7¥ while each of
. the abscissae o, which (ifw < w,) lie in the interval Wy <0< o,

will occur as abscissa'of a marked point on one of our lines T*.

» For these pairs of supporting lines we introduce “bricks” in
~-accordance with § 4, i. e. Dirichlet series

o; of the above chosen sequence which (if w, <w,) lie in the
complementary sub-interval o, <o <<w, of 2<o<w, we con-
sider only the supporting line S¥ of the y-curve at the point o,.
The supporting lines S¥ and (in the first case) S¥ are uniquely
determined since none of the two curves has a vertex at a point o,.
For each of the abscissae ¢; which lie in the interval R <o <w
" we now determine two pairs of supporting lines (T, T) (which
may coincide), one pair being determined by T¥ = §¥, the other
pair by T# = Si. For the first pair we mark the point (o, 9 (a))
on the line T¥ = S¥; for the second pair we mark the point
{0, (0)) on the line T = S¥. For each of the abscissae ¢; which
(if o, < ) lie in the 1nterval wy, < 0 < w, we determine one pair
of supporting lines (T’/’, T”) , namely the pair defined by T = S¥,
and for this pair we mark the point (o, u(0)) on the line
T#* = S$¥. We arrange the pairs of supporting lines (T%, T#) thus
obtained (for each of our abscissae either one or two pairs) in
a sequence

(Ty. 1), (13,78),

As mentioned above, we hdve marked for each of these pairs
a point on one of its lines, T% or T#. If we do not take notice of
the marked points, it is evident that some of our pairs of sup-
porting lines may coincide. (If for instance both the y-curve and
the u-curve are of the type {w; ¢} with the same «, then all our
pairs of supporting lines will be identical.) If such a coincidence
between pairs occurs we shall only keep one of the coinciding
pairs, but at the same time we shall change the point marking
of the pairs according to the following specification. Let us assume
that the pairs of supporting lines

RO =2l O =2 dPn e () =3 oM,

..such that those parts of the y-function and the p#-function of the
“series fn (s) where these functions are positive are determined
‘by the half lines over the real axis which lie on TY and TV,
respectively. This is p0551h1e since the slope —a,, of the two Imes

- is £—1 and the vertical distance from T% to T, is >0 and < 1.
The series we are going to constluct is formed by linear
- combination of these series £, (s), f, (s),- - - : in fact, it has the form

(Te 1), (1%, 10 ), F(s):gifl(s)+ez?;(s)+---+eNfN(s)+---:ZAnn—S,

m,’ m,
coincide.—For orientation we nole that this sequence can either
contain just two pairs of supporting lines, one with point-marking
on the line TY, the other with point-marking on the line T, or
the sequence will contain infinitely many pairs of supporting
lines. This latter case will only occur when at least one of the
curves (o) or u (o) contains a straight segment outside the axis
of abscissa.—As menlioned above, we keep only one of these

5 :where 4, ZNZISN aleQ We shall show that we can choose the

positive. numbers &, &,, - so that ¢ f, )+t (s)—l— - is re-
presented by a DiFiehlet series ZA T which for ¢ > has its
summablhty function ¥ (o) equal to the given function v (¢) and
its order function M (o) equal to the given function # (o). How-
ever, when £ > —oc we cannot always be sure that our construc-
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tion yields a function F(s) which does not have a limil abscissa
of summability £, smaller than the given number Q.

In order to oblain the said properties of F(s) it is enough to
prove, first, that the summability fanction ¥ (o) of F(s) satisfies
the equation ¥ (c,) = y(0,) for those of our o, which lie in the
inferval Q<o < w, (this includes that £, must be < Q) and,
_secondly, that the order function M (o) of F(s) salisfies the equation
M(o) = u(oy) for all our o,. In fact, the abscissae o, lie every-
where dense in ilhe interval Q <o < Wy SO for reasons of conti-
nuity we may conclude that the equations

V(o) =9(o) and M(s) = u(s)

hold in the inlervals 2 <o < w, and 2 <o< w,, respectively
furthermore, since ¥ (w,) = ¢ (»,) = 0 and M (w,) = u(w,) =0,
we get ¥ (o) =0 = y(0) for 0 >w, and M(0) = 0= u(s) for
6 > w, so that the above equations will hold in the whole interval
<o, -

We remarked above that the constructed function F(s) when

> —oc might have £,< 2 and not 2, = 2 as desired.
There are some cases wilth £ > —oc when automatically
Q. = £, namely when ¢ (6—0)— —oc or 4’ (¢—0) > —o0 for

o— 2. In fact, it is impossible in these cases to prolong the given.

