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1 . Introduction .

T
he t3-decay of a nucleus will often be accompanied by exci-

tation or ionization processes in the atomic core . Partly, the
ß-particle may collide with an atomic electron during its passag e
through the atom, partly the sudden change of the nuclear charg e

from Z to Z 1 will cause a rearrangement of the electrons a s

a consequence of which the atom may be excited or ionized . The

importance of this latter effect is evident in case of positon emis-

sion, but also in ß--decay there is an appreciable probability for

secondary ionization processes .

The charge of the recoil atom may thus exceed one unit and

the effect is therefore of importance for many types of measure-
ments of the energy and momentum spectrum of the recoil atoms .

Considerable interest attaches to these measurements which ma y

yield detailed information regarding the mechanism of /3-decay
(KOFOED-HANSEN 1951) .

The ionization accompanying ß-decay has been investigated

theoretically by FEINBERG (1941) and MIGDAL (1941) . FEINBER G

has shown that the dominating effect is due to the "shaking" of

the atomic core due to the change of nuclear charge . This result

follows also from a simple qualitative consideration : The time

taken for a relativistic /3-particle to leave a shell of electrons boun d

by a charge Ze is t . hi e /Zlne2 c . If now this time is short compared

with the period of revolution for these electrons 1/v h3Z2 /me 4,

that is, if vt . Za is small compared with unity, the change i n

the potential for the atomic electrons takes place so rapidly tha t

the wave function after the fl-process is almost equal to the origina l

wave function (v) . The relative change 4 yi/'ip in the wave function

during the emission of the ß-electron will just be of the orde r

v t . The calculation of the resulting excitation and ionizatio n

processes thus amounts to the expansion of the ground stat e
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wave function of the original atom on the stationary state wav e

functions of the new atom .

In the case of H transforming into He, this expansion ca n

readily be performed, and one finds an ionization probability o f

2 .5 °/ U . For heavier atoms the calculation becomes rather compli-

cated due to the complex character of the wave functions . Estimate s

based on approximate wave functions were obtained by MIGDAL ,

but they only apply to the ionization probability of the K, L

and M electrons in heavy atoms .

We have attempted a more detailed calculation in the case of

He transforming into Li . The [3-decay of He (' is of particular

interest for the ß-recoil studies (ALLEN 1949) .

The ground slate of He has angular momentum 0 and positiv e

parity . The only states of Li II of this character, which lie belo w

the ionization limit, are the states usually designated as 1 .s ns 1S,, .

The notation refers to the approximation in which the leav e

equation separates in the coordinates of the two electrons . Al l

other 0 + states, such as 2s ns (n >.2) or 2p np etc ., which would

be bound states if the interaction between the electrons could b e

replaced by a central potential, lie in the continuum . They are

therefore virtual states which, on account of the interaction ,

decay by auto-ionization (Auger effect) _

The ionization probability may thus be calculated by sub-

tracting from unity the probabilities for transition to the boun d

states (1 s ns) . Since this difference is relatively small it is neces-

sary to use rather accurate wave functions for the bound states .

Still, this method is advantageous because it is difficult to obtai n

adequate wave functions for the continuous spectrum and sinc e

calculations with continuum wave functions are very laborious .

Accurate wave functions for the ground state of He and Li I I

have been given by HYLLExås . In section 2, we derive wave functions

for the l s ns (n > 2) states of Li II for which sufficiently accurat e

expressions have not previously been given . The expansion coef-

ficients are evaluated in section 3, and the results obtained ar e

compared in section 4 with approximate direct estimates of th e

transition to free states, including the virtual states . In section 5

we shall consider various minor effects neglected in previou s

sections . A few remarks will also be made concerning the ioniza-

tion by fl-decay in heavier atoms .



Nr.2

	

5

2 . Wave functions for bound states .

In order to calculate the probabilities for transitions to boun d
states of Li we need wave functions for the ground state o f

He (wile) and for the 1 s ns'S 0 states of Li II Oil , n ,) .

Ground state of He.

For 1VHe we have used the very exact wave functio n

zPiié = 1 .388 e1.81ss(1 + .3534u + .1282 t 2 	 .1007s + .0331s' - .0317 u 2) .

In calculations where such great accuracy is not necessar y

we have used the wave function s

VI% = 1 .34 e-lszs (1 -}- .290 u + .132 t2 ) and

TVHe = 1 .68 3 /7r e iPB s .

Here as in the following we have used atomic units (BETH E

1933) .

