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I. Introduction.

Great progress has been achieved in recent years in the ex-
ploration of nuclear properties, and an extensive body of
data is now available, giving information on many aspects of
nuclear structure.

Strong evidence has been accumulated that the nucleons may
be considered as occupying states of binding characteristic of in-
dependent particle motion in the averaged nuclear field. This
recognition has led to the development of a nuclear shell model,
which exhibits many similarities with the description of atomic
constitution (Maver, 1950; Haxer, JeEnseEn and SvuEess, 1950,
1952). The shell model has been an important guide in the
interpretation of nuclear phenomena; besides the numerous fea-
tures of the nuclear systematics associated with the discontinuities
of binding energies at closed shells, the model especially explains
many regularities of nuclear spins and parities.

There are, however, also essential differences between atomic
and nuelear structures, arising from the fact that the nuclear field
is generated by the nucleons themselves, while the atomic field,
responsible for the electronic binding, is largely governed by the
attraction from the central nucleus. The large mass of the atomic
nucleus, as compared with the electrons, makes it possible to a
first approximation to treat the atomic field as a static quantity,
but, in the nuclear case, the dynamic aspects of the field, asso-
ciated with collective oscillations of the structure as a whole,
must be expected to play an essential role. The significance of
collective features in a system where the cohesion is a result of
the mutual attraction of the particles has earlier found expression
in the liquid drop nuclear model (N. Bonr, 1936; N. Bonr and
F. KaLckar, 1937).

The importance of taking into account the collective aspects
of the nuclear structure is clearly evidenced in the empirical
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data, and ordered types of motion of the nucleons are strikingly
exhibited by a number of phenomena:

1) The occurrence of the fission reaction, many features of
which can be understood on the basis of the liquid drop model
(MEITNER and Frisch, 1939; Borr and WHEELER, 1940).

2) The large quadrupole moments observed for many nuclei,
which in some cases are more than 20 times larger than single-
particle estimates (Casimir, 1936; Townes, FoLey and Low,
1949; cf. also Fig. 9 on page 55 below). It has been pointed
out by RaINwaTER (1950) that the magnitude of the quadrupole
moments can be accounted for by the tendency of the particle
structure to deform the nuclear surface.

3) The occurrence of nuclear gamma transitions of electric
quadrupole type with lifetimes about a hundred times shorter
than single-particle estimates (GoLDpHABER and SuUNYAR, 1951).
The existence of collective transitions with such short lifetimes
is a characteristic feature of the excitation specira of strongly
deformed nuclei (Bour and MoTTELSON, 1953).

One is thus led to describe the nucleus as a shell structure
capable of performing oscillations in shape and size. These col-
lective oscillations involve variations of the nuclear field and are
therefore strongly coupled to the particle motion. The general
dynamics of such a coupled system of individual particle motion
and collective oscillations has previously been considered® **.
The system exhibits many analogies to molecular structures with
the interplay between electronic and nuclear motion.

In the present paper, we consider the further development of
such a unified nuclear model incorporating collective and individ-
ual-particle features, and pursue its consequences, especially
for the nuclear properties pertaining to the ground state and the
low energy region of excitation. The available empirical evidence
is analyzed in an attempt to ascertain to what extent a com-
prehensive interpretation is possible on the basis of such a
description of the nucleus.

* A. Bonr (1951, 1952). In the following, we refer to sections and equations
of the latter paper as (A. § V.4), (A 39), etc.

** Such a unified description of nuclear structure has also been discussed
by HiLL and WHEELER (1953) (‘‘the collective nuclear model’).
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In Chapter 1I, the formulation of the coupled particle-collect-
ive model and its general dynamical features are considered. The
subsequent three chapters discuss the properties of nuclear ground
states (spins, magnetic moments, and quadrupole moments) which
yield information on the nuclear coupling scheme. Chapter VI
treats the level structure of the low energy region, resulting from
the interplay of the particle and collective types of excitation.
Important evidence on the interpretation of nuclear excitations
is afforded by the analysis of gamma and beta transitions (Chap-
ters. VII and VIII). A summary of main conclusions is given in
Chapter I1X.

Some details, mostly of a mathematical nature, are deferred
to appendices (Ap. I—IV). In Appendix V, a description of nu-
clear reactions is formulated, which embodies features of single-
particle scattering as well as the formation of the compound
nucleus, and which assumes the same couplings as those oper-
ating in the low energy phenomena. In Appendix VI, a discussion
is given of the excitation of nuclei by the electrostatic field of an
incident particle, which should be a valuable tool, especially in
the study of collective types of excitation.

The present investigation has been carried out at the Institute
for Theoretical Physics of the Copenhagen Universily*, and we
have greatly benefited from numerous discussions with members
and guests of the Institute, as well as with members of the
Theoretical Study Group of CERN (European Council of Nuclear
Research), which for the last year has bzen assembled at the
Institute. Especially, we are indebted to Professor NieLs Bour
for his continued interest in this work and for many enlightening
discussions on the combination .of the cvidence on nuclear col-
lective and individual-particle motion in a consistent description
of nuclear dynamics. We would also like to acknowledge our
many stimulating contacts over a period of years with Professors
V.F. Weisskopr and J. A.WHEELER, who have given valuable
comments on many problems of nuclear structure.

* One of us (B.R.M.) wishes to acknowledge the grant of an A.E.C. postdoct-
oral fellowship, held during the years 1951—53.



1I. The Coupled System of Particles and
Collective Oscillations.

a) Formulation of the Model.

i. Collective coordinates.

The nuclear collective properties may be described by a set
of coordinates « characterizing the spatial distribution of the
nucleon density which, in turn, defines the nuclear field. Such
collective coordinates are symmetric functions of the individual
nucleon coordinates.

For a system with a small compressibility, the collective
degrees of freedom which have the lowest energies are associated
with deformations in shape with approximate preservation of
volume. Assuming the system to have a sharp surface, the normal
coordinates of these oscillations would be the expansion para-
meters a;, of the nuclear surface defined by (cf., e.g., (A. 1))

R(ﬂx (P) = RO

1—1—12'0%# V(3 @], (11.1)
m

where R, is the equilibrium radius, and Y, the normalized
spherical harmonie, of order 4, u. Such surface oscillations are
associated with a collective flow with the same velocity field as
for the oscillations of an incompressible classical liquid drop (cf.,
e.g., (A.31)). This leads to the expression

A
i
47 r . .
Cin = ZJ;A Z (?;;) Yﬂ,y ("91;: ‘pp) (112)

p=1
for the collective parameters in terms of the polar coordinates
(rp, ¥y, @) of the individual particles.
The nuclear compressibility* implies a non-constant radial

* For estimates of the nuclear compressibility, cf. FEENBERG (1947) and
SwiaTECKI (1951).
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density distribution, and the proper modes can no longer be char-
acterized as pure surface oscillations, but are also accompanied by
density changes in the nucleus. The degrees of freedom associated
with the compressibility imply that, for a given angular depend-
ence, there is a set of normal oscillations with different radial
density variations. The lowest among these has no radial nodes
and corresponds, in the limit of vanishing compressibility, to the
surface oscillations. This mode is in general the most important
for the low energy nuclear properties; its coordinates will be of
the form (2)* with somc modification of the radial function
resulting from the compressibility.

For a small compressibility, one can obtain corrections to
the proper oscillations by considering only first order terms in
the deviation from a uniform density distribution (FrLicee and
WoEsTE, 1952; WoEesTE, 1952). In the case of an essentially
non-uniform radial equilibrium distribution, major modifications
in the collective properties may be expected.

The existence of two kinds of nucleons implies additional
types of oscillations in which neutrons and protons move with
respect to each other (GoLpHaBER and TELLER, 1948; STEIN-
weDEL and JENSEN, 1950). These oscillations are of special
interest for the nuclear photo-effect but, because of their large
frequencies, are in general of lesser importance for the low
enefgy phenomena.

The types of collective motion considered correspond to an
irrotational flow of nuclear matter, which is the collective re-
sponse to variations in the nuclear field. Vorticity effects are
already contained in the description of the particle structure for
a fixed field and do not occur as collective phenomena provided
the independent-particle approximation is adequate to describe
this structure. It is also seen that vortex motion cannot be de-
scribed in terms of parameters, such as the 05, Which are
symmetric functions of the particle coordinates and thus, due
to the exclusion principle, cannot in a simple way be separated
from the state of the particle structure.**

* A single number refers to an equation in the chapter in which the reference
is made. '

** For a discussion of the implications of the exclusion principle for the
quantum rotations of a quasi-rigid system, cf. TELLER and WHEELER (1938).
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ii. Oscillations of a shell structure.

The relationship of the particle and collective motion is
especially simple if the frequencies w, for particle excitation are
large compared with the frequencies w, of a collective type of
motion. The nucleus can then be treated, in analogy to molecules,
on the basis of the adiabatic approximation, and the appropriate
wave function is of the type

an'u (CL‘) = djv (‘x) Yn (x, @), (113)

where x represents the coordinates, including spin variables, of
all the particles in the nucleus. The wave function y, (x, ),
specified by a set of quantum numbers n, is the shell model
wave function for a fixed field specified by the parameters «.
The wave function @, (e«) describes oscillations of the nucleus
as a whole, characterized by additional quantum numbers, »*.
In the approximation w, >) o, underlying (3), there corre-
sponds to a state n of the particle structure a set of states with
different quantum numbers », corresponding to a Hamiltonian
of the form
H, = T(a)+ E,(a), (IL.4)
where the potential energy E,(«) is the energy of the particle
structure n, calculated for fixed «. The existence of a collective
kinetic energy 7 is contained in the implicit dependence of the
wave function on x through « and may be obtained by writing
the nueleon veloeity as a sum of a velocity with respect to the
nuclear field and a velocity of the collective flow. For small
amplitudes of oscillation, T is a quadratic expression in the a.
If the particle structure prefers spherical symmetry, the
deformation energy may be expanded around the equilibrium
(ap, = 0), and the surface Hamiltonian reduces to (cf. A.(2 and 3))

1 . 1
Hg = ; {gBllaA#[2+2C1|a;L#[2} (11.5)
12

* A wave function describing the adiabatic oscillation of a shell structure
has also been given by HiLL and WHEELER (1953; eq. (3)), but this expression
appears to differ essentially from (3) above. The procedure employed by these
authors of incorporating the collective motion both through the exponential
factor involving the velocity potential and in the oscillator function h(c) seems
difficult to interpret; it appears that in the resultant wave function, obtained
by integration over the «-variable, the function A does not .directly represent the
probability amplitude for a given deformation.



Nr. 16 IT. The Coupled Sysiem. 13

which represents a set of harmonic oscillators with frequencies

CTA .
@y = A I1.6
i I/ B, | (11.6)

The coefficient B; is associated with the mass transported by the
collective flow and depends on the velocity field. For pure sur-
face oscillations described by the coordinates (2), one obtains the
classical hydrodynamical expression (cf., e.g., (A.4)),

B; = %Z?;;AMRE, (11.6a)
where M is the nucleon mass. The coefficient C; represents the
nuclear deformability; one may attempt to estimate C; from the
empirically determined surface energy and the assumption of a
uniform charge distribution. This leads to (cf., e.g., (A.5))

— 252

€, = (A—1)(A+ 2)333—%;H11 -ZF:

where S is the surface tension and Ze the nuclear charge. The

analysis of nuclear binding energies leads to the estimate 47 R3S
= 15.4 A™ MeV (cf. RoSENFELD, 1948, p. 24).

While the form of (5) has a rather general validity, it must
be stressed that the analogy with the hydrodynamics of a classical
liquid drop is of limited scope, and characteristic effects of the
quantum structure of the nucleus are to be expected. Thus, the
deformability will depend on the particle state in question® and
the value of C; will be especially large for closed-shell nuclei
which owe their particular stability to their spherical form.** The
nuclear compressibility may also have an important effect on
the value of B; and on the relation (2) between @), and the
multipole moments.

(11.6b)

When, in the following, we often make numerical estimates
on the basis of the hydrodynamic approximation (2, 6a and 6b),
it will be in order to gain a first orientation and to have a con-
venient reference with which to compare the evidence on the

* Features of the deformability of a quantum shell structure have been
discussed by GALLONE and SaLvertr (1953) and by Hiry and WHEELER (1953).
Some comments on this problem from the point of view of the present formulation
are given in Appendix L

** We are indebted to Dr. W. J. SwiaTEckI for valuable suggestions concerning
this point.
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Fig. 1. Nuclear deformabilily in the hydrodynamic approximation. The deformability
coefficients C}_ of the first three proper modes of the surface (ef. (5); A = 2, 3, and

4) are plotted as a function of the atomic number A. The nuclear deformation

energy is assumed to arise from a surface tension estimated from empirical bind-

ing energies and from the influence of a uniformly distributed electric charge
(cf. (6b)).

TFig. 2. Frequencies of surface oscillations in the hydrodynamic approximation. The
phonon energies hwl of the first three proper modes of the surface (cf. (8)) are

plotted as a function of the atomic number A. The deformabilities C, of Fig. 1
are used, and the mass parameters B, are taken from (6a) which assumes a velo-
city field of the type associated with surface oscillations of an incompressible fluid.

nuclear collective properties deduced from empirical data. In
Figs. 1 and 2 are plotted the hydrodynamical values of C; and
of the phonon energies hiw; for an assumed nuclear radius of

R, = 1.44 x A" 107 ¥ em. (I11.7)

ili. Coupling to particle molion.

The simple separation between collective and particle types
of excitations, corresponding to stationary states of the type (3),
is no longer possible if the particles possess modes of excitation

250

A
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with frequencies smaller than, or comparable with, the collective
frequencies. The particle structure may then be non-adiabatically
excited by the collective oscillations, and the nucleus must be
described in terms of a coupled system of collective and particle
degrees of freedom.

The particle degrees of freedom represent the low frequency
modes of excitation of the particle structure, associated with the
particles in the last filled levels. The bulk of the nucleons, whose
energies are well below the maximum for the occupied levels,
manifest themselves at moderate nuclear excitations only through
the collective properties of the nucleus.

For the coupled system of surface oscillators, with coordinates
e, and particle degrees of freedom, with appropriate coordinates
x, the Hamiltonian may be written in the form

H = Hg(apy)+ Hp(x) + Hins (%, @) 5 (11.8)

where Hg is given by (5) and H, represents the particle energy

for a spherical nucleus. The coupling term Hj,, gives the energy

dependence of the particles on the surface deformation.* **
Expanding Hj, in powers of «;, we get for the first term

Hpy = — D k() ; 3 Y3 (O ) (11.9)
p 2

where the sum p extends over the particles included in Hp ***
The assumption of a sharp nuclear boundary implies that k(r,)
has the form of a delta function at the surface with matrix ele-
ments given by (c¢f. FEENBERG and Hammack, 1951)

<nl|k@)|n'l> = VR Ry (R)) Rp (Ry), (11.10)

where n and [ label the radial and orbital angular momentum
quantum numbers of the particle with radial wave function R,,.

* The existence of an important coupling between particle motion and the
nuclear deformation, associated with the centrifugal pressure exerted by the
particle on the surface, was first recognized by RamnwaTer (1950).

** Tt is interesting to note that a somewhat similar effect has been discussed
for the atomic spectra where a small level shift for non-penetrating orbits has
been ascribed to a polarization of the atomic core (BorN and HEISENBERG, 1924;
cf. also DovcLas, 1953).

*** There may also be a contribution to Hin from the spin orbit force, but
its dependence on azu is more ambiguous (PrirscH, 1952; DavipsoN and FEEN-
BERG, 1953).



16 II. The Coupled System, Nr. 16

The nuclear. potential is denoted by V,. For binding energies in
the region 5—10 MeV, the matrix elements of k are approx-
imately independent of n and [ and are of the order of 40 MeV,
assuming a kinetic energy inside the nucleus of 25 MeV. In the
following, we therefore treat k as a constant. If particles are re-
placed by holes in a closed-shell structure, the sign of k is
reversed.

In the following paragraphs, we shall discuss some approx-
imate solutions for the nuclear Hamiltonian (8) for various
types of particle configurations. For most physical problems in-
Volkving low nuclear excitations, the collective motion associated
with surface deformations of quadrupole type (1= 2) are of
primary importance. We especially consider the effect of these
deformations and usually drop the index 4.

The coupled system of particles, obeying Fermi statistics, and
surface oscillators, which are equivalent to a Boson field, is in
many respects analogous to the dynamical system considered,
for instance, in electromagnetic theory. The coupling term (9)
is of a similar form as in the electrodynamic system, with the
coupling constant k playing the role of the charge e. Thus, many
effects characteristic of field theories, such as the influence of
the field on the motion of a particle in an external potential
(Lamb-Retherford effect), the interaction of particles through the
intermediate field, etc., have their counterpart in the unilied
nuclear model. The formal analogies also imply that many me-
thods of solution are common to the two systems.

b) Coupling of Single Particle to Nuclear Surface,

An especially simple case of the coupled system occurs when
the particle configuration can be described in terms of a single
particle outside of a fairly stable structurc of spherical symmetry.
In this paragraph, we consider methods of treating this system,
appropriate to different strengths of the coupling.

i. Perlurbation approximation.
For sufficiently weak coupling, the molions of the particle
and the surface arc approximately independent. The state of the
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particle is then characterized by lhe same quantum numbers
as in the shell model. The surface oscillations® are described by
the number of phonons, N, each having an angular momentum
of two units, the total angular momentum of the surface R, and
its z-component my. In general, two additional quantum numbers
are required to specify completely the state of the surface, but,
for small values of N(N < 3), the above quantum numbers are
sufficient.

The effect of the coupling implies a certain interweaving of
particle and surface motion, which for weak coupling is conven-
iently treated by expanding the wave function in the representation
of uncoupled motion*# ***

¥ =|>=>"|j; NR; IM> <j; NR; IM| >, (11.11)
jNR
where j stands for the particle quantum numbers, while the total
nuclear angular momentum and its z-component are denoted by
I and M.

In the absence of coupling, the ground state is given by
|j; 00; I = j, M > and, to first order, H;,, which is linear in «
(cf. (9)), only introduces the states |j'; 12; I, M >, where the
particle state j* has the same parity as the state j and differs by
at most two units in the total angular momentum. The relevant
matrix element for the creation of the one-phonon state is obtained
from (9) and (A. § III.1), and is given by

<J3 003 I = j,M|Hy|j's 12; LM >
o (11.12)

in terms of the coupling constant k, and the surface frequency o
and deformability C. The coefficients <jlh [j"> can be express-
ed in terms of Racah coefficients and are given in Appendix IL

These matrix elements determine to first order the nuclear

* The quantization of free surface waves has been discussed by Nocami
(1948), A. Bour (1952), and JExELI (1952).

** The coupling between particle motion and surface oscillations has been
considered in such a phonon representation by ForLpy and MiLrorp (1950).

*** We use the bracket notation of Dirac (1947). The proper vectors are
given by | j; NR; IM >, while the expansion coefficients are <j; NR; IM|>.

Dan Mat.Fys. Medd. 27, no.16. 2
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wave function from which the various nuclear properties can
be obtained. Thus, the coupling leads to a sharing of angular
momentum between the particle and the surface, which is re-
flected in a reduction of the expectation value of j,. If j remains
a constant of the motion, we get

15 (2j—1)(2j+38) ¥
1287  j2(j+1)? hoC

<j,> = (1— )M. (11.13)

The more general case in which particle states having a different
angular momentum are admixed is considered in Appendix II.

For the following, it will be convenient to introduce the
dimensionless parameter

e=|/2 L _k (11.14)
16z )j VhocC

as a measure of the strength of the coupling. From (13) one sees
that the validity of the perturbation approximation is essentially
determined by the smallness of x. The relevant parameter for
the perturbation expansion is actually x l/}, which represents the
order of magnitude of the amplitude of the one-phonon state.

ii. Strong coupling approximation.

For x|/j =1, the perturbation treatment is no longer valid, but
for x > 1 one can obtain another type of approximate solution
to the coupled system (A. § V.3).* For such strong couplings, the
nuclear surface acquires a large deformation and, therefore, a
certain stability in its spatial orientation. One then oblains an
approximate solution by considering, first, the relatively fast
motion of the particle with respect to the deformed nuclear sur-
face and, subsequently, the relatively slow vibration and rotation
of the entire system.**

* Apart from factors involving j, the parameter z corresponds to the ratio
of total nuclear deformation to zero point oscillation amplitude used in A to
characterize the strength of the coupling (cf., e. g., (II. 22)).

** This solution of the coupled nuclear system is in some respects similar

>
to the strong coupling treatment of the nucleon-meson coupling, the j of the
particle playing the role of the nucleon spin, or isotopic spin (cf., e. g., ToMo-
NAGA, 1946). The nucleon isobars are the analogue of the nuclear rotational states.
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The surface will in general acquire an axially symmetric shape
under the influence of the centrifugal pressure exerted by the
particle. The resulting nuclear coupling scheme (A. Bong, 1951),
illustrated in Fig. 3, is thus analogous to that of linear molecules.

Fig. 3. Coupling scheme for strong particle-surface inleracfion. In strong coupling,
s

the surface acquires an axially symmetric deformation. The angular momentum j
of the particle precesses around the nuclear axis with a constant projection 2.

> > >
The total angular momentum 7 is the sum of j and the angular momentum R
of the surface. The coupled system of particle and surface rotates like a symmetric

>
top with quantum numbers I, K (projection of I on nuclear axis), and M (projection
—>

of I on space fixed axis).

>
The angular momentum vector j of the particle precesses rapidly
around the nuclear symmeiry axis z’ with a constant projection
£2. The nuclear surface performs small vibrations, both with
respect to magnitude and shape of the deformation. The rotational
motion is like that of a symmetric top and is characterized by
the three quantum numbers I, K, and M, representing the total
nuclear angular momentum, its projection on the symmelry axis
z and on the fixed z-axis, respectively.

From the analysis which follows, one finds that the particle
precession frequency is of order x%w, while the vibrational fre-
quencies are of order . The rotational frequencies about the

2%
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symimetry axis and an axis perpendicular to z’ are of order w
and x~*w, respectively. (Cf. also A. § V.3 and Appendix V).

The strongly coupled system is conveniently described by
introducing the Eulerian angles §; specifying a coordinate system
fixed in the nucleus, and the two additional surface coordinates
f and y defining the nuclear shape (cf. A. § I1.2). The total
deformation parameter § is given by

ﬁZ — Z | alu, 2

. M
while y is an angular coordinate characterizing the eccentricity
of the nuclear shape. Thus, for y == 0 and =, the deformation
is symmetric about the z’-axis, and is of prolate and oblate shape,

respectively (cf. A. Fig. 1).
The strong coupling wave function has the form (A.118)

(I1.142)

I.Q; ngn,; IKM >

[/21?7; : * Pngn, (B ¥) Lt Daax 0D+ (17 x_, DRy £ (0D}

(11.15)

where y, describes the motion of the particle with respect to
the deformed nucleus, while ¢, g ny represents vibrations in 8
and y characterized by the quantum numbers ng and n,. Fin-
ally, the D};x are the proper functions for the symmetrlc top,
and describe the nuclear rotations. The normalization is such
that @ gives the unitary transformation from the fixed coordinate
system to the nuclear coordinate system (cf. WiGNER, 1931).
The simultaneous occurrence in (15) of both signs for £2 and K
reflects the invariance of the surface with respect to a rotation
of 180° about an axis perpendicular to z’,* and is similar to the
symmetrization of wave functions for homonuclear molecules
(cf. HERZBERG, 1950, p. 128 {f.). The symmetrizalion ensures that
the total parity of the strong coupling wave function equals the
parity of the particle state. The sign of the symmetrization term
in (15) depends on j, and if j is not a good quantum number,
each part of y must be symmetrized with the appropriate sign.
The wave function (15), apart from the symmetrization, is
actually of the form (3), corresponding to the fact that the pre-

* Cf. A. § V.2 for a discussion of the symmetry requircments for the strong
coupling wave function.
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cession frequency of the particle is large compared to the collect-
ive frequencies of the system. This contrasts with the weak

coupling situation where the degeneracy with respect to spatial
>

orientation of j provides a very easily excitable degree of freedom.
Thus, (11) is in general not of the type (3).

The sharing of angular momentum between particle and
surface approaches a definite limit with the realization of the

—>
strong coupling scheme of Fig. 3. The expectation value of j is
given by

> >
T <y I> =
<]>————~I(I+1)<[>, (I1.16)
>
and for j-I we may write
T . ,
J- 1 =i+ jody + js1s, (I1.17)

where the components of the two vectors refer to the coordinate
system fixed in the nucleus. One thus finds, for the state (15),

(11.18)

<77>:=9K+«~V4§@+QNL+3%1JK1

3K
where the last term arises from the symmetrization and vonly con-
tributes for 2 = K = % (cf. also Davipson and FEENBERG, 1953).
Therefore, from (186),

_“Q_K‘"'{,‘( NIjo l 1 ‘
I(I+1)‘[1+( ) z(ﬁg)(wz)ag,%al{,ﬂ. (11.19)

For the ground statc we have I = K = 2, except for K = Q2 = %

(cf. below), and thus

<j> =

< J, > o= }—_%M. (11.20)

For cach particle state £2, we have a spectrum of vibrational

and rotational stales, as in the case of molecules (cf. (3)). The

nuclear potential energy is a sum of the surface energy and of

the particle energy as a function of the deformation and, if j is
a good quantum number, is given by (cf. A. 77 and 98)
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Wpot(ﬁ’ 7’) = ]
(11.21)
Hy+ 5B+ |/ kb eos y s G2 —i G+ 1), |

where H), is the particle energy for an undeformed nucleus.

It is seen from (21) that, for j > 3/2, the lowest minimum of
Wyt and, therefore, the lowest state of the nucleus, occurs for
2 = j and a cylindrically symmetric equilibrium deformation
with y = x (oblate shape). The equilibrium value of § is given by

1/5 k 2j—1 27 —1 E
= l/m Ca(rD VJQ( 1) (11.22)

in terms of the coupling parameter x (cf. (14)).

The kinetic energy of the surface motion consists of a vibra-
tional and a rotational part. For strong coupling, the dominant
term is the vibrational energy (A. 48)

h{la 11 o

8
4 _
Tw=—5p 155" 25+ ﬂ251n3y5'y n3”ay}‘ (I1.23)

The Hamiltonian obtained by adding (23) to (21) describes
~ oscillations around the equilibrium positions of § and y (cf. (4)).
Since the zero point amplitude of g is of order (fiw/C)", which
is small compared to (22) for x > 1, one obtains approximately
independent harmonic oscillations in the 8 and y variables with
states labeled by ng, n

The rotational energy can be expressed in terms of the angular
momentum quantum numbers, and is given by*

W,ot= (K Q)z—{—( +3 ) {I(I—f—l)—K2
1 (11.24)
. . . (2 I_j [ nd =
+iG+D—2—() (J+2) (1+2)ag,%am}
where the moments of inertia are given by (A. 27)
Sy = 4Bﬂzsin2(y—x2?n) %=1,2,3. (11.25)

* Cf. (A. 98); the last term in (24) arises from U, (cf. A. 96) which contributes
a diagonal term in the special case of 2 = K = 1/2 (cf. also Davipson and FEeN-
BERG, 1953).
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For £2 = j, the lowest rotational state occurs, according to (24),
for I=K=20 =

The case of j = 3/2 requires special consideration, since the
last term in (21) has the same value for £ = 3/2 and y = =
as for 2 = 1/2 and y = 0. In this case, the potential surface
has no pronounced minimum in y, which has the consequence
that there is no exact limiting solution of the type (15). The
strong coupling wave function has then a somewhat more complex
form and requires the solution of a set of coupled differential
equations. Still, it can be shown that the ground state is always
I = 3/2 (cf. Appendix IIL.ii).

For j = 1/2 there is no coupling between particle and surface.
Actually, in this case, the strong coupling wave function (15)
reduces to the uncoupled wave function.

The Hamiltonian consisting of the three terms (21), (23), and
(24) does not represent the total energy of the nucleus. There
are additional terms (cf. A. 96) which are non-diagonal in the
representation (15) and which cause the breakdown of the
strong coupling solution for x = 1. An estimate of these pertur-
bation terms provides a measure of the accuracy of the strong
coupling solution and can be used to obtain correction terms
when x has intermediate values (A. § V.4; Forp, 1953; cf. also
Appendix I11.ii).

The non-spherical character of the nuclear field implies that
the j of the particle is not an exact constant of the motion. Major
modifications in X may occur if there are close-lying single-

particle levels which are coupled by the surface. In such cases,
X may be considered as a superposition of particle states with
different j, however all with the same £2. The last term in the po-

tential energy (21) is then to be replaced by (ef. (9) and (A.12))
‘Vcoupl = —kﬂ COoSs yYO (ﬁ,) ’ (1126)

which is a non-diagonal matrix in the particle quantum numbers
J whose elements are given in Appendix IIl.i. The coordinate
" of the particle is referred to the nuclear z'-axis. The rotational
energy remains of the form (24), which is diagonal in j.

The potential energy matrix must now be diagonalized and
its proper values determined as a function of the deformation.
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The minimum of the lowest potential energy surface corresponds
to the ground state equilibrium and the ground state % is deter-
mined as the proper vector of W at equilibrium.

Such effects are of importance in causing a partial decoupling

> >
of the particle ! and s and also occur in regions where there
are -near-lying levels of the same parity (e. g s;3— dgp;
Paa—[52)- In the case of j = 1/2 states, the non-diagonal
terms are of special interest in making possible a strong coupling
to the surface. Calculations of this type are employed in par-
ticular in the Addendum to Chapters IV and V.

iii. Intermediate coupling.

The treatments of the coupled system discussed above apply
in the limiting cases of weak and strong coupling. It is of interest,
however, to follow the transition between the two coupling regions.
This is of special importance for large j, since the perturbation

approximation is valid for xl/; ({1, while the strong coupling
approximation demands x »>)> 1. This gap between the regions of
validity of the two solutions reflects the increasing number of
phonons necessary to achieve the strong coupling situation for
increasing j.

In the intermediate coupling region, one may employ the
weak coupling representation (11), carrying the expansion
sufficiently far to give an adequate representation of the nuclear
state. The determination of the coefficients of the wave function
requires the solution of the corresponding secular determinant.®

As an illustration of this procedure, the solution has been
worked out for the case of I = j = 3/2, including all states with
phonon number N up to 4. The expansion coefficients are plotted
in Fig. 4 as a function of x.**

Further information about the intermediate coupling region
can be obtained by considering the case of very large j for which
one can obtain a semi-classical solution valid for all x. (CL
Appendix IV). From this solution, one can calculate (Ap., IV.10)

* (f. the non-adiabatic treatment of the meson-nucleon system discussed by
Tamm (1945) and Dawncorr (1950).

** Note added in proof: The intermediate coupling treatment, based on the
uncoupled representation, has been extended by D.C. Croupnury (ci. forth-

coming publication), who has studied level.structures, as well as magnetic mo-
ments and quadrupole moments, for a number of configurations.
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2
I+1 xt+ 4/9

correct to terms of order M/I. To this order, (27) coincides for
small x with the perturbation result (13); for large x, the value
of (27) equals the strong coupling result (20). '

a=%00%M|)
a=%12%MI)
a=(3 20 %MI)
a=% 32 %M|)

0 =% 40 %Ml

08
06
04
02

1 e 3 4

Fig. 4. Wave function in inlermediate coupling for I = j = 3/2. The wave function

for the ground state (I = 3/2) of the system consisting of a j = 3/2 particle

coupled to the nuclear surface oscillations is expanded in the representation of

uncoupled motion (11). The Hamiltonian is diagonalized including all states with

up to four phonons, and the probability amplitudes are plotted as functions of

the coupling parameter x (cf. (14)). In the particular case considered, only a single
state occurs for each value of the phonon number.

The process of transfer of angular momentum to the surface,
as a function of x, is illustrated in Fig. 5 for the various solutions
considered in this chapter.

In the hydrodynamic approximation (ef. Figs.1 and 2),
one obtains from (14), assuming k = 40 MeV, a coupling strength
of x = 0.9 for 4 = 20 increasing rather slowly with 4 to
a value of @ = 1.4 ;7Y% for A = 200. From Fig. 5 one sees that
this would correspond to an intermediate region in which neither
the perturbation nor the strong coupling approximation would
be very reliable.* Besides the contribution of H, , that is diagonal

* Similar conclusions have been drawn (Davipson and FEENBERG, 1953
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in j, there is also in general a contribution to the coupling energy
from the interaction between states of different j. In some cases,
this latter coupling may considerably increase the effective value
of x.

For a single particle moving with respect to a closed-shell
core of great stability, the expected large value of C, as compared
with the hydrodynamic estimate (cf. § Ila.ii and Ap.I), may

10 strong coupling limit j>9

/\gaa— ' :

A i1 g

V 06F

+

S04t

ozr

1 L L b X
1 2 3 4

Fig. 5. Sharing of angular momentum between particle and surface motion. The

particle-surface coupling implies a transfer of angular momentum from the particle

motion to the surface oscillators, which, in the limit of strong coupling, approaches

the value (20) for j> 3/2. For j = 3/2, the limiting ordinate in the figure is some-

what in excess of unity (cf. Ap. II1.8). The gradual transfer of angular moment-

um as a function of the coupling parameter x (14) is shown for the case of
j = 3/2 (obtained from Fig. 4) and )1 (cf. (27) and Ap. IV).

lead to a considerable reduction in the value of x. In such a
situation, the particle-surface coupling may have only a minor
effect on the properties of the system.

¢) Many-Particle Configurations.

In the case of configurations involving several particles, the
coupled system can be freated by methods similar to those dis-
cussed in the previous paragraph. While the surface coupling
effects considered there may be described as nucleon self-energy
Forp, 1953) from a comparison of the proper values of the strong coupling Hamil-
tonjan with those of the uncoupled system. In the procedure employed, how-
ever, corrections to the vibrational energy (A. 108 and 113) of the same order as

the rotational energies have been neglected. If these are included, the compa-
rison is somewhat more favourable to the strong coupling solution.
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effects arising from the coupling to the phonon field, this coupling
also produces mutual interactions between particles.

An additional feature which may affect the coupling scheme
arises from the nuclear forces acting between the particles. The
resultant coupling scheme will in general depend on a competition
between the two effects. We first consider the surface coupling
in the absence of direct forces between the particles.

i. Weak surface coupling.

