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I . Introduction .

G
reat progress has been achieved in recent years in the ex-

ploration of nuclear properties, and an extensive body o f

data is now available, giving information on many aspects o f
nuclear structure .

Strong evidence has been accumulated that the nucleons may
be considered as occupying states of binding characteristic of in -

dependent particle motion in the averaged nuclear field . This

recognition has led to the development of a nuclear shell model ,

which exhibits many similarities with the description of atomic

constitution (MAYER, 1950 ; HaxEL, JENSEN and SuESS, 1950,
1952). The shell model has been an important guide in th e

interpretation of nuclear phenomena ; besides the numerous fea-

tures of the nuclear systematics associated with the discontinuitie s

of binding energies at closed shells, the model especially explain s

many regularities of nuclear spins and parities .

There are, however, also essential differences between atomi c

and nuclear structures, arising from the fact that the nuclear fiel d

is generated by the nucleons themselves, while the atomic field ,

responsible for the electronic binding, is largely governed by the

attraction from the central nucleus . The large mass of 'the atomic
nucleus, as compared with the electrons, makes it possible to a

first approximation to treat the atomic field as a static quantity ,

but, in the nuclear case, the dynamic aspects of the field, asso-
ciated with collective oscillations of the structure as a whole ,

must be expected to play an essential role . The significance o f

collective features in a system where the cohesion is a result o f

the mutual attraction of the particles has earlier found expressio n

in the liquid drop nuclear model (N . BOHR, 1936 ; N . BOAR and

F . KALCKAR, 1937) .
The importance of taking into account the collective aspect s

of the nuclear structure is clearly evidenced in the empirical
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data, and ordered types of motion of the nucleons are strikingl y

exhibited by a number of phenomena :

1) The occurrence of the fission reaction, many features o f
which can be understood on the basis of the liquid drop model
(MEITNER and FRISCH, 1939 ; BOHR and WHEELER, 1940) .

2) The large quadrupole moments observed for many nuclei ,
which in some cases are more than 20 times larger than single -
particle estimates (CASIMIR, 1936 ; TOWNES, FOLEY and Low ,
1949 ; cf . also Fig . 9 on page 55 below) . It has been pointed

out by RAINWATER (1950) that the magnitude of the quadrupol e
moments can be accounted for by the tendency of the particl e
structure to deform the nuclear surface .

3) The occurrence of nuclear gamma transitions of electric
quadrupole type with lifetimes about a hundred times shorte r
than single-particle estimates (GOLDHABER and SUNYAR, 1951) .
The existence of collective transitions with such short lifetimes

is a characteristic feature of the excitation spectra of strongl y
deformed nuclei (BOHR and l\/MOTTELSON, 1953) .

One is thus led to describe the nucleus as a shell structur e
capable of performing oscillations in shape and size . These col-
lective oscillations involve variations of the nuclear field and ar e
therefore strongly coupled to the particle motion . The genera l

dynamics of such a coupled system of individual particle motio n
and collective oscillations has previously been considered* , ** .

The system exhibits many analogies to molecular structures with

the interplay between electronic and nuclear motion .
In the present paper, we consider the further development of

such a unified nuclear model incorporating collective and individ-
ual-particle features, and pursue its consequences, especiall y

for the nuclear properties pertaining to the ground state and th e
low energy region of excitation . The available empirical evidence
is analyzed in an attempt to ascertain to what extent a com-

prehensive interpretation is possible on the basis of such a
description of the nucleus .

* A . BOHR (1951, 1952) . In the following, we refer to sections and equations
of the latter paper as (A . § d .4), (A 39), etc .

** Such a unified description of nuclear structure has also been discusse d
by HILL and WHEELER (1953) ("the collective nuclear model') .
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In Chapter II, the formulation of the coupled particle-collect-

ive model and its general dynamical features are considered . The
subsequent three chapters discuss the properties of nuclear groun d
states (spins, magnetic moments, and quadrupole moments) which
yield information on the nuclear coupling scheme . Chapter VI
treats the level structure of the low energy region, resulting fro m
the interplay of the particle and collective types of excitation .
Important evidence on the interpretation of nuclear excitation s
is afforded by the analysis of gamma and beta transitions (Chap -
ters VII and VIII) . A summary of main conclusions is given in
Chapter IX .

Some details, mostly of a mathematical nature, are deferre d
to appendices (Ap . I-IV) . In Appendix V, a description of nu -
clear reactions is formulated, which embodies features of single -
particle scattering as well as the formation of the compoun d
nucleus, and which assumes the same couplings as those oper-
ating in the low energy phenomena . In Appendix VI, a discussion
is given of the excitation of nuclei by the electrostatic field of a n

incident particle, which should be a valuable tool, especially i n
the study of collective types of excitation .

The present investigation has been carried out at the Institut e
for Theoretical Physics of the Copenhagen University*, and we
have greatly benefited from numerous discussions with members
and guests of the Institute, . as well as with members of th e
Theoretical Study Group of CERN (European Council of Nuclear
Research), which for the last year has been assembled at th e
Institute. Especially, we are indebted to Professor NIELS BOH R

for his continued interest in this work and for many enlightenin g
discussions on the combination .of the evidence on nuclear col-
lective and individual-particle motion in a consistent descriptio n
of nuclear dynamics . We would also like to acknowledge ou r
many stimulating contacts over a period of years with Professors
V . F. \VEISSKOPF and J . A.WHEELER, who have given valuabl e
comments on many problems of nuclear structure .

* One of us (B .R .M .) wishes to acknowledge the grant of an A .B .C . postdoct-
oral fellowship, held during the years 1951-53 .



II . The Coupled System of Particles an d
Collective Oscillations .

a) Formulation of the Model .

i . Collective coordinates .

The nuclear collective properties may be described by a se t

of coordinates a characterizing the spatial distribution of th e

nucleon density which, in turn, defines the nuclear field . Such

collective coordinates are symmetric functions of the individua l

nucleon coordinates .
For a system with a small compressibility, the collectiv e

degrees of freedom which have the lowest energies are associated

with deformations in shape with approximate preservation o f

volume. Assuming the system to have a sharp surface, the norma l

coordinates of these oscillations would be the expansion para -

meters adµ of the nuclear surface defined by (cf., e . g ., (A . 1) )

R

	

(p) = R o [1 1 +7 adµ Y,1,µ (0, ç)) ,

	

(I1 .1 )

where Ro is the equilibrium radius, and Ydµ the normalized

spherical harmonic, of order A, lc . Such surface oscillations ar e

associated with a collective flow with the same velocity field a s

for the oscillations of an incompressible classical liquid drop (cf . ,

e .g., (A.31)) . This leads to the expressio n

A

= 4n

	

d

adµ

	

-3-A-A u 1 Ro /
17;11

(~%p , 99p)

	

(11 .2 )
p= 1

for the collective parameters in terms of the polar coordinate s

(rp ,

	

1pp ) of the individual particles .

The nuclear compressibility* implies a non-constant radia l

* For estimates of the nuclear compressibility, cf . FEENBExc (1947) an d
SWIATECKI (1951) .
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density distribution, and the proper modes can no longer be char-
acterized as pure surface oscillations, but are also accompanied by
density changes in the nucleus . The degrees of freedom associated
with the compressibility imply that, for a given angular depend-

ence, there is a set of normal oscillations with different radial
density variations. The lowest among these has no radial node s
and corresponds, in the limit of vanishing compressibility, to th e
surface oscillations . This mode is in general the most importan t
for the low energy nuclear properties; its coordinates will be o f
the form (2)* with some modification of the radial functio n
resulting from the compressibility .

For a small compressibility, one can obtain corrections t o
the proper oscillations by considering only first order terms in
the deviation from a uniform density distribution (FLUGGE and
WOESTE, 1952 ; WOESTE, 1952) . In the case of an essentiall y
non-uniform radial equilibrium distribution, major modification s
in the collective properties may be expected .

The existence of two kinds of nucleons implies additiona l

types of oscillations in which neutrons and protons move with
respect to each other (GOLDHABER and TELLER, 1948 ; STEIN -
WEDEL and JENSEN, 1950) . These oscillations are of specia l
interest for the nuclear photo-effect but, because of their large
frequencies, are in general of lesser importance for the lo w
energy phenomena .

The types of collective motion considered correspond to a n
irrotational flow of nuclear matter, which is the collective re -
sponse to variations in the nuclear field . Vorticity effects ar e
already contained in the description of the particle structure for
a fixed field and do not occur as collective phenomena provided
the independent-particle approximation is adequate to describ e
this structure . It is also seen that vortex motion cannot be de -
scribed in terms of parameters, such as the ,ax , , which are
symmetric functions of the particle coordinates and thus, du e
to the exclusion principle, cannot in a simple way be separate d
from the state of the particle structure .* *

* A single number refers to an equation in the chapter in which the reference
is made.

** For a discussion of the implications of the exclusion principle for the
quantum rotations of a quasi-rigid system, cf. TELLER and WHEELER (1938).
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ii . Oscillations of a shell structure .

The relationship of the particle and collective motion i s
especially simple if the frequencies w p for particle excitation ar e
large compared with the frequencies co of a collective type o f
motion . The nucleus can then be treated, in analogy to molecules ,
on the basis of the adiabatic approximation, and the appropriat e
wave function is of the type

~rtv (x) = Ø v (a) IN (x , a) ,

where x represents the coordinates, including spin variables, o f
all the particles in the nucleus . The wave function vn (x, a) ,
specified by a set of quantum numbers n, is the shell mode l
wave function for a fixed field specified by the parameters a .
The wave function Ør (a) describes oscillations of the nucleu s
as a whole, characterized by additional quantum numbers, v* .

In the approximation co p )» co, underlying (3), there corre-
sponds to a state n of the particle structure a set of states wit h
different quantum numbers v, corresponding to a Hamiltonia n
of the form

H~ = T (a) + En (a),

	

(II .4)

where the potential energy E,,(a) is the energy of the particl e
structure n, calculated for fixed a. The existence of a collectiv e
kinetic energy T is contained in the implicit dependence of th e
wave function on x through a and may be obtained by writin g
the nucleon velocity as a sum of a velocity with respect to th e
nuclear field and a velocity of the collective flow . For smal l
amplitudes of oscillation, T is a quadratic expression in the å.

If the particle structure prefers spherical symmetry, th e
deformation energy may be expanded around the equilibriu m
(a lb, = 0), and the surface Hamiltonian reduces to (cf . A .(2 and 3))

HS
=

	

)B A. l aquI2+ G ,1 a1u12

	

(II .5 )

* A wave function describing the adiabatic oscillation of a shell structur e
has also been given by HILL and WHEELER (1953 ; eq . (5)), but this expression
appears to differ essentially from (3) above . The procedure employed by thes e
authors of incorporating the collective motion both through the exponentia l
factor involving the velocity potential and in the oscillator function h(a) seem s
difficult to interpret ; it appears that in the resultant wave function, obtained
by integration over the a-variable, the function h does not directly represent th e
probability amplitude for a given deformation .

(II .3)
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which represents a set of harmonic oscillators with frequencie s

B 2

The coefficient B2 is associated with the mass transported by th e
collective flow and depends on the velocity field . For pure sur-
face oscillations described by the coordinates (2), one obtains th e
classical hydrodynamical expression (cf ., e . g ., (A. 4)) ,

Bti

	

2.43
AMR ä,

	

(II .6a)

where M is the nucleon mass . The coefficient C,t represents th e
nuclear deformability ; one may attempt to estimate C 2 from the
empirically determined surface energy and the assumption of a
uniform charge distribution . This leads to (cf ., e . g ., (A . 5))

C,,

	

(A-1)(2+2)RôS- 3

	

-1 Z 2 e2

	

(II .6b)2n 2Â+1 R o

where S is the surface tension and Ze the nuclear charge . The
analysis of nuclear binding energies leads to the estimate 471. 14 S
= 15 .4 A 218 MeV (cf. ROSENFELD, 1948, p . 24) .

While the form of (5) has a rather general validity, it mus t
be stressed that the analogy with the hydrodynamics of a classica l
liquid drop is of limited scope, and characteristic effects of the
quantum structure of the nucleus are to be expected . Thus, the
deformability will depend on the particle state in question* an d
the value of C2, will be especially large for closed-shell nucle i
which owe their particular stability to their spherical form .** The
nuclear compressibility may also have an important effect on
the value of B2 and on the relation (2) between al/ and the
multipole moments .

When, in the following, we often make numerical estimates
on the basis of the hydrodynamic approximation (2, 6a and 6 b) ,
it will be in order to gain a first orientation and to have a con-

venient reference with which to compare the evidence on th e

* Features of the deformability of a quantum shell structure have bee n
discussed by GALLONE and SALVETTI (1953) and by HILL and WHEELER (1953) .
Some comments on this problem from the point of view of the present formulatio n
are given in Appendix I.

** We are indebted to Dr . W. J . SWIATECKI for valuable suggestions concerning
this point.

C A
(I1 .6)
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Fig . 2 .

Fig . 1 . Nuclear deformability in the hydrodynamic approximation . The deformability
coefficients C ), of the first three proper modes of the surface (cf . (5) ;

	

2, 3, an d

4) are plotted as a function of the atomic number A . The nuclear deformation
energy is assumed to arise from a surface tension estimated from empirical bind -
ing energies and from the influence of a uniformly distributed electric charg e

(cf. (fib)) .

Fig . 2 . Frequencies of surface oscillations in the hydrodynamic approximation . Th e
phonon energies ha)), of the first three proper modes of the surface (cf. (6)) ar e

plotted as a function of the atomic number A . The deformabilities C A of Fig . 1

are used, and the mass parameters RA are taken from (6a) which assumes a velo-

city field of the type associated with surface oscillations of an incompressible fluid .

nuclear collective properties deduced from empirical data . I n
Figs. 1 and 2 are plotted the hydrodynamical values of C,l and
of the phonon energies ha) ), for an assumed nuclear radius o f

R o = 1 .44 x A113 10-13 cm .

	

(II .7 )

iii . Coupling to particle motion .

The simple separation between collective and particle type s
of excitations, corresponding to stationary states of the type (3) ,
is no longer possible if the particles possess modes of excitation
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with frequencies smaller than, or comparable with, the collectiv e
frequencies . The particle structure may then be non-adiabatically

excited by the collective oscillations, and the nucleus must b e

described in terms of a coupled system of collective and particl e

degrees of freedom .

The particle degrees of freedom represent the low frequency
modes of excitation of the particle structure, associated with th e
particles in the last filled levels . The bulk of the nucleons, whose
energies are well below the maximum for the occupied levels ,
manifest themselves at moderate nuclear excitations only throug h
the collective properties of the nucleus .

For the coupled system of surface oscillators, with coordinate s

all,, and particle degrees of freedom, with appropriate coordinates
x, the Hamiltonian may be written in the for m

H

	

Hs (aA,u) + Hp (x) + Hint (x, (z te,) ,

	

(II .8)

where Hs is given by (5) and Hp represents the particle energy

for a spherical nucleus . The coupling term Hint gives the energy
dependence of the particles on the surface deformation .* , * *

Expanding Hint in powers of a ti, we get for the first term

Hint =

	

k (rp)

	

aAµ Ydu(op,'Pp),

	

(I1 .9 )
p

	

,Z!.z

where the sum p extends over the particles included in Hp .** *

The assumption of a sharp nuclear boundary implies that k(rp)
has the form of a delta function at the surface with matrix ele-
ments given by (cf. FEENBErtG and HAMMACK, 1951 )

<nl k(rp) n'l' > = VoRôNni(Ro)

	

(Ro),

	

(I1 .10)

where n and 1 label the radial and . orbital angular momentum

quantum numbers of the particle with radial wave function Tnl •

* The existence of an important coupling between particle motion and the
nuclear deformation, associated with the centrifugal pressure exerted by the
particle on the surface, was first recognized by RAINWATER (1950) .

* * It is interesting to note that a somewhat similar effect has been discusse d
for the atomic spectra where a small level shift for non-penetrating orbits ha s
been ascribed to a polarization of the atomic core (BORN and HEISENBERG, 1924 ;
cf . also DOUGLAS, 1953) .

*** There may also be a contribution to Hint from the spin orbit force, bu t
its dependence on a,l is more ambiguous (PRIRSCH, 1952 ; DAVIDSON and FEEN-
BERG, 1953).
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The nuclear potential is denoted by Vo . For binding energies i n

the region 5-10 MeV, the matrix elements of k are approx-
imately independent of n and t and are of the order of 40 MeV ,

assuming a kinetic energy inside the nucleus of 25 MeV . In the

following, we therefore treat k as a constant . If particles are re -

placed by holes in a closed-shell structure, the sign of k is

reversed .
In the following paragraphs, we shall discuss some approx-

imate solutions for the nuclear Hamiltonian (8) for various

types of particle configurations. For most physical problems in-

volving low nuclear excitations, the collective motion associate d

with surface deformations of quadrupole type (2 = 2) are o f

primary importance. We especially consider the effect of thes e
deformations and usually drop the index A .

The coupled system of particles, obeying Fermi statistics, an d
surface oscillators, which are equivalent to a Boson field, is i n

many respects analogous to the dynamical system considered ,

for instance, in electromagnetic theory . The coupling term (9)

is of a similar form as in the electrodynamic system, with th e

coupling constant k playing the role of the charge e . Thus, .many
effects characteristic of field theories, such as the influence o f

the field on the motion of a particle in an external potentia l
(Lamb-Retherford effect), the interaction of particles through th e

intermediate field, etc ., have their counterpart in the unifie d

nuclear model . The formal analogies also imply that many me-
thods of solution are common to the two systems .

b) Coupling of Single Particle to Nuclear Surface .

An especially simple case of the coupled system occurs whe n

the particle configuration can be described in terms of a singl e

particle outside of a fairly stable structure of spherical symmetry .
In this paragraph, we consider methods of treating this system ,
appropriate to different strengths of the coupling .

i . Perturbation approximation .

For sufficiently weak coupling, the motions of the particl e

and the surface are approximately independent . The state of the
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particle is then characterized by the same quantum number s
as in the shell model . The surface oscillations fi are described by
the number of phonons, N, each having an angular momentu m
of two units, the total angular momentum of the surface R, an d
its z-component mR . In general, two additional quantum number s
are required to specify completely the state of the surface, but ,
for small values of N(N < 3), the above quantum numbers ar e
sufficient .

The effect of the coupling implies a certain interweaving o f
particle and surface motion, which for weak coupling is conven-

iently treated by expanding the wave function in the representatio n
of uncoupled motion** , ** *

Y~=>=ZIj ;NR ;IM><j ;NR;IM>,

	

(II .11 )
jNR

where j stands for the particle quantum numbers, while the tota l
nuclear angular momentum and its z-component are denoted b y
I and M.

In the absence of coupling, the ground state is given by
j ; 00 ; I = j, M > and, to first order, Hitt , which is linear in au

(cf. (9)), only introduces the states I j' ; 12 ; I, M >, where the
particle state j' has the same parity as the state j and differs by
at most two units in the total angular momentum. The relevant
matrix element for the creation of the one-phonon state is obtaine d
from (9) and (A. § III .1), and is given by

< j; 00 ; I= j, M Hint l j' ; 12 ; I,lYI >

h co
2C <jhlj ' >

in terms of the coupling constant k, and the surface frequency c o
and deformability C . The coefficients <j h Ij ' > can be express -
ed in terms of Racah coefficients and are given in Appendix II .

These matrix elements determine to first order the nuclear

* The quantization of free surface waves has been discussed by NOGAM I
(1948), A . Bon g (1952), and JEKELI (1952) .

** The coupling between particle motion and surface oscillations has bee n
considered in such a phonon representation by FOLDY and MILFORD (1950) .

*** We use the bracket notation of DIRAC (1947) . The proper vectors ar e
given by I j ; NR; IM >, while the expansion coefficients are <i ; NR; IM I > .

Dan Mat. Fys.Medd . 27, no .16 .
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wave function from which the various nuclear properties ca n
be obtained. Thus, the coupling leads to a sharing of angular
momentum between the particle and the surface, which is re-
flected in a reduction of the expectation value of jz . If j remains
a constant of the motion, we get

15	 (2j -1)(2j +3) k2
<jz > = ( 1-

128x

	

j 2 (j+l)2

	

ktwC)M
. (11 .13)

The more general case in which particle states having a differen t
angular momentum are admixed is considered in Appendix II .

For the following, it will be convenient to introduce th e
dimensionless parameter

x
= I/	 5 1	 k	 	 (II .14)

16 sc j/j j/h w C

as a measure of the strength of the coupling . From (13) one see s
that the validity of the perturbation approximation is essentially

determined by the smallness of x . The relevant parameter for

the perturbation expansion is actually x Vj, which represents th e
order of magnitude of the amplitude of the one-phonon state .

ü. Strong coupling approximation .

For x Vj Z1, the perturbation treatment is no longer valid, but
for x» 1 one can obtain another type of approximate solution
to the coupled system (A . § V.3) .* For such strong couplings, th e
nuclear surface acquires a large deformation and, therefore, a
certain stability in its spatial orientation . One then obtains a n
approximate solution by considering, first, the relatively fas t
motion of the particle with respect to the deformed nuclear sur-
face and, subsequently, the relatively slow vibration and rotation
of the entire system .**

* Apart from factors involving j, the parameter x corresponds to the rati o
of total nuclear deformation to zero point oscillation amplitude used in A t o
characterize the strength of the coupling (cf ., e. g., (II . 22)) .

** This solution of the coupled nuclear system is in some respects similar

to the strong coupling treatment of the nucleon-meson coupling, the j of th e
particle playing the role of the nucleon spin, or isotopic spin (cf ., e . g ., Tonso -
NAGA, 1946) . The nucleon isobars are the analogue of the nuclear rotational states .
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The surface will in general acquire an axially symmetric shap e
under the influence of the centrifugal pressure exerted by th e
particle . The resulting nuclear coupling scheme (A . BOHR, 1951) ,
illustrated in Fig. 3, is thus analogous to that of linear molecules .

z

Fig . 3 . Coupling scheme for strong particle-surface interaction . In strong coupling,

the surface acquires an axially symmetric deformation. The angular momentum j
of the particle precesses around the nuclear axis with a constant projection D.3

	

-*-
The total angular momentum I is the sum of j and the angular momentum R
of the surface . The coupled system of particle and surface rotates like a symmetri c

top with quantum numbers I, K (projection of I on nuclear axis), and M (projection

of I on space fixed axis) .

The angular momentum vector j of the particle precesses rapidl y
around the nuclear symmetry axis z ' with a constant projectio n
D. The nuclear surface performs small vibrations, both with
respect to magnitude and shape of the deformation . The rotationa l
motion is like that of a symmetric top and is characterized b y
the three quantum numbers I, K, and M, representing the total
nuclear angular momentum, its projection on the symmetry axi s
z' and on the fixed z-axis, respectively .

From the analysis which follows, one finds that the particle .
precession frequency is of order x 2 w, while the vibrational fre-
quencies are of order w . The rotational frequencies about th e

2*
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symmetry axis and an axis perpendicular to z' are of order w
and x -2 w, respectively . (Cf. also A . § V.3 and Appendix IV) .

The strongly coupled system is conveniently described b y
introducing the Eulerian angles e i specifying a coordinate system
fixed in the nucleus, and the two additional surface coordinates
ß and y defining the nuclear shape (cf. A . § II .2) . The tota l
deformation parameter ß is given b y

132

	

l
cep 12,

	

(I1 .14 a )

while y is an angular coordinate characterizing the eccentricit y
of the nuclear shape . Thus, for y = 0 and 2r, the deformation
is symmetric about the z'-axis, and is of prolate and oblate shape,
respectively (cf. A . Fig. 1) .

The strong coupling wave function has the form (A. 118)

Q ; nßny ; IKM >

J/2 I+

16 vt
21 Ç0nßny (ß . 7) \X ,Q ` Nrx (e i) +

where xQ describes the motion of the particle with respect t o
the deformed nucleus, while ßnß, ny represents vibrations in ß
and y characterized by the quantum numbers np and ny . Fin -
ally, the FMK are the proper functions for the symmetric top ,
and describe the nuclear rotations . The normalization is suc h
that Z+ gives the unitary transformation from the fixed coordinat e
system to the nuclear coordinate system (cf . WIGNER, 1931) .
The simultaneous occurrence in (15) of both signs for Q and K
reflects the invariance of the surface with respect to a rotation
of 180° about an axis perpendicular to z ' ,* and is similar to th e
symmetrization of wave functions for homonuclear molecule s
(cf. HERZBERG, 1950, p. 128 ff.) . The symmetrization ensures tha t
the total parity of the strong coupling wave function equals the
parity of the particle state . The sign of the symmetrization ter m
in (15) depends on j, and if j is not a good quantum number ,
each part of x must be symmetrized with the appropriate sign .

The wave function (15), apart from the symmetrization, i s
actually of the form (3), corresponding to the fact that the pre -

* Cf. A. § V.2 for a discussion of the symmetry requirements for the stron g
coupling wave function.

x_D ` NI-x (ei)}
(II .15)
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cession frequency of the particle is large compared to the collect -
ive, frequencies of the system . This contrasts with the weak
coupling situation where the degeneracy with respect to spatia l

orientation of j provides a very easily excitable degree of freedom .
Thus, (11) is in general not of the type (3) .

The sharing of angular momentum between particle an d
surface approaches a definite limit with the realization of th e

strong coupling scheme of Fig. 3 . The expectation value of j is
given by

t 4-
<j .1> ±

<j> = I(I~-1)<I> ,

and for j • I we may write

» 11

	

-I- j2I2 + .13 13 ,

where the components of the two vectors refer to the coordinat e
system fixed in the nucleus. One thus finds, for the state (15) ,

<~ I> =S~K

	

i i1/'

	

(

	

)
J

	

(-) 2
\
J+~ 1+2 a2 aK , f&

where the last term arises from the symmetrization and only con -

tributes for ,Q = K =
2

(cf . also DAVIDSON and FEENRERG, 1953) .

Therefore, from (16) ,

0 KM
<Jz> = j~I+i~'~1

+(-)~
(
J+ ) 11+2 ~~`~ ° 2

For the ground state we have I = K = Q, except for K = Q =
2(cf. below), and thus

<jZ > = Ï+1 M . (II .20)

For each particle state Q, we have a spectrum of vibrational
and rotational states, as in the case of molecules (cf . (3)). The
nuclear potential energy is a sum of the surface energy and o f
the particle energy as a function of the deformation and, if j i s
a good quantum number, is given by (cf. A. 77 and 98)
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WP ot (ß . y) =

1

	

1

	

(II .21 )
C ß 2 +V

4 ~c
k8cos y4j (j+1)(3Q2-j(j+l))' 1

where Hp is the particle energy for an undeformed nucleus .
It is seen from (21) that, for j > 3/2, the lowest minimum o f

Wpot and, therefore, the lowest state of the nucleus, occurs for
.Q = j. and a cylindrically symmetric equilibrium deformatio n
with y = (oblate shape) . The equilibrium value of ß is given b y

= V45

~c

k 2j-1
=

x

v
i 2j--1

	

h w

C 4(j+1)

	

2 (j+ 1 ) V C

	

(II .22)

in terms of the coupling parameter x (cf . (14)) .
The kinetic energy of the surface motion consists of a vibra-

tional and a rotational part . For strong coupling, the dominant
term is the vibrational energy (A . 48)

	

h 2 1 a 4 8

	

1

	

1	 â

	

a
- 2B{X34 aß ß aß + 18 2 sin3y~ysin3yay . (II.23)

The Hamiltonian obtained by adding (23) to (21) describe s
oscillations around the equilibrium positions of ß and y (cf . (4)) .
Since the zero point amplitude of ß is of order (i w/C) 1f2 , which
is small compared to (22) for x > 1, one obtains approximately
independent harmonic oscillations in the ß and y variables wit h
states labeled by nß, ny .

The rotational energy can be expressed in terms of the angula r
momentum quantum numbers, and is

{I(I+1)_K2

given by *

tarot =

	

(K-Q) 2 +( 	 4c +4c, )

	

2441 (11 .2 4)

Nr . 1 6

+j(j+l)- .Q2-(-)I-i(i+2) (I+
1)aQ,1 a

K,l ~

where the moments of inertia are given by (A . 27) )

Z.5 ' x = 4 Bß 2 sin e (y - x 23)

	

= 1, 2, 3 .

	

(11 .25)

* Cf. (A . 98) ; the last term in (24) arises from Ul (cf . A . 96) which contributes
a diagonal term in the special case of .Q = K = 1/2 (cf. also DAVIDSON and FEEN -

BERG, 1953) .
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For S2 = j, the lowest rotational state occurs, according to (24) ,

for I=K= .Q=j .

The case of j = 3/2 requires special consideration, since th e

last term in (21) has the same value for Sl = 3/2 and y = n
as for S2 = 1/2 and y = 0 . In this case, the potential surfac e
has no pronounced minimum in y, which has the consequenc e

that there is no exact limiting solution of the type (15) . The

strong coupling wave function has then a somewhat more complex
form and requires the solution of a set of coupled differentia l
equations. Still, it can be shown that the ground state is alway s

I = 3/2 (cf. Appendix III .ii) .
For j = 1/2 there is no coupling between particle and surface .

Actually, in this case, the strong coupling wave function (15 )
reduces to the uncoupled wave function .

The Hamiltonian consisting of the three terms (21), (23), and

(24) does not represent the total energy of the nucleus . There
are additional terms (cf . A. 96) which are non-diagonal in the

representation (15) and which cause the breakdown of th e
strong coupling solution for x 1 . An estimate of these pertur-

bation terms provides a measure of the accuracy of the stron g

coupling solution and can be used to obtain correction terms

when x has intermediate values (A . § V .4 ; FORD, 1953 ; cf. also
Appendix III .ii) .

The non-spherical character of the nuclear field implies tha t
the j of the particle is not an exact constant of the motion . Major

modifications in xQ may occur if there are close-lying single -

particle levels which are coupled by the surface . In such cases ,

xs_2 may be considered as a superposition of particle states with

different j, however all with the same D . The last term in the po-

tential energy (21) is then to be replaced by (cf . (9) and (A.12) )

1VVoupl = - k fl cos yYa 0 ') ,

	

(II .26)

which is a non-diagonal matrix in the particle quantum number s
j whose elements are given in Appendix III .i . The coordinat e

O' of the particle is referred to the nuclear z'-axis . The rotational

energy remains of the form (24), which is diagonal in j .
The potential energy matrix must now be diagonalized an d

its proper values determined as a function of the deformation .
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The minimum of the lowest potential energy surface correspond s
to the ground state equilibrium and the ground state

	

is deter-
mined as the proper vector of W at equilibrium .

Such effects are of importance in causing a partial decouplin g

of the particle 1 and s and also occur in regions where ther e
are near-lying levels of the same parity (e . g . s112- d312 ;

p312-f612)• In the case of j = 1/2 states, the non-diagonal
terms are of special interest in making possible a strong coupling
to the surface . Calculations of this type are employed in par-
ticular in the Addendum to Chapters IV and V .

iii . Intermediate coupling .

The treatments of the coupled system discussed above appl y
in the limiting cases of weak and strong coupling . It is of interest,
however, to follow the transition between the two coupling regions .
This is of special importance for large j, since the perturbatio n

approximation is valid for x Vj «« 1, while the strong couplin g
approximation demands x» 1 . This gap between the regions o f

validity of the two solutions reflects the increasing number o f
phonons necessary to achieve the strong coupling situation fo r
increasing j.

In the intermediate coupling region, one may employ the
weak coupling representation (11), carrying the expansio n

sufficiently far to give an adequate representation of the nuclea r

state . The determination of the coefficients of the wave function

requires the solution of the corresponding secular determinant . "
As an illustration of this procedure, the solution has bee n

worked out for the case of I = j = 3/2, including all states with

phonon number N up to 4 . The expansion coefficients are plotte d

in Fig. 4 as a function of x.**
Further information about the intermediate coupling region

can be obtained by considering the case of very large j for which

one can obtain a semi-classical solution valid for all x. (Cf .

Appendix IV). From this solution, one can calculate (Ap . IV .10)

* Cf . the non-adiabatic treatment of the meson-nucleon system discussed b y
TAMM (1945) and DANCOFF (1950).

** Note added in proof : The intermediate coupling treatment, based on th e
uncoupled representation, has been extended by D . C . CHOUDHURY (cf . forth-
coming publication), who has studied level . structures, as well as magnetic mo-
ments and quadrupole moments, for a number of configurations .
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<jz > = (1- 1_

	

x z
(II .27 )

I+ 1 I/x 4 + 4/9

correct to terms of order Mfl . To this order, (27) coincides fo r
small x with the perturbation result (13) ; for large x, the valu e
of (27) equals the strong coupling result (20) .

ao=(% 00 %MI )
a,=(% 92%MI )
az(% 20'/ M I )

f. 0

0.8

0. 6

0 .4
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4
Fig. 4 . Wave function in intermediate coupling for I = f = 3/2 . The wave function
for the ground state (I = 3/2) of the system consisting of a j = 3/2 particl e
coupled to the nuclear surface oscillations is expanded in the representation o f
uncoupled motion (11) . The Hamiltonian is diagonalized including all states wit h
up to four phonons, and the probability amplitudes are plotted as functions o f
the coupling parameter x (cf. (14)) . In the particular case considered, only a single

state occurs for each value of the phonon number.

The process of transfer of angular momentum to the surface ,
as a function of x, is illustrated in Fig . 5 for the various solution s
considered in this chapter .

In the hydrodynamic approximation (cf . Figs . 1 and 2) ,
one obtains from (14), assuming k = 40 MeV, a coupling strength
of x = 0 .9 j -1J2 for A = 20 increasing rather slowly with A t o
a value of x = 1 .4 j-lie for A = 200 . From Fig. 5 one sees tha t
this would correspond to an intermediate region in which neithe r
the perturbation nor the strong coupling approximation woul d
be very reliable .* Besides the contribution of Hint that is diagona l

* Similar conclusions have been drawn (DAVIDSON and FEENBERG, 1953 ;
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in j, there is also in general a contribution to the coupling energy

from the interaction between states of different j. In some cases ,
this latter coupling may considerably increase the effective valu e

of x .
For a single particle moving with respect to a closed-shel l

core of great stability, the expected large value of C, as compare d

with the hydrodynamic estimate (cf . § II a .ii and Ap . I), may

,,, i 0
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.,
^

/ \N
0.

8

V 0 6

4"1'-1 0.4
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4
Fig. 5 . Sharing of angular momentum between particle and surface motion . The
particle-surface coupling implies a transfer of angular momentum from the particl e
motion to the surface oscillators, which, in the limit of strong coupling, approache s
the value (20) for f > 3/2 . For j = 3/2, the limiting ordinate in the figure is some -
what in excess of unity (cf . Ap . III .8) . The gradual transfer of angular moment-
um as a function of the coupling parameter x (14) is shown for the case o f

f = 3/2 (obtained from Fig . 4) and j »1 (cf. (27) and Ap. IV) .

lead to a considerable reduction in the value of x . In such a

situation, the particle-surface coupling may have only a minor
effect on the properties of the system .

c) Many-Particle Configurations .

In the case of configurations involving several particles, th e
coupled system can be treated by methods similar to those dis -
cussed in the previous paragraph . While the surface coupling
effects considered there may be described as nucleon self-energy

FORD, 1953) from a comparison of the proper values of the strong coupling Hamil-
tonian with those of the uncoupled system. In the procedure employed, how-
ever, corrections to the vibrational energy (A . 108 and 113) of the same order a s
the rotational energies have been neglected . If these are included, the compa-
rison is somewhat more favourable to the strong coupling solution .



Nr . 16

	

II . The Coupled System .

	

2 7

effects arising from the coupling to the phonon field, this couplin g

also produces mutual interactions between particles .
An additional feature which may affect the coupling schem e

arises from the nuclear forces acting between the particles . The
resultant coupling scheme will in general depend on a competitio n

between the two effects . We first consider the surface coupling
in the absence of direct forces between the particles .

i. Weak surface coupling .

For sufficiently weak coupling, one can employ the usual
perturbation procedure of field theory to obtain effective two -
particle interactions, resulting from the surface coupling . These
interactions remove the degeneracy of many-particle configura-
tions and may thus be important in determining the groun d
state spin .

If j i and j2 of the particles are constants of motion, one may

use a simplified form of Hint in terms of the operators f and
4-
j2 (A. 76, 77, 78), and one finds the two-body potentia l

4 -s.
VO, 2) = -	 	 [ 6(j

i
j2 ) 2

64 ar c

	

-}-1) j2(j2+ 1 )

	

(I1_28)

+ 3 (Jlj2)- 2.l1(J1+ 1 )j2(js-f- 1 )] .