The variables u, s, and t are defined as follow s

?l	 12 I
ri -r 2 >

-

	

±
where r, and r2 are the radii vectors for the two electrons . The

wave functions tie and va have, with the exception of the normal -

izing factor, been calculated by HYLLERÅS (1929), and are cited b y

BETHE in Handbuch der Physik (p .358) . In our quotation, they ar e

normalized for the whole configuration space of the two electron s

according to the formul a
Ç s

	

1F

2 n2 ds du (4t))2 u (s2 - t2) dt = 1 .
.o

	

. o

Ground state of Li II.

For yl, is we have used the very exact wave function given b y

HYLLF.RÅS (1930a)

yhsls = 6 .219e3s (1+ .11475s+ .37594u+ .184681 2 -f-0 .1412s'

- .17939 u 2 + .05666 us	 .055061 2 u + .02918 u 3 )

s =

t _

u =
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which is normalized according to the above formula . BETHE ' S

quotation in Handbuch der Physik (p. 362) seems to lack a facto r

t/2 on the coordinate dependent terms in the paranthesis .

Is 2s'Sa state of Li II.

A sufficiently good approximation for the wave function of thi s

state appears not to have been given previously . We have carrie d

out a calculation according to the scheme used by HYLLEr-As (1930 b)

for the calculation of the l s 2s state wave function of He. Since

the interaction between the electrons is relatively less important

for Lill than for IIe, we can expect to get a rather good approxi-

mation to the wave function by means of the variational functio n

= -"t`S [(a l i a 2 s) cosh l' t + a 3 t sinh /311 ,

where k, (3, a,, a 2 and a 3 are varied .

Rather long and tedious calculations, quite analogous to thos e

performed by 1-IYI .r .ERÅS, lead to the normalized wave functio n

s 2s = é
2 .04s [(1 .334 s - 2.172) cosh 1 .0001- 1 .114 sink 1 .000 t] .

The ionization energy corresponding to this wave function i s

I theoi. = 117900 cm-'

while the energy found experimentally is

Ie ;p = 118700 cru- I

(extrapolated value given by WERNER 1927 ; cf . also MOORE 1949) .

The difference amounts to .7 'V G .

l s 3s 'So state of Lill.

For this state we have used the following Hartree approxi-

mation. The motion of the inner electron is considered to b e

unperturbed, and the resultant potential for the second electron

is found. Then, using the experimentally known term value, w e

get the following differential equation for the radial wave functio n

(y,) of the outer s-electron,
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Fig l . Radial wave functions for the outer electron in the 1s 3s state (, )
and the i s 4s state (f 2 ) compared with the Coulomb wave function r

'__
r

for the 3s state corresponding to complete screening (Z - 2) .

d2 f7 ./clr2 T 4/1'+2e (tr(i/r±3)- .46] 1 = 0 ,

where ei = ryp 1 .

This differential equation is solved numerically for r < 1 .2 .
For greater values of r, where the second term in the paranthesis i s
negligible, the solution which tends to 0 as r is a confluen t
hypergeometric function with the asymptotic expansio n

1\~,) =

	

e",y, .os (1--2 .874/y,+1 .257/y2t + .0101/y - .0007/y 4L ) ,

where y l = .678r. This solution turns out to fit rather well wit h
the numerical solution at r = 1 .2, as shown in fig . 1 . The difference
between logarithmic derivatives is about 10 per cent .

As a total normalized wave function for the 1 s 3s state we hav e
used

Vls 3s

	

.659 (e-' r ' f1 \ 1 1)î l 1 + e-'r' f1 (I'2)/1'2) .

In order to obtain an estimate of the accuracy of this wave
function we have calculated the scalar product to the two func-
tions y1s 2 , and Pls 3s which were derived by quite different methods .
One finds

t'1/'1s2sIVlsssdzldz2 = - .004 . .
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Is 4s IS0 state of Li IL

For this state we use a similar treatment . The wave function
for the outer electron is supposed to be a solution of the equatio n

d 2 E2 /dr2 + f4/r+2e ''r (1/r±3)- .26]ee 2 = 0 ,

where ; 2 = r y 2 .

For r < 1 .5 the solution is almost identical to t (cf. BETHE ,

loc . cit ., p. 288) . For r > 1 .5 we use the asymptotic. expansion

2(r) _

	

.83e' 498 (1-5.74/y2 +8 .09/y2	 2 .41/y2 .021/y2) ,

where y 2 = .509r. The factor .83 is chosen such as to make
,; 2 (r) coincide with C 1 (r) for r small (fig . 1) .