For sufficiently weak coupling, one can employ the usual
perturbation procedure of field theory to obtain effective two-
particle interactions, resulting from the surface coupling. These
interactions remove the degeneracy of many-particle configura-
tions and may thus be important in determining the ground
state spin. k

If j, and j, of the particles are constants of motion, one may

>

use a simplified form of H, in terms of the operators j, and

J2 (A.76, 77, 78), and one finds the two-body potential

—h K 1 (6 /)"
647 C j1 (it 1) o (ut 1) N1 (11.28)

T . ..
+3(J1J2)“2J1(J1+1)]2(]2+1)]'

More general expressions may be derived if the surface introduces
states with other j values. The interaction (28) is of the type
well known from quadrupole couplings in atoms and molecules
and is attractive if the two particles have parallel or antiparallel
angular momenta and repulsive for perpendicular orientations.
Since the coupling constant for a hole has opposite sign to that
for a particle, two holes interact as given by (28), while a part-
icle and a hole have an interaction with opposite sign.

v, 2) =

ii. Strong surface coupling.

For increasing coupling strengths, one obtains more compli-
cated two-body interactions in addition to many-particle inter-
actions. However, for strong coupling, the surface effect again
becomes simple if viewed in the appropriate coordinate system.
Under the combined action of the particles, the surface in general
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acquires an equilibrium deformation of cylindrically symmetric
character®; and, relatively to the deformed nucleus, the particles
move independently of each other as long as the direct nuclear
forces can be neglected.**

The wave function is of the type (15), where the particle
state y, now stands for an appropriately antisymmetrized pro-
duct of individual particle wave functions, each characterized
by a quantum number £2,. The total £ equals the sum of the
individual £, (cf. Fig. 6a). The symmetrization of the wave
function follows the same lines as (15), except that the exponent j
in the phase of the symmetrization term is replaced by > j,.

P

Corresponding to (21) and (26), the potential energy is given by
1 ,
Woot (B:9) = > H, + 5 CA*—feosy ;kp Yo (8,). (11.29)
p

If not only the £, but also the j,, are good quantum numbers,
simpler interaction terms of the type used in (21) replace the
last term in (29).

We first consider a group of n equivalent particles with a
definite j. If n is smaller than half the number of states in the
shell, the equilibrium shape of the nucleus has y = #z. The part-

* In special cases, an asymmetric equilibrium deformation may be favoured,
or the potential cnergy surface may have no pronounced minimum in y. The
quantities .Qp and K are then no longer constants of the motion, and a more
complex rotational spectrum arises (cf. the casec of asymmetric molecules; ef.
also Ap. TTLii).

** The strong coupling solution for many-particle configurations has also been
considered by TForp (1953).

Fig. 6. Coupling schemes for many-particle configuralions. In many-particle con-
figurations, the coupling scheme results from a competition between surface
coupling and particle forces. Two extreme cases are shown.

a) Surface coupling dominates over particle forces. The particles move inde-
pendently of each other in the deformed nucleus, each having a constant
component ©p of angular momentum along the symmetry axis. The total £
equals ZQ2p and the nuclear ground state has I = K = . The figure

ra

illustrates the coupling scheme for a (j)* configuration. The three lowest particle
states have 2p = j, —j, j—1, leading to I = Q = j—1.

b

o

Particle forces dominate over surface coupling. The particles are coupled to

-

a resultant J which is then coupled to the surface as a single particle (cf. Fig. 3).
The figure refers to a (f)® configuration, where the particle forces in general fa-
vour the state J = j (cf. p. 34). The resultant ground state has 1 = & = J = |.
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Fig. 6 a.
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icles fill pairwise in states of opposite £,; for n even, the ground
state has 2 = 0, while, for n odd, we get 2 =j—1/2 (n—1).
If n is greater than j- 1/2, it is more convenient to consider the
holes in the shell. The preferred shape now has y = 0, and one
gets the same rules for £ of the ground state if n is replaced by
the number of holes. In the special case of a half filled shell,
the nucleus spends equal time around the positions y = 0 and
y = m. For nuclei of this type, the total Hamiltonian is invariant
with respect to a replacement of particles by holes together with
the substitution k—> —k or y — y + = (self charge conjugate
configurations).

If we have two groups a and b of equivalent particles, there
is again in general a definite preference for either y = 0 or y = m.
For an even group, the states are occupied pairwise with a
resultant 2, = 0, while an odd group contributes a finite £2,.
If both groups are odd, the energy (29) is degenerate, correspond-
ing to 2 = I.Qa + 2, } In special cases, such as when one
group is obtained from the other by replacing particles by holes,
the positions y = 0 and y = & may be equally preferred and
the Hamiltonian possesses the same symmetry as discussed above.

The rotational contribution to W has the form

h2

P L e
W= 55, (K= @+ {5 + 5 Juarn-x

(11.30)
N
+DI2— Q22— 3D (J I, + 1)),

> >
where J = ij and where the operator D picks out the part
2]

which is diagonal in the strong coupling representation (cf.
Forp, 1953). The last term in (30) coniributes only for con-
figurations with £ = K = 1/2 and if equivalent particles are
filled pairwise with opposite £2,; the term is then equal to the
last term of (24) for the remaining odd particle. Apart from this
special case of £ = 1/2 the nuclear ground state has [ = K = Q.

In odd-odd nuclei, there are, as mentioned above, two families
of states with 2 = |2, + &,!, whose energies are degenerate
in first order. This degeneracy is removed by the rotational
terms (30), and the ground state has [ = K = 2 = | 2, — Q, |
in the limit of strong coupling.
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The validity of the strong coupling approximation depends
on the magnitude of the total deformation, as compared with
the zero point oscillations. Since the particles act coherently in
producing the deformation, the effective coupling increases with
the addition of particles until the next closed-shell configuration
is approached. Thus, for two equivalent particles, the relevant
parameter measuring the strength of the coupling is 2 x rather
than x. The hydrodynamic estimate of the coupling strength for
a single particle, given on p. 25, therefore implies a rather fully
developed strong coupling situation in regions removed from
closed shells.*

iii. Influence of particle forces.

The influence of nuclear two-body forces, with the neglect
of surface coupling, has been considered for the (j/) coupling
scheme along lines similar to those employed in atomic spectra
(Mayer, 1950a; Kuratn, 1950, 1952, 1953; FLowkrs, 1952,
1952a, 1952b; Epmonbds and Frowers, 1952, 1952a; TaLwmi,
1952; Hircucock, 1952, 1952a; Racam and Tarwmi, 1952). The
choice of the forces is somewhat uncertain, since the present
knowledge of the nuclear two-body system only partially defines
the interaction. Moreover, the problem of nuclear saturation as
well as the existence of shell regularities has raised the question
whether these forces are appropriate to the description of inter-
actions of nucleons in nuclei (cf., e. g.,, WEIsskorF, 1952). The
analysis of coupling schemes for nuclear many-particle configur-
ations may provide evidence on these important questions.

The competition between the particle forces and the surface
interactions determines the resultant nuclear coupling scheme.
If the forces are weak compared to the coupling of the individual
particles to the nuclear axis of deformation, the coupling scheme
is that discussed in § Ilc.ii and illustrated by Fig. 6a. The effect
of the particle forces is then to contribute a small energy shift
which depends on the {2, quantum numbers. Such effects may
be significant if there are near-lying states of different £, such
as in odd-odd nuclei.

* Numerical examples illustrating the improvement of the strong coupling

approximation for several particles have been given by Forn (1953) (cf. also
the footnote on p. 25~-26).
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With increasing strength, the particle forces tend to destroy
the above type of strong coupling solution by introducing non-
diagonal terms in the £, and, if the particle forces and the sur-
face coupling are comparable, a rather complex situation may
arise. For very strong forces, the particle structure is coupled to

>

a resultant angular momentum J. This vector is then coupled
to the surface in the same manner as a single particle (cf. Fig. 6b)
with an effective coupling constant (cf. Table VIII)

1 li
k= 20D N T <3eost g, — 12, (13D
2J—1
P

In this case, the nuclear ground state spin I = J is determined
by the particle forces.

A simple comparison of the strength of the surface coupling
relative to that of the particle forces is obtained by considering
that the former results from the interaction of the nucleons with
the total displaced matter of the nuclear deformation. While the
particle forces may play an important role in light nuclei, the
surface coupling should thus become increasingly dominant in
heavier nuclei and especially for the large deformations encoun-
tered in regions removed from closed shells.



III. Ground State Spins.

The interpretation of ground state spins and parities is most
unambiguous in regions with large separations between neigh-
bouring single-particle levels, where the lowest particle con-
figuration can be uniquely assigned. The ordering of levels within
this configuration is determined by the forces acting between the
particles and by their coupling to the surface (cf. § IIc), and
the observed ground state spin may give evidence on the result-
ing coupling scheme. The parity follows directly from the con-
figuration.

In regions with close-lying particle levels, the lowest state of
the system may be affected by relatively small shifts in the con-
figuration energies, arising from surface or particle interactions,*
as well as by configuration mixings produced by these interactions.

In the present chapter, we restrict ourselves to the problem of
the lowest state for a given configuration. Some aspects of the
configuration interactions are considered in connection with
magnetic moments (cf. Addendum to Chapters IV and V) and
level structures (§ VIb).

i. Single-particle configurations.

For a single-particle configuration, it follows from the con-
siderations in § IIb that, for the lowest state, I equals j of the
particle, irrespective of the strength of the surface coupling. In-
deed, for this important class of nuclei, the observed spins and
parities are successfully accounted for by the strong spin orbit
coupling shell model (MavER, 1950; Haxer, JENSEN and SuEess,
1950).

* Cf., e. g., the shell model payiring energy (MavEeRr, 1950a).
Dan.Mat.Fys. Medd. 27, no.16. 3
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il. Configurations of two equivalent particles. Even structures.

The calculations based on the assumption of attractive two-
body forces have shown that such forces will couple two equi-
valent particles to a ground state of spin zero (MaYER, 1950a;
FrowEers, 1952b; Epmonps and Frowers, 1952a; Racanm and
TaLmi, 1952).

The same result is obtained for the influence of the surface
coupling. In weak coupling, this effect may be considered in
terms of equivalent two-body interactions given by (I1.28), which
favour the state 7 = 0. In strong coupling, the particles fill pair-
wise in states of opposite £, and the ground state has I = K =
2 = 0.

Empirically, one has always found I = 0 for these configura-
tions, but the rule is far more general, applying to all even-even
nuclei. For configurations involving only protons or neutrons,
this result can be obtained for short range attractive forces
(MayER, 1950a; FLowERrs, 1952b). It is apparent that the sur-
face, in strong coupling, leads to I = 0 quite generally for even-
even nuclei (cf. § ILii).

Since, in the strong coupling picture, an even group of equi-
valent particles has no influence on the angular momentum
properties of the nuclear ground state, aside from the tendency
to favour prolate or oblate deformations, one has a certain basis
for treating any odd-4 nucleus in terms of the odd group of
particles alone. Thus, if the odd group contains only a single
particle (or hole) with an angular momentum j, one obtains the
same ground state spin (I = j) as for a single-particle configur-
ation (cf. § IIL1.1). The observed spins of these nuclei have been
found to be consistent with such a simplification of the model
(Maver, 1950; Haxer, JENSEN and Sukss, 1950). The possibility
exists, however, that the even group of particles produces a
deformation of the opposite shape to that preferred by the odd
group and thereby affects the ground state spin.

iii. Configurations of three equivalent particles.

Several calculations have been carried out to determine the
ground state spin resulting from two-body forces acting in (j)*°
configurations ' (MAYER, 1950a; KuratH, 1950; Tarmi, 1952;
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Epmonps and Frowers, 1952a; FLowkRs, 1952a; Racan and
TaLmi, 1952). These calculations have shown that, for suffici-
ently short range attractive forces, one obtains I = j for the
ground state; when the range is no longer negligible compared
to the nuclear radius, the ground state may have other spin
values. The range at which cross-overs occur depends somewhat
on the shape and exchange nature of the two-body potential.

For the (5/2)® and (7/2)? configurations, the state [ = j —1 will,
for sufficiently long range forces, become the ground state, but
the necessary range seems to be considerably in excess of that
deduced from two-body data. For the (9/2)® configurations, a
ground state of / = 7/2 not only requires an excessively long
range, but also a rather implausible exchange nature of the
potential.

Thus, it appears that, for forces consistent with the known
properties of the two-body system, the state I = j remains the
ground state. It may be added that particle forces of sufficiently
long range to produce cross-overs in the ()3 configurations would
also strongly aflect the predicted ground state spins of other con-
figurations. In particular, high ground state spins may result for
even-even nuclei, and the even group of particles no longer re-
mains inert with respect to the spins of odd-A nuclei (EpmonDs
and FLowEgRs, 1952a).

The effect of the surface coupling on the splitting of the
(/)*? configuration may be treated in weak and strong coupling.
In the former case, the effective two-body interaction (11.28) can
be shown to lead to a ground state spin of I = j for j = 5/2,
7/2, and 9/2.

In strong coupling, however, three particles produce an
oblate deformation and fill the three lowest levels Qp =/,
—J,j—1, with a resultant Q =7 —1 and I = K = 2 =j—1
for the ground state (cf. Fig. 6a). For a (j)™® configuration, a
prolate deformation results with the same angular momentum
quantum numbers as for (j)®. The special case of three j = 5/2
particles, which constitute a half filled shell, possesses the sym-
metry in y discussed in § Ilc.ii, aside from the stabilizing in-
fluence of an even non-closed configuration.

Evidence on the level order for (j)*? configurations has been
obtained from spectroscopic measurements of ground state spins

8*
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and from the analysis of nuclear disintegration schemes. The
observed spin for the lowest state within these configurations is
given-in Table I which shows that the values f = jand I = j —1
occur about equally frequently.

TasLe I. Lowest spins of (j)*® configurations.

Nucleus Configuration T} owest
10Ne? (dsa)® 32 ¢
lll\lafm 2 3/2 g
uCa®® (F772° 772 g*
2V » 712 g
25Mn®? (f7/z)—3 52 ¢
32Ge™ (go/2)® 72
345677 2 7/2
asKr7? »s 712 ¢
315€8 (gs/z)is 7/2
36 K18? 2 9/2 ¢
355188 ' 912 g
asTC?® (@972)® 912 g
43Tcg7 3 9/2 g
43Tc99 2 9}2 g
478 (gosa) 2 712
17Ag10° »» 7/2

The table includes available evidence on the spin of the lowest state in (j):t3
configurations in those regions where the configuration assignment is relatively
unambiguous. This assignment, for the odd group of particles, is given in the
second column, while the third column gives the observed spin of the lowest state
of the configuration. The letter g indicates ground state of the nucleus. The spin
values come from spectroscopic data (Mack, 1950) and from the analysis of decay
schemes (GoLpuaBer and Hirr, 1952), except where otherwise noted.

* JEFFRIES (1953) (added in proof). ** SmurH et. al. (1952).

The empirical data may be interpreted in a straightforward
manner by assuming that the surface coupling dominates over
the particle interactions and produces a lowest spin I =j or
I = j-—1, depending on the strength of the coupling. It is also
possible that the occurrence of I = j reveals a significant in-
fluence of the particle forces (cf. Fig. 6b).

This interpretation would imply that I = is more likely
in regions near a closed shell in the even structure, while I = j — 1
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would be preferred for more deformed nuclei. Such a trend is
indeed discernible in the data. Thus, in. the fojp shell, T = 7/2
is observed for ,Ca%® and ,,V® with the closed-shell even struct-
ures, while the more deformed ,,Mn% gives I = 5/2. In the Foj2
shell, I = 7/2 is, for the odd-neutron nuclei, favoured for Z — 32,
34, and 36, while I = 9/2 lies lowest for Z = 36 and 38, cor-
responding to the approach to the closed subshell at 38. For the
odd-proton nuclei, I = 9/2 is favoured for N = 52, 54, and 56
in the region of the closed shell at 50, while the more deformed
nuclei with N = 60 and 62 have I = 7/2. Such trends could be
tested in more detail if the separation between the I = 7/2 and
I = 9/2 levels were known for a sequence of isotopes or isotones.

In this discussion, the even structure has been considered
only in its influence on the magnitude of the nuclear deformation.
As mentioned on p. 34, more specific effects may occur if the
even structure has a strong preference for a shape opposite to
that produced by the odd structure. In those cases in Table I
where the even configurations are sufficiently well known for
such considerations, it is verified that no such anomalies are
expected. ’

Evidence is also available on the level order for (gy,)° con-
figurations which are expected to occur for 45 particles. For
the known nuclei of this type, the lowest state of the configuration
has been found to be I = 7/2. No calculations have been reported
on the effect of particle forces in these configurations. The weak
coupling approximation of the effect of surface coupling has
not been worked out either but, in the limit of strong coupling,
the state J = 5/2 would be favoured. It seems not implausible
that I = 7/2 could result from an intermediate coupling. Con-
" siderable interest would attach to the location of the lowest
(5/2 +) state.

iv. Odd-odd nuclei.

The ground state spins resulting from two-body forces have
been considered for various types of odd-odd nuclei (KuraTH,
1952, 1953; Hitcrcock, 1952, 1952a; Epmonps and FLoWERS,
1952a). The results appear to be more sensitive to the range
and exchange nature of the forces than in the case of odd-’
A nuclei. '
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The coupling scheme arising from the surface interaction can
be derived from (I1.28) for weak coupling and from the con-
siderations in § Ilc.ii for strong surface coupling. In the latter
case, there are two families with £ = lQprot + .Qneut|, whose
energies differ only by amounts of the order of rotational energies.
In the strong coupling limit, the ground state corresponds to
the lower value, but the order may be altered by deviations
from strong coupling or by even a minor influence of particle
forces.

TasLe II. Spins of simple odd-odd nuclei.

Nucleus Configuration Lops I(Z\;T;(l Y (i};g,‘,‘,g
protons neutrons
;B (Pa2) ™t (P32t 3 0 0.3
1,CI%8 dafs (dapa) ™ 2 2 1,2
1,C1%8 da/z fv/z 2 2 2,5
1. K20 (daa) ™t a2 4 4 3,4
o7Rb® (For) ™" (Fop) ™" 2 2 2,7

The table lists odd-odd nuclei whose proton and neutron configurations may
be described in terms of a single particle or hole with j> 1/2. The observed spins,
in column four, are taken from the references in Table XXI, except for CI3® whose
spin is derived from its observed beta spectrum (cf. Table XXXII).

The spins expected for weak and strong surface coupling are given in the
two last columns. The weak coupling results coincide with those obtained for
attractive spin-independent particle forces of zero range. For strong coupling,
two values are listed, corresponding to the degenerate £2-values implied by (11.29)
(2 = | Qprot = Lneut |). The rotational energy (I1.30) favours the smaller of the
two spin values, but the relative position of the two states may be shifted by
deviations from strong coupling or by even rather weak particle forces.

The measured spins of odd-odd nuclei with simple two-
particle configurations are listed in Table II, which also gives the
calculated values for weak and strong surface coupling.® We
have confined ourselves to regions of relatively pure configurations
and have omitted nuclei for which one or both of the odd particles
have j = 1/2. These latter particle states are affected by the sur-

* In the present discussion, we restrict ourselves to nuclei with A > 8, since
the division into particle and collective degrees of freedom loses its significance
for the very lightest nuclei. Moreover, for the light nuclei, the analysis is com-
plicated by the fact that the particle forces in general lead to a situation inter-
mediate between (jj) and (LS) coupling (cf. Incgris, 1952).
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face only through their coupling to neighbouring states, and are
also somewhat special as regards the effect of particle forces,
since spin dependent interactions become decisive. For the cases
in Table 1I, the ground state spin resulting from spin independent
interactions of zero range (KuratH, 1952) coincide with the weak
coupling values in column five. Results of other forces have been
considered by the above mentioned authors.

It appears that both particle forces and surface interactions
are capable of accounting for the data in Table I1.#* An interesting
feature is the empirical evidence for a different coupling of part-
icle-particle from that of particle-hole. This can be understood
in terms of two-body forces of the Wigner or Majorana type
(KuraTH, 1953) and also follows from the opposite signs of the
surface coupling associated with particles and holes.

The coupling scheme in some more complex odd-odd nuclei
is considered in the Addendum to Chapters IV and V, in con-
nection with a discussion of nuclear moments.

v. Summary.

The ground state spin is determined in general by a competi-
tion between particle forces and surface coupling. Often the two
effects favour the same value of I, but, especially in the case of
(7)? configurations, the predictions are different and the empirical
evidence can be used to obtain information about the nuclear
coupling scheme (cf. also footnote below).

The available data can be interpreted in a consistent manner
in terms of the expected dominance of the surface coupling over
the direct particle forces (cf. p. 32). The observed spins confirm
the approach to the strong coupling scheme in regions removed

* Note added in proof: A level scheme for ;,CI** has recently been given
(ArBER and STAHELIN, 1953), in which the ground state has I = 0 (even parity)
and in which there appears an isomeric level at 145 keV with I = 3 (even
parity). For weak surface coupling the lowest state of this (ds;a; ds;,) configu-
ration has I = 0, while for strong coupling one finds two states I = 0,3 with
the former favoured by the rotational energy. Attractive particle forces of the
expected range yield I = 3 for the ground state (Kurath, 1953).

Additional evidence on the ground state spins of self-mirrored odd-odd nuclei
could provide further information on the competition between the direct particle
forces and the coupling to the surface deformations, since the former in general
favour I = 2, while the latter gives I = 0 (cf., especially, ,,A1%, ;, K%, , Sc42,
and ,,Co%).



40 III. Ground State Spins. Nr. 16

from closed shells, with a relatively weaker coupling acting in
the neighbourhood of closed shells.

In the immediate vicinity of major closed shells, the expected
weak surface coupling implies the most favourable conditions
for the study of particle forces. Important evidence on the strength
and nature of these forces could be provided by further experi-
mental data on ground state spins and moments in this region,
especially when combined with a knowledge of the excitation
spectrum and lifetimes of excited states (cf. § VID).



IV. Magnetic Moments.

The sharing of angular momentum between particles and
surface implies that both particle and surface motion contribute
to the nuclear magnetic moment. Because of the large intrinsic
moment of the nucleons, the particle aspect of nuclear moments
is in general the more conspicuous, and indeed the empirical
moments have provided a valuable guide in the formulation of
the shell model (ScamipT, 1937; FEENBERG and Hammack, 1949;
Norbpuem, 1949; Maver, 1950; Haxer, JENSEN and SUESS, 1950).

In a more quantitative analysis, however, the surface coupling
plays an important role. Appreciable shifts from the single-
particle values can arise from the modified nuclear coupling
scheme produced by the surface interaction; additional effects
result from the tendency of the surface coupling to admix near-
lying particle states, which may have very different magnetic
properties (ForLpy and MiLrorp, 1950; A. Bonr, 1951; Davip-
soN and FEENBERG, 1953).

The analysis of magnetic moments may also provide evidence
on the extent to which the magnetic properties of nucleons may
be affected by their interaction with nuclear matter (cf., e.g.,
ViLLars, 1947; Sacus, 1948; Mivazawa, 1951 a).

a) Shell Model Moments.

For a single particle moving in a spherical potential, the
magnetic moment is given by

. . 1 .
M*JQj*J(gzim(gs*Eh)) J=1+£1/2, (IV.1)

where g; is the total g-factor and

5.585 1
gs = {—3.826} and ¢; = {O} (1v.2)
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the intrinsic and orbital g-factors in units of nuclear magnetons.

In the bracket, the upper values refer to a proton, the lower to
a neutron.
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Fig. 7. Magnetic moments of odd-prolon nuclei. The moments of odd-proton nuclei
with A > 8 are plotted against the nuclear spin. This type of diagram was first
used by Scumipt (1937). The experimental values are taken from the references
given in the Addendum. The full-drawn curves give the single-particle values
(1 and 2), while the dotted curves give the moment values obtained in the limit
of strong surface coupling, assuming the particle j to remain a constant of the
motion (cf. (6) and Ap. IIL.9). The surface coupling may further influence the
magnetic moment through the tendency to admix neighbouring particle orbitals.
This effect, however, depends sensitively on the level order and the shape and
magnitude of the deformation, and must therefore be considered separately for
the individual nuclei (¢f. Table VII and the Addendum).

The empirical moments for odd-A nuclei are plotted in Figs.
7 and 8, in which also the single-particle values (1 and 2) are
shown by the solid lines. In spite of the appreciable scatter of
the empirical moments, they show a tendency to cluster in two
groups, for given I, which can be related to the single-particle
values. This correlation has been successfully employed in the
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determination of nuclear parities (cf., e. g., MaveEr, Moszkow-
sk1 and NorpHEIM, 1951). Also the trends of the moments with
give support to the value (2) for the orbital g-factor.

For many-particle configurations, the magnetic moment de-
pends on the coupling scheme which leads to the total angular
momentum J. For a group of equivalent particles, one has, in
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Fig. 8. Magnetic moments of odd-neutron nuclei. The moments of odd-neutron
nuclei with A > 8 are plotted against the nuclear spin (cf. also the caption to
Fig. 7).

the (jj) coupling model, g, = g;, but changes in the g-factor
may arise for odd-A nuclei when the even structure is not a
closed shell. In such cases, the nuclear state for a given J will
in general depend on the interparticle forces; for three or five
nucleons in j = 3/2 orbitals, the assumption of charge indepen-
dent forces, however, suffices to determine the nuclear wave
function. The magnetic moments for these cases are listed in
Table III. For odd-odd nuclei, the magnetic moment is in general
unique only when the proton—as well as the neutron—configur-
ation is that of a-single particle. By making more explicit as-
sumptions about the character of the forces, one can obtain
magnetic moments for more complicated many-particle con-
figurations (Hircucock, 1952; Frowers, 1952¢).

A comparison of the shell model magnetic moments with the
empirical data is given in Table IV. Nuclei are listed for which
magnetic moments are known, and for which the (jj) coupling
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TasLe III. Properties of charge symmetrized states of type

(J = 3/2)5_sp with T = 1/2.

Configuration Magnetic moments | Quadrupole Mirror
moments B-decay

protons ‘ neutrons Hj ‘ iy Q,/ | 9| (D7) (Dgp);

]

(Pafa) =7 (Psy2)? 379 | 308 | ¥11/15 121;225
(Pafa)* Py ** | —1.91 | —1.15 F2/3 121225
(dgj) 1 (dsf2)? 0.12 0.26 F11/15 121/225
(dafa)? CONES 1.15 1.01 F2/3 121225

The table compares magnetic moments, quadrupole moments, and f-decay
transition probabilities for the charge symmetrized state J with the corresponding
quantities for the single-particle state j. Magnetic moments have been given by
MrzusHima and Umezawa (1952), quadrupole moments by Horie and YosHIDA
(1951) and Frowenrs (1952¢), and f-decay matrix elements by Koroep-HANSEN
and WINTHER (1952).

shell model provides a unique prediction u,. It is seen that, in
most cases, the ‘deviations from u, are of the order of a half to
one magneton. The cases of agreement between u, and u,, are
principally the p,,-nuclei and the self-mirrored odd-odd nuclei
(cf. pp. 67 and 81).

b) Moments of the Coupled System.

For the coupled system consisting of a single particle and
the nuclear surface, the magnetic moment is given by

= <gs,+gl,+grR, >y_1 (IV.3)

where gy is the g-factor for the angular momentum carried by
the surface. For a uniformly charged nucleus, we have*

gr = Z|/A. (1V.4)
If j remains a good quantum number, (3) reduces to

u=<gij, + grR, >n_1

(IV.5)
=gl —(9;,—9r) <R, >p_1.

* In the discussion of the empirical data we employ for simplicity the fixed
value gp = 0.45, except for the self-mirrored odd-odd nuclei for which gr = 0.5.
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TasLe IV. Comparison of magnetic moments with shell
model values.

Configurations
Nucleus I Hobs Hp
protons neutrons
aBe? (Pas2)* (Pay2) 1 3/2 —1.18 —1.15
sB1° (Paja) ™1 (Paya) ™t 3 1.80 1.88
B (Paj) ™1 — 3/2 2.69 3.79
oG - P12 1/2 0.70 0.64
N4 Py P1ja 1 0.40 0.37-
N8 Pifa — 1/2 —0.28 —0.26
OV — dy/y 5/2 —1.89 —1.91
oF1? Sy/s — 1/2 2.63 2,79
11 Na% (ds0)® (dyyg)? 3 1.75 1.73
1815 (ds7) 1 — 5/2 3.64 4.79
1451%° — Sy/a 1/2 —0.56 —1.91
1P Sy/e — 1/2 1.13 2.79
165% — dy/e 3/2 0.64 1.15
17C1%% dyys (dsys)® 3/2 0.82 0.26
172G dajy — 3/2 0.68 0.12
19 K30 (datg) 1 — 3/2 0.39 0.12
1540 (dga) ™1 fare 4 —1.30 —1.68
A (f272)® — 72 5.15 5.79
37Rb% (Foj2) (gosa) 1 2 —1.69 —2.13
37Rb87 (Paja) 1 — 32 2.75 3.79
35187 — (goj2) 1 9/2 —1.1 —1.91
35 Y 20 P2 — 1/2 —0.14 —0.26
alr® - dyyy 5/2 —1.1 —1.91
s2PD2¢7 — Py/2 1/2 0.59 0.64
52 BiZ0? hp/s — 9/2 4.08 2.62

The table lists the nuclei with measured magnetic moments, for which the
shell model yields unique p-values, without specific assumptions about the nuclear
forces other than charge independence. For references to the empirical data, cf.
Addendum to Chapters IV and V. The odd-A nuclei are single-particle configur-
ations, except for Be® and CI% for which cf. Table III. The odd-odd nuclei mostly
have two-particle configurations, in which case the measured spin uniquely deter-
mines the state. For Na*? the total g-factor follows from the symmetry of the
configuration, éven though .the state is not unique.

For the ground state with I = j, the dependence of << R,> on
the coupling strength has been discussed in § ITb and is illu-
strated in Fig. 5. In the limit of large a, we get from (11.20), for
I =j> 3/2, the strong coupling value (cf. A. Bour, 1951)

I ;
te = tsp —(g; —gr) i1 (IV.6)
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For I =j = 3/2, the limiting value p, differs somewhat from (6)
(cf. Ap. 111.9); for I =j = 1/2, there is no coupling to the sur-
face and u = pgp.

The values of u, for j a constant (j = I) are plotted as dotted
lines in Figs. 7 and 8.

If there are neighbouring single-particle states j', which are
admixed by the surface coupling, the magnetic moment may be
strongly influenced. In the perturbation approximation, one
obtains from (Ap. I1.3 and 4)

H = IU'SP 2
ho av.7)
_i_m?]Z" {_‘xjj’ (gjﬁgR) +ﬁji' (g]"—gR)} (ﬁw+Ajj'> ’

where the coefficients ¢ and § are given in Table V, and where
4 represents the spacing between the particle states j and j'.

TasLe V. Coefficients in magnetic moment shifts produced
by weak surface coupling.

I el W i F=itt | p=jt2
e« | Bl a| B | B8] a]| 8| «| B
1 1 3 7
vy o= = = = —| 7| 3 "§| 1| 1
. o 9 9 18 27 117 81 729
3/2 | 5| 3| —| 7| 0| 33| 1™
s | 2| L] 3| 1| s | 10] 7| 135 1975
2 2 7 49 49 21 147 21 147
gp | 8| 2| 7| sl owo| | s 15| 25 3185
10 10 10 20 9 66 198 22 198
o | 8L 4| 5t. ma| taal | 81| 9815103 ) 76545
7 7 77 847 121 143 | 1573 286 3146

The magnetic moment shift in a state I = j, arising from the sharing of
angular momentum between the particle and the surface, and from the admixture
of neighbouring orbitals j/, is given in the weak coupling region by (IV.7). The

table lists the. coefficients @jjss and ﬁ]-]-,, occurring in this equation,

If the surface admixes the spin orbit partner, there is an

additional contribution to x from cross terms in j, j* giving (cf.
Ap. IL5) '
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B . 3 (2j—1)(2j+3)
u =+ (gs—gl)4(21+1) (G+1)* ]

ho
ho+A4;.)

where the upper and lower signs refer to the cases of a particle
and a hole, respectively.

In strong coupling, the magnetic moment of a state with
I=K= Q2> 3/2is given by

(IV.8)

_ I ! V.9
te =719 T 719 (Iv.9)
where
1

is the g-factor associated with the particle motion in the deformed
nucleus and can be evaluated for wave functions 7, of the type
discussed in § IIb. ~

For the special case of 2 = K = 1/2, the value of u, is most
easily obtained from (3) by means of the expectation values of
Jz» given by (11.19), and of s, given by (Ap. II1.2).

For many-particle configurations, magnetic moments can be
derived for the different coupling schemes discussed in § Ilc.
In the strong coupling scheme, in which the state is characterized
by the £, of the individual particles (cf. Fig. 6a), formula (9)
still holds where, for odd-A nueclei, g o is the g-factor for the last

odd particle. For odd-odd nuclei, we have

1
9o = ¢ Wadat29p)- (Iv.11)

If the nuclear forces first couple the particle to a resultant J
(cf. Fig. 6b), the magnetic moment is obtained as for a single
particle with a g-factor equal to g;.

¢) Comparison with Empirical Data.

A detailed application of the coupled model to the inter-
pretation of moments of individual nuclei is given in the Ad-
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dendum to Chapters IV and V. In the present section, we con-
sider some of the general trends of the empirical data and
summarize the conclusions that can be drawn from the more
detailed analysis.

The surface coupling may affect the magnetic moment in
two ways, by the transfer of angular momentum to the surface

TasLE VI. Magnetic moments in strong coupling.