More general expressions may be derived if the surface introduce s
states with other j values . The interaction (28) is of the typ e
well known from quadrupole couplings in atoms and molecule s
and is attractive if the two particles have parallel or antiparalle l
angular momenta and repulsive for perpendicular orientations .
Since the coupling constant for a hole has opposite sign to tha t

for a particle, two holes interact as given by (28), while a part-
icle and a hole have an interaction with opposite sign .

ii. Strong surface coupling .

For increasing coupling strengths, one obtains more compli-

cated two-body interactions in addition to many-particle inter -
actions . However, for strong coupling, the surface effect again
becomes simple if viewed in the appropriate coordinate system .
Under the combined action of the particles, the surface in genera l

5 k2

	

1
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acquires an equilibrium deformation of cylindrically symmetric
characters ; and, relatively to the deformed nucleus, the particle s
move independently of each other as long as the direct nuclear

forces can be neglected .* *
The wave function is of the type (15), where the particl e

state x2 now stands for an appropriately antisymmetrized pro -

duct of individual particle wave functions, each characterized
by a quantum number t2p . The total .Q equals the sum of the
individual Qp (cf. Fig. 6a). The symmetrization of the wav e

function follows the same lines as (15), except that the exponent j
in the phase of the symmetrization term is replaced by

P
Corresponding to (21) and (26), the potential energy is given b y

Wpet(0 ,y) = ~Hp +2Cß2 -ßcosy~kp Yo(Vp) . (11 .2 9 )
P

	

P

If not only the Qp , but also the jp , are good quantum numbers ,
simpler interaction terms of the type used in (21) replace th e
last term in (29) .

We first consider a group of n equivalent particles with a
definite j . If n is smaller than half the number of states in the
shell, the equilibrium shape of the nucleus has y = r . The part-

* In special cases, an asymmetric equilibrium deformation may be favoured ,
or the potential energy surface may have no pronounced minimum in y. Th e
quantities Qp and K are then no longer constants of the motion, and a mor e
complex rotational spectrum arises (cf . the case of asymmetric molecules ; cf .
also Ap . III .ii) .

** The strong coupling solution for many-particle configurations has also been
considered by Form (1953) .

Fig. 6 . Coupling schemes for many-particle configurations . In many-particle con -
figurations, the coupling scheme results from a competition between surfac e

coupling and particle forces . Two extreme cases are shown .

a) Surface coupling dominates over particle forces . The particles move inde -
pendently of each other in the deformed nucleus, each having a constant
component On of angular momentum along the symmetry axis . The total Q
equals EQp and the nuclear ground state has I = K = Q . The figur e

illustrates the coupling scheme for a (j) 5 configuration . The three lowest particl e
states have Qp _ i, -j, j- 1, leading to I = Q = j -1.

b) Particle forces dominate over surface coupling . The particles are coupled to

a resultant J which is then coupled to the surface as a single particle (cf. Fig . 3) .
The figure refers to a (f) 3 configuration, where the particle forces in general fa-
vour the state J = j (cf . p . 34) . The resultant ground state has I = Q = J = j .
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Fig . 6 a .

Fig . 6 b .
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icles fill pairwise in states of opposite Qp ; for n even, the ground

state has Q = 0, while, for n odd, we get 0 = j-1/2 (n-1) .
If n is greater than j + 1/2, it is more convenient to consider th e

holes in the shell . The preferred shape now has y = 0, and on e

gets the same rules for Q of the ground state if n is replaced by

the number of holes. In the special case of a half filled shell ,

the nucleus spends equal time around the positions y = 0 an d

y = n . For nuclei of this type, the total Hamiltonian is invarian t

with respect to a replacement of particles by holes together with

the substitution k -* -k or y -- y + n (self charge conjugate

configurations) .
If we have two groups a and b of equivalent particles, ther e

is again in general a definite preference for either y = 0 or y = n .

For an even group, the states are occupied pairwise with a

resultant D a = 0, while an odd group contributes a finite Spa .

If both groups are odd, the energy (29) is degenerate, correspond -

ing to S1 = Da ± Q b I . In special cases, such as when on e

group is obtained from the other by replacing particles by holes ,

the positions y = 0 and y = n may be equally preferred an d

the Hamiltonian possesses the same symmetry as discussed above .

The rotational contribution to W has the for m

2

	

2

	

2

Wrot - h2 ,5,3(K- - Q) 2 + (	 h+ hc) [I (I -F- 1) -K 2
2 ~a

	

4 ~1 4 ~ 2

+

	

-
Sc

s~
DJ2

	

2 -
2 D(J1I1 -{- J2 I2)] ,

where and where the operator D picks out the par tJ=
p

which is diagonal in the strong coupling representation (cf .

FORD, 1953) . The last term in (30) contributes only for con-

figurations with S2 = K = 1/2 and if equivalent particles ar e

filled pairwise with opposite Dp ; the term is then equal to th e

last term of (24) for the remaining odd particle . Apart from thi s

special case of Q = 1/2 the nuclear ground state has I = K = D .

In odd-odd nuclei, there are, as mentioned above, two familie s

of states with S2 = Da ± Sl b I , whose energies are degenerat e

in first order. This degeneracy is removed by the rotationa l

terms (30), and the ground state has I = K = S2 = I SZ a - SZ b

in the limit of strong coupling .



Nr . 16

	

II . The Coupled System.

	

3 1

The validity of the strong coupling approximation depend s
on the magnitude of the total deformation, as compared with
the zero point oscillations . Since the particles act coherently in

producing the deformation, the effective coupling increases with
the addition of particles until the next closed-shell configuratio n
is approached . Thus, for two equivalent particles, the relevan t

parameter measuring the strength of the coupling is 2 x rathe r
than x. The hydrodynamic estimate of the coupling strength fo r

a single particle, given on p . 25, therefore implies a rather full y

developed strong coupling situation in regions removed from
closed shells . *

iii . Influence of particle forces .
The influence of nuclear two-body forces, with the neglec t

of surface coupling, has been considered for the (jj) coupling

scheme along lines similar to those employed in atomic spectr a

(MAYER, 1950a ; KURATH, 1950, 1952, 1953 ; FLOWERS, 1952 ,
1952a, 1952b ; EDMONDS and FLOWERS, 1952, 1952a ; TALMI ,

1952 ; HITCHCOCK, 1952, 1952a ; RACAII and TALMI, 1952) . The

choice of the forces is somewhat uncertain, since the presen t
knowledge of the nuclear two-body system only partially defines

the interaction . Moreover, the problem of nuclear saturation a s

well as the existence of shell regularities has raised the questio n
whether these forces are appropriate to the description of inter -

actions of nucleons in nuclei (cf., e . g ., WEISSKOPF, 1952). The

analysis of coupling schemes for nuclear many-particle configur-
ations may provide evidence on these important questions .

The competition between the particle forces and the surfac e

interactions determines the resultant nuclear coupling scheme .
If the forces are weak compared to the coupling of the individua l

particles to the nuclear axis of deformation, the coupling schem e

is that discussed in § II c .ii and illustrated by Fig. 6a. The effect
of the particle forces is then to contribute a small energy shift

which depends on the S2p quantum numbers . Such effects may

be significant if there are near-lying states of different 12, suc h

as in odd-odd nuclei .

* Numerical examples illustrating the improvement of the strong couplin g
approximation for several particles have been given by Foam (1953) (cf . also
the footnote on p . 25-26) .
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With increasing strength, the particle forces tend to destro y

the above type of strong coupling solution by introducing non -

diagonal terms in the Qp and, if the particle forces and the sur -

face coupling are comparable, a rather complex situation may

arise. For very strong forces, the particle structure is coupled to

a resultant angular momentum J . This vector is then coupled

to the surface in the same manner as a single particle (cf . Fig . 6 b)

with an effective coupling constant (cf. Table VIII )

kJ =
(J+1)

	

kp <3cos' Op -1>jzj .

	

(II .31 )
2J-1

P

In this case, the nuclear ground state spin I = J is determined

by the particle forces .

A simple comparison of the strength of the surface coupling

relative to that of the particle forces is obtained by considerin g

that the former results from the interaction of the nucleons wit h

the total displaced matter of the nuclear deformation. While the

particle forces may play an important role in light nuclei, th e

surface coupling should thus become increasingly dominant i n

heavier nuclei and especially for the large deformations encoun-

tered in regions removed from closed shells .



III . Ground State Spins .

The interpretation of ground state spins and parities is most
unambiguous in regions with large separations between neigh-

bouring single-particle levels, where the lowest particle con -

figuration can be uniquely assigned . The ordering of levels within
this configuration is determined by the forces acting between th e
particles and by their coupling to the surface (cf . § Ile), and

the observed ground state spin may give evidence on the result -

ing coupling scheme . The parity follows directly from the con-
figuration .

In regions with close-lying particle levels, the lowest state o f
the system may be affected by relatively small shifts in the con -

figuration energies, arising from surface or particle interactions,*

as well as by configuration mixings produced by these interactions .

In the present chapter, we restrict ourselves to the problem o f
the lowest state for a given configuration. Some aspects of th e

configuration interactions are considered in connection wit h

magnetic moments (cf . Addendum to Chapters IV and V) and

level structures (§ VIb) .

i . Single particle configurations.

For a single-particle configuration, it follows from the con -

siderations in § II b that, for the lowest state, I equals j of th e

particle, irrespective of the strength of the surface coupling . In-

deed, for this important class of nuclei, the observed spins an d

parities are successfully accounted for by the strong spin orbit

coupling shell model (MAYER, 1950 ; HAXEL, JENSEN and SUESS ,

1950) .

* Cf ., e . g ., the shell model pairing energy (MAYER, 1950a) .
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ii. Configurations of two equivalent particles . Even structures .

The calculations based on the assumption of attractive two -

body forces have shown that such forces will couple two equi-

valent particles to a ground state of spin zero (MAYER, 1950a ;

FLOWERS, 1952b ; EDMONDS and FLOWERS, 1952a ; RACAII and

TALMI, 1952) .
The same result is obtained for the influence of the surfac e

coupling . In weak coupling, this effect may be considered i n

terms of equivalent two-body interactions given by (II .28), whic h

favour the state I = 0 . In strong coupling, the particles fill pair-

wise in states of opposite .Qp and the ground state has I = K =

.f2=0 .
Empirically, one has always found l = 0 for these configura-

tions, but the rule is far more general, applying to all even-even

nuclei. For configurations involving only protons or neutrons ,

this result can be obtained for short range attractive force s

(MAYER, 1950a ; FLOWERS, 1952b) . It is apparent that the sur -

face, in strong coupling, leads to I = 0 quite generally for even-

even nuclei (cf. § II .ii) .

Since, in the strong coupling picture, an even group of equi-
valent particles has no influence on the angular momentum

properties of the nuclear ground state, aside from the tendenc y

to favour prolate or oblate deformations, one has a certain basi s

for treating any odd-A nucleus in terms of the odd group o f

particles alone. Thus, if the odd group contains only a singl e

particle (or hole) with an angular momentum j, one obtains the

same ground state spin (I = j) as for a single-particle configur-

ation (cf. § III .i) . The observed spins of these nuclei have been

found to be consistent with such a simplification of the model

(MAYER, 1950 ; HAXEL, JENSEN and SUESS, 1950) . The possibility

exists, however, that the even group of particles produces a

deformation of the opposite shape to that preferred by the od d

group and thereby affects the ground state spin .

iii. Configurations of three equivalent particles .

Several calculations have been carried out to determine th e

ground state spin resulting from two-body forces acting in (j)± 3
configurations (MAYER, 1950a ; KURATH, 1950 ; TALMI, 1952 ;
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EDMONDS and FLOWERS, 1952a ; FLOWERS, 1952a ; RACAH and
TALMI, 1952) . These calculations have shown that, for suffici-
ently short range attractive forces, one obtains I = j for the
ground state ; when the range is no longer negligible compared
to the nuclear radius, the ground state may have other spin
values. The range at which cross-overs occur depends somewhat
on the shape and exchange nature of the two-body potential .

For the (5/2) 3 and (7/2 ) 3 configurations, the state I = j -1 will ,
for sufficiently long range forces, become the ground state, but
the necessary range seems to be considerably in excess of that
deduced from two-body data . For the (9/2) 3 configurations, a
ground state of I = 7/2 not only requires an excessively lon g
range, but also a rather implausible exchange nature of th e
potential .

Thus, it appears that, for forces consistent with the known
properties of the two-body system, the state I = j remains the
ground state . It may be added that particle forces of sufficientl y
long range to produce cross-overs in the (j) 3 configurations would
also strongly affect the predicted ground state spins of other con -
figurations . In particular, high ground state spins may result fo r
even-even nuclei, and the even group of particles no longer re -
mains inert with respect to the spins of odd-A nuclei (EDMOND S
and FLOWERS, 1952 a) .

The effect of the surface coupling on the splitting of th e
(j) 13 configuration may be treated in weak and strong coupling .
In the former case, the effective two-body interaction (II.28) can
be shown to lead to a ground state spin of I = j for j = 5/2,
7/2, and 9/2 .

In strong coupling, however, three particles produce a n
oblate deformation and fill the three lowest levels .Qp = j,
-j, j- 1, with a resultant Q = j - 1 and I = K = S2 = j- 1
for the ground state (cf . Fig. 6a) . For a (j)-3 configuration, a
prolate deformation results with the same angular momentu m
quantum numbers as for (j)3 . The special case of three j = 5/2
particles, which constitute a half filled shell, possesses the sym-

metry in y discussed in § II c .ii, aside from the stabilizing in-
fluence of an even non-closed configuration .

Evidence on the level order for (j) ' 3 configurations has been
obtained from spectroscopic measurements of ground state spin s

3*
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and from the analysis of nuclear disintegration schemes . The

observed spin for the lowest state within these configurations i s
given in Table I which shows that the values I = j and I = j - 1

occur about equally frequently .

TABLE I . Lowest spins of (j)' ' configurations .

Nucleus Configuration Ilowest

1
oNe21

( d 5/2) a 3/2 g

11Na2a 3/2 g

2 oCa 4$ (/7/2) ' 7/2 g *

zaj
51 7/2 g

a5Mn55 (j7/2)
- a

(g o/2) a

5/ 2

7/ 2

7/2

g

* *
32 Ge7

5

34S e7 7

as Kr79 7/2 g

34 See1 ( g 9/2) -a 7/ 2

ao Krs3 9/2 g
,,Sr" 9/2 g

43 Tc95 (g9/2) a 9/2 g

43 Te97 9/2 g

43 Tc99 9/2 g

47 A g1o7
(g o/2) -3 7/ 2

47 A g
199 7/2

The table includes available evidence on the spin of the lowest state in (j) ±
configurations in those regions where the configuration assignment is relatively
unambiguous . This assignment, for the odd group of particles, is given in th e
second column, while the third column gives the observed spin of the lowest stat e
of the configuration . The letter g indicates ground state of the nucleus . The spi n
values come from spectroscopic data (MACK, 1950) and from the analysis of decay
schemes (GOLDHABER and HILL, 1952), except where otherwise noted .

* JEFFRIEs (1953) (added in proof) .

	

** SMITH et. al . (1952) .

The empirical data may be interpreted in a straightforward
manner by assuming that the surface coupling dominates ove r
the particle interactions and produces a lowest spin I = j or

I = j - 1, depending on the strength of the coupling . It is also

possible that the occurrence of I = j reveals a significant in-
fluence of the particle forces (cf . Fig. fib) .

This interpretation would imply that I = j is more likel y

in regions near a closed shell in the even structure, while I = j - 1
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would be preferred for more deformed nuclei . Such a trend i s
indeed discernible in the data . Thus, in the f7 12 shell, I = 7/2
is observed for 20 Ca 43 and 23V 51 with the closed-shell even struct-
ures, while the more deformed 25Mn55 gives I = 5/2 . In the g51 2
shell, I = 7/2 is, for the odd-neutron nuclei, favoured for Z = 32 ,
34, and 36, while I = 9/2 lies lowest for Z = 36 and 38, cor -
responding to the approach to the closed subshell at 38 . For the
odd-proton nuclei, I = 9/2 is favoured for N = 52, 54, and 5 6
in the region of the closed shell at 50, while the more deforme d
nuclei with N = 60 and 62 have I = 7/2 . Such trends could be
tested in more detail if the separation between the I 7/2 an d
I = 9/2 levels were known for a sequence of isotopes or isotones .

In this discussion, the even structure has been considere d
only in its influence on the magnitude of the nuclear deformation .
As mentioned on p . 34, more specific effects may occur if the
even structure has a strong preference for a shape opposite t o
that produced by the odd structure . In those cases in Table I
where the even configurations are sufficiently well known for
such considerations, it is verified that no such anomalies ar e
expected .

Evidence is also available on the level order for (g,12 ) 5 con-
figurations which are expected to occur for 45 particles . For
the known nuclei of this type, the lowest state of the configuratio n
has been found to be I = 7/2 . No calculations have been reported
on the effect of particle forces in these configurations . The weak
coupling approximation of the effect of surface coupling ha s
not been worked out either but, in the limit of strong coupling,
the state I = 5/2 would be favoured . It seems not implausibl e
that I = 7/2 could result from an intermediate coupling . Con-
siderable interest would attach to the location of the lowest
(5/2 +) state .

iv . Odd-odd nuclei .

The ground state spins resulting from two-body forces have
been considered for various types of odd-odd nuclei (KURATH,
1952, 1953 ; HITCHCOCK, 1952, 1952a ; EDMONDS and FLOWERS ,
1952 a) . The results appear to be more sensitive to the rang e
and exchange nature of the forces than in the case of odd -
A nuclei .
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The coupling scheme arising from the surface interaction ca n

be derived from (II .28) for weak coupling and from the con -

siderations in § II c .ii for strong surface coupling . In the latte r

case, there are two families with D = 2prot ± Qneut I, whose

energies differ only by amounts of the order of rotational energies .
In the strong coupling limit, the ground state corresponds t o

the lower value, but the order may be altered by deviation s
from strong coupling or by even a minor influence of particl e

forces .

TABLE II . Spins of simple odd-odd nuclei .

Nucleus
Configuration

lobs
((w

o
e
up t
a k

l \c .)
//stron g

l \coupl. )
protons neutrons

5
B1a

(P3(2) -1 (P3/2) -1 3 0 0, 3

1 7C1 28 d 3/2 ( d 3/2) -1 2 2 1, 2

17 C133 (1 3 / 2 /7/2 2 2 2, 5

1s
K9o

( d3/2) -1 /7/ 27/2 4 4 3 ; 4

37Rbss (f5/2) - ' (9s/2) -1 2 2 2,7

The table lists odd-odd nuclei whose proton and neutron configurations may
be described in terms of a single particle or hole with j> 1/2 . The observed spins ,
in column four, are taken from the references in Table XXI, except for C1 3ß whose
spin is derived from its observed beta spectrum (cf . Table XXXII).

The spins expected for weak and strong surface coupling are given in the
two last columns. The weak coupling results coincide with those obtained fo r
attractive spin-independent particle forces of zero range . For strong coupling ,
two values are listed, corresponding to the degenerate Q-values implied by (II .29)

(D = I Qprot f Qneut 1) . The rotational energy (II .30) favours the smaller of the
two spin values, but the relative position of the two states may be shifted b y
deviations from strong coupling or by even rather weak particle forces .

The measured spins of odd-odd nuclei with simple two -

particle configurations are listed in Table II, which also gives th e
calculated values for weak and strong surface coupling .* We

bave confined ourselves to regions of relatively pure configuration s
and have omitted nuclei for which one or both of the odd particle s

have j = 1/2 . These latter particle states are affected by the sur -

* In the present discussion, we restrict ourselves to nuclei with A> 8, sinc e
the division into particle and collective degrees of freedom loses its significanc e
for the very lightest nuclei . Moreover, for the light nuclei, the analysis is com-
plicated by the fact that the particle forces in general lead to a situation inter -
mediate between (jj) and (LS) coupling (cf . INGLIs, 1952) .
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face only through their coupling to neighbouring states, and ar e

also somewhat special as regards the effect of particle forces ,

since spin dependent interactions become decisive . For the cases
in Table II, the ground state spin resulting from spin independent
interactions of zero range (KURATH, 1952) coincide with the wea k
coupling values in column five . Results of other forces have bee n
considered by the above mentioned authors .

It appears that both particle forces and surface interactions
are capable of accounting for the data in Table II .* An interesting
feature is the empirical evidence for a different coupling of part-

icle-particle from that of particle-hole . This can be understoo d
in terms of two-body forces of the Wigner or Majorana type
(KURATH, 1953) and also follows from the opposite signs of th e
surface coupling associated with particles and holes .

The coupling scheme in some more complex odd-odd nuclei

is considered in the Addendum to Chapters IV and V, in con-
nection with a discussion of nuclear moments .

v . Summary .

The ground state spin is determined in general by a competi -

tion between particle forces and surface coupling . Often the two
effects favour the same value of I, but, especially in the case o f
(j) 3 configurations, the predictions are different and the empirica l
evidence can be used to obtain information about the nuclear
coupling scheme (cf. also footnote below) .

The available data can be interpreted in a consistent manne r
in terms of the expected dominance of the surface coupling ove r
the direct particle forces (cf . p . 32) . The observed spins confir m
the approach to the strong coupling scheme in regions removed

* Note added in proof : A level scheme for 170134 has recently been given
(ARBER and STAHELIN, 1953), in which the ground state has I = 0 (even parity)
and in which there appears an isomeric level at 145 keV with I = 3 (eve n
parity) . For weak surface coupling the lowest state of this ((13î2 ; d372) configu-
ration has I = 0, while for strong coupling one finds two states I = 0,3 wit h
the former favoured by the rotational energy . Attractive particle forces of th e
expected range yield I = 3 for the ground state (KURATH, 1953) .

Additional evidence on the ground state spins of self-mirrored odd-odd nucle i
could provide further information on the competition between the direct particl e
forces and the coupling to the surface deformations, since the former in genera l
favour I = 2 j, while the latter gives I = 0 (cf ., especially, 15 A1E0 , 19

K33 , a 1 Sc 42 ,
and 27 Go 54 ) .
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from closed shells, with a relatively weaker coupling acting i n
the neighbourhood of closed shells .

In the immediate vicinity of major closed shells, the expected
weak surface coupling implies the most favourable conditions
for the study of particle forces. Important evidence on the strength
and nature of these forces could be provided by further experi-

mental data on ground state spins and moments in this region ,
especially when combined with a knowledge of the excitatio n
spectrum and lifetimes of excited states (cf . § VI b) .



IV. Magnetic Moments .

The sharing of angular momentum between particles an d
surface implies that both particle and surface motion contribut e
to the nuclear magnetic moment . Because of the large intrinsi c
moment of the nucleons, the particle aspect of nuclear moments
is in general the more conspicuous, and indeed the empirica l
moments have provided a valuable guide in the formulation o f
the shell model (SCHMIDT, 1937 ; FEENBERG and HAMMAGIS, 1949 ;
NORDREIM, 1949 ; MAYER, 1950 ; HAXEL, JENSEN and SUESS, 1950) .

In a more quantitative analysis, however, the surface couplin g
plays an important role . Appreciable shifts from the single -
particle values can arise from the modified nuclear coupling
scheme produced by the surface interaction ; additional effects
result from the tendency of the surface coupling to admix near -
lying particle states, which may have very different magneti c
properties (FOLDY and MILFORD, 1950 ; A . BOAR, 1951 ; DAVID -
SON and FEENBERG, 1953) .

The analysis of magnetic moments may also provide evidenc e
on the extent to which the magnetic properties of nucleons ma y
be affected by their interaction with nuclear matter (cf ., e . g . ,
VILLARS, 1947 ; SACHS, 1948 ; MIYAZAWA, 1951a) .

a) Shell Model Moments .

For a single particle moving in a spherical potential, the
magnetic moment is given by

1
~ = = j 9'I+ 21 + 1 (gs -g t)) j = 1 f 1/2, (IV.1 )

where gi is the total g-factor an d

5 .585
gs - 3 .826 }

	

and g I = 1 1 j
(IV .2)
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the intrinsic and orbital g-factors in units of nuclear magnetons .

In the bracket, the upper values refer to a proton, the lower to

a neutron .

f

0

-f

6

5

4

2

7
2

®
g
2

5
2

Spin
Fig. 7 . Magnetic moments of odd-proton nuclei . The moments of odd-proton nuclei
with A > 8 are plotted against the nuclear spin . This type of diagram was first
used by SCHMID T (1937) . The experimental values are taken from the reference s
given in the Addendum . The full-drawn curves give the single-particle value s
(1 and 2), while the dotted curves give the moment values obtained in the limi t
of strong surface coupling, assuming the particle j to remain a constant of th e
motion (cf. (6) and Ap . III .9) . The surface coupling may further influence th e
magnetic moment through the tendency to admix neighbouring particle orbitals .
This effect, however, depends sensitively on the level order and the shape and
magnitude of the deformation, and must therefore be considered separately fo r

the individual nuclei (cf . Table VII and the Addendum) .

The empirical moments for odd-A nuclei are plotted in Figs .

7 and 8, in which also the single-particle values (1 and 2) ar e
shown by the solid lines . In spite of the appreciable scatter o f

the empirical moments, they show a tendency to cluster in tw o
groups, for given I, which can be related to the single-particle
values. This correlation has been successfully employed in the

f
2

3
2
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determination of nuclear parities (cf ., e . g ., MAYER, MoszKow -

sKl and NORDHEIM, 1951) . Also the trends of the moments with I
give support to the value (2) for the orbital g-factor .

For many-particle configurations, the magnetic moment de -
pends on the coupling scheme which leads to the total angular
momentum J . For a group of equivalent particles, one has, i n

l

2

f

A 0
°

s)

	

a°ö
•

-
- ---4°	 ~	 s

f

	

3

	

5

	

7

	

9
2

	

2

	

2

	

2

	

2

Spin
Fig . 8 . Magnetic moments of odd-neutron nuclei. The moments of odd-neutron
nuclei with A > 8 are plotted against the nuclear spin (cf. also the caption t o

Fig . 7) .

the (jj) coupling model, gJ = gi , but changes in the g-facto r

may arise for odd-A nuclei when the even structure is not a
closed shell . In such cases, the nuclear state for a given J wil l

in general depend on the interparticle forces ; for three or five

nucleons in j = 3/2 orbitals, the assumption of charge indepen -
dent forces, however, suffices to determine the nuclear wave

function. The magnetic moments for these cases are listed i n

Table III . For odd-odd nuclei, the magnetic moment is in genera l
unique only when the proton-as well as the neutron-configur-

ation is that of a single particle . By making more explicit as-
sumptions about the character of the forces, one can obtain

magnetic moments for more complicated many-particle con-
figurations (HITCHCOCK, 1952 ; FI,owERS, 1952c) .

A comparison of the shell model magnetic moments with th e

empirical data is given in Table IV. Nuclei are listed for whic h

magnetic moments are known, and for which the (jj) coupling

- f

- 2
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TABLE III . Properties of charge symmetrized states of typ e

(j = 3 /2 )J=312 with T = 1/2 .

Configuration Magnetic moments Quadrupole

moment s

QJ/IQ1I

Mirror

ß-decay

( Dc r)J/(D c r)~NJneutronsproton s

(P3/2) ± 1 (Ps/s) 2 3 .79

	

3.03 + 11/15 121/225

(P3/2) 2 (P3/2) 11 -1.91

	

-.1 .15 2/3 121/225

((13/2)

	

I (ds/z) 2 0 .12

	

0.26 Æ 11/15 121/225

(d 3/2)2 (d3/2) 1 .15

	

1 .01 + 2/3 121/225

The table compares magnetic moments, quadrupole moments, and ß-decay
transition probabilities for the charge symmetrized state J with the correspondin g
quantities for the single-particle state j. Magnetic moments have been given b y
MIZUSHIMA and UMEZAWA (1952), quadrupole moments by HORLE and YOSHID A
(1951) and FiowERS (1952c), and ß-decay matrix elements by KOFOED-HANSEN
and WINTHER (1952) .

shell model provides a unique prediction p p . It is seen that, i n
most cases, the deviations from ,up are of the order of a half t o
one magneton . The cases of agreement between ,u p and yobs are
principally the pi/2-nuclei and the self-mirrored odd-odd nuclei
(cf . pp. 67 and 81) .

b) Moments of the Coupled System .

For the coupled system consisting of a single particle an d
the nuclear surface, the magnetic moment is given b y

= < g s sz + gI lz + gRRz>M-1 (IV .3)

where gR is the g-factor for the angular momentum carried by
the surface . For a uniformly charged nucleus, we have *

gR =-- Z/A .

	

(IV.4)

If j remains a good quantum number, (3) reduces to

y = < gjjz + gRRz>M=1

	

~= gi I - (gi- gR) <R Z >M=1 .
(IV.5)

* In the discussion of the empirical data we employ for simplicity the fixed
value gR = 0.45, except for the self-mirrored odd-odd nuclei for which gR = 0 .5 .
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TABLE IV . Comparison of magnetic moments with shel l
model values .

Nucleus
Configurations

gobs f~p

protons I

	

neutrons

,Be' (P3/2) 3 (P3/2) -1 3/2 -1.18 -1.1 5
5 Blo

(Ps/a) -1 (Pa/2) -1 3 1 .80 1 .8 8
5 B11

(Pa/2) -1 - 3/2 2 .69 3 .7 9
G C" - P112 1/2 0 .70 0 .64
7N14

Pi/2 Pi/2 1 0 .40 0 .3 7
7N1s

Pi/x
- 1/2 -0.28 -0.26

8017 - d 5 /x 5/2 -1.89 -1 .91
eFi19

s 1/z - 1/2 2 .63 2 .79
111Va22 ( d 512)3 ( d 5/a) 3 3 1 .75 1 .7 3
1aA127 ( d 5/2) -"1 - 5/2 3 .64 4.7 9

14S32 .
- s i/a 1 /2 -0.56 -1.9 1

15
Pa1 s1/2 - 1/2 1 .13 2 .7 9

16
S33 - d 3/x 3/2 0 .64 1 .1 5

17 C135 d a /a ( d a/z) 2 3/2 0 .82 0 .2 6

17 C137 d a /2 - 3/2 0 .68 0 .1 2

1a 1{39 (d ala) -1 - 3/2 0 .39 0 .1 2

le 1{40 (d 3/2) -1 17/2 4 -1.30 -1.6 8
x3`

751
(17/2) 3 - 7/2 5 .15 5 .7 9

s7 1;b88 (15/2) -1 (g ./2) -1 2 -1.69 -2.1 3

37 1~
be7

(Ps/2) -1 - 3/2 2 .75 3 .7 9

as Sr87 - (g./a)- 9/2 -1.1 -1 .9 1
3 .

Y89
P1/2 - 1/2 -0.14 -0.2 6

4o Zr91 - d s/a 5/2 -1 .1 -1.9.1
sx Pb407 - Pi/2 1/2 0 .59 0.6 4

83 Bi 209 h ./x 9/2 4 .08 2.62

The table lists the nuclei with measured magnetic moments, for which the
shell model yields unique p-values, without specific assumptions about the nuclear
forces other than charge independence . For references to the empirical data, cf .
Addendum to Chapters IV and V . The odd-A nuclei are single-particle configur-
ations, except for Be , and Cl" for which cf . Table III . The odd-odd nuclei mostly
have two-particle configurations, in which case the measured spin uniquely deter -
mines the state . For Na ,, the total g-factor follows from the symmetry of the
configuration, even though .the state is not unique .

For the ground state with I = j, the dependence of < Ra > on
the coupling strength has been discussed in § II h and is illu-
strated in Fig . 5. In the limit of large x, we get from (II .20), for
I = j > 3/2, the strong coupling value (cf . A . Bonn, 1951 )

p c - psp (gi - gR) I+ 1 .

	

(IV.6 )
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For I = j = 3/2, the limiting value /Lc differs somewhat from (6 )
(cf. Ap . III .9) ; for I = j = 1/2, there is no coupling to the sur -
face and ,u = ,usp .

The values of pc for j a constant (j = I) are plotted as dotte d
lines in Figs. 7 and 8 .

If there are neighbouring single-particle states j ' , which are
admixed by the surface coupling, the magnetic moment may b e
strongly influenced . In the perturbation approximation, on e
obtains from (Ap . II .3 and 4)

f~°~sp
hw

	

2

	

(IV.7 )
-}- x2 Z {-air (9'i - gR) + ßii' (gi' - 9x) } (h w +

d J ,

J'

	

ii'

where the coefficients a and ß are given in Table V, and wher e
A ir represents the spacing between the particle states j and j' .

TABLE V . Coefficients in magnetic moment shifts produced
by weak surface coupling .

l '= j- 2 j'= j-1 1 =j j' =j + 1 i '=j + 2

a ß a ß a ß a ß a ß

1 1 3 7
5 5 10 1 0

9 9 18 27 117 81 72 9
10 50 25 70 350 35 17 5

5 1 5 13 48 10 74 125 1375
2 2 7 49 49 21 147 21 14 7

63 27 7 37 10 35 115 245 318 5
10 10 10 90 9 66 198 22 19 8
81 45 54 414 144 81 981 5103 7654 5

7 7 77 847 121 143 1573 286 3146

The magnetic moment shift in a state I = j, arising from the sharing of
angular momentum between the particle and the surface, and from the admixture
of neighbouring orbitals j', is given in the weak coupling region by (IV.7) . The
table lists the coefficients . ii „ and ßii„ occurring in this equation .

If the surface admixes the spin orbit partner, there is a n
additional contribution to j1 from cross terms in j, j' giving (cf.
Ap. II .5)

1/ 2

3/ 2

5/ 2

7/ 2

9/2
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8y = + xz(gs_gi)

	

3
	 (2J-1)(22+3) 1
4 (21+ 1)

	

(j + 1)

	

(IV.B )

~

~ w

Itw+4~l .

where the upper and lower signs refer to the cases of a particl e
and a hole, respectively .

In strong coupling, the magnetic moment of a state wit h

I = K = S2 > 3/2 is given by

a

Pc = I+ 1 gS2
+

I+ 1 gR'

	

(IV.9)

where

go ° ~ <gss3+g113>

	

(IV.10)

is the g-factor associated with the particle motion in the deforme d

nucleus and can be evaluated for wave functions xo of the type

discussed in § II b .

For the special case of S2 = K = 1/2, the value of ,u c is most

easily obtained from (3) by means of the expectation values o f

jZ , given by (I1.19), and of sZ given by (Ap . III .2) .

For many-particle configurations, magnetic moments can be

derived for the different coupling schemes discussed in § IIc .

In the strong coupling scheme, in which the state is characterize d

by the Q of the individual particles (cf. Fig. 6a), formula (9 )
still holds where, for odd-A nuclei, go is the g-factor for the last

odd particle. For odd-odd nuclei, we hav e

g,g = .T? ('a ga + Aim) • (IV.11 )

If the nuclear forces first couple the particle to a resultant J

(cf. Fig . 6b), the magnetic moment is obtained as for a single

particle with a g-factor equal to gj .

c) Comparison with Empirical Data .

A detailed application of the coupled model to the inter-
pretation of moments of individual nuclei is given in the Ad-
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dendum to Chapters IV and V. In the present section, we con -

sider some of the general trends of the empirical data an d
summarize the conclusions that can be drawn from the more

detailed analysis .
The surface coupling may affect the magnetic moment i n

two ways, by the transfer of angular momentum to the surfac e

TABLE VI, Magnetic moments in strong coupling .