The normalized wave function for the l s 4s state is the n

vi, 4s

	

.421 (e-"' (r i)/r , + c 3 C2 (r2)i l'2) '

Fhe wave functions for the higher s states will, in nearly th e
whole region where V'He t 0, be similar to yp-"4s . The normalizing
factor will be approximately proportional to nett'', where ne a
is the effective quantum number for the outer electron .

3. Expansion coefficients for transitions to bound states.

We denote the probability for transition to the rs ns state by

P (r . n) = 1 a (r . n)I2 = 55 yHe Prs ns drl dr 2 1 2

and from the wave functions given in the previous section w e
obtain the following results :

a(1 .1)
= SS i

.Y~He 2Ÿls ls dz 1 da2 = .8184

P(1 .1) = .67 0

a (1 .2) = 55 We
~V7_s 2s dz t dr 2 = .408

P (1_2) = .166

a (1 .3) = SS yHeytsas dri dr. 2 = .163

P(1 .3) = .02 7

ca (1 .4) = SS PHe Pis 4s dri dr2 = .088

P (1 .4) = .008.
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In view of the inaccuracy of ipis, and y ls 4s we have, in the
last two cases, used the less accurate wave function yi:t . Prob -
ably the most uncertain of the values quoted above are a (1 .2 )
and a (1 .3) . To illustrate the strong dependence of these quant-

ities on the wave functions, we quote two results for the ex-
pansion coefficients, obtained by means of less accurate heliu m
wave functions

a* (1 .2) =
~ S~VHéy, , ., s dz, d1' 2 = .399

P"(1 .2)= .159

a" (1 .3) = SS'ayls3sdzidt2- .142

P"` (1 .3) = .020 .

It is to be emphasized that the difference between these result s
and the values given above provides no direct indication of the
accuracy of the values since the essential sources of error probabl y
are the lithium wave functions . The results exhibit a tendency of
P(l .n) (n > 2) to increase with increasing accuracy of the wav e
functions, a tendency which was found to be very characteristi c
of the whole calculation . It thus appears probable that the us e
of more accurate wave functions would lead to still higher
values for P (1 .n) .

According to section 2, we may assume the expansion coeffi-
cients of fix, on the higher s states to be proportional to neffe ' ,

that i s

P (1 .5) + P (IM) -r	 -

(4 - .075) 3 P (1 .4) [1j(5 - .075) 3 + 1/(6 - .075) 3 > . . . = .01 2

since neff equals n

	

.075 .

The total probability for transitions to bound states is foun d
to be

Pbouad = ~'P (1 . n) = .883 .

The uncertainty of Pbou„a has roughly been estimated on the
basis of the scalar product of y~ 3s ., s and t, 3, (p .7) to be of the
order of one to two per cent .
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According to the result for Pb ol,,,d the probability for transi-
tions to free states should be .117. However, in view of th e
indication that the use of more accurate wave functions woul d
lead to a slightly larger value of Phound, an indication which is
supported by the estimates in the next section, we give as fina l
estimate of the ionization probability

1-'ion = (10 .5 ± 1 .5) per cent .

This rather large value for Pion may be of significance in
recoil experiments . The corrections to be made to the results
obtained by ALLEN (1949) in such experiments may easily
be evaluated. They are found to be almost of the same orde r

of magnitude as the difference between the curves for the different
coupling cases . Still, with the present experimental uncertainties ,

the corrections hardly alter the conclusions which may be drawn
from the measurements.

An experimental test of the value for P ion may be possible
by measurements of the motion of recoil atoms in combine d
electric and magnetic fields (KoFOED-HANSEN 1951). Measure-
ments of the photons emitted from excited states of Li II migh t

also give a valuable test of the theoretical calculations .

4 . Transitions to free states .

In a discussion of free states we may use two different ap-
proaches .

I) The interaction between the electrons is represented by a
screening of the nuclear potential ; we thus write 1/1 12 = Vl (r 1 )
+ V2(1 2) +W and neglect the potential W . In this approximation th e
states with energy greater than the ionization potential are of thre e
different types : 1) States, where both electrons are free (E 1 E2 ) ,
2) states, where one electron is bound the other free (1 sE, 2 sE . . . ) ,
3) states, where both electrons are "bound" (2s 2s, 2s 3s, . . .) .