Configuration
Nucleus I Hobs He Up
protons neutrons
Be? (p,,/g)2 (p:,/,,)'_1 3/2 —1.18 —0.73 —1.15
;B (p:,/g)"1 —_— 3/2 2.69 2.37 3.79
507 — dgy 5/2 —1.89 —1.04 —1.91
12Mg® | (dgpp) ™2 (dgjp) ™1 5/2 —0.86 | —1.04
13A127 (dgs) ™1 — 5/2 3.64 3.75 4.79
215¢%8 far2 (f2)20* 712 4.76 4.86
23Ti“ (fv/z)z (fv/z;)_1 7/2 —1.10 —1.14
21C0%7 (fv/z)—l (Pa/z: fs/g)s 7/2 4.6 4.86
21G0% | (foy2) 7! (Psjas Fo/a)* 7/2 4.65 4.86
385187 — (gaja) 9/2 —1.1 —1.20 —1.91
aNb®® Jafa (ds/z» 97/2)2 9/2 6.17 5.93
aIn™® 4 (g7a) Tt [(dsjer Go/as Rayy)™ 9/2 5.49 5.93
I8 (gy0) = [(dyjn Goje laye)®| 912 5.50 5.93

The table lists the relatively simple nuclei whose odd structure is of (j):*:1
type with a j larger than that of neighbouring orbitals. The last three columns
give the observed moments, those calculated for strong surface coupling, and
those resulting from particle forces with the neglect of surface coupling. The
latter are only listed where the particle forces lead to a unique coupling scheme.
For reference to experimental data, cf. the Addendum.

and by the admixture of near-lying particle orbitals. In a special
class of nuclei, the former effect can be studied alone, provided
the coupling is strong. Thus, if the odd-partiele j is the largest
in the corresponding shell, the strong coupling solution with
£2 = j will have no other orbitals admixed.

Nuclei of this type, whose odd configuration consists of a
single particle or a single hole, are listed in Table VI. The three
last columns give the empirical moments and those calculated
for strong and vanishing surface coupling.
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It is seen that the assumption of a rather strong surface
coupling makes possible an approximate interpretation of these
moments. The principal exception is 407, for which many prop-
erties attest the expected undeformability of the very stable ;O¢
core (cf. § V). In some cases, the magnitude of py, is 2 few
tenths of a magneton below that of u., which may possibly arise
from an interaction effect on the nucleon moment (cf. p. 51).

The rather fully developed strong coupling situation indicated
by the empirical values in Table VI implies, according to (5)
and Fig. 5, that coupling strengths of x > 1.5 are required if
the nuclei are described in terms of a single particle coupled to
the surface. Such values of x are somewhat larger, by about a
factor two, than those estimated for a single particle in the hydro-
dynamic approximation (cf. p. 25), but may be understood in
terms of the increased coupling expected from the influence of
the even structures (cf. p. 31). In cases where an even structure,
for a spherical nucleus, would form a closed sub-shell, it may
still be active, provided the energy gap to the next higher levels
is not too large (cf. Ap.I).

A similar effect on the magnetic moment is expected for all
nuclei with 7> 3/2, and the strong coupling value g, (cf. 6 and
Ap. II1.9) corresponding to j = I is plotted in Figs. 7 and 8 as
broken lines. However, for nuclei other than those listed in
Table VI, there are additional contributions to wu, arising from
the interaction between neighbouring particle orbitals.

This effect is of special interest for / = 1/2 nuclei, where it
provides a mechanism for strong surface coupling. Thus, for
(1/2+) nuclei, the strong interaction between s,,, and the dy;, and
dy, states may lead to a large deformation. The effect on the
moment depends especially on the sign of the deformation (cf.
Fig. 11). Thus, the expected prolate shape of F!? leads to a very
small moment shift, while the expected oblate shape of Si* and
P3! explains the observed large deviations of the moment from
that of a single-particle s, state (cf. Ad.i).

For the (1/2—) nuclei, the admixed states have relatively little
effect on the moment. In the first p-shell, the large pyp —pspq
splitting in addition leads to rather small amplitudes of admix-
ture. In higher p-shells, there is a considerable tendency for the

moment deviations, caused by the py, and f;, admixtures, to
Dan. Mat Fys.Medd. 27, no.18. 4
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cancel, which provides an understanding of the strikingly small
spread of the moments of this group (cf. Ad. ii).

Another effect of the interconfiguration admixtures can be
studied for the (3/24) nuclei. Due to the dj, —ds, interference,
the magnetic moment depends, as for the (1/2-+) nuclei, on the
sign of the deformation (cf. Fig. 12) and thus distinguishes be-

TapLE VII. Summary of magnetic moments for A < 50.

Configurations
Nucleus I Hobs 7 He
protons l neutrons

1Be? (pay2)? Py~ 1 32 [—1.18|—1.15! —0.7

;10 (Ps2)™? (Paj)t 3 1.80| 1.88 1.79

;B! (Psya)™? —_ 3/2 2.691 3.79 2.3

G128 — P/ 1/2 0.70| 0.64 0.64 to 0.75
N3 Pyjz P/ 1 0.40| 0.37 0.40 to 0.47
N8 D)2 — 12 |—0.28{—0.26 | —0.27 to —0.41
Kol —— dsje 5/2 |—1.89|—1.91| —1.04

o1 Sy/e — 1/2 2.63} 2.79 2.5 to 2.8
11 Na* (ds)2)* (dy/2)? 3 1,751 1.73 1.71 to 1.78
1 Na% (ds2)® (ds/s) "2 3/2 2.22 2.2 to 2.5
1 Na (dsfe)® (dga) 1 4 1.69 1.4 to 1.8
12 Mg® (dsjp) 2 (dyn)~* | 5/2 |—0.86 —1.04

13A1%7 ((15/2)_1 —_ 5/2 3.64} 4.79 3.75

1451%° — L 1/2 |—0.56(—1.91| —1.2 to —0.6
1632 S1/s — 1/2 1.13 2.79 1.9 to 1.2
165%8 — dgfa 3/2 0.64] 1.15 0.8 to 0.2
1,CI%8 dgjs (d39)* 3/2 0.821 0.26 0.5 to 1.2
17G1¥° ds/y — 3/2 0.68; 0.12 0.5 to 1.2
1530 (413/2)“1 — 3/2 0.391 0.12 0.3 to —0.1
1 IK50 (dyp) ™t T2 4 [—1.30{—1.68] —1.0 to —0.3
1 K4 (dy/e) (/.,/2)2 3/2 0.22 0.3 to —0.1
19142 (dye) ™ (f2/2)® 2 |—1.14 —0.7 to —0.9
235¢* Fap2 C g 7/2 4.768 4-86

22 TI%® (fa7e)? ()™ 7/2 |—1.10 —1.14

The table compares the observed magnetic moment u,, with the moment u,
given by the shell model, with neglect of surface coupling, and the moment p,
obtained for strong surface coupling. The value of My is given only where it is

independent of special assumptions about the nuclear forces. In cases where the
strong coupling state. contains several values of j, the moinent may be rather
sensitive to the equilibrium value of f§, and the values given for x, correspond to

deformations in the range 0.1 < < 0.4. For a more detailed discussion of u,, and
for references to the empirical data, c¢f. the Addendum.
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tween particles and holes. Such differences are indeed apparent
in the empirical data (cf. Table XIV).

Further effects of the interaction of neighbouring particle
states are discussed in the Addendum. The states often have very
different magnetic moments, and their interaction may lead to
large moment shifts.

The analysis of magnetic moments for nuclei with A < 50
is summarized in Table VII. The table compares the observed
moments with those calculated for vanishing and strong surface
coupling (columns six and seven, respectively). In those cases
where the strong coupling state contains particle orbitals of
different j, the magnetic moment may depend rather sensitively
on the magnitude of the deformation, and the table lists moments
appropriate to deformations in the range 0.1 < g < 0.4. The
expected values of § vary considerably from nucleus to nucleus,
and estimates of values appropriate to the individual nuclei are
given in the Addendum. :

It is seen from the data collected in Tables VI and VII, and
from the discussion in the Addendum, that the unified descript-
ion of the nucleus, in terms of the coupled system of particles
and collective oscillations, makes possible a rather systematic
interpretation of the magnetic moments of nuclei with sufficiently
simple configurations. The empirical data give evidence for the
expected approach to the strong coupling scheme, except in the
immediate vicinity of major closed shells.

An interpretation is also possible of the moments of many
heavier nuclei not included in Tables VI and VII, wherever the
configurations are sufficiently well known (cf. the Addendum).
An important anomaly is the as yet unexplained large moment
shift of ¢Bi%%® with its single-particle configuration. The stability
of the ,Pb2% core with its closed-shell structure implies a rather
negligible effect of the surface coupling, as confirmed by the
small quadrupole moment. The observed moment shift thus prob-
ably reflects some unexpected feature of the particle structure.

Besides the contributions to the nuclear magnetic moment
from the individual particles and from the surface, there may be
an additional effect arising from the interaction of the nucleons.
Such interaction effects have been described as exchange mag-

netic moments, and have sometimes been considered as a partial
4%
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quenching of the meson cloud responsible for the nuclcon mo-
ments (ViLLARS, 1947; Sacus, 1948; Ossorn and FoLrpy, 1950;
SerucH, 1950; Mivazawa, 1951, 1951a; BrocH, 1951; pE-SHALIT,
1951; Scurrr, 1951; JexsenN and Maver, 1952; Russex and
Seruci, 1952; Ross, 1952).

It is of interest to employ the analysis of the empirical mo-
ments to obtain evidence on the possible magnitude of these
phenomena. In the j = I —1/2 nuclei, there are small residual
moment shifts which may perhaps be interpreted as arising from
interaction effects. For the p,;, and dy, configurations, the data
are consistent with a reduction of the infrinsic nucleon moment
by about 0.3 magnetons (c¢f. pp. 69 and 74). Somewhat larger
effects may be present in the f;;; and possibly also in the g,
nuclei (cf. pp. 78 og 79). It seems somewhat difficult, however,
to interpret the moment shift of Bi®** (hy,) in this way, since
an effect five times larger would be required (cf. p. 81). The
moments of the j = I+ 1/2 nuclei, with the exception of 0%, do
not secm inconsistent with a.reduction of the nucleon moment
by a few tenths of a magneton (ef. Table VI).

That interaction contributions to the moment are in general
small compared to the effects of the surface coupling is further
supported by the correlations of magrietic moments with quadru-
pole moments (cf. p. 70) and especially with beta. decay ft-
values. Thus, for all the nuclet in Table VII with 2 — N—1,
for which there are major discrepancies between u.,, and u,,
the ft-values of the corresponding mirror transitions give strong
evidence that these discrepancies are associated with modifications
in the nuclear coupling scheme rather than in the intrinsic nu-
cleon moments (cf. § VIIIc.i). In these cases, the coupled model
simultaneously improves the agreement with both the magnetic
moments and the beta decay data (cf. Table XXIX).



V. Quadrupole Moments.

The magnitude of the electric quadrupole moments reveals
directly their collective origin (Casimir, 1936). At the same time,
the trends are strongly correlated with the nuclear shell structure
(Gorpy, 1949; Hivn, 1949; Townes, FoLEy and Low, 1949;
RosenrELD, 1951). These dual aspects of the quadrupole mo-
ments find their explanation in the coupling between the particle
motion and the surface deformations (RAINWATER, 1950).

The importance of the deformations for the whole dynamics
of nuclear states implies intimate correlations between quadru-
pole moments and many other nuclear properties.

a) Shell Model Moments.

A single proton contributes a quadrupole moment

2j—1

Q] = < r? (3005213—1) >m=] = _m<r

>, (V.)
where the mean value of r2, although depending somewhat on
n and I, is of the order of 3/5R3. A single hole in a proton
shell yields a gquadrupole moment equal to (1), but of opposite
sign. For a single-neutron state, the quadrupole moment comes
only from the recoil and is Z/A? times the above value.

For configurations with several equivalent protons coupling
to a total J, the quadrupole moment is usually somewhat smaller
than the single-particle value. Examples of such configurations
are listed in Table VIII. For configurations involving both neu-
trons and protons, the values of Q; are given in Table III for
those configurations which lead to unique charge symmetrized
wave functions.
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Tapre VIII. Quadrupole moments for (j)? proton configurations.

u
7 \ Ik (5/2)% (7/2) (9/2)¢

32 0 —3/5 —1/5

52 0 13/14 —1/42
712 1/3 121/90
9/2 0 —5/11 { :832
11/2 5/49 2/39
132 11/60
1572 517 —7/102
17/2 7115
21/2 716

The table lists the ratio of the guadrupole moment Q; of the state (j)f, to
the value of Qj (ef. V.1}. The configuration (9/2)% has two states with J = 92
and the quadrupole moments listed are the extreme values obtainable by com-
bination of the two states. From the values of Q7 one can also calculate the
effective particle-surface coupling constants k; given by (IL31).

In Fig. 9 are plotted the measured quadrupole moments of
odd-A nuclei in units of |‘Qj ’ In the case of odd-neutron nuclei,
the value of l Qj‘ for a corresponding proton is used as a unit.
The most conspicuous feature of the figure is the magnitude of
|Q/Qj| which, in most cases, exceeds 2 and which, in some
regions, reaches values of 20 or more. Moreover, odd-neutron
nuclei have (-values comparable to those of corresponding odd-
proton nuclei. Shell structure is also apparent in Fig. 9, especially
in the expected change from positive to negative Q at the major
shell closings.

b) Moments of the Coupled System.

In the coupled model, the total nuclear quadrupoie moment
becomes

Q=20,+0s (V.2)

of which the first part is associated with the particle structure.
The second part is due to the surface deformation and is given by
(cf. I1.2)

3
Qs = ﬁ:ZR§<oeo>M=z (V.3)

5%
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Fig. 9. Quadrupole moments of odd-A nuclei. Quadrupole moments, measured in

units of the moment Q. of a single-proton state with j = I (cf. (1)), are plotted

for odd-A nuclei with 4 > 8 as a function of Z (odd-proton nuclei) or N (odd-

neutron nuclei). Similar diagrams have been given by Gorpy (1949) and by

Townes, FoLey and Low (1949). The experimental data are taken from the
references given in the Addendum,

[

=5

in the hydrodynamic approximation, where the nucleus is con-
sidered as an incompressible uniformly charged structure.
Quadrupole moments can be obtained from the various
solutions of the coupled system considered in § IIb and § Ile.
Thus, in first order perturbation approximation, the value of
Qs induced by a single particle may be found from (I1.9) and
(V.3) by considering only the w«,-part of the interaction. The
matrix elements of ¢, and Y, are given by (A.38, 76, 77, and 78)

and one obtains

3 21—1 k ., o
47 2(I+1) C 2. V-4)

Qs=

The presence of near-lying single-particle levels does not in-
fluence this result to first order in k.

|
o

X
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In strong coupling, we have (cf. A. 11 and 12)

3 1), )3
ay = fcosy (5 cos? 0—5) + Z; fsinysin? 6 cos 2 y. (V.5)
For the wave function (I1.15), only the first term in (5) contri-
butes to Qg, and one obtains

_B3K*—I(+1)
where
Q, = —3—ZR§<ﬁcosy> (V.7)

Von
gives the intrinsic quadrupole moment, measured with respect to
the nuclear axis (cf. (Ap.II1.10) for the special case of j = 3/2).
In the limit of strong coupling, we may replace § and y by
their equilibrium values. From the estimate (I1.22) for 8 we
get, for the ground state, I = K = Q; y = n, (cf. FEENBERG and
Hammack, 1951; GaLLonNE and SarLverTti, 1951, 1951a)

Qo= —troas1) ¢ %o (v-8)
for the intrinsic quadrupole moment. This result is just equal
to the perturbation value (4) for the total surface moment.

The factor preceding (), in (6) is a projection factor Py,
relating the quadrupole moment of a given rotational state of a
symmetric top to its intrinsic moment. For the ground state,
I = K, its value is (cf. A. Bonr, 1951)

1 2I—1
e I+12143°

(V.9)

In a similar way, the contribution of the particles in strong
coupling is reduced by the factor P,. The significance of P is
apparent for states of J = 0 or 1/2, where the nucleus, although
it may possess an intrinsic asymmetry (,, exhibits a spherically
symmetric charge distribution (Q = 0).

In intermediate coupling, it is convenient to write the quadru-
pole moment as '

Qs = Pgy(x) Q, (V.10)
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where Q, is given by (8) for a one-particle configuration with
J = 1. The projection factor Py(x) is then unity for x ({1 and
approaches the value (9) for x ) 1.

The behaviour of the quadrupole moment for intermediate
coupling may be studied for the case I =j = 3/2 by means of
the wave function illustrated in Fig. 4. Moreover, from the
solution of the coupled system valid for I = j»> 1 (cf. Ap.IV),
one obtains

3 2I+1 x?
(I—i—l)(21—+—3)l/4 4
x +§

Py(x) = 1 (V.11)

correct to terms of order I7%.
The gradual transition from weak to strong coupling is il-
lustrated in Fig. 10.

strong coupling Ilimit j>3

10

08y i>>1

TH)(2I+3
J(er+1)
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Fig. 10. Projection factor for quadrupole moments in the coupled system. The modi-
fication in the nuclear coupling scheme, arising from the interaction of the particle
with the surface, implies a reduction in the surface quadrupole moment, as com-
pared with that induced by a particle with m,; = j. This reduction is expressed

by the projection factor PQ (x) (cf. (10)) which depends on the coupling strength
x (cf. (IL.14)). For weak coupling (z{ 1), PQ ~ 1 while, in the Iimit of strong
coupling, PQ approaches the value (9) for j> 3/2. In strong coupling, the particle
has @ = (cf. Fig. 3) and thus induces the full quadrupole moment with respect
to the nuclear coordinate system. The projection factor PQ then gives the reduction

of this intrinsic quadrupole moment Q, caused by the deviation of the nuclear
axis from the fixed z-axis.

The figure illustrates the gradual development of the projection factor for
j»1 (cf. (11) and Ap. IV) and for j= 3/2 (obtained from Fig. 4). The strong
coupling solution for j=3/2 discussed in Ap. IILii indicates that the curve for
j = 3/2 may approach a value somewhat in excess of unity, for larde x.
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¢) Discussion of Empirical Data.

The coupling between particle motion and surface deforma-
tions provides a mechanism capable of producing nuclear quadru-
pole moments of the observed order of magnitude (RAINWATER,
1950). In this way, one can account for important trends in the
empirical data, in particular the rapid increase of quadrupole.
moments with A, and the comparable magnitudes of moments
of neighbouring odd-proton and odd-neutron nuclei. Also the
increase of the moments, as one moves away from closed-shell
configurations, which leads to maximum values in the middle
of shells, is a direct consequence of the increase in the coupling
associated with many-particle configurations (cf. § Ilc.ii).*

The empirical quadrupole moments provide valuable evi-
dence on the nuclear deformability and its dependence on shell
structure. Thus, it is found that closed-shell nuclei, as expected
(cf. Ap.I), possess a much greater stability against surface
deformations than is indicated by the hydrodynamic surface
tension. For both 40 and Bi®*"®, the empirical quadrupole
moments are of the order of the single-particle moments and
more than ten times smaller than the values estimated from the
surface deformation.

The interpretation of these moments as reflecting a sharply
decreased decformability is supported by other evidence. Thus,
the first excited state of &PDb2?°® has an energy about twice the
hydrodynamical phonon energy, and the first excited state of
80 has the anomalous (0 +) character (cf. § VIc.i). Moreover,
the magnetic moment of O is very close to the single-particle
value; in this respect, &Bi?°® forms an exception, exhibiting a
large moment shift of still unexplained origin (cf. p. 81).

The quantitative estimate of quadrupole moments depends
sensitively on the assumed surface properties as well as on the
details of the particle configuration. However, even a rather
crude analysis of the empirical data reveals significant short-
comings of the hydrodynamical model. Thus, for nuclei whose

* PrirscH (1952) has discussed the trends of quadrupole moments, but
it appears that the states. considered do mnot in general represent nuclear ground
states, both because £ = I and beeause the chosen configurations do not fill
the lowest particle orbitals.
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odd structure is that of a single particle, it is found that the
hydrodynamical estimate of the quadrupole moment produced
by this single particle, with neglect of the deforming influence of
the even structure, is already considerably in excess of the ob-
served value.

The comparison® is shown in Table IX. The values of @,
listed in column five, are obtained fromn (8), using the deform-
abilities of Fig. 1. For a single-particle configuration, the hydro-
dynamical estimate leads to an intermediate coupling situation
(cf. p. 25), and the values of the projection factor Py(x), in
column seven, are therefore not the full strong coupling values
(9), but have. been estimated from Fig. 10.¥* The resultant
Ohyar in the next to last column includes the coniribution from
the particle moment listed in column eight.

The assumption of a single-particle configuration with a
constant j in most cases considerably underestimates the deform-
ation; thus, the interaction of neighhouring particle orbitals may
increase the coupling strength, and the even structures alse in
general contribute to the deformation. The resulting approach to
the strong coupling scheme, which is also indicated by many
other nuclear properties, at the same time implies a decrease in
the projection factor.

In spite of the difficulty of a detailed estimate of these effects,
it seems clear from the comparison in Table IX that the hydro-
dynamical values of Q are in general larger than the empirical
ones by at least a faclor two.

This deficiency of the hydrodynamical model is consistently
exhibited by all nuclear properties related to quadrupole mo-
ments (ef. § VIc.ii and also p. 75), and gives an important indi-
cation as to how the collective properties of the nucleus differ
from those of an idealized liquid drop. It seems most likely that

* A comparison of empirical quadrupole moments with those induced by a
single particle has been given by van WaceNINGEN and pe Boer (1952). These
authors find similar Q,-values to those listed in Table IX, but have used the
limiting values (9) for PO and thereby obtained appreciably smaller values for
Q, than those resulting from the consistent one-particle hydrodynamical ap-
proximation employed in Table IX.

** Note added in proof: The projection factors employed in Table IX are
in agreement with the recent, more detailed, intermediate coupling calculations
by D. C. CroupHURY (ci. Tootnote on p. 24).
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TasLE IX. Comparison of quadrupole moments with hydro-
dynamic estimates.

Configuration
Nucleus I Qo z PQ(Q:) Qup Chydr Qons
- protons neutrons

sB1 (Psja)~* — 32| +0.07]0.71 | 0.7 | +0.023 | +0.06 | +0.06

07 — dy)y 5/2{—0.20|0.56 | 0.8 | —0.0013 | —0.16 | —0.005
(A1 | (dgyp) — 5/21+0.32|056| 0.8 | +0.065 | +0.30 | +0.16
16588 — da/e 3/2|—0.3110.73 | 0.7 0 —0.22 | —0.08
165%0 — (ds/z)_l 3/2| +0.310.73 | 0.7 0 +0.22 [ +0.06
17C1%8 dajz (ds/,,)2 3/2|—0.32|0.73 | 0.7 | —0.055 | —0.26 [ —0.084
1,C1%7 dyja — 3/21—0.3210.73| 0.7 | —0.055 |—0.26 | —0.066
20U Pafa (Pyja Fo)~¢ | 3/2]—0.61(0.76 | 0.7 | —0.08 |—0.48 | —0.13
L Paja (Pajes T2~ | 3/2|—0.61[0.76 | 0.7 | —0.08 |—0.48 |—0.12
51Gas? (pa/z)—1 — 3/21+0.67{0.77 | 0.7 | +0.08 +0.531{+0.24
2nGa™ | (pya) Tt — 3/2| +0.67 |0.77] 0.7 | +0.08 | +0.53{+0.15
0aGe™ | (Dy/a: fiy)® To/a 9/2| —1.3 |0.45] 0.9 0 —1.2 |—0.2
1pIntid (gg/,)"1 (ds/z, g-,/z,hn/,)“ 92| +2.4 [0.51] 0.9 | +0.21 +2.4 |+1.18
4o 1N (gﬂ/z)"1 (ds/z,gﬂz,h“/,)“ 9/2(+24 10511 0.9 | +0.21 +2.4 1 +1.20
s1Sb12 dy/a (dsjas Grjw hygy)?®| 5/2 | —2.1 |0.68 | 0.7 | —0.17 |—15 [—1.0
515b1%? 9a/s (615/2,‘(}7/2,1111/2)22 7/21—2.4 |0.58] 0.8 | —0.20 —2.1 |—1.2
53Bi%® hyje — 9/2|1—6.7 |0.68| 0.8 | —0.32 —5.6 |—0.4

The table lists nuclei with measured quadrupole moments, whose odd structure is
that of a single particle or hole. The intrinsic quadrupole moment @, in column five is
calculated from (V. 8). In column six are listed the coupling strengths obtained from (I1.14),
while' in column seven is given an estimate of the projection factor, based upon Fig. 10.
The resultant hydrodynamic estimate of Q appears in column nine; in this estimate, the

contrib

ution from the particle moment, listed in column eight, has been included. For

reference to Q_, ., cf. the Addendum.

the empirical data are to be interpreted as indicating that the
quadrupole moment associated with a given deformation is
overestimated by the hydrodynamical formula (3). Part of the
discrepancy may also arise from an underestimate of the mass
parameter B (cf. p. 13), in which case the coupling situation for
a given deformation would be closer to the strong coupling limit
with a resultant smaller projection factor Py.

Ratios of quadrupole moments of neighbouring isotopes often
do not depend on the specific properties of the collective deform-
ations, and may provide direct evidence on nuclear coupling
schemes. Thus, for example, the decrease of @ from ;C1¥ to
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1,C1%%, the latter with a closed neutron structure, indicates a
coupling scheme in ,,Cl3% rather closer to the strong surface
coupling than to that produced by particle forces (cf. p. 74).

d) ‘Correlations with Other Nuclear Properties.

The important role of the surface deformation for the struec-
ture of nuclear states implies that many nuclear properties follow
trends similar to the quadrupole moments and in particular
reflect the increasing deformations as one moves away from
closed shells. In some cases, there exist simple quantitative
correlations.

Intimately connected with the large quadrupole moments are
the low-lying nuclear rotational states with their characteristic
properties (cf. § VIc.ii). From the lifetimes of these states
(§ VIIc.iii) or their excitation cross-sections (Ap. VI) one can
directly determine the intrinsic quadrupole moment (@, The
values obtained are just of the rhagnitude deduced from the
spectroscopic Q-values (c¢f. Table XXVII). The comparison shows
that the relationship between @ and (), corresponds to a rather
fully developed strong coupling (cf. 9), as is expected for the large
deformations in question.

The study of transition probabilities between rotational states
thus provides an additional means of determining nuclear qua-
drupole moments. Since the method also makes possible the
determination of deformations in nuclei whose ground states
have I =0 or 1/2, and therefore Q = 0, it may add considerably
to our- knowledge of nuclear deformations.

The excitation energies of the rotational states also depend
on the nuclear deformation (§ VIc.ii) and have been observed to
exhibit trends parallel to those of the quadrupole moments
(Forp, 1953; cf. also Table XXIII). .

There is a tendency for large quadrupole moments to be
associated with relatively large deviations of the magnetic mo-
ments from single-particle values (cf., e. g.,, KoPFERMANN, 1951;
Mivazawa, 1951 a). The observed correlations can be understood
in terms of the magnetic moment shifts arising from the surface
coupling (cf. discussion on p. 71).
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Certain anomalies in the effective radius of the nuclear charge
distribution, derived from spectroscopic isotope shifts, can be
related to the observed quadrupole moments (Brix and Korreg-
MANN, 1949). In particular in Eu, the exceptionally large isotope
shifts can be attributed to the great difference in the quadrupole
moments of the two isotopes (Brix and KopreErmann, 1952).
The analysis indicates a relation between @ and @, rather close
to that of the strong coupling limit (cf. p. 77).



Addendum to Chapters IV and V.

Details of the Analysis of Nuclear Moments,

In this Addendum, we shall attempt a somewhat detailed
analysis of nuclear moments on the basis of the coupled model.
The main conclusions of this analysis have been summarized
in the preceding chapters (§ IVc and § Ve).

Many of the features of the moments are specific to the con-
figuration in question, and we therefore divide the odd-A nuclei
according to spin and parity and consider each group separately.
The discussion is confined to. nuclei with 4 > 8 (cf. footnote on
p- 38).

The tables of empirical moments are based on Mack (1950)
and KLINKENBERG (1952) whose ecompilations we have attempted
to bring up to date. The values listed represent what appears to
be the most accurate determination, but at the most two significant
decimals are quoted. Unless otherwise noted, references to the
original experiments can be found in the above compilations.

The magnetic moments include diamagnetic corrections
(DickinsoN, 1950) and the quadrupole moments have been
corrected for the polarization effect (STERNHEIMER, 1951, 1952).
As an aid in the assessment of the reliability of the quoted
quadrupole moments, the method of determination is indicated
by the letters 4, M, and C, referring to atoms, molecules, and
crystals, respectively.

i. (1/2 +) nuclei.

Although states of 7 = 1/2 have no spectroscopically measur-
able quadrupole moment to reveal directly the deformation of
the nucleus, the magnetic moments as well as other nuclear
properties (Ievel order, cf. below, and f-decay, cf. § VIIIc) give
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Table X. Moments of (1/2+) nuclei).

odd proton (ug, = 2.79) |odd neutron (#tg, = —1.91)

nucleus u nucleus I 14

JF18 2.63 145129 —0.56

1P 1.13 1gCA112 —0.59

a1 T1203 1.61 15Cd113 —0.62

g1 11208 1.63 so5n118 —0.92

5oSnt? —1.00

soonie —1.05

5o Te123 —0.74

55 1€1%8 —0.89

525129 —0.78

evidence of the influence of the surface coupling. Direct inform-
ation on the intrinsic nuclear deformation could be obtained
from energies, and especially from lifetimes or excitation cross-
sections, for rotational states in these nuclei (ef. § VIec.iii).

The empirical moments of nuclei of this type show peculiar
variations, as seen from Table X. Thus, for F19, i~ pg,, while
for P3 and Si* in the same shell, very pronounced moment
shifts are observed. In this region, the available single-particle
orbitals are d;5, s, and, a little higher, dys.

The interaction of these states gives rise to a large surface
coupling which makes it appropriate to consider the nuclei in
the strong coupling approximation.* The state X ol the last
odd particle with £, = 1/2 then corresponds to the lowest proper
value of the matrix (cf. I1.26 and Ap. IIL.1),

00 0 (0 _ V2 —7Y3
W =043, 0 |+ kBcosy T35 71/2 -7 V6| (Ad.1)
00 4y T\ 713 V6 —8

where Ay, and 4y, are the energies of the dyp and dy, states
with respect to the s;, level. There are additional terms in the
nuclear potential energy arising from the surface tension and
from the coupling energies of even groups of particles. While
these terms are needed for the determination of the equilibrium

* The moment shift arising from the s/, —d,, interaction in strong coupling
has also been considered by Davipson and FEeNBERG (1953).
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deformation, they do not otherwise influence the magnetic moment
of the nucleus. There are also rotational energy terms (II.30)
which may be of significance, especially in light nuclei; they
may here be considered as giving additional contributions to the
diagonal elements A in (1).

The magnetic moment of the state may be written

p = a; ps + agpg, (Ad. 2)

where o and a are the probabilities of the s and d states, respect-
ively, (aj = a§,2 +.a§/2). The moments g, and pu,; are given by
(cf. IV.3, I1.19, and Ap. II1.2; cf. also footnote on p. 44).

2.79)
Hs = HUsp = ﬁl.gll

_ 1.94 2.98 0.41]
Hg = ad2 H_ 1_19} ﬂg/z— {_ 2_50} 5o Qg2 1 {_0'07} 03/2}

where, in the curly brackets, the upper value refers to a proton,
the lower value to a neutron. In Fig. 11, the value of u, is plotted
as a function of

(Ad. 3)

Qg

(Ad. 4)

Q519

The asymmetry with respect to y = 0 is due to the interference
terms in (3).

In the region just after O'%, the value of 45, is small compared
to. the surface coupling (cf., e.g., the level inversion of F19,
discussed below) and will therefore be neglected in (1). On
the other hand, 4,5 is large (~5 MeV; cf. KOESTER, JACKSON
and Apair, 1951). If we ignore the influence of the dy, state,
the resultant state y, is independent of the parameters of the
model and corresponds to @’ ~ 0.5 a% and y = 0.

Even a small dy» admixture may, however, have a rather
large effect on u4, due to the interference term. The effect de-
pends essentially on the sign of y (cf. Fig, 11), which is determ-
ined by the sign of cosy. In the beginning of the combined
ds; — )5 shell, it is found that the lowest state has £2 = 1/2
and y = 0, corresponding to negative y, and one therefore
expects p ~ ug. At the end of the shell, we have y = = and

Dan.Mat, Fys. Medd. 27, no.16. . 5
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HMa

____________ I 4 (eroton)
ﬂ:/::]: ’/2

2
/=av5 .:,o+ ad/ud

/ud(pro{on)

 (neutron)

e --------ﬂp@euz‘ron)

Fig. 11. Magnelic moments arising from d-state admixture in I =02 =1/2 siafes.
In the absence of surface coupling, these states would be pure s/, but the
coupling may introduce large amplitudes of neighbouring particle orbitals, espe-
cially d states. In the region after O'®, the s,;, and dy/, states are close-lying and
one obtains, in strong coupling, ag ~ §
magnetic moment remains equal to the single-particle value, but the d state moment
is very sensitive to a small admixture of dg, state. The figure gives u  as a function

of the relative amplitude y of the dj/, state, which can be obtained from (1). The

strong asymmetry of p; with respect to y =0 implies that the moment is espe-

cially sensitive to the sign of y, which again depends on the sign of the deformation
(y<0 for y=0; y>0 for y=na).

and a} ~ 3" The s,;, state part of the

positive y, and very large moment shifts, of one or two magnetons,
may occur.

Thus, the striking difference between the F, and the Si and P
moments may be understood in terms of the opposite shapes of
the nuclear surface. The moment of F!* with a single proton
(y << 0) can be approximately accounted for by any deformation
B = 0.1. In the case of P? and S$i?®, where the odd configuration
is that of a single hole, the u-values are more sensitive to y, and
the empirical moments indicate y ~ 0.5. Such a value of y
would be obtained, if 4, ~5 MeV, for a deformation of §~ 0.4
(cf. Table VII). A deformation of this order of magnitude is
consistent with the hydrodynamical values for the surface para-
meters.
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A perturbation calculation of the eflects of the surface coupling
on the magnetic moments gives similar characteristic differences
between I'** and P*, due to the influence of the dyy, — dy, inter-
ference. However, the magnitude of the observed shifts shows
that we are outside the perturbation region and indicates that
the strong coupling situation may be approximately realized.

The level shifts arising from the coupling of the s, and d;p
levels to the surface may explain the difference in ground state
spin between F'7 (I = 5/2) and F* ({ = 1/2). The comparison
of the coupling energy (1) for £ = 1/2 with that corresponding to
{2 = 5/2 shows that the surface coupling favours the spin I = 1/2.
Thus, the increased deformation in F'* as compared with F'7,
resulting from the addition of the two neutrons,  depresses the
I = 1/2 level with respect to the I = 5/2 level.