Nucleus
Configuration

I ,colis
P P

protons neutrons

,Be' (P3/2) 2 (P3/2) -1 3/2 -1 .18 -0.73 -1.1 5
5 B11 (P3/2)

-1
- 3/2 2 .69 2 .37 3 .7 9

8 017 - do$ 5/2 -1 .89 -1.04 -1.9 1
12Mg25 (d 5/2) -2 (d 512) -' 5/2 -0.86 -1.04
,3A127 (d 512) -1 - 5/2 3 .64 3 .75 4 .7 9

,,Sc /7/2 (f7/a) 4 712 4 .76 4 .86

22T149 (f7/2) a (f7/2)
-1 7/2 -1.10 -1 .1 4

57 C0" (f7/2) -1 (P3/2, /5/2) 2 7/2 4 .6 4 .86

27C' 0" (t7/2)
-1

(P3/2, is/2) 4 7/2 4 .65 4 .86

,,Sr" - (g2/2)
-1

9 /2 -1.1 -1.20 -1.9 1
41Nb93 g9/2 (d 5/2, g 7/2)2 9/2 6 .17 5 .93

49 In"3 (g9/2) -1 ( d5/2, g 7/2, h 11/2) 14 9/2 5 .49 5 .93

42 1n"5 (g9/2) -1 ( d5/2, g 712, h 11/2) 18 9/2 5 .50 5 .93

The table lists the relatively simple nuclei whose odd structure is of (j) l
type with a j larger than that of neighbouring orbitals . The last three columns
give the observed moments, those calculated for strong surface coupling, an d
those resulting from particle forces with the neglect of surface coupling . Th e
latter are only listed where the particle forces lead to a unique coupling scheme .
For reference to experimental data, cf . the Addendum.

and by the admixture of near-lying particle orbitals . In a special

class of nuclei, the former effect can be studied alone, provide d
the coupling is strong. Thus, if the odd-particle j is the larges t
in the corresponding shell, the strong coupling solution with

Q = j will have no other orbitals admixed .
Nuclei of this type, whose odd configuration consists of a

single particle or a single hole, are listed in Table VI . The three

last columns give the empirical moments and those calculate d
for strong and vanishing surface coupling.
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It is seen that the assumption of a rather strong surface

coupling makes possible an approximate interpretation of these

moments . The principal exception is 8017 , for which many prop-

erties attest the expected undeformability of the very stable 8 019

core (cf . § Vc) . In some cases, the magnitude of yobs is a few
tenths of a magneton below that of /le, which may possibly aris e

from an interaction effect on the nucleon moment (cf. p . 51) .

The rather fully developed strong coupling situation indicate d
by the empirical values in Table VI implies, according to (5)
and Fig. 5, that coupling strengths of x > 1 .5 are required if
the nuclei are described in terms of a single particle coupled t o

the surface. Such values of x are somewhat larger, by about a
factor two, than those estimated for a single particle in the hydro -
dynamic approximation (cf. p . 25), but may be understood i n

terms of the increased coupling expected from the influence o f
the even structures (cf . p. 31) . In cases where an even structure ,

for a spherical nucleus, would form a closed sub-shell, it may

still be active, provided the energy gap to the next higher level s

is not too large (cf . Ap. I) .

A similar effect on the magnetic moment is expected for al l

nuclei with I> 3/2, and the strong coupling value ,u e (cf. 6 and
Ap. 111.9) corresponding to j = I is plotted in Figs . 7 and 8 a s

broken lines. However, for nuclei other than those listed in

Table VT, there are additional contributions to ,u, arising from

the interaction between neighbouring particle orbitals .
This effect is of special interest for I = 1 /2 nuclei, where it

provides a mechanism for strong surface coupling . Thus, for
(1/2+) nuclei, the strong interaction between S112 and the d5/2 and

d3/2 states may lead to a large deformation . The effect on the

moment depends especially on the sign of the deformation (cf .
Fig . 11) . Thus, the expected prolate shape of F19 leads to a very

small moment shift, while the expected oblate shape of Si" and
P31 explains the observed large deviations of the moment from
that of a single-particle s112 state (cf . Ad . i) .

For the (1/2-) nuclei, the admixed states have relatively little
effect on the moment . In the first p-shell, the large 1)112 -1)3/2

splitting in addition leads to rather small amplitudes of admix-

ture . In higher p-shells, there is a considerable tendency for th e

moment deviations, caused by the P3/2 and f512 admixtures, to
Dan. Mat Fys .Medd. 27, no.16 .

	

4
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cancel, which provides an understanding of the strikingly smal l

spread of the moments of this group (cf. Ad. ii) .
Another effect of the interconfiguration admixtures can b e

studied for the (3/2+) nuclei . Due to the d312 -d512 interference ,

the magnetic moment depends, as for the (1/2+) nuclei, on th e

sign of the deformation (cf. Fig. 12) and thus distinguishes be -

TABLE VII . Summary of magnetic moments for A < 50 .

Nucleus
Configurations

I Yobs µp µc

protons neutron s

4 $e9
(P3/2) 2 (P3/2) -1 3/2 -1 .18 -1.15 -0. 7

5 810 (P2/2) -1 (P3/2) -1 3 1 .80 1 .88 1 .7 9

5 B11 (Ps/2) -1 - 3/2 2 .69 3.79 2. 3
8 Cls - P1/2 1/2 0 .70 0.64 0 .64 to 0 .7 5

7N14 P1/2 P1 /s 1 0 .40 0.37 0 .40 to 0 .4 7
7N1s P1/2 1/2 -0:28 -0.26 -0.27 to -0.4 1
8 Q17 - d 5/ 2 5/2 -1 .89 -1.91 -1.0 4
9 F10 s 1/2 - 1/2 2 .63 2.79 2.5 to 2. 8

11Na22 ( d 5/2) 3 (ds/ 2 ) s 3 1,75 1 .73 1 .71 to

	

1 .7 8

11Na
23

( d s/2) 3 (d s/3) -2 3/2 2 .22 2 .2 to 2. 5

11Na24 ( d 5J2) 3 (d s/2) -1 4 1 .69 1 .4 to 1 . 8

12Mg25
(d 5/2 )-2 (d5 / 2 ) -1 5/2 -0.86 -1.0 4

13A127 ( d 5/2) -1 - 512 3 .64 4.79 3 .7 5

14S i29 - s i /2 112 -0.56 -1.91 -1.2 to -0 . 6

1s
P31 s 1 /s 1/2 1 .13 2.79 1 .9 to 1 . 2

15
533 - d 3/3 3/2 0 .64 1 .15 0 .8 to 0 . 2

17C135 d 3/2 (d 3/2) 2 3/2 0.82 0 .26 0 .5 to 1 . 2

17C137 d 3/3 - 3/2 0.68 0 .12 0 .5 to 1. 2

18K39 ( ds/2) -1 - 3/2 0.39 0 .12 0 .3 to -0 . 1

19K40 ( d 2/a) -1 17/2 4 -1.30 -1.68 -1.0 to -0. 3
19K41 ( d 2/2) -1 (17/3) 2 3/2 0.22 0 .3 to -0 . 1

1a
K42 ( d 3/2) -1 (17/2) 3 2 -1.14 -0.7 to -0. 9

21S e 45 17/2 (17/2) 4 7/2 4.76 4 .8 6

22T149 (17/2) 2 (17/s) -1 7/2 -1.10 -1.14

The table compares the observed magnetic moment pals with the moment µ p

given by the shell model, with neglect of surface coupling, and the moment µ c
obtained for strong surface coupling . The value of µp is given only where it i s

independent of special assumptions about the nuclear forces . In cases where th e
strong coupling state contains several values of j, the moment may be rather
sensitive to the equilibrium value of ß, and the values given for µc correspond t o

deformations in the range 0 .1 < #< 0 .4 . For a more detailed discussion of µc , and

for references to the empirical data, cf . the Addendum .
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tween particles and holes . Such differences are indeed apparent
in the empirical data (cf. Table XIV) .

Further effects of the interaction of neighbouring particl e

states are discussed in the Addendum. The states often have very

different magnetic moments, and their interaction may lead to
large moment shifts .

The analysis of magnetic moments for nuclei with A < 50

is summarized in Table VII . The table compares the observed

moments with those calculated for vanishing and strong surfac e

coupling (columns six and seven, respectively), . In those cases

where the strong coupling state contains particle orbitals of
different j, the magnetic moment may depend rather sensitively

on the magnitude of the deformation, and the table lists moments

appropriate to deformations in the range 0 .1 < ß < 0 .4 . The

expected values of ß vary considerably from nucleus to nucleus ,

and estimates of values appropriate to the individual nuclei ar e

given in the Addendum .
It is seen from the data collected in Tables VI and VII, and

from the discussion in the Addendum, that the unified descript-

ion of the nucleus, in terms of the coupled system of particle s

and collective oscillations, makes possible a rather systemati c

interpretation of the magnetic moments of nuclei with sufficiently

simple configurations . The empirical data give evidence for th e

expected approach to the strong coupling scheme, except in the

immediate vicinity of major closed shells .

An interpretation is also possible of the moments of many

heavier nuclei not included in Tables VI and VII, wherever th e

configurations are sufficiently well known (cf. the Addendum) .

An important anomaly is the as yet unexplained large moment

shift of 83 BI 209 with its single-particle configuration . The stability

of the 82Pb 208 core with its closed-shell structure implies a rathe r

negligible effect of the , surface ' coupling, as confirmed by the

small quadrupole moment . The observed moment shift thus prob -

ably reflects some unexpected feature of the particle structure .

Besides the contributions to the 'nuclear magnetic moment

from the individual particles and from the surface, there may b e

an additional effect arising from the interaction of the nucleons .

Such interaction effects have been described as exchange mag-

netic moments, and have sometimes been considered as a partia l
4*
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quenching of the meson cloud responsible for the nucleon mo-

ments (VILLARS, 1947 ; SACHS, 1948 ; Os13oRN and FoLnY, 1950 ;

SPRUCH, 1950 ; MIYAZAWA, 1951, 1951a ; BLOCH, 1951 ; DE-SHALIT ,

1951 ; SCHIFF, 1951 ; JENSEN and MAYER, 1952 ; RUSSEK and

SPRucH, 1952 ; Ross, 1952) .

It is of interest to employ the analysis of the empirical mo-
ments to obtain evidence on the possible magnitude of thes e

phenomena . In the j = 1 - 1/2 nuclei, there are small residua l

moment shifts which may perhaps be interpreted as arising fro m

interaction effects . For the pl/2 and d312 configurations, the data

are consistent with a reduction of the intrinsic nucleon momen t
by about 0 .3 magnetons (cf. pp. 69 and 74) . Somewhat larger

effects may be present in the f5/2 and possibly also in the g7/ 2

nuclei (cf . pp. 78 og 79). It seems somewhat difficult, however ,

to interpret the moment shift of Bi 209 (h 912 ) in this way, since
an effect five times larger would be required (cf. p. 81) . The
moments of the j = 1+1/2 nuclei, with the exception of 0 17 , do

not seem inconsistent with a : reduction of the nucleon momen t
by a few tenths of a magneton (cf . Table VI) .

That interaction contributions to the moment are in genera l
small compared to the effects of the surface coupling is furthe r

supported by the correlations of magnetic moments with quadru-

pole moments (cf . p . 70) and especially with beta . decay ft -
values . Thus, for all the nuclei in Table VII with Z = N- 1 ,

for which there are major discrepancies between pas and p p ,
the ft-values of the corresponding mirror transitions give stron g

evidence that these discrepancies are associated with modification s

in the nuclear coupling scheme rather than in the intrinsic nu-
cleon moments (cf. § VIIIc .i) . In these cases, the coupled mode l

simultaneously improves the agreement with both the magneti c
moments and the beta decay data (cf . Table XXIX) .



V. Quadrupole Moments .

The magnitude of the electric quadrupole moments reveal s

directly their collective origin (CASIMIR, 1936) . At the same time,

the trends are strongly correlated with the nuclear shell structur e

(GORDY, 1949 ; HILL, 1949 ; TOWNES, FOLEY and Low, 1949 ;
ROSENFELD, 1951) . These dual aspects of the quadrupole mo-

ments find their explanation in the coupling between the particl e

motion and the surface deformations (RAINWATER, 1950) .

The importance of the deformations for the whole dynamic s

of nuclear states implies intimate correlations between quadru-

pole moments and many other nuclear properties .

a) Shell Model Moments .

A single proton contributes a quadrupole moment

_ <r2(3cos2~- 1) >m= i - 2~j+1)<r2>,

	

(V .1 )

where the mean value of r 2, although depending somewhat on

n and 1, is of the order of 3/5 R . A single hole in a proton

shell yields a quadrupole moment equal to (1), but of opposite

sign. For a single-neutron state, the quadrupole moment come s

only from the recoil and is Z/A 2 times the above value .
For configurations with several equivalent protons coupling

to a total J, the quadrupole moment is usually somewhat smalle r

than the single-particle value . Examples of such configuration s
are listed in Table VIII . For configurations involving both neu-

trons and protons, the values of QJ are given in Table III fo r

those configurations which lead to unique charge symmetrize d
wave functions .
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TABLE VIII . Quadrupole moments for (j) 3 proton configurations .

J

	

(1) 3 ( 5 /2 ) 8 ( 7 / 2 ) 3 ( 9/2) 8

3/2 0 -3/5 -1/5
5/2 0 13/14 -1/42
7/2 1/3 121/9 0

9/2 0 -5/11 {

	

+0 .5 8
l -0.7 3

11/2 5/49 2/3 9
13/2 11/6 0
15/2 5/7 -7/10 2
17/2 7/1 5
21/2 7/6

The table lists the ratio of the quadrupole moment Q J of the state CO!, to
the value of Ql (cf . V.1) . The configuration (9/2) 3 has two states with J = 9/2
and the quadrupole moments listed are the extreme values obtainable by com-
bination of the two states . From the values of Q J one can also calculate th e
effective particle-surface coupling constants kJ given by (II .31) .

In Fig. 9 are plotted the measured quadrupole moments o f
odd-A nuclei in units of I In the case of odd-neutron nuclei ,
the value of I Ql for a corresponding proton is used as a unit .
The most conspicuous feature of the figure is the magnitude o f

Q/Q 1 I which, in most cases, exceeds 2 and which, in som e
regions, reaches values of 20 or more . Moreover, odd-neutro n
nuclei have Q-values comparable to those of corresponding odd -
proton nuclei . Shell structure is also apparent in Fig . 9, especially
in the expected change from positive to negative Q at the majo r
shell closings .

b) Moments of the Coupled System .

In the coupled model, the total nuclear quadrupole momen t
becomes

Q =Qp +Qs

of which the first part is associated with the particle structure .
The second part is due to the surface deformation and is given b y
(cf. II .2)

3
ZR 2 < aQs =

	

o

	

o > ,vr = r
1/5 7r

(V.2)

(V.3)
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Fig . 9 . Quadrupole moments of odd-A nuclei. Quadrupole moments, measured in
units of the moment Q i of a single-proton state with j = I (cf. (1)), are plotte d
for odd-A nuclei with A> 8 as a function of Z (odd-proton nuclei) or N (odd -
neutron nuclei). Similar diagrams have been given by GORDY (1949) and by
TOWNES, Foray and Low (1949) . The experimental data are taken from the

references given in the Addendum .

in the hydrodynamic approximation, where the nucleus is con-
sidered as an incompressible uniformly charged structure .

Quadrupole moments can be obtained from the variou s
solutions of the coupled system considered in § 1l b and § II c .
Thus, in first order perturbation approximation, the value of
Qs induced by a single particle may be found from (1I .9) and
(V.3) by considering only the ao-part of the interaction . Th e
matrix elements of ao and Yo are given by (A .38, 76, 77, and 78 )
and one obtains

3 2I- 1 k
Qs =-

	

ZR4~ 2(I F 1) C

	

o .

The presence of near-lying single-particle levels does not in-
fluence this result to first order in k.

(V • 4)
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In strong coupling, we have (cf. A. 11 and 12)

ao = ß cosy
(2

cos t 0- Z) -F
23

/3 sin y sine 0 cos 2 v .

	

(V.5)

For the wave function (II .15), only the first term in (5) contri-
butes to Qs, and one obtains

3K2 -I(I+1 )
Qs = (I + 1) (2 I + 3)

Qo,

	

(V.6)

3

Qo =
	 ZRô < ß cosy >

	

(V.7)Q
v5 n

gives the intrinsic quadrupole moment, measured with respect t o
the nuclear axis (cf . (Ap. I1I .10) for the special case of j = 3/2) .

In the limit of strong coupling, we may replace ß and y b y
their equilibrium values . From the estimate (1I .22) for ß we
get, for the ground state, I = K = y = v, (cf. FEENBERG and
HAMMACK, 1951 ; GALLONE and SALVETTI, 1951, 1951a)

where

3 2 I-1 k

	

.,
Qo =

	

ZR -
4n 2 (1+ 1) C

	

o

for the intrinsic quadrupole moment . This result is just equal

to the perturbation value (4) for the total surface moment.
The factor preceding Qo in (6) is a projection factor PQ

relating the quadrupole moment of a given rotational state of a
symmetric top to its intrinsic moment . For the ground state ,

I = K, its value is (cf . A. BOHR, 1951 )

_ I 21- 1
PQ

1+1 21+3 '

In a similar way, the contribution of the particles in strong

coupling is reduced by the factor PQ . The significance of P Q i s
apparent for states of I = 0 or 1/2, where the nucleus, althoug h
it may possess an intrinsic asymmetry Qo, exhibits a spherically
symmetric charge distribution (Q = 0) .

In intermediate coupling, it is convenient to write the quadru-
pole moment as

Nr. 1 6

(V.8)

(V.9)

Qs = PQ (x) Qo,

	

(V.10)
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where Qo is given by (8) for a one-particle configuration with
j = I . The projection factor PQ(x) is then unity for x « 1 and
approaches the value (9) for x» 1 .

The behaviour of the quadrupole moment for intermediate
coupling may be studied for the case I = j = 3/2 by means o f
the wave function illustrated in Fig . 4. Moreover, from th e
solution of the coupled system valid for I = j» 1 (cf . Ap. IV),
one obtains

2 1+1

	

x 2

	

PQ (x) =
1-3

(I+ 1)(2I-+ -3)
x'+4

	

(V.11 )

V

	

9

correct to terms of order I-1 .
The gradual transition from weak to strong coupling is il-

lustrated in Fig . 10 .

f

	

2

	

3
Fig . 10 . Projection factor for quadrupole moments in the coupled system. The modi-
fication in the nuclear coupling scheme, arising from the interaction of the particl e
with the surface, implies a reduction in the surface quadrupole moment, as com-
pared with that induced by a particle with mi = j . This reduction is expressed

by the projection factor PQ (x) (cf . (10)) which depends on the coupling strength
x (cf . (II .14)) . For weak coupling (x(( 1), P Q 1 while, in the limit of strong
coupling, PQ approaches the value (9) for j > 3/2. In strong coupling, the particle
has S2 j (cf. Fig. 3) . and thus induces the full quadrupole moment with respec t
to the nuclear coordinate system . The projection factor P Q then gives the reduction
of this intrinsic quadrupole moment Q o caused by the deviation of the nuclea r
axis from the fixed z-axis .

The figure illustrates the gradual development of the projection factor fo r
j »1 (cf . (11) and Ap . IV) and for j = 3/2 (obtained from Fig . 4) . The strong
coupling solution for j = 3/2 discussed in Ap . Ill .ii indicates that the curve fo r
j = 3/2 may approach a value somewhat in excess of unity, for large x .

strong coupling limit 1>3/2

X

04

- 0.2

4
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c) Discussion of Empirical Data .

The coupling between particle motion and surface deforma-
tions provides a mechanism capable of producing nuclear quadru-
pole moments of the observed order of magnitude (RAINWATER ,

1950) . In this way, one can account for important trends in th e
empirical data, in particular the rapid increase of quadrupole .
moments with A, and the comparable magnitudes of moment s
of neighbouring odd-proton and odd-neutron nuclei . Also the
increase of the moments, as one moves away from closed-shel l
configurations, which leads to maximum values in the middl e
of shells, is a direct consequence of the increase in the coupling
associated with many-particle configurations (cf. § IIc.ii) . *

The empirical quadrupole moments provide valuable evi-
dence on the nuclear deformability and its dependence on shell
structure . Thus, it is found that closed-shell nuclei, as expecte d
(cf. Ap. I), possess a much greater stability against surfac e
deformations than is indicated by the hydrodynamic surfac e
tension. For both 8017 and 83Bî209 the empirical quadrupol e
moments are of the order of the single-particle moments an d
more than ten times smaller than the values estimated from th e
surface deformation .

The interpretation of these moments as reflecting a sharply
decreased deformability is supported by other evidence . Thus ,
the first excited state of 82 Fb 208 has an energy about twice th e
hydrodynamical phonon energy, and the first excited state o f
8017 has the anomalous (0 +) character (cf. § VI c .i) . Moreover,
the magnetic moment of 80 i7 is very close to the single-particl e
value ; in this respect, 83 Bi209 forms an exception, exhibiting a
large moment shift of still unexplained origin (cf . p. 81) .

The quantitative estimate of quadrupole moments depend s
sensitively on the assumed surface properties as well as on the
details of the particle configuration . However, even a rather
crude analysis of the empirical data reveals significant short-
comings of the hydrodynamical model . Thus, for nuclei whos e

PFIRSCH (1952) has discussed the trends of quadrupole moments, bu t
it appears that the states considered do not in general represent nuclear groun d
states, both because Q � I and because the chosen configurations do not fil l
the lowest particle orbitals .
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odd structure is that of a single particle, it is found that th e
hydrodynamical estimate of the quadrupole moment produce d
by this single particle, with neglect of the deforming influence o f
the even structure, is already considerably in excess of the ob-
served value .

The comparison* is shown in Table IX . The values of Q o ,

listed in column five, are obtained from (8), using the deform -
abilities of Fig . 1 . For a single-particle configuration, the hydro -

dynamical estimate leads to an intermediate coupling situation

(cf. p. 25), and the values of the projection factor PQ (x), in
column seven, are therefore not the full strong coupling value s
(9), but have . been estimated from Fig . 1O .** The resultant

Qhydr in the next to last column includes the contribution fro m
the particle moment listed in column eight .

The assumption of a single-particle configuration with a

constant j in most cases considerably underestimates the deform-
ation ; thus, the interaction of neighbouring particle orbitals may

increase the coupling strength, and the even structures also i n
general contribute to the deformation . The resulting approach t o
the strong coupling scheme, which is also indicated by man y

other nuclear properties, at the same time implies a decrease i n

the projection factor .
In spite of the difficulty of a detailed estimate of these effects,

it seems clear from the comparison in Table IX that the hydro -

dynamical values of Q are in general larger than the empirical

ones by at least a factor two .

This deficiency of the hydrodynamical model is consistentl y

exhibited by all nuclear properties related to quadrupole mo-

ments (cf . § VIc .ii and also p. 75), and gives an important indi-

cation as to how the collective properties of the nucleus diffe r
from those of an idealized liquid drop . It seems most likely that

* A comparison of empirical quadrupole moments with those induced by a
single particle has been given by VAN WAGENINGEN and DE BOER (1952) . These
authors find similar Q„-values to those listed in Table IX, but have used the
limiting values (9) for P Q and thereby obtained appreciably smaller values for
Q, than those resulting from the consistent one-particle hydrodynamical ap-
proximation employed in Table IX.

** Note added in proof : The projection factors employed in Table IX ar e
in agreement with the recent, more detailed, intermediate coupling calculation s
by D . C . CHOUDHuBY (cf . footnote on p . 24) .
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TABLE IX . Comparison of quadrupole moments with hydro -

dynamic estimates .

Nucleus
Configuration

I Q° x Yg(x ) Q3p Qhydr Qob s
protons neutron s

5B11
(P3/2) -1 3/2 +0 .07 0 .71 0 .7 +0.023 +0.06 +0 .0 6

8 0 17 - d 5/2 512 -0.20 0 .56 0 .8 -0.0013 -0.16 -0.00 5

13A127 ( d s/2) -1 - 5/2 + 0 .32 0 .56 0 .8 +0.065 + 0 .30 +0.1 6

18
S3a - d2 / 2 3/2 -0.31 0 .73 0 .7 0 -0.22 -0.0 8

18
S35 - (d 3/2) - 1 3/2 + 0 .31 0 .73 0,7 0 + 0 .22 +0 .0 6

17 C135 d 3/2 (d 3/ 2 ) 2 3/2 -0.32 0 .73 0 .7 -0.055 -0.26 -0.084

,,Cl" d 3f2 - 3/2 -0.32 0 .73 0.7 -0.055 -0.26 -0.06 6

2s CuB3 P3/2 (P3/2, fa /2) -4 3/2 -0.61 0 .76 0.7 -0.08 -0.48 -0.1 3

29 Cu G5 P3/2 (Pa /2e fs /2) -2 3/2 -0.61 0 .76 0.7 -0.08 -0.48 -0.1 2

31 GaeB (P3/2) -1 - 3/2 + 0 .67 0 .77 0 .7 +0.08 + 0 .53 +0 .2 4

31Ga
71

( p 3/2) -1 - 3/2 + 0 .67 0 .77 0 .7 +0 .08 + 0 .53 +0.1 5
88 Ge 79 (P3/2,15/2) 4 99/2 9/2 -1.3 0 .45 0 .9 0 -1.2 -0 . 2

49 1nu3 (g 9/2) -1 ( d 5/2, 97/2f h 11/2)
14 9/2 + 2.4 0 .51 0 .9 + 0 .21 + 2 .4 + 1 .1 8

49
In115 (99/2) -1 ( d 5/2>97/2, h 11/2) 18 9 / 2 + 2.4 0 .51 0 .9 + 0 .21 + 2.4 + 1 .20

5 1Sb121 d 5/2 ( d 5/2,97/2, h 11/2) 2D 5/2 -2.1 0 .68 0 .7 -0.17 -1.5 -1 . 0

5 1Sb 123 97/2 ( d 5/2> g 7/2 , h 1u/2)
22 712 -2.4 0 .58 0 .8 -0.20 -2.1 -1 . 2

89 Bî 809 h B /2 - 9/2 -6.7 0 .68 0 .8 -0.32 -5.6 -0.4

The table lists nuclei with measured quadrupole moments, whose odd structure i s
that of a single particle or hole . The intrinsic quadrupole moment Q 0 in column five i s
calculated from (V . 8) . In column six are listed the coupling strengths obtained from (Ii .14) ,
while' in column seven is given an estimate of the projection factor, based upon Fig . 10 .
The resultant hydrodynamic estimate of Q appears in column nine ; in this estimate, the
contribution from the particle moment, listed in column eight, has been included . Fo r
reference to Qobs , cf . the Addendum .

the empirical data are to be interpreted as indicating that th e

quadrupole moment associated with a given deformation is

overestimated by the hydrodynamical formula (3) . Part of the

discrepancy may also arise from an underestimate of the mas s
parameter B (cf. p. 13), in which case the coupling situation fo r

a given deformation would be closer to the strong coupling limi t
with a resultant smaller projection factor PQ .

Ratios of quadrupole moments of neighbouring isotopes often

do not depend on the specific properties of the collective deform-
ations, and may provide direct evidence on nuclear coupling

schemes . Thus, for example, the decrease of Q from 1 îC1 35 to



Nr . 16

	

V. Quadrupole Moments .

	

6 1

17C137, the latter with a closed neutron structure, indicates a
coupling scheme in 17 01 35 rather closer to the strong surfac e
coupling than to that produced by particle forces (cf . p. 74) .

d) Correlations with Other Nuclear Properties .

The important role of the surface deformation for the struc-

ture of nuclear states implies that many nuclear properties follo w
trends similar to the quadrupole moments and in particular
reflect the increasing deformations as one moves away fro m

closed shells . In some cases, there exist simple quantitativ e
correlations .

Intimately connected with the large quadrupole moments ar e

the low-lying nuclear rotational states with their characteristic
properties (cf . § VI c .ii) . From the lifetimes of these state s

(§ VII c .iii) or their excitation cross-sections (Ap . VI) one can
directly determine the intrinsic quadrupole moment Q 0. Th e
values obtained are just of the magnitude deduced from th e

spectroscopic Q-values (cf. Table XXVII) . The comparison shows
that the relationship between Q and Qo corresponds to a rathe r

fully developed strong coupling (cf. 9), as is expected for the large
deformations in question .

The study of transition probabilities between rotational state s
thus provides an additional means of determining nuclear qua-

drupole moments . Since the method also makes possible the
determination of deformations in nuclei whose ground state s

have I = 0 or 1/2, and therefore Q = 0, it may add considerabl y
to our knowledge of nuclear deformations .

The excitation energies of the rotational states also depend
on the nuclear deformation (§ VI c .ii) and have been observed to

exhibit trends parallel to those of the quadrupole moments
(FORD, 1953 ; cf. also Table XXIII) .

There is a tendency for large quadrupole moments to b e
associated with relatively large deviations of the magnetic mo-

ments from single-particle values (cf ., e . g ., KOPFERMANN, 1951 ;

MIYAZAwA, 1951 a). The observed correlations can be understood

in terms of the magnetic moment shifts arising from the surfac e
coupling (cf . discussion on p . 71) .
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Certain anomalies in the effective radius of the nuclear charg e

distribution, derived from spectroscopic isotope shifts, can b e

related to the observed quadrupole moments (BRIx and KOPFER-

MANN, 1949) . In particular in Eu, the exceptionally large isotop e

shifts can be attributed to the great difference in the quadrupol e

moments of the two isotopes (BRrx and KOPFERMANN, 1952) .

The analysis indicates a relation between Q and Q0 rather close

to that of the strong coupling limit (cf . p . 77) .



Addendum to Chapters IV and V.

Details of the Analysis of Nuclear Moments .

In this Addendum, we shall attempt a somewhat detailed

analysis of nuclear moments on the basis of the coupled model .
The main conclusions of this analysis have been summarize d
in the preceding chapters (§ IV c and § V c) .

Many of the features of the moments are specific to the con -
figuration in question, and we therefore divide the odd-A nucle i

according to spin and parity and consider each group separately .
The discussion is confined to . nuclei with A > 8 (cf. footnote on
p. 38) .

The tables of empirical moments are based on MACK (1950 )
and KLINKENBERG (1952) whose compilations we have attempted
to bring up to date . The values listed represent what appears t o
be the most accurate determination, but at the most two significan t
decimals are quoted . Unless otherwise noted, references to the
original experiments can be found in the above compilations .

The magnetic moments include diamagnetic correction s
(DICKINSON, 1950) and the quadrupole moments have bee n
corrected for the polarization effect (STERNIEIMER, 1951, 1952) .
As an aid in the assessment of the reliability of the quote d

quadrupole moments, the method of determination is indicated
by the letters A, M, and C, referring to atoms, molecules, and
crystals, respectively .

i . (1/2 +) nuclei .

Although states of I = 1/2 have no spectroscopically measur-

able quadrupole moment to reveal directly the deformation o f
the nucleus, the magnetic moments as well as other nuclear
properties (Ievel order, cf . below, and ß-decay, cf . § VIII c) give
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Table X. Moments of (1/2 +) nuclei) .

odd proton (lise, = 2.79) odd neutron (,u,,, = -1 .91 )

nucleus Y nucleus

	

f

8 F1s 2 .63 14 Si20 -0.5 6

15
p31 1 .13 4s

Gd11i -0.5 9

81
T1203 1 .61 8 Gd113 -0.6 2

81 T12" 1 .63 5oS
nu5 -0.9 2

5oS
n11 ~ -1 .00

5o
Sn113 -1 .05

Z Te
123 -0.7 4

52
Te125 -0.8 9

4 Xe
12a -0.78

evidence of the influence of the surface coupling . Direct inform-
ation on the intrinsic nuclear deformation could be obtaine d
from energies, and especially from lifetimes or excitation cross -
sections, for rotational states in these nuclei (cf . § VI c .iii) .

The empirical moments of nuclei of this type show peculia r
variations, as seen from Table X . Thus, for F 15 , ,u ,usp , while
for P 31 and Si" in the same shell, very pronounced momen t
shifts are observed . In this region, the available single-particle
orbitals are d5/2, sl/2 and, a little higher,

d312

The interaction of these states gives rise to a large surfac e
coupling which makes it appropriate to consider the nuclei i n
the strong coupling approximation .* The state xs2 of the last

odd particle with Si p = 1/2 then corresponds to the lowest proper
value of the matrix (cf. II .26 and Ap. I11 .1) ,

/0 0 0 \
0 4

3/2 0

~0 0 4 5/2/

5 1
/ 0 _ 7 ~/2 -70\

I kßcosy
V 4n 35

	

7V2 -7

	

V6

\-71/3

	

V6 - 8

W ' = (Ad. 1 )

where 4 3/2 and 4 5/2 are the energies of the d312 and d,12 states
with respect to the s 1 /2 level . There are additional terms in th e
nuclear potential energy arising from the surface tension an d
from the coupling energies of even groups of particles . While
these terms are needed for the determination of the equilibriu m

* The moment shift arising from the s jj2 -d312 interaction in strong couplin g
has also been considered by DAVIDSON and FEENBERG (1953) .
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deformation, they do not otherwise influence the magnetic moment

of the nucleus . There are also rotational energy terms (I1 .30)

which may be of significance, especially in light nuclei ; they

may here be considered as giving additional contributions to th e
diagonal elements d in (1) .

The magnetic moment of the state may be written

= a s /ts + aåf.c d , (Ad . 2 )

where as and aå are the probabilities of the s and d states, respect-

ively, (aå = 4 2 +a') . The moments ,u s and yd are given by

(cf. IV.3, 11 .1 9, and Ap . 1I1 .2 ; cf . also footnote on p . 44) .

- 1_ 1 .91 1
2 .791

(Ad. 3)
.

fad = ad 2 [ - 11 . 1.949 } a512 - {- 22
.5 0.98a5/2 a312 +

	

00
:
04 }

a3/2~

where, in the curly brackets, the upper value refers to a proton ,
the lower value to a neutron . In Fig. 11, the value of ,u d is plotted
as a function of

a3/ 2

y = 0 5/2
(Ad. 4)

The asymmetry with respect to y = 0 is due to the interferenc e
terms in (3) .

In the region just after 0 16 , the value of 4 512 is small compare d
to the surface coupling (cf., e. g ., the level inversion of F 19 ,

discussed below) and will therefore be neglected in (1) . On
the other hand, 4 3/2 is large (' 5 MeV ; cf. KOESTER, JACKSO N

and ADAIR, 1951) . If we ignore the influence of the d312 state ,
the resultant state XQ is independent of the parameters of th e

model and corresponds to as 0.5 a 2d and y = 0 .
Even a small 613/2 admixture may, however, have a rather

large effect on lud, due to the interference term . The effect de -
pends essentially on the sign of y (cf . Fig. 11), which is determ -
ined by the sign of cos y . In the beginning of the combine d
d 5/2 -sl/2 shell, it is found that the lowest state has S2 = 1/ 2
and y = 0, corresponding to negative y, and one therefor e
expects /2 ,u sp . At the end of the shell, we have y = n and

Dan .Mat.Fys .Medd . 27, no .I6 .
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/ud

	 ,pp(neutron)

Fig. 11 . Magnetic moments arising from d-state admixture in I = Ié = 1/2 states .
In the absence of surface coupling, these states would be pure s i / $ , but the
coupling may introduce large amplitudes of neighbouring particle orbitals, espe-
cially d states . In the region after 0 18 , the si/a and d,1, states are close-lying an d

one obtains, in strong coupling, as

	

3
and ad

	

3 . The si/a state part of th e

magnetic moment remains equal to the single-particle value, but the d state moment
is very sensitive to a small admixture of ds/a state . The figure gives s d as a functio n

of the relative amplitude y of the dsla state, which can be obtained from (1). The
strong asymmetry of tid with respect to y = 0 implies that the moment is espe-

cially sensitive to the sign of y, which again depends on the sign of the deformatio n
(y < 0 for y = 0 ; y > 0 for y

positive y, and very large moment shifts, of one or two magnetons ,

may occur .
Thus, the striking difference between the F, and the Si and P

moments may be understood in terms of the opposite shapes o f

the nuclear surface . The moment of F 19 with a single proto n

(y < 0) can be approximately accounted for by any deformatio n

ß ? 0.1 . In the case of P31 and Si 29 , where the odd configuration

is that of a single hole, the p-values are more sensitive to y, an d

the empirical moments indicate y 0 .5 . Such a value of y

would be obtained, if A 3/2 '' 5 MeV, for a deformation of ß - 0 . 4

(cf. Table VII) . A deformation of this order of magnitude is

consistent with the hydrodynamical values for the surface para -
meters .
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A perturbation calculation of the effects of the surface couplin g
on the magnetic moments gives similar characteristic differences
between F19 and P31 , due to the influence of the d512 - d312 inter-
ference. However, the magnitude of the observed shifts show s
that we are outside the perturbation region and indicates tha t
the strong coupling situation may be approximately realized .

The level shifts arising from the coupling of the 5 112 and d, 12
levels to the surface may explain the difference in ground state
spin between F 17 (I = 5/2) and F 19 (I = 1/2) . The compariso n
of the coupling energy (1) for Q = 1/2 with that corresponding t o

d2 = 5/2 shows that the surface coupling favours the spin I = 1/2 .
Thus, the increased deformation in F 19 as compared with F 17 ,
resulting from the addition of the two neutrons, depresses th e
I = 1/2 level with respect to the I = 5/2 level .