- and u-curve to the left under preservation of their convexity,
so that we can be sure thal the constructed function F(s) will
have 2, = £ as desired.

In the other cases with £ > —oc we can prolong the - and
the u-curve to the whole interval — o< < ¢ << 0o under preservation
of all the properties demanded in the theorem, for instance by

two parallel half lines with a common slope <X min (lim v (6 —0),
g £

lim g (0~0)).’This we do before passing to the construction of

o> 2
F(s), i.e. before choosing our ;.

The funclion F(s) obtained will then be an entire function
with these prolonged functions ¥ (o) and p (o) as its summability
function and order funclion, respectively. In order to obtain a func-
tion F* (s) from F (s) which has the right 2 and wilhout changing
the W-curve and the M-curve for ¢ > £ we may for instance add
the function

(s—024+1) :an_]n‘s.

In this way we obtain a function F* (s) with all the desired
properties. .

We now pass o the actual construction of F(s) referred to
above. We determine the positive numbers ¢ = &7, ey =€, .-
successively by the following procedure.

First step. We choose ¢; = ¢¥ as an arbitrary positive number.
We consider the pair of supporting lines (T}”, Fﬁ‘) belonging to
fi (s) with its marked points and distinguish belween the following
three cases.

1°. There exist marked points on the line T?, but not on the
line Tf. If only one marked point is lying on TY we denole its
abscissa by o, (where Q< gy < w,). 1f infinitely many marked
points lie on T} we denote by o, (where 2 < g, < ay,) the abscissa
of that point on T‘Ib which comes first in the given ordering
of the marked points*on T¥. In the present case we are only
interested in the ¥-function at the point 0y, and not in ‘the
M-function at this point. '

We put the demand on ‘the sequence ¢, ¢,, - 1hat
W) FO=ef i+ ah® taf)+ =2 4,0
. ] ‘ )
is to have ¥ (o,) = v (0y). In other words, we demand thal (he

rit abscissa of summability A4, of F(s) where r, denotes the
positive number y (0,) is exactly equal to o,. We apply Lemma 1

of § 5 to the functions

90 ) =2l 1. 1 () = (), g2() = f(s), -+~

i

~and the numbers A = g, and r = ry just determined. The support-
‘ing lines T% TH

s of the y-curve cut the line ¢ = g, below

» the point (6,9 (0,)) (because the point (o4, (5,)) is no vertex

on the y-curve). Hence the rf abscissa of summability of the
series gy (s), g, (s), - - - all lie to the left of ¢, while the rf abscissa

of summability of 30;("?) is equal to oy. It follows from Lemma 1

that there exist posilive constants ey, 53, -+ with the property

~that the function (1) for 0<Cey << ey, 0 < gy < ey, - -+ has its rip
_-ahscissa of summability equal 1o o, as desired.

Dan, Mat. Fys. Medd, 27, no.4. 3
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2°. There exist marked points on the line 7% but no marked
points on the line 7Y. If only one marked point is lying on T

we denote its abscissa by ¢, (where 2< ¢, <w,). If infinitely -
many marked point lie on 7§ we denote by o, (where Q< o, < w,)

the abscissa of that point on T which comes first in the given
ordering of the marked points on T¥. In the present case we are

only interested in the M-function at the point g,, and not in the -

Y-function at this point.

We put the demand on the sequence &, &, -+ that the func-
tion (1) must be regular for ¢ >0, and have M (o,) = u (o).
In other words, we demand that the funclion (1) is lo be regular

in the half plane ¢ > ¢, and in this half plane have (exaclly) the

order of magnitude u,, where u, = p (0) > 0. We apply Lemma 2
of § 5 to the functions

o (s) = e f1(s), hy(s) = [, (s), hy(s) = [, (s),-

and the numbers o, and g, just determined. The supporting lines

T, Ty, -+ cut the line 0 = o, below the point (o, 1 (gy)) (be-

cause the point (o, x(0y)) is no verlex on ihe g-curve). Hence -
the orders of magnitude of the functions h, (s), h, (s),--- in the
half plane o> o, are all < g, while the ovder of magnitude of

the function hy (s) in the half plane ¢ > ¢, is equal 1o y,. It follows

from Lemma 2 that there exist positive constantis ey,, ep5, " - - wnh :

the property that the function (1) for 0 < g, <C egq, 0 <C g3 < egq, * *
is regular in the half plane ¢ > ¢, and has the order of magmtude
4o in this half plane, as desired.