In the case of TI?* and TI%*% the s;, and dy, states are
near-lying, while the dy, state is about an MeV lower. The equi-
librium shape is expected to be y = x and, if one first ignores
the influence of the dy, state, one finds a® = 0.5 a2, which cor-
responds to a magnetic moment ¢ = 1.20. However, the pre-
sence of the d;;, state will tend to increase the moment some-
what (leads to large negative values of y). Similarly, the expected
small negative value of 4y, increases a: and thereby also the
moment.

The remaining nuclei, listed in Tabie X, cannot be studied
in as much detail as the above cases due to lack of knowledge
of configuration assignments.

ii. (1/2—) nuclei.

A striking feature of the empirical moments of this type of
nuclei, as compared with all other types, is the close grouping
of the values (cf. also Figs. 7 and 8). Apart from the two lightest
nuclei, N*®* and C23, the moments are closely clustered around
the values ¢ = —0.12 for odd proton nuclei, and u = +0.56
for odd neutron nuclei.

This characteristic feature is a simple consequence of the
present model and is largely independent of the coupling. The
main interacting states which produce the coupling to the sur-
face are here py, and f;,. In perturbation approximation one
obtains, from (IV.7) and Table V, the resulting shift

5
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_[—0.22]/ ho ? | 0.22 ho 2,
a"{+o.18}(ﬁw+143ﬂ]>“ ﬂ—o.w}(nwﬂaﬁml)x' (Ad.5)

Except for N5 and C!3, one expects Ayp.~ Agp < ho, and so
the moment shift practically vanishes.

A similar situation is found when the coupling is strong.
The potential energy matrix is then the same as (1), and du takes

the form
0.55 0.37
du = —{_0'45}(1?,2+{_0.30}a§/2. (Ad. 6)

Diagonalizing W’ -under the assumption Ay, ~ 4;,, one finds
that, irrespective of 4, the ground state has aj, ~ 0.67 azs, 50
that du practically vanishes.

The absence of a near-lying f;, state in C!* and N1® implies
a small moment shift outwards from the main group, as is ob-
served. For these nuclei, the large separation of the p,, level
from the combining py, level implies a rather weak coupling and
from (5) one obtains shifts of the order of 0.1 magneton, assum-
ing 435 ~ — 5 MeV and hydrodynamical surface parameters. A
similar effect would be obtained in strong coupling (cf. Table VII).

Although the surface coupling thus accounts for the relative
values of the observed moments, the position of the main group
of empirical values does not quite coincide with the single-
particle moment, which might be expected from the above cal-
culations. There thus exists a small residual moment shift, com-
mon to all these nuclei, and it is tempting to consider the pos-

TaBLE XI. Moments of (1/2 —) nuclei.

odd proton (u, = —0.26) odd neutron (ttyp = +0.64)
nucleus ‘ " nucleus “
,IN18 —0.28 G 0.70

spY 2 —0.14 345€77 0.53 **
4sRh1038 —0.10 * 70 YD171 0.5
A —0.11 ,sP1195 0.61
Agte? —0.13 soHg?? 0.50
ssPb2%7 0.59

* KunN and WoobgaTE (1951).
** DrARMATTI and WEAVER (1952 a).
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sibility that we may here be observing an interaction effect of
the type mentioned on p. 51. This interpretation would require
that the individual nucleons embedded in nuclear matter suffer
a reduction in the magnitude of their intrinsic magnetic moments
of dug ~ 0.3 nuclear magnetons.

iii. (3/2—) nuclei.

TasLe XII. Moments of (3/2—) nuclei.

odd proton (gg,= 3.79) odd neutron {(ug,) = —1.91

nucleus “n | Q nucleus ‘ 3 Q
;B! 2.69 +0.06 (M) * Be? -—1.18
29Cu% 2.23 —0.13 (C) 24Cr%8 —0.47 §§§
29C11%8 2.38 —0.12 (C) 25 IN10T « T(+£)0.2§
31 (Ga®? 2.02 +0.24 (A) 2505182 +0.7 §§ +2(A) 88
s1Ga’t 2.56 +0.15 (A) soHg?ot —0.56 +0.5 (A)
23A870 1.44 +0.3 (AT
35Br7? 2.11 +0.34 (A) 4
35 Br8! 2.27 +0.28 (A) 1
37,RDb87 2.75

* DEBMELT (1952). § KEssLER (1950).

Tt Murakawa and Suwa. (1952). 8§ Murakawa and Suwa (1952 a).

1 Kine and JaccariNo (1953). §§¢ ALpEr and Havsacm (1953) (added
in proof).

In the first pyj, shell, the moments seem to give some indication
of deviations from (j7) coupling (cf. also IngLis, 1952 and Ku-
RATH, 1952 a). The description of B! as a single py; hole, coupled
to the surface, does imply a rather large moment shift, but in
order to account for the observed moment, a coupling strength
of x ~ 3 is required (cf. Fig. 5 and (IV.5)). This value of x is
several times larger than the hydrodynamical estimate, which
may reflect a partial breaking up of the Pae shells. For Be?®,
with a ((pg2) %; (ps2)”') configuration, the observed moment
is close to that expected in the absence of surface coupling
(/LLP = —1.15; cf. Table III). However, a perturbation estimate
as well as the strong coupling treatment (cf. Ap. IILii) indicate
that the surface coupling should produce a reduction in the

magnitude of the moment by a few tenths of a magneton (cf.
Table VII).
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In the higher py, shells, a strong interaction is expected
between the neighbouring py, and fy, levels. While a pure
j = 3/2 state has the anomalous strong coupling behaviour,
considered in Ap.IILii, the pyy — f;» interaction may lead to
a stabilization of the surface shape and the usual strong coupling
scheme. For a single py, — fs» particle, the £ = 3/2 state with

, {00 5 11 6
W = (O A5/2)+kﬂcosyl/zﬁ%(6—2) (Ad. 7)

is expected to represent the ground state if Ay, > 0. For small
values of Ay, one finds for this state ayp ~ 2as,. A similar
situation is found for a pgp — f5z hole if Ay, << 0. The magnetic

2.15
—0.55
developed strong coupling may account for the moments of
Cr%, Cu® %, and Rb?®, whose odd configurations are those of
a single particle or hole.

A contribution to the moment may also arise from a small
- admixture of f;,, due to interference with the f;, state. This
effect may shift the moment by about 0.1 magneton, inwards
for a single-particle configuration (Cu and Cr) and outwards for
a hole (Rb), and may thus be partly responsible for the relatively
large moment of Rb?*. The largeness of this moment may also
in part reflect the closed neutron structure which is expected to
give rise to a lower deformability and thus to a less developed
strong coupling situation.

For the other nuclei in this group, which are essentially
many-particle configurations, the analysis is more complex.
However, it is expected that, during the simultaneous filling of
the py, and f; levels, 2 = 3/2 ground states will oceur in which
the last odd particle is predominantly of f;,; character. The
large moment shift of As?® may indicate such a configuration.
It is of interest that the corresponding odd-neutron nucleus, Nif?,
seems also to have an especially large moment shift.

The (3/2—) group of nuclei provides interesting evidence on
the correlation between quadrupole moments and magnetic
moment shifts, This relationship can especially be studied for

moment for this state is u, ~ . Thus, a rather fully
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isotopic. pairs for which the spectroscopic data are most un-
ambiguously compared. It has been suggested that there is, in
such cases, an approximate proportionality between éux and Q
(KorrErMANN, 1951). The examples of this rule among the (3/2—)
nuclei are listed in Table XIII. The existence of an approximate
relationship of this type can be understood from the fact that the
major part of du is attributed to the approach of the moment
to the strong coupling value g, and that also Q is relatively in-
sensitive to the coupling strength x. While the deformation in-

TasLe XIII. Correlations between magnetic moments
and quadrupole moments for (3/2 —) nuelei.

FElement a’U'A/ QA/
Sp4 42 Qa+2

. 5aC%3, 95 1.11 1.08 *
2 Gase, 7 1.44 1.59
25 Br7®, 81 1.10 1,20 **

* Krilger and MEYER-BERKHOUT (1952).
** DeaMeELT and KRUGER (1951).

creases, the projection factor decreases with x (cf. Fig. 10) and
the two effects tend to compensate each other in the relevant
coupling region. Thus, for two isotopes, the ratios of the du’s and
the Q’s are usually both of order unity and differ from this
value in the same direction. From this interpretation it is ex-
pected, however, that this particular correlation is not of a
general character, and, in fact, counterexamples are anticipated
(cf. K, p. 75).

Further evidence for a correlation between du and @ may be
seen in the general tendency, among the (3/2—) nuclei in the
region 29 < Z < 37, for large quadrupole moments to accompany
large magnetic moment shifts (cf. Mivazawa, 1951 a). Moreover,
certain trends in the moments can be understood in terms of
the expected deformability of the configurations in question.
Thus, the two largest magnetic moments are those of Rb%®’ and
Ga”!, both with closed neutron shells.
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iv. (3/24) nuclei.

TasLE XIV. Moments of (3/2 +) nuclei.

odd proton (ug,= 0.12) odd neutron (u,,= 1.15)
nucleus ©® l Q nucleus ©® ’ o
1,C1%% 0.82 —0.084 (A) 165%° 0.64 —0.08 (M)
17C1%7 0.68 —0.066 (A) 165% +0.06 (M)
10K2? 0.39 paXelst 0.68 1 —0.12 (A) t
1K 0.22 ssBal® 0.83
711182 0.16 * +1 (A)* seBal®” 0.94
7711193 0.17 * +1 (A)*
20AY7 0.14 %% 1 0.5 (A) ***

1 Na# 2,22 10Ne?t <0

* Murakawa and Suwa (1952a).  *** StemENs (1951).
**+ KELLY (1952). 1 Bowngr, Koch and RasMussen (1952).

The coupling of a pure dy, state to the nuclear surface has
only little effect on the magnetic moment, due to the rather small
value of (9; — gg). In intermediate coupling, the moment shift
can be obtained from Fig. 5 and (IV.5), and in strong coupling,
the approximate treatment in Ap. IIl.ii indicates a limiting
moment shift inwards of only a few tenths of a magneton (cf.
Figs. 7 and 8).

While a pure j = 3/2 state leads to the anomalous strong
coupling scheme with no definite equilibrium shape y (cf. Ap.
ITLii), the interaction of neighbouring orbitals or the presence
of an even non-closed structure may lead to a stabilization of
the nuclear shape at the positions y = 0 or m.

If the shape is such that the ground state has 2 = 3/2 (y = =
for (d3,2)+1, or y = 0 for (d3,2)”1), the W’ matrix is the same
as (7), where 4;, is now negative and represents the spin-orbit
splitting. In Fig. 12 is plotted the magnetic moment as a function
of z = agp/ay,, and one sees the characteristic asymmetry
resulting from the interference between the spin-orbit partners.
With increasing deformation, the moment moves rapidly away
from pg, for a single-particle configuration (y = n; z < 0) and
the opposite way for a hole in the dyp shell (y = 0; z> 0).

For the opposite shape (y = 0 for (dge) ¥, or y = a for
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A (proton)------—— -
/ J(proton)
/a'(/)rOfOﬂ) i n:K:l:% 2
s (neutrom)----\ - {_-_x ; L,
Ao (pro fon? _______ \ ______ 2'/2 1 . :
-1 N—"1"27 \ -1
i (neutron) 22%73_ ‘ \—//u(neuz‘ron)
%
+1 1
neutrony. - __.
(a) z ¢ (b)

Fig. 12, Magnetic moments arising from decoupling of spin and orbit in d-siates
with I =0Q = 3/2. In states of (3/2-+) character, the surface deformation leads
to a particle state which is a combination of dy, and d,. The figure shows the
nuclear magnetic moment for the I = K = {2 = 3/2 state 'as a function of the
ratio of the dy, and dy;, amplitudes. Fig. 12a gives the moment in the region of
predominantly d;;, state and the values Psp, correspond to an uncoupled dy,

nucleon. Fig. 12b gives the moment for a predominantly d;;, state with Q = 3/2,
such as may occur for (d,;,)® configurations. The value of Hp corresponds to an
uncoupled (ds;;)%s/, configuration.

(dsp)™"), one obtains K = Q = 1/2, but the ground state still
has I = 3/2 (cf. I1.24). Also the sign of the quadrupole moment
is the usual one (Q <0 for (dyp)*! and Q> 0 for. (dy)™"),
since the reversed sign for Q, is compensated by a change of
sign of the projection factor (V.6). The W’ matrix is the same
as (1) and the magnetic moment exhibits the same difference
between particles and holes as for the 2 = 3/2 state, but the
effect is somewhat smaller in magnitude.

The expected trends are found in the empirical magnetic
moments which, for the (dg,)*' configurations (S3%, ClI35 37,
and Xe'#), ave appreciably shifted inwards with respect to the
moments of the (dg,)”" configurations (K% 41, Bal®s 187 Jr191, 193
and Aul?").

In the first d3s shell, where the level orders are best known,
one finds that the coupling to the dy and s, states favours
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the shape y = & for the isotopes of S and Cl as well as of K.
The presence of two fy; neutrons in K** further stabilizes this
shape. For S3% and CI?» %7, the moment values y,, listed in Table
VII, are obtained from Fig. 12, using A5, ~ — 5 MeV, and the
observed moments are consistent with a deformation of about
f = 0.2. For K3 4, the gy, values in Table VII refer to the state
(y = n, 2 = 1/2, I = 3/2) and include the influence of the s,
admixture (dy, ~ — 5 MeV).

The influence of a small interaction effect on the nucleon
moment, of similar magnitude as that discussed for the (1/2—)
nuclei (cf. p. 69), may be indicated by the moment of K%,
which is larger by about a tenth of a magneton than the estim-
ated values.

The interpretation of the K3° — K4 moment differences, as
arising from interference with the dy;, level, receives some further
support from the measured hyperfine structure anomaly (Ocus,
Logan and Kusch, 1950), which gives information on the distri-
bution of the magnetic moment over the nuclear volume (BoHr
and Weisskoprr, 1950; A. Bour, 1951a; EISINGER, BEDERSON
and Ferp, 1952).

The quadrupole moment ratios in the (3/2 +) group provide
further interesting information on the coupling scheme. Thus,
the decrease of Q from CI?® to CI*7 is, as expected, due to the
extra deformation caused by the unfilled neutron shell in CI%,
which is also indicated by the observed magnetic moments of
these nuclei. The opposite trend would have resulted if the
particle forces dominated over the surface coupling, in which
case the particle structure in Cl3% would have had a quadrupole
moment and an effective coupling constant 11/15 times that of
CP7 (ef. 11.31 and Table III).*

The quadrupole moments of the odd-neutron S isotopes are
of the same order of magnitude as those of the neighbouring
Cl isotopes, thus confirming the collective nature of these moments.
The change of sign of Q from S% to 825 is as expected, and the
reduction in magnitude can also be understood in terms of the
smaller deformability of a shell of 20 than a shell of 16. A determ-

* This conclusion is opposite to that drawn by FrLowers (1952c¢). However,
in this case, as well as in others in Table II of this reference, it appears necessary

to allow for the difference between adding neutrons at the beginning and end
of a shéll.
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ination of the magnetic moment of S3° would be of interest, since
its configuration (dy,)”", implies that it should be about a third
of a magneton larger than the moment of S33.

As already mentioned, the absolute values of the quadrupole
moments of the Cl and S isotopes are considerably smaller than
the hydrodynamical estimates (cf. Table 1X and the discussion
on p. 59). In this connection, it is of interest that the interpreta-
tion of the magnetic moments of these nuclei provide independ-
ent evidence for appreciable deformations, of the order of those
estimated in the hydrodynamical approximation.

Evidence on the quadrupole moments of the K isotopes
would be of interest. They are expected to be positive and Q
(K%Y) should be larger than Q (K3?) because of the deforming
influence of the f;, neutrons. The larger deformation is also
indicated by the magnetic moments which, for these nuclei,
decrease with increasing deformation. Such a correlation between
() and du is opposite to that usually observed (cf. p. 71).

The two last nuclei in Table XIV, Na?® and Ne?!, occur during
the filling of the dy, shell and have been classified by the shell
model as (dgz)%s, The spin I = j — 1 indicates that the surface
coupling dominates over the particle forces (ef. § IlLiii). The
strong coupling state is then described by £2 = 3/2 and has a

2.00
—0.42
figuration. Small admixtures of the d,, state will produce shifts
from this value, depending on the nuclear shape. For y = 0,
the moments increase in magnitude, while they decrease for
¥ = n. From considerations of the level filling in this region,
Na?? is expected to prefer the y = 0 shape (positive Q)*, in
accordance with the indication from the observed u-value (cf.
Table VII).

limiting magnetic moment of yx, = { } for a pure con-

v. (5/2+) nuclei.

The magnetic moments of the nuclei in the first d;, shell
may, as already mentioned (cf. Table VI), be interpreted in
terms of the coupling of a d;, state to the nuclear surface. In

* Note added in proof: Recently, P. SaecaLyn, working with F. BITTER,

has found evidence for a positive quadrupole moment of Na?%, (Private com-
munication from Professor BITTER).
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TasLe XV. Moments of (5/2 +) nuclei.

Addendum: Details of Moments.

Nr. 16

odd proton (u, = 4.79) odd neutron (py, = —1.91)
nucleus " Q nucleus 23 Q
1sA127 3.64 +0.16 (A) 5017 —1.89 —0.005 (M
51Sh12! 3.36 —1.0(A)*** | |, Mg® —0.86
551127 2.81 —0.6 (A) soZr® —1.1
ssCstst 3.48 * caMo% —0.91
sePridt 3.9 = 12Mo?? —0.93
osEulsl 3.6 +1.2(A) 2, Paes —0.6 §

s FEuss 1.6 +2.6 (A) 1Cd11 ¢ —0.7 1
75 Relds 3.17 +2.9(A)
s Rel?’ 3.20 +2.7 (A)

* BErLamy and SmrtH (1953). 1 Refers to excited state (E = 247 keV);
** LEw (1953); Brix (1953). AEPPLI et al. (1952).
*** DeERMELT and KrUGER (1951 a). tt Suwa (1952).
§ STEUDEL (1952).

3.75
—1.04
approximately for the moments of Mg? and Al*",

For O%, the magnetic moment and quadrupole moment are
very little affected by the surface coupling, as is expected due to
the high stability of the closed-shell core. The Q-value is compar-
able with the recoil moment (cf. § [Va; see also GESCHWIND et
al., 1952), which is about — 0.0013. Another measure of the
quadrupole moment induced in the core by the odd mneutron
would be provided by the lifetime of the (1/2+4) excited state
of O at 0.8 MeV (cf., e. g, AJzeNBERG and LAURITSEN, 1952).
The decay is of E2 character and, for a pure shell model state,
will be determined by the small recoil quadrupole moment.
This would lead to a lifetime of 7 ~ 107 sec., which is longer
than for a corresponding single-proton transition by a factor of
103 (ef. VIL7). However, the lifetime is very sensitive to im-
purities in the state,

In the region just beyond nucleon number 50, the dsp and
g7z levels are near-lying, and nuclei of (5/2+) character are
expected to contain components of both orbitals. The ratio of
the two orbitals in a state with £ = 5/2 depends rather sensi-
tively- on the spacing A, of the gy, level with respect to the
s level.

strong coupling, one obtains y, = { which accounts ap-
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The spin of Sb* indicates a positive Aze for this single-
proton nucleus. A calculation of the type carried out in the pre-
ceding pages then shows that the content of g,, is quite small
(a32 ~ 0.1), corresponding to the rather small deviation of i (Sb2t)
from u.. While again the moment of Mo?® with 3 valence neutrons
is consistent with a rather pure dy,, £ = 5/2 state, the small
moment of 1'*7 could be interpreted in terms of a negative Agje.
Already for small negative 4, (~ —0.5 MeV), additional moment
shifts of the order of a magneton may be obtained.

The remaining (5/2 +) nuclei have more complex configur-
ations. An exceptionally large shift is observed for Eul53. It
seems possible to account for such large moment shifts in terms
of a state with £ = 5/2, but predominantly of g,, character.
A test of the strong coupling interpretation of this moment
would be provided by a measurement of the M1 transition pro-
bability from the expected (7/24) rvotational state (cf. VIc.iii
and VIL.20). An analogous situation is found for Yb!™ (cf.
Table XVI).

Further information on the coupling scheme in Eu comes
from the anomalously large isotope shift which has been inter-
preted in terms of the large change in the quadrupole moments
of the two isotopes (Brix and KoprErmany, 1949, 1952). Such
an effect contributes to the isotope shift an amount é E given by*

SE 15 4 A5? Ze®\?
OE, ~ 8n A4 (1 — 0.09 (hc) ) (Ad. 8)
in units of the normal isotope shift d F,, corresponding to an in-
crease in the nuclear radius by the amount AR/R = 1/3 A A/A.
The change in $? is related to that of the intrinsic quadrupole
moment (cf. V.7) and, for the contribution to the isotope shift
between Eul®® and Eu!®l, one obtains

SE = 0.056 AQ: SE,, (Ad. 9)

where Q, is measured in units of 107% ecm? Deriving Q, from
the measured Q by assuming the strong coupling projection factor
(V.9), one obtains 6E = 2.4 §E,, while the omission of the

* This expression is equivalent to formula (4) of Brix and KoPFERMANN
(1949), except for the small relativistic correction which has been calculated by
Mr. JEns Bang, to whom we are indebted for informing us of his results.
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projection factor gives dE = 0.3 6E,. The measured isotope
shift of about 2.2 6 E, (Brix and KoPFERMANN, 1952) gives sup-
port to the assumption of a rather fully developed strong coupling
in these nuclei.

vi. (5/2—) nuclei.
TapLE XVI. Moments of (5/2—) nuclei.

odd proton (pg, = 0.86) odd neutron (ug, = 1.37)
nucleus u nucleus " Q
37Rb® 1.35 a0Zn®7 0.88 *

70 YD178 —0.65 +4.0 (A)
25 MN%8 3.47

* DHARMATTI and WEAVER (1952).

In the first f;, shell, the main influence of the surface on
the magnetic moment is expected from the interference of the
f2 state. The Rb and Zn isotopes, containing a single f;, hole,
should resemble K rather than Cl (cf. p. 73). Thus, the inward
moment shift of 0.4 — 0.5 magnetons is somewhat difficult to
explain. It may be partly due to the influence of the near-lying
P32 level which, for weak or intermediate couplings, would cause
inward moment shifts. Partly it may reveal an interaction effect
on the intrinsic nucleon moment, possibly of somewhat larger
magnitude than that considered for p;, and dg, nuclei.

Some further information on’'the structure of the Rb% moment
may be obtained from the observed hyperfine structure anomaly
in the Rb isotopes (BirTer, 1949; Ocns and Kusch, 1952).
Previous estimates of the effect (Bour and WEisskoprr, 1950;
A. Bonr, 1951a) are somewhat improved by including an inter-
action contribution to the nucleon moment (cf. EiSINGER, BEDER-
soNn and FELD, 1952).

The nucleus Mn®® oceurs during the filling of the f;, shell
and has been classified by the shell model as (f;;) %5, which
would correspond to a magnetic moment of u, = 4.13 neglecting
the neutron-proton forces. The spin anomaly suggests a rather
fully developed strong coupling (cf. § IILiii), for which the mag-
netic moment is g, = 3.27.
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vii. (7/2—) nuclei.
TasrLe XVII. Moments of (7/2—) nuclei.

odd proton {(u,, = 5.79) 0dd neutron (pg, =—1.91)
nucleus n nucleus u Q
oCads —1.32%
215¢48 4.76 ap TH? %% —1.10 **
23 V5L 5.15 soNd 13 —1.0
47C0%7 4.6 * soNd146 —0.6
27G05%? 4.65 saSmMi4? (£)0.7 t
eSMM 1 (£) 0.6
asEETt® (£)10(C) t+
* BAkER et al. (1953). T Eirior and STEVENs (1952).
** JEFFRIES et al. (1952); the mass tt BoeLE et al. (1952).
assignment as well as the spin of the § JEFFRIES (1953). (Added in proof).

detected Ti isotope are in doubt.

The moments of the nuclei in the first f;; shell may all be
accounted for in terms of the coupling of an f;;, state to the sur-
face. The moments of Sc?®, Co®% %, and Ti*® are all close to the

4.86
—1.14
of Ca** and V% may indicate a somewhat weaker coupling,
associated with the closed shells in the even structures. This
smaller coupling may also be indicated by the fact that the
ground state spin equals j rather than j— 1 for these (j)3 con-
figurations (cf. § IIL.iii).

strong coupling Iimit g, = { }, while the larger moment

viil, (7/2+4) nuclei.

Due to the simultaneous filling of the dy4, g7, and By
shells, most of the nuclei in this group possess complex con-
figurations. One may attempt, however, a more detailed discus-
sion of Sb*?® with its single-proton configuration. In strong coupl-
ing, the main influence of the surface on the magnetic moment
is expected from the small admixture of gy, to the predominantly
gz state. For a pure g, state, the strong coupling moment is
very close to pug, (cf. Fig. 7). Since Sb# with a single particle
is analogous to Cl rather than to K (ef. p. 73), the interference
of the spin orbit partner will increase the moment. The effect
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TasLe XVIII. Moments of (7/2 4) nuclei.

odd proton (u,,=1.72) odd neutron (ug, = 1.49)
nucleus )3 Q . nucleus Q
515b122 2.55 —1.2 (A) 215e7? +1.2 (M)}
5alt?® 2.62 —0.44 (A)

5508133 2.58 <0.3 (A)
55081 2.73

55C8137 2.84

soLals? 2.78

71 L0t78 2.9 +6.5 (A)
25 Taldt 2.1 * +6.5 (A)y*

* BrowN and ToMBouLIaN (1952). t Harpv et al. (1952).

depends on the relative magnitude of kf and 4,,, and assuming
values of §# ~ 0.2 and Ay, ~ —2 MeV, one obtains x = 2.3,

The nuclei having neutron configurations in the neighbourhood
of the closed shell at 82 are expected to have relatively small
deformability and there is evidence for a small quadrupole
moment of the stable Cs isotope, Cs133, For these nuclei, the sur-
face should play a lesser role in causing magnetic moment shifts.
However, the complex configurations in question make it diffi-
cult to decide whether the observed moment shifts can be ex-
plained by the particle structure itself or whether some additional
effects are operating.

In Se”, one expects a predominantly (gy.)° neutron con-
figuration. Such a half filled shell will in itself generate no qua-
drupole moment, although it may produce a large nuclear de-
formation (cf. § Ilc.ii and § IILiii). The observed positive sign
of Q may be the result of the proton structure which is expected
to favour a prolate shape.

ix. (9/24+) nuclei.
The major part of the magnetic moment shifts for these nuclei

may be accounted for in terms of the coupling between a Joj2
state and the surface, which leads to the strong coupling moment

—1.20
must be present, possibly in part due to interaction contributions
to the nucleon moment.

5.9
He ={ 3}. In some cases, such as In, additional effects
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TasLE XIX. Moments of (9/2 4) nuclei.

odd proton (g, = 6.79) 0dd neutron (pg, = —1.91)
nucleus “ Q nucleus ’ “ 1 Q
11 Nb® 6.17 12Ge”® —0.2 (M)
13 TC?® 5.68 * 3 IKI? —0.97 +0.16 (A)
Lo In1t® 5.49 +1.18 (A) 355187 —1.1
1INt 5.50 +1.20 (A)

* WarcHLI et al. (1952).

x. (9/2—) nuclei.
TasrLe XX. Moments of (9/2-) nuclei.

odd proton (u,,= 2.62)
H sp

nucleus “ ] Q

53 BI200 4.08 ‘ —0.4 (A)

The closed-shell siructure of the Pb2°® core implies a very
small deformability, as is confirmed by the observed quadru-
pole moment of Bi?®®, which is of the order of the single-particle
value (cf. Table IX). However, in contrast to the case of O, the
magnetic moment of Bi?® is very strongly shifted from the single-
particle value. This moment shift is even larger than would
have been expected for a normally deformable nucleus (cf. the
case of Sh1%, p. 79). Since the observed quadrupole moment sup-
ports the expected negligible effect of the surface on the coupling
scheme of this nucleus, it is probable that the magnetic moment
reveals some as yet unexplained aspect of the particle structure.
If the shift is interpreted as an interaction effect, the intrinsic
proton moment is reduced to one magneton, a reduction many
times larger than that indicated by the magnetic moments of
other nuclei (cf. p. 52).

xi. Odd-odd nuclel.

For the self-mirrored nuclei (N = Z), the symmetry between
neutrons and protons implies that the total g-factor will almost

always be close to 0.5 and be insensitive to the detailed coupling
Dan. Mat. Fys. Medd. 27, no.16. 6
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TasrLe XXI. Moments of odd-odd nuclei.

Configurations
Nucleus I u Q
protons neutrons

(B (Paj2) (Psia) ™ 3 1.80 +0.13 (M) §§

,N1¢ Pije Pij2 1 0.40 +0.02 (M)
11Na? (ds/2)® (doa)® 3 1.75

1 Naz (dafo)® (dgy2) ™ 4 1.69 *

1,CI38 dsjs (daj) 1 2 —0.018 (M,A)
1 K*° (da/z)_-] f7/2 4 —1.30 **

1K (dgja) ™1 (f7/2)* 2 —1.14 *

A (fap2)? (fay) 1 6§ 3.305 *xx

22C0%8 (fy2) 71 (Psfar F512)* 2 3.5 ¢

17C0%° (fry) 1 (Pajas [5/2)° 5 3.3 111

a7 Rb?¢ (Pajes Tsp2) ™1 (gora) ™t 2 —1.69 %

55Cs13t 4 2.96 * +17

,Lul?® =17 4.2 +8(A)

* BerraMmy and Smrra (1953). 1t GorTER at al. (1952).

** ErsINGER et al. (1952). 111 Jaccarino et al. (1952).

*** WarcHLr et al. (1952 a). § Kikurcur et al. (1952).
1 DawieLs et al. (1952). §§ DenmeLTt (1952).

scheme (cf. Tarmi, 1951). For nuclei of this type, it is indeed
found that ., and u, are nearly the same and agree closely
with the observed moments.

For B1° the p, value listed in Table VII refers to a state
with 2,0 = Qpee = 3/2 (I = K = 02 = 3) and pure pgy
configurations. In the case of N, the listed g, values refer to
the state Q2,4 = Qpene = 1/2 (I = K = 2 = 1), and take into
account the py, admixture.

For Na??, the strong surface coupling leads to a state with
Qprot = 2peut = 3/2 (I = K = 2 = 3). For pure d;, orbitals,
one obtains u, = 1.67. For the expected nuclear shape (y = 0),
the interference of the dy, state tends slightly to increase y, but,
due to the neutron-proton symmetry, the effect is small, amounting
to only 0.1 magneton for a deformation of § ~ 0.3 (cf. Table VII).

The corresponding interference effect is much larger in Na?!
(Lpr0t = 3/2, L4y = 5/2), since it does not affect the neutron
state. Neglecting the d;; admixture, the strong coupling moment
is 4. = 1.13, but the observed moment can be accounted for by
a deformation of the same magnitude as considered for Na??
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(cf. Table VII). The shell model magnetic moment of Na??
depends upon the nuclear forces and is not made unique by the
assumption of charge symmetry.

For K% (&p0 = 1/2, Q. = 7/2), the strong coupling
magnetic moment for a pure configuration is u, = — 1.14, while
the interference of the dy, orbital and the admixture of 1z In
the proton state decreases the magnitude of the moment (cf.
Table VII). The shell model gives w, = — 1.68. The observed
moment thus indicates an intermediate coupling situation, con-
sistent with the proximity to the doubly closed shell at Ca%.

In K2, the extreme strong coupling (2, = — 1/2, 2, =
5/2) with pure configurations gives &, = — 0.65. Additional
shifts arise from admixtures of f;, orbital to the neutron state,
and dyp and sy, orbitals to the proton state. The g, values in
Table VII are based on 4 (f;,) ~ 5 MeV, A(dy,) ~ —5 MeV, and
A(sy) ~ —5 MeV,

For V®9, the coupling scheme arising [rom particle forces has
been discussed and for forces of zero range a ground state of
I =6 has been obtained (Hircucock, 1952) with w, = 3.21%. How-
ever, forces of the expected range appear to favour I = 5. The
effect of the surface coupling is somewhal complicated, since in
strong coupling the neutrons and protons favour different surface
shapes, with the result that neither y = 0 nor =~ are stable po-
sitions.

The two Co isotopes can be accounted for by the strong
coupling states (y = 0, and £, = 7/2; L, = £ 3/2), the
upper sign referring to Co%, the lower to Co®. However, the
great difference in the observed g-factors indicates a difference
in the nature of the .QI = 3/2 neutron states. Thus, for Co?%8,
the observed moment indicates a predominantly f;, neutron
state which leads to a strong coupling moment of g, = 3.61,
while, for Co%, a predominantly ps, neutron state, giving p, =
3.80, is indicated. It is of Interest that similar effects in the filling
of the pgs, f5e shells seem to oceur in the J = 3/2 odd-A nuclei
in this region (cf. p. 70).

The Rb® nucleus can be described in terms of a single proton
and a single neutron (cf. Table IT). The observed spin of 2 sug-
gests a fyp assignment for the proton hole, which leads to the

*) Private communication from Dr. A. HiTcHcock.
6%
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strong coupling moment g, = — 1.56. The shell model value
for this configuration is p, = — 2.13.

Additional evidence on the nuclear states in question may
be obtained from the observed quadrupole moments.

For the case of B! although the absolute magnitude of Q
is probably rather uncertain, the observed ratio Q (B1%)/Q (B) =
2.08 (DEHMELT, 1952) is significant. According to the (ji) coupling
shell model, this ratio should be unity, whereas the surface
coupling gives a ratio of about two.

The evidence for a moderate quadrupole moment for N14
indicates appreciable impurities in the listed configuration (cf.
also the g-decay of C14).

The CI3® nucleus has the symmetry associated with the fact
that the neutron structure is obtained from the proton structure
by replacing particles with.holes (cf. § Ilc.ii). Neglecting inter-
configuration effects, the quadrupole moment therefore vanishes,
as also for the shell model state. The influence. of the coupling
to the dy; and sy, states favours the shape y = z, and gives
rise to a small negative Q value.