In the case of T1 2o3 and T1 2 ° 5, the s1 1 2 and d3J2 states are
near-lying, while the d5J2 state is about an MeV lower. The equi-

librium shape is expected to be y = zr and, if one first ignores
the influence of the d512 state, one finds a; = 0 .5 aå, which cor -
responds to a magnetic moment ,u = 1 .20. However, the pre-
sence of the d5/2 state will tend to increase the moment some -
what (leads to large negative values of y) . Similarly, the expecte d
small negative value of J3/2 increases ag and thereby also the
moment .

The remaining nuclei, listed in Table X, cannot be studie d
in as much detail as the above cases due to lack of knowledg e
of configuration assignments .

ii . (1/2 -) nuclei .

A striking feature of the empirical moments of this type o f
nuclei, as compared with all other types, is the close groupin g
of the values (cf. also Figs . 7 and 8) . Apart from the two lightes t
nuclei, N 16 and C", the moments are closely clustered aroun d
the values ,u = -0 .12 for odd proton nuclei, and i = + 0 .5 6
for odd neutron nuclei .

This characteristic feature is a simple consequence of the
present model and is largely independent of the coupling . The
main interacting states which produce the coupling to the sur -
face are here P3/2 and f5/2 . In perturbation approximation one
obtains, from (IV . 7) and Table V, the resulting shift

5*
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- 0 .22

	

hC0

	

2 2 J 0 .22
(no)+ 1
	 ~iw	

l
2 2

+ 0 .18 k~lw F 4 3 12 I~
x

+I- 0 .18 }

	

4512

1
1

x . (Ad. 5 )

Except for N 15 and C 13 , one expects 43/2
4 5/2

11w , and so
the moment shift practically vanishes .

A similar situation is found when the coupling is strong .
The potential energy matrix is then the same as (1), and b,u take s
the form

Scc

	

{- 0.45 } a3
/2

	

0 .37

	

2

2 + f- 0 .30 } a
5/ 2 .

	

(Ad. 6)

Diagonalizing W' under the assumption 4 3/2 ' 45/2 , one find s
that, irrespective of A, the ground state has 42 - 0 .67 42 , so
that åu practically vanishes .

The absence of a near-lying f5/2 state in C 13 and N 15 implie s
a small moment shift outwards from the main group, as is ob -
served . For these nuclei, the large separation of the p 1 i 2 level
from the combining p3/2 level implies a rather weak coupling an d
from (5) one obtains shifts of the order of 0 .1 magneton, assum-
ing 4312 - 5 MeV and hydrodynamical surface parameters . A
similar effect would be obtained in strong coupling (cf. Table VII) .

Although the surface coupling thus accounts for the relative
values of the observed moments, the position of the main group
of empirical values does not quite coincide with the single-
particle moment, which might be expected from the above cal-
culations . There thus exists a small residual moment shift, com-
mon to all these nuclei, and it is tempting to consider the pos -

TABLE XI . Moments of (1/2 -) nuclei .

odd proton (p m, = -0.26)

	

odd neutron ( ,u se = + 0.64 )

nucleus l~ nucleus l.I.

7
X15 -0.28 8 C13 0 .7 0

39 Y" -0.14 34se
77 0 .53 * *

45 Rh103 -0.10 * 70 yb171 0 . 5

47 A g 107 -0.11 7e
Ptl0s 0 .6 1

47 Ag1ae -0.13 aO
Hglua 0 .5 0

ea
Pbz07 0 .59

* KUHN and WOODGATE (1951) .
** DHARMATTI and WEAVER (1952a) .

å,u
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sibility that we may here be observing an interaction effect of
the type mentioned on p . 51 . This interpretation would requir e
that the individual nucleons embedded in nuclear matter suffe r
a reduction in the magnitude of their intrinsic magnetic moments
of Bu s - 0.3 nuclear magnetons .

iii . (3/2 -) nuclei .

TABLE XII . Moments of (3/2-) nuclei .

odd proton (µSI, = 3 .79)

	

odd neutron (µ si,) = -1 .9 1

µ

	

I

	

Q

,13 11 2 .69 + 0 .06 (M) * ,Be' --1 . .1 8
,,Cu" 2 .23 -0.13 (C) 24 Cr53 -0.47 §§ §
,,Cu" 2 .38 -0.12 (C) 2 8 Ni 81 <(t)0 .2 §

31 Ga39 2 .02 + 0 .24 (A) 780 089
+ 0. 7§§ + 2 (A) § §

a 1 Ga71 2 .56 +0 .15 (A) 3cljg 201 -0.56 +0 .5 (A )

33 As75 1 .44 +0 .3

	

(A) t

35 BC79 2 .11 + 0 .34 (A) fi t
35 Br81 2 .27 + 0 .28 ( A) t t
,,Rb 87 2 .75

nucleus nucleu s

§ §
§§ §

* DEHMELT (1952) .
t MURAKAWA and SUWA. (1952) .

tt KING and JACCARINO (1953) .

KESSLER (1950) .
MURAKAWA and SuwA (1952 a) .
ALDER and HALBACH (1953) (adde d

in proof) .

In the first p3/2 shell, the moments seem to give some indication
of deviations from (jj) coupling (cf . also INGLIS, 1952 and Ku-
RATH, 1952 a) . The description of B 11 as a single p 3/2 hole, coupled
to the surface, does imply a rather large moment shift, but in
order to account for the observed moment, a coupling strengt h
of x - 3 is required (cf. Fig . 5 and (IV.5)). This value of x i s
several times larger than the hydrodynamical estimate, which
may reflect a partial breaking up of the p3l2 shells . For Be 9,
with a ((p312)-2 ; (p312)-I) configuration, the observed moment
is close to that expected in the absence of surface couplin g
(µp = -1 .15 ; cf. Table III) . However, a perturbation estimate
as well as the strong coupling treatment (cf . Ap . IILU) indicate
that the surface coupling should produce a reduction in th e
magnitude of the moment by a few tenths of a magneton (cf.
Table VII) .
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In the higher p3 ,2 shells, a strong interaction is expecte d

between the neighbouring P3/2 and f6i2 Ievels . While a pur e

j = 3/2 state has the anomalous strong coupling behaviour ,

considered in Ap . III .ii, the p3/2 - 15/2
interaction may lead t o

a stabilization of the surface shape and the usual strong coupling

scheme. For a single p3/2 f512
particle, the S2 = 3/2 state with

W, _ 0 0 )+ kß cos ?0 4N2

-

	

1 (7 6)
(Ad. 7)

4 n- 35 6 - 2

is expected to represent the ground state if 4 5/2 > O . For small

values of d 5/2 , one finds for this state a3/2 2a6f2 . A similar

situation is found for a p312 - f5/2
hole if 4 6/2 < O . The magneti c

moment for this state is

	

Thus, a rather full y
~`

	

2 .1 5

-0 .5 5
developed strong coupling may account for the moments o f

Cr 53 Cu", 85 and Rb B7 , whose odd configurations are those o f

a single particle or hole .

A contribution to the moment may also arise from a small

admixture of f71 2 , due to interference with the f5/2 state. This

effect may shift the moment by about 0 .1 magneton, inwards
for a single-particle configuration (Cu and Cr) and outwards for

a hole (Rb), and may thus be partly responsible for the relatively

large moment of Rb 87 . The largeness of this moment may als o
in part reflect the closed neutron structure which is expected t o

give rise to a lower deformability and thus to a less develope d
strong coupling situation .

For the other nuclei in this group, which are essentiall y

many-particle configurations, the analysis is more complex .

However, it is expected that, during the simultaneous filling o f

the P3/2 and f5/2 levels, 12 = 3/2 ground states will occur in whic h

the last odd particle is predominantly of f5J2 character. The

large moment shift of As 75 may indicate such a configuration .

It is of interest that the corresponding odd-neutron nucleus ,

seems also to have an especially large moment shift .
The (3/2 -) group of nuclei provides interesting evidence o n

the correlation between quadrupole moments and magneti c

moment shifts . This relationship can especially be studied for
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isotopic . pairs for which the spectroscopic data are most un -
ambiguously compared. It has been suggested that there is, i n

such cases, an approximate proportionality between å and Q
(KOPFERMANN, 1951) . The examples of this rule among the (3/2-)
nuclei are listed in Table XIII . The existence of an approximat e

relationship of this type can be understood from the fact that th e
major part of Su is attributed to the approach of the moment

to the strong coupling value tic and that also Q is relatively in-

sensitive to the coupling strength x . `While the deformation in -

TABLE XIII . Correlations between magnetic moment s

and quadrupole moments for (3/2 -) nuclei .

Element
S tu'A/

ÔN-A + 2

QA/
QA+ 2

* KROGER and MEYER-BERKHGL5T (1952) .
** DEHMELT and KRÜGER (1951) .

creases, the projection factor decreases with x (cf . Fig. 10) and

the two effects tend to compensate each other in the relevan t

coupling region . Thus, for two isotopes, the ratios of the S,u's an d

the Q's are usually both of order unity and differ from thi s

value in the same direction . From this interpretation it is ex-

pected, however, that this particular correlation is not of a

general character, and, in fact, counterexamples are anticipated

(cf. K, p . 75) .
Further evidence for a correlation between by and Q may b e

seen in the general tendency, among the (3/2-) nuclei in th e
region 29 Ç Z 37, for large quadrupole moments to accompan y
large magnetic moment shifts (cf. MIYAZAwA, 1951 a) . Moreover,

certain trends in the moments can be understood in terms o f

the expected deformability of the configurations in question .
Thus, the two largest magnetic moments are those of Rb 87 and
Ga 71 , both with closed neutron shells .

1 .1 1

1 .4 4

1 .10

1 .08 *

1 .5 9

1 .20 **
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iv. (3/2 +) nuclei.

TABLE XIV . Moments of (3/2 +) nuclei .

odd proton (y.9p = 0 .12)

	

odd neutron (y 9p = 1 .15 )

nucleus it

	

Q nucleus I

	

u

	

Q

lIClas 0 .82 -0.084 (A) 16Saa 0 .64 -0.08 (M)
17C1a7 0 .68 -0.066 (A) 18S

as + 0.06 (M)
19 K" 0 .39 seXein 0 .68 t -0.12 (A) t

le
bel 0 .22 Sallal" 0 .8 3

77
1r1ø1 0 .16 * +1 (A) * 68Bal,7 0 .94

77l0
ea 0 .17 * +1 (A )

"Ai
ne? 0 .14 ** +0.5 (A) ** *

.. ... .. ... ... .. ... ... .. .... .. ... ...
Ilha" 2 .22 10Ne

'l <0

* MURAKAWA and SUWA (1952 a) . *** SIEMENS (1951).
** KELLY (1952).

	

t BOHR, KOCH and RASMUSSEN (1952) .

The coupling of a pure d3/2 state to the nuclear surface ha s
only little effect on the magnetic moment, due to the rather smal l
value of (g1 - gR ) . In intermediate coupling, the moment shif t
can be obtained from Fig. 5 and (IV .5), and in strong coupling,
the approximate treatment in Ap.III .ii indicates a limiting
moment shift inwards of only a few tenths of a magneton (cf .
Figs. 7 and 8) .

While a pure j = 3/2 state leads to the anomalous stron g
coupling scheme with no definite equilibrium shape y (cf . Ap .
III .ii), the interaction of neighbouring orbitals or the presence
of an even non-closed structure may lead to a stabilization o f
the nuclear shape at the positions y = 0 or r .

If the shape is such that the ground state has Q = 3/2 (y =
for (d3/2) +1 , or y = 0 for (d3f2 ) -1), the W' matrix is the same
as (7), where 4 5f2 is now negative and represents the spin-orbi t
splitting . In Fig. 12 is plotted the magnetic moment as a functio n
of z = a5/2/ a312 , and one sees the characteristic asymmetry
resulting from the interference between the spin-orbit partners .
With increasing deformation, the moment moves rapidly awa y
from 1usp for a single-particle configuration (y = n ; z < 0) and
the opposite way for a hole in the d3/2 shell (y = 0 ; z > 0) .

For the opposite shape (y = 0 for (d3/ 2) +1 , or y = r for

Nr. 1 6
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neutron +-Ijup

Fig . 12 . Magnetic moments arising from decoupling of spin and orbit in d-state s

(a )

with I = 2 = 3/2 . In states of (3/2 ,+) character, the surface deformation lead s
to a particle state which is a combination of d312 and ds/2 . The figure shows the
nuclear magnetic moment for the I = K =D = 3/2 state as a function of th e
ratio of the d 5 / 2 and d312 amplitudes . Fig . 12a gives the moment in the region o f
predominantly dale state and the values asp correspond to an uncoupled d 31 2
nucleon . Fig . 12b gives the moment for a predominantly d 5 / 2 state with D = 3/2 ,
such as may occur for (d512)5 configurations . The value of te t) corresponds to an

uncoupled (d512)5312 configuration .

(d3î 2) -1), one obtains K = S~ = 1/2, but the ground state stil l
has I = 3/2 (cf. II .24) . Also the sign of the quadrupole momen t
is the usual one (Q < 0 for (d3/2 ) +1 and Q > 0 for (d3J2 ) -1) ,
since the reversed sign for Q 0 is compensated by a change o f
sign of the projection factor (V.6). The W' matrix is the same
as (1) and the magnetic moment exhibits the same differenc e
between particles and holes as for the D = 3/2 state, but th e
effect is somewhat smaller in magnitude .

The expected trends are found in the empirical magneti c
moments which, for the (d3î2 ) +1 configurations (S 33 , Cl", r ,

and Nem) are appreciably shifted inwards with respect to th e
moments of the (d3/2 )-1 configurations (K 39 , 41, Ba135, 137, I ris1, 1s 3

and Au 134 ) .

In the first d3J2 shell, where the level orders are best known ,
one finds that the coupling to the d3f2 and s1/2 states favours
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the shape y = for the isotopes of S and Cl as well as of K .
The presence of two f7~ 2 neutrons in K4' further stabilizes thi s

shape. For S33 and C135, 37 , the moment values ,ue , listed in Table

VII, are obtained from Fig . 12, using 4 5/2 - 5 MeV, and the

observed moments are consistent with a deformation of about

ß = 0.2 . For K39, 41 , the pc values in Table VII refer to the stat e
(y = r, .Q = 1/2, I = 3/2) and include the influence of the s i/2

admixture (d 1J2 - - 5 MeV) .
The influence of a small interaction effect on the nucleo n

moment, of similar magnitude as that discussed for the (1/2-)

nuclei (cf. p. 69), may be indicated by the moment of K39 ,
which is larger by about a tenth of a magneton than the estim-

ated values .

The interpretation of the K39 - K 41 moment differences, a s
arising from interference with the d5/2 level, receives some further
support from the measured hyperfine structure anomaly (OcHS ,

LOGAN and Kuser, 1950), which gives information on the distri-

bution of the magnetic moment over the nuclear volume (BOH R

and WEISSKOPF, 1950 ; A. Bolin, 1951a ; iEISINGER, BEDERSO N

and FELD, 1952) .

The quadrupole moment ratios in the (3/2 +) group provide
further interesting information on the coupling scheme . Thus ,

the decrease of Q from C1 35 to C1 37 is, as expected, due to th e
extra deformation caused by the unfilled neutron shell in C1 3 5

which is also indicated by the observed magnetic moments of
these nuclei . The opposite trend would have resulted if th e
particle forces dominated over the surface coupling, in which

case the particle structure in C135 would have had a quadrupol e
moment and an effective coupling constant 11/15 times that o f

C1 37 (cf. II .31 and Table III) . `

The quadrupole moments of the odd-neutron S isotopes ar e

of the same order of magnitude as those of the neighbouring
Cl isotopes, thus confirming the collective nature of these moments .
The change of sign of Q from S 33 to S 35 is as expected, and th e
reduction in magnitude can also be understood in ternis of the
smaller deformability of a shell of 20 than a shell of 16 . A determ-

* This conclusion is opposite to that drawn by FLOWERS (1952c) . However ,
in this case, as well as in others in Table II of this reference, it appears necessar y
to allow for the difference between adding neutrons at the beginning and en d
of a shell .
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ination of the magnetic moment of S 35 would be of interest, since
its configuration (d3J2)-1 , implies that it should be about a thir d

of a magneton larger than the moment of S33

As already mentioned, the absolute values of the quadrupole

moments of the Cl and S isotopes are considerably smaller tha n
the hydrodynamical estimates (cf. Table IX and the discussio n
on p . 59) . In this connection, it is of interest that the interpreta-
tion of the magnetic moments of these nuclei provide independ-

ent evidence for appreciable deformations, of the order of thos e
estimated in the hydrodynamical approximation .

Evidence on the quadrupole moments of the K isotopes

would be of interest . They are expected to be positive and Q

(K 41) should be larger than Q (K39) because of the deformin g
influence of the f7J2 neutrons . The larger deformation is also

indicated by the magnetic moments which, for these nuclei ,

decrease with increasing deformation . Such a correlation between

Q and å,u is opposite to that usually observed (cf. p. 71) .

The two last nuclei in Table XIV, Na 23 and Ne 21 , occur during

the filling of the ds/2 shell and have been classified by the shel l

model as (d512)3312, The spin I = j - 1 indicates that the surface

coupling dominates over the particle forces (cf . § III .iii) . The

strong coupling state is then described by Sl = 3/2 and has a

limiting magnetic moment of ,a 5 =

		

2
.00 l for a pure con -

--0 .42 JJ

figuration . Small admixtures of the d312 state will produce shifts

from this value, depending on the nuclear shape . For y = 0,

the moments increase in magnitude, while they decrease fo r

y = r. From considerations of the level filling in this region ,

Na" is expected to prefer the y = 0 shape (positive Q)*, i n

accordance with the indication from the observed ,u-value (cf .

Table VII) .

v. (5/2 +) nuclei .

The magnetic moments of the nuclei in the first d5J2 shel l

may, as already mentioned (cf. Table VI), be interpreted in

terms of the coupling of a d5J2 state to the nuclear surface. In

* Note added in proof : Recently, P . SAGALYN, working with F . BITTER ,
has found evidence for a positive quadrupole . moment of Na" . (Private com-
munication from Professor BITTER) .
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TABLE XV. Moments of (5/2 +) nuclei .

odd proton (tin, = 4 .79)

	

odd neutron (fe 5r = -1 .91 )

nucleus P

	

~

	

Q nucleus

	

E4 Q

13A12 7
5751,12 1

53
112 7

55 CS13 1

59P
r14 1

83 En15 1

83 Eu15 3

75Re18 5

75
Re187

3 .6 4

3 .3 6

2 .8 1

3 .48 *

3 .9 * *

3 . 6

1 . 6

3 .1 7

3 .20

+ 0 .16 (A)

- 1 .0 (A)** *

- 0 .6 (A)

+ 1 .2 (A)

+ 2 .6 (A)

+2.9 (A)

+ 2.7 (A)

8
p1 7

12 M
g 2 5

,,Zr"

48 M09 5

42M° 9 7

40 Pd1U 5

48Cd111
t

-1.8 9

- 0.8 6

-1.1 ti
-0.9 1

-0.9 3

-0.6 §

-0.7 t

-0.005 (M )

* BELLAMY and SMITH (1953) .

	

t Refers to excited state (E = 247 keV) ;
** LEw (1953) ; BRIx (1953) .

	

AEPPLI et al . (1952) .
*** DEHMELT and KRUGER (1951 a) . tt SUWA (1952) .

§ STEUDEL (1952) .

3 .75 lstrong coupling, one obtains

	

=
-1

.041which accounts ap -

approximately for the moments of Mg 25 and A1 27 .
For 0 17 , the magnetic moment and quadrupole moment ar e

very little affected by the surface coupling, as is expected due to
the high stability of the closed-shell core . The Q-value is compar-
able with the recoil moment (cf . § IV a ; see also GESCHWIND et
al ., 1952), which is about - 0 .0013. Another measure of th e
quadrupole moment induced in the core by the odd neutro n
would be provided by the lifetime of the (1/2+) excited stat e
of 017 at 0 .8 MeV (cf., e . g ., AJZENBERG and LAURITSEN, 1952) .
The decay is of E2 character and, for a pure shell model state,
will be determined by the small recoil quadrupole moment .
This would lead to a lifetime of r - 10 -7 sec., which is longer
than for a corresponding single-proton transition by a factor o f
10 3 (cf . VII .7) . However, the lifetime is very sensitive to im -
purities in the state .

In the region just beyond nucleon number 50, the d512 and

g7/2 levels are near-lying, and nuclei of (5/2 +) character are
expected to contain components of both orbitals . The ratio o f
the two orbitals in a state with S2 = 5/2 depends rather sensi-
tively on the spacing 4 7/2 of the g712 level with respect to the
d5 ~2 level .
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The spin of Sb 121 indicates a positive 4 7/2 for this single -
proton nucleus . A calculation of the type carried out in the pre -
ceding pages then shows that the content of g7/2 is quite small
(a7/2 - 0.1), corresponding to the rather small deviation of ,ic (Sb121)

from u~ . While again the moment of Mo 95 with 3 valence neutron s
is consistent with a rather pure d5i2, Q = 5/2 state, the small
moment of I127 could be interpreted in terms of a negative 47/2 .
Already for small negative 47/2(,., -0.5 MeV), additional moment
shifts of the order of a magneton may be obtained .

The remaining (5/2 +) nuclei have more complex configur-
ations . An exceptionally large shift is observed for Eu153 . I t
seems possible to account for such large moment shifts in term s
of a state with Sl = 5/2, but predominantly of g7J2, character .
A test of the strong coupling interpretation of this momen t
would be provided by a measurement of the Ml transition pro-
bability from the expected (7/2 +) rotational state (cf. VI c .ii i
and VII .20). An analogous situation is found for Yb1 7 3 (cf.
Table XVI) .

Further information on the coupling scheme in Eu comes
from the anomalously large isotope shift which has been inter-

preted in terms of the large change in the quadrupole moments
of the two isotopes (BRIx and KOPFERMANN, 1949, 1952) . Such
an effect contributes to the isotope shift an amount 6E given by *

đE o

	

4A I
1-0.09( hc

2)

	

(Ad . 8 )
o

	

J

in units of the normal isotope shift 6Eo , corresponding to an in-
crease in the nuclear radius by the amount A R/R = 1/3 4 A/A.
The change in ß 2 is related to that of the intrinsic quadrupol e
moment (cf. V.7) and, for the contribution to the isotope shift
between Eu153 and Eu 151 one obtain s

SE = 0.056 4 Qa 6E0 ,

	

(Ad. 9)

where Qo is measured in units of 10-24 cm 2 . Deriving Q D from
the measured Q by assuming the strong coupling projection facto r
(V.9), one obtains 6E = 2 .4 6Eo, while the omission of the

* This expression is equivalent to formula (4) of Baix and KoPFERMAN N
(1949), except for the small relativistic correction which has been calculated by
Mr. JENS BANG, to whom we are indebted for informing us of his results .
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projection factor gives bE = 0 .3 ME 0 . The measured isotop e

shift of about 2 .2 6Eo (BRIX and KOPFERMANN, 1952) gives sup-

port to the assumption of a rather fully developed strong coupling

in these nuclei .

vi . (5/2-) nuclei .

TABLE XVI. Moments of (5/2-) nuclei .

odd proton (N ip = 0 .86)

	

odd neutron (µ5P = 1 .37 )

nucleus

	

µ nucleus µ

	

Q

s7 Rbs
s

. . .. . .. . . ..
Ø5 Mn55

1 .3 5

... . .. ... ... .. .. ... ... ... ... .. ... ... ... .. ... ..
3.47

0 .88 *

-0.65
	 :	

+4 .0 (A)
so Zne 7

70ybi7 s

.... .. . . ... ... .. ... ... ... ... .. ..

* DHARMATTI and WEAVER (1952) .

In the first 15/2 shell, the main influence of the surface on
the magnetic moment is expected from the interference of the

f7/2 state . The Rb and Zn isotopes, containing a single f5,2 hole ,
should resemble K rather than Cl (cf. p . 73) . Thus, the inward
moment shift of 0 .4 - 0 .5 magnetons is somewhat difficult to
explain . It may be partly due to the influence of the near-lyin g

P3/2 level which, for weak or intermediate couplings, would caus e
inward moment shifts . Partly it may reveal an interaction effect
on the intrinsic nucleon moment, possibly of somewhat large r
magnitude than that considered for p I/2 and d3 1 2 nuclei .

Some further information on' the structure of the R b86 moment
may be obtained from the observed hyperfine structure anomal y
in the Rb isotopes (BITTER, 1949 ; OCHS and KuscH, 1952) .
Previous estimates of the effect (BOHR and WEISSKOPF, 1950 ;
A . BOHR, 1951a) are somewhat improved by including an inter -
action contribution to the nucleon moment (cf . EISINGER, BEDER -
SON and FELD, 1952) .

The nucleus Mn" occurs during the filling of the f7/2 shell
and has been classified by the shell model as (f7/2)_35/2, which
would correspond to a magnetic moment of u p = 4.13 neglecting
the neutron-proton forces. The spin anomaly suggests a rathe r
fully developed strong coupling (cf. § III .iii), for which the mag-
netic moment is uc = 3.27 .
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vii . (7/2-) nuclei .

TABLE XVII . Moments of (7/2-) nuclei .

odd proton (µSP = 5 .79)

	

odd neutron (µSP=-1 .91 )

nucleus P nucleus µ Q

2oCa43 -1.32 §
21 Sc45 4.76 22Tt49

** -1.10 * *

23
V51 5 .15 6o

Nd143 -1. 0
27 Co57 4 .6

	

* 60
Nd145 -0. 6

27 Co59 4 .65 62
Sm147 (f) 0 .7 t

62Sm
149 (f) 0 .6 t

6
B Er167

( f ) 10 ( C ) tt
* BAKER et al . (1953).

	

t ELLIoT and STEVENS (1952).
** JEFFEIES et aI . (1952) ; the mass

	

tt BOGLE et al. (1952).
assignment as well as the spin of the

	

§ JEFFRIES (1953) . (Added in proof) .
detected Ti isotope are in doubt .

The moments of the nuclei in the first f7/2 shell may all b e
accounted for in terms of the coupling of an f7 /2 state to the sur -
face. The moments of Sc 46, Co" , 59 , and Ti" are all close to the

strong coupling limit

	

=

	

4 .86
~e

	

-- 1 .14
1

'
while the larger momen t

of Ca43 and V 51 may indicate a somewhat weaker coupling ,

associated with the closed shells in the even structures . This
smaller coupling may also be indicated by the fact that th e
ground state spin equals j rather than j - 1 for these (j) 3 con-
figurations (cf. § III .iii) .

viii. (7/2 +) nuclei .
Due to the simultaneous filling of the d512, g7i2,, and hu/2

shells, most of the nuclei in this group possess complex con -
figurations . One may attempt, however, a more detailed discus-
sion of Sb123 with its single-proton configuration . In strong coupl-
ing, the main influence of the surface on the magnetic momen t
is expected from the , small admixture of g9/2 to the predominantly

g7/2 state. For a pure g7/5 state, the strong coupling moment i s
very close to ,usp (cf. Fig. 7) . Since Sb r23 with a single particle
is analogous to Cl rather than to K (cf. p. 73), the interferenc e
of the spin orbit partner will increase the moment . The effect
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TABLE XVIII . Moments of (7/2 +) nuclei .

odd proton (pm,- 1 .72)

	

odd neutron (,usp = 1 .49 )

nucleus Q nucleus Q

51
Sb123 2.55 -1.2

	

(A) ,4 Sea9 +1 .2 (M) t

53
1129 2.62 -0.44 (A)

ssCs133 2 .58 <0 .3

	

(A)

ssCs135 2 .7 3

ssC513, 2.8 4

s , La
ls9 2.7 8

71Ltt 17s 2.9 +6.5

	

(A)

a sT a1s1 2 .1

	

* +6.5

	

(A) *

* BROWN and TOMBOULIAN (1952) . HARDY et al . (1952) .t

depends on the relative magnitude of kß and d 912 , and assuming
values of ß 0.2 and 492 -2 MeV, one obtains = 2 .3 .

The nuclei having neutron configurations in the neighbourhoo d
of the closed shell at 82 are expected to have relatively srnal l
deformability and there is evidence for a small quadrupol e
moment of the stable Cs isotope, Cs133 . For these nuclei, the sur -
face should play a lesser role in causing magnetic moment shifts .
However, the complex configurations in question make it diffi-
cult to decide whether the observed moment shifts can be ex-

plained by the particle structure itself or whether some additiona l
effects are operating .

In Se79, one expects a predominantly (g912)5 neutron con-
figuration. Such a half filled shell will in itself generate no qua-
drupole moment, although it may produce a large nuclear de -
formation (cf . § II c .ii and § III .iH). The observed positive sig n
of Q may be the result of the proton structure which is expecte d
to favour a prolate shape .

ix. (9/2 +) nuclei.

The major part of the magnetic moment shifts for these nucle i
may be accounted for in terms of the coupling between a g9/2

state and the surface, which leads to the strong coupling momen t

=

	

5 .93

	

- 1 .20

	

In some cases, such as In, additional effects

must be present, possibly in part due to interaction contribution s
to the nucleon moment .
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TABLE XIX . Moments of (9/2 H-) nuclei .

odd proton (u s „ = 6 .79)

	

odd neutron (µ si, = -1 .91 )

nucleus nucleusl-1

	

Q Q

-0.9 7
-1 . 1

4i Nb 9 3

43Te5 9

49 In 11 3

49 In 116

6 .1 7

5 .68 *
5 .4 9
5 .50

+1 .18 (A)
+ 1 .20 (A)

32G e7 3

,,Kr"

assl
.s7

-0.2 (M)

+0.16 (A )

* WALCar.z et al . (1952) .

x. (9/2-) nuclei .

TABLE XX . Moments of (9/2-) nuclei .

odd proton (t = 2 .62 )

nucleus

	

I

	

Ft Q

s3 E3i209 4 .08 -0 .4 (A)

The closed-shell structure of the Pb 208 core implies a very

small deformability, as is confirmed by the observed quadru-
pole moment of Bi 2os which is of the order of the single-particle
value (cf. Table IX) . However, in contrast to the case of 0 17 , the

magnetic moment of Bi 20 ° is very strongly shifted from the single -
particle value . This moment shift is even larger than would
have been expected for a normally deforrnable nucleus (cf . the

case of Sb 123 p . 79). Since the observed quadrupole moment sup -
ports the expected negligible effect of the surface on the couplin g

scheme of this nucleus, it is probable that the magnetic moment

reveals some as yet unexplained aspect of the particle structure .
If the shift is interpreted as an interaction effect, the intrinsi c
proton moment is reduced to one magneton, a reduction man y
times larger than that indicated by the magnetic moments o f
other nuclei (cf. p. 52) .

xi . Odd-odd nuclei .

For the self-mirrored nuclei (N = Z), the symmetry betwee n
neutrons and protons implies that the total g-factor will almos t

always be close to 0 .5 and be insensitive to the detailed couplin g
Dan . Hiat. Fys. Medd . 27, no .16.

	

6
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TABLE XXI. Moments of odd-odd nuclei .

Nucleus
Configurations

I Fi Q
protons neutron s

6B1D (Pa/2) -1 (Ps /2) -1 3 1 .80 + 0 .13 (M) § §

7 N 14 P1/2 P1/2 1 0 .40 + 0 .02 (M )

11 Naz2 (d s/2)2 (d 61a) 2 3 1 .7 5

11Naz4 ( d 6/2) 2 (d s/2) -1 4 1 .69 *

17 C198 d s/2 (d 3/2) -1 2 -0.018 (M,A)

19
K4° (d 3/2)-1 1 7/2 4 -1.30 * *

19
K42

( d 3/2) (/7/2) 2 2 -1 .14 *

2 3
v6o (17/2) 2 (17/2) -1 6 § 3 .35 ** *

27 G0S8 (17/2) -1 (P3/27 16/2) 3 2 3 .5

	

t

,,Co" (
p
1 7/2) -1 (P3/27 15/2) 5s/2) 6 5 3 .3

	

t t t
37 Rb88 (P3/2 . /s/2) -1 (g9/2) -i 2 -1 .69 *

6b
Csis4 4 2 .96 * tf t

71Lu17B > 7 4.2 +8 (A)

* BELLAMY and SMITH (1953) .

	

tt GORTER at al . (1952)
. **EISINGER et al . (1952) .

	

ttt JACCARINO et al . (1952) .
*** WALCHLI et al . (1952 a) .

	

§ KIKUTCHI et al . (1952) .
t DANIELS et al . (1952) .

	

§§ DEHMELT (1952) .

scheme (cf. TALMI, 1951) . For nuclei of this type, it is indeed

found that ,u c and ,ttp are nearly the same and agree closel y

with the observed moments .

For B 10 , the It, value listed in Table VII refers to a stat e

with ,Qprot = meut = 3/2 (I = K = . = 3) and pure p3f2
configurations . In the case of N 14 , the listed ,ue values refer to

the state .prot = `meut = 1/2 (I = K = . = 1), and take into

account the p 3/2 admixture .
For Na22 , the strong surface coupling leads to a state wit h

,Qprot = meut = 3/2 (I = K = . = 3) . For pure d5/2 orbitals ,

one obtains lue = 1 .67 . For the expected nuclear shape (y = 0) ,

the interference of the d3/2 state tends slightly to increase ,u, but ,

due to the neutron-proton symmetry, the effect is small, amountin g

to only 0 .1 magneton for a deformation of ß - 0 .3 (cf. Table VII) .

The corresponding interference effect is much larger in Na"
( .Qprot = 3/2, meut = 5/2), since it does not affect the neutro n

state . Neglecting the d3/2 admixture, the strong coupling momen t

is ,ue 1 .13, but the observed moment can be accounted for by

a deformation of the same magnitude as considered for Na"
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(cf. Table VII) . The shell model magnetic moment of Na "
depends upon the nuclear forces and is not made unique by the
assumption of charge symmetry .

For K4° (prot = 1/2, .Qneut = 7/2), the strong couplin g
magnetic moment for a pure configuration is ,u, = - 1 .14, whil e
the interference of the d3/2 orbital and the admixture of s 1 /2 in
the proton state decreases the magnitude of the moment (cf .
Table VII) . The shell model gives yp = - 1 .68. The observe d
moment thus indicates an intermediate coupling situation, con-

sistent with the proximity to the doubly closed shell at Ca 4 0
In K42, the extreme strong coupling ( .,prot = - 1/2, .ment =-

5/2) with pure configurations gives ,uc = -- 0.65 . Additiona l
shifts arise from admixtures of t 12 orbital to the neutron state ,
and d5 î 2 and .s 112 orbitals to the proton state . The y e values in
Table VII are based on A (f5J2 ) 5 MeV, A (d5J2 ) - - 5 MeV, an d
A (s1/2 ) - - 5 MeV .

For V 50 , the coupling scheme arising from particle forces ha s
been discussed and for forces of zero range a ground state o f
I = 6 has been obtained (Hrrcxcocrc, 1952) with yp = 3 .21 How-
ever, forces of the expected range appear to favour I = 5 . The
effect of the surface coupling is somewhat complicated, since in
strong coupling the neutrons and protons favour different surface
shapes, with the result that neither y = 0 nor a are stable po-
sitions .

The two Co isotopes can be accounted for by the stron g
coupling states (y = 0, and D prot = 7/2 ; L)neut = ± 3/2), the
upper sign referring to Co", the lower to Co 58 . However, the
great difference in the observed g-factors indicates a differenc e
in the nature of the _2I = 3/2 neutron states . Thus, for Co 58 ,
the observed moment indicates a predominantly f5J 2 neutron
state which leads to a strong coupling moment of p c = 3.61 ,
while, for Co", a predominantly PM neutron state, giving ,u e =
3 .60, is indicated . It is of interest that similar effects in the filling
of the P3/2, f5/2 shells seem to occur in the I = 3/2 odd-A nucle i
in this region (cf . p. 70) .

The Rb86 nucleus can be described in terms of a single proto n
and a single neutron (cf . Table II) . The observed spin of 2 sug -
gests a f5/2 assignment for the proton hole, which leads to th e

*) Private communication from Dr . A . HITCHCOCK .
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strong coupling moment ,u, = - 1 .56. The shell model valu e
for this configuration is ,u p = - 2 .13 .

Additional evidence on the nuclear states in question may
be obtained from the observed quadrupole moments .

For the case of B 10, although the absolute magnitude of Q
is probably rather uncertain, the observed ratio Q (B 10)/Q (B 11) _
2 .08 (DEHMELT, 1952) is significant . According to the (jj) coupling
shell model, this ratio should be unity, whereas the surfac e
coupling gives a ratio of about two .

The evidence for a moderate quadrupole moment for N1 4

indicates appreciable impurities in the listed configuration (cf.
also the ß-decay of C14) .