States of the last type are virtual ; they decay by Auger_ effect

(auto-ionization) into states of the second type .

The Auger transition is caused by the neglected potential W,
and the decay time may be calculated by considering this potentia l
as a perturbation (WENTZEL 1927).
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rl times wave function of
the outer electron

r2 times wave function of
the inner electron

II) In a more rigorous treatment only states of the first tw o
types in I) exist . For nearly all values of E we may in good
approximation separate the wave equation in the two electrons
as in I) . For energy values close to the energy of the virtual states
this approximation however breaks down and a sort of resonanc e
phenomenon occurs . As illustrated in fig . 2, the wave function for

the stationary states may be looked upon as a combination of a
1 sE state with a 2s 2s state . This figure should be understood i n
the sense that for great distances of the outer electron the tota l

wave function is the symmetrized product of the two full-draw n

curves, that is of a Coulomb wave function for the continuou s
spectrum and a Coulomb wave function for the l s state approx-

imately . For smaller distances the amplitude of the total wave

function grows up rapidly, and its dependence on both electron -
coordinates is quite changed . For small values of r i and rz the
wave function may be approximated by the 2s 2s wave functio n
(dotted curves) .

From the wave function described in this way, the decay tim e
of the 2s 2s state may be calculated as the outgoing probability
current .

An accurate computation of the expansion coefficients o n
the free states of Li II would be highly complicated . We shall

attempt an approximate calculation in order to estimate the orde r

of magnitude of the ionization probability and its distribution o n
the various types of free states .

For energies different from those of the virtual states th e
wave function for the free states may be approximated by the
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product of 1 s, 2s . . . Coulomb wave functions (with Z = 3) and
Coulomb wave functions (with Z = 2) for the continuous spectrum .

The total transition probability to these states is given by

Peont = { 1 a(1 . E)l2+ l a(2 . E)l2-I- . . .j (77E+~~ ~~a(E1 .E2)dE1 dE2 .

Since the widths of the virtual states are small (< 100 cm 1) the

contribution to Peont from the energy regions of the virtual states

is negligible .

In the neighbourhood of the energies of the virtual states, th e

amplitude of the wave functions for small r is much larger than

the amplitude of simple Coulomb wave functions used above .

An approximate estimate of the transition probability for thi s

energy region may be obtained by using the normalized wav e
functions for the virtual states . If we write

Pd rt =P(2.2) + P(2.3)+P(2 .3) -;- . . . + P(3.3)+ . . .

the sum

Pfrcc = Peont + PA,ir t

will give the total transition probability to free states .
The value of Peprat may he calculated by noting that

2

+Ç 9,172(1
P

)~ÿ~He~'ns3( 2 )dT1 dT. 2 .~z
s 2(1)

Ç
Vl i e

	

3 (2)dz 2 dri

2
1

+15- ÇD la(n1 E) 2 dE S w ns 3 ( 2 ) yHe drl d T 2

ns " 1 (1) represents the normalized Coulomb wave function fo r

electron 1 in the ns state with Z = ni . The factor 1 / 2 comes from

the symmetrization .

In view of the approximate character of the free state wav e
functions used, we have calculated the transition probability b y
using yP He = yC and found

Pennt = .015 .



Nr .2

	

1 3

The contribution to this result from the E 1 E 2 states is negligibl e
(< .001) .

The evaluation of Py , ri can only be made with rather great
uncertainty . Several authors have derived approximate wav e
functions for virtual states of He I (Wu 1934, WILSON 1935) . For
Li II apparently no calculations exist . Since, however, it has not
been possible with the wave functions so far constructed to accoun t

adequately for the properties • of virtual states in light atom s

(Wu 1944, 1950), we shall here only attempt order of magnitud e
estimates based on simple Coulomb wave functions .

If we assume for the wave function of the 2s 2s state

72s 2s = '/" ; S 0- ) 74S ( 2 )

the most appropriate value of Z is expected to lie in the interval

2 .7 <Z < 3. The corresponding limit for P(2.2) is .011 <
P (2 .2) < .03. In the same approximation we get a maximum valu e

for P (2 .3) of .007 and for P (3 .3) of .0002 .
Altogether we fin d

Pviri. < .04

	

and

	

Pf1ec < .06 .

There is a considerable discrepancy between this estimat e

and the result Pbound = .883 obtained in section 3, since the sum
of Pbound and Pfree should equal unity . This discrepancy ma y
partly be due to the uncertainty in Pbo ,,,,d , but for the larger par t
must he ascribed to the very uncertain determination of Pfree .