V1. Nuclear Level Structure.

a) General Features of Levels in the Goupled System.

The nuclear level spectrum, resulting from the interplay of
particle and collective motion, depends essentially on the strength
of the coupling. For weak coupling, there is associated with each
particle level a spectrum of excited states with a spacing corre-
sponding to the phonon energy (cf. Fig. 2 for the hydrodynamic
estimate of Jiw, which yields about 2 MeV for the quadrupole
oscillations of a medium heavy nucleus). With increasing coupling,
the two level structures become essentially interwoven. For inter-
mediate coupling strength, a rather complicated spectrum may
result but, in the limit of strong coupling, the low energy nuclear
spectrum acquires a relative simplicity which bears some analogy
to molecular spectra.

The strongly coupled nucleus thus exhibits two different types
of excitation: The first corresponds to a change of state of the
particle motion relative to the deformed surface and is in general
associated with a readjustment of the surface. Such particle
excitations are analogous to electronic transitions in molecules.
The second type of excitation is a collective excitation correspond-
ing to vibration or rotation of the coupled particle-surface system,
and is the analogue of vibrational and rotational molecular
transitions. While the energies of particle excitations depend on
the configuration energies in the deformed nucleus, the vibrational
quanta are of the order of the phonon energy. The rotational
energies decrease strongly with increasing nuclear deformation
and may become much smaller than the phonon energy.

The collective and particle excitations possess very distinct
properties. Thus, it is characteristic of the collective excitations
that levels of the same family have the same parity and small
spin changes between neighbouring states (47 = 1 or 2). In
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contrast, particle excitations may involve change of parity as
well as large spin changes. Further, the character of a given
excitation reveals itsell in the transition probability. While the
particle transitions are in general slowed down by the differences
in the surface shape of the combining states, the large electric
quadrupole of the oscillating surface may greatly enhance the
radiative probability for collective transitions.

With increasing excitation energy, the spacing of both particle
and collective states rapidly decreases, and even a small per-
turbation in the ordered motion is sufficient to destroy any simple
coupling scheme. In such a situation, the only remaining constants
of the motion are the parity and total angular momentum. Still,
provided the interactions are not so strong that they prevent the
system from completing even a few periods of the simple particle
or surface motion between energy exchanges, some of the gross
features of the unperturbed level spectrum are preserved.

In the region of high excitation, additional types of collective
motion, such as surface oscillations of higher order and com-
pressive oscillations, may play an important role. Further, the
number of excitable particle degrees of freedom increases. Fin-
ally, for the very high energies, at which an appreciable fraction
of the nucleons is simultaneously excited, the distinction between
particle and collective degrees of freedom ceases to have a
simple significance.

b) Particle Excitations.

For each particle configuration there exists a lowest level in
the coupled system which, as discussed in Chapter III, usually
has the same spin and parity as the pure particle state. If the
nucleus possesses several neighbouring configurations, there will
thus be corresponding states in the low energy spectrum which,
as regards spin and parity, may be classified by means of the
shell model.

Striking evidence for such particle excitations is afforded by
the occurrence of low-lying states with a spin very different from
that of the ground state and often with different parity. These
states give rise to the long lived isomers, whose interpretation has
provided such an important support for the shell model (GoLp-
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HABER and Sunvar, 1951; Moszkowskr, 1951). The transition
probabilities of these states, however, are found to be smaller
than shell model estimates by a considerable factor, indicating
that the excitations cannot be described in terms of particles
moving in a fixed potential, but involve the surface readjustments
characteristic of the particle transitions in the strongly coupled
system (Bonr and MorTELsON, 1952; cf. also § VIId.i).

The f-decays constitute another group of particle transitions
in the classification of which the shell model has been a valuable
guide (Maver, Moszrowskl and NorDHEIM, 1951; NORDHEIM,
1951). Again the observed transition probabilities are in general
reduced as compared with shell model estimates, indicating the
influence of a rather strong surface coupling (§ VIIIc.ii and iv).

The particle transitions also exhibit other features which may
be attributed to the influence of the surface coupling. Thus,
selection rules appropriate to the motion of particles in a spherical
potential are often violated (I- and j-forbiddenness, cf. § VIIIc.iii
and § VIlc.ii). The occurrence of such transitions provides
evidence for configuration admixtures of a similar type as dis-
cussed for the magnetic moments (cf. § IVc).

The relative position of particle levels may depend on the
nuclear deformation which can cause level shifts of the order of
a few MeV* (cf., e. g., the spin difference of the F-isotopes, p. 67).
Also the level order of the particle states within a many-particle
configuration depends in an important way on the surface coupling
(ct. § IILiii).

In the strong coupling scheme, particle modes of excitation
which do not involve change of configuration, but only changes
in the £, quantum numbers, in general require a rather large
energy. In cases where there are special degeneracies, however,
they may occur among the lowest states. Thus, in strong coupling,
the ground states of odd-odd nuclei are expected to be close
doublets, the members of which have the same parity, but may
differ appreciably in spin (cf. § Ilc.ii). There seems to be evi-
dence in spectra of odd-odd nuclei for a rather general occurrence

* Such a contribution to the nuclear energy may be interesting in connection
with the estimates of the spin-orbit energy and pairing effects obtained from the
analysis of binding energies (Harvey, 1951; Sukss and JenseN, 1952). Moreover,

it may be significant in influencing the trends in the separations of isomeric levels
(Hrir, 1950; MircaeLL, 1951; GoLpHaBER and Hiun, 1952).
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of such doublets (cf., e. g., GoLpHaBER and HirL, 1952). Since
the two members of the doublet have approximately the same
shape, the y-transition between them should be somewhat faster
than most other particle transitions of similar type (cf. § VIId.i).

While in regions removed from closed shells, the particle
excitation spectrum is thus essentially modified by the coupling
to the nuclear deformation, the particle-surface coupling is ex-
pected to be rather ineffective in the immediate vicinity of major
closed shells. These regions should offer relatively favourable con-
ditions for studying the particle level order in a spherical nucleus
and the effects of particle forces (cf., e. g., Ingris, 1952; PRYCE,
1952).

In the light nuclei, the study of excited states by means of
nuclear reactions has revealed levels, especially in the neigh-
bourhood of He%, C1% and 0%, which correspond approximately
to single-particle excitations in the uncoupled system (cf, e. g.,
KoOESTER, JacksoN and Apair, 1951; and also AJZENBERG and
LavriTsen, 1952). These levels are identified by their reduced
widths which are comparable to those of single-particle scattering
in a fixed potential.

In the region around Pb2%%, pure particle transitions may
also be encountered (Prycg, 1952; HarvEY, 1953). Lifetimes are
here an important guide in interpreting the level scheme (cf.
Chapter VII, and especially pp. 117 and 112, for comments on
the Pb2** and Pb?"" isomeric transitions).

¢) Collective Excitations.

i. Excitation of closed-shell nuclei.

The weak coupling situation expected in the immediate
vicinity of major closed-shells implies that the collective excitations
are essentially of the simple phonon character.

The closed-shell nuclei themselves are of special interest.
One here expects among the first excited states a (2 +) level,
representing an approximately free surface oscillation of the
quadrupole type. States of (2+4) character have been observed
in ;0% and §,Pb?® (the 3.8 MeV state in ,,Ca?® is also a pos-
sible example) and are difficult to interpret as particle excita-
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tions (cf. Pryce, 1952). Lifetime measurements for these states
would provide crucial evidence regarding the nature of the ex-
citation, since the phonon decay probability is much larger than
that of a particle transition (cf. § VIIb.i).

The fact that the first excited state of Pb2*® (E = 2.62 MeV;
I = 2(+4)) is considerably in excess of the phonon energy
(ho = 1.3 MeV), calculated in the hydrodynamic approximation,
supports the expectation of a very low deformability for such
a doubly closed-shell structure (ef. Ap. I).

The O'® nucleus has, as one of the very few exceptions among
even-even nuclei, a (0+) first excited state. This state is diffi-
cult to account for as a particle excitation, especially because
of its parity. One is driven to assume a two-particle excitation
from p,, into dy;, or s, orbits, which cannot, however, account
for the observed rather large transition probability for pair
emission (cf. AjzenBerc and LauriTsen, 1952). It is possible
that we here encounter a compressive oscillation of lowest order?*.
That such an excitation mode, in this special case, lies lower
than the lowest surface excitation is perhaps not surprising,
considering the large ratio of surface to volume energy for such
a light nucleus and the fact that its closed-shell structure favours
excitation modes which do not destroy its spherical symmetry.

ii. Rotational stales in even-even nuclei.

For the strongly deformed nuclei, encountered in regions
away from closed shells, the collective excitations can be charac-
terized as vibrations and rotations**,

Especially characteristic of the strong coupling spectrum are
the rotational states which may have energies much smaller
than the phonon energy. These low-lying states correspond to
rotations about an axis perpendicular to the nuclear symmetry

* This interpretation is rather similar to that of the a-particle model which
describes the excitation of the (0+) state as due to a radial oscillation of the
whole structure (Denxison, 1940).

** Forp (1953) has calculated excitation energies for a number of configura-
tions, using the strong coupling representation. For the states considered, involv-
ing one or a few particles outside of closed shells, the limiting strong coupling
situation is not well developed, and the spectra do not exhibit the regularities
discussed in the present paragraph. In such cases, it seems necessary to employ
methods appropriate to an intermediate coupling situation (cf. the more detailed
calculations of D. C. CHouDHURY, referred to in footnote on p. 24).
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axis (cf. Fig. 3) and are labeled by varying I, for fixed values
of £, K, ng, and n,,. Rotations about the nuclear axis, labeled
by varying K, have energies which, in most cases, remain of the
order of the phonon energy, and these excitations are considered
together with the vibrational states (§ Vlc.iv).

A special regularity in the collective spectrum occurs for the
even-even nuclei, which have in their ground state I = K= 0=10
(cf. § 111.ii). The expected cylindrically symmetric deformation
(y = 0 or m) leads to rotational states with even I and with
K = £ = 0. The odd values of I do not occur, since such states
would have odd parity (cf. § IIc.ii for the appropriate symmetry
properties of the wave function). From (I1.30) we get for the
rotational excitation energies

2
=—LSI(I+1) I=0,22- - (V1. 1)

2% i
. even parity

Ey

where the moment of inertia ¥ is given by (ef. I1.25)
3 = 3Bg (VI 2)

in terms of the nuclear equilibrium deformation £ and the mass
parameter B (cf. IL5).

The spectrum (1) is the same as that for the rotation of a
rigid body, but the rotational motion arises in essentially different
ways in the two cases. The collective motion in the nucleus is
of irrotational character (cf. p. 11), and the angular momentum
is carried only by the surface waves. The effective moment of
inertia associated with this motion depends on the square of the
amplitude of the waves (cf.(2)), in a similar manner as the
momentum in a sound wave is proportional to the square of the
amplitude of oscillation.

Deviations from the limiting strong coupling scheme imply
corrections to the spectrum (1). Some of these have the same
I-dependence as (1) and give rise to corrections to the moment
of inertia (2). Others involve higher powers of I and produce a
distortion of the spectrum. Thus, the rotation-vibration interaction
(cf., e.g., HERzZBERG 1950; NIELSEN, 1951), which implies that
B increases somewhat with 7 due to centrifugal distortions, gives
to first order the energy shift
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Fig. 13. First excited stales in even-even nuclei with A >140. The energy of the
first excited state is plotted as a function of A. The data is taken from HOLLANDER,
PERLMAN and SEABORG (1952) and from ScHARFF-GOLDHABER (1953). The evidence
is consistent with a (2-+) assignment for all the levels. Similar curves have been
given by STAHELIN and PrREISWERK (1951), RoseEnBLuM and VALADAREs (1952),
Asaro and PerLMan (1952), and SCHARFF-GOLDHABER (1952, 1953).

A EI 3 1 2 /hz 3 \ .

E = 92— _ _ 2 VI.
where hog is the excitation energy of the f-vibration (cf.§ VIc.iv).
Another term of the same order of magnitude as (3a) arises from
the influence of the y-vibrations which imply a departure from
the rotational spectrum of a symmetric top. The effect can be

found as a second order perturbation produced by the operator
Us (ef. A. 96), and one obtains

(4Ep), = ~£(—1—)2 (h—zyﬂ (I+1), (VI.3b)
2\hw,) \ S

where R, is the energy of the y-vibration.
Rotational states in regions of large deformations have re-
cently been identified by their very striking properties: regu-
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TapLe XXII. Energies of (2-+) and (4+) states in even-even
nuclei with 4 > 140.

Nucleus E, E, E E, Ref.
52Smis0 337 777 2.3 *
2o HIL?8 89 289 3.2 Rl
4o {180 93 307 3.3 »*
s2Ph208 2614 3200 1.2 *
gsRa22e 67 217 3.2 ko
9o Th?28 58 187 3.2 +
soTh?3¢ 50 167 3.3 AN
o4 Pu®38 43 146 3.4 Tt
* ScHARFF-GOLDHABER (1953). 1 Brack (1924).
** GoLpHABER and HiLn (1952). t1 HoLLANDER, PERLMAN and SEABORG
*** BouissiEres et al. (1953), (1952).
(added in proof). 1t Arnorp and SuctHARa (1953),

(added in proof).

The table lists the energies (in keV) of the (2+) and of the tentatively assigned
(4+) states. While these assignments are consistent with the available empirical
evidence, they are in many cases in need of further examination. For rotational
states, the ratio E,:E, is expected to approach the value 10:3 for large deform-
ations (cf. 1).

larities of spins and parities, characteristic energy trends, simpli-
city of the excitation spectrum, and very large E2 transition
probabilities (Bour and MorTELSoN, 1952, 1953, 1953a; Forbp,
1953; Asaro and PeErLMAN, 1953).

Systematic studies of the first excited states of even-even
nuclei (GoLpHABER and Sunvar, 1951; Horie, UMEZAWA, YAMA-
GucHr and YosHIDA, 1951; STAHELIN and PREISWERK, 1951 ; PrEIS-
WERK and STAHELIN, 1952; AsarRo and PErLmAN, 1952: ROSEN-
BLUM and Varapares, 1952; WaprsTra, 1952, 1953; SCHARFEF-
GoLDHABER, 1952, 1953%), have revealed that, with very few
exceptions, the first excited state is of (2-+) character**, and
that the excitation energy exhibits definite trends with respect to

* We are indebted to Dr. G. ScHARFF-GoLDHABER for making available to
us these results in advance of publication.

** It has been suggested that the excited states of even-even nuclei can be
interpreted as a recoupling of the particles outside of closed shells (cf., e. g., HoriE
et al, 1951; FLowrrs, 1952b). While this description may, for many configura-
tions, explain the (24) nature of the first excited levels, it has not provided

an explanation of the many other striking features of the levels discussed in the
present paragraph.
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the shell structure, reaching maxima around the closed-shell con-
figurations and minima as much as fifty times smaller in the
middle of shells.

This trend is especially conspicuous in the region of the
heavier nuclei where the shell structure is dominated by the
doubly closed shells at Pb2°® (cf. Fig. 13). Similar regularities
are also observed for the lighter elements, but the trends are
somewhat more complicated due to the fact that neutrons and
protons form closed shells for different A-values (cf especially
SCHARFF-GOLDHABER, 1953).

While the excitations of closed-shell nuclei may represent
simple phonon states (cf. § VIc.i), a decreasing energy, as we
move away from closed shells, results from the coupling with
the particle structure, which leads to increasing nuclear deform-
ations. The rapid decrease for the first few particles added to
closed configurations, which develops into a rather flat minimum,
can be understood from the fact that the particle states with
large deformative power are the first to be filled, while in the
middle of shells the last added particles are less coupled to the
deformed nucleus.

The small excitation energies encountered in the regions
155 < A <185 and A > 225 imply that, in these cases, the cou-
pling is very strong and that the rotational energies should be
rather accurately represented by the simple formula (1), correc-
tions of magnitude (3a and b) being small.

A direct measure of the validity of the strong coupling ap-
proximation is afforded by the location of the expected higher
members of the rotational family., The available evidence on
energies of the (4-) state, in the region covered by Fig. 13, is
listed in Table XXII. It is seen that the energy ratio E,: E; shows
the expected trend, approaching the strong coupling value 10:3
(cf. 1) in the regions of large deformation.*

* Note added in proof: Asaro and PeriMan (1953), from a study of the
a-spectra of the heavy elements, have recently obtained evidence for the sy-
stematic occurrence of a rotational spectrum in even-even nuclei in the region
well beyond Pb*®. With the approach to Pb®®, deviations from the energy
spectrum (1) are observed, which can be interpreted as distortions, of the type
(3a and b), corresponding to a vibrational energy of about one MeV, which is
of the same magnitude as indicated by the hydrodynamical estimate (cf. Fig. 2).
We are indebted to these authors for having informed us of their results in
advance of publication.
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TapLe XXIII Deformations deduced from properties
of rotational states.

Nucleus E (keV) F B 8o
o Dy0 85 140 0.65 0.28
ssET18 80 180 0.65 0.31
70 Y D170 84 140 0.62 0.27
1o HIIL78 89 120 0.58 0.24
7605188 137 55 0.45 0.15
5o Hgos 411 6 0.25 0.05
g4 P02 719 5 0.18 0.04
5 P02 606 7 0.19 0.05

The table lists the first excited states of even-even nuclei, classified as col-
lective excitations on the basis of measured lifetimes (cf. Table XXVII). The
factor F in the third column gives the enhancement of the transition probability
over that expected for a particle transition (cf. Table XXVII). From a rotational
interpretation of the states, the deformation §; may be calculated from the ex-

citation energy by means of (VL1 and 2), and is listed in column four. The last
column gives the deformation f§, estimated from the intrinsic deformation Q,

by means of (V.7). The value of (), is obtained from the observed transition pro-
bability (cf. Table XXVII).

The large excitation energies, as well as the relatively small F-factors, for
the last three cases in the table indicate an intermediate coupling situation, in
which the rotational description is less appropriate.

The spin of 4 for the second rotational excitation and the
E,:E, ratios confirm the expected axial symmetry of the nuclear
deformation (cf. p. 28). For a nucleus with an asymmetric equi-
librium shape, the rotational spectrum would exhibit a sequence
of I-values and energy ratios different from (1).

It is a characteristic of the rotational spectrum that the ex-
citation of a high member is followed by a cascade of E2 gamma
transitions with energy values in the ratio --- 15:11:7:3, and
with no cross-overs. There is indeed evidence (Borr and MoTTEL-
soN, 1953a) for such cascades involving states up to I = 8 with
energies closely given by (1).*

The observed very short y-ray lifetimes of low-lying excited
states in even-even nuclei clearly indicate the collective nature
of the excitation (GoLpHABER and Sunyar, 1951). The ratio of

* Note added in proof: The recent measurement (ArRNoLD and SUGIHARA,

1953) of the y-spectrum following the f-decay of Lu%7® considerably improves
the agreement with the rotational spectrum in Hf%6,



Nr. 16 VI. Level Structure. 95

the observed transition probabilities to those expected for par-
ticle transitions increases as one moves away from closed-shell
configurations and reaches values of more than a hundred in
regions far removed from closed shells (cf. Table XXIII).

The E2 transition probability of a rotational state is directly
related to the inirinsic nuclear quadrupole moment Q, (cf.
§ Vb and § Vllc.ii), and the values derived from the observed
lifetimes are just of the magnitude deduced from spectroscopic
data for neighbouring odd-4 isotopes (cf. Table XXVII on p.116).

Another measure of the deformation is provided by the
excitation energies which yield, by (1), the nuclear moment of
inertia. Assuming the hydrodynamic value (II.6a) for B, the
deformation f; can be obtained from (2). This estimate of the
deformation is compared, in Table XXIII, with the deformation
B, estimated from the E2 transition probability, assuming the
hydrodynamic relation (V.7) for Q,.

It is seen that, although Bz and f§, show parallel trends, f§g
exceeds f, by about a factor of two in the region of the fully
developed strong coupling. This effect is quite similar to the
overestimate of the static quadrupole moments by the hydro-
dynamic model (cf. p. 59), and lends support to the view that
the simple model of the collective deformations underlying (V. 7)
is inadequate. As in the case of the static Q, it is also possible that
some part of the discrepancy arises from an underestimate of B.

A general correlation has been found (Forp, 1953) between
the energies of the first excited states of even-even nuclei, inter-
preted as rotational states, and the magnitude of the quadrupole
moments of odd-4 nuclei. The quantitative comparison shows
the same feature encountered above, that, although the two
estimates of the deformation exhibit similar trends, the f-values
derived from quadrupole moments are several times smaller
than those derived from excitation energies.

For the smaller deformations encountered in the regions of
closed shells, perturbation terms of the magnitude (3a and b)
may essentially modify the spectrum and also particle forces
may have an important influence. The expected intermediate
coupling situation is clearly revealed by the deviations of the
E,: E, ratio (cf. Table XXII) from the strong coupling value of
10:3, with the approach to closed-shell configurations.



96 VI. Level Structure. Nr.16

ili. Rotational stales in odd-A nuclei.

The rotational spectrum in odd-4 nuclei depends on the
angular momentum [, of the ground state. If I, = Q = K> 3/2,
we get a series of states with energies

h2
E; = —— [T+ 1D —I,y+1)] I=1IgTy+1,I+2, - (VL4)

=~
23 same parity as ground state

If the system does not strongly prefer the symmetric shape
(y = 0 or x), as for a single particle with j = 3/2, a more com-
plicated rotational spectrum may arise (cf. Ap. ITLii).

In the case 22 = K = 1/2, there is the additional contribution
to the rotational energy (ef. 11.30)

AEp = ()11 Er% (G+1/2)d+1/2), (VL5)

where j refers to the odd particle with Q, = 1/2. In this case,
the ground state spin is in general no longer 1/2, and a less
regular sequence of rotational states appears.

Since the odd-A4 rotational states depend more specifically
on the properties of the ground state, they do not exhibit the
same simple trends as those in even-even nuclei. Moreover,
since consecutive levels have AJ = 1, except in some cases
with £2 = 1/2, they may decay by M1 radiation, for which the
transition probability is not enhanced.

A specially suited method for identifying and studying the
rotational states in odd-A nuclei may be provided by the Cou-
lomb excitation which directly measures the E2 transition prob-
ability (cf. Ap.VI). The collective excitations therefore manifest
themselves by their especially large cross-sections.* '

Measurements of the y-decay probabilities of the rotational
states are a'so of interest, since the M1 transition probability
can be directly compared with the static magnetic moment of
the ground state (cf. VI1.20). The strong enhancement of the E2
radiation implies that appreciable E2 admixtures may be ex-
pected in many cases, although for a single-particle y-transition

* Note added in proof: Reccntly, rotational states in odd-A nuclei have

beeni identified by the method of Coulomp excitation (Huus and Zupanérd,
1953; cf. also note on p. 166).
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with 41 = 1 (no), the E2 radiation is extremely weak in com-
parison with M 1. Moreover, it is expected thal cross-over transi-
tions (41 = 2) may in some cases compete with the cascade.

iv. Vibrational excitations.

The vibrational states are characterized by the quantum
numbers ng and n,, and in the limit of strong coupling the
excitation energies approach the phonon energy (cf. A. 108 and
113). A comparable energy is associated with changes in the
quantum number K. Due to the symmetry of the surface, the
n,- and K-excitations only occur in definite combinations, since
n, must have the same parity as 1/2 (K — 2) (cf. A. 92).

The vibrational states have strongly enhanced E2 decay
probabilities, characteristic of collective excitations, and could
be especially studied by the method of Coulomb excitation (cf.
Ap. VI). In an even-even nucleus, an E2 transition from the
ground state can lead to the vibrational states (nlg = 1; n, = 0;
I=2;K=02=10)and (nﬂ———O;n},zl;I:K=2;Q:0)_
In an odd-4 nucleus, several rotational states can be reached for
each type of vibrational excitation, and in addition there are
two vibrational excitations with n, = 1, having 4K = + 2.

d) Higher Excitation. The Compound Nucleus.

The more highly excited states, produced in nuclear reaction
processes, though characterized by a somewhal greater com-
plexity than the low energy spectrum, can provide further in-
sight into the dynamics of the nuclear system. Since the present
discussion is concerned principally with the phenomena occurring
in the low energy region, we shall attempt only a rather brief
description of the properties of the coupled system for higher
excitations. )

In the present paragraph, we consider the general features of
the level structure in this region, and summarize some of the
consequences for nuclear reactions® **, A more detailed formu-

* We are indebted to Professor N. Bour for illuminating disenssions on
the influence of single-particle motion on the compound nucleus formation.

** Cf. also HiLn and WreeELER (1953), who have pointed out many impor-
tant consequences of the strong interaction between the nucleonic and surface

motion for various nuclear processes, and especially the fission reaction.
Dan.Mat. Fys.Medd. 27, no. 16. 7
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lation of nuclear reaction theory, incorporating individual-part-
icle as well as collective features, is attempted in Appendix V.

With increasing nuclear excitation, the level spacing rapidly
decreases and any simple coupling scheme will be destroyed
by even relatively small perturbations, which result in a sharing
of properties between neighbouring levels of the same spin and
parity. A simplified picture of the level structure may be obtained
by characterizing the rate of exchange of energy in the system
by an energy interval W within which the sharing of properties
among levels is more or less complete. This energy is related to
the mean free path A, of single-particle motion by

hy

W=7 (V1.6)

where v is the particle velocity*. The coupling thus tends to
obscure finer features in the level structure, associated with
simple types of motion with frequencies smaller than W/h.
The significance of single-particle motion depends on the
relative magnitude of W and the single-particlé level spacing 4
given by
h2
A4 = aKRy——, (VLT)
MR,

where K is the nucleon wave-number in the average potential.
For W larger than 4 (~ 110 A% MeV), the interactions destroy
the effects of undisturbed single-particle motion, and the properties
of the individual configurations are uniformly distributed over
the whole energy spectrum. Such a situation corresponds to the
strong interaction theory of nuclear reactions, according to which
the incident particle shares its energy with many degrees of

* The energy exchange between surface and nucleonic motion has been
discussed by HirL and WHEELER (1953) from a somewhat different point of view.
These authors attempt a rather detailed description of the nuclear state in the
region of high excitation by assuming the nucleus to occupy, at any given moment,
a strong coupling state with a definite division of the energy between nucleonic,
vibrational and rotational motion. The surface motion is treated in the semi-
classical approximation appropriate to large quantum numbers. Exchanges of
energy between nucleonic and vibrational motion occur with a frequency (the
slippage or damping frequency) closely related to the quantity W/}, It is found
that the validity of this description requires W to be small compared with the
energies of vibration and rotation. The estimate given in the present paragraph
indicates that, in general, W is of the order of the vibrational energies, in ac-
cordance with tentative estimates by HiLL and WHEELER.
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freedom of the compound system in a time short compared to
that required for a traversal of the nucleus (N. Bour, 1936; cf.
also Fesupacn and WEISSKOPF, 1949).

The existence of nuclear shell structure suggests a value of W
small compared to 4. If the main interaction is due to the particle-
surface coupling, one obtains, for energies of the incident particle
small compared with the nuclear potential, estimates of W which
are on the average about 2—3 MeV, but depend on A and on
the nuclear deformation (cf. Ap. V¢). For such values of W, the
existence of relatively undisturbed single-particle motion is ex-
pected to manifest itself in the properties of the nuclear spectrum,

Thus, in a nuclear reaction, the first stage will be the action of
the average nuclear field on the incident particle. The coupling
between the particle and the internal degrees of freedom of the
target nucleus may, in subsequent stages, lead to energy exchanges
which may eventually result in the complex types of motion
characteristic of the compound system.

Recent measurements of total neutron cross-sections (Bar-
SCHALL, 1952; MiLLER, ADpAIR, BockeErLmaN and DARDEN, 1952;
NerEsoN and DArpEN, 1953; WarLT et al., 1953) confirm the ex-
pectation that the limit of strong interaction is not quite reached,
and that single-particle effects are still discernible in the scat-
tering process (WErsskopF, 1952). The measured cross-sections
represent averages over levels and the data below 3 MeV have
been accounted for in terms of single-particle scattering in a
complex potential (FEsuBAacH, PORTER, and WEIsskoPF, 1953)*.
The imaginary part of the potential represents the absorption into
the compound nucleus and is closely related to the quantity W.
The empirical data indicate an absorption which corresponds to
W ~ 2 MeV. It thus appears that the properties of the higher exci-
tation region may be understood in terms of the same couplings
which operate at lower energies (cf. Ap. Ve).

A coupling energy W small compared with 4 has important
implications for the whole course of nuclear reaction processes.
Thus, the scattering widths of the individual states of the
compound system depend on the distance from the nearest

* We are indebted to these authors for making available their results in
advance of publication. Cf. also p. 158 ff. below for furlher discussion of this
analysis, and of the conditions under which nuclear cross-sections can be de-
scribed in terms of the scattering in a complex potential,

T*
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virtual level for single-particle potential scattering. The reduced
width of the single-particle level is mainly distributed over the
compound states within a distance W. Outside of this region,
the compound states are much narrower, and appear as a
fine structure on a background of potential scattering (cf. Ap.
Vb)*.

Moreover, for W < 4, direct couplings between entrance and
exit channels may lead to nuclear reactions which do not pass
through the compound stage (direct ejection of particles or direct
excitation of rotational or vibrational modes). The coupling
energy W would also reveal itself in the relative probability of
the various modes of decay of the compound state, which often
depend on the amplitude of a few simple types of motion (cf.
Ap. Vo).

* A formulation of the nuclear dispersion theory, incorporating single-particle
features as well as the compound nucleus formation, has also recently been con-

sidered by FEsueacH, PoRrTER, and WEISSKopF. We are indebted to these authors
for a private communication of results of their investigation.



VII. Electromagnetic Transitions.

An essential part of the present knowledge of the low energy
nuclear spectrum has been obtained from the study of y-tran-
sitions. The determination of multipole orders is a valuable tool
in assigning spins and parities to the nuclear states, and the
measurement of transition probabilities yields further important
information on the nature of the excitations involved.

The general implications of the empirical evidence for the
nuclear level structure have already been considered in Chapter
VI. In the present chapier, we give the calculation of electro-
magnetic transition probabilities in the coupled system and the
more detailed analysis of the available empirical data.

a) Transition Operators.

The transition probability for radiation of a photon of multi-
pole order A and of frequency o is given by (Weisskorr, 1951;
Moszkowskr, 1951, 1953; StecH, 1952; BratT and WEISSKOPF,
1952, p. 595)

875(},"—1) 1{w 2i+1
= | = B(4 1DH#E
T = @i r DI & (c) ) (VILD

where the reduced transition probability B(4) can be written as
B =D/ |<i|m@ w|f>]* (VIL2)
s, My

in terms of the matrix elements of the multipole operator MM (4, u)
of order A, u between an initial state { and a final state f, with
magnetic quantum number M.

*(2A+ DN =1.3.5....(24+ 1)
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The electric and magnetic multipole operators are given by*

A
My (B 1) =, eprh Vi (B, ) (VIL.3)
and Pt
A
ch 2 )Ty, 0 VIL4
';D’em(luu)=2lwc gss"*_ﬁ_}_lgll vp I'p})ulu( p’q)p)’( . )
p=1

respectively, where e¢,, (g;),. and (g,), refer to the charge,
orbital and spin g-factors of the particle p.

In the unified description of the nuclear dynamics, the state
of the nucleus is described in terms of collective and particle
degrees of freedom. The former represent the bulk of the nucleons,
which are strongly bound, while the latter represent the most
loosely bound particles, which may be individually excited (cf.
§ Il a.iii). In the coordinates appropriate to this description, the
multipole operators (3) and (4) take the form

7 Ze 3
M, (A, u) = E (ep- It ) A YM (Ppr Pp) + ZeR0 “lu (VIL.5)
D

and
eh — 2 -\ — i
9)2 (A [LL) 2Mc ; (gss+mgll )pvp(ré}l/t(ﬁp’ (Pp)>
r

eh 1 >
7n

(VIL6)
o e B G T (0, )|,

+

where the sums over p include the particle degrees of freedom,
while the last terms refer to the multipole moments generated by
the collective motion of the nucleons.

The particle part of the electric moment (5) includes the
effect of the recoil of the nuclear core, which is of special im-
portance for dipole transitions; for A > 2, the recoil term also
contains many-particle operators, which have been omitted in (5).

The coefficient of aiﬂ in (5) is obtained from (II.2), which
is based upon a hydrodynamical description of the collective
motion. Inadequacies of this approximation of the kind indicated
by the nuclear quadrupole moments (cf. § Ve) would imply a

* In (3), we neglect the contribution of the intrinsic magnetic moment of

the particle, which is of the same order as that of the magnetic multipole of one
higher order.
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somewhat smaller value of the coefficient. The density of angular

momentum in the collective motion is denoted by}?(r_)j and may
be expressed as a quadratic form in the «-coordinates.

The reduced transition probability B (4), which is related
by (1) to the lifetime for y-emission, can also be determined from
the cross-section for Coulomb excitation by impact of heavy
ions (TER-MaRTIROSYAN (1952); cf. also Appendix VI; e. g. (Ap.
VL17)).

The two methods for determining B complement each other
in the sense that the lifetime measurements are most easily per-
formed when B is small, while large excitation cross-sections are
obtained when B is large. Moreover, the relative intensity of the
different multipole components in the field of the impinging
particle is very different from that of the radiation field produced
by a source of nuclear dimensions.

b) Transitions in the Weakly Coupled System.

1. Particle transitions.

In the case of a single particle moving in a spherical potential,
a transition between states of angular momenta j; and j; is
electric of order 1 = l Ji—J¢|, if the spins and orbits are parallel
in the initial as well as the final states, or if they are antiparallel
in both cases. The value of B is given by (STecH, 1952; BraTT
and WEIsskopF, 1952; Moszkowskr, 1953)

Z

1 2
Be(ﬂ') = E(ep—A‘;>|< l.|1'l‘f> |zc(j>’j<)

2ji+1
2j.+1

. (VILT)

where <i[r}“|f> is the radial matrix element, and where the
c¢(j.,Jj.) are numerical coefficients of order unity, which can
be expressed in terms of Racah coefficients*. Values of ¢ (j., j)
are listed in Table XXIV, The arguments j, and j_. denote the
larger and smaller, respectively, of j; and j;.