The Cl" nucleus has the symmetry associated with the fact
that the neutron structure is obtained from the proton structur e
by replacing particles with-holes (cf. § II c .ii) . Neglecting inter -
configuration effects, the quadrupole moment therefore vanishes ,
as also for the shell model state . The influence . of the coupling
to the d5J2 and s112 states favours the shape y = e, and give s
rise to a small negative Q value .



VI. Nuclear Level Structure .

a) General Features of Levels in the Coupled System .

The nuclear level spectrum, resulting from the interplay of

particle and collective motion, depends essentially on the strength

of the coupling. For weak coupling, there is associated with eac h

particle level a spectrum of excited states with a spacing corre-

sponding to the phonon energy (cf. Fig. 2 for the hydrodynami c

estimate of !co, which yields about 2 MeV for the quadrupol e

oscillations of a medium heavy nucleus) . With increasing coupling ,

the two level structures become essentially interwoven . For inter -

mediate coupling strength, a rather complicated spectrum ma y

result but, in the limit of strong coupling, the low energy nuclear

spectrum acquires a relative simplicity which bears some analogy

to molecular spectra .
The strongly coupled nucleus thus exhibits two different type s

of excitation : The first corresponds to a change of state of th e

particle motion relative to the deformed surface and is in genera l

associated with a readjustment of the surface . Such particl e

excitations are analogous to electronic transitions in molecules .
The second type of excitation is a collective excitation correspond -

ing to vibration or rotation of the coupled particle-surface system ,
and is the analogue of vibrational and rotational molecula r

transitions . While the energies of particle excitations depend o n

the configuration energies in the deformed nucleus, the vibrationa l

quanta are of the order of the phonon energy . The rotationa l
energies decrease strongly with increasing nuclear deformation

and may become much smaller than the phonon energy .
The collective and particle excitations possess very distinc t

properties . Thus, it is characteristic of the collective excitation s

that levels of the same family have the saine parity and small

spin changes between neighbouring states (AI

	

1 or 2) . In
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contrast, particle excitations may involve change of parity a s

well as large spin changes . Further, the character of a give n

excitation reveals itself in the transition probability . While the

particle transitions are in general slowed down by the difference s

in the surface shape of the combining states, the large electric

quadrupole of the oscillating surface may greatly enhance th e

radiative probability for collective transitions .
With increasing excitation energy, the spacing of both particl e

and collective states rapidly decreases, and even a small per-
turbation in the ordered motion is sufficient to destroy any simpl e

coupling scheme . In such a situation, the only remaining constant s

of the motion are the parity and total angular momentum . Still ,

provided the interactions are not so strong that they prevent th e

system from completing even a few periods of the simple particl e
or surface motion between energy exchanges, some of the gros s

features of the unperturbed level spectrum are preserved .
In the region of high excitation, additional types of collectiv e

motion, such as surface oscillations of higher order and com-
pressive oscillations, may play an important role . Further, the

number of excitable particle degrees of freedom increases . Fin -
ally, for the very high energies, at which an appreciable fractio n

of the nucleons is simultaneously excited, the distinction betwee n
particle and collective degrees of freedom ceases to have a
simple significance .

b) Particle Excitations.

For each particle configuration there exists a lowest level i n

the coupled system which, as discussed in Chapter III, usuall y
has the same spin and parity as the pure particle state . If the

nucleus possesses several neighbouring configurations, there will
thus be corresponding states in the low energy spectrum which ,

as regards spin and parity, may be classified by means of th e
shell model .

Striking evidence for such particle excitations is afforded b y
the occurrence of low-lying states with a spin very different fro m

that of the ground state and often with different parity . Thes e
states give rise to the long lived isomers, whose interpretation ha s
provided such an important support for the shell model (GoLD-
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HABER and SUNYAR, 1951 ; MOSZKOwsKI, 1951) . The transitio n
probabilities of these states, however, are found to be smalle r
than shell model estimates by a considerable factor, indicatin g

that the excitations cannot be described in terms of particle s
rnoving in a fixed potential, but involve the surface readjustments
characteristic of the particle transitions in the strongly couple d

system (BOHR and MOTTELSON, 1952 ; cf. also § VIId .i) .

The ß-decays constitute another group of particle transition s
in the classification of which the shell model has been a valuabl e

guide (MAYER, MoszKOWSKI and NORDHEIM, 1951 ; NORDHEIM ,

1951) . Again the observed transition probabilities are in general
reduced as compared with shell model estimates, indicating th e

influence of a rather strong surface coupling (§ VIIIc .ii and iv) .
The particle transitions also exhibit other features which ma y

be attributed to the influence of the surface coupling . Thus ,
selection rules appropriate to the motion of particles in a spherica l

potential are often violated (i- and j-forbiddenness, cf . § VIII c .iii
and § VII c .ii) . The occurrence of such transitions provide s
evidence for configuration admixtures of a similar type as dis -

cussed for the magnetic moments (cf . § IVc) .
The relative position of particle levels may depend on th e

nuclear deformation which can cause level shifts of the order o f
a few MOW* (cf., e . g ., the spin difference of the F-isotopes, p . 67) .

Also the level order of the particle states within a many-particl e
configuration depends in an important way on the surface couplin g
(cf. § III .iii) .

In the strong coupling scheme, particle modes of excitation

which do not involve change of configuration, but only changes
in the

.-2
p quantum numbers, in general require a rather large

energy. In cases where there are special degeneracies, however ,
they may occur among the lowest states . Thus, in strong coupling ,

the ground states of odd-odd nuclei are expected to be clos e
doublets, the members of which have the same parity, but may

differ appreciably in spin (cf. § II c .ii) . There seems to be evi-
dence in spectra of odd-odd nuclei for a rather general occurrenc e

* Such a contribution to the nuclear energy may be interesting in connectio n
with the estimates of the spin-orbit energy and pairing effects obtained from th e
analysis of binding energies (HARVEY, 1951 ; SUESS and JENSEN, 1952). Moreover ,
it may be significant in influencing the trends in the separations of isomeric level s
(HILL, 1950 ; MITCHELL, 1951 ; GOLDHABER and HILL, 1952) .
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of such doublets (cf., e . g ., GOLDHABER and HILL, 1952) . Since
the two members of the doublet have approximately the sam e
shape, the y-transition between them should be somewhat faste r
than most other particle transitions of similar type (cf. § VII d .i) .

While in regions removed from closed shells, the particl e
excitation spectrum is thus essentially modified by the couplin g

to the nuclear deformation, the particle-surface coupling is ex-

pected to be rather ineffective in the immediate vicinity of majo r

closed shells . These regions should offer relatively favourable con-

ditions for studying the particle level order in a spherical nucleu s
and the effects of particle forces (cf ., e .g ., INGLIS, 1952 ; PRYCE ,

1952) .
In the light nuclei, the study of excited states by means o f

nuclear reactions has revealed levels, especially in the neigh-
bourhood of He 4 , C 12, and 0 16 , which correspond approximately

to single-particle excitations in the uncoupled system (cf ., e . g . ,

KOESTER, JACKSON and ADAIR, 1951 ; and also A.)ZENBERG and
LAURITSEN, 1952) . These levels are identified by their reduce d
widths which are comparable to those of single-particle scatterin g

in a fixed potential .

In the region around pb208 pure particle transitions ma y
also be encountered (PRYCE, 1952 ; HARVEY, 1953) . Lifetimes are

here an important guide in interpreting the level scheme (cf.
Chapter VII, and especially pp . 117 and 112, for comments on
the Pb204 and Pb 207 isomeric transitions) .

c) Collective Excitations .

i . Excitation of closed-shell nuclei .

The weak coupling situation expected in the immediat e
vicinity of major closed-shells implies that the collective excitations

are essentially of the simple phonon character .
The closed-shell nuclei themselves are of special interest .

One here expects among the first excited states a (2 +) level,
representing an approximately free surface oscillation of th e

quadrupole type . States of (2 +) character have been observe d
in 60 16 and 82Pb208 (the 3 .8 MeV state in 20 Ca40 is also a pos-

sible example) and are difficult to interpret as particle excita-
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tions (cf . PRYCE, 1952) . Lifetime measurements for these states

would provide crucial evidence regarding the nature of the ex -
citation, since the phonon decay probability is much larger than
that of a particle transition (cf. § VIIb .i) .

The fact that the first excited state of Pb 208 (E = 2.62 MeV ;
I = 2 (+)) is considerably in excess of the phonon energy
(o = 1 .3 MeV), calculated in the hydrodynamic approximation ,
supports the expectation of a very low deformability for suc h

a doubly closed-shell structure (cf . Ap . I) .

The 0 16 nucleus has, as one of the very few exceptions amon g
even-even nuclei, a (0+) first excited state . This state is diffi-
cult to account for as a particle excitation, especially because
of its parity . One is driven to assume a two-particle excitatio n
from P1/2 into d5f 2 or s112 orbits, which cannot, however, account

for the observed rather large transition probability for pai r
emission (cf. AJZENBERG and LAURITSEN, 1952). It is possible
that we here encounter a compressive oscillation of lowest order* .

That such an excitation mode, in this special case, lies lowe r

than the lowest surface excitation is perhaps not surprising,
considering the large ratio of surface to volume energy for suc h

a light nucleus and the fact that its closed-shell structure favour s

excitation modes which do not destroy its spherical symmetry .

ii . Rotational stales in even-even nuclei .

For the strongly deformed nuclei, encountered in region s

away from closed shells, the collective excitations can be charac-
terized as vibrations and rotations** .

Especially characteristic of the strong coupling spectrum ar e
the rotational states which may have energies much smalle r
than the phonon energy . These low-lying states correspond t o

rotations about an axis perpendicular to the nuclear symmetr y

* This interpretation is rather similar to that of the a-particle model whic h
describes the excitation of the (0+) state as due to a radial oscillation of the
whole structure (DENNISON, 1940) .

** Foxe (1953) has calculated excitation energies for a number of configura-
tions, using the strong coupling representation . For the states considered, involv-
ing one or a few particles outside of closed shells, the limiting strong couplin g
situation is not well developed, and the spectra do not exhibit the regularitie s
discussed in the present paragraph . In such cases, it seems necessary to emplo y
methods appropriate to an intermediate coupling situation (cf . the more detaile d
calculations of D . C . ClxounxunY, referred to in footnote on p . 24) .
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axis (cf. Fig. 3) and are labeled by varying I, for fixed value s
of K, n6, and ny . Rotations about the nuclear axis, labele d
by varying K, have energies which, in most cases, remain of the

order of the phonon energy, and these excitations are considere d

together with the vibrational states (§ VI c .iv) .

A special regularity in the collective spectrum occurs for th e

even-even nuclei, which have in their ground state I = K= S? = 0

(cf. § III .ii) . The expected cylindrically symmetric deformation

(y = 0 or rr) leads to rotational states with even I and wit h

K = .Q = O. The odd values of I do not occur, since such states

would have odd parity (cf . § II c .ii for the appropriate symmetry

properties of the wave function) . From (1I.30) we get for the

rotational excitation energie s

z
Ej =	 I (I+ 1) I = 0, 2, 4 . . .

	

(VI . 1 )
2 ,cS

	

even parit y

where the moment of inertia 3' is given by (cf. II .25)

= 3Bß2

	

(VI . 2 )

in terms of the nuclear equilibrium deformation ß and the mas s

parameter B (cf . II .5) .
The spectrum (1) is the same as that for the rotation of a

rigid body, but the rotational motion arises in essentially different

ways in the two cases . The collective motion in the nucleus i s
of irrotational character (cf. p . 11), and the angular momentum

is carried only by the surface waves . The effective moment o f
inertia associated with this motion depends on the square of th e

amplitude of the waves (cf . (2)), in a similar manner as th e

momentum in a sound wave is proportional to the square of th e

amplitude of oscillation .
Deviations from the limiting strong coupling scheme impl y

corrections to the spectrum (1) . Some of these have the sam e
I-dependence as (1) and give rise to corrections to the momen t
of inertia (2) . Others involve higher powers of I and produce a

distortion of the spectrum . Thus, the rotation-vibration interactio n
(cf ., e .g ., HERZBERG 1950 ; NIELSEN, 1951), which implies that
ß increases somewhat with I due to centrifugal distortions, gives

to first order the energy shift
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Fig. 13 . First excited states in even-even nuclei with A> 140 . The energy of the
first excited state is plotted as a function of A . The data is taken from HOLLANDER ,
PERLMAN and SEABORG (1952) and from SCHARFF-GOLDHABER (1953) . The evidence
is consistent with a (2+) assignment for all the levels. Similar curves have been
given by STXHELIN and PREISWERK (1951), ROSENBLUM and VALADARES (1952) ,

ASARO and PERLMAN (1952), and SCHARFF-GOLDHABER (1952, 1953) .

(4 E1)I = - 2
EI
cß2 E1 = -

2 /
1	 I h2)'I2 (I~-- 1)2,

	

(VI . 3a)
Ycoß 1

where hh wtg is the excitation energy of the ß-vibration (cf.§ Vlc.iv) .

Another term of the same order of magnitud e .as (3 a) arises from

the influence of the y-vibrations which imply a departure fro m

the rotational spectrum of a symmetric top. The effect can be

found as a second order perturbation produced by the operato r

U3 (cf. A . 96), and one obtain s

(4E1) 2 =

%/

2 (h2)3

12

(I +

1)2 , (VI . 3 b )

where hco y is the energy of the y-vibration .

Rotational states in regions of large deformations have re-

cently been identified by their very striking properties : regu-
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TABLE XXII . Energies of (2+) and (4+) states in even-even

nuclei with A> 140 .

Nucleus E 2 E. E 4 :E 2 Ref .

82Smiso 337 777 2 .3 *

72
Hf178 89 289 3 .2 ** ttt

72 H1180 93 307 3 .3 * *

82
Pb208 2614 3200 1 .2 *

ee
Ra228 67 217 3.2 ** *

80 Th'" 58 187 3 .2 t

8 oTh2a o 50 167 3.3 ti'

B4
Pn2a8 43 146 3 .4 tt

* SCHARFF-GOLDHABER (1953) .

	

t BLACK (1924) .
** GOLDHABER and HILL (1952) . tt HOLLANDER, PERLMAN and SEABOR G

*** BoulssIÈRES et al. (1953),

	

(1952).
(added in proof) .

	

ttt ARNOLD and SUGIHARA (1953) ,
(added in proof) .

The table lists the energies (in keV) of the (2+) and of the tentatively assigne d
(4+) states . While these assignments are consistent with the available empirica l
evidence, they are in many cases in need of further examination . For rotationa l
states, the ratio E 4 :E 2 is expected to approach the value 10 :3 for large deform-
ations (cf. 1) .

larities of spins and parities, characteristic energy trends, simpli-

city of the excitation spectrum, and very large E2 transitio n
probabilities (BOHR and MOTTELSON, 1952, 1953, 1953a ; FoRD,

1953 ; ASARO and PERLMAN, 1953) .
Systematic studies of the first excited states of even-even

nuclei (GOLDHABER and SUNYAR, 1951 ;.HORIE, UMEZAWA, YAMA -

GUCHI and YOSHIDA, 1951 ; STÄHELIN and PREISWERK, 1951 ; PREIS -
WERK and STÄHELIN, 1952 ; ASARO and PERLMAN, 1952 ; ROSEN-

BLUM and VALADARES, 1952 ; WAPSTRA, 1952, 1953 ; SCHARFF -

GOLDHABER, 1952, 1953*), have revealed that, with very few
exceptions, the first excited state is of (2+) character**, an d
that the excitation energy exhibits definite trends with respect to

* We are indebted to Dr. G . SCHARFF-GOLDHABER for making available t o
us these results in advance of publication .

** It has been suggested that the excited states of even-even nuclei can b e
interpreted as a recoupling of the particles outside of closed shells (cf ., e . g ., HORI E
et al ., 1951 ; FLOWERS, 1952 b) . While this description may, for many configura-
tions, explain the (2+) nature of the first excited levels, it has not provide d
an explanation of the many other striking features of the levels discussed in the
present paragraph .
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the shell structure, reaching maxima around the closed-shell con -
figurations and minima as much as fifty times smaller in th e
middle of shells .

This trend is especially conspicuous in the region of th e
heavier nuclei where the shell structure is dominated by the
doubly closed shells at Pb 208 (cf. Fig. 13) . Similar regularitie s
are also observed for the lighter elements, but the trends ar e
somewhat more complicated due to the fact that neutrons an d
protons form closed shells for different A-values (cf especially
SCHARFF-GOLDHABER, 1953) .

While the excitations of closed-shell nuclei may represen t
simple phonon states (cf . § VI c .i), a decreasing energy, as we
move away from closed shells, results from the coupling with
the particle structure, which leads to increasing nuclear deform-
ations. The rapid decrease for the first few particles added t o
closed configurations, which develops into a rather flat minimum ,
can be understood from the fact that the particle states wit h
large deformative power are the first to be filled, while in the
middle of shells the last added particles are less coupled to the
deformed nucleus .

The small excitation energies encountered in the regions
155 < A< 185 and A> 225 imply that, in these cases, the cou-
pling is very strong and that the rotational energies should b e
rather accurately represented by the simple formula (1), correc-
tions of magnitude (3a and b) being small .

A direct measure of the validity of the strong coupling ap-
proximation is afforded by the location of the expected highe r
members of the rotational family . The available evidence o n
energies of the (4+) state, in the region covered by Fig . 13, i s
listed in Table XXII . It is seen that the energy ratio E 4 : E 2 shows
the expected trend, approaching the strong coupling value 10 : 3
(cf. 1) in the regions of large deformation . *

* Note added in proof : AsARO and PERLMAN (1953), from a study of th e
a-spectra of the heavy elements, have recently obtained evidence for the sy-
sternatic occurrence of a rotational spectrum in even-even nuclei in the regio n
well beyond Pb0 08 . With the approach to Pb"', deviations from the energy
spectrum (1) are observed, which can be interpreted as distortions, of the typ e
(3a and b), corresponding to a vibrational energy of about one MeV, which is
of the same magnitude as indicated by the hydrodynamical estimate (cf . Fig . 2) .
We are indebted to these authors for having informed us of their results i n
advance of publication .
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TABLE XXIII Deformations deduced from propertie s

of rotational states .

Nucleus E (keV) F ßl: ß Q

B8Dy 16o 85 140 0 .65 0 .2 8

B8Er 166 80 180 0 .65 0.3 1

7o
Yb17o 84 140 0 .62 0 .2 7

72m1" 89 120 0 .58 0 .2 4

760 s166 137 55 0 .45 0 .1 5

66
Hg166 411 6 0 .25 0 .05

64
Po212 719 5 0 .18 0 .04

a4
Po214 606 7 0 .19 0 .05

The table lists the first excited states of even-even nuclei, classified as col-
lective excitations on the basis of measured lifetimes (cf . Table XXVII) . The
factor F in the third column gives the enhancement of the transition probabilit y
over that expected for a particle transition (cf . Table XXVII) . From a rotational
interpretation of the states, the deformation ß F may be calculated from the ex-
citation energy by means of (VI.1 and 2), and is listed in column four . The las t
column gives the deformation ßQ estimated from the intrinsic deformation Q 6

by means of (V.7) . The value of Q6 is obtained from the observed transition pro-
bability (cf. Table XXVII) .

The large excitation energies, as well as the relatively small F-factors, fo r
the last three cases in the table indicate an intermediate coupling situation, i n
which the rotational description is less appropriate .

The spin of 4 for the second rotational excitation and th e
E 4 : E 2 ratios confirm the expected axial symmetry of the nuclea r

deformation (cf. p . 28) . For a nucleus with an asymmetric equi-
librium shape, the rotational spectrum would exhibit a sequenc e

of I-values and energy ratios different from (1) .
It is a characteristic of the rotational spectrum that the ex -

citation of a high member is followed by a cascade of E2 gamma
transitions with energy values in the ratio • . . 15 :11 :7 :3, and
with no cross-overs . There is indeed evidence (BOHR and MOTTEL-

SON, 1953a) for such cascades involving states up to I = 8 with
energies closely given by (1) . *

The observed very short y-ray lifetimes of low-lying excite d
states in even-even nuclei clearly indicate the collective natur e
of the excitation (GOLDHABER and SUNYAR, 1951). The ratio of

* Note added in proof : The recent measurement (ARNOLD and SUGIHARA ,
1953) of the y-spectrum following the ß-decay of Lu 178 considerably improve s
the agreement with the rotational spectrum in Hf14s.
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the observed transition probabilities to those expected for par-

ticle transitions increases as one moves away from closed-shel l
configurations and reaches values of more than a hundred i n

regions far removed from closed shells (cf . Table XXIII) .

The E2 transition probability of a rotational state is directl y
related to the intrinsic nuclear quadrupole moment QQ (cf .
§ Vb and § Vllc.ii), and the values derived from the observe d

lifetimes are just of the magnitude deduced from spectroscopi c
data for neighbouring odd-A isotopes (cf . Table XXVII on p . 116) .

Another measure of the deformation is provided by th e

excitation energies which yield, by (1), the nuclear moment of
inertia. Assuming the hydrodynamic value (II .6 a) for B, the

deformation ßE can be obtained from (2). This estimate of the
deformation is compared, in Table XXIII, with the deformatio n

ßQ estimated from the E2 transition 'probability, assuming th e
hydrodynamic relation (V .7) for Q 0 .

It is seen that, although ßE and ßQ show parallel trends, ßE
exceeds ß Q by about a factor of two in the region of the fully
developed strong coupling . This effect is quite similar to th e

overestimate of the static quadrupole moments by the hydro -
dynamic model (cf . p. 59), and lends support to the view that

the simple model of the collective deformations underlying (V . 7)
is inadequate . As in the case of the static Q, it is also possible that

some part of the discrepancy arises from an underestimate of B .
A general correlation has been found (Folic', 1953) betwee n

the energies of the first excited states of even-even nuclei, inter-
preted as rotational states, and the magnitude of the quadrupole

moments of odd-A nuclei . The quantitative comparison show s
the same feature encountered above, that, although the tw o

estimates of the deformation exhibit similar trends, the fi-value s
derived from quadrupole moments are several times smaller

than those derived from excitation energies .
For the smaller deformations encountered in the regions o f

closed shells, perturbation terms of the magnitude (3a and b)
may essentially modify the spectrum and also particle force s

may have an important influence . The expected intermediat e

coupling situation is clearly revealed by the deviations of th e
E4 : E 2 ratio (cf . Table XXII) from the strong coupling value of

10 :3, with the approach to closed-shell configurations .
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iii . Rotational states in odd-A nuclei .

The rotational spectrum in odd-A nuclei depends on th e

angular momentum to of the ground state . If lo = .Q = K > 3/2 ,

we get a series of states with energies

2

EI = 2~ [I(I+ 1) -Io(Io+1)] I = Io, Io+ 1, Io+ 2, . (VI .4)
same parity as ground stat e

If the system does not strongly prefer the symmetric shap e
(y = 0 or sr), as for a single particle with j = 3/2, a more com-

plicated rotational spectrum may arise (cf. Ap . III .ii) .

In the case .Q = K = 1/2, there is the additional contribution

to the rotational energy (cf. II .30 )

Ei = (-)r-l+r~~
sd

	

(j + 1 /2 ) (I + 1 /2 ) ,

where j refers to the odd particle with .Qp = 1/2 . In this case ,

the ground state spin is in general no longer 1/2, and a less
regular sequence of rotational states appears .

Since the odd-A rotational states depend more specificall y
on the properties of the ground state, they do not exhibit th e

same simple trends as those in even-even nuclei . Moreover,
since consecutive levels have A I = 1, except in some case s

with .Q = 1/2, they may decay by Ml radiation, for which th e
transition probability is not enhanced .

A specially suited method for identifying and studying th e
rotational states in odd-A nuclei may be provided by the Cou-

lomb excitation which directly measures the E2 transition prob -
ability (cf . Ap . VI) . The collective excitations therefore manifes t
themselves by their especially large cross-sections . *

Measurements of the y-decay probabilities of the rotational
states are a'.so of interest, since the Ml transition probability
can be directly compared with the static magnetic moment o f
the ground state (cf . VII .20) . The strong enhancement of the E 2
radiation implies that appreciable E2 admixtures may be ex-
pected in many cases, although for a single-particle y-transitio n

* Note added in proof : Recently, rotational states in odd-A nuclei hav e
been identified by the method of Coulornp excitation (Huus and ZUPANW ,
1953 ; cf . also note on p . 166) .

(VI .5)
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with 41 = 1 (no), the E2 radiation is extremely weak in com-
parison with MI . Moreover, it is expected that cross-over transi-
tions (4I = 2) may in some cases compete with the cascade .

iv . Vibrational excitations .

The vibrational states are characterized by the quantum
numbers nß and ny , and in the limit of strong coupling the
excitation energies approach the phonon energy (cf. A. 108 and
113) . A comparable energy is associated with changes in th e
quantum number K. Due to the symmetry of the surface, the
ny- and K-excitations only occur in definite combinations, sinc e
ny must have the same parity as 1 /2 (K- Q) (cf . A . 92) .

The vibrational states have strongly enhanced E2 decay
probabilities, characteristic of collective excitations, and coul d
be especially studied by the method of Coulomb excitation (cf .
Ap. VI). In an even-even nucleus, an E2 transition from th e
ground state can lead to the vibrational states (nß = 1 ; ny = 0 ;
I = 2 ; K = .S2 = 0) and (nß = 0 ; ny = 1 ; I = K = 2 ; Q = 0) .
In an odd-A nucleus, several rotational states can be reached fo r
each type of vibrational excitation, and in addition there ar e
two vibrational excitations with n 1, = 1, having 4K = f 2 .

d) Higher Excitation. The Compound Nucleus .

The more highly excited states, produced in nuclear reaction
processes, though characterized by a somewhat greater com-

plexity than the low energy spectrum, can provide further in -
sight into the dynamics of the nuclear system . Since the present
discussion is concerned principally with the phenomena occurrin g
in the low energy region, we shall attempt only a rather brief
description of the properties of the coupled system for highe r
excitations .

In the present paragraph, we consider the general features o f
the level structure in this region, and summarize some of th e
consequences for nuclear reactions*, ** . A more detailed formu-

* We are indebted to Professor N. BoHR for illuminating discussions on
the influence of single-particle motion on the compound nucleus formation .

** Cf . also HILL and WHEELER (1953), who have pointed out many impor-
tant consequences of the strong interaction between the nucleonic and surface
motion for various nuclear processes, and especially the fission reaction .

Dan.JYfat .Fys .Medd. 27, no .16_
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lation of nuclear reaction theory, incorporating individual-part-

icle as well as collective features, is attempted in Appendix V.
With increasing nuclear excitation, the level spacing rapidl y

decreases and any simple coupling scheme will be destroye d
by even relatively small perturbations, which result in a sharin g
of properties between neighbouring levels of the same spin and
parity . A Simplified picture of the level structure may be obtaine d

by characterizing the rate of exchange of energy in the system
by an energy interval W within which the sharing of propertie s
among levels is more or less complete . This energy is related t o
the mean free path 2a of single-particle motion by

hu
W = ,

	

(VL6)

where u is the particle velocity* . The coupling thus tends to
obscure finer features in the level structure, associated wit h
simple types of motion with frequencies smaller than Wrti .

The significance of single-particle motion depends on th e
relative magnitude of W and the single-particle level spacing 4
given by

4 = 7r
KRa MRô

, (VI .7)
h a

where K is the nucleon wave-number in the average potential .
For W larger than 4 (-' 110 A-113 MeV), the interactions destroy
the effects of undisturbed single-particle motion, and the propertie s
of the individual configurations are uniformly distributed over
the whole energy spectrum . Such a situation corresponds to th e
strong interaction theory of nuclear reactions, according to whic h
the incident particle shares its energy with many degrees of

* The energy exchange between surface and nucleonic motion has bee n
discussed by HILL and WHEELER (1953) from a somewhat different point of view.
These authors attempt a rather detailed description of the nuclear state in th e
region of high excitation by assuming the nucleus to occupy, at any-given moment ,
a strong coupling state with a definite division of the energy between nucleonic ,
vibrational and rotational motion . The surface motion is treated in the semi-
classical approximation appropriate to large quantum numbers . Exchanges of
energy between nucleonic and vibrational motion occur with a frequency (the
slippage or damping frequency) closely related to the quantity WI/I, . It is foun d
that the validity of this description requires W to be small compared with th e
energies of vibration and rotation . The estimate given in the present paragraph
indicates that, in general, W is of the arder of the vibrational energies, in ac-
cordance with tentative estimates by HILL and WHEELER.
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freedom of the compound system in a time short compared to
that required for a traversal of the nucleus (N . Bonin, 1936 ; cf.

also FESHBACH and WEISSKOPF, 1949) .
The existence of nuclear shell structure suggests a value of W

small compared to A . If the main interaction is due to the particle -
surface coupling, one obtains, for energies of the incident particl e

small compared with the nuclear potential, estimates of W whic h

are on the average about 2-3 MeV, but depend on A and o n

the nuclear deformation (cf . Ap. Vc) . For such values of W, the
existence of relatively undisturbed single-particle motion is ex-

pected to manifest itself in the properties of the nuclear spectrum .

Thus, in a nuclear reaction, the first stage will be the action o f

the average nuclear field on the incident particle . The coupling

between the particle and the internal degrees of freedom of th e

target nucleus may, in subsequent stages, lead to energy exchange s

which may eventually result in the complex types of motio n

characteristic of the compound system .

Recent measurements of total neutron cross-sections (BAR -

SCHALL, 1952 ; MILLER, ADAIR, BOCKELMAN and DARDEN, 1952 ;

NERESON and DARDEN, 1953 ; WALT et al ., 1953) confirm the ex-

pectation that the limit of strong interaction is not quite reached ,

and that single-particle effects are still discernible in the scat -

tering process (WEISSKOPF, 1952) . The measured cross-section s

represent averages over levels and the data below 3 MeV have

been accounted for in terms of single-particle scattering in a

complex potential (FESHBACH, PORTER, and WEISSKOPF, 1953)* .

The imaginary part of the potential represents the absorption int o

the compound nucleus and is closely related to the quantity W.

The empirical data indicate an absorption which corresponds t o

W - 2 MeV . It thus appears that the properties of the higher exci-

tation region may be understood in terms of the same coupling s

which operate at lower energies (cf. Ap. Vc) .

A coupling energy W small compared with A has importan t

implications for the whole course of nuclear reaction processes .

Thus, the scattering widths of the individual states of th e

compound system depend on the distance from the nearest

* We are indebted to these authors for making, available their results i n

advance of publication . Cf. also p . 158 ff. below for further discussion of thi s
analysis, and of the conditions under which nuclear cross-sections can be de -
scribed in terms of the scattering iii a complex potential .

7*
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virtual level for single-particle potential scattering . The reduced

width of the single-particle level is mainly distributed over th e
compound states within a distance W. Outside of this region ,

the compound states are much narrower, and appear as a
fine structure on a background of potential scattering (cf . Ap .

V by .
Moreover, for W < d, direct couplings between entrance and

exit channels may lead to nuclear reactions which do not pas s

through the compound stage (direct ejection of particles or direct
excitation of rotational or vibrational modes) . The coupling

energy W would also reveal itself in the relative probability o f
the various modes of decay of the compound state, which often

depend on the amplitude of a few simple types of motion (cf.
Ap. V c) .

* A formulation of the nuclear dispersion theory, incorporating single-particl e
features as well as the compound nucleus formation, has also recently been con -
sidered by FESHBACH, PORTER, and WEISSKOPF . We are indebted to these authors
for a private communication of results of their investigation .



VII . Electromagnetic Transitions .

An essential part of the present knowledge of the low energ y
nuclear spectrum has been obtained from the study of y-tran-
sitions . The determination of multipole orders is a valuable too l
in assigning spins and parities to the nuclear states, and th e
measurement of transition probabilities yields further importan t

information on the nature of the excitations involved .
The general implications of the empirical evidence for th e

nuclear level structure have already been considered in Chapte r
VI. In the present chapter, we give the calculation of electro-

magnetic transition probabilities in the coupled system and th e
more detailed analysis of the available empirical data .

a) Transition Operators .

The transition probability for radiation of a photon of multi -
pole order A and of frequency w is given by (WEISSKOPF, 1951 ;
MOSZKOWSKI, 1951, 1953 ; STECH, 1952 ; BLATT and WEISSKOPF ,

1952, p . 595)

T(2) =	 8 7r (),	 '	 l)	 	
(

w 1

	

2~+ I

~[(2~~1)~~i2

	

~~

	

B (,l)

where the reduced transition probability B (A) can be written a s

B ( A ) _ ZI< I I m (2„u) I f > 1 2

FL, Mr

in terms of the matrix elements of the multipole operator t (Â,,u )
of order A„u between an initial state i and a final state f, with
magnetic quantum number M1 .

* ( 2 + 1 ) ! ! - 1 . 3 . 5

	

( 2 2 + 1 ) .

(VII .1) *

(VII .2)
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The electric and magnetic multipole operators are given by *

A . Op ,
( A, fu )

	

e p rp Yï~.Fc

	

çpp)

	

(VII .3)

p- 1

gs +
71-

À+

2
l g i l p °

V p lp))p,(~}p,Tp) , (111 .4 )

p= 1

respectively, where e p , (gi)p , and (gs )p refer to the charge,

orbital and spin g-factors of the particle p .

In the unified description of the nuclear dynamics, the stat e

of the nucleus is described in terms of collective and particl e

degrees of freedom. The former represent the bulk. of the nucleons ,
which are strongly bound, while the latter represent the mos t

loosely bound particles, which may be individually excited (cf.
§ II a .iii) . In the coordinates appropriate to this description, the
multipole operators (3) and (4) take the form

9'Re (À' Y) -~
(ep AA ) rp YAfI (9p , p) +

4 ~c

ZeRô a *I, (VII .5)

and
eh

	

T

	

2

	

-4.

~m(A' ~)

	

2Mc

\

	

gss+A+lgi )P . 7 P ( 1.'1,1
1,1µ('9'p' 9'

p
eh 1

+ Mc A+ 1 gR

s
R(r)

	

rAYAfI (0, q))) di ,

where the sums over p include the particle degrees of freedom ,
while the last terms refer to the multipole moments generated by
the collective motion of the nucleons .

The particle part of the electric moment (5) includes the
effect of the recoil of the nuclear core, which is of special im -

portance for dipole transitions ; for A > 2, the recoil term als o
contains many-particle operators, which have been omitted in (5) .

The coefficient of a t,u in (5) is obtained from (II .2), which
is based upon a hydrodynamical description of the collectiv e
motion . Inadequacies of this approximation of the kind indicate d
by the nuclear quadrupole moments (cf . § Vc) would imply a

* In (3), we neglect the contribution of the intrinsic magnetic moment o f
the particle, which is of the same order as that of the magnetic multipole of on e
higher order.

and

e~i

21Y1c

(VII .6)
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somewhat smaller value of the coefficient . The density of angula r

momentum in the collective motion is denoted by R (r) and may
be expressed as a quadratic form in the a-coordinates .

The reduced transition probability B (A), which is relate d

by (1) to the lifetime for y-emission, can also be determined from
the cross-section for Coulomb excitation by impact of heav y

ions (TER-MARTIROSYAN (1952) ; cf . also Appendix VI ; e . g. (Ap .

VI.17)) .

The two methods for determining B complement each othe r

in the sense that the lifetime measurements are most easily per -

formed when B is small, while large excitation cross-sections ar e
obtained when B is large . Moreover, the relative intensity of th e

different multipole components in the field of the impingin g
particle is very different from that of the radiation field produced

by a source of nuclear dimensions .

b) Transitions in the Weakly Coupled System .

i . Particle transitions .

In the case of a single particle moving in a spherical potential,
a transition between states of angular momenta j i and jt is

electric of order 2 = Ij i -41, if the spins and orbits are parallel

in the initial as well as the final states, or if they are antiparallel

in both cases. The value of B is given by (STECH, 1952 ; BLATT

and WEISSKOPF, 1952 ; MoszKOwsKI, 1953)

2J + 1
Il r t

I f> l

z
c (J>>< 2j<+I ,B e ()) = 1

Îep
Ze

47t
(VII .7 )

where < i rÂ f> is the radial matrix element, and where th e

c (j, , j am ) are numerical coefficients of order unity, which can
be expressed in terms of Racah coefficients* . Values of c(j> , j< )

are listed in Table XXIV . The arguments j > and j, denote the

larger and smaller, respectively, of j i and j1 .