The estimates made in this section serve primarily to indicat e
the distribution on the free state transitions and to show th e

importance of transitions to virtual states . From the very small

probability for double ionization (E l E2 states) we may furthe r

conclude that the average charge on the lithium recoil is

<z> = 1 .105 -I- .015 ,

provided we use the value for Pion quoted on p . 10 .
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5. Discussion .

In the above treatment a number of minor effects have been
neglected . Although, as we shall see, they are all negligible i n
case of He, some may become significant for heavier atoms :

I) As mentioned in section 1, the fl-electron will have a chance ,
by direct interaction with the atomic electrons, to knock one of
these out of the atom . The probability for this process (Pd,) as
compared with the probability for ejection of this electron du e
to the effect of "shaking" (P.,), has been estimated by FEINBER G
(1941) .

For a relativistic fl-particle he find s

PdelPs

	

I/n2c 2 ti (Zf.t) 2,

where I is the ionization energy of the electron and Z is the
effective nuclear charge .

In the case of the He decay the contribution of direct collision
thus amounts to

Pcz, N .0001 ,

which obviously can be neglected . In heavier atoms Pde. and Ps
may become of the same order of magnitude only for electron s
in the inner shells . As P5 is small for these electrons (MIGDAL 1941 )
the contribution of PdC to the total ionization probability will al -
ways be negligible . Since, however, the removal of one of th e
inner electrons will give rise to a cascade of Auger electrons (cf .
section III) the direct collision may become important for tha t
small fraction of the recoil atoms which are highly ionized .

II) Our results have to be corrected for the recoil motion o f
the nucleus, since the expansion of TVxe on lithium wave func-
tions must be carried out using wave functions referring to a
lithium atom in motion .

The velocity (u) of the lithium recoil, corresponding to th e
maximum recoil energy ti 1500 eV, is of the order of vo/20 ,
where va = Z a c (the velocity of the atomic electrons) . In this
case we would expect the correction for the transition probabilitie s
to be of the order (v/v„ ) 2 ti .003 .

We have also carried out a more exact calculation using lithium
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wave functions corresponding to a moving atom and obtaine d
substantially the saine result .

The result shows that in general. we may neglect the effect o f

the recoil motion when we have to do with free atoms . For atoms

bound in molecules this effect will be of great importance, sinc e
the molecule may be disrupted .

III) In the calculations we have made the assumption that

the lifetime of the virtual states against Auger effect (raug) is smal l

compared with the radiation lifetime (ri. ad ) . According to WENrzE L

(1927), the ratio of the two lifetimes is of the order ra„b/rrad
10-6 Z4 and thus very small for lithium. All states in which both
electrons are excited therefore practically always lead to ioniza-

tion .

According to the estimates in section 4 the Auger effect i s

actually responsible for the main part of the ionization . For heavier

atoms we would expect the Auger effect to play a similar role . In
earlier papers on the ionization of atoms by ß-decay, the Auger

effect has not been taken into account (FEINBERG 1941, MIGDA L

1941) . MIGDAL thus calculates the ionization probability due to th e
"shaking" effect by expanding the wave functions for the origina l

atom only on the wave functions for the continuous spectrum o f

the resulting atom .

If we take into account the Auger effect, the emission of a n

electron, from the K-shell say, would, as long as the conditio n

taus/read < 1 is fulfilled, give rise to a shower of Auger electrons ,
which would leave the atom several times ionized . (This would

also be the case if the K-electron were only excited into som e
allowed bound state). As Z increases the Auger effect will be Ies s

probable, but only for the inner shells, where the screening i s

small .

For the most loosely bound electrons the situation is very simila r
to the case of He - Li, and one has to take into account that

only a small part of the ionization is due to direct transition to th e

continuous spectrum.

We have made some rough estimates on the average charge o f

heavier recoil atoms, using the results of MIGDAL and correcting

them for the effects mentioned above . It appears that the averag e
extra charge of the recoil from a ß-process will increase with the
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nuclear charge Z, so that for heavy atoms it may he quite con-
siderable (of the order 0.5-0.

I wish to express my sincere thanks to Mr . AAGE Bol-JE for
suggesting this problem and for many helpful discussions . My
thanks are further due Professor NIELS Bonn for his continuou s
interest in my work .
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University of Copenhagen ,

Denmark .
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