If j. has parallel spin and orbit, while j_. has antiparallel
spin and orbit, the transition is magnetic, of order A = |ji —Jf
and (cf. the references of (7))

s

* StEcE (1952) uses a corresponding gquantity |[F(j,, jg)|* equal to
G +12)7 e(j,, /). Moszrowskr (1953) uses the quantity S(I;, L, If) which,
for | I;—1I;| = 2, equals (2j;+ 1) 2j .+ D)7  e(is, J)-
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TaBLe XXIV. Coefficients ¢ (j,, j.) in transition probabilities.

f> 3/2 5/2 7/2 9/2 11/2 13/2
<
1/2 1 1 1 1 1 1
5 2
5/2 1 g 1_(7’ ;_g %2_
22
11/2 1 %
13/2 1

The transition probability for a single particle transition J;>J; of multipole
order A = |ji—-j | involves the coefficients ¢(j,, j.) tabulated above. (Cf.
equations (VIL7 and 8) and footnote on p. 103). The larger and smaller of Jis jf
are denoted by j._ and j_, respectively.

72 (el \ 2 ¥ 2j,+1
Bn® = olone) |9~ A > Pe(on j o (VILS
m (A) 4%(2MC> <gs /H_191>|<1[r |f |C(J> ‘]<)2j<+1 ( )

Finally, if j, has antiparallel while j_ has parallel spin and
orbit, the transition is forbidden in order A = Ijiﬁjf | For a
pure configuration, the transition would be eleciric of order
A= ]jl- —jf[ + 1, but small admixtures of other configurations
may suffice to produce a predominantly magnetic traumsition of
order 4 = |ji~—jf|.

For many-particle configurations, similar expressions may
be obtained, provided the coupling scheme is known (cf., e.g.,
Moszxowskr, 1958). Thus, for two equivalent protons, the tran-
sition (j®);_,— (jO,-o is of electric quadrupole type with a
reduced transition probability

(2/—1)(2j+3)
JG+1D
In the estimates of transition probabilities in § VIId, we use
the simple estimate ‘

B.(2) = e|<i|r|f>]? (VIL9)

16
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| A _ 3
<i|r*|f> = 52K (VII1.10)
which would be obtained for a radial wave-function constant
within the nuclear volume and vanishing outside. More detailed
calculations have been made (Moszrowskr, 1953) which yield
similar results.

ii. Phonon transitions.

The radiation emitted by the freely oscillating nuclear sur-
face is of electric multipole type of the same order 1 as the sur-
face deformation. For the decay of a one-phonon state to a no-
phonon state, one finds from (5) and (A. 38) (cf. FLtGeE, 1941;
LowEeN, 1941; Fierz, 1943; BerrHELOT, 1944; JEKELI, 1952)*

i A 2_11_(91 VII
B, (1) = (,HZZeRO) 2C, (VIL.11)
for the reduced transition probability in terms of the frequency
w; and deformability C; of the A™ surface mode (cf. Figs. 1 and
2). The cooperative nature of such a transition, as expressed in
the appearance of the factor Z2 in (11), in general leads to a
much faster decay than for a corresponding particle transition.

iii. Surface moments induced by particle transitions.

In weak coupling, a transition between two different particle
states induces a moment in the surface which may be calculated
in the perturbation approximation. Although the admixture of
collective excitation is small, its influence may be important in
the case of electric multipole transitions, due to the larger charge
involved in the surface motion. The induced surface moment is
proportional to the mass moment of the particle transition, and
the operator (5) becomes (cf. I1. 5 and 9)

M, (A, ) = RE Y3, (9, @)
P
) ) VIL.12
{ep(i>+3Ze k (hw;) } ( )

* The results of the quoted authors differ somewhat from each other in
numerical coefficients. Also the matrix element quoted by BraTT and WEISSKOPF
(1952, p. 628) appears to lead to a transition probability too small by a factor four.
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for a transition between particle states with energies E; and E;.
It is of significance that the particle part of M, depends on the
charge of the particles, while the surface part involves only the
coupling constant k, which is the same for neutrons and pro-
tons. The hydrodynamic estimate of the second term in (12)
(cf. Figs. 1 and 2) indicates that it is somewhat larger than the
first term (by about a factor of four for a medium heavy nucleus).

¢) Transitions in the Strongly Coupled System.

i. Particle transitions.
In the strong coupling representation (11.15), it is convenient
to expand the multipole operators along the nuclear axis

M (A, 1) =D W (4,v) DL, (8, (VIIL.13)

where T’ (4,7) is expressed in the nuclear coordinate system,

and where the ©-functions are the same as used in (II. 15).
For a particle transition between states with I, = K; = Q,

and If = Kf = Q, one obtains, for 4 = ]Iimlf

B

21+1
271, +1°

B = [§20 W (4, £ 1) ng[?‘leP; B e B (VIL14)

In special cases, the symmetrization of the wave function (I11.15)
may introduce additional terms. :

In the strong coupling scheme, where the particles move
independently with respect to the nuclear axis, the particle
transitions are always one-particle transitions. Thus, the first
factor in (14) is simply related to the transition probability for a
single uncoupled particle, provided the particle wave functions
% have a definite j, and provided the collective part of the mul-
tipole moments (5 and 6) can be neglected. For a transition from
Ji = £y =I;to j; = £; = I, one then obtains

27_+1

= VII.15
21, +1 ( )

B(}') = Bsp(Z)IS(P;(p/P

where By, (4) is given by (7) or (8). However, in some cases,
important differences between (14) and (15) may arise from the
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modification of the particle wave function caused by the non-
spherical character of the potential, and from the collective con-
tributions to the multipole operators.

Thus, the tendency of the surface coupling to admix certain
neighbouring orbitals in the particle state may, in particular, cause
transitions to occur, even when By, vanishes due to shell model
selection rules (I-forbiddenness; j-forbiddenness).

An important contribution to electric transitions with 4 > 2
may arise from the coupling to the surface mode of order A
Since the coupling to these higher order modes may be considered
as weak, the effect can be included by using the form (12) for
the multipole operator. This contribution to the transition may
be particularly significant in leading to comparable lifetimes for
electric multipole transitions of odd-neutron and odd-proton
nuclei.

The last factors in (15) imply reductions in the transition
probability of the type known in molecular spectroscopy (Franck-
Condon principle; (cf., e. g., HErzBERG, 1950, p. 199)). The
factor involving the vibrational wave functions gives the reduction
arising from the partial orthogonality of two states with differing
magnitude or shape of deformation. This effect depends on the
difference of the two equilibrium deformations as compared with
the zero point amplitude. The dependence is exponential, and
great reductions may result when the coupling is strong. If the
two states have different shapes (strong coupling solutions cen-
tered on different values of ), it is necessary to consider the
full symmetry of the wave function (A.118), since it may be
easier for the surface to oscillate from oblate to prolate form
along different intrinsic nuclear axes (cf. Hi and WHEELER,
1953, fig. 28). The last factor in (15) involving the spins is a
projection factor associated with the fact that only the projection
of the particle multipole along the nuclear axis is effective.

The reduction in transition probability due to the surface
coupling is illustrated in Fig. 14 for an M1 transition of pyy—> pip
type. From the I = j = 3/2 wave [unction given in Fig. 4 (p. 25),
the transition probability to an uncoupled p,, state may be
simply obtained. The ‘“‘unfavoured factor’”, F, representing the
ratio of B and By, is plotted as a function of x. As an example
of the effect due to differences in shape, we have also plotted
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' ¢ " X
1 2 3 4

Fig. 14. Unfavoured factors in infermediate coupling. The coupling between particle
and surface motion implies that particle transitions are in general slowed down
by the partial orthogonality of the surface states of the combining levels. The
ratio of the resulting transition probability to that for an uncoupled particle is
referred to as the unfavoured factor, F. The figure illustrates the behaviour of F
as a function of the dimensionless coupling constant = (IL.14).

The upper curve corresponds to a py, - pyjy M1 transition; the pg,-state
appropriate to a given x is obtained from Fig. 4, while the pure p,;,-state has
no coupling to the surface. The lower curve gives the square of the overlap inte-
gral between two pyj,-states with equal magnitude, but opposite sign of the
coupling parameter. This quantity would correspond to the F-factor for a hypo-
thetical E0 transition.

the square of the overlap integral (F-factor for a hypothetical
EO ftransition) for two pg, states with opposite sign, but same
magnitude of the coupling constant.

One may also employ the strong coupling solutions (A. §V.3)
to calculate the F-factors for large couplings. For a transition
J—>J between states with coupling strengths x and x’, one finds
that F contains the factor

F~exp{ 1(;5;;) jlx—ax')? } (VI1.16)

which exhibits the exponential decrease of F with increasing
coupling.
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i1, Collective transitions.

In collective transitions of the strongly coupled system, the
last term in (5) may give rise to strongly enhanced E2 transition

probabilities.
Of special interest are the rotational excitations, which, in
even-even nuclei, form a spectrum with I =0, 2, 4, --- (cf.

VI.1). The y-decay proceeds in cascades of E2 radiation, and
for the transition I + 2 — I, the reduced transition probability,
which may be obtained by using (V. 5), is given by

15
32 7

I+ I+2)
21+3)(21+5)’

2 12
e" Qg

B,(2) = (VIL.17)

where (, is the intrinsic quadrupole moment (V.7). The ex-
pression (17) exceeds the one-phonon decay probability (11)
by a factor of the order of the average number of phonons
present in the strong coupling state.

In odd-A nuclei, the rotational levels form a sequence with
I=K K+1, K42, .-+ (cf. VI.4), except for the case of
K = @ = 1/2, For a transition 7 + 1 — I, one obtains

s K2(J+1—K)Y(I+1+4+K)
YT +1)(2I+3)I+2)°

B,(2) = 116‘2 20 (VIL.18)

while for the cross-over transitions I+ 2— [

B,(2) = 15 2 UL L=+ 1+ KU +2-K) I +24K)
REEECE N I+1)QI+3)I+2)(2I+5)

. (VIL19)

For the I + 1 — I transitions, M1 radiation is also present, with
a reduced transition probability given by

3 [en Y LRI +1—K)(I+1+K)
B (1) = H(QM«:) (9095 I+1DI1+3

(VIL.20)

in terms of the g-factors of the particle and collective motion,
g, and g, respectively (cf. IV.4 and 10). While, for a similar
sequence of particle excitations, the decay would proceed by a
cascade of almost pure M1 radiation, the considerable enhance-
ment of the E2 radiation produced by the collective deformation
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may, in some cases, give rise to an appreciable admixture of
E2 radiation, and also to cross-overs of the type (19).

For odd-A nuclei with K = £ = 1/2, the rotational spectrum
is more complicated (cf. § VIc.iii). The electric radiation is still
given by (18) and (19), but the matrix element for M1 transitions
cannot be related so simply to the magnetic moment of the ground
state as in (20).

Transitions involving a change of vibrational quantum num-
bers (¢f. § VIc.iv) are of pure E2type in the limit of strong coupling.
The decay of a higher vibrational state may in general proceed
to several rotational levels of the lower vibrational state. The
transition probabilities can be obtained from (5), using the
vibrational wave functions (A. 109 and 114). The matrix elements
are of the same order of magnitude as for a single phonon decay
(11) and thus are larger than for a particle transition, although
smaller than for a rotational transition.

d) Discussion of Empirical Data.

The classification of the isomeric transitions, as well as the
empirical decay energies, lifetimes, and the conversion coefficients
used in this paragraph are, except where otherwise noted, taken
from the articles by GoLpmaser and Sunvar (1951) and Gorp-
HABER and Hir (1952). ' ‘

In a field of such rapid development, it may be expected that
improved experiments will modify some of the data considered
here. Without evaluating the individual experiments, we have
tried to confine ourselves to those classes of transitions which,
at the present time, seem to provide the most reliable and sig-
nificant information.

i. M4 transitions; unfavoured factors.

The strong spin-orbit coupling shell model predicts low-lying
isomeric states of long lifetime in the regions before the closed
shells at 50, 82, and 126. In these regions, particle levels of high
spin (gg, hyye, and 13, respectively) are being filled simultan-
-eously with levels of low spin and opposite parity (pys, dgpe,
and. f;,) and isomeric states decaying by M4 radiation are
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TasLe XXV, M4 transitions in odd-A nuclei.

Nucleus |E (keV) —log T F Nucleus |E(keV) —log T F
(sec™1) | (see™h)
Goja <> Paj2 Rypfn <> dsf
3020°%Y 439 4.88 .060 5000117 159 7.95 120
2o K86 305 5.18 101 5050118 65 11.13 234
35517 390 4.27 .089 splel?? 82 10.67 .082
39 Y 87 384 4.97 055 5o el 88 10.35 .086
39Y%? 913 1.31 .098 saTe 110 9.43 .094
3p Y 2 555 3.68 .037 52 Te?? 88 10.36 .080
10Zr8® 588 2.61 092 saTet?? 106 9.34 156
11 Nb?L 104 8.90 .73 saLleldl 183 7.00 .236
21 Nb % 216 6.39 .061 54 K.e128 196 7.3% .056
11 Nb?7 747 1.94 024 s Xeldl 163 7.91 .086
13Tc® 39 ([~ 13.22 ~ 046 ;4 Xels3 232 6.42 .105
1T 96 9 67 .046 54X e85 520 3.22 116
1o Teo® 142 8.03 .057 | ,;Bal® 275 6.05 .054
19Int13 390 C 4.14 .038 5632188 269 5.77 121
19IN118 335 4.67 044 scBald? 661 2.40 .085
i13/2 <> fs/z
The F-factor gives the ratio of
the observed transition probability to I 129 R.64 .049
th £ 2 s i . i 3

tween the states indicated at thehead  FE | 397 | 486 1083
of the column (cf. (8) and (10)). soH g 165 7.67 048
soH g 368 4.50 .054
* Hopkins (1952). 22 PH207 1063 0.113* .084

expected.. These expectations have been strikingly confirmed
(GoLpHaBER and SunvaRr, 1951; Moszrowski, 1951).

The lifetimes of these isomeric transitions yield further
evidence on the properties of the combining states. The known
M4 transition probabilities are listed in Table XXV. The last
column gives the ratio F (the unfavoured factor) of the observed
transition probability to that calculated for the appropriate
single-particle transition (c¢f. (8) and (10), and (IL.7))}. The
F-factors are sensitive to the assumed value of the nuclear radius.

1 The F-factors are analogous to the quantities | M |? listed by GOLDHABER
and SUNYAR (1951), but are obtained by comparison with a somewhat more detailed
theoretical estimate. In the notation of Moszrowskr (1953), F equals the ratio
of | M [* and MY, , for magnetic transitions of order L.
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Thus, a decrease of 10 %/, in the value (I1.7) leads to an increase
by about a factor two in the F-values of Table XXV.

Despite this uncertainty, it is evident that the transitions are
consistently slower than expected for -an uncoupled particle by
a significant factor. This reduction provides evidence that the
particle transitions are associated with an appreciable readjust-
ment of the collective field. The observed unfavoured factors
correspond to a nuclear coupling scheme resulting from an
intermediate to strong particle-surface coupling (cf. § VIIc.i).

From such an interpretation of the transitions, one can also
correlate some of the observed trends of the unfavoured facior
with the expected surface deformations. Thus, one notices that,
for the nuclei possessing closed shells, and especially for those
possessing double closed shells +1 particle, the F-factors are
among the largest®. Moreover, for a series of isotopes of the
same element, the F-values decrease as we move away from a
closed-shell nucleus (c¢f. Bour and MorrerLson, 1952; Mosz-
- Kowski, 1953). These trends can be understood in terms of the
increased deformation, produced by the added particles and
reflected in many nuclear properties (cf., e.g., § IILiii; § Ve;
§ VIc.ii).

In the estimate of the F-factor, the transitions are compared
with one-particle transitions, although many of the nuclei in
question have several particles outside of closed. shells. In the
strong coupling approximation, where the particles are coupled
separately to the nuclear axis, the transitions do indeed only
involve changes in the quantum numbers of a single particle,
and the F-factor can be directly related to the change in the
vibrational state (cf. 15). If, however, the interparticle forces
influence the coupling scheme in the nucleus (cf. Fig. 6), there
will be an additional effect contributing to the F-factor (cf.
Moszkowskr. 1953). Still, it seems excluded that this latter
effect gives the main part of F, since in Table XXV there are
several nuclei with single-particle configurations, and also for
these the transition probabilities are considerably reduced as
compared with shell model estimates.

Reduction in the transition probability, associated with the

* In view of the marked stability of ;,Pb2%, it may be significant that the
F-factor for g,Pb?7 is as small as 0.08.
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partial orthogonality of the vibrational siates of different particle
configurations, is expected as a very general feature of nuclear
particle transitions. This is indeed observed and, besides the M4
isomeric transitions, especially the allowed unfavoured and the
pure GT forbidden S-transitions provide evidence for the effect
(cf. § Vlllc.ii and iv).

A consequence of this interpretation of the unfavoured factor
is its absence in certain special cases where the combining states
have similar surface shapes. Thus, the mirror S-transitions which,
due to the symmetry in the particle configurations, have almost
identical deformations are known to be conspicuously faster
than other allowed pg-transitions (ef. § VIIlc.i).

Another class of unretarded particle transitions is expected
for the y-transitions between the two members of the ground
state doublet in an odd-odd nucleus, where the deformations
are expected to be rather similar (cf. § VIb). There is some
evidence that the low energy M1 transitions in odd-odd nuclei
are faster than in odd-A nuclei (Granam and Berr, 1953). Some
of the long lived M3 isomers in odd-odd nuclei (cf. GOLDHABER
and Hitr, 1952) may also be of this type, but uncertainties in
the spin assignments as well as in the conversion .coefficients
prevent as yet a quantitative analysis of the lifetimes.

It would also be of interest to compare - or y-transitions to
different members of a rotational family, since the vibrational
integral in F does not affect the branching ratio.

ii. E3 transitions; j-forbiddenness,

In the region before the closed shell at 50, another important
group of long lived isomers has been found. These have been
identified as E3 transitions of the (7/2+4)<«>(1/2—) type and
occur for the nucleon numbers 43, 45, and 47. The (7/2 +)
states have been classified on the basis of the shell model as
(9o2)%57 (GorpuaBER and Sunvamr, 1951; MOSZKOWSKI, 1951).
For pure configurations of this type, the transitions would be
forbidden to order E3 (j-forbiddenness). For odd-neutron nuclei,
there is an additional forbiddenness for these transitions which
require an electric multipole moment. Both these types of forbid-
denness are removed by the surface coupling which is expected

to be rather large in these nuclei, as evidenced by the energy
Dan.Mat. Fys. Medd, 27, no. 16. ]
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TasLe XXVI. E3 transitions of (7/2+4) <> (1/2—) type.

Nucleus E (keV) —log T (sec™1) F
14577 160 1.68 013
345677 80 3.89 .0025
2a5e81 98 4.64 .0004
JeKr7? 127 2.47 .0026
g Krst 187 1.45 .0017
e K% 32.2 ~7.39 ~ 0004
s RE103 40 ~6.95 ~.0007
4sRh10% 130 2.55 .0010
1 Aglo? 93.9 3.03 .013
wAgH? 87 3.04 021
7a W8 80 ~3.02 ~.014

The shell model assigns a (gy/:)% 5, 7 configuration to the (7/2-+) state. The
anomalous spin I = j—1 may be explained as a result of the surface coupling
(cf. § IILiii). For a pure g,, configuration, the transition would be forbidden to
order E 3 (j-forbiddenness). The transition is assumed to occur due to the admixture
of a small amount of the g,/, orbital. The coupling to deformations of order three,
which induces an E3 moment in the surface, may also .be important for these
transitions, especially in the odd-neutron nuclei. The F-factor gives the ratio
of the observed transition probability to that of a g/, <+ py/, single-proton tran-
sition (cf. (7) and (10)).

depression of the (7/24) level (cf. § Illiii). The surface cou-
pling will admix particle states of g, type and, furthermore, the
coupling to the A = 3 surface mode produces an E3 moment
also in odd-neutron states (cf. (12)).

In Table XX VI are listed the known E 3 transitions of (7/2+) <>
(1/2—) type. The F-factors listed in the last column of the table
are derived by comparison with the transition of a single proton
between p;, and g, states ((7) and (10)). The comparable
magnitude of the observed F-factors for odd-neutron and odd-
proton nuclei is an indication that the second term in (12) is
at least comparable to the first term, as suggested by the hydro-
dynamic estimate. There may be a tendency for the odd-neutron
F-values to be somewhat smaller than those of odd-proton nuclei;
this could be understood from the effect of the first term in (12)
together with the A-dependence of the last term.

The appearance of smaller F-factors in this group as com-
pared with the M4 transitions, as well as the somewhat larger
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spread in values, may reflect the fact that the transition depends
entirely on the admixture of the g, state, which again depends on
the degree of deformation of the nucleus.

Examples of E3 transitions between other configurations have
also been identified, some with very small F-factors (cf. GoLp-
HABER. and SuUNYAR, 1951). While the detailed classification of
these transitions is difficult at the present time, such highly un-
favoured transitions may be expected in regions of strong coupling,
due to selection rules associated with the £, and K quantum
numbers.

iii. E2 transitions; collective excitations.

Collective excitations give rise in general to E2 or M1 ra-
diation (cf. § VIc), and are expected to reveal themselves espec-
ially by their strongly enhanced E2 fransition probabilities,
resulting from the large electric quadrupole of the oscillating
surface.

In the strongly coupled system, the low-lying collective ex-
citations can be characterized as rotational levels. The spectrum
is particularly simple in even-even nuclei where a series of states'
with even I decaying by pure E2 radiation is obtained (ct.
§ Vlc.ii).

The first excited (2-) states in even-even nuclei with measured
lifetimes are listed in Table XXVII. The F-factors in column four
provide a comparison of the observed transition probability
with that expected for a proton transition (j%),— (j%), for large j
{cf. (9)).

The very large F-factors for the nuclei in regions away from
closed shells confirm the interpretation of the states as rotational
levels of the strongly coupled system. From the measured life-
times one can deduce, by means of (17), the intrinsic quadrupole
moments (J, which are listed in column five. These may be.
compared with the Q,-values derived from the spectroscopically
measured quadrupole moments of neighbouring isotopes, listed
in column six. In the derivation of Q, from (@, the full strong
coupling projection factor (V.9) has been assumed. The two
determinations of Q, yield similar values. The spectroscopic va-
lues are somewhat larger than those deduced from transition pro-

babilities, but the difference may not be significant, considering
8%
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TaBLE XXVII. E2 transilions in even-even nuclei.

L

Nucleus | E (keV) |log T'(scc™1) | F IQ"I (107'2:‘ cm?) ,Q"l (10— CI_nz)
(transition) (spectroscopic)

s Dy180 85 7.91 140 9

g irse 80 7.91 180 10 ~ 20 (4Er67)

20 YH170 84 7.94 140 9 11 (7, Yb173)

Nsic 89 8.01 120 9 14 (,,Lu'™)

1608188 137 8.64 55 6 8 (;5Rel®)

soldgt?® 411 10.1 * 6 2 2 (goHg?%)

g2 Pb204 374 6.34 2x107%

gy P 0?12 719 11.2 ** 5 2

s P02 606 11.1 ** 7 2

* Marmrors (1952); corrected for the statistical factor in the resonance
formula {cf., e. g., STorrUSTE, 1951).

** Deduced from the branching ratio of a- and y-decay (cf. BeTHE, 1937,
p. 229). The lifetime for the long range a-groups is calculated from that of the
ground state by the semi-empirical formula of Warstra (1953) with the inclusion
of the appropriate statistical factor. The empirical ertergies and lifetimes are taken
from the compilation of Way et al. (1950) and HoLLANDER, PERLMAN and SEa-
BorG (1953). The branching ratios are obtained from these references and from
ErvLis and Aston (1930) and Ryrz (1951).

The table lists the E2 transitions in even-even nuclei with measured lifetimes.
All the transitions go from a first excited state of (2+) character to the ground
state (0+). The F-factor in column four is the ratio of the observed transition
probability to the value calculated for a proton transition (j2), » (%), for large j
(cf. (9)). The intrinsic quadrupole moments Q, in column five are deduced from
(17), assuming the levels to be of rotational character. For comparison, the last
column lists the intrinsic quadrupole moment derived from available spectro-
scopic data on neighbouring odd nuclei (cf. Addendum to Chapters IV and V).
The projection factor (V. 9) has been assumed in calculating Q, from Q.

the cxperimental uncertainties involved in both types of measu-
Tements.

The table exhibits the intimate correlations between excitation
energies, reduced transition probabilities, and quadrupole mo-
ments, and also shows the expected variations of these quantities
with the number of particles outside of closed shells.®

With the approach to the closed-shell configuration of
Pb2%8, the rotational description of the states becomes less
appropriate, and in the immediate neighbourhood of Pb2% a

* Note added in proof: Recently, Huus and ZupanCré (1953) have produ-
ced the (2+) first excited states in the even ,,W isotopes by means of Coulomb
excitation. From the measured excitation cross section they have deduced a

deformation |Q,| &~ 7%x107% cmm? in good agreement with the trends exhibited in
Table XXVII (cf. also footnote on p. 166).
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TapLe XXVIII. E 2 trapsitions in odd-A nuclei.

Nucleus | E (keV) |log T (sec=1) states Fo||@](107em?)
i / (transition)
Cdi | 243 6.91 52+ | 172+ 0.12
LTal® | 481 7.74 32+ | 72+ 0.005
WHg? | 134 7.47 52— | 12— | 4.0 2
oHg | 159 7.94 52— | 12— | 50 | 2

The F-factors have been calculated by comparison with a single-proton
transition between states with the listed spins and parities. The Q,-values for
the Hg isotopes are obtained from (19).

weak coupling situation is expected. In this region, the collective
excitations represent simple surface oscillations (ef. § VIc.i).

In the weakly coupled system, also particle excitations may
be encountered among the first excited states (cf. § VIb). An
example may be provided by the Pb2® activity with its relatively
long lifetime. The fact that, for this transition, F is small com-
pared to unity may indicate a rather pure neutron excitation,
corresponding to the closed-shell structure of the protons.

The observed E2 transitions in odd-4 nuclei are listed in
Table XXVIII. The two first have the small F-factors charac-
teristic of particle excitations. For the Hg transitions, the F-factors
are larger than unity and indicate collective excitations. A first
excited level of I,+ 2 in these nuclei can be obtained for a
rotational family with 2 = 1/2 (ef. § VIe.iii); this interpretation
could also account for the relatively low excitation energies as
compared with that in Hg'®®, The Q,values derived from (19)
are just of the same magnitude as obtained for Hg!®8, and derived
from the spectroscopic data of Hg?! (cf. Table XXVII). The
intermediate F-factors of the Hg transitions, as well as the rather
large excitation energies, indicate that the strong coupling scheme
is mot very fully developed, and deviations from the simple
rotational character of the states may be of importance.*

* Note added in proof: An example of a strongly enhanced E?2 transition

(F ~100) in an odd-A nucleus {(;;Ta'®!) has recently been found by the Coulomb
excitation process (Huus and Zupandil 19583; cf. footnote on p. 166 below).



VIII. Beta Transitions.

The analysis of f-transitions has the dual purpose of deter-
mining the intrinsic properties of the nucleon-lepton coupling,
and providing information on the nuclear structure. The recent
progress in experimental techniques as well as the understanding
of nuclear states have led to an improved evaluation of the
coupling constants in p-decay. This, in turn, now makes possible
more detailed tests of nuclear wave functions.

The type of information provided by the analysis of j-transi-
tions is in many respects similar to that derived from electro-
magnetic particle transitions (cf. § VIb). In particular, the
classification of transitions in degrees of forbiddenness provides
evidence on the spins and parities of nuclear states, while a
closer study of f-decay transition probabilities gives more detailed
information on the nuclear coupling scheme. In the present
chapter, we consider the calculation of transition probabilities
in the coupled system, and the more detailed analysis of the
empirical data.*

a) Transition Operators.

The comparative half lives of allowed transilions may be
written in the form

fot = B, [(1 — ) Dp(0) + 2Dy (0)] 7, (VIIL.1)
where ¢ is the half life and f, the integrated Fermi function for
an allowed transition (cf., e. g., KoNopinski, 1943), while

_ 2R%h"In2

B, =———QF.
g gzme5c4

(VIIL2)

* We are indebted to Dr. O. Koroep-HanseEN and M. Sc. A. WINTHER for
valuable discussions on theoretical and experimental aspects of B-transitions.
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The partial coupling constants for Fermi and Gamow-Teller
interactions are g(1 — x)"* and gx'’%, respectively*.
The reduced transition probabilities are given by™**

Dp(0) = > <i| T, |f>] (VIIL3)
M
and ’
Der(0) = 4 3| <i] 375, | >, (VIIL4)
My p-

where T, = Z 'r(:f) are components of the total isotopic spin. The
operators s and 7 are normalized in such a way that their proper
values are 1/2 and —1/2.

For the forbidden f-decays, the transition operator may
consist of several terms giving rise to different spectral shapes.
The analysis of such mixed transitions is of special interest for
the study of the f-decay coupling, but the influence of nuclear
structure is as yet more difficult to evaluate.

The forbidden transitions, which have a parity change of
(—)41+1 (with AT+ 0) are, however, more simple to interpret.
These transitions are of pure Gamow-Teller type and exhibit
a spectrum of unique shape. They are intimately related to the
magnetic multipole transitions of order A = AI. The compara-
tive half life is given by

fut = By[xDgp(n)] ™%, (VIIL.5)

where f;, is the integrated Fermi function appropriate to the con-
sidered type of transition of forbiddenness n = AI—1 (cf.
Konorinskr and UHLENBECK, 1941 ; GREULING, 1942). The normal-
ization employed here is such that

1 W, n _
Gy, 2 (Bus KAL) Fy (W, 2) pW (Wo— W)aW,  (VIIL®)
! Py

where the symbols are defined by Davipson (1951).
The reduced transition probability Dgp(n) may be written
in the form

* The influence of the so-called cross-terms (Fierz, 1937) has been neglected.
Estimates of the possible magnitude of such terms have recently been given by
ManmoUD and KoNorINskI (1952) and by WINTHER and KoroeEp-Hansen (1953).

** The quantities Dy, (0) and D (0) are often denoted by |{1|* and [{F 3,

respectively (cf., e. g.,, KonNoriNskI, 1943).
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Dgr(n) = 3| <i| Dgr(n, w)|f>
# My

z (VIIL.7)

where the transition operator is given by® **

ot - et o

>
ZSP' v [1.24-1 YnJrl”u(ﬂp, (pp)] ‘EEE)’
P

which exhibits the analogy to the magnetic multipole transitions
with 2 = n + 1 (cf. (VIL.2 and 4)). For n = 0, (8) reduces to

Oer (0, p) = 2 > PP, (VIIL9)
P
>
where s, are the spherical vector components of s. Equation
(7) is then equivalent to (4).

b) Evaluation of Transition Probabilities.

i. Transitions in an undeformed nucleus.

The matrix element for allowed Fermi transitions can be
simply expressed in terms of the total isotopic spin quantum
numbers of the combining states if charge independence of the
forces in the nucleus is assumed (cf. WieNner and FEENBERG,
1941). From (3) one obtains the selection rule 4T = 0 and
the value

Dp(0) = (TFT) (T T,+1) (T,»T,+1) (VIIL10)

for the reduced transition probability.

The Gamow-Teller transition probability is more dependent
on the nuclear coupling scheme. For transitions of a single
particle, (4) gives

* In the notation of GreuLiNe (1942), we have
> >
DGT(") = | Qn+1 (U’ I‘) |3
while Konorinskl and UHLENBEGK (1941), for n = 1, use the quantity Bij’
Dpp(l) = 2| Bij |2,
** BratT and WEisskoprF (1952) write the transition operator in terms of

> >
YR =2 [(n+1) (2n+3)]‘1/2s-v(r"+1 Yop1,-p)-

where
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J% j=141/2
Der(0) =1 “ Aj =0 (VIL1I)
j_J_l j=1—1/2
and
41 2j,+1
Der (0) = 37 EJ{—:T Aj=1.  (VIIL12)

The last formula assumes j, = [+ 1/2 and j. =1—1/2 (4] = 0).
For Aj = 1 and no parity change, one may also have Al = 2,
in which case the transition is second forbidden, according
to the single-particle model (I-forbiddenness; cf. NorpHEIM,
1951). '

For two-particle configurations, and a few three- and four-
particle configurations, the matrix elements are unique for
transitions between states of given J and T (cf., e. g., Table III).
In more complicated configurations, the value of Dg,(0) will
depend on the particular coupling scheme. ‘

For the forbidden transitions of pure GT type, the transition
probability for a single-particle transition may be obtained from
(7) and (8) by using the result (VIL.8).

.1i. Transitions in the strongly coupled system.

The value (10) for the Fermi transition probability follows
directly from the assumption of a constant total isotopic spin for
the nuclear states, and is not affected by the surface coupling.

The transition probabilities for Gamow-Teller transitions in
the strongly coupled system can be evaluated by the same methods
as used for the eleciromagnetic particle transitions (§ VIIe.i).

The transition operators are conveniently expanded along
the nuclear axis, giving (cf. VIL.13)

Qar (1, w) = > Dgp (1, %) Dy, (B) (VIIIL.13)
v

in terms of the operators O’ expressed in the nuclear coordinate
system.

For. transitions with A7 = n 4 1 between strong coupling sta-
tes with Q; = K; = I, and £; = K; = I;, one obtains
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2L+1

Dgr(n) :Hlbi%T(”’i(”“))ZQ/FH?’;%FQI T1

. (VIIL.14)
If j; = (2,); = I; and j; = (2,); = I, for the transforming part-
icle, the expression (14) can be written

21 +1

T (VULs)
>

Dgp(n) = {DGT (n) }sp | S‘P: Pt lz

in terms of the transition probability for a single uncoupled
particle (ef. § VIIIb.i). The significance of the last factors in
(15) in retarding the transition has been discussed in connection
with the analogous formula (VIL.15).