If j, has parallel spin and orbit, while j,< has antiparallel

spin and orbit, the transition is magnetic, of order 2 = ji -jt l ,
and (cf. the references of (7) )

* STECH (1952) uses a corresponding quantity ~ F(jA , IB) 12 equal to
(1 < + 1/2)- 1 c(j > , j< ) . MOSZKOWSKI (1953) uses the quantity S(Ii , L, It ) which,
for Ii - It = :t, equals (2 jt + 1) (2 j< + 1)- 1 c(j> , 1 < ) .
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TABLE XXIV . Coefficients c(j> , j<) in transition probabilities .

j>

j <

3/2 5/2 7/2 9/2 11/2 13/ 2

1/2 1 1 1 1 1 1

3/2 1
6 9 4 15 1 8

5 7 3 11 1 3

5/2 1 9 10 50 22 5

7 7 33 14 3

7/2 1
4 50 70 0

3 33 42 9

9/2
1 15 22 5

11 14 3

11/2
1 1 8

1 3
13/2 1

The transition probability for a single particle transition ji jt of multipol e

order A= I j i - jt I involves the coefficients c (j > , j< ) tabulated above. (Cf .

equations (VII .7 and 8) and footnote on p . 103) . The larger and smaller of j i , f

are denoted by j > and j< , respectively.

22 \
e~

~
(

/
2B,R(~)

	

47z 2Mc

2

9s-~+19'1121<ilrA-lf>!2c(j>,j<)
2j

'
+1 . (VII .B)

2j< + 1

Finally, if j> has antiparallel while j< has parallel spin an d
orbit, the transition is forbidden in order A = j i For a

pure configuration, the transition would be electric of order

= ji -f + 1, but small admixtures of other configuration s
may suffice to produce a predominantly magnetic transition o f
order 2 = ji -jt

For many-particle configurations, similar expressions ma y
be obtained, provided the coupling scheme is known (cf ., e . g . ,
MoS KowsKI, 1953) . Thus, for two equivalent protons, the tran-
sition (j 2)2-- (j2),_ o is of electric quadrupole type with a
reduced transition probability

Be(2)

	

1 6
ace2l< i lr2~

f>Iz(2j - 1) (2j+ 3)

	

(VII .9)
J(j+ 1 )

In the estimates of transition probabilities in § VII d, we us e
the simple estimate
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<ilr 2 l f> = 3+ARO

	

(VII .10)

which would be obtained for a radial wave-function constant

within the nuclear volume and vanishing outside . More detaile d

calculations have been made (Moszxowsxr, 1953) which yiel d
similar results .

ii. Phonon transitions .

The radiation emitted by the freely oscillating nuclear sur-

face is of electric multipole type of the same order 2 as the sur -

face deformation. For the decay of a one-phonon state to a no -

phonon state, one finds from (5) and (A . 38) (cf . FLÜGGE, 1941 ;

LOWEN, 1941 ; FIERZ, 1943 ; BERTHELOT, 1944 ; JEKELI, 1952) *

3 112
haq

	

Be (~l) = (-4 ZeRô J 2 CA

	

(VII .11 )

for the reduced transition probability////// in terms of the frequency

w A and deformability C A of the 2th surface mode (cf . Figs. 1 and

2) . The cooperative nature of such a transition, as expressed in

the appearance of the factor Z2 in (11), in general leads to a

much faster decay than for a corresponding particle transition .

iii. Surface moments induced by particle transitions .

In weak coupling, a transition between two different particl e

states induces a moment in the surface which may be calculate d

in the perturbation approximation . Although the admixture of

collective excitation is small, its influence may be important i n

the case of electric multipole transitions, due to the larger charge

involved in the surface motion . The induced surface moment i s

proportional to the mass moment of the particle transition, an d

the operator (5) becomes (cf. II . 5 and 9)

le(2 , 1) = R'd Y,Iµ(op, (pp)
p

r À

	

3

	

k

	

(Itw,t ) 2

	

1

	

} (VII .12)

lep
\Ro/

+Ze	
CA . (hww,)2 -(Et -Et ) 2

* The results of the quoted authors differ somewhat from each other i n
numerical coefficients. Also the matrix element quoted by BLATT and WEISSKOPF
(1952, p . 628) appears to lead to a transition probability too small by a factor four .
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for a transition between particle states with energies Ei and Et .
It is of significance that the particle part of Me depends on th e
charge of the particles, while the surface part involves only the
coupling constant k, which is the same for neutrons and pro -
tons . The hydrodynamic estimate of the second term in (12 )
(cf. Figs . 1 and 2) indicates that it is somewhat larger than th e
first term (by about a factor of four for a medium heavy nucleus) .

c) Transitions in the Strongly Coupled System .

i . Particle transitions .

In the strong coupling representation (II .15), it is convenient
to expand the multipole operators along the nuclear axi s

Vl (A, lu ) = Y ~Jl' (A, v )

	

(0 i),

	

(VII .13)
v

where 9J1'(A, s) is expressed in the nuclear coordinate system ,
and where the Z-functions are the same as used in (II . 15) .

For a particle transition between states with I . = Ki = D i
and It = Kt = DI one obtains, for A =Ili - It I ,

B ( A ) = I S xSli 932' ( A , ± A) x .Q 12 S 9) i

	

, Y) 9't

	

Y) 12 2 I
If

+-I . (VII .14 ;

In special eases, the symmetrization of the wave function (I1 .15)
may introduce additional terms .

In the strong coupling scheme, where the particles mov e
independently with respect to the nuclear axis, the particl e
transitions are always one-particle transitions . Thus, the first
factor in (14) is simply related to the transition probability for a
single uncoupled particle, provided the particle wave function s
x have a definite j, and provided the collective part of the mul-
tipole moments (5 and 6) can be neglected . For a transition fro m
ji = Di = Ii to jt = Qt = It , one then obtain s

	

B (A) = BSp (2 ) I S 997 Øt 1 2 2-2

I I< + 1 '

	

(VII .15)

where BsP (A) is given by (7) or (8) . However, in some cases ,
important differences between (14) and (15) may arise from the



Nr. 16

	

VII. Gamma Transitions .

	

10 7

modification of the particle wave function caused by the non -

spherical character of the potential, and from the collective con-
tributions to the multipole operators .

Thus, the tendency of the surface coupling to admix certai n
neighbouring orbitals in the particle state may, in particular, caus e
transitions to occur, even when BSP vanishes due to shell mode l
selection rules (1-forbiddenness ; j-forbiddenness) .

An important contribution to electric transitions with A> 2

may arise from the coupling to the surface mode of order A .

Since the coupling to these higher order modes may be considere d

as weak, the effect can be included by using the form (12) for

the multipole operator. This contribution to the transition may
be particularly significant in leading to comparable lifetimes fo r

electric multipole transitions of odd-neutron and odd-proto n

nuclei .
The last factors in (15) imply reductions in the transitio n

probability of the type known in molecular spectroscopy (Franck -

Condon principle ; (cf., e . g ., HERZBERG, 1950, p. 199)). The

factor involving the vibrational wave functions gives the reductio n

arising from the partial orthogonality of two states with differing

magnitude or shape of deformation . This effect depends on th e

difference of the two equilibrium deformations as compared with

the zero point amplitude . The dependence is exponential, and

great reductions may result when the coupling is strong . If the

two states have different shapes (strong coupling solutions cen-

tered on different values of y), it is necessary to consider th e

full symmetry of the wave function (A .118), since it may be

easier for the surface to oscillate from oblate to prolate for m

along different intrinsic nuclear axes (cf. HILL and WHEELER ,

1953, fig . 28) . The last factor in (15) involving the spins is a

projection factor associated with the fact that only the projectio n

of the particle multipole along the nuclear axis is effective .

The reduction in transition probability due to the surfac e

coupling is illustrated in Fig . 14 for an Ml transition of P3/2 -* p 11 2

type . From the I = j = 3/2 wave function given in Fig. 4 (p. 25) ,

the transition probability to an uncoupled p1/2 state may b e

simply obtained . The "unfavoured factor", F, representing th e

ratio of B and B SP , is plotted as a function of x . As an example

of the effect due to differences in shape, we have also plotted
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'Q

0. 8

0. 6
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4
Fig . 14 . Unfavoured factors in intermediate coupling . The coupling between particle
and surface motion implies that particle transitions are in general slowed dow n
by the partial orthogonality of the surface states of the combining levels. The
ratio of the resulting transition probability to that for an uncoupled particle i s
referred to as the unfavoured factor, F. The figure illustrates the behaviour of F
as a function of the dimensionless coupling constant x (IL14) .

The upper curve corresponds to a p3lz M 1 transition ; the N/,-state
appropriate to a given x is obtained from Fig . 4, while the pure p 512state ha s
no coupling to the surface. The lower curve gives the square of the overlap inte -
gral between two N/ 2-states with equal magnitude, but opposite sign of th e
coupling parameter . This quantity would correspond to the F-factor for a hypo-
thetical EO transition .

the square of the overlap integral (F-factor for a hypothetica l
EO transition) for two p312 states with opposite sign, but sam e
magnitude of the coupling constant .

One may also employ the strong coupling solutions (A . § V.3)
to calculate the F-factors for large couplings . For a transition
j -- j between states with coupling strengths x and x' , one finds
that F contains the factor

1 2j-1 2Fexp - 2 (2j+2 1 j(x -x')2 ~

	

(1711 .1 6 )

which exhibits the exponential decrease of F with increasin g
coupling .
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ii . Collective transitions .

In collective transitions of the strongly coupled system, th e
last term in (5) may give rise to strongly enhanced E2 transitio n
probabilities .

Of special interest are the rotational excitations, which, i n
even-even nuclei, form a spectrum with I = 0, 2, 4, (cf .

VI .1). The y-decay proceeds in cascades of E2 radiation, and

for the transition I + 2 --> I, the reduced transition probability,

which may be obtained by using (V . 5), is given by

B,(2) =	 15 2 2	 (I+1)(I+2 )
e(2)

	

32 e
Qo

(2I+3)(21+5) '

where Q 0 is the intrinsic quadrupole moment (V.7) . The ex-
pression (17) exceeds the one-phonon decay probability (11 )

by a factor of the order of the average number of phonon s

present in the strong coupling state .
In odd-A nuclei, the rotational levels form a sequence wit h

I = K, K + 1, K + 2, • • • (cf. VI.4), except for the case of

K = S2 = 1/2 . For a transition I + 1 -* I, one obtain s

Be(2)

	

16

15

n e2Q 1(1+1)(21+3)(1+2) '
(VII .18)

while for the cross-over transitions I + 2 -> I

Be(2) = 15
e2Q0

(I+1 -K)(I-I-1+K)(I+2 -K)(I +2+K)
32n

	

(I +1)(27 +3)(I +2)(21-1-5 )

For the I + 1 i I transitions, Ml radiation is also present, with

a reduced transition probability given b y

Bm(1) _ 3
1

eh1 2(gß-gR)2 Q2 (I+1 -K)(I+1+K)
(VII .20)

4 ~c 2Mc1

	

(I+ 1)(21+3)

in terms of the g-factors of the particle and collective motion ,

g,Q and gR , respectively (cf. IV.4 and 10). While, for a simila r

sequence of particle excitations, the decay would proceed by a

cascade of almost pure Ml radiation, the considerable enhance -

ment of the E2 radiation produced by the collective deformatio n

(VII .17)

(VII .19)
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may, in some cases, give rise to an appreciable admixture o f

E2 radiation, and also to cross-overs of the type (19) .
For odd-A nuclei with K = ,Q = 1/2, the rotational spectru m

is more complicated (cf . § VI c .iii) . The electric radiation is stil l

given by (18) and (19), but the matrix element for M1 transition s

cannot be related so simply to the magnetic moment of the groun d

state as in (20) .
Transitions involving a change of vibrational quantum num -

bers (cf . § VI c .iv) are of pure E2 type in the limit of strong coupling .

The decay of a higher vibrational state may in general procee d
to several rotational levels of the lower vibrational state . The

transition probabilities can be obtained from (5), using th e

vibrational wave functions (A . 109 and 114) . The matrix elements

are of the same order of magnitude as for a single phonon decay

(11) and thus are larger than for a particle transition, although

smaller than for a rotational transition .

d) Discussion of Empirical Data .

The classification of the isomeric transitions, as well as th e

empirical decay energies, lifetimes, and the conversion coefficients

used in this paragraph are, except where otherwise noted, take n

from the articles by GOLDHABER and SI.7NYAR (1951) and GoLn-

FIABER and HILL (1952) .

In a field of such rapid development, it may be expected that

improved experiments will modify some of the data considere d
here. Without evaluating the individual experiments, we hav e
tried to confine ourselves to those classes of transitions which ,

at the present time, seem to provide the most reliable and sig-
nificant information .

i . M4 transitions ; unfavoured factors .

The strong spin-orbit coupling shell model predicts low-lyin g
isomeric states of long lifetime in the regions before the close d
shells at 50, 82, and 126. In these regions, particle levels of hig h

spin (g912, h 1112, and i13/2, respectively) are being filled simultan-
eously with levels of low spin and opposite parity (p1I2, d 312 ,

and f12) and isomeric states decaying by M4 radiation are
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TABLE XXV. M4 transitions in odd-A nuclei .

Nucleus E (keV)
-log T

(sec - ')
F Nucleus E(keV)

-log T

(sec -1)
F

9D/2 E -> P1/2 hll/2

	

d3 J 2

39 Zn99 439 4 .88 .060 59
Sn117 159 7 .95 .12 0

39 Kr86 305 5 .18 .101 55 Sn"9 65 11 .13 .23 4
,,Sr" 390 4 .27 .089 52

Te121 82 10 .67 .08 2

39 Y87 384 4 .97 .055 52 Te 13 88 10 .35 .08 6
99Y Ø9 913 1 .31 .098 52 Te 125 110 9 .43 .09 4

39
Y91 555 3 .68 .037 ,,Te l" 88 10 .36 .08 0

4,Zr89 588 2 .61 .092 ,,Te'" 106 9 .34 .15 6

41Nb 81 104 8 .90 .73 ,,Tem 183 7 .00 .23 6

41Nb95 216 6 .39 .061 54
Xe129 196 7 .39 .05 6

41Nb97 747 1 .94 .024 54
Xe'a1 163 7 .91 .08 6

43Tc95 39 13 .22 .046 64 Xe133 232 6 .42 .10 5

43Tc97 96 9 67 .046 54
Xe135 520 3 .22 .11 6

4 3Tc
99 142 8 .03 .057 56 Øa133 275 6 .05 .05 4

49I
n113 390 4 .14 .038 56

Ba135 269 5 .77 .12 1

49 1n115 335 4 .67 .044 55
Ba137 661 2 .40 .08 5

i13/2 E * / 5/ 2

The F-factor gives the ratio o f
the observed transition probability to

	

78 p t195 129 8 .64 .04 9
that of a single-particle transition be-

	

78 pt19 7
tween the states indicated at the head

337 4 .86 .05 3

of the column (cf . (8) and (10)) .

	

85 Hg 197 165 7 .67 .04 8

8DHg 199 368 4 .50 .05 4

* HOPKINS (1952) . 82 Pb 207 1063 0 .113* .084

expected . . These expectations have been strikingly confirmed
(GOLDHABER and SUNYAR, 1951 ; MOSZKOWSKI, 1951) .

The lifetimes of these isomeric transitions yield furthe r
evidence on the properties of the combining states . The known
M4 transition probabilities are listed in Table XXV . The las t

column gives the ratio F (the unfavoured factor) of the observe d
transition probability to that calculated for the appropriate
single-particle transition (cf . (8) and (10), and (II.7)) j . The

F-factors are sensitive to the assumed value of the nuclear radius .

t The F-factors are analogous to the quantities M 12 listed by GOLDHABER
and SUNYAR (1951), but are obtained by comparison with a somewhat more detaile d
theoretical estimate . In the notation of MOSZKOwsK1 (1953), F equals the rati o
of 117 I2 and M,11 , for magnetic transitions of order L .
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Thus, a decrease of 10 0 / 0 in the value (II .7) leads to an increase
by about a factor two in the F-values of Table XXV .

Despite this uncertainty, it is evident that the transitions are

consistently slower than expected for an uncoupled particle b y
a significant factor . This reduction provides evidence that the
particle transitions are associated with an appreciable readjust -
ment of the collective field . The observed unfavoured factor s
correspond to a nuclear coupling scheme resulting from a n
intermediate to strong particle-surface coupling (cf. § VIIc.i) .

From such an interpretation of the transitions, one can als o
correlate some of the observed trends of the unfavoured factor
with the expected surface deformations . Thus, one notices that ,
for the nuclei possessing closed shells, and especially for thos e
possessing double closed shells ± 1 particle, the F-factors ar e
among the largest*. Moreover, for a series of isotopes of th e
same element, the F-values decrease as we move away from a
closed-shell nucleus (cf . Bonn and MOTTELSON, 1952 ; Mosz-
KOWSxI, 1953) . These trends can be understood in terms of the
increased deformation, produced by the added particles and
reflected in many nuclear properties (cf ., e . g., § III .lu ; § Vc ;
§ VIc.ii) .

In the estimate of the F-factor, the transitions are compare d
with one-particle transitions, although many of the nuclei in
question have several particles outside of closed shells . In the
strong coupling approximation, where the particles are couple d
separately to the nuclear axis, the transitions do indeed only
involve changes in the quantum numbers of a single particle ,
and the F-factor can be directly related to the change in the
vibrational state (cf. 15) . If, however, the interparticle force s
influence the coupling scheme in the nucleus (cf . Fig. 6), there
will be an additional effect contributing to the F-factor (cf .
MOSZKOWSKI . 1953). Still, it seems excluded that this latter
effect gives the main part of F, since in Table XXV there ar e
several nuclei with single-particle configurations, and also fo r
these the transition probabilities are considerably reduced as
compared with shell model estimates .

Reduction in the transition probability, associated with th e

* In view of the marked stability of 82 Pb E08 , it may be significant that th e
F-factor for 82Pb207 is as small as 0.08 .
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partial orthogonality of the vibrational states of different particle
configurations, is expected as a very general feature of nuclea r
particle transitions. This is indeed observed and, besides the M4
isomeric transitions, especially the allowed unfavoured and th e
pure GT forbidden ß-transitions provide evidence for the effec t
(cf. § VIII c.ii and iv) .

A consequence of this interpretation of the unfavoured facto r
is its absence in certain special cases where the combining state s
have similar surface shapes . Thus, the mirror ß-transitions which ,
due to the symmetry in the particle configurations, have almos t
identical deformations are known to be conspicuously faste r
than other allowed ß-transitions (cf. § VIIIc .i) .

Another class of unretarded particle transitions is expected
for the y-transitions between the two members of the ground
state doublet in an odd-odd nucleus, where the deformation s
are expected to be rather similar (cf. § VI b) . There is som e
evidence that the low energy Ml transitions in odd-odd nucle i
are faster than in odd-A nuclei (GRAHAM and BELL, 1953). Som e

of the long lived M3 isomers in odd-odd nuclei (cf . GOLDHABER
and HILL, 1952) may also be of this type, but uncertainties i n

the spin assignments as well as in the conversion coefficient s

prevent as yet a quantitative analysis of the lifetimes .

It would also be of interest to compare ß- or y-transitions t o
different members of a rotational family, since the vibrationa l
integral in F does not affect the branching ratio .

ii . E 3 transitions ; j- foorbiddenness .

In the region before the closed shell at 50, another importan t
group of long lived isomers has been found . These have been
identified as E3 transitions of the (7/2+)±>(1/2-) type and
occur for the nucleon numbers 43, 45, and 47 . The (7/2 +)
states have been classified on the basis of the shell model as

(ÿ9J2)7J2
3,5,7 (GOLDHABER and SUNYAR, 1951 ; MOSZKOwslu, 1951) .

For pure configurations of this type, the transitions would b e
forbidden to order E3 (j-forbiddenness) . For odd-neutron nuclei ,

there is an additional forbiddenness for these transitions which
require an electric multipole moment . Both these types of forbid-

denness are removed by the surface coupling which is expecte d
to be rather large in these nuclei, as evidenced by the energy

Dan . Mat . Fys . Medd, 27, uo . 16 .

	

8
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,TABLE XXVI . E 3 transitions of (7/2 +)4--->- (1/2 -) type .

Nucleus E (keV) -log T (sec -1) F

34Se7' 160 1 .68 .01 3

34Se'9 80 3 .89 .002 5

34 Se e1 98 4 .64 .0004

3sKr'9 127 2 .47 .002 6

3B1ir B1 187 1 .45 .001 7

34 Krsa 32 .2 -7.39 - .000 4

4s Rhlo3 40 -6.95 - .000 7

45
Rhlos 130 2 .55 .001 0

47 Ag1o
7 93 .9 3 .03 .01 3

47Ag1o9 87 3 .04 .02 1

'4 W183 80 ~ 3 .02 - .014

The shell model assigns a (92/2)3,5, 7 configuration to the (7/2+) state . Th e
anomalous spin I = j - 1 may be explained as a result of the surface couplin g
(cf . § IIl .iii) . For a pure gela configuration, the transition would be forbidden t o
order E3 (j-forbiddenness) . The transition is assumed to occur due to the admixtur e
of a small amount of the 9 7 / 2 orbital . The coupling to deformations of order three ,
which induces an E3 moment in the surface, may also .be important for thes e
transitions, especially in the odd-neutron nuclei . The F-factor gives the rati o
of the observed transition probability to that of a g 71, ± -> p 113 single-protdn tran-
sition (cf . (7) and (10)).

depression of the (7/2 +) level (cf. § Ilt .iii) . The surface cou-

pling will admix particle states of g712 type and, furthermore, the

coupling to the 2 = 3 surface mode produces an E3 moment

also in odd-neutron states (cf. (12)) .

In Table XXVI are listed the known E3 transitions of (7/2+) --

(1/2-) type. The F-factors listed in the last column of the table

are derived by comparison with the transition of a single proto n
between P1/2 and g 712 states ((7) and (10)) . The comparabl e

magnitude of the observed F-factors for odd-neutron and odd -
proton nuclei is an indication that the second term in (12) i s

at least comparable to the first term, as suggested by the hydro-
dynamic estimate . There may be a tendency for the odd-neutro n

F-values to be somewhat smaller than those of odd-proton nuclei ;
this could be understood from the effect of the first term in (12)

together with the A-dependence of the last term .
The appearance of smaller F-factors in this group as com-

pared with the M4 transitions, as well as the somewhat large r
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spread in values, may reflect the fact that the transition depend s
entirely on the admixture of the g7/2 state, which again depends o n

the degree of deformation of the nucleus .

Examples of E3 transitions between other configurations hav e
also been identified, some with very small F-factors (cf . GOLD -

HABER . and SUNYAR, 1951) . While the detailed classification o f
these transitions is difficult at the present time, such highly un -

favoured transitions may be expected in regions of strong coupling ,

due to selection rules associated with the ,S2p and K quantum

numbers .

iii . E2 transitions; collective excitations .

Collective excitations give rise in general to E2 or Ml ra-

diation (cf. § VI c), and are expected to reveal themselves espec-

ially by their strongly enhanced E2 transition probabilities ,

resulting from the large electric quadrupole of the oscillatin g

surface .
In the strongly coupled system, the low-lying collective ex -

citations can be characterized as rotational levels . The spectru m
is particularly simple in even-even nuclei where a series of states '

with even I decaying by pure E2 radiation is obtained (cf .
§ VIc .ii) .

The first excited (2+) states in even-even nuclei with measured
lifetimes are listed in Table XXVII . The F-factors in column fou r

provide a comparison of the observed transition probabilit y
with that expected for a proton transition (j 2 ) 2 -* (j2 ) o for large j

(cf. (9)) .
The very large F-factors for the nuclei in regions away fro m

closed shells confirm the interpretation of the states as rotationa l
levels of the strongly coupled system . From the measured life -

times one can deduce, by means of (17), the intrinsic quadrupol e

moments QQ which are listed in column five. These may be

compared with the Qo-values derived from the spectroscopically
measured quadrupole moments of neighbouring isotopes, liste d

in column six . In the derivation of Q O from Q, the full strong
coupling projection factor (V.9) has been assumed . The two

determinations of Qo yield similar values . The spectroscopic va -
lues are somewhat larger than those deduced from transition pro-

babilities, but the difference may not be significant, considerin g
s*
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TABLE XXVII . E 2 transitions in even-even nuclei .

Nucleus E (keV) log T (sec- 1 ) F I Qu l
(10-24

cm2)

(transition)

IQ o I (10 -za cm z )

(spectroscopic)

ss Dyls ° 85 7 .91 140 9

68E0 ,6 80 7 .91 180 10 - 20 (e 8Erl 5 7)

70Yb 17D 84 7 .94 140 9 11 ( 7DYb 173)

72 11f176 89 8 .01 120 9 14 ( 71 Lu1'S)

78O S186 137 8 .64 55 6 8 ( 75 Re 85)

80110" 411 10 .1 * 6 2 2 ( 80 Hg2o1 )

e2 Pb209 374 6 .34 2 X 10 '

84
P0212 719 11 .2 ** 5 2

,,4 p,214 606 11 .1 ** 7 2

* MAT STFORS (1952) ; corrected for the statistical factor in the resonanc e
formula (cf., e . g ., STORRUSTE, 1951) .

** Deduced from the branching ratio of a- and y-decay (cf . BETHE, 1937 ,
p . 229) . The lifetime for the long range a-groups is calculated from that of th e
ground state by the semi-empirical formula of WAPSTRA (1953) with the inclusio n
of the appropriate statistical factor. The empirical energies and lifetimes are take n
from the compilation of WAY et al. (1950) and HOLLANDER, PERLMAN and SEA -
BORG (1953) . The branching ratios are obtained from these references and from
ELLis and ASTON (1930) and RYTZ (1951) .

The table lists the E2 transitions in even-even nuclei with measured lifetimes .
All the transitions go from a first excited state of (2+) character to the ground
state (0+). The F-factor in column four is the ratio of the observed transitio n
probability to the value calculated for a proton transition (j 2) 2 (j 2) 0 for large j
(cf. (9)) . The intrinsic quadrupole moments QO in column five are deduced fro m
(17), assuming the levels to be of rotational character . For comparison, the last
column lists the intrinsic quadrupole moment derived from available spectro-
scopic data on neighbouring odd nuclei (cf . Addendum to Chapters IV and V) .
The projection factor (V . 9) has been assumed in calculating Q 0 from Q .

the experimental uncertainties involved in both types of measu-

rements .

The table exhibits the intimate correlations between excitatio n
energies, reduced transition probabilities, and quadrupole mo-

ments, and also shows the expected variations of these quantitie s
with the number of particles outside of closed shells . *

With the approach to the closed-shell configuration o f
Pb 208 , the rotational description of the states becomes les s
appropriate, and in the immediate neighbourhood of Pb"' a

* Note added in proof : Recently, Huus and ZUPANClc (1953) have produ-
ced the (2+) first excited states in the even , a W isotopes by means of Coulom b
excitation . From the measured excitation cross section they have deduced a
deformation 1Q O 1 7x10- 24 cm' in good agreement with the trends exhibited in
Table XXVII (cf . also footnote on p . 166) .
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TABLE XXVIII . E 2 transitions in odd-A nuclei .

states QQ (10- 24 cm 2)
Nucleus E (keV) log T (sec-, ) F

i
t (transition )

48Cd111 243 6.91 5/2+ 1/2+ 0 .1 2
73 Ta131 481 7 .74 3/2+ 7/2+ 0 .00 5
B0 Hg1Ø7 134 7 .47 5/2- 112- 4 .0 2

BO H g 139 159 7 .94 5/2- 1/2- 5 .0 2

The F-factors have been calculated by comparison with a single-proton
transition between states with the listed spins and parities . The Q 0 -values fo r
the Hg isotopes are obtained from (19) .

weak coupling situation is expected . In this region, the collective
excitations represent simple surface oscillations (cf . § VI c .i) .

In the weakly coupled system, also particle excitations may
be encountered among the first excited states (cf. § Vib). An
example may be provided by the Pb204 activity with its relatively
long lifetime. The fact that, for this transition, F is small com-

pared to unity may indicate a rather pure neutron excitation ,
corresponding to the closed-shell structure of the protons .

The observed E2 transitions in odd-A nuclei are listed in
Table XXVIII . The two first have the small F-factors charac-
teristic of particle excitations. For the Hg transitions, the F-factor s
are larger than unity and indicate collective excitations . A first
excited level of I O + 2 in these nuclei can be obtained for a
rotational family with d2 = 1/2 (cf. § VIc .iii) ; this interpretatio n
could also account for the relatively low excitation energies a s
compared with that in Hg 198 The Q 0-values derived from (19 )
are just of the same magnitude as obtained for Hg 198 , and derived
from the spectroscopic data of Hg L01 (cf . Table XXVII) . The
intermediate F-factors of the Hg transitions, as well as the rathe r

large excitation energies, indicate that the strong coupling schem e
is not very fully developed, and deviations from the simpl e
rotational character of the states may be of importance . *

* Note added in proof : An example of a strongly enhanced E2 transitio n
(F . ., 100) in an odd-A nucleus ( 73 Ta1s1 ) has recently been found by the Coulomb
excitation process (Huus and ZUPANClc 1953 ; cf. footnote on p . 166 below) .



VIII . Beta Transitions .

The analysis of ß-transitions has the dual purpose of deter -
mining the intrinsic properties of the nucleon-lepton coupling ,
and providing information on the nuclear structure . The recent
progress in experimental techniques as well as the understandin g

of nuclear states have led to an improved evaluation of the
coupling constants in ß-decay. This, in turn, now makes possibl e

more detailed tests of nuclear wave functions .
The type of information provided by the analysis of ß-transi-

tions is in many respects similar to that derived from electro-
magnetic particle transitions (cf . § VIb). In particular, the
classification of transitions in degrees of forbiddenness provide s
evidence on the spins and parities of nuclear states, while a
closer study of ß-decay transition probabilities gives more detaile d

information on the nuclear coupling scheme . In the present
chapter, we consider the calculation of transition probabilitie s
in the coupled system, and the more detailed analysis of th e
empirical data . *

a) Transition Operators .

The comparative half lives of allowed transitions may b e
written in the form

fo r = Bg [(1 - x)DF(O) + xDGT(O)]-1

	

(VIII .1 )

where t is the half life and fo the integrated Fermi function for
an allowed transition (cf ., e . g ., KONOPINSKI, 1943), whil e

Bg =	 g2m 5

c 4e

(VIII .2)
27L3 h 7 in 2

* We are indebted to Dr. O . KOFOED-HANSEN and M. Sc . A . WINTHER fo r
valuable discussions on theoretical and experimental aspects of ß-transitions .
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The partial coupling constants for Fermi and Gamow-Teller
interactions are g(1 - x) 112 and gx7f2 , respectively* .

The reduced transition probabilities are given by* *

DF (O) _

	

I < i T} f > I2

	

(VIII .3 )
Mf

and

DGT(0 ) = 4I <i IZ pi (f) f>I2 ,

	

(VIII .4 )
Mf

	

p

where Tl = -r() are components of the total isotopic spin . The

operators s and r are normalized in such a way that their prope r
values are 1/2 and -1/2 .

For the forbidden ß-decays, the transition operator may
consist of several terms giving rise to different spectral shapes .

The analysis of such mixed transitions is of special interest fo r
the study of the ß-decay coupling, but the influence of nuclear

structure is as yet more difficult to evaluate .

The forbidden transitions, which have a parity change o f
(-) A I+1 (with 41+ 0) are, however, more simple to interpret .

These transitions are of pure Gamow-Teller type and exhibi t

a spectrum of unique shape . They are intimately related to th e

magnetic multipole transitions of order A, = I. The compara-

tive half life is given by

fn t = Bg [xDGT(n)]-1

	

(VIII .5 )

where fn is the integrated Fermi function appropriate to the con -

sidered type of transition of forbiddenness n = 41- 1 (cf.

KONOPINSKI and UHLENBECK, 1941 ; GREULING, 1942) . The normal-

ization employed here is such tha t

1

	

~n

fn =
[(n + 1 )
	 112 S10( o)Lv) F o (W, Z)pW(W0-W)2 dW, (VIII .6 )

where the symbols are defined by DAVIDSON (1951) .

The reduced transition probability DGT (n) may be written

in the form

* The influence of the so-called cross-terms (Flsxz, 1937) has been neglected .
Estimates of the possible magnitude of such terms have recently been given by
MAHMOUD and KONOPINSKI (1952) and by WINTHER and KOFOED-HANSEN (1953) .

** The quantities D F. (0) and DGT (0) are often denoted by I 112 and I, 1 2 ,

respectively (cf ., e. g ., Koxo pINsKI, 1943) .
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DGT(n ) _ .~ < i 0GT(n , du) f> 1 2 ,

	

(VIII .7 )
Mf

where the transition operator is given by*, * *

sp, O p[rp +1Y
n+1, ft(~p,rPp)] TV ,

	

J
A

	

L

which exhibits the analogy to the magnetic multipole transition s
with A = n + 1 (cf . (VII .2 and 4)) . For n = 0, (8) reduces t o

SGT (0, dc) = 2 2' s ) TT ) ,

	

(VIII .9 )
p

where s/A are the spherical vector components of s . Equation
(7) is then equivalent to (4) .

b) Evaluation of Transition Probabilities .

i . Transitions in an undeformed nucleus .
The matrix element for allowed Fermi transitions can be

simply expressed in terms of the total isotopic spin quantum
numbers of the combining states if charge independence of the
forces in the nucleus is assumed (cf . WIGNER and FEENBERG ,
1941) . From (3) one obtains the selection rule d T = 0 and
the value

DF (0) = (TÆTz)(T±TZ +1)

	

(T -*T5 ±1) (VIII•.10)

for the reduced transition probability .
The Gamow-Teller transition probability is more dependent

on the nuclear coupling scheme . For transitions of a singl e
particle, (4) gives

* In the notation of GREULING (1942), we hav e

D GT (n) = I Qn+1 (o', r) I a
while KONOPINSKI and UHLENBECK (1941), for n = 1, use the quantity B ij , where

DGT(1) = £ ~ Bif
12

.

** BLATT and WEsssKora (1952) write the transition operator in terms o f

rn Mn+l,n = 2 [(n-I-1) (2n+3)]-1/2s .7
(en+1 Yn+1,-µ) .

4ac2n+a
1J2 [(n+ 1)!] 2

~GT(n, l~) _ [(2n+ 3) !~

	

n + 1

	

[Hwy'

h

	

~ (VIII .B)
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j -I-- 1

DGT (0 ) =
	 J
j+1

j = l+ 1/2

j = 1-1/2

and

41 2j,+1
4 j = 1 .

	

(VIII .12)

The last formula assumes j, = 1 + 1/2 and j< = 1- 1/2 (Al = 0) .
For 4 j = 1 and no parity change, one may also have Al = 2 ,
in which case the transition is second forbidden, according
to the single-particle model (1-forbiddenness ; cf. NORDHEIM ,

1951) .

For two-particle configurations, and a few three- and four -

particle configurations, the matrix elements are unique fo r

transitions between states of given J and T (cf ., e . g., Table III) .

In more complicated configurations, the value of DGT (0) will

depend on the particular coupling scheme .

For the forbidden transitions of pure GT type, the transition

probability for a single-particle transition may be obtained fro m

(7) and (8) by using the result (VII .8) .

ii . Transitions in the strongly coupled system .

The value (10) for the Fermi transition probability follow s

directly from the assumption of a constant total isotopic spin fo r

the nuclear states, and is not affected by the surface coupling .

The transition probabilities for Gamow-Teller transitions i n

the strongly coupled system can be evaluated by the same methods

as used for the electromagnetic particle transitions (§ VIIc .i) .
The transition operators are conveniently expanded along

the nuclear axis, giving (cf . VII .13)

~GT (n , P)

	

0GT (n , y) zµv (B t )
v

in terms of the operators C' expressed in the nuclear coordinate

system .

For transitions with AI = n+ 1 between strong coupling sta-
tes with Di = Ki = Ii and Di = IZt = If , one obtains

DGT(0) - 21+1 2j,+ 1

(VIII .13)
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DGT (n) =
15 zDi OGT (n, t (n +1)) XQf I 2 99 ; 9'f

I2

2

	

-1- . (VIII .14)

If ji = (QP ) i = Ii and jf = (Qp)f = It , for the transforming part-
icle, the expression (14) can be written

~-
DGT (11 ) = DGT (n) }sp Sri 9''f

2 I
I2 2 I, -}-

(VIII .15)

in terms of the transition probability for a single uncouple d
particle (cf. § VIII b .i) . The significance of the last factors in
(15) in retarding the transition has been discussed in connectio n
with the analogous formula (VII.15) .