3°. There exist marked points on the line T} as well as on

the line T%. We consider 1wo abscissae o, and oj (they may coin-

cide) where o}, denotes the abscissa of the marked point or the -
first of the marked points on the line T‘" while o} denotes the
abscissa ol the marked point or the ﬁlSt of the marked points

on the line Ty. By exactly the same considerations as under 1°
and 2°, using the first time Lemma 1 and the second time Lemma 2

we find two sequences of positive numbers ey, €55, -+ and

€991 €55, - - such that the function (1) for 0 < g, <Tegy, 0 <&y < epy,- -

o >0y, and has M (o) = u(ay).

Summarizing, we have by this first step found a posilive.

~tion (1) for 0 <, <egy, 0< ey <egy, - - -
- W-curve will pass through the marked point or the first of the

@

for 0 <<ey<<eyn,

N, Nt 10 eN+1,N+2§.-.eN,N+2’ T

®

for O<a31\H 1

s

where e,; = min (02,» ey;) has ¥ (oy) = v (o), is regular for
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constant e and positive constants ey, ey, - - - such that the func-
has the property that its

marked points on T¥ (if such points exist) and the M-curve will
pass through the marked point or the first of the marked points
on T% (if such points exist).

N™ step. (N =2). We assume Lhat by the 15t, 284, ... (N — 1)t
step we have determined positive constants &, eg,- - »ER , and

(by the (N—1)' step) posilive constants ey G=N,N+1,--")
such that the function

F(s)=eifi(s)+-- el Iy ) Fey iy () +
Ftenia i1+ :ZAnn“s

E
0 <eéni1<ex n.1 - has the property that
its ¥-curve passes through the first N—1 of the marked points

on T¥, through the first N—2 of the marked points on T¥, - -,

‘through the first of the marked points on T% _1»-and that its
Mcurve passes through the first N—1 of the marked points on

¥, through the first N—2 of the marked points on T4, ---,

through the first of the marked points on T% - It is plain how
this is to be understood when one of the supporting lines 7% or
~T" only has one marked point or none at all.

We choose an arbitrary constant el in the interval 0 < ey <eyy

‘_and shall show that we can find positive constants NP1 N41=

+1=
such that the function

F(s) = e f, () + e Fel v teny fy O+
+‘3N+2fN+2(3)+ s :ZA,-III“S

<eni1nNt+1 0 <éy s<ey g nyas - has the pro-

“perty that its ¥-curve passes through the first N of the marked
'Vpomts on TY, through the first N—1 of the marked points on

TH. - thlough the first of the marked points on T¥, and that

VltS M—Lurve passes-through the first N of the marked pomts on

T¢, through the first N —1 of the marked points on T%,
through the first of the marked points on 7%
3%
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It is evident that the conclusion from the (N— 1) step still
holds good under the new conditions since
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O Ry = ()b e () el fy (),

hy (S) = fN+1(S): IIZ(S) = /"1\]4_2(3)’ te

0 <el <<eyy and 0<ej<eN+1’j§eN’j(j:N—l—1, N—}—Q,---).

and the numbers of and y, just delermined. The supporting lines
T%. P+J, cut the line ¢ = o below the point (d}, x (7)) (because
the point (o, p(c})) is no vertex on the u-curve). Hence the
orders of magnitude of the functions fp(s) in the half plane
0> ay for P+.J are smaller than ty, While the function f;(s) in
“lhe half plane ¢ > oy has the order of magnitude u,. It follows
immediately that the order of magnitude of the function h, (s) in
the half plane o > gj is equal to u,, while the orders of magnilude
of the funclions h,(s), h,(s),--- in the half plane o> o are
~smaller than p,. It follows from Lemma 2 that there exist positive

-conslants Jegurl N1 e',(,+1 N -»+ with the property that the

J o
;funcllon(?)) for 0<8VH< eN+1 N+1,0\&N|r,< eN L1 N2

is regular for ¢ > ¢ and has M(O’O) = p (d}
It follows from the above that the numbels

Thus we have only to make sure that the ¥-curve (M-curve)
passes through the N'™ marked point on TV (T‘I‘), through the
(N— D™ marked point on T} (T‘I‘I), - -+, through the first marked :
point on T% (7;{,)

We consider the J® pair of supporting lines (’["f’ ’I"“) .
(J=1I,1I,---,N). Let o} (where Q<o) <w,) and oy (where -
Q<o)< w“) denote the abscissac of the (N—i— 1—DN™ marked
point on the lines 7% and TY, respectively (if they exist).