In the discussion of the empirical data, this retardation is
expressed as the unfavoured factor F, representing the ratio of
D and Dg,. It is convenient to generalize the definition of F to
include cases where j, + £2, for the states of the transforming
particle, and for which the coupling scheme has no simple ana-
logue in the shell model. Thus, in general, for ground state
transitions with 47 = n + 1,

21 41

. (VIIL16
21,+1 ¢ )

F = Dy (0)|§ xg, O (n. % (n+ 1) xg,|

The above discussion includes the allowed transitions (n = 0)
with 41 = 1. For allowed transitions with 47 = 0, one obtains
directly from (4)

. e o o I
Der(0) = 4|§ 20,8572 10, | S 01 9y Frpe (WILLT)

N
where s; is the component of s along the nuclear axis. In this
case, the F-factor is

F=D (0)1“%. Ss Ty i l‘z—I— (VIIL.18)
er (D) N 2057 2o\ 77 :
Additional symmetry terms may appear in (17) in the special
case of K = 0Q = 1/2.
For the mirror transitions, the symmetry of the combining
states implies an intimate relation between Dg; and the expect-
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ation value of s, for the states involved. For a one-particle
configuration, one obtains directly from (4)

I+1
Dgp (0) = 4—I_<sz>2M=,. (VIIL.19)

In the strongly coupled system where the particles are coupled
separately to the nuclear axis, (19) holds quite generally for
mirror transitions, with s, referring to the last odd particle. The
quantity < s, > also occurs in the static magnetic moment and
may be evaluated by the methods of § IVDb.*

c) Discussion of Empirical Data.

Recent studies of the fi-values of simple nuclei have led to
an improved determination of the coupling constants of S-decay
(Boucuez and Natar, 1952; KoroEp-HaNsEn and WINTHER,
1952; Trica, 1952; BraTtt, 1953). We here use the values

B, = 2.6x10%sec
¢ I11.
x = 0.5 } (VIIT.20)

which seem to be consistent with available empirical data (ef.,
e. g, WintHer and Koroep-HanseEN, 1953).

i. Mirror transitions.

The absence of an unfavoured factor arising from different
surface shapes of the combining states makes possible a rather
detailed analysis of the fi-values of mirror decays, from which
information about the nuclear coupling scheme may be obtained.

Since the nuclear magnetic moment, due to the large intrinsic
nucleon g-factor, primarily depends on <Cs, > (cf. IV.3), which
also determines the GT transition probability (cf. 19), one expects
rather strong correlations between magnetic moments and fi-
values of mirror transitions. Indeed, it is found that, when ‘the
magnetic moment deviates from the shell model values, there
are corresponding deviations in the mirror ff-values and that

* The strong coupling matrix elements for mirror transitions have been
given by DavipsonN and Frenserg (1953) for j a constant.
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TaBLE XXIX. ft-values of mirror transitions.

product | 1 | Emax MeV)| ity (Dexp 0y (e
;B! 3/2 0.958 20.39m 3840( 70) 1950 3060
<C13 1/2 1.200 10.1™ 4560(100) 3900 3900
,N16 1/2 1.683 2.1m 3800(200) 3900 3900
07 5/2 1.745 658 2320(100) | 2160 2160
JFe 172 2.234 19.58 1970(100) 1300 1800

10 Ne#! 3/2 2.50 22.8% 3700(200) — 3600
11 Na2 3/2 3.073 12.08 4780(150) —_— 3600
13Mg?® 5/2 — 7.3% — 3030
13Al%7 5/2 3.48 5.08 3350(600) 2160 3030
145129 172 3.60 4.68 3510(700) 1300 4350
15P3 1/2 4.06 3.18 4020(600) 1300 4400
165%8 3/2 4.43 2.08 3800(650) 3250 4850
1,C198 3/2 4.4 1.905 | 3420(800) 3030 4850
182 (3/2) 4.57 1.28 2520(600) 3930 3750
130 3/2 5.13 1.065 3740(500) 3250 3750
Catl | (7/2) 4.9 0.875 | 2430(800) | 2280 | (2020)

The empirical data are taken from WinTHER and KoroEp-Hansen (1953)«
Their estimated uncertainties for the experimental ff-values in column five are
listed in parentheses. The second to last column gives the shell model ff-values,
wherever they are independent of specific assumptions about nuclear forces. In
the last.column are listed fl-values for the coupled system, obtained from the wave
functions discussed in the text.

the observed correlation can be understood from simple assump-
tions about the nuclear states (Triga, 1952; WINTHER, 1952;
WiINTHER and KoroED-HANSEN, 1953). The existence of such a
correlation strongly supports the interpretation of the observed
moment shifts as reflecting a modified nuclear coupling scheme
(cf. p. 52).

The calculation of mirror fi-values in the coupled system
follows the same lines as employed in the Addendum to Chapters
"IV and V. Some of the details of this analysis are given below
and the results are summarized in Table XXIX. In cases where
the ft-value depends sensitively on the nuclear deformation, the
coupling situation indicated by the magnetic moment has been
used. For comparison, ft-values calculated from shell model
wave functions are listed wherever the states are unique.
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Calculation of mirror ft-values.
4 = 11.

The magnetic moment of B! indicates a rather sirong sur-
face coupling (cf. p. 48), which is further supported by the
ft-value. The listed (f!).-value is obtained by determining the
coupling situation from the magnetic moment, assuming a pure
pse state (u = (g; — gr) <J, > + ggrl). However, as discussed
on p. 69, it seems unlikely that such a configuration can account
for the whole observed moment shift. The deviation from (jj)
coupling indicated by the magnetic moment seems also reflected
in the observed ft-value.

A =13 and 15.

The pjp-nuclei are influenced by the surface only through
the coupling to the py, state (cf. p. 68). However, this coupling
has no effect on the fi-value. The discrepancy between (ft),
and (ft)yp for A = 13 may again indicate a deviation from (jj)
coupling.

A =17,
Due to the stability of the O core (cf. p. 76), one expects

only very little influence of the surface coupling on the ft-value.
This is consistent with the empirical data.

A =19, 29, and 31.

The magnetic moments of these (1/2-4) nuclei have been
accounted for in terms of strong coupling states with £ = 1/2,
containing 8,5, dg;5, and dyp, orbitals (cf. p. 63 ff.). The magnetic
moment depends sensitively on the interference between the dyp
and dy;, orbitals, and the fi-value is expected to show a similar
effect. Fig. 15, which is the analogue of Fig. 11, shows the cha-
racteristic asymmetry of ft with respect to the sign of the de-
formation, which accounts for the conspicuous difference between
the fi-values for A = 19 and those for 4 = 29 and 31. The (ft),-
values in Table XXIX have been obtained from y-values con-
sistent with the observed magnetic moments. It is of interest that
for F* the (ff)-value differs appreciably from (ft),, although
jt ~ Mgy, The empirical data seem. to support this expectation.
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.

-2 -1 1 2
Fig. 15. Beta decay transition probabililies arising from d-state admixture in I = 2 =
1/2 states. The figure gives the reduced GT-transition probability for mirror tran-
sitions between states of the type discussed in Ad.i (cf. especially caption to Fig. 11).
The states are characterized by the amplitudes ai ~ 1/3 and a} ~ 2/3. The ratio

of dy, to dg), is denoted by y. The strong asymmetry of D1 with respect to the

sign of y arises from the daj,—dy), interference, and is similar to the behaviour
of the magnetic moment.

A =21 and 23.

In the strong coupling approximation, these nuclei are re-
presented as £ = 3/2 states containing dy, orbitals with a small
admixture of dy, (cf. p. 75). The (fif).-value is very sensilive
to this admixture and the values given in Table XXIX correspond
to a dy, amplitude of ayp, = —0.2 - a5, which is in accordance
with z (Na®). In the absence of the d, interference, one would
have (ft), = 4300.

A = 25 and 27.

The (ft),-values are calculated for strong coupling states
with j = £2 = 5/2 which account approximately for the magnetic
moments of Mg® and AI¥ (cf. p. 76).

A = 33, 35, 37, and 39.
In the strong coupling approximation, these nuclei are de-
scribed as 2 = 3/2 states, predominantly of dyp type, with a
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small admixture of d;,. One expects the (ff),-values, just like
the magnetic moments (cf. p. 72), to depend rather sensitively
on the sign of the interference term, which again depends on
whether the configuration is that of a single odd particle or hole.
In the former case, corresponding to A = 33 and 85, the (f1),-
values in Table XXIX are calculated for the value Agp = —0.15 aypy
suggested by the magnetic moments. In the latter case (4 = 37
and 39), the opposite sign for ay, applies.

A = 41,

The (ft).-value listed in parenthesis corresponds to the strong
coupling limit (j = £ = 7/2), but the stability of the Ca* core
may imply a weak coupling for Ca*.

ii. Allowed unfavoured transitions.

The shell model has been a valuable guide in the classification
of B-transitions in degrees of forbiddenness, especially through
its ability to predict the parities of the combining states (MAYER,
Moszkowsk: and NorRDpHEIM, 1951; NORDHEIM, 1951). At the
same time, the quantitative analysis of the ft-values indicates
an important influence of the dynamical aspects of the collective
field. This is strikingly illustrated by the difference between the
ft-values of mirror transitions and other allowed transitions.
While the symmetry of the mirror states implies almost identical
surface shapes, other types of transitions are in general expected
to be appreciably retarded, due to surface readjustments accom-
panying the particle transitions.

Table XXX lists the ground state transitions in odd-4 nuclei,
excepting the mirror transitions, which have been classified as
allowed (MAYER, Moszkowski and NORDHEIM, 1951): The F-factor
in the last column provides a measure of the retardation of the
observed transitions as compared with a single-particle transition
between the states listed in columns four and five (cf. (16) and
(18)).

It is seen that the transitions are slowed down by a factor
of the order of 10—100, which is of the same order of magnitude
as the reductions for M4 transitions (cf. Table XXV).

The allowed transitions in even-4 nuclei show a behaviour
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TasLE XXX. Allowed unfavoured fS-transitions in odd-A nuclei.

particle states
Nucleus E4(MeV) log fot F
i i

Lo Nez —41 4.9 o dgﬁ 16

1 Na2s —3.7 5.2 d:ﬁ dsja 056
16538 —0.17 5.0 dafa dyjy .083
20Cats —0.22 5.6 faja fara .010
2Sct’ —1.8 5.5 Faja fa/2 .013
27C0%1 —1.3 5.2 foia fs/2 .019
302053 +2.36 5.4 Psjz Paj2 012
s0ZN°* —1.0 4.6 Pije Pajs .050
91Ga" —1.4 5.9 Paje Py .0050
22GE7 —1.1 5.0 Pije Py .020
ssAal +0.6 5.1 Paja Pz .030
23877 —0.7 5.7 Pare Pys 077
24567 +1.29 5.3 P2 Psse .0098
aSest —1.5 4.8 P12 Pae .031
L +1.6 5.6 Paje Pifa .010
55 Br7? +0.36 5.0 Pyj2 P12 .038
25 B3 —1.05 5.3 Py Pif .020
o5BIres —2.5 5.1 Paye Pije .030
s Rh108 —0.57 5.5 To/ 9o/ .0091
goSnizt —0.38 5.0 dyya dsys .022
sgTE127 —0.76 5.6 ds/s dy/s .0056
soNd4L +0.7 5.2 dyja dsfs 014

The empirical E, and log f,{ values as well as the spin and parity of the com-
bining states are taken from MAYER, MoszKowSKI and NorpHEIM (1951). The
F-factors are calculated by comparison with the single-particle transitions listed
in columns four and five (cf. (16) and (18)). The superscript gives the value of
Qp in cases where it differs from ]'p.

similar to that of odd-A nuclei (¢f. NorpHEM, 1951). An inter-
esting anomaly is the decay of ;C** whose long lifetime may indi-
cate an accidental cancellation in the matrix element. Additional
information on the states involved in this transition could be
obtained from a measurement of the y-decay lifetime of the
2.31 MeV state in ;N'%. This state is believed to be the 7 = 1
state which is isobaric with the C'* ground state (cf., e. g., AJZEN-
BERG and LauriTsEn, 1952); it decays by M1 radiation, and the
transition matrix element is very similar to that involved in the
f-decay of C'.
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TaBLE XXXI. [-forbidden S-transitions in odd-A nuclei.

Nucleus E, (MeV) log [t particie states F
i !

40" —45 5.5 af? e 026
1Sitt —1.8 5.9 a3 LN 028
P —0.26 5.1 dyr: a3 .082
AL ~0.05 6.8 s fo 0040
2o Ni® —2.10 6.6 fils i 0067
2oC0®? +1.22 4.9 T e 22
2oCU® —0.65 5.5 TRM i .053
s0Zn'8 +0.32 7.0 fila 1 .0026
25Ge? +1.0 6.0 /§j§ i .026
s Pd10? —1.0 6.2 gjj; g;j: .0018

The empirical E, and log f,¢ values as well as the spin and parity of the com-
bining states are taken from MaveRr, Moszkowskl and NorpHEIM (1952). These
transitions, which are forbidden for pure shell model configurations, occur in the
coupled system due to admixtures of the states listed in columns four and five.
The strong coupling notation is used and the superscript denotes the component
.Qp of angular momentum along the nuclear axis. The F-factors are obtained by

comparison with a pure particle transition of the listed type (cf. (16)).

There are also other cases where it would be of interest to
combine lifetime evidence on allowed GT S-transitions with that
of M1 transitions between the corresponding isobaric states
(e.g., He® (f-)Li® compared to the y-decay of the 3.58 MeV
level in Li®. Another example is the Be?(K)Li” (478 keV), which
may be compared with the y-decay of the excited Li%-state.)

ifi. I-forbidden transitions.

The special type of odd-A transitions with A7 = 1 and no
parity change, which according to the shell model have A1 = 2,
are listed in Table XXXI. They are classified as I-forbidden

Dan. Mat. Fys. Medd. 27, no. 16. 9
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transitions (Maver, Moszkowskr and Norpurem, 1951). Their
ft-values are comparable with, although somewhat larger than
those of the allowed unfavoured transitions in Table XXX, and
they have spectra of allowed type. :

The configuration admixtures which are a general consequence
of the surface coupling can destroy the [-forbiddenness in a
similar manner as for the j-forbiddenness encountered in the
E3 ftransitions (§ VIId.ii). The fourth and fifth columns of
Table XXXT list the [, j, and £ values of the single-particle orbit-
als, which are assumed to contribute the principal part of the
transition matrix element. Assuming pure states of these types,
one calculates the F-factors of the last column in the same way
as for the transitions in Table XXX (cf. (16)).

The appearance in Table XXXI of somewhat smaller and
more erratic F-factors than in Table XXX may reflect the sen-
sitivity of the transitions to small amplitudes of admixed states
(cf. the analogous situation for the j-forbidden ES3 transitions
(Table XXVI) as compared with the M4 transitions (Table XXV)).

The unfavoured factors of Table XXXI are somewhat larger
than those of Table XXVI, which may be associated with the
greater ease with which the surface destroys the {-forbiddenness
than the j-forbiddenness because of the greater energy separation
between the spin-orbit partners than between neighbouring orbit-
als in the same shell.

iv. Pure GT forbidden transitions.

The forbidden transitions which are identified by their spectral
shape as being of the pure GT type are listed in Table XXXII.
The unfavoured factor F in the last column provides a comparison
of the observed transition probability with that of a single-
particle transition between the states listed in columns four and
five (cf. (16)). It is seen that the F-factors, as expected, are
comparable to those of the allowed unfavoured p-transitions
(Table XXX) and the M4 isomeric transitions (Table XXV),

The two largest F-factors in Table XXXII are those of B1°
and K*. In the former case, the observed F-factor can be ac-
counted for in terms of the projection factor alone, with no
contribution from the vibrational wave functions (cf. 14 and 16).
The occurrence of similar surface shapes in the two combining
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TasLe XXXII. Forbidden B-transitions of pure GT type.
P yp
particle states .
Nucleus E, (MeV) log fnt F
i f
odd A Al = 2 yes (n
LA —2.55 3.8 fara o/ .03
55520 —1.46 8.3 /2 P1ja .09
2sST1 —3.2 8.4 dyjs Paja .07
Y —1.56 8.5 Py dyja 016
5517 —0.53 8.7 91/ Byyjs 011
even A A1 = yes (n
7/2 3/2
17CI8 —4.81 8.1 i i 16
5/2 1/2
LKA —3.58 8.5 file & .18
47 RDS® —1.82 8.5 o 1 .04
35510 —0.54 8.2 iz P .09
5/2 1/2
50 Y90 —2.20 8.1 & pif2 14
oo T1204 —0.765 8.9 i 31721/2 010
even A Al = no {(n
—3/2 3/2
§B10 —0.56 11.3 P Pl 23
even A Al = yes (n
LKA° —1.36 15.1 fire dih 24

The table lists the forbidden transitions classified by their measured spectra
as of pure GT type (Wu, 1950; LipoFsky et al., 1952; FELDMAN and Wu, 1952).
The log f,t values are obtained by using the formulae and curves of Davipson

(1951). The F-factors are obtained by comparison with a pure particle transition

between the states listed in columns four and five (cf. (16)).

states is expected, since in strong coupling the occupied particle
states have the same deforming power (cf. the similar situation
expected for y-transitions between the members of the ground
state doublet in odd-odd nueclei (p. 113)).

gx
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In K%, the F-factor as well as the magnetic moment (cf.
p. 83) indicate an intermediate coupling situation. In such cases
of weak or intermediate surface coupling, it is of interest to
compare the observed transition probabilities with those expected
for a coupling scheme arising from the influence of particle
forces (cf. § Ilc.iii). The unfavoured factor I, obtained in this
way is in general somewhat larger than F, in the case of many-
particle configurations. Thus, for K%, one finds Fp = (.7.



IX. Summary.

A unified description of the nuclear structure is attempted,
which takes into account individual-particle aspects as well as
collective features associated with oscillations of the system as a
whole (§ I). The most important of the collective types of motion,
for the low energy nuclear properties, are oscillations in the nu-
clear shape, which resemble surface oscillations. The collective
motion is associated with variations of the average nuclear field,
and is therefore strongly coupled to the particle motion (§ IIa).

The particle-surface coupling implies an interweaving of the
two types of motion, which depends on the particle configuration
as well as on the deformability of the surface. In the immediate
vicinity of major closed shells, the high stability of the spherical
nuclear shape makes the coupling relatively ineffective. In such
a weak coupling situation, the nucleus can be described in terms
of approximately free surface oscillations and the motion of in-
dividual nucleons in a spherical potential (§ IIb.i).

With the addition of particles, the coupling becomes ‘more
effective, and the nucleus acquires a deformed equilibrium shape.
For sufficiently large deformations, a simple limiting coupling
scheme is realized, which bears many analogies with that of
linear molecules. In the strong coupling situation, the nucleus
performs small vibrations about an axially symmetric equilibrium
shape. The particles moving in the deformed field are decoupled
from each other and precess rapidly about the nuclear axis,
following adiabatically the slow rotation of the nuclear shape
(§ l1b.i and § Ilc.i; cf. Figs. 3 and 6).

An analysis of the observed nuclear properties of the low
energy region reveals many of the characteristic features of the
coupled system.
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For nuclei with major closed-shell configurations, or with a
single extra particle, the expected weak coupling situation is
especially confirmed by the high excitation energies (cf., e. g.,
Fig. 13) and the small quadrupole moments (§ V). Also magnetic
moments indicate that particle motion in a closed-shell core is
little influenced by the coupling (cf. O, p. 76), although the
anomalous moment of Bi%?®® implics as yet unexplained features
of the particle structure (cf. p. 81).

Already for configurations with a few particles, the empirical
data give evidence of a major effect of the particle-surface coupling,
and in regions further removed from closed shells, a rather fully
developed strong coupling situation is found.

In particular, the nuclear excitation spectrum clearly indicates
a structure of nuclear states governed by the strongly coupled
particle and collective motions. A striking feature is the occur-
rence of collective excitations of rotational character, which reveal
themselves by their energy trends, the regularity of their spectrum,
and their short lifetimes (§ VIc.ii). The accuracy of the strong
coupling description of these states in regions of large deformations
is exhibited by the energy ratios within a rotational family (cf,,
e. g., Table XXII and also notes on pp. 93 and 166).

The particle modes of excitation can be studied especially in
the long lived isomers and the f-activities. For these states, the
spins and parities, which account for the order of the transitions,
have confirmed the configuration assignments given by the shell
model. However, the observed transition probabilities, which are
appreciably smaller than would correspond to particles moving
in a fixed potential, provide evidence for the readjustments of the
collective field, which are a characteristic of the particle transitions
in the coupled system (§§ VIb, VIId.i, VIIIc.ii and iv).

The modification of the nuclear coupling scheme arising from
a strong particle-surface interaction also manifests itself in the
static properties of nuclear ground states. Thus, for many-
particle configurations, the ground state spin may differ from
that which would result from a coupling due to particle forces
(cf. Fig. 6). Especially, the occurrence of I =j—1 in (j)3
configurations gives evidence for a surface coupling dominating
over the particle forces (§ IIL.iii).

The magnetic moments provide a measure of the sharing of
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angular momentum between particles and surface, and support
the strong coupling interpretation of nuclear states in regions
removed from major closed shells (§ IVc; cf. especially Table
VI). The moments are also sensitive to modifications of the
particle state resulting from the non-spherical character of the
potential, and thus provide rather detailed tests of nuclear wave-
functions (Addendum to Chapters IV and V; e¢f. also Table
VII). The comparison between magnetic moments and the fi-
values of mirror f-decays further supports the interpretation of
the nuclear states (§ VIIIc.i).

While many of the nuclear properties considered depend
primarily on the coupling scheme, information on the collective
motion of a more detailed character may be obtained from the
analysis of quadrupole moments and of the energies and life-
times of rotational states. It is found that the observed quadrupole
moments, as well as the related £2 matrix elements for rotational
transitions, are systematically smaller than would correspond to
surface deformations of the simple hydrodynamical type (§ Ve,
§ Vlc.ii). In this deviation, onc has an interesting indication of
the inadequacy of the liquid drop idealization of the nuclear
collective properties, which may be associated with the non-uni-
formity of the nuclear density distribution (§ Ila).

The present discussion has been restricted principally to low
energy phenomena, but the basic features of such a unified
description retain their validity also for the higher excitations en-
countered in nuclear reaction processes (§ VIa). The increased
level density implies a certain complexity in the nuclear states, but
the fundamental nature of the individual-particle and ordered
collective motions is still expected to manifest itself (§ VId; cf.
also Ap. Va and b).

Thus, the recent measurements of total neutron cross-sections
have revealed a structure associated with potential scattering of a
single particle, as well as aspects arising from the coupling to
the internal degrees of freedom of the target nucleus, which may
lead to the complicated motion of the compound nucleus. It ap-
pears that the observed coupling can be understood in terms of
an interaction between the incident particle and the nuclear surface
oscillations of the same magnitude as implied by the low energy
-phenomena (Ap. Ve).



Appendix [.

Shell Structure and Deformability.

The nuclear deformability depends on the extent to which the
particle structure can adjust to a deformation of the field. Thus,
important deviations from the simplified surface tension de-
scription may arise for configurations with anomalously large
level spacings (closed-shell nuclei) or if the deformation changes
too rapidly for the particle structure to follow adiabatically (cf.
GarrLone and SarverTi, 1953; Hin and WHEELER, 1953).

For deformations preserving axial symmetry, the nucleonic
states may be characterized by the quantum numbers £,, de-
noting the components of angular momentum of the individual
nucleons along the symmetry axis. For a given set of 2, the
deformability coefficients C; are proportional to the number of
nucleons A, and are thus much larger than estimates based on
the surface tension, which are of order A*® (apart from the
influence of electrostatic forces).

As the nucleus is deformed, however, states with different sets
of Qp will cross and if, instead of following a state of constant
R, one follows the state of lowest energy for any given deform-
ation, the resultant energy dependence will on the average be
of the surface tension type. (Illustrations of this effect are given
in the above references).

Deviations from axial symmetry, as well as the effect of part-
icle forces, afford a mechanism for keeping the particle struc-
ture in the state of lowest energy, provided the region of crossings
is passed sufficiently slowly. If this adiabatic condition is violated,
exchange of energy takes place between nucleonic and collective
motion (HiLL and WHEELER, 1953). One then encounters the
features of the coupled system characteristic of an intermediate
coupling strength (&& Ila.iii, IIb.i and iii).
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In the strong coupling situation where the nucleus performs
small oscillations around a deformed equilibrium shape (§ I1b.ii),
this equilibrium shape may in general be estimated on the basis
of a surface tension type of deformability. A finer analysis of the
deformation properties in the appropriate region may be required
for the detailed treatment of the vibrations around equilibrium.

The surface tension type of deformability is a statistical feature
which depends on a regular level spacing. In the neighbourhood
of major shell closings, the discontinuity in the level distribution
implies a special stability of the spherical form corresponding
to a C; coefficient of order A for small deformations, until the
first few crossings have occurred (cf. GaLLoNE and SALVETTI,
1953). This results in an anomalously large phonon energy and
very small quadrupole moments for such nuclei. For larger
deformations, the deformability approaches the normal value with
a resulting decrease in the phonon energy. The potential energy
function corresponding to these features is somewhat more
complicated than given by (IL.5).
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Matrix Elements in the Perturbation Representation.

The matrix elements of H;,;, can be obtained from the matrix

of Y, (¥, ¢) given by

J2im>,

(Ap. 11.1)

where the last factor on the right hand side is the coefficient of
the vector addition of the angular momenta j* and 2 to give a

total j (cf. ConpoN and SHORTLEY,

19385, p. 77, Table 4°).

The sub-matrix < j | h |j’ > can be expressed in terms of
Racah coefficients and, for particle states of the same parity, is

given by

<jlr|j'> = _1/64:1

i

-l

*l/

3(2j—1)(2j—3)

27g-y T

J I/(J3i(12)1(;—":)1) =
(f’—ﬁ%‘% j=j—1
3(2/+3)(2/+5) =0

2(j+1) (G +2)

(Ap.11.2)

From (1) and the matrix elemenls of e,, which can be obtained
from (A.38), one derives from (I1.9) the expression (I1.12) for
the first order matrix elements of Hy,

To first order in Hy,, the wave function (II.11) is determined

by the coefficients
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ho <jlh|j'>

<j"12:IM =k e
I M|> l 2C hHo+4;°

(Ap.1L.3)
where 4. is the separation between the particle levels j* and j.
In terms of these coefficients, the expectation value of R, is

given by

2
(Ap.11.4)

M N 10,

which is equivalent to (I1.13) if only the diagonal term (j' = j)
is of importance, :

For a more detailed analysis of the nueclear coupling scheme,
such as is needed for the evaluation of the magnetic moment,
the non-diagonal matrix elements of s, given by

1
2

= 2I(I+1ﬂ)4(21+ 1)V(1+’“g> (”’*9 (l”%)(’—’%)

are also of interest.

<j=1l— ;12;1M]szlj' = l-l—é; 12; IM >

(Ap.I1.5)
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Features of the Strong Coupling Solution.

i. Matrixz elements.

‘The matrix elements of the coupling term (11.26) in the strong
coupling approximation may be obiained from
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which is derived from (Ap. II.1 and 2).
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The expectation value < j, > is given by (II.19), while for
the evaluation of < s, > one also needs the non-diagonal element

<= 1—%, Q; IKM|s,|j = 1+%, Q; IKM >

(Ap.II1.2)

T
’ <H—~> — 2
MK l 2 N { 14 ()i 1/2) 5!2'1/2 51{,1/2}-

SOOI+ 21+1

ii. Strong coupling for a single j = 3/2 particle.

In the special case of a j = 3/2 particle coupled to the sur-
face, there exists no regular strong coupling solution since, ac-
cording to (II.21), the configurations (y = #; 2 = 3/2) and
{(y = 0; 2 = 1/2) are degenerate. Indeed, the proper values of
Hy,, (cf. A.80) are independent of . In strong coupling, we may
restrict ourselves to the lower of these proper values, and the
wave function for the state with I = 3/2 may be written

= {|8/2; 3/2 3/2M >siny/2+|—1/2; 3/2 3/2M > cos /2 } 9, (B, ¥)

(Ap. I11.3)
+{]1/2; 8/2 1/2 M > cosy/2+|—3/2; 3/2 1/2M > sin /2 } @, (8,7) }

in terms of the symmetrized basis vectors [ Q; IKM > (cf. 11.15).

The vibrational functions ¢; and ¢, represent small oscillations
around a definite equilibrium f; however, the independence of

the coupling energy of y implies essential oscillations in y, and

the vibrational energics characterized by n, become of the order

of rotational energies.

In order to determine the nuclear coupling scheme, one must
solve the vibrational equation, which can be written as a matrix
in the space of ¢, and ¢,. From (11.23, 24, and 25) and (A.96
and 121-4) one obtains for the Hamiltonian of the system



142 Appendix I1II. Nr. 16

AN TN
el [
= =
+ |
PN & PaSEA o
« jou] o =
< n o
™ = e
o - [ 1 A\ +
= | e N R
2] @ Nw
& 2] P
e g 8 g 8
% = @ ™ @ o
S @ @
|m>\ e o
@
K + +
o |2 ~ alw ~ A
=R g % g %
o a 2 - (Ap.111.4)
e s 2 s
=~ T =
"°|cc + = | ™
T Ao aler
m ()
o g = g =
.= O =1 [} =}
@« o~ Rz o ‘B
‘blcg‘ + ) + o
- o ] o |
=
- I
o | C\l’ e
SR +
e - \i\/ - Q\/
+ Nﬂ Nﬁ
—_ = -
S o o
= a QU
I -
I — —
T + +

where H, (8) represents small vibrations in # around the equili-
brium value (11.22). For sufficiently strong coupling, the vibrations
in # and y are approximately independent.

From (4) it is seen that there is a preference for the shapes
y = 0 and y = @, and that there is a symmetry with respect to
these two positions. An estimate of the y-oscillations may be ob-
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tained by expanding H around y = 0 and =, and by taking into
account that for y = 0 the value of ¢, is rather small compared
to g,, while the opposite holds for y = m. Neglecting the overlap
of the vibrations centered on y = 0 and y = &, one obtains
two degenerate solutions, which have the same nuclear moments.

From the wave function (3), one can determine the coupling
scheme and the quadrupole moment by means of the operators

3 2 sin? g — % sin y
Je =z (Ap. H11.5)
o : 27 1
sin y 2 cos 975
and
1/—cosy siny
Q= Q- ¢< _ ) (Ap. 111.6)
o sin y Ccosy
where (), is the intrinsic quadrupole moment given by (cf. V.7)
3 s,
Qy = ——= ZR < f>. (Ap. II1.7)

V5x
From the approximate wave function, one obtains
<J,> ~ 0.8 (Ap. I11.8)
leading to (cf. IV.5)

2.3 0.4
uc(ps,,z)m{__m} and uc(dglz)w{o_g}. (Ap. 1I1.9)

The quadrupole moment is found to be
< Q> ~0.16 Q,. (Ap. 111.10)

Thus, the y-oscillations somewhat reduce the values of < j, >
and < Q > as compared with the state Q = 3/2, v = =.

The energy spectrum of the system is rather complex, since
low-lying states can be obtained by excitations of the y-vibrations
without change of I, as well as by rotational excitations. A com-
parison between the equations for states with different I shows,
however, that the ground state is an I = 3/2 state of the type
considered above.
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Solution of the Coupled Equations for Large j.

In the case of large j, a solution of the coupled system can
be obtained for arbitrary strength of the coupling by starting from
the corresponding classical equations and considering the quantum
effects in first order.

If we assume the magnitude of the particle angular momentum
to be a constant of the motion, there exists a simple classical

>
solution for which j remains constant in a direction which may
be chosen as the z-axis. The surface acquires a static deformation
of the «, type given by
_ 11/5 k

g = —

(Ap.IV.1)

The quantum effects give rise to an indeterminacy in the di-

rection of;and of the axis of deformation. For j >> 1, the angle
between j and the z-axis is relatively small for the states M = I ~ j.
To first order, we may then treat j, as a constant, equal to j
aside from corrections of order unity, and consider only the
motion of the perpendicular components

Je = Jo % Uy (Ap.1V.2)

The small inclination of the axis of deformation, with re-
spect to the z-axis, to first order implies excitations of the @, and
e_; surface modes. In this approximation, the «, and «_, modes
are not affected and perform independent zero-point oscillations
around their equilibrium values &, and 0, respectively.

The nuclear coupling scheme is thus determined by the
coupled oscillations of the «, and «_; surface modes and the
perpendicular j-components. This dynamical system possesses
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three degrees of freedom, since j, and j_ play the role of canonical
conjugates.

The equations of motion may be obtained from the Hamil-
tonian (I1.8), where Hg is given by (II.5) and H, may be taken
as a constant. A convenient form of H, ¢ for j a consiant is given
by (A.76). To leading order in j, one finds

/%"EE_LJ —o
2¢ Vi

b = Ao 1 .
l~:-J~+$Vth(3xV—*TJ~—VGal>=0-
Vi c Vi

The dimensionless coupling constant x is given by (I11.14).
This system of linear equations can be solved in terms of three

independent harmonic oscillators with proper coordinates g,. We

thus write

&1+ wzal—xa)2

- (Ap.1V.3)

3
. it
= D qee'®s
§=

! P (Ap.1V.4)
. — A 2 a2y . iwst
J-= V.] xwz 3hw st(w ws) ‘Ise .
The proper frequencies are found to be
w, = 0 .
ws}—(2:c i2}/9d, +4lw. J

For the uncoupled ’system (x = Q), the frequencies become 0,
+ @ of which the first is" associated with the degeneracy of the
Jo.-levels, while the two latter belong to the surface oscillators. In

the limit of strong coupling, the degeneracy with respect to I,
.
provides the zero frequency, while the rapid precession of j

around the nuclear axis has the frequency
wy ~ 3w, (Ap.1V.6)

and the slow rotational motion of the system takes place with the
frequency

g ~ (Ap.1V.7)

@
3ax?’