In the discussion of the empirical data, this retardation i s
expressed as the unfavoured factor F, representing the ratio o f
D and Dsp . It is convenient to generalize the definition of F to
include cases where jp Q for the states of the transforming
particle, and for which the coupling scheme has no simple ana-
logue in the shell model . Thus, in general, for ground state
transitions with AI = n + 1,

.-{-- 1
F = DGT(n)I Sxn i zGT(n,f (n+1))xs?f _

2 2

	

(VIII .16)
2

I

If +1 ,

The above discussion includes the allowed transitions (n = 0 )
with AI = 1 . For allowed transitions with AI = 0, one obtains
directly from (4)

DGT(o )

	

41S

	

i ss'l"± X.Qf
i21

S 9', 9'tI2 I+ l'
(VIII .17 )

where s 3 is the component of s along the nuclear axis. In this
case, the F-factor is

1

	

I

	

F = DGT (0) 4 I S XS1 i s 3 Tf x,Q,I -2 I+	 .

	

(VIII .l8)

Additional symmetry terms may appear in (17) in the specia l
case of K = SZ = 1/2 .

For the mirror transitions, the symmetry of the combinin g
states implies an intimate relation between DGT and the expect-
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ation value of sZ for the states involved. For a one-particle
configuration, one obtains directly from (4)

DGT( 0) = 4 IÎ 1 <s2 > 2 M _ I .

	

(VIII .19)

In the strongly coupled system where the particles are coupled
separately to the nuclear axis, (19) holds quite generally for

mirror transitions, with sz referring to the last odd particle . The
quantity < sz > also occurs in the static magnetic moment and

may be evaluated by the methods of § IVb . *

c) Discussion of Empirical Data .

Recent studies of the ft-values of simple nuclei have led to

an improved determination of the coupling constants of ß-decay

(BOUCHEZ and NATAF, 1952 ; KOFOED- HANSEN and WINTHER ,

1952 ; TRIGG, 1952 ; BLATT, 1953) . We here use the value s

Bg = 2 .6 x 10 3 see

x = 0.5
} (VIII .20)

which seem to be consistent with available empirical data (cf. ,

e . g ., WINTHER and KOFOED-HANSEN, 1953) .

i . Mirror transitions.

The absence of an unfavoured factor arising from different

surface shapes of the combining states makes possible a rather

detailed analysis of the ft-values of mirror decays, from which

information about the nuclear coupling scheme may be obtained .

Since the nuclear magnetic moment, due to the large intrinsic

nucleon g-factor, primarily depends on < se > (cf . IV.3), which

also determines the GT transition probability (cf . 19), one expect s

rather strong correlations between magnetic moments and ft -

values of mirror transitions . Indeed, it is found that, when th e

magnetic moment deviates from the shell model values, ther e

are corresponding deviations in the mirror ft-values and tha t

* The strong coupling matrix elements for mirror transitions have bee n
given by DAVIDSON and FEENBERG (1953) for j a constant .
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TABLE XXIX . ft-values of mirror transitions .

Product

nucleus
I Emax (Me V) t 1/s (f f )exP (ft)j, (ft)~

6Bu 3/2 0 .958 20 .39m 3840( 70) 1950 3060

eG13 1/2 1 .200 10 .1 m 4560(100) 3900 3900

,N 16 1/2 1 .683 2 .1 m 3800(200) 3900 3900

8 017 5/2 1 .745 65 S 2320(100) 2160 2160
9 F19 1/2 2 .234 19 .5 s 1970(100) 1300 1800

1u Ne21 3/2 2 .50 22 .8 s 3700(200) - 3600

11Naaa 3/2 3.073 12 .0s 4780(150) - 360 0

laMg
26 5/2 - 7 .35 - 303 0

1aA127 5/2 3.48 5 .0 s 3350(600) 2160 303 0

14S
i29 1/2 3 .60 4 .65 3510(700) 1300 435 0

15
Pa1 1/2 4 .06 3 .1 s 4020(600) 1300 440 0

18 Saa 3/2 4.43 2 .0 s 3800(650) 3250 485 0

17 C136 3/2 4.4 1 .90 2 3420(800) 3930 485 0

12
A37 (3/2) 4 .57 1 .2 5 2520(600) 3930 375 0

12 K39 3/2 5 .13 1 .06 5 3740(500) 3250 375 0

E0 Ca41 (7/2) 4.9 0.87 5 2430(800) 2280 (2920)

The empirical data are taken from WINTHER and KOFOED- HANSEN (1953) .
Their estimated uncertainties for the experimental ft-values in column five ar e
listed in parentheses . The second to last column gives the shell model ft-values ,
wherever they are independent of specific assumptions about nuclear forces . In
the last column are listed ft-values for the coupled system, obtained from the wave
functions discussed in the text .

the observed correlation can be understood from simple assump-

tions about the nuclear states (TRIGG, 1952 ; WINTHER, 1952 ;
WINTHER and KOFOED-HANSEN, 1953) . The existence of such a

correlation strongly supports the interpretation of the observe d
moment shifts as reflecting a modified nuclear coupling schem e

(cf. p . 52) .

The calculation of mirror ft-values in the coupled system

follows the same lines as employed in the Addendum to Chapters

IV and V. Some of the details of this analysis are given belo w

and the results are summarized in Table XXIX . In cases wher e
the ft-value depends sensitively on the nuclear deformation, the
coupling situation indicated by the magnetic moment has been
used. For comparison, ft-values calculated from shell model
wave functions are listed wherever the states are unique .
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Calculation of mirror ft-values .

A = 11 .

The magnetic moment of B 11 indicates a rather strong sur -
face coupling (cf. p . 48), which is further supported by the
ft-value . The listed (ft),-value is obtained by determining th e
coupling situation from the magnetic moment, assuming a pur e

P3/2 state (,u = (g 1 - gR ) < j, > + gRI) . However, as discusse d

on p. 69, it seems unlikely that such a configuration can accoun t

for the whole observed moment shift . The deviation from (jj)
coupling indicated by the magnetic moment seems also reflecte d

in the observed ft-value .

A=13 and 15 .

The p112-nuclei are influenced by the surface only through

the coupling to the 138/2 state (cf . p. 68) . However, this couplin g

has no effect on the ft-value . The discrepancy between (ft)p
and (ft)e for A = 13 may again indicate a deviation from (jj )
coupling .

A - 17 .

Due to the stability of the 0 16 core (cf. p. 76), one expect s

only very little influence of the surface coupling on the ft-value .
This is consistent with the empirical data .

A = 19, 29, and 31 .

The magnetic moments of these (1/2+) nuclei have bee n
accounted for in terms of strong coupling states with Q = 1/2 ,

containing s 1 J 2 , d512, and d3î 2 orbitals (cf. p . 63 ff.) . The magnetic
moment depends sensitively on the interference between the d3/ 2

and d5f2 orbitals, and the ft-value is expected to show a simila r
effect . Fig . 15, which is the analogue of Fig . 11, shows the cha -

racteristic asymmetry of ft with respect to the sign of the de -
formation, which accounts for the conspicuous difference betwee n

the ft-values for A = 19 and those for A = 29 and 31 . The (ft)- -

values in Table XXIX have been obtained from y-values con-

sistent with the observed magnetic moments . It is of interest tha t

for F19 the (ft),-value differs appreciably from (ft)p , although
re ti Nn . The empirical data seem to support this expectation.
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D
Gr

Fig. 15 . Beta decay transition probabilities arising from d-state admixture in I = S2 =-
1/2 states. The figure gives the reduced GT-transition probability for mirror tran-
sitions between states of the type discussed in Ad . i (cf. especially caption to Fig. 11) .
The states are characterized by the amplitudes as

	

1/3 and aå 2/3 . The ratio

of d 31 2 to d51 2 is denoted by y. The strong asymmetry of D GT with respect to the

sign of y arises from the ds/z d51 2 interference, and is similar to the behaviour
of the magnetic moment.

A

	

21 and 23 .

In the strong coupling approximation, these nuclei are re -
presented as S2 = 3/2 states containing d512 orbitals with a smal l
admixture of (1312 (cf. p . 75) . The (ft),-value is very sensitiv e
to this admixture and the values given in Table XXIX correspon d
to a d312 amplitude of a312 = -0 .2 • a 5/2 , which is in accordanc e
with (Na23). In the absence of the d312 interference, one woul d
have (ft)e = 4300 .

A = 25 and 27 .

The (ft),-values are calculated for strong coupling state s
with j = S2 = 5/2 which account approximately for the magnetic
moments of Mg 25 and Al' (cf. p . 76) .

A = 33, 35, 37, and 39 .

In the strong coupling approximation, these nuclei are de -
scribed as S2 = 3/2 states, predominantly of d3f2 type, with a
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small admixture of d5J 2 . One expects the (ft),-values, just lik e
the magnetic moments (cf. p. 72), to depend rather sensitivel y
on the sign of the interference term, which again depends on
whether the configuration is that of a single odd particle or hole .
In the former case, corresponding to A = 33 and 35, the (ft)- -
values in Table XXIX are calculated for the value a 5f2 = -0.15 a31 2

suggested by the magnetic moments . In the latter case (A = 3 7
and 39), the opposite sign for a5f2 applies .

A = 41 .

The (ft),-value listed in parenthesis corresponds to the strong
coupling limit (j = Q = 7/2), but the stability of the Ca40 core
may imply a weak coupling for Ca4 1

ii . Allowed unfavoured transitions .

The shell model has been a valuable guide in the classificatio n
of ß-transitions in degrees of forbiddenness, especially throug h
its ability to predict the parities of the combining states (MAYER ,
MOSZKOWSKI and NORDHEIM, 1951 ; NORDHEIM, 1951) . At the
same time, the quantitative analysis of the ft-values indicate s
an important influence of the dynamical aspects of the collectiv e
field . This is strikingly illustrated by the difference between th e
ft-values of mirror transitions and other allowed transitions .
While the symmetry of the mirror states implies almost identical
surface shapes, other types of transitions are in general expecte d
to be appreciably retarded, due to surface readjustments accom-

panying the particle transitions .
Table XXX lists the ground state transitions in odd-A nuclei ,

excepting the mirror transitions, which have been classified a s
allowed (MAYER, MOSZKOwsKI and NORDHEIM, 1951) . The F-factor
in the last column provides a measure of the retardation of th e
observed transitions as compared with a single-particle transitio n
between the states listed in columns four and five (cf . (16) and

(18)) .
It is seen that the transitions are slowed down by a factor

of the order of 10-100, which is of the same order of magnitud e
as the reductions for M4 transitions (cf . Table XXV) .

The allowed transitions in even-A nuclei show a behaviour
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TABLE XXX . Allowed unfavoured ß-transitions in odd-A nuclei .

Nucleus E 0 (MeV) log f0 1

particle states
F

i f

10Ne23 -4.1 4 .9 d ; f2 ds~: .1 6

1iNa25 -3.7 5 .2 dS / Q d ;/2 .05 6

1c
S35 -0 .17 5 .0 d 3/2 d 3/2 .08 3

55Ca" -0 .22 5 .6 f7/2 17/2 .01 0
21`S- c49 -1 .8 5 .5 17/2 17/2 .01 3
27Co 81 -1 .3 5 .2 f7/2 15/2 .01 9

38Zn83 +2.36 5 .4 P3/2 P3/2 .01 2

3o Znfi9 -1 .0 4 .6 P1/2 P3/2 .05 0

31 Ga73 -1 .4 5 .9 P 3 / 2 P1/2 .0050
32 G-e" -1 .1 5 .0 P1/2 P3/2 .020

33Aa71 +0.6 5 .1 P3/2 PS/a .03 0

3 aAs 77 -0.7 5 .7 P3/2 P1/2 .07 7

34 Se73 +1 .29 5 .3 PS/2 P3/2 .0098

3,Se 81 -1 .5 4 .8 P1/2 P3/2 .03 1
,5 1=3r" +1 .6 5 .6 P3/2 P1/2 .01 0

35 Br77 +0.36 5 .0 P3/2 P1/2 .03 8
,,Br" -1 .05 5 .3 P3/2 P1/2 .020

35 13r" -2.5 5 .1 P3/2 P1/2 .03 0

45 11h105 -0.57 5 .5 g 9/2 97/2 .009 1

5oSn121 -0.38 5 .0 d a 2 d 5/2 .02 2

52
Te127 -0.76 5 .6 d a/z d 5/2 .005 6

co
Nd141 +0 .7 5 .2 d 3/2 d 5/ 2 .014

The empirical E 0 and log f0 1 values as well as the spin and parity of the com-
bining states are taken from MAYEE, Moszxowssu and . NORDREIM (1951) . Th e
F-factors are calculated by comparison with the single-article transitions liste d
in columns four and five (cf. (16) and (18)) . The superscript gives the value o f
Qp in cases where it differs from jp .

similar to that of odd-A nuclei (cf. NORDHEIM, 1951) . An inter-
esting anomaly is the decay of 8 C Y4 whose long lifetime may indi-
cate an accidental cancellation in the matrix element . Additiona l
information on the states involved in this transition could b e
obtained from a measurement of the y-decay lifetime of th e
2 .31 MeV state in ,N14 . This state is believed to be the T 1
state which is isobaric with the C 10 ground state (cf ., e . g ., AJZEN-
BERG and LAURITSEN, 1952) ; it decays by Ml radiation, and th e
transition matrix element is very similar to that involved in th e
ß-decay of C1 4
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TABLE XXXI . 1-forbidden ft-transitions in odd-A nuclei .

Nucleus Et, (MeV) log lo t

particie states F

i t

8 01a -4.5 5.5 411: d6f2 .02 6

"Sin -1.8 5.9 d'/e
dl/ .02 89/2 a/a

15 P" -0.26 5.1 4 11:

a

d

6
1~ .08 2

s8Niea -0.05 6 .8 fa /
f2a

fa/ s
a/a .004 0

z 8Nieb -2.10 6.6
fa/ s

a/2
af

a
a /

/z .006 7

aøGu 81 + 1 .22 4.9 f: '/: fb%z .22

"Cu" -0.65 5.5
fa!z '5

5
/
/

2a/a •05 3

soZnaa + 0 .32 7.0 la (

/ sa
a

aa

	

a l

/a .002 6

,,Ge" + 1 .0 6.0
f

aa //a
e lef'a/a .02 6

48
Pd10a -1 .0 6.2

ga/a
gal l

e .001 87/2

The empirical E 0 and log f o t values as well as the spin and parity of the com-
bining states are taken from MAYER, Moszxowssu and NORDHEIM (1952) . Thes e
transitions, which are forbidden for pure shell model configurations, occur in th e
coupled system due to admixtures of the states listed in columns four and five .
The strong coupling notation is used and the superscript denotes the component
.f? of angular momentum along the nuclear axis . The F-factors are obtained b y

comparison with a pure particle transition of the listed type (cf . (16)) .

There are also other cases where it would be of interest t o
combine lifetime evidence on allowed GT ß-transitions with that
of M1 transitions between the corresponding isobaric states
(e . g ., He' (ß-)Li s compared to the y-decay of the 3 .58 MeV
level in Li e . Another example is the Be 7 (K)Li 7t (478 keV), which
may be compared with the y-decay of the excited Li z-state . )

iii . 1-forbidden transitions .

The special type of odd-A transitions with Al = i and no
parity change, which according to the shell model have Al = 2 ,
are listed in Table XXXI . They are classified as 1-forbidde n

Dan . Mat .Fys. Medd . 27, no . 16 .
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transitions (MAYER, MoszKOWSKr and NORDHEIM, 1951) . Their
ft-values are comparable with, although somewhat larger tha n
those of the allowed unfavoured transitions in Table XXX, and
they have spectra of allowed type .

The configuration admixtures which are a general consequenc e

of the surface coupling can destroy the 1-forbiddenness in a
similar manner as for the j-forbiddenness encountered in the
E3 transitions (y§ Vlld.ii) . The fourth and fifth columns o f
Table XXXI list the 1, j, and .Q values of the single-particle orbit -
als, which are assumed to contribute the principal part of th e
transition matrix element . Assuming pure states of these types ,
one calculates the F-factors of the last column rn the same wa y
as for the transitions in Table XXX (cf. (16)) .

The appearance in Table XXXI of somewhat smaller an d
more erratic F-factors than in Table XXX may reflect the sen-
sitivity of the transitions to small amplitudes of admixed state s
(cf. the analogous situation for the j-forbidden E3 transition s
(Table XXVI) as compared with the M4 transitions (Table XXV)) .

The unfavoured factors of Table XXXI are somewhat large r
than those of Table XXVI, which may be associated with th e
greater ease with which the surface destroys the 1-forbiddennes s
than the j-forbiddenness because of the greater energy separatio n
between the spin-orbit partners than between neighbouring orbit -
als in the same shell .

iv . Pure GT forbidden transitions.

The forbidden transitions which are identified by their spectra l
shape as being of the pure GT type are listed in Table XXXII .
The unfavoured factor F in the last column provides a compariso n

of the observed transition probability with that of a single-
particle transition between the states listed in columns four an d
five (cf. (16)). It is seen that the F-factors, as expected, ar e
comparable to those of the allowed unfavoured ß-transition s
(Table XXX) and the M4 isomeric transitions (Table XXV) .

The two largest F-factors in Table XXXII are those of B 1o
and K 40 . In the former case, the observed F-factor can be ac -
counted for in terms of the projection factor alone, with n o
contribution from the vibrational wave functions (cf . 14 and 16) .
The occurrence of similar surface shapes in the two combining
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TABLE XXXII . Forbidden ß-transitions of pure GT type .

E g (MeV)
particle state s

i

	

I

	

t

Nucleus log fn t F

odd A dI =2 yes = 1 )

1s
A41 -2.55 8 .8 /7/2 d 2/2 .03

2a Sra9 -1.46 8 .3 d s/2 P1/2 .09

aa Sr91 -3.2 8 .4 d b /2 Pi/2 .0 7

30(91 -1.56 8 .5 P1f2 d 612 .01 6

"Cs' -0.53 8 .7 97/2 hu/2 .01 1

even A

	

dI = 2

	

yes(n= 1 )

1 7 CI 8B -4.81 8 .1
4/1 22

d8~2 .1 6

19 1{42 -3.58 8 .5 /57 /1 2a <22 .1 6

a,Rb 88 -1.82 8 .5 g 9 rz
1 : 1122

.04

a BSrø Ô -0.54 8 .2 dc å Plj2 .0 9

39Y90 -2.20 8 .1
d s12

2 P11//
2 1/2

1 45/ -

807 1204 -0.765 8 .9 P :'/ : si
z

/2 .010

even A dI =3

	

no (n = 2 )

-0.56 11 .3 -/28 ' 2P 2
9/2

P 2/2 .2 3

even A

	

d I = 4

	

yes (n = 3 )

19
K4o -1 .36 15 .1 / 7f 27/2 d-1/ 2

a/2 .2 4

The table lists the forbidden transitions classified by their measured spectr a
as of pure GT type (Wu, 1950 ; LIDOFsEV et al ., 1952 ; FELDMAN and Wu, 1952) .
The log / n t values are obtained by using the formulae and curves of DAVIDSO N

(1951) . The F-factors are obtained by comparison with a pure particle transition
between the states listed in columns four and five (cf . (16)) .

states is expected, since in strong coupling the occupied particl e

states have the same deforming power (cf . the similar situatio n

expected for y-transitions between the members of the groun d

state doublet in odd-odd nuclei (p . 113)) .
9 *



132

	

VIII . Beta Transitions .

	

Nr . 1 6

In K40, the F-factor as well as the magnetic moment (cf .
p. 83) indicate an intermediate coupling situation . In such cases
of weak or intermediate surface coupling, it is of interest t o
compare the observed transition probabilities with those expecte d
for a coupling scheme arising from the influence of particl e
forces (cf . § II c .iii) . The unfavoured factor Fp obtained in this
way is in general somewhat larger than F, in the case of many -
particle configurations . Thus, for K40 , one finds Fp = 0 .7 .



IX. Summary .

A unified description of the nuclear structure is attempted ,

which takes into account individual-particle aspects as well a s

collective features associated with oscillations of the system as a

whole (§ I) . The most important of the collective types of motion ,

for the low energy nuclear properties, are oscillations in the nu -

clear shape, which resemble surface oscillations . The collective
motion is associated with variations of the average nuclear field ,

and is therefore strongly coupled to the particle motion (§ II a) .
The particle-surface coupling implies an interweaving of th e

two types of motion, which depends on the particle configuratio n

as well as on the deformability of the surface . In the immediate

vicinity of major closed shells, the high stability of the spherica l

nuclear shape makes the coupling relatively ineffective . In such

a weak coupling situation, the nucleus can be described in term s

of approximately free surface oscillations and the motion of in-
dividual nucleons in a spherical potential (§ IIb.i) .

With the addition of particles, the coupling becomes -mor e

effective, and the nucleus acquires a deformed equilibrium shape .
For sufficiently large deformations, a simple limiting couplin g

scheme is realized, which bears many analogies with that o f
linear molecules . In the strong coupling situation, the nucleus
performs small vibrations about an axially symmetric equilibrium
shape. The particles moving in the deformed field are decouple d

from each other and precess rapidly about the nuclear axis ,
following adiabatically the slow rotation of the nuclear shap e

(§ IIb_ü and § IIc .ii ; cf. Figs. 3 and 6) .
An analysis of the observed nuclear properties of the lo w

energy region reveals many of the characteristic features of th e
coupled system .
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For nuclei with major closed-shell configurations, or with a
single extra particle, the expected weak coupling situation is
especially confirmed by the high excitation energies (cf ., e . g . ,

Fig . 13) and the small quadrupole moments (§ Vc) . Also magneti c
moments indicate that particle motion in a closed-shell. core is

little influenced by the coupling (cf. 017, p. 76), although th e
anomalous moment of Bi200 implies as yet unexplained features

of the particle structure (cf. p. 81) .
Already for configurations with a few particles, the empirical

data give evidence of a major effect of the particle-surface coupling ,
and in regions further removed from closed shells, a rather full y

developed strong coupling situation is found .

In particular, the nuclear excitation spectrum clearly indicates
a structure of nuclear states governed by the strongly couple d

particle and collective motions . A striking feature is the occur-
rence of collective excitations of rotational character, which revea l

themselves by their energy trends, the regularity of their spectrum ,
and their short lifetimes (§ VIc.ii) . The accuracy of the strong

coupling description of these states in regions of large deformation s
is exhibited by the energy ratios within a rotational family (cf . ,
e . g ., Table XXII and also notes on pp . 93 and 166) .

The particle modes of excitation can be studied especially i n

the long lived isomers and the ß-activities . For these states, the
spins and parities, which account for the order of the transitions ,
have confirmed the configuration assignments given by the shel l
model . However, the observed transition probabilities, which ar e

appreciably smaller than would correspond to particles movin g
in a fixed potential, provide evidence for the readjustments of th e
collective field, which are a characteristic of the particle transition s
in the coupled system (§§ VIb, Vlld.i, VIIIc.ii and iv) .

The modification of the nuclear coupling scheme arising fro m
a strong particle-surface interaction also manifests itself in th e
static properties of nuclear ground states . Thus, for many-
particle configurations, the ground state spin may differ from

that which would result from a coupling due to particle force s
(cf. Fig. 6) . Especially, the occurrence of I = j - 1 in (j)3
configurations gives evidence for a surface coupling dominatin g
over the particle forces (§ IIl .iii) .

The magnetic moments provide a measure of the sharing of
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angular momentum between particles and surface, and suppor t
the strong coupling interpretation of nuclear states in region s
removed from major closed shells (§ IV c ; cf. especially Table
VI). The moments are also sensitive to modifications of th e
particle state resulting from the non-spherical character of th e

potential, and thus provide rather detailed tests of nuclear wave -
functions (Addendum to Chapters IV and V ; cf. also Table

VII). The comparison between magnetic moments and the ft -

values of mirror ß-decays further supports the interpretation o f
the nuclear states (§ VIIIc.i) .

While many of the nuclear properties considered depend

primarily on the coupling scheme, information on the collectiv e
motion of a more detailed character may be obtained from th e

analysis of quadrupole moments and of the energies and life -
times of rotational states . It is found that the observed quadrupol e

moments, as well as the related E2 matrix elements for rotationa l

transitions, are systematically smaller than would correspond t o
surface deformations of the simple hydrodynamical type (§ Vc,
§ VI c .ii) . In this deviation, one has an interesting indication o f
the inadequacy of the liquid drop idealization of the nuclea r

collective properties, which may be associated with the non-uni-
formity of the nuclear density distribution (§ II a) .

The present discussion has been restricted principally to low
energy phenomena, but the basic features of such a unified
description retain their validity also for the higher excitations en -
countered in nuclear reaction processes (§ VI a) . The increased
level density implies a certain complexity in the nuclear states, but

the fundamental nature of the individual-particle and ordere d
collective motions is still expected to manifestitself (§ VId ; cf.
also Ap . V a and b) .

Thus, the recent measurements of total neutron cross-sections

have revealed a structure associated with potential scattering of a
single particle, as well as aspects arising from the coupling t o

the internal degrees of freedom of the target nucleus, which ma y
lead to the complicated motion of the compound nucleus. It ap-
pears that the observed coupling can be understood in terms o f
an interaction between the incident particle and the nuclear surfac e
oscillations of the same magnitude as implied by the low energ y
phenomena (Ap . Vc) .



Appendix I .

Shell Structure and Deformability .

The nuclear deformability depends on the extent to which th e

particle structure can adjust to a deformation of the field . Thus ,

important deviations from the simplified surface tension de-
scription may arise for configurations with anomalously large

level spacings (closed-shell nuclei) or if the deformation change s
too rapidly for the particle structure to follow adiabatically (cf .

GALLONE and SALVETTI, 1953 ; HILL and WHEELER, 1953) .
For deformations preserving axial symmetry, the nucleoni c

states may be characterized by the quantum numbers Qp , de-
noting the components of angular momentum of the individua l

nucleons along the symmetry axis . For a given set of S2p , the
deformability coefficients C A are proportional to the number of

nucleons A, and are thus much larger than estimates based on
the surface tension, which are of order A213 (apart from th e

influence of electrostatic forces) .
As the nucleus is deformed, however, states with different set s

of S2p will cross and if, instead of following a state of constan t
O p , one follows the state of lowest energy for any given deform-

ation, the resultant energy dependence will on the average b e
of the surface tension type . (Illustrations of this effect are give n

in the above references) .
Deviations from axial symmetry, as well as the effect of part-

icle forces, afford a mechanism for keeping the particle struc-
ture in the state of lowest energy, provided the region of crossing s
is passed sufficiently slowly . If this adiabatic condition is violated ,
exchange of energy takes place between nucleonic and collectiv e
motion (HILL and WHEELER, 1953) . One then encounters the
features of the coupled system characteristic of an intermediat e
coupling strength (§§ II a .iii, II b .i and iii) .
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In the strong coupling situation where the nucleus perform s
small oscillations around a deformed equilibrium shape (§ IIb .ii) ,
this equilibrium shape may in general be estimated on the basi s
of a surface tension type of deformability. A finer analysis of the
deformation properties in the appropriate region may be required
for the detailed treatment of the vibrations around equilibrium .

The surface tension type of deformability is a statistical featur e
which depends on a regular level spacing . In the neighbourhood
of major shell closings, the discontinuity in the level distributio n
implies a special stability of the spherical form correspondin g
to a C A coefficient of order A for small deformations, until th e
first few crossings have occurred (cf. GALLONE and SALVETTI ,
1953) . This results in an anomalously large phonon energy an d
very small quadrupole moments for such nuclei . For larger
deformations, the deformability approaches the normal value with
a resulting decrease in the phonon energy . The potential energy
function corresponding to these features is somewhat mor e
complicated than given by (I1 .5) .



Appendix II .

Matrix Elements in the Perturbation Representation .

The matrix elements of Hint can be obtained from the matri x
of Y, (t9, 92) given by

<jml

	

1j 'm ' > = <jlhlj ' > <j' 2m' j ' 2jm>, (Ap . 11 .1 )

where the last factor on the right hand side is the coefficient of
the vector addition of the angular momenta j ' and 2 to give a
total j (cf . CONDON and SHORTLEY, 1935, p . 77, Table 4 3 ) .

The sub-matrix <j h j ' > can he expressed in terms o f
Racah coefficients and, for particle states of the same parity, i s
given by

-1/3	
(2j-1)(2j -3)

	

,
2j (j-1)

	

J -j + 2

<jlhlj'> = - 1~64 n

1 ' 3j (2j-1 )
+j V 0-1 ) (j+1 )

/(2j-1) (2 j+ 3)
j(j +1)

j -i' + 1

(Ap. II .2)

1 /	 3 j (2j+ -3)
J ~ (J+ 1 ) (j+2)

	

J - J - 1

3(2j-F-3)(2j-I-5 )

2 (j + 1 ) (j+2) J j ' - 2

From (1) and the matrix elements of a m , which can be obtained
from (A .38), one derives from (II .9) the expression (II .12) fo r
the first order matrix elements of Hint .

To first order in Hiat, the wave function (I1 .11) is determined
by the coefficients

V
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<j' ;12 ;IMI>=kV
2C awl !i'

	

(Ap .II.3)

where 4 i1 , is the separation between the particle levels j' and j .

In terms of these coefficients, the expectation value of RZ i s
given by

<RZ > = 21(~+ 1) Z (I(I+1)-J'(1' +1)+6) <j' ; 12 ; 1111 > (Ap . II .4)
2

which is equivalent to (II .13) if only the diagonal term (j ' = j)
is of importance.

For a more detailed analysis of the nuclear coupling scheme ,

such as is needed for the evaluation of the magnetic moment ,
the non-diagonal matrix elements of sZ given by

<j = 1-
2

; 12 ; IMIsz lj ' = 1+2 ; 12 ; IM >

/

	

` /
(Ap. II .5 )

/(I+ 1-/ `I+1+21

	

J )
are also of interest .

M

2I(I+1) (21+1)



Appendix III .

Features of the Strong Coupling Solution .

i . Matrix elements .

The matrix elements of the coupling term (II .26) in the strong

coupling approximation may be obtained fro m

N
+

	

-r
~	 ~

	

',.,

	

~
II

	

II

	

II

	

II

	

I I
~

	

. .->

	

.,~

	

. .~

which is derived from (Ap . II .1 and 2) .

(Ap. II1 .1)
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The expectation value < jZ > is given by (II .19), while for
the evaluation of < sZ > one also needs the non-diagonal elemen t

< j=1- 2, D. ; I KLYI 1 sz 1 j ' =1-+ 11 , Q ; I K M >

1/'1+ 1`2

52 2
MK

	

2
I(I

	

1)

	

2 1{ 1

	

+(_)1 ile +t (I-+- 1/2) 6[2, 1/2 6x 11 2

ii . Strong coupling f'or a single j = 3/2 particle .

In the special case of a j = 3/2 particle coupled to the sur -

face, there exists no regular strong coupling solution since, ac -

cording to (II.21), the configurations (y = r ; S2 = 3/2) and

(y = 0 ; S2 = 1/2) are degenerate . Indeed, the proper values o f

Hint (cf. A .80) are independent of y. In strong coupling, we ma y
restrict ourselves to the lower of these proper values, and th e

wave function for the state with I = 3/2 may be written

= { 13/2 ; 3/2 3/2 M > sin y/2 +1- 1/2 ; 3/2 3/2 M> cos y/2 } qi (ß, y) l
J7 (Ap . III .3)

{ {11/2 ; 3/2 1/2M>cosy/2+1-3/2 ; 3/2 1/2M> sin y/2}T2(ß,•y )

in terms of the symmetrized basis vectors 1 Q ; IKM > (cf. II .15) .
The vibrational functions q) l and q2 represent small oscillation s

around a definite equilibrium ß ; however, the independence o f
the coupling energy of y implies essential oscillations in y, and

the vibrational energies characterized by ny become of the orde r
of rotational energies .

In order to determine the nuclear coupling scheme, one must
solve the vibrational equation, which can be written as a matri x

in the space of q l and T 2 . From (I1.23, 24, and 25) and (A .96
and 121-4) one obtains for the Hamiltonian of the system

(Ap . III .2)
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where Ho (ß) represents small vibrations in ß around the equili-
brium value (I1 .22) . For sufficiently strong coupling, the vibration s
in ß and y are approximately independent .

From (4) it is seen that there is a preference for the shapes
y = 0 and y = ax, and that there is a symmetry with respect t o
these two positions . An estimate of the y-oscillations may be ob-
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tamed by expanding H around y = 0 and ar, and by taking into
account that for y = 0 the value of T i is rather small compared
to 9)2, while the opposite holds for y = gr. Neglecting the overla p
of the vibrations centered on y = 0 and y = sr, one obtain s
two degenerate solutions, which have the same nuclear moments .

From the wave function (3), one can determine the coupling
scheme and the quadrupole moment by means of the operator s

	

3

	

2sin2 2-2

	

sin g

	

.h = -

	

(Ap . III .5 )

	

5

	

siny

	

2cos' 2
2

and
1 -cosy sin y

	

5

	

sin y cos y

where Qo is the intrinsic quadrupole moment given by (cf . V .7)

3

	

Q,o = -	 ZRô<F3> .

	

(Ap.III .7)
V 5 7r

From the approximate wave function, one obtains

<jz >

	

0 .8

	

(Ap . 111 .8 )

leading to (cf. IV.5)

2 .3

	

0 4
c (P3/2)

	

0 .7 } and
pc (d312) Re { 0 .9 F .

	

(Ap . III .9 )

The quadrupole moment is found to be

	

t

< Q>

	

0 .16 Qo .

	

(Ap . 111 .10)

Thus, the y-oscillations somewhat reduce the values of < jz >

and < Q > as compared with the state t = 3/2, y = gr .
The energy spectrum of the system is rather complex, sinc e

low.-lying states can be obtained by excitations of the y-vibrations
without change of I, as well as by rotational excitations . A com-
parison between the equations for states with different I shows ,
however, that the ground state is an I = 3/2 state of the typ e
considered above .

Q = Qo' (Ap. III :6)
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Solution of the Coupled Equations for Large j.

In the case of large j, a solution of the coupled system ca n

be obtained for arbitrary strength of the coupling by starting from

the corresponding classical equations and considering the quantu m
effects in first order .

If we assume the magnitude of the particle angular momentum
to be a constant of the motion, there exists a simple classical

solution for which j remains constant in a direction which ma y
be chosen as the z-axis . The surface acquires a static deformatio n

of the ao type given by

a0

	

2 Vn

	

(Ap . IV .1 )

The quantum effects give rise to an indeterminacy in the di -

rection of j and of the axis of deformation . For j )) 1, the angle
between j and the z-axis is relatively small for the states M = I j.
To first order, we may then treat jZ as a constant, equal to j
aside from corrections of order unity, and consider only th e
motion of the perpendicular component s

	

i± = is ± ij y .

	

(Ap.IV .2 )

The small inclination of the axis of deformation, with re-

spect to the z-axis, to first order implies excitations of the a l and
a_ 1 surface modes . In this approximation, the ao and a±2 modes
are not affected and perform independent zero-point oscillations
around their equilibrium values åo and 0, respectively .

The nuclear coupling scheme is thus determined by th e
coupled oscillations of the al and a_1 surface modes and th e
perpendicular j-components . This dynamical system possesses
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three degrees of freedom, since j+ and j_ play the role of canonical

conjugates .

The equations of motion may be obtained from the Hamil-

tonian (II .8), where Hs is given by (11 .5) and Hp may be taken

as a constant . A convenient form of Hirt for j a constant is give n

by (A .76) . To leading order in j, one finds

i~j_-I-xV~iwC(3 x

The dimensionless coupling constant x is given by (11 .14) .
This system of linear equations can be solved ïn terms of three

independent harmonic oscillators with proper coordinates cq s . We

thus write

	

~
3

a1 =
/, gse iw s r

s1

1

	

/2 C
J- = VJ	 2	 	 z(w2 -w) g s e iwsi .

xw 3hw s

The proper frequencies are found to b e

co l
l
= 0

'02 }
= (2x 2 f 2V9x4 -'+ - 4) w .

For the uncoupled system (x = 0), the frequencies become 0 ,
w of which the first is associated with the degeneracy of the

j,-levels, while the two latter belong to the surface oscillators . In

the limit of strong coupling, the degeneracy with respect to Iz

provides the zero frequency, while the rapid precession of j

around the nuclear axis has the frequency

w 2 3 x 2w, (Ap.IV.6)

and the slow rotational motion of the system takes place with the
frequency

(Ap. IV .7)

(Ap. IV .4)

l

i

Ap .IV.S)

w
3x2 '
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Both these limiting frequencies agree with those obtained from

the strong coupling solution by considering energy level spacing s
associated with the quantum numbers Q and I (cf. II .21 and 24) .