First, we pul the demand on the sequence ey 4,6y 05" " |
that the function (3) (if o} exists) has ¥ (o)) = v (¢}). In other
words, we demand that the ri’ abscissa of summability 4, of |
F(s), where r, denotes the positive number v (d}), is e\aclly‘
equal to of. We apply Lemma 1 of § 5 to the functions

Go =& i+ Fef )+ e fiy(s),
g1 () = /'N_H(s), g:(s) = /}v+.z(3)x te

and the numbers 4 = ¢, and r = r; just determined. The sup-
porling lines T} (P =+ J) of the p-curve cut the line ¢ = o}, below
the point (g, 9 (0},)) (because the point (5, % (d,)) is no vertex-
on the y-curve). Hence the rf abscissae of summability of the
series f (s), P+ J, all lie to the left of o, while the ri* abscissa -
of summabilily of f,(s) is equal to ¢f. It follows immediately

— mi Ly U 1 . N

ey 1,y = min{ey ;5 ley e 1, e, o en i1,y
(j=N+1,N+2,--)

have the desired properties (under step N).

The conclusion is still missing, namely that the sequence
¢f, €5, - - - found above is such that the function

' s (4 F(s) = ¢&* Fh()+- - =24 n

that the r{* abscissa of summability of g, (s) is equal to o}, while: ®) ) =ef h)+ef fuls)+ 2 nlt

the ri? abscissae of summability of g, (s), g, (s), - - are smaller - " has the desired properties. This, however, follows at once from
than 00 It follows from Lemma 1 that there exist posilive con- . ‘

' the remark that ’ 7
stants eN+1 N1 eN+1’N+2,- -+ with the property that the func -

T J
tion (3) for0 <ey, < eni1,N+100 <8N+2<’ en.1, N2 has
its r{* abscissa of summability A, . equal to og.

Next we put the demand on the sequence &y 4, &y g, - that:
the function (3) (if of exists) must be regular for ¢> ¢y and
have M (d}y) = u (dy). In other words, we demand that the func-
tion (3) is to be regular in the half plane o> ¢} and in this half-
plane have (exactly) the order of magnitude 1, where gy = 1 (63) > 0.
We apply Lemma 2 of § 5 to the functions:

0<8N+1 TN L LN+1=CN N1

Ed -
0<eNio<eniani2SCniiNi2Z€n Ntz

so that (4) gets the, properties of (3) from the arbitrary step
N(N=1,2,---), q.e.d.

This completes the proof of the Main Theorem in the “general”
case (y) w, = w,> Q2 >~ oo,
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The remaining case () w, > w, = 2> —00 can be treated in
a similar way as the general case. However, a small modification
is necessary, due to the fact that the y-curve does not leave the
real axis, but consists of the interval £ < ¢ < o0 on the real axis.
If we are in a case where the pair of functions % (o) and w (o)
can be prolonged no modification is of course necessary- since
the prolonged curves fall under case (y). In any case, the “bricks”
f1(s), f,(s)--- are obtained in the same way as belore, but if we
proceed as before (in the case where % (¢) and u (o) could not
be prolonged) by the delermination of the numbers &}, ef, - - - it
is plain, since no marked points occur on the lines T% of our
pairs of supporting lines (T}(’,, Ff(,) that we have taken care only
of the M-function, but not of the ¥-function. However, from the
determination of the pairs (7%, Tf\‘]) it follows that all the Dirich-
let series f, (s) are convergent for o>, for all the lines T§
pass through the end-point £ of the y-curve.

In order to obtain that (4) also becomes convergent for ¢ > £;
and hence ¥ (¢) = 0 for o> 2 as desired, we choose a sequence
ot >gf > .- — 2. By our first step we add the demand to the
previous demands that (1) is also to be convergent for s = ¥,
and in order to obtain this situalion we use a result obtained in
the first part of the proof of Lemma 1 in the case r = 0, namely
the result that if the Dirichlet series g, (s), g,(s),- - - are summable
of the r'® order at the point s =/, then the positive numbers
€/, €y, can be chosen so that the Dirichlet series G¥*(s) =
e g1(8) Fegga(s)+ -+ =2 B¥ n—*® becomes summable of the r
order at the point s = /1 when only 0 <{g <e;, 0T, <Tep,- -
In our N'™ step we add the demand to the previous demands
that (3) is also to be convergent for s = of;. Except for thi
slight modification our previous method remains unchanged.

Thus the proof of our Main Theorem is completed.
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