Dan.Mai. Fys. Medd. 27, no. 16. 10



146 Appendix IV, Nr. 16

Both these limiting frequencies agree with those obtained from
the strong coupling solution by considering energy level spacings
associated with the quantum numbers £2 and 7 (cf. I1.21 and 24).
The three remaining degrees of freedom of the system whose
frequencies remain to this order equal to @ correspond in strong
coupling to the level spacings of the quantum numbers ng, n,,

and K.
The commutation relations of the ¢, variables may be ob-
>

tained from those of the «, and j components. One finds

[‘hs q;] = — (ws+ w;) g
w_ @ h |
[0 @] =~ 5= ¢ (Ap.IV.8)
o _ ©; h
g @] =+ — - ¢

In these coordinates, the angular momentum transferred to the
surface is given by

B * x
<R, > = —‘hqzws<qsqs+QSQs> (APIVQ)

and for the ground state one obtains

x2

I
=i

which has been added equals unity to leading

<R,> (Ap. IV.10)

I
The factor T+1
order, and makes the equation, in the limit of strong coupling,
exact for all values of I (cf. 11.20).

The transfer of angular momentum implied by (10) gives rise
to a small static decrease in the magnitude of «, since the latter
is proportional to < 3 j2—j (j+ 1) > (cf. A.78). From this effect
follows the projection factor (V.11).
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Individual-particle and Collective Features of
Nuclear Reactions

The recognition of relatively undisturbed single-particle motion
as an important aspect of the nuclear dynamics implies a picture
of nuclear reactions, in which the incident particle interacts in
the first stage with the average nuclear field. In subsequent
stages, the coupling between the particle and the internal degrees
of freedom of the target nucleus may lead to the formation of a
compound nucleus, in which the excitation energy is shared
among a large number of degrees of freedom (cf. § Vid).

In Section a) of this Appendix, a description of the reaction
process is formulated, based on the assumption that the formation
of the compound nucleus is initiated by the interaction of the
incident particle with the surface oscillations of the target nucleus.

The formalism is applied in Section b) to the dispersion of
neutrons, and the scattering cross-sections are considered for
various strengths of the coupling to the compound nucleus. A
sum rule for the scattering widths of the resonance levels is
discussed.

The parameters of the formalism, which enter into the de-
scription of the coupling process, are considered in Section c).
Recent empirical evidence, obtained from total neutron cross-
sections averaged over many levels, permits an estimate of the
coupling strength which may be compared with the particle-
surface interaction observed in the low energy nuclear properties.

a) General Formalism.

In order to avoid inessential complexities of the mathematical
formalism, we first consider the elastic scattering of an s-neutron
on a nucleus of spin zero, and neglect the effect of inelastic pro-

10%
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cesses. The extension to a more general treatment is indicated
below.
The wave function may be expanded in the form

¥= %(p(r) = NCORIPNA £ (r, @), (Ap.V.1)

V47t
where @, is the ground state of the target nucleus, described by
the coordinates (x) which may represent individual particles as
well as collective degrees of freedom. The radial wave function
of the scattered neutron is denoted by ¢(r). The ¥, constitute a
complete orthonormal basis in the space orthogonal to @,

In the mixed representation (1), the state vector is specified
by the function ¢ (r) and the coefficients ¢;. Assuming the coupling
between the incident particle and the internal motion of the
target nucleus to take place at a sharp surface (r = R;), one
obtains the coupled differential and algebraic equations

R d®
1 A2 gDI R} .
V3 Ry p(Ro) ﬁﬁg Rog f_‘uj_ Z ¢itly; = 0 (Ap.V.3)

1
1/5 RO (P(Ro)Hl0+ Z C](HU —E(SU) = O, (AP.V. 4)
J

where (E — E;) is the kinetic energy of the incident neutron (in
the center of mass system) and V(r) the potential to which the
neutron is subjected inside the nucleus. For simplicity, we take
V(r) to be constant for r << R, and to rise abruptly to zero at
the surface,

The matrix elements are given by

0i V—’ 0 r IE@O int\I» & i P.V
and

Hy = S dr dx ¥ HY,, (Ap.V.6)

where H; (?, x) is the coupling between the incident particle
and the surface (cf. I1.9 and 10) and H is the total Hamiltonian
of the system. The most convenient choice of the basis ¥; de-
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pends on the structure of the coupling process by which the
compound nucleus is formed (cf. Ap. Ve). In some simple
situations, one may take the ¥; to represent stationary states in
the absence of the coupling to the entrance channel, i. e.

Hij - Eiéij' (AP.V. 7)

The equation (3) contains the discontinuity of the logarithmic
derivative of ¢ at the surface, which may be written, by means
of (2),

’ |RT
Ry ¥ | * = kR, cot (kRy+ 8)— KRy cot KR,
@ |Ry

= f(E)*fsp(E)’

where k and K are the outside and inside neutron wave numbers,
and § is the scattering phase.

The scattering cross-section is given in terms of f by (cf,
€. g., Brarr and WEisskopr, 1952, Chapter VIII)

(Ap.V. 8)

7 f +ikRy o2 kR,
=1 ' . Ap. V.
GSC ]C2 f_ lkRo ( p 9)
The quantity f, in (8) is the f-function which corrésponds to
single-particle scattering in the fixed nueclear potential.
The equations (3) and (4) determine ¢(R,) and the ¢;; the
compatibility condition provides the linear equation for f

h2
e To — 1) Hy;
MR§ P l=o. (Ap.V.10)
Hy, Hy; — Edy
The special basis (7) gives
Hy; [* _
f= fsp ﬁ20Z'| 0l| (Ap.V.11)

The treatment of partial waves of higher angular momentum
and the effect of Coulomb forces leads to the same equation (10)
for the function f, which then determines the cross-section by
formulae which are generalizations of (9). '
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If inelastic processes are possible, one chooses an appropriate
number of the ¥; to represent the open channels (¢) other than
the entrance channel. The function f is again determined by an
equation of the form (10) where, however, for the open channels*

Hy— E— h (o)~ (de+ i), (Ap.V.12)

MR
The (fy,); is the single-particle f-function appropriate to scattering
in the channel, {, and A4, the level shift associated with long
range forces. The imaginary term s; is related to the channel
width (cf. BraTt and Wersskorr, 1952, p. 332). Similarly, one
may include radiative processes by adding a complex term to
the nuclear Hamiltonian.

The effect of inelastic processes leads to complex values of f
from which the elastic cross-section and the total reaction cross-
section may be determined. The distribution of reaction products
among the open channels is determined by the values of ¢,(1%,).

The formulation given above, some consequences of which
are considered in the following, has assumed the coupling be-
tween the incident particle and the internal structure of the
target nucleus to be located at a sharp surface. The influence of
a finite surface thickness as well as of other types of coupling,
such as to collective volume oscillations and to particle excitations
through direct particle forces, can be treated in a similar way
by obtaining from the coupled equations a linear expression for
f. The form of this expression may, however, in these cases be

somewhat more complicated than (10).
z

b) Scattering Cross-sections.

In order to illustrate some of the characteristic features of
nuclear reaction cross-sections, which are contained in the
formalism outlined in Ap.Va, we consider in this paragraph
the dispersion of neutrons in the region of sharp resonances
(kR, <{ 1), and restrict ourselves to s-wave scattering.

* If the residual nucleus possesses a spin, there may bhe an additional con-
stant term in (12), arising from H, . and representing the energy shift of the
single-particle resonances in the channel t, resulting from the non-spherical na-
ture of the potential.
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i. Weak coupling; one-level resonance.

The coupling between the entrance channel and the com-
pound nucleus may be termed weak if the second term in (11)

is small compared to the first, except in the immediate neighbour-
hood of the energies E;, i.e. for

MR} | Hy; |*
B | fl

where D is the level distance in the spectrum of E;.

When the condition (14) is fulfilled, the impinging particle
interacts mainly with the average potential of the target nucleus
for most incident energies. This potential scattering depends
on the distance from the nearest single-particle level and may
take on all values from 0 to 4z4% If K R, ) 1, the potential scat-
tering for most energies is close to that of an impenetrable sphere
(f = o), but characteristic differences from this limit are ex-
pected, and experimental evidence on cross-sections far away
from resonances may give information on the motion in the
average potential®.

In the immediate neighbourhood of an energy E;, the cross-
section varies rapidly. If the potential scattering is small com-

pared to 47i? (f, >> kR; cf. (9)), one obtains a resonance of
the usual type

KD, (Ap.V. 14)

. I
TR ’ Ap.V. 15
“@-gy+ir (4p-V-19)
where the resonance energy E, is given by
F(E) =0, (Ap.V. 16)
leading to
: MR: | H,, [?
E, = E-——" | Hof* - (Ap.V.17)
h fsp

which, in view of (14), is much closer to E; than the neighbouring
levels. The scattering width I" and the reduced width p are given by

* The term “potential scattering” is sometimes used to denote the scattering
from an impenetrable sphere (cf., €. g., BLaTT and WEisskopF, 1952). The recog-
nition of the significance of single-particle nuclear motion for the course of nuclear
reactions would seem, however, to make it more natural to reserve the term for
the scattering in the actual nuclear potential. We here follow this latter terminology.
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2 kR,

I'= 2kRyy = — - - (Ap.V.18)
f(E)
which, according to (11) and (17), gives
MR§ |Hy, [ :
I'=2kR —_— Ap.V.19
g h2 fszp ( P )

This value for the width is small compared to D by (14) and
the assumption f;, >> kR,.

The potential scattering becomes comparable with the re-
sonance maximum in the neighbourhood of the resonance
energies E, for single-particle scattering, given by

fon(Er) = 0. (Ap.V. 20)

The energy regions in which gpq ~ 472° are given by

|E-— E,|<T, (Ap.V. 21)

ps
where
h2

Fsp B Qli’RoySp = 2kROW
0

(Ap.V.22)
represents the single-particle scattering width. In the regions (21),
the form of the compound resonances is essentially modified by
the potential scattering and, for | E—F, | {{ I'y,, the influence of
the compound state appears as a narrow dip in the cross-section.
A simple interpretation of (14) may be obtained by using the
approximation
hZ
fosms ~ E,—E Ap.V. 24)
sp JWR(Z) n (
valid for |E—E, | ({4 , where A is the single-particle level
distance (cf. (VI.7)). By means of (24) the condition (14) may
be written

K1 (Ap.V.25)

which is just the condition that the coupling H,; to the entrance
channel does not appreciably modify the compound states.
Therefore, the states ¥; act individually and influence the scat-
tering only in small energy intervals around the E;-values.
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In the region ]E — In, | < I'y,, the condition for weak coupling
is modified, corresponding to the fact that the single-particle
levels are only defined to within an energy /,. The analysis of
(11) shows that in this region the less stringent condition

2

| Hy;
L2 Ap.V.26
. K (Ap )

is sufficient to ensure that the W, states act individually. The
fact that (26) implies a scattering which, to first approximation,
is of potential character, may be understood by observing that
2m(AD)™ | Hoil2 represents the probability per unit time for
coupling of the incident particle to the compound states. If this
probability is small compared to A7 Iy, which is the probability
per unit time for escape from the single-particle state, the coup-
ling is of only minor importance.

For IE—* E_n| ~ 4, several single-particle levels are simul-
taneously effective, and the condition (14) can be interprefed in
the same way as (25) by considering the total perturbation caused

by all the single-particle levels.

ii. Strong coupling; many-level resonances.

When the conditions (14) or (26) are not fulfilled, the coupling
between the states ¥; and the entrance channel leads to quasi-
stationary states of the compound nucleus, essentially different
from the ¥;. The coupling strongly mixes the states ¥; over an
encrgy region given by the left hand side of (14).

Some of the properties of the scattering in the strong coupling
region can be illustrated by assuming that, over the region of
strong mixing, the ¥; can be approximated by a spectrum of .
uniform spacing D with a constant coupling matrix element

|H0il = H,. In this case, (11) can be written
MR: nHZ 7
f=to+33 " cotp(E— Ey. (Ap.V.27)

It is seen that the resonances E, of the compound nucleus
(f(E,) = 0), which are close to E; for weak coupling, move half-
way in between the energies E; when the coefficient of the con-
tangent in (27) becomes large compared to f,.
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The resonance scattering widths can be obtained from (18)
and are found to be

D[x*H? = DA -1
r:%k; ”DA“ gt KRy, (Ap.V.28)

which is a generalization of (19), to which (28) reduces when
the last term in the parenthesis dominates (weak coupling).

In the strong coupling region, the behaviour of the cross-
section in between resonances is determined by the contribution
of many far-off compound states, which dominates over the
potential scattering. The variation of this background scattering
depends on the coefficient of the cotangent in (27). Only when
this coefficient is large compared to unity does the cross-section
away from resonance approach a constant value, which then
equals that of hard sphere scattering.

The foregoing analysis leads to the following picture of the
scattering process in the various coupling regions (cf. Fig. 16).

For very small coupling

H?
o K Lsp,s (Ap.V.29)

the weak coupling situation applies for all incident energies
and the principal part of the cross-section is determined by the
potential scattering.

When (29) no longer holds, a strong coupling situation exists
in the neighbourhood of the single-particle levels. Inside the
region of strong coupling, the reduced scattering widths are of
order (cf. (28))

D \? B2

while, at larger distances from the single-particle level, where
the coupling is weak, the widths become very much smaller. A
measure of the extent of the strong coupling region can be ob-
tained as the energy interval W over which the reduced widths
exceed half the maximum value (30). From (28) one finds

Hi

W=2arD

(Ap.V. 313
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Fig. 16. Scaftering f-funclion in coupled model. The scattering cross-sections can
be simply expressed in terms of the logarithmic derivative f of the wave function
at the nuclear surface (cf., e. g., (9)). The broken curve gives the f-function for
pure single-particle scattering in the average nuclear potential. At the energies
E,, corresponding to the virtual single-particle states, with the spacing 4, fSp
vanishes, while half way between these energies fsp has poles. The coupling to
the internal motion of the target nucleus, which is assumed to take place at the
nuclear surface, adds a rapidly varying part to the total f-function (cf. (11)).
The compound nucleus is described in terms of the states Y¥'; which would represent
stationary states in the absence of the coupling to the entrance channel. At the
energies E;, which have on the average a spacing D, the f-function has a pole,
while a resonance energy E, of the compound nucleus (for which f = 0) occurs
in each interval E; < E < E; 4

The relative magnitude of the two contributions to f depends on the distance
from the nearest single-particle level E, . At large distances from E,, the value
of fsp dominates and, to a first approximation, fche cross-section is that of potential
scattering. The coupling gives rise to resonances lying very close to the E; and
the scattering widths, which depend inversely on the energy derivative of f at
resonance, are small (weak coupling region). Near to the E -values, the f-function
is determined principally by the coupling term (strong coupling region). In this
region, which extends over an energy interval W (cf. (31)), the resonance states
result from the coupling of many ¥ -states, and the resonance energies lie essent-
ially midway between the E;. The scattering widths are relatively large in the
strong coupling region, being of the order of A4/ W times the average resonance scat-

tering width (cf. the sum rule (33 a)); the off-resonance scattering results mainly
from the influence of many far-off resonances.
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This energy is related to the probability per unit time for the
formation of the compound nucleus, and can also be written in
the form (VI.6), in terms of the mean free path of the particle
for energy exchanges in the target necleus.

For a coupling strength so great that W becomes comparable
with or exceeds 4, the region of strong coupling extends over the
entire energy interval, and no slructure associated with single-
parlicle motion remains. In this situation, the entering particle
shares its energy with many degrees of freedom of the compound
nucleus before completing a single traversal of the nuclear field.

iii. Sum rule for scattering widths.

As long as the region of strong coupling W is small compared
with the single-particle level spacing 4, there exists a simple
sum rule for the reduced scattering widths. This may be obtained,
in its most general form, directly from (10). Since the scattering
widths are appreciable only in regions around the single-particle
levels E,, one may use the form (24) for fg,. The equation (10)
is then equivalent to the secular equation for a bound state
problem. The proper values and proper function for f = 0 give
the resonance energies E, of the compound nucleus and the state
vectors of the scattering system at these resonances.

The reduced widths depend on f'(E,) and can be expressed
in terms of the minors of (10) which, in turn, are simply related
to the state vector at resonance. Thus, one obtains

1
2

1
sRow? (Bo)+ 2 f
i r

R, 992(R0) h?
MR

o (Ap.V.32)

which expresses 9, in terms of the reduced width of the single-
particle level times the probability of finding the single-particle
motion in the compound state (r). From the completeness of the
states (r) one gets immediately

Sy, =2 (Ap.V.33)
=70 T R s

= Yeps (Ap.V. 33a)
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where the sum is to be extended over the scattering resonances
in the region —A/2 < E-—E, < 4/2.%

As W approaches 4, the single-particle level strength becomes
approximately wuniformly distributed over all the compound
levels, corresponding to the relation (cf., e. g., WeIsskopF, 1950)

2
e AQ r, - :Igg (Ap.V. 34)

It may be noted that the sum rule (33a) is independent of
the shape of the nuclear potential and of the parlicle angular
momentum as well as of the types of couplings considered.

Similar sum rules hold for other properties of the compound
levels, which depend on the content of a particular single-particle
state. Thus, for a radiative transition to the ground state, the
single-particle width may be considered as distributed over the
compound levels, whose average radiative width, for the cor-
responding transition, may be represented by an expression
equivalent to the first part of (34)**. However, for W< 4, the
distribution will not be uniform, and the single-particle radiative
width will be mainly concentrated on the compound levels in an
energy region W around the unperturbed single-particle state.

c. Discussion. -

In the application of the general formalism outlined in the
preceding sections, the significant features of the nuclear struc-
ture are contained in the states ¥; in terms of which the proper-
ties of the compound nucleus are characterized.

The choice of a basis which diagonalizes all couplings except
those to the entrance channel (cf. 7) is particularly appropriate

* Sum rules for reduced widths have been considered by TEICHMANN and
WIGNER (1952) who have especially discussed the sums over channels leading
from a particular compound state. Arguments for a relation similar to (33) are
contained in the discussion following Eq. (31 b) of this reference. The factor 3/2
appearing in the estimate obtained by these authors arises from the assumptlon
of a constant neutron wave function inside the nucleus.

** An expression for the partial radiative width of a compound state, si-
milar to the first part of (34), has been given by Brarr and WEISSKOPF (1952
p. 646). However, as an estimate of the single-particle level spacmg which en-
ters in this expression, these authors have suggested a value of about 0.5 MeV
for a medium heavy nucleus. The present estimate for 4 (~ 20 MeV) thus leads
to a considerable decrease in the radiative widths.



158 Appendix V, Nr. 16

if one can assume that, already after the first energy exchange
between the incident particle and the target nucleus has taken
place, the subsequent couplings proceed so rapidly that no
structure associated with individual configurations remains.

In this situation, the states ¥;, though highly complex, have
a certain uniformity of statistical nature. As a first approximation,
one may assume the |H0il to have a constant value H,, and
the level energies E; to be approximately evenly spaced with a
separation D. The gross features of the nuclear level structure
may then be characterized by the coupling parameter W, re-
presenting the energy region around the single-particle resonances,
where the compound nucleus is formed with appreciable prob-
ability (cf. Ap.Vb.i and also § VId).

In general, one expects simple types of motion to manifest
themselves also in intermediate stages of the reaction. The choice
of the basis (7) is then less appropriate, since the assumption of
a constant H,; is no longer valid. The resulting features of the
reaction process may be taken into account by including among
the ¥; a number of states representing the structure of the inter-
mediate stages. :

Such effects may, for instance, be significant for very deformed
target nuclei, where the entering particle has a large probability
of setting the nucleus in rotation (cf. § VIc.ii). The rotational
excitation energy is not easily transmitted to the other degrees
of freedom of the nucleus, and may with appreciable probability
be returned to the entrance channel, or may give rise to an in-
elastic process without the formation of a compound nucleus.
To describe these features, one may consider as a first approx-
imation only the potential scattering and the specific couplings
to the rotational motion. It may be possible to include the ad-
ditional couplings leading to the compound nucleus formation,
by means of a uniform set of states, whose coupling to the simple
motion may be characterized by parameters similar to W.

Recently, important evidence on the formation of the com-
pound nucleus has been obtained from the analysis of total
neutron cross-sections, averaged over many resonances (Bar-
SCHALL, 1952; FeEsuBacH, PorTER, and WeisskorF, 1953). The
effect of the compound nucleus formation on such average cross-
sections can be described as an absorption, since one may con-
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sider the problem in terms of the scattering of neutron wave-
packets with a time extension short compared with the periods
of the compound states. A particle entering the complex motion
is, therefore, effectively lost from the wave-packet. Such an ab-
sorption can be represented by an 1mag1nary potential (cf., e. g.,
BETHE, 1940).

In the simplified situation discussed above, where specific
structures of the intermediate stages of the coupling process can
be neglected, the averaged tolal cross-sections can thus be ob-
tained by considering single-particle scattering in a constant
complex potential. The coupling energy W is related to the
imaginary part of the potential V by

W = —2Im (V). (Ap.V. 35)

The analysis of the empirical data has shown that many
features of the averaged total cross-sections can be accounted
for in terms of such a complex potential with Im (V) ~ —1 MeV,
corresponding to W =~ 2 MeV (FEsupacH, PorTER, and WEiss-
koPF, 1953). Thus, the observed cross-sections resemble those of
-single-particle scattering, in which the individual resonances are
broadened by about two MeV.*

The coupling which leads to the compound nucleus formation
may result from the interaction of the incident particle with the
surface oscillations or other collective modes of the target nucleus,
or from direct collisions with individual nucleons. The contribu-
tion of the surface coupling to W may be estimated from the
matrix elements in Chapter II. For the average coupling matrix
element H,, one has

, (Ap.V. 36)

D 2
H? ~ Z~Z|HO,. 2

where the sum is extended over all states within the single-particle
level spacing 4. This sum represents a closure over all variables

* In fitting the experimental cross-sections, FEsHBACH, PORTER, and WETss-
KoPF (1953) have used the parameters V, = 19 MeV, for the real part of the
potential, and R; = 1.45 X AY3 % 10713 ¢m for the nuclear radius. While the
agreement between the calculated and measured cross-sections is striking, these
parameters do not seem compatible with the positions of the single-particle levels,
assumed by the shell model, which for the above radius requires a potential of
about 30 MeV. Thus, for example, the observed large cross-sections below 1 MeV
for elements with A ~ 90 result, for V, = 19 MeV, from a virtual 2p level, while
already for lighter nuclei, 2p states, bound by about SMeV have been iden-
tified (cf., e.g., Tables XII and XXV).
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except the radial quantum number of the particle, and one ob-

tains (cf. (11.9) and (A.38)).

5 hw
Z\HOIF = < 0|Hp|0> = ol (ApV.3D)
for a particle incident on an undeformed nucleus. From (31),
(36), and (37) one then finds

5

w2 ho

% < (Ap.V. 38)
The hydrodynamical surface parameters (Figs. 1 and 2) and the
expression (VI.7) for 4 lead to values for W of about 2 and 3
MeV for a heavy and medium heavy nucleus, respectively. It
thus appears that the surface coupling is adequate to account
for the observed probabilities for compound nucleus formation,
In the case of strongly deformed target nuclei, one obtains

<O0|Hp|0> = inkzﬁz (Ap.V.39)

which represents an increase over (37) by a factor of the order
of the number of phonons present in the deformed state. How-
ever, the major part of this very strong coupling leads to rotational
excitations and thus gives rise to features in the reaction process
that cannot be represented by the scattering in a fixed complex
potential (see above). A detailed study of elastic as well as in-
elastic neutron cross-sections for very deformed nuclei (espec-
ially in the regions 155 << 4 < 185 and A > 225) would thus be
of interest. In addition to rotational interactions, the surface
coupling gives rise to the excitation of vibrational modes, which
may rather rapidly transmit their energy to additional degrees
of freedom and result in the formation of a compound nucleus.
An estimate of these couplings can be obtained from (39) by
subtracting the rotational interactions, and one finds a value for
the absorption parameter W of about 3/5 of the estimate (38).

With increasing energy of the impinging particle, couplings
to collective modes of higher frequencies are expected to be of
increasing importance, and also the direct particle forces can
excite an increasing number of degrees of freedom of the target
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nucleus. A compensating effect sets in when the particle energy
becomes comparable with the kinetic energies of the -target
nucleons. The short time spent by the particle in the nucleus,
together with the decreasing nucleon scattering cross-sections, then
implies a decrease in the probability for formation of the compound
nucleus. For bombarding energies in the region of 100 MeV, an
appreciable transparency of the nucleus has been observed and
has been interpreted in terms of the single-particle features em-
bodied in the optical model of the nucleus-(SERBER, 1947; FERN-
BACH, SERBER, and TaAvLoOR, 1949).

Dan.Mat.Fys.Medd. 27, no. 16, 11



Appendix VI

Nuclear Excitation by the Electric Field of
Impinging Particles.

Important information may be obtained from the excitation
of nuclei by bombardment with heavy charged particles whose
energies are sufficiently below the Coulomb barrier to exclude
the influence of nuclear forces. Since only electrostatic forces
are then operative, the experiments can be analyzed in terms of
relatively simple properties of the nuclear structure. Recently,
Ter-MARTIROSYAN (1952) has given a rather detailed treatment
of such processes®. We here summarize some of the results of
this analysis, attempting in particular to indicate the relations
to the electromagnetic radiative transitions (c¢f. Chapter VII).

A great simplicity in the analysis arises from the fact that
one can describe the projectile as following a classical trajectory.
The condition for such a classical treatment is (cf. N. Bougr,
1948, § 1.3).

= 2 — 2)) 1, (Ap.VI.1)

where Z, and Z, are the charge numbers of the projectile and
the target nucleus, respectively, and where v is the velocity of
the incident particle.

This condition is always fulfilled when the bombarding energy
is sufficiently low that penetration through the Coulomb barrier,
and thus the influence of nuclear forces, is- negligible.

One can then describe the influence of the particle on the
nucleus in terms of a time-dependent potential

* Various aspects of these reactions have also been previously considered

(Weisskorr, 1938; Ramsey, 1951; MurLiny and Gurs, 1951; Husy and NEwNS,
19851; BrerT, HurL, and GLUCKSTERN, 1952).
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Zi, Z]_Bz
V(t) = Z > s (AP‘TI 2)
= Ir(t).—rp
where 7;, are the coordinates of the target protons and where

T(f) gives the trajectory of the incident particle, considered as
a point charge. This potential gives rise to nuclear transitions
of electric multipole character. Of special interest are the collec-
tive transitions, for which the excitation cross-sections ‘are parti-
cularly large. The low energy collective transitions are induced
by the quadrupole component of (2), given by

Vah) = 2yt 35 Y5, (D0 ) Y (3D, 9(0) [1(D] . (AD.VL 3)
nop

The method of Coulomb ‘excitation may also find application to
other multlipole transitions*, but these are in general expected to
have appreciably smaller cross-sections. Magnetic transitions are
weak due to the small velocity of the projectile.

Since the field of the particle produces only a small per-
turbation in the internal nuclear wave function, the probability
for excitation of a given level may be written

P = ; | (M P, (Ap.VI. 4)
iy
where M; is the magnetic quantum number of the final state and
ot o0 )
b(M) = # S <flV(t|i> et (Ap.VL 5)
-
with
For a quadrupole transition, one obtains
+ o0 _
b(M,) = %“ f;_f ST <D0, 0| 5\ 5 You (B 9)é@hdt (ApVLT)
M

in terms of the nuclear matrix elements of the quadrupole ope-
rator I, (2, p) given by (VIL5). ’

* The electric dipole transitions have been considered in detail, for all values
of », by MurLin and Gurn (1951), Husy and NewNs (1951), and TER-MARTIRO-
syan (1952). MurLin and GurtH (1951) have also considered the quantum mechan-
ical treatment of E2 transitions, but their cross-sections seem to be too small, as

> >
a result of the assumption of a scalar property of the quantity M, rorm (k, k)
implied in the equation following (29) of their paper.

11*
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The classical orbit of the projectile is a hyperbola and it is
convenient to choose a coordinate system whose xy plane is
that of the orbit and whose x-axis is the focal linc. The orbit
may be given in the following parametric representation

x = a(cosh w + &)

= a [/62 — 1 sinh w
r=ua(ecoshw + 1) (Ap.VL. 8)
t=g(ssinhw+w),
v
where
I Zyer
O mt

(Ap.V1. 9)

is half the distance of closest approach in a head-on collision.
The reduced mass is denoted by m. The orbital eccentricity ¢ is

e = [1 + <-§>2J1/2, (Ap.VI. 10)

in terms of the impact parameter p. The angle of deflection @
in the center of mass system is given by
0} a

&

The transition amplitude can now be written

/= Zie 1 \1/2 ; . 2 1
i =5 aé{36(2), ST 2 MM — M| 12 LM > S5y, (Ap VI 12)

where B, (2) is given by (VII.2). The non-vanishing components
of SIELZ) are given by
+ oo 1

SLQ) _ S ei§(,s sinhw+w)

~o Gccosh w1 APV 13)

- V’§ S":iag s+ (COShw+ o F (/e —Tsinhw)? Ap.VL 14)

2 (ecoshw + 1)*

—do
where
_AE 2,2,

5—:2E hv

(Ap.VL 15)
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The quantity e& represents the ratio of the collision time to the
nuclear period v = w ™' For values of ¢£ of the order of or larger
than unity, the collision becomes approximately adiabatic with
a resulting small excitation probability, decreasing exponentially
with &é.

The differential cross-section for excitation associated with
a scattering into the solid angle d £ is

0y (9) = i a® sin™ g PdQ, (Ap.VL 16)

while the total cross-section for excitation of the state in quest-
ion becomes

27 1 [mo\?
=" 0|~ B VI
Oexe 25 Z§e2( i ) e(2)92(5)’ (AP VI 17)

with

g2 (&) = Zg;dslsﬁ) 7. (Ap.VL 18)
"

The function g,(£) is plotted in Fig. 17.

From the relative values of the transition amplitudes b(M;)
the angular distribution of the y-radiation following the excitation
can be determined*. '

" While the angular distribution may give information about
the spins of the states involved and about the multipole order
of the emitted y-rays, the measurement of o, for the excitation
from level ¢ to level d leads to a determination of the quantity
{B,(2) }esq- This information is thus similar to that obtained
from a lifetime measurement for the inverse transition, for which
the E2 radiative probability is given by (cf. (VII.1))

_4:751(2

T=—2% C) {B.(2) }gse- (Ap.VI. 19)

The nueclear matrix elements for the excitation and decay are
related by
21,+1

il ML Ap.VI. 20
511 (Ap )

Bc->d = Bd—)—c '

* Recently, explicit expressions for the angular distribution of the y-radia- .
tion following Coulomb excitation have been given by ALDER and WINTHER (1953).
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1

02 04 06 08 10 12 ¢

Fig. 17. Function g, (&) appearing in cross-sections for Coulomb excifation. The cross-
section for Coulomb excitation produced by the electric quadrupole field of the im-
pinging particles is given by (17), which contains the function g, (£), Where &,
given by (15), is a measure of the ratio between the collision time and the nuclear
period. The function g, (£) is expressed by means of (13), (14), and (18) in terms
of integrals over the trajectories of the particles, The integrals have been numer-
ically evaluated by ALper and WINTHER (1953), whose results we reproduce in
this figure.

The evaluation of the reduced transition probabilities B for
various types of transitions in the coupled system has been given
in Chapter VII.

The large values of B,(2) for nuclear collective transitions
make the method of Coulomb excitation especially suited for
the study of rotational and vibrational states (§ VI c).

Note added in proof: Recently, the feasibility of Coulomb excitation has
been exhibited by the observation of the y-radiation following the nuclear ex-
citation (McCLELLAND and GoobMaN, 1953; Huus and Zupan&id, 1953). By this
method important evidence has been obtained on the rotational spectrum of the
odd-A nucleus, ,,Tal®! (ci. Huus and Zupandré (1953), whose results we here
summarize).

The first strongly excited level has been found at 137 keV. Since the ground
state of Tal®? has I, = 7/2, the first rotational state is expected to have I = 9/2
and an energy of 9 /i%/2 3 (cf. VI. 4). Thus, assuming a similar moment of inertia
as in the neighbouring even-even nucleus ;,Hf%, whose first excited (2+) state
has an energy of 93keV (cf. ScHARFF-GOLDHABER, 1953), the first rotational
state in Ta® should have an energy of about 140 keV, in good agreement with
the observed value.

The second rotational state in Ta®!, with I = 11/2, should have an energy
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of 20/9 times that of the first (9/2) state, and should also be strongly excited.
This was confirmed by the observation of a y-ray of 300 keV resulting from the
Coulomb excitation.

The energy dependence ol the excitation cross-sections for the two states
was found to be in good agreement with (Ap. VL. 17), using the numerical results
for g, (£) of ALpEr and WiNTHER (1953), thus supporting the E 2 interpretation
of the excitation process.

From the magnitude of the observed cross-section for the excitation of the
137 keV line, the reduced transition probability B, (2) can be obtained from

(Ap. VI.17). By means of (VIL.18) and (Ap. VL 20), one derives an intrinsic
quadrupole moment of |Q,| ~ 7x10~* em?, which is in good agreement with the
trend of the deformations deduced from lifetime measurements ol first excited
states in even-even nuclei (cf. Table XXVII). The value of Q, may also be
compared with the spectroscopic quadrupele moment (cf. Table XVIII) which
yields, by means of the projection factor (V. 9), a deformation of Qg~ 14 x 10724 em?,
which is again of the same order of magnitude; the difference may not be signi-
ficant in view of the experimental uncertainties.

The  cross-section for the production of the 300 keV y-ray depends also
on the branching ratio between the direct ground state transition (11/2 » 7/2)
and the cascading (11/2 > 9/2 > 7/2) via the first excited.state. From a com-
parison of the cross-sections for the 300 keV and 137 keV y-rays, a branching
ratio of about 1:4 has been deduced. While the cross-over transition is of pure
E 2 type, the cascade may proceed by M1 as well as by E 2 transitions. The
E 2 transition probahilities can be determined from the value of @, (VIL 18
and 19), and the M1 transition probability can be related to the magnetic
moment of the ground state (VIL 20 and IV. 9). From the observed magnetic
moment (Table XVIII) and the value Q, = 7 » 1072 c¢m?, and using the internal
conversion coefficients of Rose et al. (1951) and of GoipHaBER and SUNYAR
(1951), one calculates a branching ratio of about 1:1. While the observed branching
ratio confirms the relatively strong competition of £ 2 with M1 radiation in
rotational transitions, it is still somewhat smaller than the calculated ratio;
however, the theoretical estimate is very sensitive to the value of the ground
state magnetic moment, and a precision determination of g (Ta'®!) would thus
be of interest.
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