The three remaining degrees of freedom of the system whos e

frequencies remain to this order equal to w correspond in strong

coupling to the level spacings of the quantum number s

and K .

The commutation relations of the qs variables may be ob -

twined from those of the a and j components . One find s

/

	

h
[ ql, ql] = - ( w2+ w3) -c

[q2, ga] _ -

[q3, gs] = +

W3

	

h

	

(Ap.IV.B)
w2 -w3 C

2w

	

h2

w 2 -w 3 (.

In these coordinates, the angular momentum transferred to th e

surface is given by

B
< Rz > _ -

h
-Zws <gs gs+ g sg

s
>

s

and for the ground state one obtains

I

	

x 2
Rz > = .ï+ 1

vx4+ 4
The factor

I+
1 which has been added equals unity to leading

order, and makes the equation, in the limit of strong coupling ,
exact for all values of I (cf . II .20) .

The transfer of angular momentum implied by (10) gives ris e
to a small static decrease in the magnitude of åo since the latter

is proportional to < 3j z --j (j + 1) > (cf. A.78) . From this effect

follows the projection factor (V .11) .

(Ap. IV .9)

(Ap. IV.10)
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Individual-particle and Collective Features of

Nuclear Reactions

The recognition of relatively undisturbed single-particle motio n

as an important aspect of the nuclear dynamics implies a pictur e

of nuclear reactions, in which the incident particle interacts i n
the first stage with the average nuclear field . In subsequent

stages, the coupling between the particle and the internal degree s

of freedom of the target nucleus may lead to the formation of a
compound nucleus, in which the excitation energy is share d

among a large number of degrees of freedom (cf. § VI d) .

In Section a) of this Appendix, a description of the reactio n
process is formulated, based on the assumption that the formatio n

of the compound nucleus is initiated by the interaction of th e

incident particle with the surface oscillations of the target nucleus .

The formalism is applied in Section b) to the dispersion o f

neutrons, and the scattering cross-sections are considered for

various strengths of the coupling to the compound nucleus . A

sum rule for the scattering widths of the resonance levels i s

discussed .
The parameters of the formalism, which enter into the de-

scription of the coupling process, are considered in Section c) .
Recent empirical evidence, obtained from total neutron cross -
sections averaged over many levels, permits an estimate of the
coupling strength which may be compared with the particle -

surface interaction observed in the low energy nuclear properties .

a) General Formalism .

In order to avoid inessential complexities of the mathematical

formalism, we first consider the elastic scattering of an s-neutro n
on a nucleus of spin zero, and neglect the effect of inelastic pro -

io
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cesses . The extension to a more general treatment is indicate d

below .

The wave function may be expanded in the for m

Ÿ '

	

r (r) 1/4
0o(x) +

	

c i !i (r, x) ,

	

(Ap.V. 1 )

where 0o is the ground state of the target nucleus, described b y

the coordinates (x) which may represent individual particles a s

well as collective degrees of freedom . The radial wave function

of the scattered neutron is denoted by T (r) . The Vfi constitute a

complete orthonormal basis in the space orthogonal to Ø o .

In the mixed representation (1), the state vector is specified

by the function (r) and the coefficients c i . Assuming the coupling

between the incident particle and the internal motion of the
target nucleus to take place at a sharp surface (r = Ro), one

obtains the coupled differential and algebraic equations

h' dz_

	

2Mdrz
+V(r)çs _ (E-Eo)fp r Ro

	

(Ap.V. 2 )

z

	

f

2 R a (p(Ro) MRô Ro rP

v2 Ro Ø(Ro) Hio+ ci(Hil -Edil) = 0,

	

(Ap.V . 4)
J

where (E -- Eo) is the kinetic energy of the incident neutron (i n
the center of mass system) and V(r) the potential to which the

neutron is subjected inside the nucleus . For simplicity, we tak e

V(r) to be constant for r < Ro and to rise abruptly to zero at

the surface .

The matrix elements are given by

Ho =
1

R,73I2 ~ dr dx ØoHint(r, x) Ti

	

(Ap.V. 5 )
V2 .7r

Hi] = ~ dr dx HŸ'j ,

	

(Ap . V . 6)

where Hi nt (r, x) is the coupling between the incident particl e

and the surface (cf . 1I .9 and 10) and H is the total Hamiltonian
of the system. The most convenient choice of the basis Ti de-

and
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pends on the structure of the coupling process by which the
compound nucleus is formed (cf. Ap. Ye). In some simple
situations, one may take the Ti to represent stationary states i n
the absence of the coupling to the entrance channel, i . e .

Hil = Ei BiJ .

	

(Ap.V . 7 )

The equation (3) contains the discontinuity of the logarithmi c
derivative of q) at the surface, which may be written, by means
of (2),

IR }
Ro

10=
kRocot(kRo+6)-KRocotKRo

	

( P
1- I

	

A V.8)
f(E)-fsp(E) ,

where k and K are the outside and inside neutron wave numbers ,
and å is the scattering phase.

The scattering cross-section is given in terms of f by (cf . ,
e . g ., BLATT and WEISSROPF, 1952, Chapter VIII)

6 =sc k2
_ f+ 1kRp e_2ikRo

f- åkRo
(Ap . V.9)

2

The quantity fsp in (8) is the f-function which corresponds to
single-particle scattering in the fixed nuclear potential .

The equations (3) and (4) determine q)(Ro) and the ci ; the
compatibility condition provides the linear equation for f

2

MRô (fsp -- f )
=

	

(Ap .V. 10)
Ho i

The special basis (7) gives

f fsp +
MR 2

	

Hoi1 2
(Ap.V.11 )

h.2 i E- Ei

The treatment of partial waves of higher angular momentu m
and the effect of Coulomb forces leads to the same equation (10 )
for the function f, which then determines the cross-section by
formulae which are generalizations of (9) .



150

	

Appendix V. Nr. 1 6

If inelastic processes are possible, one chooses an appropriat e

number of the T i to represent the open channels (t) other tha n

the entrance channel . The function f is again determined by a n

equation of the form (10) where, however, for the open channels *

h 2

Htt-g MR2 [(fsp)t - (d t + ist)] .

	

(Ap. V . 12)
0

The (fsp) t is the single-particle f-function appropriate to scatterin g

in the channel, t, and A t the level shift associated with long

range forces . The imaginary term st is related to the channel

width (cf . BLATT and WEISSKOPF, 1952, p . 332) . Similarly, one

may include radiative processes by adding a complex term t o

the nuclear Hamiltonian .
The effect of inelastic processes leads to complex values of f

from which the elastic cross-section and the total reaction cross -
section may be determined . The distribution of reaction product s

among the open channels is determined by the values of ç t (Ro) .

The formulation given above, some consequences of whic h

are considered in the following, has assumed the coupling be-
tween the incident particle and the internal structure of th e

target nucleus to be located at a sharp surface . The influence of

a finite surface thickness as well as of other types of coupling ,
such as to collective volume oscillations and to particle excitation s
through direct particle forces, can be treated in a similar way

by obtaining from the coupled equations a linear expression for

f. The form of this expression may, however, in these cases b e

somewhat more complicated than (10) .

b) Scattering Cross-sections .

In order to illustrate some of the characteristic features o f

nuclear reaction cross-sections, which are contained in th e

formalism outlined in Ap .Va, we consider in this paragraph
the dispersion of neutrons in the region of sharp resonances

(kRo «« 1), and restrict ourselves to s-wave scattering .

* If the residual nucleus possesses a spin, there may be an additional con-
stant term in (12), arising from flint and representing the energy shift of the

single-particle resonances in the channel t, resulting from the non-spherical na -
ture of the potential.
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i . Weak coupling ; one-level resonance .

The coupling between the entrance channel and the com-

pound nucleus may be termed weak if the second term in (11 )
is small compared to the first, except in the immediate neighbour -
hood of the energies Ei , i . e . for

MRô I Hoi1 2
«D,

	

(Ap.V . 14)
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h2

	

fsp

where D is the level distance in the spectrum of E i .
When the condition (14) is fulfilled, the impinging particle

interacts mainly with the average potential of the target nucleu s
for most incident energies . This potential scattering depend s
on the distance from the nearest single-particle level and may
take on all values from 0 to 4nA' . If K Ro »» 1, the potential scat-
tering for most energies is close to that of an impenetrable spher e
(f = oc), but characteristic differences from this limit are ex-
pected, and experimental evidence on cross-sections far awa y
from resonances may give information on the motion in the
average potential* .

In the immediate neighbourhood of an energy Ei , the cross-
section varies rapidly . If the potential scattering is small com-
pared to 4 t. 2 (fsp »» kR; cf. (9)), one obtains a resonance of
the usual type

k2
(E-Er)2+ 4 r'

	

(Ap.V . 15)

where the resonance energy Er is given by

f (Er) = 0,

	

(Ap .V. 16)
leading to

	

MRp I Ho
i	 1 2

Er = E i

	

2

	

(Ap.V. 17)

	

h2

	

fs p

which, in view of (14), is much closer to Ei than the neighbouring
levels . The scattering width r and the reduced width y are given by

* The term "potential scattering" is sometimes used to denote the scattering
from an impenetrable sphere (cf ., e . g ., BLATT and WEISSKOPP, 1952) . The recog-
nition of the significance of single-particle nuclear motion for the course of nuclea r
reactions would seem, however, to make it more natural to reserve the term for
the scattering in the actual nuclear potential . We here follow this latter terminology .

r2
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F = 2 kRoy =

	

f(LRj (Ap .V . 18)
r

which, according to (11) and (17), gives

(Ap. V . 19 )
MRa IHo i

1 2

F

	

2 kR o=
2 f 2

sp

This value for the width is small compared to D by (14) an d
the assumption fsp i> kRo .

The potential scattering becomes comparable with the re-

sonance maximum in the neighbourhood of the resonanc e
energies En for single-particle scattering, given by

	

fsp(En) = O .

	

(Ap .V.20)

The energy regions in which spot - 4 5.EA2 are given by

E En 1 < Tv ,

	

(Ap.V. 21 )
where

2

	

I sp = 2 kRo y sp = 2

	

kRo MR2

	

(Ap.V . 22)
0

represents the single-particle scattering width . In the regions (21) ,
the form of the compound resonances is essentially modified by
the potential scattering and, for I E -En (« Psi) , the influence of
the compound state appears as a narrow dip in the cross-section .

A simple interpretation of (14) may be obtained by using th e
approximation

h 2

fsp111Rô
En -E (Ap.V . 24)

valid for 1E-En (( A, where d is the single-particle leve l
distance (cf . (VI.7)) . By means of (24) the condition (14) may
be written

	 Hot1 2

	

<(
1

	

(Ap .V . 25 )
EEn I D

which is just the condition that the coupling Hoi to the entranc e
channel does not appreciably modify the compound states .
Therefore, the states Ti act individually and influence the scat -
tering only in small energy intervals around the E i -values .
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In the region 1E - E n I < Fsp , the condition for weak coupling
is modified, corresponding to the fact that the single-particl e

levels are only defined to within an energy T sp . The analysis o f

(11) shows that in this region the less stringent condition

Hoi ly « 1

	

(Ap.V. 26)
rspD

is sufficient to ensure that the Ti states act individually. The

fact that (26) implies a scattering which, to first approximation,
is of potential character, may be understood by observing tha t

2 n(hD)-1 Ho i 1 2 represents the probability per unit time fo r

coupling of the incident particle to the compound states . If thi s

probability is small compared to î-1 1's,,, which is the probability

per unit time for escape from the single-particle state, the coup-

ling is of only minor importance .
For I E - En I - A, several single-particle levels are simul-

taneously effective, and the condition (14) can be interpreted i n

the same way as (25) by considering the total perturbation caused
by all the single-particle levels .

ii . Strong coupling ; many-level resonances .

When the conditions (14) or (26) are not fulfilled, the coupling

between the states Pi and the entrance channel leads to quasi -
stationary states of the compound nucleus, essentially differen t

from the P i . The coupling strongly mixes the states Y' i over an
energy region given by the left hand side of (14) .

Some of the properties of the scattering in the strong couplin g
region can be illustrated by assuming that, over the region o f

strong mixing, the Ti can be approximated by a spectrum o f
uniform spacing D with a constant coupling matrix element

Ho i = H, . In this case, (11) can be written

MR 2 n.

	

r
f = fsp +t2 ° Dcot D(E - Ei ) .

	

(Ap.V. 27)

It is seen that the resonances Er of the compound nucleu s

(f(Er) = 0), which are close to Ei for weak coupling, move half-
way in between the energies E i when the coefficient of the con -
tangent in (27) becomes large compared to Tsp .
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The resonance scattering widths can be obtained from (18 )

and are found to be

2

	

1

= K
D
[2Ddc

+	 HÇ cot2 KRa , (Ap.V . 28)

which is a generalization of (19), to which (28) reduces whe n

the last term in the parenthesis dominates (weak coupling) .

In the strong coupling region, the behaviour of the cross -
section in between resonances is determined by the contributio n

of many far-off compound states, which dominates over th e

potential scattering. The variation of this background scattering

depends on the coefficient of the cotangent in (27) . Only when

this coefficient is large compared to unity does the cross-sectio n

away from resonance approach a constant value, which then

equals that of hard sphere scattering .

The foregoing analysis leads to the following picture of th e
scattering process in the various coupling regions (cf . Fig. 16) .

For very small coupling

D<<
P'

	

(Ap.V. 29)

the weak coupling situation applies for all incident energie s

and the principal part of the cross-section is determined by th e

potential scattering .
When (29) no longer holds, a strong coupling situation exist s

in the neighbourhood of the single-particle levels . Inside the
region of strong coupling, the reduced scattering widths are of

order (cf. (28))

(	

D

\2 h2

Y nHd MRô
(Ap.V . 30)

while, at larger distances from the single-particle level, wher e

the coupling is weak, the widths become very much smaller . A
measure of the extent of the strong coupling region can be ob-

tained as the energy interval W over which the reduced widths
exceed half the maximum value (30) . From (28) one finds

2

W = 2 7 -- .

	

(Ap . V . 315
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Fig. 16 . Scattering f-function in coupled model. The scattering cross-sections can
be simply expressed in terms of the logarithmic derivative f of the wave functio n
at the nuclear surface (cf ., e . g ., (9)) . The broken curve gives the f-function fo r
pure single-particle scattering in the average nuclear potential . At the energie s
En , corresponding to the virtual single-particle states, with the spacing A, fs p

vanishes, while half way between these energies fsp has poles . The coupling to

the internal motion of the target nucleus, which is assumed to take place at the
nuclear surface, adds a rapidly varying part to the total f-function (cf . (11)) .
The compound nucleus is described in terms of the states Ti which would represen t

stationary states in the absence of the coupling to the entrance channel . At the
energies Ei , which have on the average a spacing D, the f-function has a pole ,

while a resonance energy Er of the compound nucleus (for which f = 0) occur s
in each interval Ei < E < Ei +1 .

The relative magnitude of the two contributions to f depends on the distance
from the nearest single-particle level En . At large distances from En , the value
of fsp dominates and, to a first approximation, the cross-section is that of potentia l
scattering. The coupling gives rise to resonances lying very close to the Ei and

the scattering widths, which depend inversely on the energy derivative of f a t
resonance, are small (weak coupling region) . Near to the En-values, the f-function

is determined principally by the coupling term (strong coupling region) . In thi s
region, which extends over an energy interval W (cf. (31)), the resonance state s
result from the coupling of many Pi-states, and the resonance energies lie essent-

ially midway between the Ei . The scattering widths are relatively large in the
strong coupling region, being of the order of A/W times the average resonance scat-
tering width (cf . the sum rule (33 a)) ; the oil-resonance scattering results mainly
from the influence of many far-off resonances .
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This energy is related to the probability per unit time for th e

formation of the compound nucleus, and can also be written i n

the form (VI .6), in terms of the mean free path of the particl e

for energy exchanges in the target necleus .

For a coupling strength so great that W becomes comparabl e
with or exceeds A, the region of strong coupling extends over th e

entire energy interval, and no structure associated with single -

particle motion remains . In this situation, the entering particl e
shares its energy with many degrees of freedom of the compoun d

nucleus before completing a single traversal of the nuclear field .

iii . Sum rule for scattering widths .

As long as the region of strong coupling W is small compare d

with the single-particle level spacing A, there exists a simpl e
sum rule for the reduced scattering widths . This may be obtained ,
in its most general form, directly from (10) . Since the scattering

widths are appreciable only in regions around the single-particle
levels E n , one may use the form (24) for fsp . The equation (10)
is then equivalent to the secular equation for a bound stat e

problem . The proper values and proper function for f = 0 give
the resonance energies Er of the compound nucleus and the state

vectors of the scattering system at these resonances .
The reduced widths depend on f' (E r ) and can be expressed

in terms of the minors of (10) which, in turn, are simply relate d
to the state vector at resonance. Thus, one obtains

Yr =

	

R o9~ 2 (Ro) + f2

	

c2/
MR o

r

(Ap . V. 32)
2 R. (Ro)

	

~ h 2

which expresses yr in terms of the reduced width of the single-
particle level times the probability of finding the single-particl e
motion in the compound state (r) . From the completeness of the
states (r) one gets immediately

h 2

~Yr-
117Rô

(Ap.V. 33)

= Ysn , (Ap .V . 33a)
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where the sum is to be extended over the scattering resonance s

in the region -A/2 < E - En < A/2 . *
As W approaches 4, the single-particle level strength become s

approximately uniformly distributed over all the compound
levels, corresponding to the relation (cf ., c . g., WEISSKOPF, 1950)

1'

	

rsp

	

Kr D
.

	

(Ap .V . 34)

It may be noted that the sum rule (33 a) is independent of

the shape of the nuclear potential and of the particle angular

momentum as well as of the types of couplings considered .

Similar sum rules hold for other properties of the compoun d
levels, which depend on the content of a particular single-particl e

'state . Thus, for a radiative transition to the ground state, th e
single-particle width may be considered as distributed over th e

compound levels, whose average radiative width, for the cor -
responding transition, may be represented by an expressio n

equivalent to the first part of (34)** . However, for W<4, the

distribution will not be uniform, and the single-particle radiative

width will be mainly concentrated on the compound levels in a n

energy region W around the unperturbed single-particle state .

c. Discussion .

In the application of the general formalism outlined in the

preceding sections, the significant features of the nuclear struc-
ture are contained in the states 1' in terms of which the proper-

ties of the compound nucleus are characterized .

The choice of a basis which diagonalizes all couplings excep t
those to the entrance channel (cf. 7) is particularly appropriate

* Sum rules for reduced widths have been considered by TalcriMANN and
WIGNER (1952) who have especially discussed the sums over channels leadin g
from a particular compound state . Arguments for a relation similar to (33) are
contained in the discussion following Eq . (31 b) of this reference . The factor 3/ 2
appearing in the estimate obtained by these authors arises from the assumptio n
of a constant neutron wave function inside the nucleus .

** An expression for the partial radiative width of a compound state, si-
milar to the first part of (34), has been given by BLATT and WEISSKoPF (1952 ;
p . 646) . However, as an estimate of the single-particle level spacing which en -
ters in this expression, these authors have suggested a value of about 0 .5 MeV
for a medium heavy nucleus . The prescrit estimate for 4 (,a 20 MeV) thus lead s
to a considerable decrease in the radiative widths .
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if one can assume that, already after the first energy exchang e

between the incident particle and the target nucleus has take n
place, the subsequent couplings proceed so rapidly that n o

structure associated with individual configurations remains .
In this situation, the states Ti , though highly complex, hav e

a certain uniformity of statistical nature. As a first approximation,
one may assume the I Ho t I to have a constant value HH , and

the level energies E i to be approximately evenly spaced with a
separation D. The gross features of the nuclear level structure
may then be characterized by the coupling parameter W, re -
presenting the energy region around the single-particle resonances ,

where the compound nucleus is formed with appreciable prob -
ability (cf. Ap.Vb.ii and also § VI d) .

In general, one expects simple types of motion to manifes t
themselves also in intermediate stages of the reaction . The choice
of the basis (7) is then less appropriate, since the assumption o f
a constant Ho i is no longer valid. The resulting features of the
reaction process may be taken into account by including among
the Ti a number of states representing the structure of the inter -
mediate stages .

Such effects may, for instance, be significant for very deforme d
target nuclei, where the entering particle has a large probability
of setting the nucleus in rotation (cf . § VI c .ii) . The rotational

excitation energy is not easily transmitted to the other degrees
of freedom of the nucleus, and may with appreciable probabilit y
be returned to the entrance channel, or may give rise to an in -
elastic process without the formation of a compound nucleus .
To describe these features, one may consider as a first approx-
imation only the potential scattering and the specific coupling s
to the rotational motion . It may be possible to include the ad-
ditional couplings leading to the compound nucleus formation ,

by means of a uniform set of states, whose coupling to the simple
motion may be characterized by parameters similar to W .

Recently, important evidence on the formation of the com-
pound nucleus has been obtained from the analysis of total
neutron cross-sections, averaged over many resonances (BAR-

SCHALL, 1952 ; FESHBACH, PORTER, and WEISSKOPF, 1953) . The
effect of the compound nucleus formation on such average cross -
sections can be described as an absorption, since one may con-
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sider the problem in terms of the scattering of neutron wave -
packets with a time extension short compared with the period s
of the compound states . A particle entering the complex motio n
is, therefore, effectively lost from the wave-packet . Such an ab -
sorption can be represented by an imaginary potential (cf ., e . g . ,
BETHE, 1940) .

In the simplified situation discussed above, where specifi c
structures of the intermediate stages of the coupling process ca n
be neglected, the averaged total cross-sections can thus be ob-

tained by considering single-particle scattering in a constan t
complex potential . The coupling energy W is related to th e
imaginary part of the potential V b y

W = - 2Im (V) .

	

(Ap.V. 35)

The analysis of the empirical data has shown that many
features of the averaged total cross-sections can be accounte d
for in terms of such a complex potential with Im (V) m -1 MeV ,
corresponding to W 2 MeV (FESHBACH, PORTER, and WEISS -

KOPF, 1953) . Thus, the observed cross-sections resemble those o f
single-particle scattering, in which the individual resonances ar e
broadened by about two MeV . *

The coupling which leads to the compound nucleus formatio n
may result from the interaction of the incident particle with th e
surface oscillations or other collective modes of the target nucleus ,
or from direct collisions with individual nucleons . The contribu-
tion of the surface coupling to W may be estimated from the
matrix elements in Chapter II . For the average coupling matri x
element

	

one has

H2 . X 1 Ho i 12 ,

	

(Ap.V. 36)

where the sum is extended over all states within the single-particl e
level spacing A . This sum represents a closure over all variable s

* In fitting the experimental cross-sections, FESHBACH, PORTER, and WErss-
KOPF (1953) have used the parameters Vo = 19 MeV, for the real part of the
potential, and Ro = 1.45 X A" X 10 -13 cm for the nuclear radius . While th e
agreement between the calculated and measured cross-sections is striking, thes e
parameters do not seem compatible with the positions of the single-particle levels ,
assumed by the shell model, which for the above radius requires a potential of
about 30 MeV . Thus, for example, the observed large cross-sections below 1 MeV
for elements with A 90 result, for Vo = 19 MeV, from a virtual 2p level, whil e
already for lighter nuclei, 2p states, bound by about 8 MeV, have been iden-
tified (cf ., e .g ., Tables XII and XXV) .
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except the radial quantum number of the particle, and one ob -

tains (cf. (II .9) and (A.38) )

Hoi I2 = < 0 I HL 0 > = 8 k 2	 (Ap.V. 37 )

for a particle incident on an undeformed nucleus . From (31) ,

(36), and (37) one then finds

5k2 h w
W _

44 C
(Ap.V . 38 )

The hydrodynamical surface parameters (Figs . 1 and 2) and the

expression (VI .7) for d lead to values for W of about 2 and 3

MeV for a heavy and medium heavy nucleus, respectively . I t

thus appears that the surface coupling is adequate to accoun t

for the observed probabilities for compound nucleus formation .

In the case of strongly deformed target nuclei, one obtain s

<0IH t l0>=4n kzß z

	

(Ap.V. 39)

which represents an increase over (37) by a factor of the orde r

of the number of phonons present in the deformed state . How-

ever, the major part of this very strong coupling leads to rotationa l
excitations and thus gives rise to features in the reaction proces s
that cannot be represented by the scattering in a fixed comple x

potential (see above) . A detailed study of elastic as well as in -
elastic neutron cross-sections for very deformed nuclei (espec-

ially in the regions 155 < A < 185 and A > 225) would thus b e

of interest . In addition to rotational interactions, the surfac e
coupling gives rise to the excitation of vibrational modes, which

may rather rapidly transmit their energy to additional degree s
of freedom and result in the formation of a compound nucleus .
An estimate of these couplings can be obtained from (39) b y
subtracting the rotational interactions, and one finds a value fo r
the absorption parameter W of about 3/5 of the estimate (38) .

With increasing energy of the impinging particle, coupling s
to collective modes of higher frequencies are expected to be o f

increasing importance, and also the direct particle forces ca n
excite an increasing number of degrees of freedom of the target
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nucleus . A compensating effect sets in when the particle energ y

becomes comparable with the kinetic energies of the target

nucleons . The short time spent by the particle in the nucleus ,

together with the decreasing nucleon scattering cross-sections, the n
implies a decrease in the probability for formation of the compoun d

nucleus . For bombarding energies in the region of 100 MeV, an
appreciable transparency of the nucleus has been observed an d

has been interpreted in terms of the single-particle features em -

bodied in the optical model of the nucleus-(SERBER, 1947 ; FERN-

BACH, SERBER, and TAYLOR, 1949) .

Dan .Mat .Fvs.Medd . '27, no .16 . 11



Appendix VI .

Nuclear Excitation by the Electric Field of
Impinging Particles .

Important information may be obtained from the excitatio n
of nuclei by bombardment with heavy charged particles whos e
energies are sufficiently below the Coulomb barrier to exclud e
the influence of nuclear forces . Since only electrostatic force s
are then operative, the experiments can be analyzed in terms o f

relatively simple properties of the nuclear structure . Recently ,
TER-MARTIROSYAN (1952) has given a rather detailed treatment
of such processes* . We here summarize some of the results of

this analysis, attempting in particular to indicate the relation s
to the electromagnetic radiative transitions (cf . Chapter VII) .

A great simplicity in the analysis arises from the fact that

one can describe the projectile as following a classical trajectory .
The condition for such a classical treatment is (cf. N . BOHR ,

1948, § 1 .3) .
z

x = 2
ZItIZv

2e »1,

	

(Ap.VI.1 )

where Z I and Z2 are the charge numbers of the projectile an d
the target nucleus, respectively, and where v is the velocity o f
the incident particle .

This condition is always fulfilled when the bombarding energ y
is sufficiently low that penetration through the Coulomb barrier ,

and thus the influence of nuclear forces, is negligible .
One can then describe the influence of the particle on the

nucleus in terms of a time-dependent potentia l

* Various aspects of these reactions have also been previously considere d
WEISSKOPF, 1938 ; RAMSEY, 1951 ; MULLIN and GUTH, 1951 ; HUBY and NEwNs ,

1951 ; BREIT, HULL, and GLUCKSTERN, 1952) .
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zQ

	

Zl e 2
V(t) = I

l r(t)-r '
where rp are the coordinates of the target protons and where

r(t) gives the trajectory of the incident particle, considered a s

a point charge . This potential gives rise to nuclear transition s
of electric multipole character . Of special interest are the collec-

tive transitions, for which the excitation cross-sections are parti -

cularly large . The low energy collective transitions are induce d

by the quadrupole component of (2), given by

V2( t ) =
45

Zi e2 2y i Y2 12 (zen ,p)Y21,(v(t),T(t))[r(t)]-3 .(Ap.VI .3)

The method of Coulomb excitation may also find application t o
other multipole transitions*, but these are in general expected t o

have appreciably smaller cross-sections . Magnetic transitions are

weak due to the small velocity of the projectile .

Since the field of the particle produces only a small per-

turbation in the internal nuclear wave function, the probabilit y

for excitation of a given level may be writte n

P =

	

b(M1) 12,

	

(Ap.VI . 4)
mf

where Mt is the magnetic quantum number of the final state an d

b(M,)

	

i
	 `øfl V(t)l i >elwi dt (Ap.VI . 5)

with
ha) = Et - E i = d E . (Ap.Vl . 6)

For a quadrupole transition, one obtains

:1

:

Y"b(Mt)
_

5

4n Zle

	

i l Ut e(2 „u) f>

	

(0, 4~)e`wfdt (Ap.VI . 7)
i b

_oo

in terms of the nuclear matrix elements of the quadrupole ope-

rator Me (2, ,u) given by (VII .5) .

* The electric dipole transitions have been considered in detail, for all value s
of x, by MULLIN and GUTH (1951), Huri and NEwNS (1951), and TER-MARTIRo -
SYAN (1952). MULLIN and GUTH (1951) have also considered the quantum mechan-
ical treatment of E2 transitions, but their cross-sections seem tobe too small, a s

a result of the assumption of a scalar property of the quantity M 2 Born (k, k')
implied in the equation following (29) of their paper .

11 *

(Ap.VI . 2 )
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The classical orbit of the projectile is a hyperbola and it i s

convenient to choose a coordinate system whose xy plane i s

that of the orbit and whose x-axis is the focal line . The orbi t

may be given in the following parametric representatio n

x = a (cosh co + e)

y = a I/
E2 - 1 sinh w

r = a (E cosh w + 1)

a
t = - (e sinh w + w),

V

where

(Ap .VI . 8 )

Z1 Z2 e 2a =
m

v 2
(Ap .VI . 9 )

is half the distance of closest approach in a head-on collision .

The reduced mass is denoted by in . The orbital eccentricity e i s

r

	

C \2 1/ 2

e = 1+ p

	

,

	

(Ap .VI . 10)
\ a /

in terms of the impact parameter p . The angle of deflection .z9

in the center of mass system is given b y

tan - = a .

	

(Ap.VI . 11 )
p

The transition amplitude can now be writte n

where B e (2) is given by (VII .2) . The non-vanishing component s
of s( 2) are given by

S, ,(2)

	

é

i(e sinh w+w)	 1	 	 dw
((AP.'

13)
-co e cosh w -f- 1 )- 2

V 2

.
e ig(s sinhw+w) (coshw~	

cosh we2+ 1) 4
sinh w)2

dw (Ap.VI . 14)

where

ZI e 1
lJJ B e (2) J1'12 <If 2~YI

t
M i -Mt 1 It 2Ii V1>

	

m •S( ~)

	

r (AP VI. 12 )5 ht) a2'

_ 4E ZI Z2 e 2

2E hu '
(Ap.VI . 15)
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The quantity e represents the ratio of the collision time to th e
nuclear period r = co 1 . For values of e of the order of or large r

than unity, the collision becomes approximately adiabatic wit h
a resulting small excitation probability, decreasing exponentiall y
with 6$ .

The differential cross-section for excitation associated with
a scattering into the solid angle d ,Q i s

do-exc( 4i) = 4 a 2 sin 4

2 Pd,Q,

	

(Ap.VI. 16)

while the total cross-section for excitation of the state in quest -
ion becomes

27z 1 in-w 2
25 Z;ezh)Be(2)gz(e),

	

(Ap .VI . 17)

(Ap.VI. 18)g2(;) = d6~s~)4 2

y

with

The function g 2(ß) is plotted in Fig . 17 .

From the relative values of the transition amplitudes b(Mt )
the angular distribution of the y-radiation following the excitatio n

can be determined* .

While the angular distribution may give information abou t

the spins of the states involved and about the multipole orde r

of the emitted y-rays, the measurement of aexe for the excitatio n

from level c to level d leads to a determination of the quantit y
Be(2) le ;d . This information is thus similar to that obtaine d

from a lifetime measurement for the inverse transition, for whic h

the E2 radiative probability is given by (cf . (VII .1))

4n 1 ( coy
T = 75 h

e{Be(2)}d-)-e• (Ap .VI . 19 )

The nuclear matrix elements for the excitation and decay ar e
related by

2 Id + 1
Be÷d = Bd-)-e'

2 lc -{- 1
(Ap .VI . 20)

* Recently, explicit expressions for the angular distribution of the y-radia-
tion following Coulomb excitation have been given by ALDER and WINTHER (1953) .
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1. 0

0.8

0.6

0.4

0.2

Fig . 17 . Function g2 (se ) appearing in cross-sections for Coulomb excitation . The cross -
section for Coulomb excitation produced by the electric quadrupole field of the im -
pinging particles is given by (17), which contains the function g2 (°), *here ,
given by (15), is a measure of the ratio between the collision time and the nuclea r
period . The function g 2 () is expressed by means of (13), (14), and (18) in term s
of integrals over the trajectories of the particles . The integrals have been numer-
ically evaluated by ALDER and WINTHER (1953), whose results we reproduce in

this figure .

The evaluation of the reduced transition probabilities B fo r

various types of transitions in the coupled system has been give n

in Chapter VII .

The large values of Be(2) for nuclear collective transitions

make the method of Coulomb excitation especially suited fo r
the study of rotational and vibrational states (§ VI c) .

Note added in proof : Recently, the feasibility of Coulomb excitation has
been exhibited by the observation of the y-radiation following the nuclear ex -
citation (MCCLELLAND and GOODMAN, 1953 ; Huus and ZUPANCIC, 1953). By this
method important evidence has been obtained on the rotational spectrum of th e
odd-A nucleus, 73Ta 181 (cf . Huus and ZuPANCic (1953), whose results we her e
summarize) .

The first strongly excited level has been found at 137 keV . Since the groun d
state of Ta lsl has I° = 7/2, the first rotational state is expected to have I = 9/ 2
and an energy of 9 712 /2 (cf . VI . 4) . Thus, assuming a similar moment of inertia
as in the neighbouring even-even nucleus 72Hf1S0 , whose first excited (2+) stat e
has an energy of 93 keV (cf . SCHARFF-GOLDHABER, 1953), the first rotationa l
state in Ta181 should have an energy of about 140 keV, in good agreement wit h
the observed value.

The second rotational state in Ta18t , with I = 11/2, should have an energy
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of 2019 times that of the first (9/2) state, and should also be strongly excited .
This was confirmed by the observation of a y-ray of 300 keV resulting from th e
Coulomb excitation .

The energy dependence of the excitation cross-sections for the two states
was found to be in good agreement with (Ap . VI . 17), using the numerical result s

for g2 (O of ALDER and WINTHER (1953), thus supporting the E 2 interpretation
of the excitation process .

From the magnitude of the observed cross-section for the excitation of th e
137 keV line, the reduced transition probability B e (2) can be obtained fro m

(Ap . VI . 17) . By means of (VII .18) and (Ap. VI . 20), one derives an intrinsi c
quadrupole moment of Q 0 1 7x10 -29 cm 2 , which is in good agreement with th e
trend of the deformations deduced from lifetime measurements of first excite d
states in even-even nuclei (cf . Table XXVII) . The value of Qo may also b e
compared with the spectroscopic quadrupole moment (cf . Table XVIII) whic h
yields, by means of the projection factor (V .9), a deformation of Q0 -14 x 10-L ' cm 2 ,
which is again of the same order of magnitude ; the difference may riot be signi-
ficant in view of the experimental uncertainties .

The cross-section for the production of the 300 keV y-ray depends also
on the branching ratio between the direct ground state transition (11/2 - 7/2 )
and the cascading (11/2-> 9/2 ± 7/2) via the first excited . state . From a com-
parison of the cross-sections for the 300 keV and 137 keV y-rays, a branchin g

ratio of about 1 :4 has been deduced . While the cross-over transition is of pure
E 2 type, the cascade may proceed by M1 as well as by E 2 transitions . Th e
E 2 transition probabilities can be determined from the value of Q„ (VII . 1 8
and 19), and the Ml transition probability can be related to the magneti c
moment of the ground state (VII . 20 and IV. 9) . From the observed magneti c
moment (Table XVIII) and the value Q Q = 7 x 10- 2' cm 2 , and using the interna l
conversion coefficients of ROSE et al . (1951) and of GOLDHABER and SuNYAR
(1951), one calculates a branching ratio of about 1 :1 . While the observed branchin g
ratio confirms the relatively strong competition of E 2 with M 1 radiation in
rotational transitions, it is still somewhat smaller than the calculated ratio ;
however, the theoretical estimate is very sensitive to the value of the groun d
state magnetic moment, and a precision determination of .s (Talgi ) would thu s
be of interest .
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